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Blacklists vs. Whitelists
In the age of open access (OA) it is sometimes hard to distinguish between honest,

genuine research journals and fake, predatory journals run by predatory publishers whose
only interest is to make money and who are ready to publish anything under the APC
(article processing charges) business model.

There exist several blacklists of publishers and journals with such unethical practices.
There are well-known cases where the whole editorial board of a prominent journal resigns
over an unethical and greedy policy of a publisher and creates another, unblemished journal.
It is not uncommon for individual mathematicians and other scientists to boycott certain
publishers for the same reason.

Not publishing a paper in a predatory journal is certainly a legitimate choice for any re-
searcher. However, maintaining a public blacklist is more dangerous. It may be challenged
in court and may result in heavy penalties for the author of such a list.

We think that the solution lies in whitelists in which learned societies and trustworthy
individuals can endorse high-quality OA journals that are free both for readers and authors.
In a sense both MathSciNet and zbMATH form such whitelists. To a certain extent even
the Web of Knowledge represents a whitelist. A journal that does not appear on these lists
is either not a mathematical journal, is too young or has some ethical issues.

Several journals, including ours, declare that they follow the EMS Code of Practice.
Unfortunately, no one really checks whether this is indeed the case. The Ethics Committee
should look at such journals and confirm their claims when appropriate. This explicit addi-
tion to the whitelist would be of great importance for any emerging good journal. It would
also serve authors when faced with the problem of choosing a venue for their publication.

Klavdija Kutnar, Dragan Marušič and Tomaž Pisanski
Editors in Chief
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Abstract

To calculate the genus polynomials for a recursively specifiable sequence of graphs,
the set of cellular imbeddings in oriented surfaces for each of the graphs is usually parti-
tioned into imbedding-types. The effects of a recursively applied graph operation τ on each
imbedding-type are represented by a production matrix. When the operation τ amounts to
constructing the next member of the sequence by attaching a copy of a fixed graph H to
the previous member, Stahl called the resulting sequence of graphs an H-linear family. We
demonstrate herein how representing the imbedding types by strings and the operation τ
by string operations enables us to automate the calculation of the production matrices, a
task requiring time proportional to the square of the number of imbedding-types.
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1 Introduction
The genus polynomial of a graph G is defined to be the generating function

ΓG(z) =
∑
i≥0

gi(G)zi,

where gi(G) counts the cellular imbeddings of G in the closed oriented surface Si of
genus i. Following their introduction by [12] in 1987, and starting with the work of [6], the
genus polynomials for a recursively constructed sequence of graphs have most frequently
been calculated, as in [8, 9, 13], by partitioning the imbeddings according to the cyclic
orderings of occurrences of root-vertices on the face-boundary walks (abbr. fb-walks) of
the imbeddings. In this paper, we describe how to expedite such calculations.

1.1 Rotation systems

All our graphs come with a labeling of the edges. All graph imbeddings in this paper are
assumed to be cellular, that is, each component of the complement of the imbedded graph
is homeomorphic to the interior of the unit disk. All surfaces are assumed to be closed and
oriented.

To describe the imbeddings of a graph G, we assign + and − orientations to the edges,
including self-loops. Then any imbedding defines, for each vertex, a cyclic order of the
signed edge-ends initiating at that vertex, which is called the rotation at that vertex. The
rotations collectively form a rotation system (e.g., see [19]), which acts as a permutation ρ
on the oriented edge set. If λ is the involution that reverses the orientation of each edge,
then the face boundary walks of the imbedding are the orbits of the permutation ρλ.

A rotation system for a graph has also been called a “ribbon graph” or a “fat graph”,
especially in the context of algebraic geometry, Riemann surfaces, and the theory of dessins
([3, 20, 24]). We use the Euler polyhedral formula

|V | − |E|+ |F | = 2− 2γ(S)

to compute the genus γ(S) of the imbedding surface S.
Two imbeddings ι1, ι2 : G → S determine the same rotation system if and only if

there is a homeomorphism of the surface S taking ι1(G) to ι2(G) that acts as the identity
isomorphism on the graph G (i.e., respects the labeling of edges). Accordingly, there is a
bijection from the set of imbeddings of G to the set of rotation systems.

A problem in calculating genus polynomials is that the number of possible cyclic or-
derings of the edge-ends incident at a d-valent vertex is (d − 1)!. Thus, the number of
imbeddings of a graph G is the product Π(dv − 1)!, taken over all vertices v of G, where
dv is the valence of v. It is well-known [30] that the problem of calculating the minimum
genus of a graph is NP-hard, even when the graph is 3-regular. It follows that calculating
the genus polynomial is at least that hard. For example, the number of rotation systems for
the complete graph K7 is

(5!)7 ≈ 3.6× 1014,

and the genus polynomial for K7 has only recently been computed [2]. Table 1 gives the
list of coefficients.
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Table 1: Genus distribution of the complete graph K7.

i gi

0 0
1 240
2 3,396,960
3 3,746,107,320
4 594,836,922,960
5 20,761,712,301,960
6 158,500,382,165,280
7 178,457,399,105,280

1.2 Context

Genus polynomials for recursively specified families of graphs have been computed mostly
within a general paradigm in which the recursive operation occurs in the vicinity on a
small number of vertices or edges designated as roots. The set of all imbeddings of each
graph in the family is partitioned into what we now call imbedding-types, according to
incidence of the fb-walks on the roots, a technique for calculating genus polynomials that
was introduced by [6]. This basic paradigm is exemplified by [8, 13] for root-vertices, and
by [25, 26] for root-edges.

This paper integrates several embellishments of the basic paradigm:

• The genus polynomial for a graph is partitioned into a pgd-vector, with one coordi-
nate for each imbedding type, such that each coordinate is a polynomial that gives the
number of oriented imbeddings of that imbedding type in every orientable surface.

• The recursively applied topological operation is represented by a production system,
as developed by Gross, Khan, and Poshni, in a series of papers [8, 13, 25, 26], that
transforms the pgd-vector for a given graph into the pgd-vector for the graph result-
ing from an application of the recursive operation used to specify the graph family.
In those papers, the productions were calculated with the aid of a multiplicity of
drawings of rotation projections.

• The representation of production systems by matrices was introduced by Stahl [27],
for application to pgd-vectors of some graphs in what he called H-linear families.
Such matrices are now called production matrices, and the graph sequences are now
called H-linear sequences, or simply linear sequences. Stahl used what he called
permutation-partition pairs to derive production matrices.

• The representation of imbedding-types by strings of root-vertices, as developed by
Gross [11].

• Using string operations directly to calculate the production matrices, as suggested
subsequently by Mohar [23].

The general idea of a linear sequence is that a copy of a graph H is attached to each
graph in the sequence to form the next graph in the sequence. It is necessary to attach each
copy of H in the same way, as described precisely by [4].
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1.3 Outline of this paper

Our main focus in this paper is the calculation of production matrices. Since the size of the
matrix increases with the number of imbedding types, and since the number of imbedding-
types grows exponentially with the number of roots and with the valences of the roots, most
of the calculations of genus polynomials have been for sequences of graphs with at most
two roots and valences no larger than 4.

