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Abstract

Czap and Jendrol’ introduced the notions of strong parity vertex coloring and
the corresponding strong parity chromatic number χs. They conjectured that there
is a constant bound K on χs for the class of 2-connected plane graphs. We prove
that the conjecture is true with K = 97, even with an added restriction to proper
colorings. Next, we provide simple examples showing that the sharp bound is at
least 8, or at least 10 for proper strong parity vertex colorings.
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1 Introduction

Czap and Jendrol’ [1] defined the notions of strong parity vertex coloring and the corre-
sponding strong parity chromatic number χs equivalently to what follows. Let G be a
connected plane graph, and let f be its face. A (clockwise) facial walk of f is a shortest
closed walk in G with the embeddings of its edges defining a closed oriented curve C(t)
such that for every t0, a sufficiently small left-side neighborhood of C(t) at t0 belongs
entirely to the interior of f . Note that C(t) is precisely the topological boundary of f
since G is connected, and that distinct facial walks of f differ only in the choice of their
starting vertex. Consider a fixed coloring of G; the face f satisfies the strong parity ver-
tex coloring condition (the spv-condition briefly) with respect to the coloring if for each
color c of the coloring, there is zero or an odd number of occurrences of vertices colored
with c on a facial walk of f . The coloring is a strong parity vertex coloring (or, shortly,
an spv-coloring) if the spv-condition holds for every face of G. Assume now that G is
2-connected. The minimum number of colors that admits an spv-coloring of G is called
the strong parity chromatic number of G and is denoted by χs(G).
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public. E-mail: rucky@kma.zcu.cz.

§Laboratoire G-SCOP, Grenoble INP, UJF, CNRS, 46 avenue Félix Viallet, 38031 Grenoble Cedex,
France. E-mail: matej.stehlik@g-scop.inpg.fr.

¶Department of Mathematics, University of Ljubljana, Jadranska 21, 1000 Ljubljana, Slovenia. Sup-
ported in part by ARRS Research Program P1-0297.

1

Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
14

4,
 M

ar
ch

 1
4,

 2
01

1



We make two remarks regarding these definitions. First, one can obviously extend the
notion of spv-coloring and χs to the class of connected and 2-connected plane multigraphs
respectively. Second, the assumption of 2-connectedness of G is crucial in the definition of
χs(G); Czap and Jendrol’ [1] mention a simple example of a non-2-connected plane graph,
namely two triangles sharing precisely one vertex, for which no spv-coloring obviously
exists. Clearly, a sufficient condition for G to have an spv-coloring is that facial walks
of all faces in G be cycles, which indeed holds if G is 2-connected. Nevertheless, the
spv-condition of the face f with respect a particular coloring could be modified to the
requirement that for each color c of the coloring, there is zero or an odd number of
vertices colored with c in the boundary of f . Then the spv-coloring as well as χs(G) are
well-defined for every plane graph G, the latter following from the fact that a coloring
assigning a different color to each vertex of G is clearly an spv-coloring, and both the
notions coincide with their original definitions in the class of connected and 2-connected
plane graphs respectively.

Czap and Jendrol’ [1] conjectured that there is a constant bound K on χs for the
class of 2-connected plane graphs. Furthermore, they suggested that the best possible
bound equals 6, providing an infinite family of graphs with χs = 6. The main result of
our paper confirms the conjecture for the class of 2-connected plane multigraphs with an
added restriction to proper colorings:

Theorem 1.1. Every 2-connected plane multigraph has a proper spv-coloring with at most
97 colors.

The proof is given in Section 2. During the preparation of this paper, another proof (for
a somewhat worse constant) was independently found by Czap, Jendrol and Voigt [2]. In
Section 3, we present examples demonstrating that the sharp bound of the conjecture is
greater than or equal to 8 or, with a restriction to proper colorings, at least 10. We remark
above that the definitions of the spv-coloring and χs can be extended to the class of all
plane multigraphs, and thus also the conjecture generalized this way might be considered.
However, we do not pursue this problem in our paper; it remains open.

It should be noted that even before the introduction of parity vertex colorings, certain
edge-coloring versions of these notions were introduced in [3, 4]. Recently, facial parity
edge-colorings has been studied in [5].

In the remainder of the section, we establish basic notation used throughout the paper;
the notions not mentioned here are standard in graph theory [6]. For brevity, we will
always refer to multigraphs as graphs, unless a confusion could arise. Let G be a connected
plane graph, v its vertex, e1 and e2 its edges, and f its face. Then F (v) or F (e1) denotes
the set of faces incident with v or e1 respectively. The boundary vertices or boundary
edges of f are all the vertices or edges of G respectively which are incident with f ; the
sets of these are written as V (f) and E(f) respectively. We refer to |V (f)| as the length
of f . The degree of v, i.e., the number of edges incident with v, is denoted by d(v). If
d(v) = 2, the vertex v is a 2-vertex ; otherwise, we call v a high-degree vertex or a vertex
of high degree. The edges e1 and e2 of G are parallel when they are not loops and share
their endvertices. If e1 and e2 are parallel and constitute the boundary of f , the face f is
a digon. For a path P , every its vertex not being its endvertex is called an internal vertex
of P . Finally, we remark that for all the notation defined, the relevant graph may be
referred to by a subscript whenever confusion could arise. For example, we write FG(v)
or dG(v) if that graph is G.
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2 Upper bound

This section is devoted to the proof of the main result, Theorem 1.1.

