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Abstract

We present some new discoveries about graphs that are half-arc-transitive (that is,
vertex- and edge-transitive but not arc-transitive). These include the recent discovery of the
smallest half-arc-transitive 4-valent graph with vertex-stabiliser of order 4, and the smallest
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with vertex-stabiliser of order 8, two new half-arc-transitive 4-valent graphs with dihedral
vertex-stabiliser Dy (of order 8), and the first known half-arc-transitive 4-valent graph with
vertex-stabiliser that is neither abelian nor dihedral. We also use half-arc-transitive group
actions to provide an answer to a recent question of Delorme about 2-arc-transitive digraphs
that are not isomorphic to their reverse.

Keywords: Graph, edge-transitive, vertex-transitive, half-arc-transitive.
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1 Introduction

A graph X is said to be vertex-transitive, edge-transitive, or arc-transitive, if its automor-
phism group Aut X acts transitively on the set V(X)) of all vertices of X, the set F(X)
of all edges of X, or the set A(X) of all arcs (ordered pairs of adjacent vertices) of X,
respectively. An arc-transitive graph is also called symmetric. The graph X is called half-
arc-transitive if it is vertex-transitive and edge-transitive but not arc-transitive.

(A related class of graphs consists of those which are regular and edge-transitive but
not vertex-transitive. Any such graph is called semi-symmetric. Semi-symmetric 3-valent
graphs will be the topic of another forthcoming paper by the first two authors.)

Every half-arc-transitive graph X is regular, with even valency — indeed Aut X has
two orbits on arcs, with half the arcs emanating from any vertex v lying in each orbit.
The smallest possible valency of a half-arc-transitive graph is 4, and this is the valency of
the smallest half-arc-transitive graph, a graph on 27 vertices constructed independently by
Doyle [7] and Holt [10].

Furthermore, examples exists for every even valency greater than 2. This was proved (in
answer to a question by Tutte [21]) by Bouwer [2], who constructed a family of examples
of valency 2k for all £ > 2, with the property that the stabiliser in Aut X of every vertex
v induces the symmetric group Sj on the neighbourhood of v, acting with two orbits of
length k. (The latter property was not explicitly mentioned by Bouwer, but may be easily
deduced from his construction.)

For valency greater than 4, the vertex-stabilisers in Bouwer’s examples are non-abelian.
In contrast, for quite some time all known examples of 4-valent half-arc-transitive graphs
had vertex-stabilisers that are abelian, or more precisely, elementary abelian 2-groups.

The first known example of a 4-valent half-arc-transitive graph with non-abelian vertex-
stabiliser was found in 1999 by Conder and Marusi¢, who produced an example of order
10752 from a transitive permutation group of degree 32 and order 86016, with dihedral
point stabiliser (of order 8) having a non-self-paired sub-orbit; see [4]. Until recently,
however, this was the only known example, and no examples were known of 4-valent half-
arc-transitive graphs with vertex-stabiliser that is neither abelian nor dihedral.

In this paper, we exhibit a number of new examples with particular properties.

In Section 3 we give the smallest half-arc-transitive 4-valent graph (on 256 vertices)
with vertex-stabiliser of order 4, and also the two smallest half-arc-transitive 4-valent
graphs (on 768 vertices) with vertex-stabiliser of order 8. The fact that the former has
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order 256 disproves the conjecture by Feng, Kwak, Xu and Zhou [8] that every 4-valent
half-arc-transitive graph of prime-power order has vertex stabilisers of order 2. Then in
Section 4 we describe two new half-arc-transitive 4-valent graphs with vertex-stabiliser
D, (of order 8), and in Section 5 we produce the first known half-arc-transitive 4-valent
graph with vertex-stabiliser that is neither abelian nor dihedral. (In this last example, the
vertex-stabiliser is isomorphic to D4 x Cs, of order 16.)

In Section 6 we use half-arc-transitive group actions to provide an answer to a recent
question of Charles Delorme [5] about 2-arc-transitive digraphs that are not isomorphic
to their reverse. The reverse Rev(D) of a digraph D is obtained by reversing all the arcs
of D, and then D is called self-reverse if Rev(D) is isomorphic to D. Also a 2-arc in a
digraph D is a directed walk (vo, v1, v2) of length 2 on three vertices, and then D is called
arc-transitive or 2-arc-transitive if its automorphism group Aut D is transitive on the set
of all arcs in D or the set of all 2-arcs in D, respectively. In [5, §5.2], Delorme asked
this question: Do finite digraphs exist that are vertex-transitive, arc-transitive and 2-arc-
transitive, but not self-reverse? We answer this question in the affirmative. Finally, we
make some concluding remarks and pose some further questions in Section 7.

2 Further background

Before proceeding, we provide some more background information. Throughout this paper,
graphs are assumed to be finite and simple, and unless otherwise specified, also undirected
and connected.

For any graph (or digraph) X, we let V(X), E(X) and A(X) be the vertex-set, edge-
set, and arc-set of X, respectively, and we let Aut X be the automorphism group of X. As
mentioned earlier, we say that X is vertex-transitive, edge-transitive, or arc-transitive, if
Aut X is transitive on V (X)), E(X) or A(X), respectively, and we say that the graph X is
half-arc-transitive if it is vertex- and edge-transitive but not arc-transitive.

