
U P O R A B N A I N F O R M A T I K A162 2015 - πtevilka 3 - letnik XXIII

Mario	Konecki
Faculty	of	Organization	and	Informatics,	University	of	Zagreb,	Croatia
mario.konecki@foi.hr

1	 INTRODUCTION
Both	 students	 and	 teachers	 agree	 that	 introductory	 pro-
gramming	courses	are	difficult.	Students	find	abstract	pro-
gramming	concepts	hard	to	understand	and	a	rather	 large	
number	of	different	syntactic	rules	makes	introductory	pro-
gramming	 even	 more	 challenging.	 Many	 students	 tend	 to	
stop	following	lectures	in	an	active	manner	and	become	una-
ble	to	do	their	homework	tasks.	This	situation	has	a	negative	
effect	on	the	motivation	of	students	and	it	also	creates	fear	
and	unwillingness	of	students	to	learn	programming.	There	
are	many	reasons	for	this	kind	of	state,	but	maybe	the	most	
important	reason	is	the	lack	of	one	critical	prerequisite	for	
any	 programming	 activity,	 namely	 a	 very	 specific	 way	 of	
thinking	that	is	required	to	analyze	and	solve	problems.	This	

kind	of	thinking	can	be	named	problem-solving	skills	or	sim-
ply	algorithmic	thinking	and	it	is	not	a	part	of	students’	habi-
tual	way	of	 reasoning,	which	 is	 the	main	 reason	 that	 stu-
dents	lack	this	kind	of	insight	into	the	analysis	of	given	pro-
blems	and	into	the	construction	of	corresponding	algorithmic	
solutions.

Students actually perform all necessary activities
that are needed in order to develop proper algori­
thmic thinking on a daily basis, but they do all these
activities in such a quick way that makes these acti­
vities virtually unconscious. These activities include
the analysis of problems and the formation of a series
of steps for their resolution. The person who wants
to get a glass of water knows that he/she needs to

	Algorithmic	Thinking	as		
a	Prerequisite	of	Improvements		
in	Introductory	Programming	Courses

Abstract
There	are	many	persisting	problems	present	in	introductory	programming	courses.	Students	are	not	able	to	deal	with	abstract	and	complex	
programming	concepts	and	in	many	cases	they	have	troubles	in	understanding	even	the	most	basic	programming	examples.	One	of	the	means	
of	making	programming	more	understandable	 is	the	usage	of	various	visualization	tools	and	video	materials,	but	maybe	the	most	 important	
factor	that	results	in	greater	or	lesser	ability	of	students	to	follow	programming	lectures	and	to	solve	programming	tasks	is	the	adoption	of	an	
appropriate	way	of	thinking	that	can	be	called	algorithmic	thinking.	It	enables	introductory	programming	students	to	analyze	given	problems	and	
construct	appropriate	algorithms	in	order	to	solve	various	tasks.	In	order	to	promote	algorithmic	thinking,	a	series	of	lectures	and	examples	
have	been	designed	and	presented	to	introductory	programming	students	to	find	out	about	the	effect	of	algorithmic	thinking	on	the	students’	
ability	to	follow	the	introductory	programming	courses.
Keywords:	Introductory	programming	courses,	Students,	Algorithmic	thinking,	Problem-solving	skills

IzvleËek
AlgoritmiËno	razmiπljanje	kot	pogoj	za	napredovanje	πtudentov	pri	predmetu	uvod	v	programiranje
Pri	pouËevanju	programiranja	se	sreËujemo	z	veË	pereËimi	problemi.	©tudenti	imajo	teæave	z	razumevanjem	abstraktnih	in	kompleksnih	konceptov	
programiranja,	πtevilni	celo	teæko	razumejo	primere	preprostih	programov.	PripomoËki,	ki	lahko	olajπajo	razumevanje	programiranja,	so	razliËna	
orodja	za	vizualizacijo	in	video	gradiva.	Najpomembnejπi	dejavnik,	ki	vpliva	na	sposobnost	sledenja	predavanjem	in	zmoænost	reπevanja	programer-
skih	nalog,	je	usvojitev	algoritmiËnega	razmiπljanja.	To	πtudentom	omogoËi,	da	analizirajo	dane	probleme	in	sestavijo	primerne	algoritme,	s	kate-
rimi	jih	reπijo.	Da	bi	preverili	vpliv	sposobnosti	algoritmiËnega	razmiπljanja	na	sposobnost	sledenja	uvodnim	predavanjem	iz	programiranja,	smo	
zasnovali	zaporedje	lekcij	in	primerov,	ki	spodbujajo	algoritmiËno	razmiπljanje,	ter	jih	uporabili	pri	πtudentih.
KljuËne	besede:	teËaj	programiranja	za	zaËetnike,	πtudenti,	problemi,	algoritmiËno	razmiπljanje,	sposobnost	reπevanja	problemov.