Proof of Theorem 1.1. We proceed by contradiction, taking a minimal counterexample G
with respect to the number of vertices first and to the number of edges next, and applying
the well-known discharging method to it. This is done in Section 2.2.

The discharging argument relies on the fact that G, being a minimal counterexample,
must satisfy certain structural conditions. These are listed, and the fact itself is proved,
in Section 2.1.

Before proceeding to Sections 2.1 and 2.2, we define some ad hoc notation and include
several basic claims used afterwards.

Let G be a 2-connected plane graph; let f be a face of G. The number of high-degree
vertices on the boundary of f is called the weight of f , written as w(f). The face f
is a pseudodigon if w(f) = 2 and f is not a digon; it is a small or large if w(f) < 20
or w(f) ≥ 20 respectively. The modified weight w′(f) of f is defined as 3 if w(f) = 2,
and w(f) otherwise. Suppose that v is a vertex of G. Then the configuration of v, or
f -reduced configuration of v, is the tuple obtained by ordering the elements from the
multiset {w(g) : g ∈ F (v)} or {w(g) : g ∈ F (v), g 6= f}, respectively, in a nondecreasing
manner. The modified configuration of v and modified f -reduced configuration of v are
defined analogously, with w′(fi) replaced by w(fi). The (open) face-vertex neighborhood

of v, denoted by NF (v), is defined as
(⋃

g∈F (v) V (g)
)
− {v}, and the f -reduced (open)

face-vertex neighborhood of v, referred to as NF (v, f), is the set
(⋃

g∈F (v), g 6=f V (g)
)
−{v};

we call the sizes of these sets the face degree and f -reduced face degree respectively, writing
dF (v) and dF (v, f) respectively. As before, we add the name of the graph in question as
the subscript of the symbolic notation defined here to avoid confusion if necessary. For
instance, we write NF

G (v) or dF
G(v, f) for the graph G.

We now introduce a graph operation to be used in the proof of Lemma 2.4. Let G be a
plane graph and v its vertex of degree d > 0, there is no loop at v, and the edges incident
with v are enumerated in a clockwise order as ei := vvi, i ∈ Zd; note that, in general,
some of the vertices vi may coincide. By the annihilation of v we mean the construction
of a plane graph G′ from G as follows:

(1) add edges e′i := vivi+1, i ∈ Zd, embedded in the plane so that for each i, the edges ei,
ei+1, and e′i, in this order, constitute a facial walk;

(2) delete v together with all the edges ei.

Intuitively, one may achieve the desired embeddings of the edges e′i by drawing each e′i
‘close enough’ to the curve consisting of the embeddings of ei and ei+1. See Figure 2.1 for
an example of a properly conducted annihilation. Regarding the faces of G and G′, it is
obvious that the following holds:

Observation 2.1.

(1) Every face of G not in FG(v) is also a face of G′;

(2) each face g ∈ FG(v) has its counterpart g′ in G′ such that a facial walk of g′ may be
obtained from a facial walk W of g by replacing each subsequence of W of the form
eivei+1 with e′i, and hence V (g′) = V (g)− {v};
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G′
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e′
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e′
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e′
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e′
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e′
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v2

v3

v0

Figure 2.1. The annihilation of a vertex v. The original graph G is on the left, the
resulting graph G′ on the right.

(3) there is precisely one more face in G′, having the sequence v0e
′
d−1vd−1e

′
d−2 . . . v1e

′
0v0

as its facial walk.

If G is 2-connected, any of its vertices may be annihilated. Therefore, it makes sense
to ask whether the class of 2-connected plane graphs is closed under the operation of
annihilation of a vertex. One can easily see that the answer is negative: if vi = vj for
some i 6= j in the definition above, i.e., there is a pair of parallel edges incident with v in
G, then the vertex vi becomes a cut-vertex in G′. However, it turns out that unless this
situation occurs or G is too small, 2-connectedness is preserved:

Lemma 2.2. If v is a vertex of a 2-connected plane graph G, |V (G)| ≥ 4, such that it is
incident with no pair of parallel edges, then a graph G′ obtained after the annihilation of
v is 2-connected.

Proof. Every plane graph on at least three vertices is 2-connected precisely when a facial
walk of each of its faces is a cycle; we use this criterion for both G and G′ in the following.
Take an arbitrary face f ′ of G′, and let W ′ be a facial walk of f ′. We may assume that f ′

is not a face of G, otherwise there is nothing to show. By Observation 2.1, W ′ is either
the walk v0e

′
d−1vd−1e

′
d−2 . . . v1e

′
0v0, or it arises from a facial walk W in G by replacing each

subsequence eivei+1 of W with e′i. In both cases, it follows from the assumptions that W ′

is a cycle.