More generally, if G is any group of automorphisms of X (that is, any subgroup of
Aut X), then G is said to be vertex-transitive, edge-transitive or arc-transitive on X if G
acts transitively on V(X), F(X) or A(X), respectively, and G is half-arc-transitive on X
if G is vertex- and edge-transitive but not arc-transitive on X. In the latter case, we also
say that X is (G, 3)-arc-transitive, or (G, 3, H)-arc-transitive when it needs to be stressed
that the stabiliser G, of a given vertex v is isomorphic to a particular subgroup H of G.

Next, we repeat an explanation given in [14] of a connection between half-arc-transitive
group actions and transitive permutation groups with a non-self-paired sub-orbit.

Let G be a transitive permutation group acting on a set V. An orbital of G is an orbit
of the natural action of G on the Cartesian product V' x V', and a sub-orbit of G on V is an
orbit of the stabiliser G,, of a given point v € V. For any given point v € V there is a 1-to-1
correspondence between the set of all orbitals of GG and the set of all sub-orbits of G on V'
(with regard to v), with the orbital containing the pair (v, w) € V X V corresponding to the
orbit of G, containing w. In particular, the diagonal orbital {(w, w) : w € V'} corresponds
to the trivial sub-orbit {v}.

For any sub-orbit W of G (with regard to v), let Ay, be the corresponding orbital of
G, which contains the pair (v, w) for each w € W. Then the orbital digraph X (G,V; W)
of (G,V) relative to W is the digraph (or oriented graph) with vertex-set V' and arc-set
Ay . The underlying undirected graph, with orientations of all arcs ignored, is denoted by
X*(G,V;W).
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The paired orbital of a given orbital A is the orbital A’ = {(v,w) : (w,v) € A}
The orbital A is said to be self-paired if A’ = A, and non-self-paired otherwise; in the
latter case A N A’ = (). This notion of pairing also carries over to sub-orbits in a natural
way. It is important to note that for a non-self-paired sub-orbit W of G, the orbital digraph
X(G,V;W) is an oriented graph, while the underlying undirected graph X*(G,V; W)
admits a half-arc-transitive action of G.

In the special case where V' is the set (G': H) of all (right) cosets of a subgroup H of
G, and W is a non-self-paired sub-orbit of the action of G on V' (by right multiplication),
the graph X*(G,V; W) is (G, 5, H)-arc-transitive, with valency 2|W|. This graph might
or might not be half-arc-transitive, depending on whether it admits any additional automor-
phisms that reverse an arc. The example in [4] began with H being dihedral of order 8, and
had G as its full automorphism group.

For some further references on half-arc-transitive graphs (which are often referred to
simply as half-transitive graphs), see the survey paper by Marusi¢ [15], and for the theory
of permutation groups, see [6, 22].

3 The smallest half-arc-transitive 4-valent graphs with
vertex-stabilisers of order 4 and 8

In this section we present the smallest 4-valent half-arc-transitive graphs for which the
vertex-stabilisers have order 4 and 8, respectively. These graphs have 256 and 768 vertices,
and will also appear in a recently computed census of all 4-valent half-arc-transitive graphs
of order at most 1000 (see [18]).

3.1 Stabiliser of order 4

If G is the automorphism group of a half-arc-transitive 4-valent graph such that the sta-
biliser H in G of a vertex v has order 4, then H is isomorphic to the Klein group Vj, and
so is generated by two commuting involutions p and q. At the same time, GG is generated
by H and an automorphism a mapping v to an out-neigbour w of v (in one of the two
corresponding orbital digraphs). Generators p and g of H can be chosen in such a way that
g = a~'pa. In addition, since H is the stabiliser in a transitive permutation group G, the
core of H in G is trivial.

Conversely, given a group GG generated by two commuting involutions p and ¢, and
an element a such that ¢ = a~'pa, where p and ¢ generate a core-free subgroup H of
G, one can construct the orbital digraph X = X*(G,V; W), where V is the coset-space
(G:H), with G acting upon V' by right-multiplication, and W is the sub-orbit of this action
containing the coset Ha. It can be seen that such a sub-orbit is necessarily non-self-paired,
implying that X is 4-valent and admits G as a half-arc-transitive group of automorphisms.
In particular, if X admits no additional automorphisms, then X is a half-arc-transitive
graph with valency 4 and vertex-stabiliser V. This happens quite frequently, although not
for small orders.

Candidates for G of order up to 1023 can be checked quite easily using the small groups
database in MAGMA [1], but none of them has the required properties. Order 1024 is more
challenging by this approach, since there are 49 487 365 422 groups of order 1024, and they
are not easily available.

Instead, we can use an algorithm for finding all normal subgroups of given index in
a finitely-presented group, as described in [3], or better still, [9]. The latter version is
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implemented in MAGMA [1] as the LowIndexNormal Subgroups procedure. We can
apply this to the finitely-presented group F' = (p, q,a|p? = ¢*> = (pq)? = a 'pag = 1),
and for every normal subgroup N found, consider the quotient F'//N as a candidate for G.

