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Abstract

A line-coloring of the finite affine space AG(n, q) is proper if any two lines from the
same color class have no point in common, and it is complete if for any two different colors ¢
and j there exist two intersecting lines, one is colored by ¢ and the other is colored by j. The
pseudoachromatic index of AG(n, ¢), denoted by ¥'(AG(n, ¢)), is the maximum number
of colors in any complete line-coloring of AG(n, ¢). When the coloring is also proper, the
maximum number of colors is called the achromatic index of AG(n,q). We prove that
Y/ (AG(n,q)) ~ ¢! for even n, and that ¢*>("~1) < ¢/(AG(n,q)) < ¢"*"~! for
odd n. Moreover, we prove that the achromatic index of AG(n, q) is ¢*-°"~! for even n,
and we provide the exact values of both indices in the planar case.

*The authors gratefully acknowledge funding from the following sources: Gabriela Araujo-Pardo was par-
tially supported by CONACyT-México under Projects 178395, 166306, and by PAPIIT-México under Projects
IN104915 and IN107218. Gyorgy Kiss was partially supported by the bilateral Slovenian-Hungarian Joint Re-
search Project, grant no. NN 114614 (in Hungary) and N1-0032 (in Slovenia), and by the Hungarian National
Foundation for Scientific Research, grant no. K 124950. Christian Rubio-Montiel was partially supported by a
CONACyT-México Postdoctoral fellowship, and by the National scholarship programme of the Slovak Republic.
Adridn Vazquez-Avila was partially supported by SNI of CONACyT-México.

©@@® This work is licensed under https://creativecommons.org/licenses/by/4.0/



68 Ars Math. Contemp. 16 (2019) 67-79

Keywords: Achromatic index, complete coloring, finite affine space, pseudoachromatic index.

Math. Subj. Class.: 05B25, 51E15, 05C15

1 Introduction

This paper is motivated by the well-known combinatorial conjecture about colorings of
finite linear spaces stated by Erdés, Faber and Lovdsz in 1972. As a starting point, we
briefly recall some definitions and state the conjecture. Let S be a finite linear space. A
line-coloring of S with k colors is a surjective function ¢ from the lines of S to the set of
colors [k] = {1,...,k}. For short, a line-coloring with & colors is called k-coloring. If
¢: S — [k] is a k-coloring and i € [k] then the subset of lines ¢ 1 (4) is called the i-th color
class of ¢. A k-coloring of S is proper if any two lines from the same color class have no
point in common. The chromatic index x'(S) of S is the smallest k& for which there exists
a proper k-coloring of S. The Erdds-Faber-Lovdsz conjecture (1972) states that if a finite
linear space S contains v points then x'(S) < v, see [12, 13].

Several papers have investigated the conjecture for particular classes of linear spaces.
For instance, if each line of S has the same number x of points then S is called a block
design or a (v, k)-design. The conjecture is still open for designs even for x = 3, however,
it was proved for finite projective spaces by Beutelspacher, Jungnickel and Vanstone [8]. It
is not hard to see that the conjecture is also true for the n-dimensional affine space AG(n, q)
of order ¢ defined over the Galois field GF(q). Indeed,

qn_l

X(AG(m. ) = L=

For some related results, see for instance [6, 7].

A natural question is to determine similar, but slightly different color parameters in
finite linear spaces. A k-coloring of S is complete if for each pair of different colors ¢ and
7 there exist two intersecting lines of S, such that one of them belongs to the i-th and the
other one to the j-th color class. Observe that any proper coloring of S with x’(S) colors
is a complete coloring. The pseudoachromatic index ¢’ (S) of S is the largest k such that
there exists a complete k-coloring (not necessarily proper) of S. When the k-coloring is
required to be complete and proper, the parameter is called the achromatic index and it is
denoted by o/ (S). Therefore, we have that

X'(8) < o/(8) < ¢'(8).

Several authors studied the pseudoachromatic index, see [2, 3, 4, 5, 9, 14, 15, 17]. More-
over, in [1, 10, 18] the achromatic indices of some block designs were also estimated.

In this paper we study the pseudoachromatic and achromatic indices of finite affine
spaces. In the proofs we will often use the notion of the projective closure of AG(n,q).
This is the finite projective space PG(n,q) = AG(n, q) U Hoo, where the points of H oo
correspond to the parallel classes of lines in AG(n, q). The space H o is isomorphic to
PG(n — 1,q), and it is called the hyperplane at infinity. We assume that the reader is
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familiar with the most important properties of affine and projective geometries. For the
detailed description of these spaces we refer to [16].