STROKOVNI PRISPEVKI

U P O R A B N A I N F O R M A T I K A 1632015 - πtevilka 3 - letnik XXIII

find a glass, check whether it is empty, find a bottle
of water, check if there is any water in it, open it if
necessary, pour the water, etc. All these actions and
conditions are something that the human brain pro­
cesses automatically without the person being aware
of every single step. In the case of programming, stu­
dents have to become aware of every single step and
the conditions needed to solve a problem. There is a
gap between the intuitive way of students’ thinking
and the way of thinking that is needed to perform
programming activities.

Students already have some knowledge about
programming concepts and structures. For example,
students experience troubles in understanding how
arrays function (Milne & Rowe, 2002; Lahtinen et al.,
2005) but they know perfectly well how trains look
and that there are trains with different numbers of
wagons, which is analogous to arrays and the way
they function. Analogy and metaphors can be used
to make programming concepts more familiar and
comparable to already known elements from every­
day life.. Another possible approach that can help in
making programming concepts more understanda­
ble includes visualization and various video materi­
als. In this way students are presented with means
that enable them to see programming concepts dyna­
mically and to connect these processes with analo­
gous processes from real life by usaging various
metaphors which promote constructivism and buil­
ding students’ programming knowledge on already
known concepts from their everyday life.

By decreasing the number of obstacles that stu­
dents encounter in their introductory programming
education, their motivation to learn programming
would be increased and the fear of programming
would be decreased. It is also important to make stu­
dents aware of the importance of programming for
their future career. When talking about visualizati­
on, there are many different tools available (Price et
al., 1992; Stasko, 1992). These tools include a variety
of elements, from static images to animations, video
and/or audio media. Regardless of existing efforts,
problems in introductory programming courses are
still present and persistent with high reported failure
rates (Gomes & Mendes, 2007b). In this paper a num­
ber of existing visualization approaches and tools
are presented and discussed along with the research
on the effect of the development of algorithmic thin­
king in introductory programming students on their

passing rates and the quality of their programming
skills.

2	 PROBLEMS	IN	INTRODUCTORy	
PROGRAMMING	COURSES

The attitude that denotes programming as hard and
challenging to learn is commonly accepted by many
authors (Gomes & Mendes, 2007a; Smith & Webb,
2000; Robins et al., 2003). A number of new abstract
programming concepts as well as rather large num­
ber of various syntactic rules that need to be adopted
make introductory programming problematic for
students to understand. Learning programming is
very similar to learning any spoken human langu­
age since it consists of syntactic rules and semanti­
cs. The main difference is that programming is used
for describing problems that are usually not a part
of everyday life compared to various spoken lan­
guages which describe more familiar life situations
and this makes programming rules and syntax more
challenging to learn. There is a need to address the­
se detected difficulties in all programming courses
but especially in introductory programming courses
because programming represents a vital part of any
computer expert’s education and, as such, is a crucial
part of all computer science studies (Gomes & Men­
des, 2007b).

In programming there is a need to master not
only syntax but also many abstract concepts and
principles of programming, and this fact results very
frequently in a situation in which students tend to
deal more with either syntax or concepts, which in
the end results in a lack of knowledge or skills in eit­
her of the above mentioned parts. The need to put
a lot of effort into two major parts makes program­
ming even more difficult. The fear and skeptical at­
titude towards programming also affect the number
of students that are willing to study computer sci­
ence (Bennedsen & Cas persen, 2007). Along with the
fear of programming, a lack of motivation and poor
understanding of the role of programming in their
future professional career, there are also other aspec­
ts that affect students and are part of the causes that
make programming problematic for students. Some
of these aspects are (Gomes & Mendes, 2007a):
 Programming demands a high level of abstrac­

tion.
 Programming calls for a good level of both know­

ledge and practical problem­solving techniques.

Mario Konecki: Algorithmic Thinking as a Prerequisite of Improvements in Introductory Programming Courses

U P O R A B N A I N F O R M A T I K A164 2015 - πtevilka 3 - letnik XXIII

 Programming requires a very practical and inten­
sive study, which is quite different from what is
required in many other courses (which are based
more on theoretical knowledge, implying extensi­
ve reading and some memorization).