It turns out there are 3102 normal subgroups of index up to 1024 in F', and remarkably,
four of them give good candidates. The quotient via one such normal subgroup is the group
G used in the following:

Theorem 3.1. Let G be the group with presentation
(p.q,a|p?=¢°= (pq)*= a~'pag = a®= (pa~?qa®)*= a’qapa~'pga~*qa"'qg =1),
and let W be the sub-orbit with regard to H = (p, q) containing the coset Ha. Then G has

order 1024, and X* (G, H; W) is a 4-valent half-arc-transitive graph of order 256, girth 8
and diameter 8, with automorphism group G, and vertex-stabiliser G, isomorphic to V.

Indeed the sub-orbit W containing the coset Ha is {Ha, Hap}, of size 2, and is not
self-paired, its paired sub-orbit being { Ha~!, Ha='q}. The graph X = X*(G, H; W)
can easily be constructed with the help of MAGMA, and the fact that Aut X = G verified
using the function Aut omorphismGroup.

As mentioned in the first section, the fact that the order of this graph is 256 = 28 shows
that the conjecture by Feng, Kwak, Xu and Zhou [8] (that every 4-valent half-arc-transitive
graph of prime-power order has vertex stabilisers of order 2) is false.

By inspecting normal subgroups of G = Aut X, one finds that G has an elementary
abelian normal subgroup K of order 16, and another normal subgroup .J isomorphic to
Cy x Cy x Cy. With respect to these two normal subgroups, X is an abelian regular
cover of two smaller graphs, namely the Rose-window graph RWg(6, 5), as defined in [23,
65], and the “doubled” 8-cycle DCY (that is, the (multi)graph obtained from the directed
cycle C's by doubling each edge). Accordingly, the graph X has at least two alternative
constructions as a covering graph.

Theorem 3.2. The graph X = X*(G, H; W) in Theorem 3.1 is an abelian regular cover
of the Rose-window graph RWs(6,5), with covering group K = C4, and also an abelian
regular cover of the doubled cycle DCg, with covering group J = Cy x Cy x Cs.

In fact, the Rose-Window graph RWg(6,5) is isomorphic to the Cartesian product
C4OCy of two cycles of length 4, and moreover, the quotient projection X — X/K
is a covering projection, and G/K is the largest subgroup of Aut (X/K) acting half-arc-
transitively on X/K. (For background information on quotients and covering projections
of graphs, see [12, 20] for example.)

The construction of X as an abelian regular cover of DCy can be described as follows.
Let

J={a,b,cla* =b* =c* = [a,b] = [a,c] = [b,c] = 1),

which is abelian of order 32, and isomorphic to Cy x Cy x C5, and let ¢ be the automorphism
of J of order 8 that takes a to b, and b to ac, and ¢ to a3c, or equivalently, is given by

o(a'V k) = a2 dTR for 0<id,j<3 and 0 <k <1.

Now label the vertices of DC's with the elements of Zg in a natural way, and label the edges
with the elements of {e; : ¢ € Zg} U{f; : i € Zg} in such a way that the two edges
incident to both ¢ and 7 4 1 are labelled e; and f;, for each ¢ € Zg. We can now describe
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a certain voltage assignment of the voltages from J to the set of the arcs of DCg. (For the
terminology on graph coverings via voltage assignments, see [13].) For each i € Zg, we
put the trivial voltage 1 on all of the arcs corresponding to the edge f;, and put the voltage
©*(a) on the arc corresponding to e; (directed from i to i + 1). It can easily be verified that
the covering graph obtained in this way is a 4-valent half-arc-transitive graph of order 256,
with vertex stabilisers of order 4, as above.

Similarly, the other three normal subgroups giving good candidates for G all give rise
to half-arc-transitive graphs that are isomorphic to X.

Let us mention also that 4-valent half-arc-transitive graphs with vertex stabilisers of
order 4 have been known to exist for some time. In fact, an infinite family of such graphs
was constructed in each of the papers [11] and [16]. These graphs, however, are very large.
The smallest graph in the first family has order 177! > 8- 10'2, and the smallest one in the
second family has order 9 979 200.

3.2 Stabiliser of order 8

As was shown in [17] (see also [19]), if the vertex-stabiliser H = (G, in a half-arc-transitive

group of automorphisms G of a connected tetravalent graph X has order 8, then H is either

elementary abelian or dihedral. Moreover, as in the case where |H| = 4, the group G is

generated by H and any element a of G that maps the vertex v to an out-neighbour of v.
Using these observations we can prove the following:

Theorem 3.3. Let X be a 4-valent half-arc-transitive graph with automorphism group G,
and suppose the stabiliser H = G, of a vertex v has order 8.

(a) If H is dihedral, then G is a quotient of the finitely generated group
Gs1=(paralp’=¢*=r*=[pq =[gr]=1[pr]=qq=a"'pa,r =a 'qa)
of order 8|V (X)|. There is no such graph X of order up to 768.