The string notation by which we concisely represent imbedding types allows us to au-
tomate the bookkeeping used in tracking the way imbedding types are changed by the
addition of paths between root vertices. The advantages of this system are many. It allows
us to derive in a few lines (see Subsection 4.3) the computation of production matrices
that formerly involved many figures [10] or detailed paper-and-pencil applications of what
Stahl [28] called the “Walkup reduction” for permutation-partition pairs. String notation
facilitates the computer calculation of production matrices whose derivation would be un-
feasibly tedious by hand (see the 12 × 12 matrix in Section 5). Finally, it reveals ways of
combining different imbedding types to get smaller matrices (see Subsection 5.1).

Following a review in Section 2 of the representation of imbedding-types by strings,
Section 3 introduces the representation of topological and vertex-labeling operations on
imbeddings by string operations. Section 3 also introduces the concept of grouping two
or more i-types into a “super-type”. As an illustration of how the string operations are
used in calculations of genus distributions, Section 4 applies these representations to two
previously published examples, one of which (the iterated claw) we have adapted here
to give a detailed example of grouping. Also, we explain in Section 4 how our use of
productions to calculate pgd-vectors is interpretable as an embellishment of the transfer
matrix method, along the lines described by [29].

Section 5 explores issues related to computation. It uses the theory developed in the
previous sections to calculate genus polynomials for a vertex-amalgamation path of copies
of K4 and for an edge-amalgamated path of copies of K4. Without string operations, both
derivations would be long and tedious. We used two computational aids while preparing
this paper.

• The computational system Maple R©.

• A computer program, based on string operations, that calculates production matrices.

Such kinds of aids are what we have in mind in various comments here, rather than a state-
of-the-art computer. Section 5 includes an additional example of the grouping of i-types
into a super-type.

In Section 6, we use Burnside’s Lemma to derive a formula for the maximum number
of imbedding types for a graph with two roots of any possible combination of valences. We
generalize the formula to more that two roots. From the rapid growth rate of the number
of imbedding-types, as valences and the number of roots of the graphs at issue increases, it
becomes clear that programmable computation tools are a virtual necessity when seeking
to calculate genus polynomials.

2 Representing imbedding-types by strings
In this section, we develop a system of notation that uses strings of root-labels, so that
representing the addition of an edge to a graph becomes a simple matter of applying a few
string-processing rules.
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2.1 Face-boundary-walks

We assign labels 0, 1, 2, . . . to the roots of a graph G. Given an imbedding of G, we
represent a face as a string of roots, in the order they are encountered in a traversal of its
fb-walk following the orientation of the surface. If an fb-walk does not contain any roots,
we call its string empty. Two strings are equivalent representations of an fb-walk if one
is a cyclic shift of the other. We denote an entire equivalence class of strings by putting
a representative string of labels inside parentheses. The canonical representative for the
equivalence class of fb-walks is the one with minimum lexicographic order with respect to
the labels 0, 1, . . . .

Remark 2.1. Vertices that are not roots do not appear in the string representing a face.
Accordingly, the appearance of consecutive labels . . . 12 . . .within a string would not imply
that there is an edge between vertices 1 and 2. Also, since any labeled vertex may appear
more than once around an fb-walk, the corresponding cyclic list of root-labels is not a
permutation.

2.2 Imbedding types

The collection of non-empty strings for all the fb-walks of an oriented imbedding of a
rooted graphG is called an imbedding-type of G (abbr. i-type). The collection of all imbed-
ding types over all imbeddings of G is called the full collection of imbedding types for G.

In order to compare imbedding types for the same rooted graph, we usually use the
shortlex order [31] on canonical representatives to make a list of fb-walks (rather than a
set): shorter faces are listed before longer ones, and if two faces have the same length, the
one with shortlexically least canonical representative is listed first. We call such a list the
canonical form for the i-type.

Example 2.1. Figure 1 shows an imbedding ofK4 in the sphere with roots 0, 1, 2, and 3. If
the “interior” fb-walks are oriented counterclockwise (which forces the “exterior” fb-walk
to appear as clockwise, from the perspective of vertex 0), then the i-type (in canonical form)
is

(012)(023)(031)(132).

0

1

2 3

Figure 1: An imbedding of K4 in S0.

Notice that each face is represented by its canonical form (cyclic shift with least lexi-
cographic order) and that the faces are listed in shortlex order. Since for this example every
vertex is a root, it follows that two consecutive vertices (with respect to cyclic order) in the
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representation of a face actually does represent a directed edge. For any two roots i and j,
the directed edge ij appears exactly once. If i = 0 and j = 1, we could suppress the labels
2, 3 to obtain the i-type

(01)(0)(01)(1) = (0)(1)(01)(01)

for the imbedding of Figure 1. If the only root is 0, then the imbedding type would be
(0)(0)(0). Notice in the last imbedding type, the number of strings is less than the number
of faces, because the fb-walk (132) contains no instances of vertex 0, and we do not list
empty faces. If we reverse the orientation of the sphere and have all four vertices 0, 1, 2, 3
as roots, then the i-type in canonical form would be

(021)(032)(013)(123) = (013)(021)(032)(123).

Observe that the shortlex order for the faces differs from the previous orientation. However,
the i-type for roots 0, 1 is the same as before, as is the i-type for root 0, when labels 1, 2,
and 3 are suppressed.

Example 2.2. Considering all 24 rotation systems for K4, we get the following census of
i-types for roots 0, 1, given in shortlex order:

• 2 of i-type (0)(1)(01)(01)

• 2 of i-type (0)(01011)

• 2 of i-type (1)(00101)

• 2 of i-type (01)(0011)

• 8 of i-type (01)(0101)

Notice that since there is only one edge 01, only one of the substrings 01 in an i-type, for
example (01)(0101), comes from an edge. The other juxtapositions of 0 and 1 come from
suppressing incidences of the roots 2 and 3. We conclude that

{(0)(1)(01)(01), (0)(01011), (1)(00101), (01)(0011), (01)(0101)}

is a full set of i-types for K4 with roots 0 and 1. In Section 6 of this paper, we shall see that
the maximum number of i-types for a pair of 3-valent roots is 38.

Remark 2.2. We observe that within the string representation of any i-type, each root-
vertex appears as many times as its valence. If there is an edge between roots i and j, then
both ij and ji must appear at least once in every i-type. On the other hand, as we have
noted, the appearance of ij in a string does not imply that there is an edge between i and j.

Remark 2.3. Suppose that G has no multi-edges or self-loops, and suppose that every
vertex is a root. Then each rotation system for the graph G determines a unique i-type,
since each i-type determines a rotation system for the dual graph. In this circumstance, the
number of i-types would be the same as the number of rotation systems. At the opposite
extreme, the set of imbeddings for a tree with one root-vertex has only one i-type.

Remark 2.4. When there are multi-edges or loops and every vertex is a root, it happens
that different rotation systems can determine the same i-type. For example, the bouquetBn
has only one vertex 0 and has n loops at that vertex. Then an i-type is simply a partition of
2n into k parts, where k is the opposite parity of n (k is the number of faces, so the Euler
characteristic 1− n+ k must be even). Thus, the number of i-types for imbeddings of Bn
with k faces is at most the Stirling subset number

{
2n
k

}
(i.e., the Stirling number of the

second kind), where k and n have opposite parities.
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2.3 String notational conventions

We adopt two notational conventions for strings:

• The concatenation of a string S with a string T is denoted by ST .

• The reverse string for a string S is denoted by S−1.