The main results in the paper are proved in Sections 2 and 3. They are stated in The-
orems 1.1, 1.2 and 1.3. In these theorems v = ¢" always denotes the number of points of
the finite affine space AG(n, q).

Theorem 1.1. For all n:

V(aG00) < YU —e(gypa).
Theorem 1.2. If n is even:
3PS i) < v (AG(H ).
If nis odd:
= Y 6T < (4G 0).

Theorem 1.3. If n is even:

LML) 6w/ < ol (AG(0))
3 qg—1
Note that when n is even Theorems 1.1 and 1.2 show that 1)’ (AG(n, ¢)) grows asymp-
totically as ©(v!->/q), while Theorems 1.2 and 1.3 show that o/ (AG(n, q)) grows asymp-
totically as ©(v!:5/q). Let us remark that no similar estimates regarding the asymptotic
behavior of these indices have appeared so far in the literature.
Finally, in Section 4 we determine the exact values of pseudoachromatic and achromatic
indices of arbitrary (not necessarily Desarguesian) finite affine planes and we improve the
previous lower bounds in dimension 3.

2 Upper bounds

In this section, upper bounds for the pseudoachromatic index of AG(n, q) are presented
when n > 2. The following lemma is pivotal in the proof.

Lemma 2.1. Ler L be a set of s lines in AG(n,q), n > 2. Then the number of lines of
AG(n, q) intersecting at least one element of L is at most

n—1 __ 1
q2 (Sqql —(s— 1)) .

Proof. In AG(n, q) there are ¢ (qqn__ll — 1) =q? (%) lines intersecting any fixed

line. The number of lines intersecting two lines, say £; and /g, is at least g2, because if
¢, N ¢y = () then the ¢ lines joining a point of ¢; and a point of /5 intersect both ¢; and
{5, while, if £1 N ¢y = { P} then the other q;:f — 2 > ¢? lines through P intersect both ¢,
and /. Consequently, the number of lines intersecting at least one element of £ is at most

sq® (qﬂl_l) — (s —1)g*.

qg—1
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Notice that the previous inequality is tight, since if £ consists of s parallel lines in a
n—1
plane then there are exactly ¢ (5‘1(1771_1 —(s— 1)) lines intersecting at least one element

of L. ]

Lemma 2.2. Letn > 2 be an integer. Then the colorings of the finite affine space AG(n, q)
satisfy the inequality

VA (@ =D =)+ (P +1)%(q—1)? | ¢ +1
T +L = ey

V'(AG(n, q)) <

Proof. Consider a complete coloring which contains ¢/’ (AG(n, ¢q)) color classes. Then the
number of lines in the smallest color class is at most

_ 4" =)
(g — DY/ (AG(n,q))

Each of the other ¢/(AG(n,q)) — 1 color classes must contain at least one line which
intersects a line from the smallest color class. Hence, by Lemma 2.1, we obtain

WG ) - 1< (sT T - 5 1)

Multiplying it by ©'(AG(n, q)), we get a quadratic inequality on ¢'(AG(n, q)), whence
the assertion follows. O

We are in a position to prove our first main theorem.

Proof of Theorem 1.1. For n > 2 a straightforward computation shows

4qn(qn _ 1)(qn _ q2) _|_ (q2 + 1)2(q _ 1)2
= (203"~ 1) —q¥ (>~ 1)" = ¢"(¢® — 1> + (¢ + 1)*(q — 1)?
< (205 (" — 1) — ¥ (¢* 1)),

because n > 2 implies that ¢" (¢ — 1)? > (¢ + 1)?(¢ — 1)2. This together with Inequal-
ity (2.1) give

n -1 n +1 q2+1
! < g2 q — g2 L
wncma) < of (L21) -t (T4 + T

which proves the theorem for n > 2. For n = 2 the statement is clear. O

3 Lower bounds

In this section complete colorings of AG(n,q) are presented. These constructions give
different bounds on ¢’'(AG(n,q)) depending on the parity of n. First, we prove some
geometric properties of affine and projective spaces.
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Proposition 3.1. Let n > 1 be an integer, 111 and 1y be subspaces in PG(n,q) =
AG(n,q) U Hoo. Let d; denote the dimension of 11; for i = 1,2. Suppose that
II; NIl N Heo is an m-dimensional subspace and d; + do = n + 1 + m. Then 1I; N
ITs N AG(n, q) is an (m + 1)-dimensional subspace in AG(n, q).