(b) If H is abelian, then G is a quotient of the finitely generated group

Gs0=(p,q.ma | p* =¢* =r* =[p,q| = [p,r] = [¢,7] = LLg = a"'pa,r = a”'qa)
of order 8|V (X)|. There is no such graph of order less than 768, but there are two (non-
isomorphic) examples of order 768, say X1 and Xs, which arise from orbital digraphs for

quotients of Gs o with respect to the additional relator sets
1

R1 = {a'?, (ra*pa=2)2,a pa=*rqpa®pga=t,a " rapa=2pa~trpapapapa=t}

1

and Ro = {a'?, (ra*pa=2)2, rapa='ra®qpa=*ra?}, respectively.

Proof.

(a) If H is dihedral, then the generators p,q,r of H = G, can be chosen so that they
satisfy the relations p*> = ¢*> = 72 = [p,q] = [¢,r] = 1 and [p,7] = (pr)?> = ¢, and
the automorphism a (moving v to an out-neighbour of v) chosen so that ¢ = a~'pa and
r = a~'qa. Thus G is a quotient of G 1, of order 8|V (X)|. Inspection of the normal
subgroups of index at most 8 - 768 = 6144 in G3 1, and the corresponding orbital digraphs,
shows there are no such X of order up to 768 (with H = G, dihedral of order 8).

(b) If H is abelian, then G is a quotient of G3 o, by a similar argument to that in part (a).
Computation of normal subgroups of index at most 6144 in G3 o shows there is no such X
of order less than 768 (with H = G,, abelian of order 8), but there are two (non-isomorphic)
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examples which arise from normal subgroups of index 768, namely the normal closures of
the sets R and Ro as given. In each case, it is easy to check using MAGMA that the
corresponding quotient of Gz g is the full automorphism group of the graph. O

Theorem 3.4. The graphs X1 and Xo in Theorem 3.3 are non-isomorphic regular covers
of the doubled cycle DC3, as well as elementary abelian regular covers of the so-called
Hill Capping HC(Q3) of the cube Q3 (see [24]).

Proof. The automorphism group of X; has a normal subgroup K of index 24 and order
256, generated by

x = apa~lr, y = adqradrq = a%[a3,rq], 2 = a®pgra’rqp = a®la®,rqp] and u = a3,
all of which have order 4, with x, y and z generating an abelian normal subgroup of order
64, and =% = zy?2?, y* = 2%y~ 2% and 2% = z~!. The centre and derived subgroup of
K are the elementary abelian 2-subgroups (22, y?, 22, u?) and (22,42, %), of orders 16
and 8 respectively. (In particular, K; has nilpotency class 2.)

This subgroup K acts semi-regularly on V(X), and the quotient graph X, /K is
isomorphic to the doubled cycle DCs. It follows that X; can be reconstructed as a regular
cover of DC'3, with covering group K. This can be achieved as follows. First, label the
vertices of DC'3 with the elements of Zs, and label the edges of DC5 with elements of the
set {e; : i € Zs} U{f; : i € Zs}, so that e; and f; are the two edges incident to both i
and ¢ + 1 (for each i € Z3). Also let €; and f; be the corresponding arcs from ¢ to ¢ + 1, for
i € Z3. Then the graph X is isomorphic to the cover of DC'3 obtained from the voltage

assignment ¢ on DC'3 defined by

pleo) = ple2) =1, wler) =u, ¢(fo) =z, ¢(f1) =ury and ¢(f2) = (y2)~
Similarly, the automorphism group of X has a normal subgroup K of index 24 and order
256, and nilpotency class 2, acting semi-regularly on V' (X3). The quotient graph X5/ K>
is again isomorphic to the doubled cycle DCj5, and hence X5 can be reconstructed as a
regular cover of DC'3, with covering group K (not isomorphic to K7).

1

Finally, each of Aut X; and Aut X» contains an elementary abelian normal subgroup
K of order 16, with respect to which the quotient graphs X; /K and X5 /K are both iso-
morphic to HC'(Q3). Hence X; and X5 can be reconstructed as elementary abelian covers
of HC(Q3). O

Here we note that the graph HC'(Q3) happens to be the unique tetravalent arc-transitive
graph of order 48, girth 4, and diameter 6.

4 Two new half-arc-transitive graphs with vertex-stabiliser D,

The first (and until recently, the only) known example of a half-arc-transitive 4-valent graph
with non-abelian vertex-stabiliser is described in [4].
This graph has 10752 vertices, and its automorphism group G of order 86 016 is gen-
erated by two elements a and b of orders 8 and 24, which satisfy the (defining) relations
a® = (ab=1)? = a"2bab2ab = (ab3ab®ab?)?
= a~3ba’b~3a?b = (a®ba’babab)? = a*b*a*b*ababababab® = 1.

The graph is the underlying graph of the orbital digraph X (G, V; W) where V is the coset
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space (G': H) for the subgroup H generated by p = a~'band ¢ = a~'pa and r = a~qa,
and W is the non-self-paired sub-orbit { Ha, Hb}.