We emphasize that SS−1 is not the empty string, but rather the concatenation of S with
its reverse (which forms a palindrome). This notation does satisfy the relations

(ST )−1 = T−1S−1 and
(S−1)−1 = S

as if in a group, even though our strings are not permutations (since roots can repeat), and
even though they do not form a group.

2.4 Pgd-vectors

Given an i-type t, we write its partial genus polynomial in the form∑
aiz

i

where ai is the number of type-t imbeddings of G of genus i.
If the i-types are listed in shortlex order, then we can associate the set of partitioned

genus polynomials for G with a column vector whose rth coordinate is the partial genus
polynomial for the rth i-type. This is called a pgd-vector for the graph G. For instance, the
partitioned genus distribution for the complete graphK4 given by Example 2.2 corresponds
to the vector [

2 2z 2z 2z 8z
]T

where the superscript T denotes the transpose.

3 Operations on imbedding-types
In this section, we describe how a path-adding operation affects the i-types. We also de-
scribe the relabeling of root-vertices, and the suppression of some root-labels, which are
used, for instance, when there are no more paths to be added at a root-vertex.

3.1 Adding a path within a face and between faces

Let G be a rooted graph and let iUj be a path whose endpoints i, j are roots of G but all
other vertices of U are not in G. If U is empty, we have simply the edge ij. The effect of
adding iUj into a face with fb-walk (iSjT ) is given by the following operation:

(iSjT ) + iUj → (iSjU−1)(iUjT ). (3.1)

In calculations, we may denote the right-hand side by AddiUj [iSjT ]. If the i-type in which
the fb-walk (iSjT ) occurs is of the form

(iSjT )W1W2 . . .Wk,
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which includes other fb-walks, then applying Operation (3.1) to that i-type yields the i-type

(iSjU−1)(iUjT )W1W2 . . .Wk.

That is, the other fb-walks of the i-type are simply recopied.
The effect of adding the path iUj between two faces (iS) and (jT ) is given by this

operation:
[(iS), (jT )] + iUj → z(iSiUjTjU−1). (3.2)

The right-hand side may be expressed as AddiUj [(iS), (jT )]. When applying Opera-
tion (3.2) to an i-type with fb-walks (iS) and (jT ), any other fb-walks of the i-type are
simply recopied, the same as for Operation (3.1). The multiplier z indicates that the genus
of the imbedding rises by 1 when a handle is added to the surface.

For the circumstance in which the faces (iS) and (jT ) lie within (disjoint) imbeddings
ι and ι′ of separate graphs G and G′, the effect of joining the imbeddings by adding the
path iUj between the two faces (iS) and (jT ) is given by this operation:

[(iS), (jT )] + iUj → (iSiUjTjU−1). (3.3)

The non-presence of the multiplier z signifies the fact that the genus of the surface in which
the resulting graph is imbedded is simply the sum of the genera of the imbeddings ι and ι′.

Example 3.1. Consider an imbedding of the 4-cycle 0213 in the sphere. There are two
faces, one with fb-walk (0213) and the other with fb-walk (0312). Thus, the initial i-type
is (0213)(0312). There are four ways to add a path 0451 to such an imbedding, one within
the face (0213), one within the face (0312) and two between the faces (0213) and (0312).
Figure 2 shows the four possible ways to add the path 0U1 and the resulting i-type for each.

0

3 3

3 3
3

1

2
(0213)(0312)

z(02130451203154) z(03120451302154)

(02154)(04513)(0312)

(0213)(03154)(04512)

(i)

(iv)(iii)(ii)

0

1

20

1

20

1

2

0

1

2
4

4
44

5

55
5

Figure 2: Adding the path 0451 to an imbedding of a 4-cycle in the sphere.
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(i) Inserting path 0451 into the face (0213) yields the imbedding type

(02154)(04513)(0312),

as per Operation (3.1). We now have three faces. Root-vertices 0 and 1 now have
valence 3, so they now appear three times in this representation of the i-type.

(ii) Inserting the path 0451 instead into the face (0312) yields i-type

(0213)(03154)(04512).

(iii) If we join the two faces, from endpoint 0 inside the face (0213), to endpoint 2 inside
the face (0312), then the resulting string expression is

z(02130451203154).

(iv) If we add the path 0451 with edge-end 0 now inside the face (0312) and edge-end 1
inside the face (0213), we get the string expression

z(02154031204513).

It follows that the net result of adding the path 0451 to the i-type (0213)(0312) is the
following linear combination of i-types taken over the ring Z[z] of polynomials with integer
coefficients:

(02154)(04513)(0312) + (0213)(03154)(04512)

+ z(0213045120354) + z(03120451302154).

Remark 3.1. The path ii for adding a self-loop is simply a special case. As a variation on
Operation (3.1), we have

(iS) + ii → (i)(iSi)

As a variation on Operation (3.2), we have

[(iS), (iT )] → z(iSiiT i)

Remark 3.2. If a graph already has an edge ij, then adding the path P = ij creates a
multiple adjacency.

3.2 Suppressing roots and relabeling roots

Given a subset of roots {i, j, . . . }, the root-suppression operator Supi,j,... acts to suppress
every occurrence of the root-labels i, j, . . . within an i-type t. For example,

Sup1,2[(1)(12)(0212)(0231303)] = (0)(03303).

Observe that we delete empty pairs of parentheses as a final step in suppressing roots.
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Example 3.1, continued. Suppressing roots 2 and 3 as well as any roots along U trans-
forms the i-type (021U−1)(0U13)(0312) into the i-type (01)(01)(01). Similarly,

Sup1,2,U [z(021U−1)(0U13)(0312)] = z(010101).

Moreover, when root-suppression is applied to a linear combination of i-types, it can reduce
the number of terms. For instance,

Sup2,3,U [(021U−1)(0U13)(0312) + (0213)(031U−1)(0U12)

+ z(02130U1203U−1) + z(03120U13021U−1)]

= 2(01)(01)(01) + 2z(010101).

We can also relabel roots, by using the root-relabeling operator. Suppose that the label
i appears in i-type t and label j does not. Then Labij [t] is the i-type obtained by replacing
in t all occurrences of i by j. Thus,

Lab24[(1)(2)(22)(1323)] = (1)(4)(44)(1343).

We denote by Labii′,jj′,...[t] the result of relabeling i by i′, j by j′ etc.

3.3 Reversing orientation

If the orientation of a graph imbedding is reversed, the effect on i-types is as follows:

• the cyclic order of each fb-walk is reversed;

• the genus of the imbedding stays the same.

We call this the i-type reversal operator. Given an i-type t, we denote by t−1 the i-type in
which each fb-walk string is reversed. Note that if (ST ) is an fb-walk within i-type t, then
the corresponding fb-walk in t−1 is (T−1S−1), for which a cyclic shift gives (S−1T−1).
On the other hand, the i-type (R−1S−1T−1) is not a cyclic shift of the i-type (RST )−1 =
(T−1S−1R−1).

Proposition 3.3. The i-type reversal operator commutes with the operators Add, Sup,
and Lab.