In particular, 1y N 1y is a single point in AG(n,q) when 111 N1ls N Hoo = 0 and
dy + do = n.

Proof. Since IT; N II> N H o is an m-dimensional subspace, dim(IT; NIIs) < m + 1. On
the other hand, the dimension formula yields

d1m(H1 N Hg) = diII’lHl + dlmHU - d1m<H1,H2> Z d1 + dg —n=m-+1.

Thus II; N II5 is an (m + 1)-dimensional subspace in PG(n, q), therefore II; N I N
AG(n, q) is an (m + 1)-dimensional subspace in AG(n, q) if m > 0.

If m = —1, then II; N TIs N Ho = 0 and dim(IT; N II5) = 0. Hence II; N 11, is a
single point in AG(n, q). O

In the following proposition we present a partition of the points of PG(2k, ¢) that we
will call a good partition in the rest of the paper.

Proposition 3.2. Let k > 1 be an integer and QQ € PG(2k, q) be an arbitrary point. The
points of PG(2k,q) \ {Q} can be divided into two subsets, say A and B, and one can
assign a subspace S(P) to each point P € AU B, such that the following holds true:

e P € S(P) for all points;

k

o |Al=¢° (q;Z __11) and, if A € Athen S(A) is a k-dimensional subspace;

o |Bl=¢ (q%:ll) and, if B € B then S(B) is a (k — 1)-dimensional subspace;

q2

e S(A)NS(B)=0forall A€ Aand B € B.

Proof. We prove the assertion by induction on k. If k& = 1 then let {{o,¢1,...,¢,} be
the set of lines through Q. Let A and B consist of points PG(2,¢) \ {¢o} and ¢y \ {@},
respectively. If A € A then let S(A) be the line AQ, if B € 1 then let S(B) be the point
B. These sets clearly fulfill the prescribed conditions, so PG(2, ¢) admits a good partition.

Now, let us suppose that PG(2k, ¢) admits a good partition. In PG(2k + 2, q) take a
2k-dimensional subspace II which contains the point (). Then II is isomorphic to
PG(2k, q), hence it has a good partition {Q} U A" U B’ with assigned subspaces S’(P).
Let Hy, ..., H, be the pencil of hyperplanes in PG(2k + 2, ¢) with carrier II. Let B =
B'U(Ho\II) and A = PG(2k+2,q) \ (BU{Q}). Notice that A’ and 5’ have the required
cardinalities, because

2k+3 _ 1

2k+3 2k+2
n_4q q -1 q -1
Al = —+—— —(|B]+1) = 1 - -1
| Al -1 (1Bl +1)=(¢+ )q2_1 q( P )

_ q2 q2k+2 -1
-1 )’

B = 8]+ 11\ 10 = g (=) g = g (2
- 0 7q q2_1 q *q q2_1 .
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We assign the subspaces in the following way. If A € A’ then let S(A) be the (k + 1)-
dimensional subspace (S’(A), P) where P € UJ_, H; is an arbitrary point, whereas, if
A € (UL H;)\ I then let S(A) be the (k + 1)-dimensional subspace (A, S’(P)) where
P € A’ is an arbitrary point. In both cases S(A) C UL, H; for all A € A. Similarly,
if B € B’ then let S(B) be the k-dimensional subspace (S’(B), P) where P € Hj is
an arbitrary point, whereas, if B € Hy \ II then let S(B) be the k-dimensional subspace
(B, S'(P)) where P € B’ is an arbitrary point. Also here, in both cases, S(B) C Hj for
all B € B. Moreover, the assigned subspaces satisfy the intersection condition because if
A € Aand B € B are arbitrary points then

S(A)NS(B) = (S(A)N (UL H;))N(S(B)NHy) =S (A) NS (B)ynII = 0.
Hence PG(2k + 2, ¢) also admits a good partition, and the statement is proved. O

The next theorem proves Theorem 1.2 for even dimensional finite affine spaces. Notice
that the lower bound depends on the parity of g, but its magnitude is ‘QS’:S) in both cases,

where v = ¢".