Finally, we include a technical lemma that significantly shortens the case analysis in
the proof of Claim 1.

Lemma 2.3. Let (li), (l′i), i = 0, . . . , k, be tuples of positive integers such that lj ≤ l′j
for every j 6= k, and l′k ≥ l′j for every j for which lj < l′j. Then

∑k
i=0 l′i ≤

∑k
i=0 li or∑k

i=0 1/l′i ≤
∑k

i=0 1/li.

Proof. We prove first that if
∑k

i=0 l′i =
∑k

i=0 li and the tuples are distinct, then
∑k

i=0 1/l′i <∑k
i=0 1/li. We proceed by induction on the size of the set J := {j : j 6= k, lj < l′j}. From

the assumptions, it follows that J is nonempty; fix j0 as any index in J , and let d := l′j0−lj0 .
Consider a tuple (l′′i ) such that l′′j0 = l′j0 = lj0 +d, l′′k = lk−d, and l′′j = lj for the remaining
indices. Clearly, l′′k ≥ l′k, and the number of pairs of different elements l′′j , l′j for j 6= k
equals |J | − 1. It holds

k∑
i=0

1

l′′i
=

k∑
i=0

1

li
+

(
1

l′′j0
− 1

lj0

)
+

(
1

l′′k
− 1

lk

)
=

k∑
i=0

1

li
− d

(
1

lj0(lj0 + d)
− 1

l′′k(l
′′
k + d)

)
,
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and since
l′′k ≥ l′k ≥ l′j0 > lj0

by the assumptions and the choice of j0, it follows immediately that

k∑
i=0

1

l′′i
<

k∑
i=0

1

li
. (2.1)

In the trivial case, i.e., when |J | = 1, the tuple (l′′i ) equals (l′i), and there is nothing
more to prove. Otherwise, we apply the induction for (l′′i ) and (l′i), in this order, obtaining
that

∑k
i=0 1/l′i <

∑k
i=0 1/l′′i ; this together with (2.1) gives the desired conclusion.

Now we prove the claim. We may suppose that
∑k

i=0 l′i >
∑k

i=0 li. If l′k ≥ lk, then

trivially
∑k

i=0 1/l′i <
∑k

i=0 1/li. Otherwise, there clearly exists a tuple (l′′i ) such that

lj ≤ l′′j ≤ l′j for every j 6= k, l′′k = l′k, and
∑k

i=0 l′′i =
∑k

i=0 li. Note that (l′′i ) is distinct

from both (li) and (l′i). Then it follows from above that
∑k

i=0 1/l′′i <
∑k

i=0 1/li, and by

the conditions on (l′′i ) with respect to (l′i), it holds
∑k

i=0 1/l′i <
∑k

i=0 1/l′′i ; the proof is
complete.

2.1 Reducibility

We infer several constraints applying to the graph G as Lemma 2.4, and based on these,
we derive bounds for the (reduced) face degree of a vertex in G in terms of the sum
of its (reduced) configuration in Lemma 2.5. We remark that, according to established
terminology, a graph contradicting Lemma 2.4 is called reducible.

Lemma 2.4. The graph G has the following properties:

(1) |G| > 97;

(2) G does not contain parallel edges; in particular, G is without digons;

(3) no facial walk of a face of G contains four consecutive 2-vertices;

(4) for every vertex v of G, dF (v) > 96;

(5) for every two vertices u and v of G such that F (u)∩F (v) = {f}, dF (u, f)+dF (v, f) >
95.

Proof. By assumption, G is a 2-connected graph. We prove each of the assertions by
contradiction.

The statement (1) is straightforward; consider an assignment of a different color to
each vertex of G.

We proceed to show assertion (2); let e1 and e2 denote two parallel edges in G. We
distinguish two cases. If e1 together with e2 delimit a digon f , we simply delete one of
the two edges, say, e1, obtaining a (2-connected) graph G′. By the minimality of G, the
graph G′ has a proper spv-coloring c with at most 97 colors. As all faces of G except
f have their counterparts in G′ with the same sets of boundary vertices, and since c is
proper, c is also a proper spv-coloring of G.

When, on the other hand, the curve C comprising the embeddings of e1 and e2 is not
a boundary of a digon, we produce two graphs G1 and G2 by deleting the interior and
exterior of C, respectively, from G. Both these graphs are clearly 2-connected (note that
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each has at least three vertices), and smaller than G with respect to our order; thus they
have proper spv-colorings with at most 97 colors. The colorings can be chosen such that
they coincide at the common vertices, i.e., the endvertices of e1, and that the number of
colors in their union c is minimal. Then c is a proper spv-coloring of G using at most 97
colors.