Proof. Clearly, we can reverse lists either before of after suppressing or relabeling vertices,
and the result is the same. Using Rule (3.1) for adding a path within a face, we have

AddP [(iSjT )]−1 = [(SP−1)(PT )] = (T−1P−1)(S−1P ) and (3.4)

AddP [(iSjT )−1] = AddP [iT−1jS−1] = (T−1P−1)(S−1P ) (3.5)

Using Rule (3.2) for adding an edge between two faces, we have

AddP [(iS), (jT )]−1 = z(PTP−1S)−1 = z(S−1PT−1P−1) and (3.6)

AddP [(iS)−1, (jT )−1] = AddP [(iS−1), (jT−1)] = z(PT−1P−1S−1) (3.7)
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3.4 Combining i-types into super-types

As we have observed, the number of i-types grows exponentially with the valence and the
number of roots, so any way of reducing the number of i-types is welcome. For example,
in building a graph by path-addition, we can always group an i-type with its reverse, since
i-type reversal commutes with edge path-adding. Indeed, root-suppression is also a way of
grouping many i-types together.

Suppose that the rooted graph H is obtained from the rooted graph G by a sequence
Op of the following kinds of operations:

path-additions, root-suppression, and root-relabeling.

Let T be the full collection of i-types for G, and let S be the full collection of i-types for
H , both in shortlex order. Then for any i-type t ∈ T , we see that

The expression Op(t) is a linear combination of elements of S, with coeffi-
cients taken from the ring Z[z] of polynomials in z.

We represent Op, therefore, as a matrix M whose columns are labeled by i-types in S, and
whose rows are labeled by i-types in T , where Ms,t is the coefficient of i-type s in the
expression Op(t).

Let P and Q be partitions of S and T , respectively. Suppose that we order the i-types
within S and the i-types within T so that the i-types within each cell of P and within
each cell of Q are contiguous in the respective orderings, inducing a partitioning of the
production matrix M into blocks that satisfy this criterion:

Within each block, the column sums are the same. (This requirement applies
also to the blocks that span only a single row of the matrix M , which implies
that the entries in such a row are identical.)

Then we call the partitions P andQ compatible with M . Moreover, we call each part of P
andQ a super-type for the operation Op. We can then condense the matrix M to a smaller
one whose columns are indexed by P and rows by Q, and whose entries are the constant
column sum of the block of M determined by the respective parts.

We have already encountered super-types in two contexts: type-reversal and root-
suppression. For type-reversal, we partition a full collection of i-types into parts by group-
ing together an i-type and its reverse. Since type-reversal commutes with path-adding,
root-suppression, and root-relabeling, it is compatible with any sequence of those opera-
tions. We can also view root-suppression Supi,j,... itself as creating super-types. In this
case, we have S = T . The parts of P are just singletons; i-types s, t are in the same part
ofQ if and only if Supi,j,...(s) = Supi,j,...(t). Notice in this case, the matrix M is just the
identity matrix and each block is a part of a single column of M . The condensed matrix
has a single 1 in each column.

Another way to create super-types is to exploit any symmetry between roots. With
H,G,S, T as before, suppose there is a graph automorphism f of H that permutes the
roots of H and G. Then f also induces a permutation of the S and T . We can then use
orbits of that permutation as super-types.

Grouping types into super-types by graph automorphisms and reversal is illustrated par-
ticularly well in the family of iterated claws in Subsection 4.3, where 12 i-types are reduced
to three super-types. For now we consider an example that provides a clear illustration of
the theory underlying the reduction.
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Example 3.2. Suppose that G = K4, as in Example 2.2, with roots 0 and 1, and that the
graph H is obtained from G by the operation of adding a second edge between 0 and 1.
Since there is an automorphism of the graphG interchanging 0 and 1, we have the partition
given in Table 2 for the full set T of i-types of the graph G, under the partition Q (induced
by this automorphism), with the parts of Q indicated by square brackets.

Table 2: Partitioning the i-types for (K4, {0, 1}).

T
(0)(1)(01)(01)

(0)(01011)
(1)(00101)
(01)(0011)
(01)(0101)

−→

T /Q
(0)(1)(01)(01)

[(0)(01011), (1)(00101)]
(01)(0011)
(01)(0101)

We can construct the full set S of 13 i-types for the graph H , by adding the path 01 to
the i-types in T for the graph G. In Table 3, we again use square brackets to enclose the
parts of the partition P .

Table 3: Partitioning the i-types for (K4 + 01, {0, 1}).

S
(0)(1)(01)(01)(01)(0)(1)(010101)

(0)(01)(01011)
(1)(01)(00101)
(0)(011)(0101)
(1)(001)(0101)
(01)(01)(0011)
(01)(01)(0101)
(01)(001)(011)

(00101011)
(00110101)
(00101101)
(01010101)

−→

S/P
(0)(1)(01)(01)(01)

(0)(1)(010101)
[(0)(01)(01011), (1)(01)(00101)]
[(0)(011)(0101), (1)(001)(0101)]

(01)(01)(0011)
(01)(01)(0101)
(01)(001)(011)

[(00101011), (00110101)]
(00101101)
(01010101)

Applying the string operation for adding the edge 01 to K4, we obtain the matrix M ,
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which maps the pgd-vector for K4 to the pgd-vector for the graph K4 + 01, as follows:

2 0 0 0 0
2z 0 0 0 0
2z 4 0 0 0
2z 0 4 0 0
0 2 0 0 0
0 0 2 0 0
z 0 0 3 0
0 0 0 0 5
0 0 0 2 0
0 z z 2z 0
0 z z 2z 0
0 z z 0 0
0 0 0 0 4z




2
2z
2z
2z
8z

 =



4
4z
12z
12z
4z
4z
8z
40z
4z
8z2

8z2

4z2

32z2



(3.8)

Our partition Q of T groups columns 2 and 3 and represents combining the i-types
(0)(01011) and (1)(00101), which corresponds to the automorphism on K4 that swaps
roots 0 and 1. Our partition P of S involves three pairings: rows 3 and 4, rows 5 and 6, and
rows 10 and 11, which correspond to the automorphism on K4 + 01 that swaps roots 0 and
1. This compresses the 13× 5 matrix of (3.8) down to the 10× 4 matrix on the left side of
Equation (3.9). 

2 0 0 0
2z 0 0 0
4z 4 0 0
0 2 0 0
z 0 3 0
0 0 0 5
0 0 2 0
0 2z 4z 0
0 z 0 0
0 0 0 4z




2
4z
2z
8z

 =



4
4z
24z
8z
8z
40z
4z

16z2

4z2

32z2


(3.9)

4 Two examples of linear families
In this section, we examine the application of the string operations Sup, Add, and Lab to
two linear sequences previously studied elsewhere.

4.1 Production matrices

Given a linear family {Gn : n = 0, 1, . . .} of graphs, constructed by recursive application
of the topological operator τ : Gn → Gn+1, and with the pgd-vector Vn(z) for Gn, for
n = 0, 1, . . . , the associated production matrix Mτ (z) is a matrix such that we have the
recursion

Vn(z) = Mτ (z)Vn−1(z), for n = 1, 2, . . . (4.1)

and, consequently, the equation

Vn(z) = Mτ (z)nV0(z), for n = 1, 2, . . . (4.2)
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Here, as in some previous papers (e.g., [14, 17]), our production matrices record a system
of rules that computer scientists might call productions.

4.2 X-ladders

An X-ladder is envisioned as a ladder with evenly many rungs, such that the rungs are
paired, and such that within a pair, they cross each other in a planar drawing, as illustrated
in Figure 3. This example was first given by [28].

0

1

0

1
X1 X3

Figure 3: The X-ladders X1 and X3.

To represent the construction of Xn from Xn−1, we use the following procedure (a
sequence of i-type operations) to add the next X:

Procedure 4.1. Add the next X to an X-ladder.