Theorem 3.3. If k > 1 then the colorings of the even dimensional affine space, AG(2k, q),
satisfy the inequalities

a“(@®* -1 if q is odd
V(AG(2k,q) 2 2D 1 IR
% +1, ifqiseven.

Proof. The hyperplane at infinity in the projective closure of AG(2k,q), Heo, is iso-
morphic to PG(2k — 1,q), hence it has a (k — 1)-spread S = {S',52,..., 94" 1},
The elements of S are pairwise disjoint (k — 1)-dimensional subspaces (see [16, Theo-
rem 4.1]). Let {P{, Pi,.. -aP(iqk,l)/(q,l)} be the set of points of S? fori = 1,2,...,
¢® + 1. For a point P € H, let S(P) denote the unique element of S that contains
P, and A(P) = {llp;,1Ipgy,...,Ip} denote the set of the ¢" parallel k-dimensional
subspaces of AG(2k, ¢) whose projective closures intersect Hoo in S(P).

We define a pairing on the set of points of 7., which depends on the parity of q.
On the one hand, if ¢ is odd then let (Pj7 P;H) be the pairs for i = 1,3,5,...,¢" and

=12 ..., %. On the other hand, if q is even then H ., has an odd number of points,

thus we give the pairing on the set of points Ho, \ {P}}: let (P, PHl) be the pairs for
i=4,6,....¢ andj =1,2,..., T and let (P}, P?), (P?.,, P%,y), (P}, P?) and
(P2, P}) be the pairs fori = 1,2,3and j = 2,4,6, ..., q__ll .

Let (U,V) be any pair of points. Then, by defintion, S(U) # S(V). Let the color
class Cy,v,; contain the lines joining either U and a point from Il ;, or V" and a point from
Iy, fori = 1,2,..., q*. Clearly, (U, V) defines ¢”* color classes, each one consists of
the parallel lines of one subspace in A(U) and the parallel lines of one subspace in A(V).

Finally, if ¢ is even, then let the color class C; consist of all lines of AG(2k, ¢) whose point
at infinity is P}.

We divided the points of H ., into 2( ) pairs if ¢ is odd, and into 4 ( o ) pairs if g is

even. Consequently, the number of color classes is equal to mq * when g is odd, and it

is equal to q( 1) q* 4+ 1 when ¢ is even.
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Now, we show that the coloring is complete. The class C obviously intersects any
other class. Let Cy,y,; and Cyy, z ; be two color classes. Then S(U) and S(V') are distinct
elements of the spread S and S(W) is also an element of S. Hence we may assume,
without loss of generality, that S(U) N S(W) = 0. As

dlm(S(U) U HU,i) = dlm(S(W) U HW,]‘) =k

in PG(2k, ¢), by Proposition 3.1, we have that II;;; N IIy,; consists of a single point in
AG(2k, q). Notice that the coloring is not proper, because the same argument shows that
Iy ; N IIy,; is also a single point in AG(2k, q). O

For odd dimensional spaces we have a slightly weaker estimate. In this case, the mag-
nitude of the lower bound is % . ﬁ(le)
q q
Theorem 3.4. If k& > 1 then the colorings of the odd dimensional affine space,
AG(2k + 1, q), satisfy the inequality

, where v = ¢".

q2k 1
¢ <q21> +1<9¢'(AG(2k + 1,q)).
Proof. The hyperplane at infinity in the projective closure of AG(2k+1, q), Hoo, is iSomor-
phic to PG(2k, q). Hence, by Proposition 3.2, H ., admits a good partition H., = AUBU
{Q} with assigned subspaces S(U).Let A = {Py, P,,...,Pi}and B = {R1, Ry, ..., Rs}

k k
where t = ¢> (q; :11) and s = ¢ (q; :11

For a point P; € Alet A(P;) = {Ilp,1,1Ip, 2,...,IIp, .} denote the set of the ¢*
parallel (k+1)-dimensional subspaces of AG(2k+1, ¢) whose projective closures intersect
Hoo in S(P;). Similarly, for a point R; € Blet B(R;) = {Ilg, 1,1Ig; 2,..., g, ge+1}
denote the set of the ¢**! parallel k-dimensional subspaces of AG(2k + 1, q) whose pro-
jective closures intersect o in S(R;).