Next, suppose x1x2x3x4 is a path contradicting statement (3). Let v1 (respectively
v4) be the neighbour of x1 (respectively x4) other than x2 (respectively x3). The vertices
v1 and v4 are distinct and different from all xi, i = 1, . . . , 4, otherwise the facial walk in
question would contain just four or five vertices, and by the 2-connectedness of G these
would be the only vertices of G; a contradiction to assertion (1). We construct a graph
G′ by contracting the path x1 . . . x4v4 into a single vertex v′4. It remains 2-connected due
to statement (1), and hence by assumption, G′ has a proper spv-coloring c of at most 97
colors. If we use the coloring for the corresponding vertices of G and assign the (distinct)
colors c(v1) to x2, x4, and c(v′4) to x1, x3, v4 respectively, we obviously have a proper
spv-coloring of G with not more than 97 colors.

We now focus on assertion (4). We perform the annihilation of v, obtaining a graph
G′. By parts (1), (2) and Lemma 2.2, G′ is 2-connected. This means, by the minimality
of G, that G′ has a proper spv-coloring c with at most 97 colors. Using c for G and
assigning a color not used by c on any vertex in NF

G (v), but, if possible, present in c, to
v, we clearly obtain a proper coloring of G of cardinality less than or equal to 97.

Now, by Observation 2.1, the only faces of G whose sets of boundary vertices differ
from those of their counterparts in G′ are the elements of FG(v), but, by the choice of the
color of v, the spv-condition is maintained for them. Hence, the coloring of G is also an
spv-coloring, a contradiction.

Finally we deal with statement (5). We construct a graph G′′ by the annihilation
of u. As above, G′′ is 2-connected, and hence we may annihilate v in G′′ to obtain a
graph G′. Since u and v have precisely one common incident face in G, they are not
adjacent; therefore, the annihilation of u does not create any new edges at v. This means,
by part (2), that there is no pair of parallel edges incident with v in G′′, and thus,
considering statement (1) again, Lemma 2.2 can be applied for the annihilation of v. We
conclude that G′ is 2-connected. As it is also smaller than G with respect to our order,
there is a proper spv-coloring c′ of G′ using at most 97 colors.

We extend the coloring to G as follows. If there exists a color used by c′ on a vertex
in VG(f) −NF

G (u, f) −NF
G (v, f) but on no vertex in NF

G (u, f) ∪NF
G (v, f), we assign this

color to both u and v. If the opposite is true, we color u and v each with a different
color not used by c′ on any vertex in NF

G (u, f) ∪ NF
G (v, f), but, if possible, appearing in

c′. Obviously, either case yields a coloring c of G with not more than 97 colors.
For a desired contradiction, it remains to show that c is a proper spv-coloring of G.

As all neighbors of both u and v belong to NF
G (u, f) ∪ NF

G (v, f), the coloring is indeed
proper. Next, by Observation 2.1 and the assumption about F (u) ∩ F (v), we see that
each face g of G has its counterpart g′ in G′ with VG(g) being equal to VG′(g′) ∪ {u, v} if
f = g, VG′(g′) ∪ {u} or VG′(g′) ∪ {v} if g ∈ FG(u)− {f} or g ∈ FG(v)− {f} respectively,
and VG′(g′) otherwise. Then, considering the particular choice of the colors of u and v in
either case, it is straightforward that the spv-condition holds for every face of G.

Lemma 2.5. Let v be a vertex of G.

(1) Assume that (li), i ∈ Zk, is the configuration of v. Then:

(a) dF (v) ≤ 4(l0 + l1) if k = 2;
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(b) dF (v) ≤ 4
∑2

i=0 li − 15− 3|{i : li + li+1 ≤ 25}| if k = 3;

(c) dF (v) ≤ 4
∑k−1

i=0 li − 5k if k ≥ 4;

(d) (li) does not equal (2, 8, 19) nor (3, 8, 19).

(2) Let f be a face of G incident with v. Suppose that (li), i = 1, . . . , k, is the f -reduced
configuration of v. Then:

(a) dF (v, f) ≤ 4
∑k

i=1 li − 5k + 4;

(b) dF (v, f) ≤ 4l1 − 1 if k = 1;

(c) dF (v, f) ≤ 4(l1 + l2)− 9 if k = 2 and l1 + l2 ≤ 25.

Proof. For convenience, we construct a graph G′ from G by replacing each nontrivial path
P in G having both endvertices of high degree and all internal vertices of degree 2 with an
edge. (Note that P may be a single edge.) The correspondence between G and G′ is then as
follows. Since G is 2-connected and it is not a cycle by Lemma 2.4 (1) and Lemma 2.4 (3),
the vertices of G′ are precisely the high-degree vertices of G. Furthermore, for every edge
e of G′ there is a corresponding path Pe in G with the same endvertices and all its internal
vertices being of degree 2; and every face f ′ of G′ has its counterpart f in G (and vice
versa) with a facial walk of f arising from a facial walk of f ′ by replacing each edge e
with Pe, and consequently, it holds that w(f) = w(f ′). Note that, by Lemma 2.4 (3), Pe

has at most three internal vertices for every e ∈ E(G′).
We start with the following observation, which directly implies statement (1a).