Sup0,1 ◦Add02431 (4.3)
Sup2,3 ◦Add253 (4.4)

Lab40,51 (4.5)

We denote the composition of the steps of Procedure 4.1 by RecX .
Since the X-ladder X1 is simply a 4-cycle with labeled vertices 0 and 1, its one and

only i-type is (01)(01). To obtain the pgd-vector for X2 from the pgd-vector for X1, we
apply Procedure 4.1. In this non-machine calculation, we separate Step (4.4) into two parts.

Sup0,1[Add02431[(01)(01)]] = 2(234)(243) + 2z(224334)

Sup2,3[Add253[2(234)(243)]] = 4(4)(5)(45) + 4z(4545)

Sup2,3[Add253[2z(224334)]] = 8z(45)(45)

By then applying Lab40,51, we obtain the production

RecX [(01)(01)] = 4(0)(1)(01) + 8z(01)(01) + 4z(0101). (4.6)

In general, a production for an i-type associates to it a linear combination of all the
i-types, taken over the ring of polynomials in the indeterminate z.

Thus, there are three possible i-types for imbeddings of the X-ladder X2. Since two
of them are not i-types for X1, we need to continue with the i-types of X3, to see whether
there are any additional i-types, before we write the production matrix.

To compute the effect of RecX on X2, we need to compute its effect on the three
imbedding-types (0)(1)(01), (01)(01), and (0101). We already know the production (4.6)
for the imbedding-type (01)(10).
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We begin with i-type (0)(1)(01).

Sup0,1[Add02431[(0)(1)(01)] = (234)(243) + 3z(224334)

Sup23[Add253[(234)(243)] = 2(4)(5)(45) + 2z(4545)

Sup2,3[Add253[3z(224334)]] = {12z(45)(45)}

By relabeling with Lab40,51, we obtain the production

RecX [(0)(1)(01)] = 2(0)(1)(01) + 12z(01)(01) + 2z(0101). (4.7)

We continue with the effect of RecX on i-type (0101).

Sup0,1[Add02431[(0101)]] = 4(243)(342)

Sup2,3[Add253[4(234)(243)] = 8(45)(4)(5) + 8z(4545)

Applying Lab40,51, we obtain the production

RecX [(0101)] = 8(0)(1)(01) + 8z(0101). (4.8)

We see that no new types arise when applying RecX to X2. Thus, the only possible
i-types for any X-ladder Xn arising from application of RecX are

(0)(1)(01), (01)(01), and (0101).

Accordingly, we may write the pgd-vectors of X1, X2, and X3 as

VX1 =

0
1
0

 VX2 =

 4
8z
4z

 VX3 =

 8 + 64z
48z + 64z2

8z + 64z2


By recording the coefficients of the i-types in productions (4.6), (4.7), and (4.8) as

columns of the production matrix MX(z) for RecX we have

MX(z) =

 2 4 8
12z 8z 0
2z 4z 8z


We see that MX(z)VX1(z) = VX2(z) and that MX(z)VX2(z) = VX3(z).

Proposition 4.1 enables us to check for possible errors.

Proposition 4.1. Suppose that {Gn : n = 0, 1, . . .} is a linear family with production
matrix M(z). Then substituting z = 1 gives a matrix whose column sums are the same
constant s, where the number of imbeddings of Gn+1 equals s times the number of imbed-
dings of Gn.

Proof. Substituting z = 1 in any column of M(z) counts the number s of ways that the
extra paths can be added between the roots of Gn and the roots of Gn+1. This number is
the same for each imbedding-type and hence for each column ofM(z). Clearly, s also tells
us the growth factor in the number of imbeddings from Gn to Gn+1.

As Proposition 4.1 indicates, the substitution z = 1 in MX(z) gives column sums of
s = 16, implying that any imbedding of Xn of a given type generates 16 imbeddings of
Xn+1. This makes sense since Xn+1 has four more 3-valent vertices than Ln, so it should
have (2!)4 = 16 times as many imbeddings.
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4.3 Iterated claws

This example is adapted from [14] and [17].
The iterated claw Y1 is obtained from the complete bipartite graph K3,3 as follows:

1. Choose one vertex of K3,3 to be the root-vertex 0.

2. Subdivide each of the edges incident with 0.

3. Assign labels 1, 2, and 3 to the resulting three 2-valent vertices.

To obtain the graph (Yn, 0) from the graph (Yn−1, 0), we join a new 3-valent vertex 7 to
the vertices 1, 2, and 3 by paths 741, 752 and 763. We then suppress labels 1, 2, 3, and 0
and relabel vertex 4 as 1, vertex 5 as 2, vertex 6 as 3, and vertex 7 as 0.

Figure 4 illustrates the graph Y3. We observe that the graph Y1 is homeomorphic
to K3,3.

3
0

1

2

Figure 4: The iterated claw Y3.

To obtain the pgd-vector of Yn from the pgd-vector of Yn−1, we now describe how to
construct Yn from Yn−1 with this procedure.

Procedure 4.2. Add the next claw to an iterated claw.

Sup0,1,2 ◦Add14752 (4.9)
Sup3 ◦Add367 (4.10)
Lab41,52,63,70 (4.11)

We denote the composition of the steps of Procedure 4.2 by RecY .
We note that at the root vertex 0, there must be face corners 102, 203, and 301. We

partition the set of i-types according to the number of faces incident with the root-vertex 0:

(a) three faces: the i-type must be (013)(021)(032) or its reverse;

(b) two faces: the imbedding must be of one of the types (013)(022031), (021)(012033),
(032)(011023), or of their reverses;

(c) one face: the imbedding must be of types (011022033), (012031023), or of their re-
verses.

Thus, we have 12 i-types in all.
Grouping each i-type with its inverse yields six “super-types”. To reduce from six to

three, we notice that the dihedral D3 symmetry of the claw is visible within the notation for
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the types. For instance, from the one group (b) i-type (013)(022031), we could obtain any
of the other the other i-types by a permutation of 1, 2, 3 and a possible reversal. Thus, we
need to consider only how path-adding affects the i-type (013)(022031). On the other hand,
the two one-face i-types are not related by a permutation of 1, 2, 3. Nevertheless, we will
see that grouping the two together does provide a compatible partition for the production
matrix. We denote the three super-types simply by listing the face structure at 0:

(a) three faces: (0)(0)(0);

(b) two faces: (0)(00);

(c) one face: (000).

We now calculate RecY [t] for one representative t from each of the three super-types.
For i-type t = (013)(021)(032) from super-type (0)(0)(0), we obtain

Sup0,1,2[Add14752[t]] = (475)(574)(3)(3) + z(4753574)(3)

+ z(3475574)(3) + z(34753574)

By applying Sup3456 ◦Add367 to the right side, we obtain

4z(77)(7) + z[2(77)(7) + 2z(777)] + z[2(77)(7) + 2z(777)] + z[4(77)(7)].

Collecting terms, we obtain

12z(7)(77) + 4z2(777).

Relabeling 7 by 0 then yields the production

RecY [(102)(203)(301)] = 0(0)(0)(0) + 12z(0)(00) + 4z2(000) (4.12)

For i-type t = (013)(022031) from super-type (0)(00), we have:

Sup012[Add14752[t]] = 2(475)(3574)(3) + 2z(34753574).

Applying Sup3456 ◦Add367 to the right side, we obtain:

2[(7)(7)(7) + 2z(7)(77) + z(777)] + 2z[4(7)(77)].