Now, we define the color classes. Let C; be the color class that contains all lines of
AG(2k+1, g) whose point at infinity is . Let the color class C; ; ,, contain the lines join-
ing either P(;_1)4; and a point from lp;_, .. m,or R; and a point from Il (;_1)gk4m

forj =1,2,...,s,i=1,2,...,gand m = 1,2,...,¢". Counting the number of color

2k _ .
k+2 qqz—_ll) . Each color class consists of

the parallel lines of one subspace in A(P;_1)4;) and the parallel lines of one subspace in
B(R;). Clearly, the total number of color classes is 1+ ¢**2 (‘1;—__11) . The color class C

classes of type C; j,m, we obtain s - ¢ - @ =q

contains ¢** lines and each of the classes of type C; ;. consists of ¢* + ¢*~ lines.

To prove that the coloring is complete, notice that the class C; obviously intersects
any other class. Let C; j,, and Cy j/ s be two color classes other than C;. Consider
the projective closures of those elements of A(P(;_1)q+;) and B(R;/) whose lines are
contained in C; j ,,, and in Cy j/ ,, respectively. One of these subspaces is a (k + 1)-
dimensional, whereas the other one is a k-dimensional subspace in PG(2k + 1,¢), and
they have no point in common in H .. Thus, by Proposition 3.1, their intersection is a
single point in AG(2k + 1, q).

The coloring is not proper, because the same argument shows that IIp, ;) . m N
R, (i—1)q*+m is also a pointin AG(2k + 1, g), thus C; ; ,,, contains a pair of intersecting
lines. O
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Now, we are ready to prove our second main theorem.

Proof of Theorem 1.2. If n is even then Theorem 3.3 gives the result at once. If n is odd
then v = ¢%**1 hence \/v/q = ¢*. From the estimate of Theorem 3.4 we get

2k 3k+2 k42
-1 _
qk”(q >+1q d +1

> -1 > -1
_ (q+ 1)(g®F+1 — gF) - PR g ght2 gkt gk g
¢ —1 ¢ -1
_ iﬁ(” _ 1) B q3k+1 +qk+2 _ qk+1 _q]c 1
Vi q-1 ¢ —1 ’
which proves the statement. O

Next, recall that a lower bound for the achromatic index require a proper and complete
line-coloring of AG(n, ¢). We consider only the even dimensional case.

Theorem 3.5. Let k > 1 and ¢ = 0,1 or 2, such that ¢* + 1 = ¢ (mod 3). Then
the achromatic index of the even dimensional finite affine space AG(2k,q) satisfies the
inequality

k k
(EH = a2 +) T < wacira)
Proof. The hyperplane at infinity in the projective closure of AG(2k, ¢), Hoo, i isomor-
phic to PG(2k — 1, ¢), hence it admits a (k — 1)-spread £ = {f1,la,..., €41} Let
A(l;) = {1,102, 11, o} denote the set of the ¢* parallel k-dimensional sub-
spaces in AG(2k, q) whose projective closures intersect H, in ¢;. Then, by Proposi-
tion 3.1, the intersection Iy, N1y, ¢ is a single affine point forall ¢ # jand 1 < s,¢ < q.

First, to any triple of (k — 1)-dimensional subspaces, e, f,g € £, we assign ¢* + 2
color classes as follows. Take a fourth (k — 1)-dimensional subspace d € L, and, for
u = (¢*—1)/(q—1), denote the points of the (k—1)-dimensional subspaces d, ¢, f and g by
Di1,Ds,...,Dy, E1,Fs,...,Ey, F1,Fs,...,F, and G1,Gs,...,G,, respectively. For
any triple (D;, e, g) there is a unique line through D; which intersects the skew subspaces
e and g. We can choose the numbering of the points F; and G; such that the line F;G;
intersects d in D; for ¢ = 1,2, ..., u; the numbering of the points F;, such that the line
D, F;, intersects d and g for i = 1,2,...,u — 1, and, finally, choose the line D, F} that
intersects d and g. Notice that this construction implies that the line D, F;; does not intersect
gfori=1,2,..., u. Let the points of Il denote by M7, Ms, ..., M. We can choose
the numbering of the elements of A(e), A(f) and A(g) such that IT, ;NIT,; ,NII, ; = {M,;}
fori=1,2,...,q".