 Usually teaching cannot be individualized due to
class size.

 Programming is mostly dynamic, but usually tau­
ght using static materials.

 Teachers’ methodologies often do not take into
consideration students’ learning styles. Different
students have different learning styles and can
have different preferences in the way they learn.

 Programming languages have a very complex
syntax with characteristics defined for professio­
nal use and not for pedagogical motivations.
The discussion about the reasons for problems

in introductory programming courses is still ongo­
ing and it is very difficult to draw clear conclusions
about the reasons of all reoccurring problems. Some
of the responsibility for this kind of state lies with
teachers, but some of it also lies with students. Pro­
gramming is a skill and because of that it requires a
somewhat different approach than most other cour­
ses which require memorization and reinterpretation
of some facts. Programming as a skill also requires
a longer time of constant practice. All of this is not a
part of students’ learning habits. Students are used
to memorize facts and to learn in less time rather
than in a prolonged way. The way of learning and
practicing needed to develop a skill is, along with al­
gorithmic thinking, something that students need to
learn as a prerequisite for successful programming.
Visualization tools and video materials are some of
the means of making programming concepts and
principles simpler and clearer for students because
most of them are visually oriented (Hu, 2004).

3	 VISUALIZATION	AND	VIDEO	IN	
INTRODUCTORy	PROGRAMMING	COURSES

Various visualization techniques as well as the usa­
ge of video materials aimed at making abstract pro­
gramming aspects more understandable and easier
to imagine to students compared to traditional sta­
tic materials which leave a lot of space for students’
own understanding and constructions of presented
programming concepts which are in many cases ina­
ccurate and flawed. Animations make it possible for
students to gain a deeper insight into the processes

and dynamics of algorithms which is something that
is much harder to explain by using static materials.
Although there are many visualization tools availa­
ble, most of introductory programming courses still
mainly use traditional means of education without
the possibilities offered by contemporary technolo­
gy. The reason for this could be the nonexistence of
specific tools to suit every particular teacher’s needs
and the nonexistence of proper development envi­
ronments or special skills that teachers would have
to posses in order to develop such tools (Naps et al.,
2005). Unwillingness of teachers to deal with visuali­
zation tools and to create such tools is another reason
for the absence of this kind of tools along with the
lack of time that is needed for the development or
preparation of special visual presentations or video
materials. Another fact that needs to be considered
is that many teachers are simply used to traditional
ways of teaching and are not eager to adopt new te­
chnologies or change their habitual ways of work.
Usefulness and possibilities of various visualization
techniques are something that should be made bet­
ter known and available to teachers in order to make
programming more interesting and clearer for their
students.

Interaction is another important aspect for captu­
ring students’ attention and their proper program­
ming skill development (Pears et al., 2007). Interac­
tion is important because it promotes active invol­
vement in the learning process and it also promotes
better focus. Static and dynamic means are beneficial
in bringing programming closer to students and the­
se means include tools and techniques such as (Hu,
2004):
 Static:
 code lists
 flowcharts
 diagrams
 pictures

 Dynamic:
 one­way presentations

 movies
 PowerPoint slides
 Flash animations with audio explanation

and music
 Two­way interactive tools:

 executable flowcharts
 algorithm animations
 program visualizations

Mario Konecki: Algorithmic Thinking as a Prerequisite of Improvements in Introductory Programming Courses

U P O R A B N A I N F O R M A T I K A 1652015 - πtevilka 3 - letnik XXIII

There are many existing visualization tools avai­
lable to teachers such as: XTANGO (Stasko, 1992),
MRUDS (Hanciles et al., 1997), JavaVis (Oechsle &
Schmitt, 2002), JHAVE (Grissom et al., 2003), BlueJ
(Kölling et al., 2003), Jeliot3 (Moreno et al., 2004),
TRAKLA2 (Malmi et al., 2004), Raptor (Carlisle et
al., 2005) and ALVIS LIVE! (Hundhausen & Brown,
2007). Visualization tools can be beneficial to stu­
dents in many aspects of programming (Sorva et al.,
2013), but the usage of this kind of tools still shows
variations in research results (Bennedsen & Casper­
sen, 2007; Clancy et al., 2001) and there is a need for
more attention and testing of this kind of tools. Ani­
mation of programming elements along with interac­
tion promotes better understanding and greater in­
volvement of students in their own learning process,
which supports constructivism as a valid approach
that captures students’ attention and provides a be­
neficial approach for acquiring of some particular
skill, in this case programming.