Then relabeling 7 by 0 yields the production

RecY [(013)(022031)] = 2(0)(0)(0) + 12z(00)(0) + 2z(000) (4.13)

It is easily verified we would get the same result beginning instead with alternative repre-
sentatives t = (021)(012033) or t = (032)(011023).

For i-type t = (011022033) from super-type (000), we have

Sup012[Add14752[t]] = 4(475)(33547)

Applying Sup3456 ◦Add367 to the right side yields

4[2(7)(7)(7) + 2z(777)].
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Then relabeling 7 by 0, we obtain the production

RecY [(102203301] = 8(0)(0)(0) + 0(0)(00) + 8z(000) (4.14)

It is easily verified that we get the same result when we begin with type t = (012031023).
That is what enables us to group them together in a super-type, even though they are not
related by a permutation of 1, 2, 3 or by reversal.

We copy the coefficients from (4.12), (4.13), and (4.14) into the columns of the produc-
tion matrix MY (z) for RecY , with input and output basis {(0)(0)(0), (00)(0), (000)}.

MY (z) =

 0 2 8
12z 12z 0
4z2 2z 8z


We note that the column sums with z = 1 are 16 = 24 and that Yn+1 has four extra vertices
of valence 3. We observe that the power of string notation for i-types has allowed us to
compute the recursion matrix for this family in only a page, while the original calculation
[14] requires many pages and many figures. As in [14], we obtain the pgd-vectors

VY1
=

 16z
24z
24z2

 VY2
=

 48z + 192z2

480z2

48z2 + 256z3

 VY3
=

1344z2 + 2048z3

576z2 + 8064z3

1536z3 + 2816z4


Of course, since Z[z] is a ring, rather than a field, a “pgd-vector” is more accurately de-
scribed as an r-tuple than as a vector, where r is the number of i-types.

The functor relating a string operation τ : G → H to the corresponding production
matrix Mτ (z) : VG(z)→ VH(z), is represented by the commutative diagram in Figure 5.

G H

VG(z) VH(z)

τ

Mτ (z)

Figure 5: Functor from the category of graphs and string operations to the category of
ring modules and matrices with integer polynomial coefficients.

4.4 Polynomial matrix and transfer matrix methods

There are models in the physical sciences where the computational process uses polyno-
mial matrix entries, like our production matrices. Some such models in chemistry were
explored in [21, 22], which uses the terminology polynomial matrix method. This method
was adapted by [1] for application to matching polynomials of polygraphs.

As described by [7], the transfer matrix method for various mathematical contexts con-
cerns the transformation of a given problem into a matter of counting walks in a digraph.
We observe that if A is the adjacency matrix of a digraph, then the ij entry of the matrix
Ak counts the numbers of paths from vertex vi to vertex vj .

A generalization of this problem (see [29]) is concerned with a digraph in which the arc
from vertex i to vertex j, for all i and j, is labeled with the element mi,j of a commutative
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ring, with M = (mi,j). Instead of counting the paths of length k, we are calculating the
sum of the products of all length-k paths from vi to vj . Of course, the ij entry of the matrix
Mk gives this sum for vi and vj . In [5] and [23], the matrixM is called a “transfer matrix”.

When calculating pgd-vectors for a graph sequence {Gn : n = 0, 1, . . .} that is speci-
fied by recursive application of a topological operation τ , we take the imbedding types as
vertices of the digraph. We label the arc from type-i to type-j by the coefficient of type-j
in the production for type-i.

5 Machine computation of production matrices
In this section, we give two examples of linear sequences whose production matrices have
been calculated with the aid of a computer program. It should be clear that calculating
these production matrices by hand would be daunting. Heretofore, such calculations have
been done mostly by hand, which has limited us to calculating the genus polynomials only
for relatively few graph families. As a consequence, we have very little data to study deep
issues, such as the log-concavity conjecture, that the genus distribution of every graph is a
log-concave polynomial (see [18, 16]).

5.1 Vertex-amalgamation path of copies of K4

We define the graph T1 to be the complete graph on four vertices, with a single root, la-
beled 0. The graph Tn is obtained from Tn−1 by vertex-amalgamating a new copy of K4

to Tn−1. The graphs T2 and T3 are illustrated in Figure 6.

0 0

Figure 6: The graphs T2 and T3.

Following the paradigm of [13], we could obtain Tn from Tn−1 by vertex-amalgamating
a doubly rooted copy of K4 to a singly rooted copy of Tn−1. However, whereas a pair of
2-valent root-vertices involves at most 10 i-types, it can be seen in Table 5 that for two
3-valent root-vertices, the number of i-types could be as large as 38. Moreover, the poten-
tial number of productions for amalgamating two graphs with 38 i-types could be as large
as 382 = 1444. In what follows, we see that using the string-operation paradigm enables
us to reduce the number of i-types from 38 to 3.

The topological operation of vertex-amalgamating an additional copy of K4 to the
rooted graph (Tn−1, 0) can be represented by the following sequence of string operations.

Procedure 5.1. Add the next copy of K4 by vertex-amalgamation.

Add01230 (5.1)
Add02 (5.2)
Add13 (5.3)

Sup0,1,3 (5.4)
Lab20 (5.5)
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We see that the i-types for a graph with a single 3-valent root-vertex named 0 are

(0)(0)(0) (0)(00) (000)

More generally, the number of i-types for a graph with a single k-valent root-vertex equals
at most the number of partitions of the integer k. Nonetheless, even though only three
productions would be needed, deriving them with pencil-and-paper calculations would be
tedious work. Just for a start, there are 12 ways to insert the path 01230 into an imbedding
of Tn−1, two ways between each of the three pairs of distinct corners at root-vertex 0 and
two ways at each corner. The total number of imbeddings of Tn that are consistent with
each imbedding of Tn−1 is 480.

Theorem 5.1. The pdg-vector of the graph Tn is Mn−1V1, where the initial pgd-vector
V1 is

[
2 12z 2z

]T
and the production matrix is

MT (z) =

 96z + 18 80z + 30 60
48z2 + 156z 220z 360z
144z2 + 18z 120z2 + 30z 60z

 (5.6)

Proof. The initial pgd-vector V1 for (K4, 0) and the production matrix are best calculated
by a computer program.

5.2 Edge-amalgamation path of copies of K4

Here we define T 1 to be the complete graph K4 with a single root-edge 01. The graph Tn
is obtained from Tn by edge-amalgamating a copy ofK4. The new root-edge is the edge in
the new copy that is independent of the edge amalgamated to the previous root-edge. The
graphs T 2 and T 3 are illustrated in Figure 7.

0

1

0

1

Figure 7: The graphs T 2 and T 3.

The topological operation of extending the graph Tn−1 by edge-amalgamating an addi-
tional copy of K4 can be represented by the following sequence of string operations.

Procedure 5.2. Add the next copy of K4 by edge-amalgamation.

Add0231 (5.7)
Add03 (5.8)
Add12 (5.9)
Sup0,1 (5.10)

Lab20,31 (5.11)
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We determine that the i-types for the graphs Tn are as follows, grouped by classes
under the automorphism interchanging 0 and 1 and listed in shortlex order:

1. (0)(1)(01)(01) 7. (01)(0011)
2. (0)(1)(0011) 8. (01)(0101)
3. (0)(01)(011), (1)(01)(001) 9. (001)(011)
4. (0)(00111), (1)(00011) 10. (000111)
5. (0)(01011), (1)(00101) 11. (001011), (001101)
6. (01)(01)(01) 12. (010101)

Each imbedding of Tn−1 in each of these 12 super-types has 576 possible extensions to an
imbedding of Tn.