We define three types of color classes for ¢ = 1,2,...,uand j = 1,2,..., q*. Let

Bi (} , and Bz’1 be the color classes that contain the lines through M; whose point at

infinity is E; and F;, respectively. Let C’ # 4 be the color class that contains the lines in
II.; whose point at infinity is E;, except the line E; M;, the lines in II; ; whose point at

infinity is F;, except the hne F; Ml, and the lines in Hg i Whose point at infinity is Gj.

k—1

Hence each of B’ (} and B contams q" lines and C "fg contains 3¢ — 2 lines.

Notice that for each 1€ {1 2 ., u}, the union of the color classes

i _ nt0 2,1 ]
e.f.g = BengBefg CEfg
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contains all lincs whose point at infinity is I;, I; or G;. Each of the two sets of lines be-
longing to Be T£.g OF B;ic 4o naturally defines a (k + 1)-dimensional subspace of PG(2k;, g),
we denote these subspaces by Ilg, and I, , respectively.

Fort =0,1,. L( -2 - 6)/3J let e = €3t+1, f= €3t+2, g = £3t+3, d = €3t+4,
define £y yo_ as fl, and make the ¢* + 2 color classes Be .90 BY } , and C ;- Finally,
for each point P in the subspace £,x 1 if € = 1, orin £ if € = 2, define a new color class
DP which contains all lines whose point at infinity is P.

Clearly, the coloring is proper and it contains, by definition, the required number of
color classes. Now, we prove that it is complete. Notice that each color class of type D
obviously intersects any other color class. In relation to the other cases we have that:

e Thecolorclasses B, ,  and B, intersect, because both
3m+1,¢3m+2,¢3m+3 3m+1,3m+2,£3m+3

of them contain all points of the k-dimensional subspace Hggm Sl

f3t+1,53t+2743t+3 and sti+1ylsm+2yl3m+3 intersect,
because the (k — 1)-dimensional subspaces 3;4 and ¢3,,, 14 are skew in H ., hence
the 2-dimensional intersection of the (k + 1)-dimensional subspaces IIg, or Ilx,,
according as j = 1 or 2, and II g/ or II/, according as j' = 1or2,is not a subspace
of Ho. Thus Proposition 3.1 implies that their intersection contains some affine
points.

e If ¢ # m then the color classes B

e The color classes B and C? intersect in both cases

€37n+17£37n+2 L3m+3 53t+1,531+2 L3tt3
m = t and m # t, because the (k — 1)-dimensional subspaces {3, 4 and £3; 3 are
skew in H .. Again, Proposition 3.1 implies that the intersection of the k-dimensional
subspaces IIy,, . ,.1 (Which is a subspace of either the (k + 1)-dimensional subspace

IIg, or IIf,, according as j = 1 or 2) and H[S iai is an affine point.

e If ¢t # m then each pair of color classes chd and C. 7

L3t41,03t+2,3t+3 £3m+1,€3m+2,€3m+3"
intersects since, as previously, the (k — 1)-dimensional subspaces ¢3;+3 and £33
are skew in H .., thus Proposition 3.1 implies that the projective closures of the k-

dimensional subspaces Ily,, ,, ; and II,, . ; intersect each other in AG(2k, q).

e Finally, we prove that each pair of classes chd dc;?

L3t +1,@3r+2733r+3 L3t41,83t+2,03t+3
intersects. It is obvious when 7 = #'. Suppose that i # ', let M; = Iy, ., ; N
H€3t+2,i N H€3t+3,i and M; = H€3t+1,i’ n H€3t+27i/ N H63t+3,i/- Since the points M;
and My arein Iy, , 1, the line M; M intersects Ho in £3¢44. Take the point T' =
M;M; N €3444 and the lines £;T" and F;T. Clearly, at least one of these lines does

not intersect {3, 3, we may assume without loss of generality, that F;T' N {3413 = 0.