Another way of making programming concepts
clearer is the usage of video materials which can be
used as standalone online materials or as part of clas­
sroom lectures. In the case of online video materials,
there is an advantage of constant availability and the
possibility of viewing these materials at one’s own
pace and at a desired time. Video materials that are
used in the classroom are shown to clarify certain
programming concepts but are less flexible regarding
time and pace. The main advantage of this kind of
approach in the usage of video materials is the pre­
sence of students’ peers as supporters and the teacher
as a moderator and facilitator of more focused student
activities (Ward & Newlands, 1998), as well as a grea­
ter amount of presented practical program examples
because more time is available for practice, since a
part of the theoretical knowledge is covered by video
materials. Online video materials, on the other hand,
promote a greater amount of students' individual
work. A very important aspect when talking about vi­
deo materials is the proper design of these materials,
which in the end results in different impacts on stu­
dents. Research has shown that simple visualization
tools that include some form of interaction can make
programming more interesting and programming
concepts clearer (Konecki & Mrkela, 2014). Research
has also shown that well­designed video materials
can promote greater understanding and motivation
of students to learn programming (Konecki, 2014).

4	 PROMOTING	ALGORITHMIC	THINKING	IN	
INTRODUCTORy	PROGRAMMING	COURSES

Algorithmic thinking includes the whole process of
constructing a solution for a given problem. It con­
sists of a proper decomposition and analysis of a
given problem and the construction of a proper al­
gorithmic solution that addresses the given problem
as a whole. In order to conclude about the effect of
algorithmic thinking on students’ ability to under­
stand programming concepts and construct proper
algorithmic solutions, an appropriate study has been
conducted. The study included 121 students who
have enrolled into an introductory programming
course and have gone through its entire curriculum.
All students have gone through 12 hours of lectures,
which have been designed to teach students about
algorithmic thinking. Practical examples and interac­
tion with the students were a major part of these lec­
tures, since the lectures consisted of many practical
problems that were analyzed and decomposed into
smaller parts, which were described and connected
with their appropriate algorithmic solutions in order
to compose a larger algorithm that addressed the
whole problem given to students.

An important aspect of the conducted study is the
way in which various problems were presented and
solved. Rather than just stating the problem and co­
ding its solution, the process of solving the problems
was conducted using several steps:
 State the problem, the main input and the main

output of the problem.
 Think about the problem parts and their outputs.
 Draw problem parts and their connections.
 Draw an algorithmic solution.
 Design the code for solving the problem.

It is also important to mention that a number of
problems were simple everyday problems such as
sorting the students' tests, inspecting a car's fueltank,
etc. in order to promote algorithmic thinking and
problem­solving skills in which students are required
to think step by step, to include all necessary steps, to
include all conditions, to repeat certain actions and to
include all other aspects that are commonly found as
constructs in programming.

The traditional way of teaching mostly relies on
theoretical lectures with some examples and on prac­
tical tasks that are presented to students, as well as
on the tasks that students need to solve by themsel­
ves. The problem is that this kind of teaching does

Mario Konecki: Algorithmic Thinking as a Prerequisite of Improvements in Introductory Programming Courses

U P O R A B N A I N F O R M A T I K A166 2015 - πtevilka 3 - letnik XXIII

not address the need of students to understand the
process of decomposition and analysis of problems,
as well as the process of constructing the overall
solution from smaller elements and constructs. Stu­
dents are presented with various programming con­
cepts and constructs which are abstract in their natu­
re. This abstract nature makes students struggle with
the presented concepts and most students simply ca­
nnot track and understand these concepts along with
syntax alone.Moreover, they cannot simultaneously
focus on the concepts, syntax, the process of problem
decomposition, the analysis and the construction of
a proper algorithmic solution. There are simply too
many aspects involved in programming for most
students to understand and learn them all at once.
In the conducted study, the students were trained
in algorithmic thinking, which promotes problem­
­solving skills: problem decomposition, problem
analysis and constructing the solution step by step.
In this way students learn how to design algorithmic
solutions and are later able to be more focused on
programming concepts and syntax which they then
incorporate in their already designed solutions. In
this way students learn in an incremental way and
are not overwhelmed, which in the end should pro­
duce better results and greater understanding of pro­
gramming.