Theorem 5.2. The pdg-vector of the graph Tn is M
n−1

(z)V(z), where the production
matrix is

4 18 8 36 40 6 20 22 12 72 80 84
8z 0 16z 0 0 24z 32z 32z 32z 0 0 0
64z 96z 96z 96z 96z 96z 128z 128z 128z 0 0 0
48z2 32z2 32z2 0 0 48z2 0 0 0 0 0 0
8z 36z 16z 72z 80z 12z 40z 44z 24z 144z 160z 168z
60z 56z 72z 48z 48z 60z 64z 64z 96z 0 0 0

104z2 + 4z 48z2 + 18z 64z2 + 8z 36z 40z 72z2 + 6z 20z 22z 12z 72z 80z 84z
16z 72z 32z 144z 128z 24z 80z 72z 48z 288z 256z 240z

104z2 48z2 64z2 0 0 72z2 0 0 0 0 0 0
32z3 0 0 0 0 0 0 0 0 0 0 0
64z2 96z2 96z2 96z2 96z2 96z2 128z2 128z2 128z2 0 0 0
60z2 56z2 72z2 48z2 48z2 60z2 64z2 64z2 96z2 0 0 0


The initial graph (T 1, 0) has the pgd-vector

V(z) =
[
2 0 0 0 4z 0 2z 8z 0 0 0 0

]T
.

Proof. The initial pgd-vector and the production matrix were calculated by our computer
program.

If follows that

T2 =



8 + 376z
16z + 320z2

128z + 1664z2

96z2

16z + 752z2

120z + 832z2

584z2 + 8z
32z + 1248z2

208z2

64z3

128z2 + 1664z3

120z2 + 832z3



and T3 =



32 + 5040z + 119552z2 + 207616z3

64z + 9216z2 + 111872z3

512z + 56064z2 + 612864z3

384z2 + 28416z3 + 103424z4

64z + 10080z2 + 239104z3 + 415232z4

480z + 43200z2 + 365568z3

5872z2 + 32z + 176256z3 + 389376z4

128z + 19136z2 + 414464z3 + 644096z4

832z2 + 56704z3 + 181760z4

256z3 + 12032z4

512z2 + 56064z3 + 612864z4

480z2 + 43200z3 + 365568z4



.
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6 Enumerating possible imbedding types
Various previously published genus polynomial calculations have involved recursive con-
structions of families of graphs with two 2-valent root-vertices, for which ten i-types are
sufficient. As we progress toward more general results, most especially in regard to the
LCGD conjecture, we are encountering recursive graph constructions for which we use
arbitrarily many vertex roots, of arbitrary degrees.

In this section, we first use Burnside’s Lemma to calculate the number of i-types that
can occur for two 2-valent roots. Then we generalize to obtain lower and upper bounds on
the number of i-types for arbitrarily many root-vertices or arbitrary valences. Interestingly,
our method provides a formula for calculating the number of possible cyclic partitions of a
multi-set. Thus, it is a generalization of Stirling numbers of the first kind.

6.1 Two 2-valent roots

Early papers on genus polynomial calculations via pgd-vectors used ten mnemonics for the
i-types for graphs with two 2-valent roots. The following table lists the ten mnemonics and
their corresponding type-names:

dd0 dd′ dd′′ ds0 ds′

(0)(0)(1)(1) (0)(01)(1) (01)(01) (0)(0)(11) (0)(011)

sd0 sd′ ss0 ss1 ss2

(00)(1)(1) (001)(1) (00)(11) (0101) (0011)

An ad hoc examination confirms that the ten type-names contain all the possible partitions
of the multi-set {0, 0, 1, 1} into cyclic cells. We now undertake a reconfirmation of this
calculation of ten possible i-types, using Burnside’s Lemma.

Our set of objects is the set of disjoint cycle decompositions of the 24 permutations in
the symmetric group Σ4, with domain {0, 1, 2, 3}. Our permutation group on them has the
permutations

ε (identity) (0 2) (1 3) (0 2)(1 3) (6.1)

where we regard the numbers 2 and 3 as second copies of the numbers 0 and 1, respectively.
Under the action of this permutation group, the orbit of the permutation (0 1)(2)(3) is

(0)(1)(2 3) (0)(3)(1 2) (1)(2)(0 3) (2)(3)(0 1)

This orbit corresponds to the imbedding-type (0)(1)(01).
The identity permutation ε fixes all 24 disjoint cycle representations of Σ4. The permu-

tation (0 2) fixes the subgroup of disjoint cycle representations in which both 0 and 2 are
fixed or transposed, whose cardinality is 4. The permutation (1 3) fixes the same subgroup
of cardinality 4. The permutation (0 2)(1 3) fixes that same subgroup, plus the set

(0 1)(2 3) (0 3)(1 2) (0 1 2 3) (0 3 2 1)

for a total of 8 fixed points. Applying Burnside’s Lemma, we divide the sum of the sizes
of the fixed-point sets by the cardinality of the permutation group (6.1) to obtain

24 + 4 + 4 + 8

4
=

40

4
= 10

as the maximum number of i-types for two 2-valent roots.
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6.2 Two roots, 2-valent and 3-valent

Suppose that root 0 is 2-valent and root 1 is 3-valent. Then there are 18 imbedding-types,
as in Table 4.

Table 4: Table of the i-types for two roots, one 2-valent and one 3-valent.

structure imbedding types

15 (0)(0)(1)(1)(1)
13 2 (0)(0)(1)(11) (0)(1)(1)(01) (1)(1)(1)(00)
1 22 (0)(01)(11) (1)(00)(11) (1)(01)(01)
12 3 (0)(0)(111) (0)(1)(011) (1)(1)(001)
2 3 (00)(111) (01)(011) (11)(001)
1 4 (0)(0111) (1)(0011) (1)(0101)
5 (00111) (01011)

The action of the permutation group Σ{0,2} × Σ{1,3,4} on the elements of Σ{0,1,2,3,4}
has the cycle index

1

12

[
t51 + 4t31t2 + 3t1t

2
2 + 2t2t3

]
.

We now consider the number of fixed points for each of the four permutation types.

Type t51. The identity permutation fixes all 120 elements of Σ{0,1,2,3,4}.

Type t31t2. Each permutation of structure t31t2 fixes 12 elements of Σ{0,1,2,3,4}. For in-
stance, (0 2) fixes each of the six elements with the 1-cycles (0) and (2) and each of the
six with the 2-cycle (02), for a total of 12. The sum of the sized of the fixed-point sets of
the four permutations of structure t31t2 is 48.

Type t1t22. Each permutation of structure t1t22 fixes 8 elements of Σ{0,1,2,3,4}. For instance,
(0 2)(1 3) fixes both of the elements with the 1-cycles (0), (2), and (4), both with the 2-
cycle (02) and the 1-cycle (4), and also the four elements

(0 1)(2 3), (0 3)(1 2), (0 1 2 3), and (0 3 2 1)

for a total of 8. The sum of the sized of the fixed-point sets of the four permutations of
structure t1t22 is 24.