In response to a comment made by Dragan MaruSi¢ about this graph being somewhat
unique, in a lecture at a workshop at the Fields Institute in October 2011, the first author
decided to look for more examples. Somewhat surprisingly, it turns out there is another
example on 10752 vertices (with vertex-stabiliser D), not isomorphic to the first. Also
there exists an example on 21 870 vertices, with similar properties.

Theorem 4.1. There are at least two non-isomorphic half-arc-transitive 4-valent graphs
of order 10 752 with non-abelian vertex-stabiliser of order 8.

The automorphism group of the new one of order 10 752 is a different group G of order

86 016, generated by two elements a and b of orders 16 and 12 which satisfy the (defining)
relations

a'® =012 = (ab™1)? = a=2bab"2ab = (ab®ab*ab?)?

= a3b%ab—3ab?® = (a?b?abab®ab)? = a®b3a’bab = 1.
Again if V is the coset space (G : H) for the subgroup H generated by p = a~'b and
q = a 'pa and r = a~'qa, and W is the non-self-paired sub-orbit { Ha, Hb}, then the
4-valent underlying graph of the orbital digraph X (G, V'; W) is half-arc-transitive, but it is
not isomorphic to the first example.

Theorem 4.2. There exists at least one half-arc-transitive 4-valent graph of order 21 870
with non-abelian vertex-stabiliser of order 8.

The automorphism group of the one we found has order 174 960, and is generated by
two elements a and b of orders 8 and 24 which satisfy the (defining) relations
a® = (ab=1)? = a=2bab~2ab = a~3ba’b3a>b
= (a®b)® = a®b~ta"3b%ababab?ab®a®b = 1.
Both of these new examples were found with the help of MAGMA [1], in the same way

as the first one in [4]. Also MAGMA can be used to verify that the full automorphism group
of the graph is as stated, in each case.

5 A half-arc-transitive 4-valent graph with a non-abelian and non-
dihedral vertex-stabiliser

In his 2011 lecture at the Fields Institute (mentioned in the previous section), Dragan
Marusi¢ made the observation that no half-arc-transitive 4-valent graph was known with
vertex-stabiliser that is neither abelian nor dihedral. We provide an example here.

We begin with an arc-transitive 4-valent graph on 90 vertices, which can be constructed
from a group G of order 1440, generated by two elements ¢ and d subject to the relations

S =d" = (ed)® = (cd™1)? = (cd?)* = ¢ 2ded2cd
=c2d ¢ 2dede2d7! = d?c3d ctd e 3d? = 1.

Let H be the subgroup generated by p = ¢~ 'd and conjugates § = ¢~ 'pc, T = ¢~ 'gc.
and 5 = ¢~ '7c. Then H is isomorphic to the direct product D, x Cs, or order 16. If VV
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is the coset space (G : H), and W is the non-self-paired sub-orbit { He, Hd}, then the 4-
valent underlying graph X of the orbital digraph X (G, V, W) is arc-transitive, but admits
a half-arc-transitive action of G. (In fact, its full automorphism group has order 2880.)
The half-arc-transitive action of G on X lifts to the action of a larger group G on a
regular cover of X, which we will prove is half-arc-transitive.
The group we take is the transitive permutation group G of degree 60, generated by the
elements

a=(1,2)(3,4,6,8,12,17,21,27, 36,44, 53, 60, 59, 52, 47, 37, 45, 35, 26, 20, 16, 11, 7, 5)
(9,13, 18,23, 30,40, 51, 48,57, 58, 50, 39, 29, 22, 28, 38, 34, 25, 33, 24, 19, 15, 10, 14)
(31,41, 49, 42)(32, 43)(46, 55, 54, 56)

and

b=(1,2,5,3,14,6,8,29, 17,47, 55, 46, 37, 36, 48, 53, 60, 30, 52, 21, 56, 54, 27, 45, 38,
26,20,19,11,7)(4,9, 13,42, 31, 50, 39, 12, 22, 51, 44, 57, 58, 41, 49, 18, 23, 59, 40, 28,
35,34,25,43,32, 33,24, 16, 15, 10).

This group G is imprimitive, with blocks of sizes 3, 6 and 30. The action of G on the
blocks of size 3 (which are {1, 55, 56} and its images) gives an epimorphism from G to the
group G above, with elementary abelian kernel K of order 3'°.

Letp=a"'b, ¢ =a 'pa, r = a 'qa and s = a~'ra. These elements satisfy the
relations p? = ¢®> = r?2 = 2 = b~ lpbg = b= 1gbr = b= 1pgrbs = (rs)? = (¢s)? = 1,
as well as pa~'b = a " 'pag = a~'qar = a"'ras = 1 and others. The subgroup H
generated by p, ¢, r and s has order 16, and just like H above, is isomorphic to Dy x Cs.

Theorem 5.1. With the notation above, let X be the underlying graph of the orbital digraph
X(G,V; W), where V is the coset space (G: H) and W is the sub-orbit { Ha, Hb}. Then
X is a 4-valent half-arc-transitive graph of order 90 - 3'°, with automorphism group G,
and vertex-stabiliser H = G, = D4 x Cs. In fact, X is a regular cover on, and the
action of G on X projects to the action of G on X.