Let u ∈ V (G) have degree 2. Denote by f1, f2 the faces incident with u,
and by f ′1, f ′2 the corresponding faces in G′. Call eu the edge of G′ such that
u ∈ V (Peu), and let u′ be one of the endvertices of Peu. Finally, let e1, e2

denote the edge of E(f ′1), E(f ′2) respectively such that it is incident with u′

and is different from eu. Then dF (u) ≤ 4(w(f1) + w(f2))− 6, and if both Pe1

and Pe2 are single edges, then |dF (u)| ≤ 4(w(f1) + w(f2))− 12.

(2.2)

We prove the observation. There are |V (f ′1)∪V (f ′2)| ≤ w(f ′1) + w(f ′2)− 2 vertices and
|E(f ′1) ∪ E(f ′2)| − 1 ≤ w(f ′1) + w(f ′2) − 2 edges distinct from eu incident with f ′1 or f ′2 in
G′. Therefore, NF (u) consists of at most w(f ′1) + w(f ′2)− 2 high-degree vertices, at most
3(w(f ′1) + w(f ′2)− 2) vertices of degree 2 contained in some Pe, e ∈ E(f ′1)∪E(f ′2)−{eu},
and at most two extra 2-vertices adjacent to u. In total, we obtain the desired bound for
dF (u). Clearly, if both Pe1 and Pe2 have no internal vertices, the maximum number of
2-vertices in NF (u), and hence the bound, drops by 6.

Now, the statement (2b) is straightforward by focusing only on the vertices and edges
incident with f ′1 in the proof of (2.2).

The rest of the proof is based on similar but generalized reasoning. Now v is of high
degree (denoted by d), hence it is also in V (G′). Let the edges incident with v in G′ be
enumerated in a clockwise order as ei := vvi, i ∈ Zd; let f ′i denote the face of G′ whose
facial walk contains eivei+1 as a subsequence and let fi be the corresponding face of G;
let E be the union of EG′(f ′i) and let Ej be the set

⋃
i, i6=j EG′(f ′i); and finally, let Ev and

Vv denote the set of all the edges ei and vertices vi respectively.
We claim that for every vertex v′ in NF

G′(v), there exists an integer k such that v′ ∈
V (f ′k) − {v, vk+1}, and similarly, if v′ ∈ NF

G′(v, f ′j) − {vj} for a fixed j, then there exists
an integer k, k 6= j, such that v′ ∈ V (f ′k) − {v, vk+1}. These assertions are trivially true
when v′ /∈ Vv or there is an integer k such that ek = vv′ and f ′k is not a digon. Assume
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therefore the contrary. But then it is easy to see that all the faces f ′i are digons. By
observation (2.2) and Lemma 2.4 (4), every Pei

is a single edge; hence a pair of parallel
edges occurs in G, a contradiction to Lemma 2.4 (2).

Thus NF
G′(v) =

⋃
i(V (f ′i)−{v, vi+1}) and NF

G′(v, f ′j) =
⋃

i, i6=j(V (f ′i)−{v, vi+1})∪{vj}.
We conclude that dF

G′(v) (respectively dF
G′(v, f ′j)), i.e., the number of high-degree vertices in

NF
G (v) (respectively NF

G (v, fj)), is bounded by
∑

i(w(f ′i)−2) (respectively
∑

i, i6=j(w(f ′i)−
2)+1) from above. Obviously, |E−Ev| ≤

∑
i(w(f ′i)−2) and |Ej−Ev| ≤

∑
i, i6=j(w(f ′i)−2);

therefore the number of 2-vertices in NF
G (v), NF

G (v, fj) not contained in any Pei
is at most

3
∑

i(w(f ′i)−2), 3
∑

i, i6=j(w(f ′i)−2) respectively. Finally, there are up to three vertices of
degree 2 in every Pei

, hence at most 3d of them in total. Summing the respective bounds,
we obtain that

dF
G(v) ≤ 4

∑
i

w(f ′i)− 5d, (2.3)

dF
G(v, fj) ≤ 4

∑
i, i6=j

w(f ′i)− 5d + 9. (2.4)

Statements (1c) and (2a) then immediately follow.
We now focus on assertions (1b) and (1d). By their assumptions, d = 3; we may, up

to the orientation of the plane, choose the labeling above such that w(fi) = li. Then
for each j such that lj + lj+1 ≤ 25, the path Pej

must be a single edge by (2.2) and
Lemma 2.4 (4), and the right side of (2.3) decreases by 3. This proves statement (1b).
Let now (li) = (3, 8, 19). Then both Pe0 and Pe1 are single edges by the preceding analysis.
Considering this, we infer that Pe2 also has no internal vertex by (2.2) and Lemma 2.4 (4)
again. Hence bound (2.3) drops from 105 by 9, which proves assertion (1d).