By Proposition 3.1, there exist affine points N; = Ilp,, ., ; N 1lg,,,, o and Ny =
H€3t+17i' n H@3t+3,i' Suppose that N; € E; My and N € E;M;. Then U1 N
M; M = 0, hence (€341, M; M;:) is a (k + 1)-dimensional subspace 31, which
intersects H., in a k-dimensional subspace . Obviously, ¥ also contains the
points E; and E;j/. Then X, = ({3441, T), and X5, N3443 is a single point, say U. As
the lines Ny M; and N; M/ are in the k-dimensional subspaces 1Ty, , ; and I1g;, 4,
respectively, there exist the points N;s M; N ¢3;.15 and N; M;» N £3443. Moreover, we
have that N;; M; N {3,153 = N;M;» N €343 = U. Hence the points N;, M;, N;» and
M; are contained in a 2-dimensional subspace Yo, and >3 N7, contains the points
U, E;, E; and T. Consequently, ¥2 N H o is the line E;7" and it contains the point
U, thus E;T intersects the subspace (3,3, contradiction.
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Thus N; & Ey My or Ny & E;M;. This implies that N; or Ny is a common point

P -/ -/
of the color classes C"’ and C} 7 )
£3t+1,43t42,03t+3 £3t+1,€3t42,€3t+3
In consequence, the coloring is complete. O

To conclude this section we prove our third main theorem.

Proof of Theorem 1.3. As v = ¢** from Theorem 3.5 we get

k 1— k_l 3k 92 _ 2k 2 — 1 k_2_
CHlocbioie)d _ ¢+ (2-6g +(2¢ - 1)g €
3 g—1 3(g—1)
71\/5(@71)+(276)U+26\/57276
3 -1 3(g—1) ’
which proves the statement. O

4 Small dimensions

In this section, we improve on our bounds in two and three dimensions. First, we prove
the exact values of achromatic and pseudoachromatic indices of finite affine planes. Due
to the fact that there exist non-desarguesian affine planes, we use the notation A, for an
arbitrary affine plane of order g. For the axiomatic definition of A, we refer to [11]. The
basic combinatorial properties of A, are the same as of AG(2, ¢).

Theorem 4.1. Let A, be any affine plane of order q. Then
X' (Ay) =/ (A,) =q+1.

Proof. Let S, .S, ..., 5441 denote the ¢ + 1 parallell classes of lines in A,. Two lines
have a point in common if and only if they belong to distinct parallel classes. Hence, if we
define a coloring ¢ with ¢ + 1 colors such that a line ¢ gets color ¢ if and only if ¢/ € .
then ¢ is proper, so ¢ + 1 < x'(Ay).

Since x'(Aq) < o/(Ay), it is enough to prove that o’/(A,) < ¢ + 1. Suppose to the
contrary that v is a complete and proper coloring with m > ¢ 4 1 color classes. As ¥ is
proper, each color class must be a subset of a parallel class. By the pigeonhole principle,
m > q+ 1 implies that there exist at least two color classes that are subsets of the same par-
allel class. Hence they do not contain intersecting lines, contradicting to the completeness
of 1. Thus o/ (Ay) < g + 1, the theorem is proved. O

Theorem 4.2. Let A, be any affine plane of order q. Then
2
W(Ag) = [

Proof. First, we prove that ' (A,) < {%J . Suppose to the contrary that ¢ is a com-

plete coloring of A, with {%J + 1 color classes. As A, has ¢® + ¢ lines, this implies
that ¢ has at most g2 + ¢ — ([%J + 1) color classes of cardinality greater than one.

Thus, there are at least

(q+1)2J ( 2 Q(gﬂ)zJ )) _Ja+2, ifgiseven,
S|+ 1= +g— (|5 +1)) =
L ? T ? q+3, ifgisodd,
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color classes of size one. Hence, again by the pigeonhole principle, there are at least two
color classes of size one belonging to the same parallel class. They have empty intersection,

s0 ¢ is not complete. This contradiction shows that ¢)'(A,) < {WJ .

(g+1)?
2

We go on to give a complete coloring of A, with L J color classes. Let P be

a point and eq,es,...,eq,41 be the lines through P. Fori = 1,2,,...,¢ + 1 let .%;
be the parallel class containing e; and denote the ¢ — 1 lines in the set .%; \ {e;} by
4, g(q+1)+i7 - 7€(q72)(q+1)+i' Then:

q
U cy\{ez _{617623-"a£q2—1}7

and ¢; and ¢, are non-parallel lines for all 1 < j < ¢®—1. For better clarity, we construct
q + 1 color classes with even indices and {qzz—*lJ color classes with odd indices. Let the
color class Cyj, consist of one line, e, for k = 1,2,...,q + 1. Let the color class Ca_1

contain the lines /55,1 and ¢y, for k =1,2,. .., {‘122_1 , finally, if ¢ is even, let the color

class C2_3 contain the line £,z _1, too.