Proof. The sub-orbit W = {Ha, Hb} is non-self-paired, and so X is 4-valent, and G acts
half-arc-transitively on X, with vertex-stabiliser H & D, x C5. The group G has order
1440 - 3'°, and so the order of X is as given. This order makes X too large to construct and
analyse easily using MAGMA, but nevertheless we can study the permutation representation
of G on the right coset space V' closely enough to prove that GG is the full automorphism
group of X. We will not provide all details, but we explain most of the argument below.

First, let ‘1’ be the vertex H in X, and let 1, 22, 3 and x4 be the four neighbours of 1
(which are the cosets Ha, Hb, Ha~' (= Hb~') and Ha~'s). Then by vertex-transitivity,
the edges of X are images of the edges {1, ;} under the action of elements of G.

We can use that fact to find all vertices within a given small distance from vertex 1. The
numbers of vertices at distances 0 to 9 from vertex 1 are 1, 4, 12, 36, 108, 324, 972, 2916,
8 748 and 26 050, respectively. It turns out that no two vertices at distance 8 from vertex
1 are adjacent, and that no three such vertices have a common neighbor at distance 9 from
vertex 1. It follows that the girth of X is 18, and that there are 3 - 8748 — 26050 = 194
girth cycles (of length 18) in X containing the vertex 1.

Moreover, we find easily that a given 1-arc with initial vertex 1 lies in 97 girth cycles,
a given 2-arc with initial vertex 1 lies in 31 or 35 girth cycles, a given 3-arc with initial
vertex 1 lies in 10, 11 or 13 girth cycles, a given 4-arc with initial vertex 1 lies in 3, 4 or 7
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girth cycles, and a given 5-arc with initial vertex 1 lies in 1, 2, 3 or 5 girth cycles. In fact,
just one of the 2-arcs extending a given 1-arc (1, z;) lies in 35 girth cycles, with the other
two lying in 31.

Now if a 2-arc of the form (u, v, w) lies in exactly 35 girth cycles, let us call the vertex
w the ‘twin’ of vertex u at vertex v. This gives a ‘twinning’ (or pairing) of neighbours at
each vertex in the usual way, but an important point is that this is a property of X (rather
than just the action of (7). Also it shows that the stabiliser in Aut X of any vertex of X is a
2-group.

Label the neighbours of vertex 1 so that {z1,x3} and {x2, x4} are pairs of twins, and
for each x;, let y; be the twin of vertex 1 at x;, and let z; and w; be the other two (twin)
neighbours of x;.

Also let us call a 5-arc ‘special’ if it lies in a unique girth cycle. If a 5-arc (u, x;, 1, z;, v)
with middle vertex 1 is special, then the analysis shows that {x;, x; } is not a twin pair. Note
that Aut X must permute the special 5-arcs among themselves.

Next, let B be the ball of radius 2 centred at vertex 1, and consider the pointwise
stabiliser of B in Aut X. If the automorphism # fixes every vertex in B, then for every
2-arc of the form (1,x;,v), we see that h fixes the twin of x; at vertex w, and for every
special 5-arc (u,x;, 1, x;,v) with middle vertex 1, also h fixes every vertex in the unique
girth cycle that contains it. These two observations are enough to show that h fixes every
vertex at distance 3 from vertex 1. Then by induction and connectedness, the automorphism
h is trivial. Hence every automorphism of X is completely determined by its effect on B.

Now consider the permutations induced by each of p, ¢, r, s and a on B. We can choose
the labels x;, y;, z; and w; of the 16 vertices of B \ {1} such that

e pinduces (x1,23)(y1,y3)(21, 23) (w1, ws) (24, w4 ), and fixes all other vertices of B,

(

e g induces (z1, w1 )(z3,ws), and fixes all other vertices of B,
e 7 induces (
(

)
29, w3 ) (24, wy), and and fixes all other vertices of B,
o sinduces (w2, x4)(y2,ya)(22, 24) (w2, wy) (23, ws), and fixes all other vertices of B,
and similarly,

e a induces a permutation of the form (1, z1, 21, ..., 22, T2) (X3, Wa, ..., Y2) (T4, Y1, ..., W2)
(y3, )(y4, ...)(23, ...)(2,’47 ...)(w3, ...)(’LU47 ) .

Next, suppose there is some automorphism g of X that fixes vertex 1 and all its neigh-
bours x;, and the twins y; of vertex 1 at those neighbours, but does not lie in the subgroup
generated by ¢ and r. Note that this automorphism g would have to fix or swap each pair
{zi,w; }. Multiplying by ¢ or r or gr if necessary, we can suppose that g fixes also the
vertices z1, w1, 22 and wa, and so g induces either (23, ws) or (24, wy) or (23, w3) (24, wy)
on the 2-ball B.