Finally, suppose the assumptions of statement (2c) hold. Again, up to the orientation
of the plane, we may assume the labeling above to be chosen such that w(fj) = lj, j = 1, 2,
and f0 = f . As before, l0 + l1 ≤ 25 implies that the path Pe1 is without internal vertices.
Hence the bound for j = 2 from (2.4) decreases by 3, which completes the proof.

2.2 Discharging

Having explored the properties of the graph G, we are ready to derive a contradiction
using the discharging method.

In the first phase, we charge the vertices and faces of G as follows:

• each vertex v receives d(v)− 6 units of charge;

• each face f receives 2|V (f)| − 6 units of charge.

The following observation is a standard corollary of the Euler formula.

Observation 2.6. The sum of the charges defined above is −12.

In the second phase, we redistribute the charges according to Rules 1–3 applied in
sequence.

Rule 1. Every face not being a pseudodigon sends two units of charge to each incident
2-vertex. Each pseudodigon does the same, except that one of the respective 2-vertices
receives no charge.
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Rule 2. Every small face distributes its whole charge evenly to all incident high-degree
vertices. Each large face behaves the same way, except that it retains the charge of 4.

Rule 3. Every large face sends each incident vertex with a negative charge c after the
application of Rule 2 the charge of −c.

The aim is to show that the resulting charge of every vertex and every face in G is
nonnegative, a contradiction to Observation 2.6.

First, we analyze how much charge a vertex v of high degree d receives by Rule 2.
Denote the faces incident with v by fi, i = 0, . . . , d − 1, and let ni be the number of
2-vertices incident with fi. After the application of Rule 1, each fi has charge 2|V (fi)| −
6 − 2ni if fi is not a pseudodigon, and 2|V (fi)| − 6 − 2(ni − 1) otherwise. Since, by
Lemma 2.4 (2), fi is not a digon, the charge can be clearly written as 2w′(fi)−6 in either
case. Hence, when fi is a small face, it sends v the charge of

2w′(fi)− 6

w(fi)
= 2− 6

w′(fi)
.

The equality is true as w(fi) = w′(fi) if fi is not a pseudodigon, and 2w′(fi) − 6 = 0
otherwise. On the other hand, when fi is a large face, it sends v

2w′(fi)− 6− 4

w(fi)
= 2− 10

w′(fi)

units of charge. Note that, in both cases, the charge received by v from fi is nonnegative.
In total, the vertex v obtains the nonnegative charge of∑

i
w′(fi)<20

(
2− 6

w′(fi)

)
+

∑
i

w′(fi)≥20

(
2− 10

w′(fi)

)
=

= 2d− 6
∑

i
w′(fi)<20

1

w′(fi)
− 10

∑
i

w′(fi)≥20

1

w′(fi)
. (2.5)

Now we establish the following two essential claims. For convenience, we refer to the
vertices with a negative charge prior to the application of Rule 3 as special vertices. Note
that, considering the initial charge of vertices and the fact that each vertex receives a
nonnegative charge during the application of Rule 2, every special vertex has degree at
most 5.

Claim 1. Every special vertex is incident with a large face.

Proof. We proceed by contradiction, assuming that v is a special vertex not incident with
any large face. Suppose first that d(v) = 2; let the two faces incident with v be denoted
by f1 and f2. As the initial charge of v is −4, it is clear by Rule 1 that at least one of these
faces, f1 say, is a pseudodigon. By assumption, w(f2) ≤ 19. Hence by Lemma 2.5 (1a)
we conclude that dF (v) ≤ 78, a contradiction to Lemma 2.4 (4).

Therefore, v is a special vertex of high degree d. Summing its initial charge and
charge (2.5) sent to v during the application of Rule 2, we obtain that

3d− 6− 6
∑

i

1/w′(fi) < 0,
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or equivalently, ∑
i

1/w′(fi) > d/2− 1. (2.6)

We proceed by case analysis; let (li) denote the modified configuration of v. Assume
first that v is of degree 3. Then l0 ≤ 5, otherwise (2.6) fails. As l1, l2 ≤ 19, it follows by
Lemma 2.5 (1b) that dF (v) ≤ 4

∑
i li − 21, and consequently, by Lemma 2.4 (4),∑

i

li ≥ 30. (2.7)

If l0 = 3 and l1 ≤ 9, then, by (2.7), (li) is one of the three tuples (3, 8, 19), (3, 9, 18),
and (3, 9, 19). But the first of these is excluded by Lemma 2.5 (1d), and the remaining
two contradict (2.6). Next, if l0 = 3 and l1 > 9, then, by Lemma 2.3 applied to the tuples
(3, 10, 15) and (li), in this order, it must hold

∑
i li ≤ 28 or

∑
i 1/li ≤ 1/2. However, that

is a contradiction to (2.7) or (2.6) respectively.
Hence l0 ≥ 4. If l0, l1 = 4, then

∑
i li ≤ 27, which is impossible by (2.7). Otherwise

we may use Lemma 2.3 for the tuples (4, 5, 20) and (li), and obtain contradiction to (2.7)
or (2.6) again.