12 hours of lectures were divided into 4 parts that
were presented to students with a one­week break
between each part. At the beginning of each part,
the students were given several programming exam­
ples and they were asked to describe and explain
certain parts of these examples, as well as to change
certain parts in order to implement some particular
change in the way that programs function. After the
3­hour long lecture with practical tasks and visuali­
zation elements, students were again given several
programming examples and they were again asked
to describe, explain, or change certain parts of these
examples. The results of these tasks were compared
to conclude whether there were any improvements

in the results after the conducted lectures. These
comparisons were made in all 4 parts of the conduc­
ted lectures. The results represent an objective eva­
luation of the effects that have been achieved by the
conducted lectures. The students were also given a
questionnaire after the last conducted lecture in or­
der to asses their opinion and attitude towards the
conducted lectures, as well as to assess their percep­
tion of these lectures and whether education on the
algorithmic reasoning has been beneficial and use­
ful for the development of programming skills and
better understanding of their programming course
curriculum materials. In this way an objective and
subjective study was conducted in order to obtain a
more realistic conclusion about the effectiveness of
such education.

The objective analysis was conducted through
the tests that were given to students before and after
every conducted lecture. All tests were composed of
questions from a particular lecture area and the lec­
turer was not aware of the exact questions and tasks
that were included into these tests. The tests used be­
fore and after every lecture were designed in a way
which ensured that they were different but as even as
possible in terms of their difficulty. All students were
tested simultaneously so there was only one set of
questions for every particular test. The results of the
objective study have shown that the understanding
of programming concepts and the students’ ability
to deal with programming tasks had increased as a
result of the conducted lectures on algorithmic thin­
king and that the style used in these lectures was ef­
ficient. The study has shown an absolute increase of
24% or more in the accuracy of the tests when consi­
dering the maximum possible number of points whi­
ch represents a relative increase of 65% to 100% after
every part of the conducted lectures compared to the
students’ prior skills and knowledge in the area that
was covered by a particular part of the conducted
lectures. The results of the objective study are shown
in Table 1.

Mario Konecki: Algorithmic Thinking as a Prerequisite of Improvements in Introductory Programming Courses

Table	1.	Accuracy	percentage	of	the	tests	before	and	after	every	of	the	four	conducted	lectures

Test Lecture	No.	1 Lecture	No.	2 Lecture	No.	3 Lecture	No.	4

Before	lecture 43% 37% 34% 24%

After	lecture 71% 69% 62% 48%

U P O R A B N A I N F O R M A T I K A 1672015 - πtevilka 3 - letnik XXIII

A paired­samples t­test was conducted to com­
pare the students' test scores before and after the
conducted lectures (each test had a maximum sco­
re of 10 points). There was a significant difference in
the scores before the first lecture (M=4.30, SD=0.95)
and after the first lecture (M=7.10, SD=1.15); t(120)=
­21.299, p=0.000. Also, there was a significant diffe­
rence in the scores before the second lecture (M=3.70,
SD=1.26) and after the second lecture (M=6.90,
SD=1.47); t(120)=­17.496, p=0.000. Further on, the
difference was also statistically significant between
the average score before (M=3.40, SD=1.09) and after
the third lecture (M=6.20, SD=1.32); t(120)=­17.647,
p=0.000. The difference in scores was also statisti­
cally significant before (M=2.40, SD=1.07) and after
the fourth lecture (M=4.80, SD=1.24); t(120)=­16.325,
p=0.000. These results suggest that the conducted
lectures do indeed facilitate a better understanding

of programming concepts and improve the quality of
students’ knowledge and skills.

The results of the subjective questionnaire survey
have shown that students find the conducted lectu­
res about algorithmic thinking useful, interesting,
motivating and effective. The style, methods and te­
chniques used in the conducted lectures have made
programming more understandable to the students
and their motivation to deal with programming has
increased. Students have reported that the conduc­
ted lectures have increased their understanding of
abstract programming concepts and that they would
like to have the same lecture style in their program­
ming courses. Students have also stated that they
would recommend this kind of lectures to their col­
leagues. The results of the conducted questionnaire
survey are shown in Table 2.

Mario Konecki: Algorithmic Thinking as a Prerequisite of Improvements in Introductory Programming Courses

Table	2.	Results	of	the	conducted	questionnaire	survey

Questionnaire	item Mean Std.	dev.

I	find	the	lectures	on	algorithmic	thinking	useful. 4.20 1.19

The	lectures	on	algorithmic	thinking	have	made	programming	more	understandable	for	me. 3.78 1.21

The	style,	techniques	and	methods	of	teaching	used	in	the	lectures	on	algorithmic	thinking	are	more	engaging	and	
interesting	for	me	compared	to	traditional	teaching.	