Then in particular, by considering the permutations induced by various elements on
the 2-ball B, and the fact that the point wise stabiliser of B is trivial, we deduce that
g centralises ¢ and r, and conjugates p to either p or pq, and conjugates s to s or sr.
Similarly, g conjugates a to something of the form ah, where h fixes every vertex in B with
the possible exception of z3,ws, z4 and w,, and in particular, it follows that i commutes
with each of ¢ and r, and & conjugates p to p or pg, and conjugates s to s or sr, as well.
But ¢ = p®, and so if g conjugates p to pg, we find that ¢ = ¢9 = (p®)9 = (p9)*’ =
(pq)*" = (gr)" = qr, which forces r to be trivial, contradiction. Thus p9 = p. Since
p induces (21, x3) (Y1, y3) (21, 23) (w1, w3) (24, wy), it follows that g fixes z3 and w3, and
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hence g induces (z4,w4) on B.

Thus every automorphism of X that fixes all the vertices of the 2-ball B apart from (pos-
sibly) z3, w3, z4 and wy, must fix z3 and w3, and so equals the identity or g. In particular,
h = 1or g, and so g conjugates a to either a or ag. But also we know that g centralizes each
of p, ¢ and r, and conjugates s to sr, and hence sr = s9 = (r%)9 = (r9)*’ = roh = s,
Thus h conjugates s to sr as well, and so h cannot be trivial, so h = g. In particular, g con-
jugates a to ag. But that means g~ 'ag = ag, which forces g ! to be trivial, contradiction.

Hence no such g exists.

Next, for the moment, suppose that X is half-arc-transitive, but G is not the full auto-
morphism group of X. Then there must be some automorphism g of X fixing the vertex
1 and its neighbours x; (and their twins y;), but not lying in G. By what we just showed
above, however, this is impossible. Hence if G # Aut X, then X must be arc-transitive,
and Aut X contains G as a subgroup of index 2. In particular, G is normal in Aut X.

Finally, suppose X is arc-transitive, and let ¢ be any automorphism of X taking the arc
(1, 1) to the arc (1, x2). Then by the ‘twinning’ property of X, we know that ¢ must also
take 23 to x4, and so ¢ induces either (1, z2, €3, 24) or (21, 22) (3, 4) on the neighbours
of 1. Multiplying by p if necessary, we may assume that ¢ induces the double transposi-
tion (z1, z2) (s, z4) on the neighbours of 1, and hence also that ¢ induces (y1, y2)(ys3, Y1)
on their ‘twins’. Then since t swaps x1 with xo and swaps y; with ys, it must swap
the set {z1,w;} of the other two neighbours of vertex x; with the set {23, ws} of the
other two neighbours of vertex xo, and it follows that ¢ induces either (z1, z2) (w1, ws)
or (z1,29,wy,ws) or (z1,ws,ws, 22) on those four vertices. Similarly, ¢ induces either
(23, 24) (w3, wy4) OF (23, 24, W3, Wwy) OF (23, W4, W3, 24) ON {23, W3, 24, W4 }.

This gives 16 possibilities for the effect of ¢ on the 2-ball B, but since we can multiply
t by q or r or gr (all of which fix the vertices 1, x; and y; for all 7), we may reduce the
possibilities for ¢ to these four:

ty = (w1, 2) (23, 24) (Y1, y2) (Y3, ya) (21, 22) (23, 24) (w1, w2) (w3, wa),
ty = (21, 22) (23, 24) (Y1, Y2) (Y3, ya) (21, 22, w1, wa) (23, 22) (W3, wa),
t3 = (w1, 22) (23, 24) (Y1, y2) (Y3, ya) (21, 22) (23, wa) (w1, wa ) (w3, 24),
ty = (w1, 22) (23, 24) (Y1, y2) (Y3, Ya) (21, 22, w1, wa) (23, wa) (w3, 24).

In each case, it is easy to check that the candidate for ¢ conjugates the permutation induced
by ¢ on the 2-ball to the permutation induced by r, and vice versa. Hence t~!qt = r,
and t~'7t = ¢. Similarly, we find that t~'pt = s and t'st = p when ¢t = t;, while
t~'pt = sand t~'st = pg whent = to, and t~'pt = rsand t 'st = pg when t = t3,
and t~'pt =rsandt~'st = p when t = t,.

Now if t = ¢, we find that atat™! fixes all the vertices 1,z; and y;, and so by our
earlier observations, atat~" lies in the subgroup generated by ¢ and r. Since also atat™!
fixes zy and wy, we deduce that atat™! = 1 or ¢, so tat™! = a~! or a~'q. Rearranging
these (and using the fact that t~'qt = r), we find that also ¢t "'at = a~! or a~'¢. Buta
MAGMA computation shows there is no automorphism of the group G taking a to a~*, and
pto s (and g to r, etc.), and also there is no automorphism of G taking a to a~'q, and p to
s (and g to T, etc.). Hence ¢ # ;.

Similarly, if t = t5, we find that t “*at = sa~! or sra~!, which upon rearrangement
gives t~tat = a~'r or a~'rq, but another MAGMA computation shows there is no auto-
morphism of G taking a to a~'r or a~'rq, and p to s (and ¢ to r, etc.). Hence t # t,.