Thus d ≥ 4; as we have remarked above, d ≤ 5. Then Lemma 2.5 (1c) together with
Lemma 2.4 (4) imply (2.7) again. In particular, (li) cannot be of the form (3, 3, 3, x). Thus
by Lemma 2.3 applied to the tuple (3, 3, 4, 12) (respectively (3, 3, 3, 3, 6), depending on d)
and (li),

∑
i li ≤ 22 (respectively

∑
i li ≤ 18) or

∑
i 1/li ≤ 1 (respectively

∑
i 1/li ≤ 3/2).

By (2.7) and (2.6), this is a contradiction in either case.

Claim 2. Every large face has a nonnegative charge after the application of Rule 3.

Proof. Let f be an arbitrary large face of G. We start by listing the possible f -reduced
or modified f -reduced configurations of special vertices incident with f , and for each case
we note the upper bound on the charge of these vertices. Take such a vertex v. If v is a
2-vertex, then, by Rule 1, its f -reduced configuration is (2) and the charge equals −2.

Suppose now that v is of high degree d. Let (li), i = 1, . . . , d − 1 be its modified
f -reduced configuration, and let d′ denote the number of large faces incident with v. As
noted above, d ≤ 5. Considering the initial charge of v and (2.5), we see that after the
application of Rule 2, v has charge

3d− 6− 6
∑

i
w′(fi)<20

1

w′(fi)
− 10

∑
i

w′(fi)≥20

1

w′(fi)
.

As the charge is negative by assumption, we obtain that

3d− 6− 6
∑

i
w′(fi)<20

1

w′(fi)
− d′/2 < 0 (2.8)

by the definition of large face. Furthermore, w′(fi) ≥ 3 always, and hence

d− 6 + 3/2d′ = 3d− 6− 2(d− d′)− d′/2 < 0.

From this, we immediately deduce that d′ = 1, i.e., f is the only large face incident with
v, and d ≤ 4.
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(modified) f -reduced configuration charge

(2) −2

(3, x), x ≤ 11 ≥ 1/2− 6/x ≥ −3/2

(4, x), x ≤ 5 ≥ 1− 6/x ≥ −1/2

(3, 3, 3) ≥ −1/2

Table 1. The proof of Claim 2: the list of possible f -reduced (the first line) or
modified f -reduced (the other lines) configurations of special vertices incident with
the face f , together with the charge of these vertices.

Assume first that d = 3. Then (2.8) reduces to

5/2− 6(1/l1 + 1/l2) < 0.

We easily infer that there are only the following two possibilities: either l1 = 3 and l2 ≤ 11,
or l1 = 4 and l2 ≤ 5. The charge of v is at least 1/2 − 6/l2 in the former, and at least
1− 6/l2 in the latter case.

Now, let d = 4. Then, by (2.8),

11/2− 6
∑

i

li < 0.

If some li were greater than or equal to 4, then this inequality would not hold. Hence
(li) = (3, 3, 3), and the charge of v is at least −1/2.

We summarize the results in Table 1.
Now, let S denote the set of all special vertices incident with f , and R denote the

total charge of these vertices. We observe the following:

Every two vertices u, v ∈ S are incident with at least two common faces. (2.9)

Suppose the contrary. We consider the possible f -reduced or modified f -reduced configu-
rations of u and v listed above, and use Lemma 2.5 (2a), (2b), or (2c) to show that both
dF (u, f) and dF (v, f) are at most 47. This is a contradiction to Lemma 2.4 (5).

We proceed by contradiction from now on, i.e., we assume that

R < −4. (2.10)

Obviously, |S| ≥ 3, as can be seen in Table 1.
Let v ∈ S be a 2-vertex; then the other face f ′ incident with v is a pseudodigon. By

Rule 1 and (2.9), every other vertex v′ in S is one of the two high-degree vertices v1, v2

incident with f ′. Therefore S = {v, v1, v2}; it follows that v1 and v2 are each of degree
3 by assumption (2.10). This means that F (v1) = F (v2), and hence the configurations
of both the vertices are the same. Considering (2.10) again, it is clear that the modified
f -reduced configuration of v1 as well as v2 is (3, 3).

We digress by making an auxiliary observation:

Let g be a face of G with w(g) ≤ 3. Then the intersection of the boundaries of
f and g consists of pairwise disjoint paths, of which at most one is nontrivial;
the internal vertices of all these paths are of degree 2 in G. Furthermore, every
two vertices of degree 3 incident with both f and g are precisely the endvertices
of such a nontrivial path, and hence, there are at most two such vertices.

(2.11)
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To prove this, let us denote the intersection of the boundaries of f and g by H. The
assertion about the structure of H is obvious by considering the 2-connectedness of G
and the weights of both f and g. Let P denote the set of the respective paths. If v is
a vertex of degree 3 incident with f as well as g, then H must contain an edge incident
with v, i.e., v lies on, and hence is an endvertex of, a nontrivial path in P . The second
assertion easily follows.