4.21 1.11

I	have	found	the	lectures	on	algorithmic	thinking	to	be	of	little	use	to	me. 1.60 0.80

I	prefer	traditional	methods	compared	to	the	teaching	that	was	used	in	the	lectures	on	algorithmic	thinking. 1.57 0.86

I	would	recommend	the	lectures	on	algorithmic	thinking	to	my	colleagues. 4.14 1.13

I	think	that	I	have	a	greater	chance	to	pass	my	programming	exams	after	the	lectures	on	algorithmic	thinking. 4.10 1.17

I	would	like	to	have	the	same	style	of	teaching	that	was	used	in	the	lectures	on	algorithmic	thinking	in	my	
programming	course	because	this	kind	of	style	makes	programming	more	understandable	to	me.	

4.25 1.02

The	way	of	teaching	that	was	used	in	the	lectures	on	algorithmic	thinking	increases	my	motivation	for	learning	
programming.	

3.76 1.23

The results of the conducted objective and subjec­
tive studies have shown that algorithmic thinking is
indeed an important aspect and a prerequisite of im­
provements in programming courses and something
that needs further research and attention.

5	 CONCLUSION
Although programming is gaining importance in
the modern business world, it is perceived as hard
to teach and learn. There are many reoccurring pro­
blems and difficulties that are part of introductory
programming education. Students experience fear

and a lack of motivation to deal with programming
because of their inability to cope with its abstract na­
ture and the inability to perform well on program­
ming tasks. Programming includes many aspects
that are not intuitive and require a special kind of
knowledge and skills as a prerequisite of successful
solving of programming tasks. Various visualizati­
on tools and video materials have been developed
and have shown to be beneficial for clarifying certain
programming concepts in the sense that these tools
and materials make these concepts simpler to imagi­
ne and understand as well as to apply.

U P O R A B N A I N F O R M A T I K A168 2015 - πtevilka 3 - letnik XXIII

A set of skills and knowledge that has been ter­
med algorithmic thinking has been recognized as
an important prerequisite of students’ successful
results in introductory programming courses. Some
authors refer to algorithmic thinking as the base of
programming (Milkova, 2005). Algorithmic thin­
king has been recognized and mentioned by other
authors who have presented their own efforts to fa­
cilitate this kind of thinking, such as posing similar
problems of increasing size (Burton, 2010), or train­
ing students in algorithmic thinking by letting stu­
dents play algorithms themselves (for example to
find a way to identify the oldest student) (Futschek
& Moschitz, 2010). Algorithmic thinking is impor­
tant because students have shown that they have
more problems with analyzing problems and con­
structing algorithmic solutions than with remembe­
ring the syntax because memorization is something
that most students have become accustomed to du­
ring their past education. In order to conclude about
the effectiveness of algorithmic thinking as a pre­
requisite of improvements in programming courses,
a study has been conducted in which 121 students
went through 12 hours of lectures which were di­
vided into 4 parts. These lectures were designed to
promote algorithmic thinking and problem­solving
skills, which was achieved by using several teaching
elements: a number of understandable examples,
visualization of presented examples and intensive
interaction with students. The students were tested
before and after each conducted lecture to objective­
ly asses their ability to deal with programming tasks.
These results were compared to conclude whether
lectures on algorithmic thinking had any positive
effect. The students were also given a questionnaire
at the end of the lectures in order to conclude about
their subjective perception of this kind of education.
The results of the conducted study have shown that
algorithmic thinking is indeed an important aspect
that promotes a better understanding of problems
and enables students to perform better in their pro­
gramming tasks, which is consistent with the re­
sults of previously mentioned research. The study
has also shown that students perceive this kind of
education as useful and interesting. Further research
about the aspects that should be included into this
kind of education and further testing of its effects
will be a part of future research.

6	 LITERATURE
[1]	 Bennedsen,	J.,	&	Caspersen,	M.	E.	 (2007).	Failure	Rates	 in	

Introductory	 Programming.	 ACM	 SIGCSE	 Bulletin,	 39(2),	
32‡36.

[2]	 Burton,	B.	A.	(2010).	Encouraging	algorithmic	thinking	without	
a	computer.	Olympiads in Informatics,	4,	3‡14.

[3]	 Carlisle,	M.	C.,	Wilson,	T.	A.,	Humphries,	J.	W.,	&	Hadfield,	S.	
M.	 (2005).	RAPTOR:	A	visual	programming	environment	 for	
teaching	algorithmic	problem	solving.	In	Proceedings of the
36th SIGCSE Technical Symposium on Computer Science
Education,	pp.	176‡180,	St.	Louis,	Missouri,	USA.