The coloring is complete, because color classes having even indices intersect at P, and
each color class with odd index contains two non-parallel lines whose union intersects all
lines of the plane. O

Our last construction gives a lower bound for the achromatic index of AG(3,q). As
o' (AG(3,q)) < ¥'(AG(3,q)), this can be considered as well as a lower estimate on the
pseudoachromatic index of AG(3, ¢) and this bound is better than the general one proved
in Theorem 3.4. We use the cyclic model of PG(2, ¢) to make the coloring. The detailed
description of this model can be found in [16, Theorem 4.8 and Corollary 4.9]. We collect
the most important properties of the cyclic model in the following proposition.

Proposition 4.3. Let q be a prime power. Then the group Zg 41 admits a perfect differ-
ence set D = {do,dy,ds, ...,d,}, that is the > + q integers d; — d; (i # j) are all distinct
modulo ¢*> + q + 1. We may assume without loss of generality that dy = 0 and d; = 1.
The plane PG(2, q) can be represented in the following way. The points are the elements
0f Zg2 1. q+1, the lines are the subsets

D+j={d;+j:d; € D}
forj=0,1,...,q% + q, and the incidence is the set theoretical inclusion.

Theorem 4.4. The achromatic index of AG(3, q) satisfies the inequality:

9a+D° o aGE,g).

Proof. The plane at infinity in the projective closure of AG(3,q), Heo, is isomorphic to
PG(2, ¢), hence it has a cyclic representation (described in Proposition 4. 3) Letv = ¢? +
q—+ 1, let the points and the lines of H., be Py, Ps, ..., P,,and {1, 0o, ... {,, respectively.
We can choose the numbering such that for: = 1, 2, 3, ..., v the line ¢; contalns the points
P;, P11 and P;_4 (where 0 # d # 1 is a fixed element of the difference set D, and the
subscripts are taken modulo v).



78 Ars Math. Contemp. 16 (2019) 67-79

Let A(P;)) = {Ilp,1,1Ip, 2,...,1Ip, 4} denote the set of the ¢ parallel planes in
AG(3, q) whose projective closures intersect Ho, in ¢;, and IIp, ; denote the projective
closure of IIp, ; fori = 1,3,...,v,and j = 1,2,...,q. Let W; be a plane whose pro-
jective closure intersects Ho, in £;_4. Then the projective closure of each element of
A(P;) U A(P;41) intersects W; in a line whose point at infinity is P;, so we can choose
the numbering of the elements of A(F;) and A(P;41), such thatIlp, ; N1Ilp, , ; C W; for
i=1,3,...,v—2,and j =1,2,...,q. Let €} denote the line IIp, ; N 1p,,, ;.

We assign ¢ + 1 color classes to the pair (P;, Pi41) fori = 1,3,...,v—2. Let the color
class Cj contain the lines ef, €5 ..., e}. For j = 1,2,..., ¢, let the color class C’; contain
those lines of I1p, ; whose point at infinity is P;, except the line eg-, and the ¢ parallel lines
of Ip,,, ; whose point at infinity is /1. Finally, let the color class C' contain all lines
whose point at infinity is P,. In this way we constructed

()it pq - gl

1
2 2 +

color classes and each line belongs to exactly one of them, because C}; contains ¢ lines, C’;
contains 2g — 1 lines for each j = 1,2, ..., ¢. and C" contains ¢ lines.

The coloring is proper by construction. The color class C¥ obviously intersects any
other class. For other pairs of color classes, two major cases are distinguished when we
prove the completeness. On the one hand, if ¢ # & then we have:

e CiN C’(’f # (), because the planes W; and W}, intersect each other;
e if j > 0then C{ N C’j’-C # (), because the planes I; and I1p, _ , ; intersect each other;

e ifm > 0and j > 0then C¢, N C’]’? # (), because the planes IIp, , ., and Ip, ,, ;
intersect each other.

On the other hand, color classes having the same superscript also have non-empty intersec-
tion:

e Cin C} # (), because the planes W; and Ip, ., ; intersect each other;

e if j # k then the planes IIp, ; and Ip, , 1 intersect in a line f and f # e;, hence its
points are not removed from ITp, ;, so Ci N Cf # 0.

Hence the coloring is also complete, this proves the theorem. O
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