If t = t3, then t~lat = a~! or a~!q, as in the case of ¢;. But if ¢ conjugates a to a1,
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and conjugates p to rs (as t3 does), then ¢ conjugates ¢ = p® to (7‘5)“_1 =arsa”! = qr,
rather than r, contradiction. Similarly, if ¢ conjugates a to a~'q, and conjugates p to s (as
t3 does), then ¢ conjugates ¢ to rq, again a contradiction. Hence ¢ # t3.
Similarly, if ¢ = ¢4, then t~'at = a~'r or a~'rg, but both of these possibilities give
contradictions when combined with the facts that ¢ conjugates p and g to rs and r, so ¢ # t4.
Thus no such ¢ exists, and so X is half-arc-transitive, as claimed. O

6 Answer to a question of Delorme
We begin this section with the following:

Proposition 6.1. Let X be a half-arc-transitive graph of valence 2k, and let G = Aut X.
Then if A is one of the two orbits of G on the arcs of X, then the digraph D with vertex-set
V(X) and arc-set A is regular, and admits G as a group of automorphisms, but D is not
isomorphic to its reverse.

Proof. First, D has out-valence k£ and in-valence k&, and obviously G acts on D as a group
of automorphisms. If D were isomorphic to its reverse digraph Rev(D), then the isomor-
phism from D to Rev(D) would be an automorphism of X not contained in G, which is a
contradiction. Hence D is not self-reverse. O

Next, recall that an s-arc in a digraph D is a sequence (vg, v1,. .., vs) of s + 1 vertices
such that any two consecutive vertices v;—1 and v; form an arc (v;_1, v;).) We note that if
k (the in- and out-valence of D) is 2, and s is the largest positive integer such that G acts
transitively on the s-arcs of D, then it is well known that |G, | = 2° (see for example [19]).

As a consequence of these things, we have an answer to Delorme’s question in [5]:

Theorem 6.2. Let X be the unique half-arc-transitive 4-valent graph of order 256, with au-
tomorphism group G of order 1024 and vertex-stabiliser G,, = V. Then the corresponding
digraph D is vertex-transitive, arc-transitive and 2-arc-transitive, but is not self-reverse.
Moreover, this is the smallest 4-valent digraph with these properties.

The example provided by Theorem 6.2 is the smallest such digraph that comes from
a half-arc-transitive 4-valent graph with vertex-stabiliser of order 4, but in principle, a
2-arc-transitive non-self-reverse digraph could also come from an arc-transitive 4-valent
graph X that admits a half-arc-transitive group action. (Indeed there is an arc-transitive
4-valent graph Y on 21 vertices with vertex-stabiliser D4 such that AutY contains a half
arc-transitive subgroup G with G, = Zs, such that the corresponding orbital digraph D =
X (G,V; W) is not self-reverse; but this example is not 2-arc-transitive.) An inspection of
the database of all such graphs of small order [18], however, shows that there is no such
graph with fewer than 256 vertices, and so the above example of order 256 is the smallest.

On the other hand, there are infinitely many such examples, since there are infinitely
many half-arc-transitive 4-valent graphs with vertex-stabiliser V4; see [11, 16].

In fact, there is an infinite family of half-arc-transitive covers of the smallest exam-
ple given above. With the help of the Reidemeister-Schreier process (implemented as the
Rewrite command in MAGMA [1]), it can be shown that the kernel of the epimorphism
from the group (p,q,a|p? = ¢* = (pq)? = a~'paq = a® = (pa=—2qa?)? = 1) to the
group of order 1024 above has abelianisation Z5* @ Z!°. It follows that for every odd pos-
itive integer m, there is a half-arc-transitive regular cover of order 256m19, with abelian
covering group K = 7,10,
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7 Final remarks

In this paper, we have described the smallest 4-valent half-arc-transitive graphs with vertex-
stabilisers of order 4 and 8, respectively. In each case, the vertex-stabiliser is abelian.

It is also known that for any positive integer s, there is at least one 4-valent half-arc-
transitive graph with abelian vertex-stabilisers of order 2°; see [16]. The graphs constructed
in [16], however, have very large orders. Hence the following question arises naturally.

Question 7.1. What is the order of a smallest 4-valent half-arc-transitive graph with abelian
vertex-stabiliser of order 2°, for each s > 4?

Next, we have also found a new 4-valent half-arc-transitive graph with vertex-stabilisers
isomorphic to the dihedral group D,, having the same order as the smallest known such
graph (on 10 752 vertices). It is not yet known, however, if these two graphs are the smallest
such examples. Hence we pose the following question.

Question 7.2. Is there a 4-valent half-arc-transitive graph of order less than 10 752, with
non-abelian vertex-stabilisers of order 8?

We have also constructed the first known example of a 4-valent half-arc-transitive graph
with vertex-stabilisers that are non-abelian and non-dihedral. This has order 5314 410, with
vertex-stabilisers of order 16. We conclude the paper with the following two questions.

Question 7.3. Is there a 4-valent half-arc-transitive graph of order less than 5 314 410, with
non-abelian, non-dihedral vertex-stabilisers?

Question 7.4. Does there exist a 4-valent half-arc-transitive graph with non-abelian vertex-
stabilisers of order 2°, for every s > 3?
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