[4]	 Clancy,	 M.,	 Stasko,	 J.,	 Guzdial,	 M.,	 Fincher,	 S.,	 &	 Dale,	 N.	
(2001).	Models	and	areas	for	CS	education	research.	Com-
puter Science Education, 11(4),	323‡341.

[5]	 Futschek,	G.,	&	Moschitz,	J.	 (2010).	Developing	algorithmic	
thinking	by	inventing	and	playing	algorithms.	In	Proceedings
of the 2010 Constructionist Approaches to Creative Learning,
Thinking and Education: Lessons for the 21st Century,	 pp.	
1‡10,	Paris,	France.

[6]	 Gomes,	A.,	&	Mendes,	A.	J.	(2007a).	An	environment	to	im-
prove	 programming	 education.	 In	 Proceedings of the 2007
international conference on Computer systems and technolo-
gies,	pp.	88:1‡88:6,	ACM,	New	York,	USA.

[7]	 Gomes,	A.,	&	Mendes,	A.	J.	 (2007b).	Learning	 to	program-
-difficulties	and	solutions.	In	International Conference on En-
gineering Education‡ICEE,	pp.	283‡287,	iNEER,	Portugal.

[8]	 Grissom,	S.,	McNally,	M.,	&	Naps,	T.	(2003).	Algorithm	visua-
lization	in	CS	education:	Comparing	levels	of	student	enga-
gement.	In	Proceedings of the ACM Symposium on Software
Visualization,	pp.	87‡94,	San	Diego,	California,	USA.

[9]	 Hanciles,	B.,	Shankararaman,	V.,	&	Munoz,	J.	(1997).	Multiple	
representation	for	understanding	data	structures.	Computers
& Education, 29(1),	1‡11.

[10]	 Hu,	M.	(2004).	Teaching	novices	programming	with	core	lan-
guage	and	dynamic	visualization.	In	Proceedings of the 17th
NACCQ,	pp.	94‡103,	Christchurch,	New	Zealand.

[11]	 Hundhausen,	C.	D.,	&	Brown,	J.	L.	 (2007).	What	you	see	 is	
what	you	code:	A	'live'	algorithm	development	and	visualiza-
tion	environment	for	novice	learners.	Journal of Visual Langu-
ages and Computing, 18(1),	22‡47.

[12]	 Konecki,	M.,	Mrkela,	V.	(2014).	Algorithmic	thinking	and	ani-
mated	 interactive	presentation	of	sorting	algorithms	in	edu-
cation	of	students.	In	Conference	Proceedings of VIVID 2014
(Education in Information Society),	 pp.	 105‡112,	 Faculty	 of	
Organizational	Sciences,	Kranj,	Slovenia.

[13]	 Konecki,	M.	(2014).	Using	video	lectures	in	introductory	pro-
gramming	 courses.	 In	 Proceedings of IAC-EIaT 2014,	 pp.	
256‡260,	Czech	Institute	of	Academic	Education	z.s.,	Vestec,	
Czech	Republic.

[14]	 Kölling,	M.,	Quig,	B.,	Patterson,	A.,	&	Rosenberg,	J.	 (2003).	
The	 BlueJ	 system	 and	 its	 pedagogy.	 Journal of Computer
Science Education, Special issue on Learning and Teaching
Object Technology, 13(4),	249‡268.

[15]	 Lahtinen,	E.,	Ala-Mutka,	K.,	&	Järvinen,	H.	M.	(2005).	A	study	
of	the	difficulties	of	novice	programmers.	ACM SIGCSE Bul-
letin, 37(3),	14‡18.

[16]	 Malmi,	L.,	Karavirta,	V.,	Korhonen,	A.,	Nikander,	J.,	Seppälä,	
O.,	&	Silvasti,	P.	(2004).	Visual	algorithm	simulation	exercise	
system	with	automatic	assessment:	TRAKLA2.	Informatics	in	
Education,	3(2),	267‡288.

[17]	 Milkova,	 E.	 (2005).	 Developing	 of	 algorithmic	 thinking:	 the	
base	 of	 programming.	 International Journal of Continu-
ing Engineering Education and Life Long Learning,	 15(3-6),	
135‡147.