Applying (2.11) to the face incident with v1 different from both f and f ′, and recalling
that f ′ is a pseudodigon, we infer that w(f) = 2; a contradiction.

Thus all vertices in S are of high degree. Suppose that S = {v1, v2, v3}. Then, by
assumption (2.10), each of v1, v2, and v3 has (3, 3) as its modified f -reduced configuration.
Hence there is no face except f incident with all the three vertices by (2.11). Consequently,
by (2.9), G contains three different faces fij, 1 ≤ i < j ≤ 3, each incident with both vi

and vj and different from f . However, by (2.11), the boundary of f is precisely
⋃
P then;

thus w(f) = 3, a contradiction to the assumptions.
Therefore, |S| ≥ 4. We claim that G contains a face f ′ 6= f incident with all the

vertices in S. To prove this, take two vertices u, v from S nonadjacent in the boundary
of f . By (2.9), there is a curve Cuv connecting the embeddings of u and v through a face
fuv 6= f of G. Consider any two other vertices x, y from S such that u, x, v, and y appear
in a facial walk of f in this order. Again, there is a curve Cxy joining the embeddings
of x and y and contained, with the exception of its ends, in a face fxy 6= f . Clearly,
Cuv ∩ Cxy 6= ∅, otherwise we would obtain an outerplanar embedding of K4 in the plane,
and hence fxy = fuv; the assertion easily follows. Now, let k := |S|. Then w(f ′) ≥ k, and
consequently, the f -reduced configuration of each v in S contains a number greater than
or equal to k. From Table 1, we see that

R ≥ k(1/2− 6/k) = k/2− 6,

the right side of which is at least −4 by the condition on k. This is, however, a contra-
diction to assumption (2.10).

With the help of the two preceding claims, we can easily finish the proof. By Claim 1
and Rule 3, each special vertex, and hence every vertex, ends up with a nonnegative
charge. The final charge of every face is nonnegative as well; Rule 2 and Claim 2 guarantee
this for small and large faces respectively. However, as already mentioned, this is a
contradiction to Observation 2.6.

3 Lower bound

In this section, we provide examples showing that the best possible constant bound on
χs for the class of 2-connected plane simple graphs is at least 8, and the corresponding
bound for proper spv-colorings is at least 10. Note that for the class of 2-connected plane
multigraphs instead, both versions of the bound coincide and are limited by the latter
estimate: this follows from the fact that every spv-coloring of a plane multigraph G′

arising from a plane multigraph G by replacing each edge of G by a (suitably embedded)
digon is a proper spv-coloring of G.

First, we focus on the bound for proper spv-colorings. We construct a graph G55 on
ten vertices by linking two disjoint cycles C1, C2 on five vertices with two edges in such
a way that their endvertices on C1 and also on C2 are adjacent. See Figure 3.1 (a).
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G55

C1 C2

1
2

3

4
5

6
7

8

9
10

(a) The graph G55.

G3

1 2

3

4 5
6 G3G3

1 2

34

3
3

1
1

G4

f3

f4

f ′
4

(b) The graphs G3 (left) and G4 (right).

G4 G4 G4

G44 G′
44

12

3

4

5 6

7

8

f44

12

3

4

5 6

7

8

(c) The graphs G44 (left) and G′
44 (right).

Figure 3.1. Illustrations for Section 3. The labeled gray areas represent the re-
spective subgraphs not depicted in detail. For each graph, the relevant coloring is
unique up to symmetry; it is indicated by numeric labels.

By the spv-conditions for the two faces of G55 of length 5, every spv-coloring c must
assign each vertex of C1 a different color; the same holds for C2. The spv-condition for
the remaining face of G55 then implies that c uses each color precisely once.

Second, we consider the bound on χs. Take a three-sided prism G3 embedded in the
plane so that one of its triangular faces is the outer face f3. Then, as observed by Czap
and Jendrol’ [1, proof of Lemma 5.1], every coloring c of G3, such that each face of G3

distinct from f3 satisfies the spv-condition with respect to c, colors the boundary vertices
of f3 each with a different color.

Now construct a graph G4 from a cycle on four vertices by replacing every second
edge with a copy of G3 in such a way that the outer face f4 of G4 is of length 4; see
Figure 3.1 (b). Every coloring c′ of G4, such that the spv-condition is satisfied for each
face of G4 different from f4, has, when restricted to the vertices of any of the copies of G3,
the property of c discussed above. This and the spv-conditions for f4 and the remaining
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face of G4 of length 8 then imply that c′ assigns a different color to each boundary vertex
of f4.

Finally we reproduce the construction of G55 with copies of G4 in place of the cycles on
five vertices. Thereby we obtain a graph G44 with the outer face f44 of length 8, such that,
clearly, every spv-coloring of G44 is injective on V (f44). We remark that this property is
preserved even if we reduce G44 to a graph G′

44 by replacing one of the copies of G4 with
a cycle on four vertices, as can be easily checked. The graph G44 and G′

44 are shown in
Figure 3.1 (c).
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