Mario Konecki: Algorithmic Thinking as a Prerequisite of Improvements in Introductory Programming Courses

U P O R A B N A I N F O R M A T I K A 1692015 - πtevilka 3 - letnik XXIII

[18]	 Milne,	 I.,	&	Rowe,	G.	(2002).	Difficulties	 in	 learning	and	tea-
ching	programming	‡	views	of	students	and	tutors.	Education
and Information technologies, 7(1),	55‡66.

[19]	 Moreno,	A.,	Myller,	N.,	Sutinen,	E.,	&	Ben-Ari,	M.	(2004).	Visu-
alizing	programs	with	Jeliot	3.	In	Proceedings of the Working
Conference on Advanced Visual Interfaces,	pp.	373‡376,	Gal-
lipoli,	Italy.

[20]	 Naps,	T.,	Cooper,	S.,	Koldehofe,	B.,	Leska,	C.,	Rößling,	G.,	
Dann,	W.,	Korhonen,	A.,	Malmi,	L.,	Rantakokko,	J.,	Ross,	R.	
J.,	Anderson,	 J.,	 Fleischer,	R.,	Kuittinen,	M.,	&	McNally,	M.	
(2005).	 Evaluating	 the	 educational	 impact	 of	 visualization.	
ACM SIGCSE Bulletin, 35(4),	124‡136.

[21]	 Oechsle,	R.,	&	Schmitt,	 T.	 (2002).	 JAVAVIS:	Automatic	pro-
gram	visualization	with	object	and	sequence	diagrams	using	
the	 java	debug	 interface	 (JDI).	 In	Lecture Notes in Compu-
ter Science, Vol. 2269: Software Visualization,	pp.	176‡190,	
Springer-Verlag,	Berlin,	Germany.

[22]	 Pears,	 A.,	 Seidman,	 S.,	 Malmi,	 L.,	 Mannila,	 L.,	 Adams,	 E.,	
Bennedsen,	J.,	Devlin,	M.,	&	Paterson,	J.	(2007).	A	survey	of	
literature	on	the	teaching	of	introductory	programming.	ACM
SIGCSE Bulletin, 39(4),	204‡223.

[23]	 Price,	B.	A.,	Small,	I.	S.,	&	Baecker,	R.	M.	(1992).	A	taxonomy	
of	software	visualization.	In	Proceedings of the Twenty-Fifth
Hawaii International Conference on System Sciences,	 pp.	
597‡606,	IEEE,	Los	Alamitos,	California,	USA.

[24]	 Robins,	A.,	Rountree,	J.,	&	Rountree,	N.	(2003).	Learning	and	
Teaching	Programming:	A	Review	and	Discussion.	Journal of
Computer Science Education, 13(2),	137‡172.

[25]	 Smith,	P.	A.,	&	Webb,	G.	I.	(2000).	The	efficacy	of	a	low-level	
program	 visualization	 tool	 for	 teaching	 programming	 con-
cepts	to	novice	C	programmers.	Journal of Educational Com-
puting Research, 22(2),	187‡216.

[26]	 Sorva,	J.,	Karavirta,	V.,	&	Malmi,	L.	(2013).	A	review	of	gene-
ric	program	visualization	systems	 for	 introductory	program-
ming	education.	ACM Transactions on Computing Education
(TOCE), 13(4),	15.

[27]	 Stasko,	J.	(1992).	Animating	algorithms	with	XTANGO.	ACM
SIGACT News, 23(2),	67‡71.

[28]	 Ward,	M.,	&	Newlands,	D.	(1998).	Use	of	the	Web	in	undergra-
duate	teaching.	Computers & Education,	31(2),	171‡184.

Mario Konecki: Algorithmic Thinking as a Prerequisite of Improvements in Introductory Programming Courses



Mario	Konecki	graduated	in	2005	at	the	Faculty	of	Organization	and	Informatics	where	he	has	also	earned	his	doctoral	degree	in	2013.	Since	2005,	he	has	
been	working	at	the	Faculty	of	Organization	and	Informatics	as	an	assistant	and	later	as	a	senior	assistant.	His	main	areas	of	interest	are	programming	
education,	graphical	user	interface	design,	the	development	of	programming	languages	and	the	development	of	intelligent	systems.	During	his	work	at	the	
Faculty	of	Organization	and	Informatics,	he	has	published	over	30	scientific	and	professional	papers	and	he	has	also	worked	on	8	scientific	and	professional	
projects,	one	of	which	was	closely	connected	with	his	doctoral	thesis	which	dealt	with	the	development	of	a	new	programming	language	for	the	inclusion	of	
the	visually	impaired	in	activities	of	graphical	user	interface	design.