Type t21t3. Each permutation of structure t21t3 fixes 6 elements of Σ{0,1,2,3,4}. In partic-
ular, (0)(2)(134) fixes Z{0,2} × Z{1,3,4}, as does (0)(2)(1 4 3). Together, they make a
contribution of 12 to the sum of the sizes of the fixed point sets.

Type t2t3. These two permutations each fix the same 6 elements of Σ{0,1,2,3,4} as in the
preceding case, for a net contribution of 12.

Applying Burnside’s Lemma, we infer that the number of orbits is

120 + 48 + 24 + 12 + 12

12
=

216

12
= 18.
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6.3 Several roots of arbitrary degrees

We now calculate lower and upper bounds on the number of i-types.

Theorem 6.1. For a class of graphs with roots 0, 1, . . . , k − 1 of respective degrees
d0, d1, . . . , dk−1, the number of i-types is at least

(d0 + d1 + · · ·+ dk−1)!

d0!d1! · · · dk−1!
(6.2)

Proof. In addition to their respective primary names 0, 1, . . . , k− 1, each root j has dj − 1
aliases chosen from among the numbers

k, k + 1, . . . , d0+d1+ · · ·+dk−1

with no two different primary names having any aliases in common. Accordingly, our set
of objects is the set of disjoint cycle representations of the symmetric group ΣK , where
K = d0 + d1 + · · ·+ dk−1. The permutation group that acts on them is isomorphic to

Σd0 × Σd1 × · · · × Σdk−1

Since the identity permutation fixes all the cycle forms of ΣK , the sum of the sizes of the
sets of fixed points is at leastK!. The cardinality of the permutation group is d1!d2! · · · dk!.
Thus, by Burnside’s Lemma, a lower bound on the number of i-types is given by (6.2).

Theorem 6.2. For a class of graphs with roots 0 and 1, of respective degrees a and b, the
number of i-types is at most

∑
c

n∏
k=1

kckck!
∑

∀i,pi+qi=ci

∑
(1p12p2 ···apa )∈Pa

∑
(1q12q2 ···bqb )∈Pb

1∏a
i=1 i

pipi!
∏b
j=1 j

qjqj !
,

where the sum
∑
c is over all partitions 1c12c2 · · ·ncn ∈ Pn and Pn is the set of all

partitions of the number n.

Proof. The action of the permutation group

Σ{1,3,4,...,a+1} × Σ{2,a+2,a+3,...,a+b}

on the elements of Σ{1,2,...,n}, where n = a+ b, has the cycle index

Ca,b =
∑

(1p12p2 ···apa )∈Pa

∑
(1q12q2 ···bqb )∈Pb

∏a
i=1 t

pi
i

∏b
j=1 t

qj
j∏a

i=1 i
pipi!

∏b
j=1 j

qjqj !
,

where Pm is the set of all partitions of m. The number of fixed points for a permutation of
cycle type 1c12c2 · · ·ncn is given by

a!b!Ca,b(1
c12c2 · · ·ncn)

n∏
k=1

kckck!,
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where Ca,b(1c12c2 · · ·ncn) is the coefficient of tc11 t
c2
2 · · · tcnn in the polynomial Ca,b. Thus,

each permutation of structure tc11 t
c2
2 · · · tcnn fixes

n∏
k=1

kckck!
∑

∀i,pi+qi=ci

∑
(1p12p2 ···apa )∈Pa

∑
(1q12q2 ···bqb )∈Pb

a!b!∏a
i=1 i

pipi!
∏b
j=1 j

qjqj !
.

elements of Σ{1,2,...,n}.
Applying Burnside’s Lemma, we conclude that the number of orbits is given by

∑
c

1

a!b!

n∏
k=1

kckck!
∑

∀i,pi+qi=ci

∑
(1p12p2 ···apa )∈Pa

∑
(1q12q2 ···bqb )∈Pb

a!b!∏a
i=1 i

pipi!
∏b
j=1 j

qjqj !

which equals

∑
c

n∏
k=1

kckck!
∑

∀i,pi+qi=ci

∑
(1p12p2 ···apa )∈Pa

∑
(1q12q2 ···bqb )∈Pb

1∏a
i=1 i

pipi!
∏b
j=1 j

qjqj !
,

where the sum
∑
c is over all partitions 1c12c2 · · ·ncn ∈ Pn.

Applying our formula for a, b ≤ 10, we obtain Table 5.

Table 5: The maximum number of i-types for two root-vertices, of valences a and b.

a\b 1 2 3 4 5 6 7 8 9 10
1 2 4 7 12 19 30 45 67 97 139
2 4 10 18 34 56 94 146 228 340 506
3 7 18 38 74 133 233 385 623 977 1501
4 12 34 74 158 297 550 951 1614 2627 4202
5 19 56 133 297 602 1166 2133 3775 6437 10692
6 30 94 233 550 1166 2382 4551 8424 14953 25835
7 45 146 385 951 2133 4551 9142 17639 32680 58659
8 67 228 623 1614 3775 8424 17639 35492 68356 127443
9 97 340 977 2627 6437 14953 32680 68356 136936 264747

10 139 506 1501 4202 10692 25835 58659 127443 264747 530404

Theorem 6.3. The formula corresponding to that of Theorem 6.2 for m roots of degrees
(a1, a2, . . . , am) is given by

∑
c

n∏
k=1

kckck!
∑

∀i,p1i+p2i+···+pdi=ci

∑
∀d=1,2,...,m,(

1pd12pd2 ···a
pdad
d

)
∈Pad

1∏m
d=1

∏ad
i=1 i

pdipdi!
,

where the sum
∑
c is over all partitions 1c12c2 · · ·ncn ∈ Pn.

Proof. This proof uses the same arguments as for Theorem 6.2.

Using the formula from Theorem 6.3 for the calculations, we present in Table 6 the
maximum number of imbedding-types for triply rooted graphs with root-vertices of va-
lences 1 ≤ i, j, k ≤ 5.
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Table 6: The maximum number of imbedding-types for three roots, of valences i, j, k
for i = 1, 2, 3, 4, 5.

i = 1

j\k 1 2 3 4 5
1 6 14 28 52 90
2 14 38 84 170 316
3 28 84 206 450 899
4 52 170 450 1058 2254
5 90 316 899 2254 5110

i = 2

j\k 1 2 3 4 5
1 14 38 84 170 316
2 38 120 290 644 1284
3 84 290 788 1886 4074
4 170 644 1886 4868 11214
5 316 1284 4074 11214 27556

i = 3

j\k 1 2 3 4 5
1 28 84 206 450 899
2 84 290 788 1886 4074
3 206 788 2370 6146 14302
4 450 1886 6146 17170 42696
5 899 4074 14302 42696 112966

i = 4

j\k 1 2 3 4 5
1 52 170 450 1058 2254
2 170 644 1886 4868 11214
3 450 1886 6146 17170 42696
4 1058 4868 17170 51630 137070
5 2254 11214 42696 137070 387146

i = 5

j\k 1 2 3 4 5
1 90 316 899 2254 5110
2 316 1284 4074 11214 27556
3 899 4074 14302 42696 112966
4 2254 11214 42696 137070 387146
5 5110 27556 112966 387146 1161498
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7 Conclusions
We have focused here primarily on the computational aspects involved in applying string
operations toward the determination of genus polynomials of graphs. We recognize the
following two immediate benefits of the string-operations paradigm:

1. It enables us to reduce the number of partial genus polynomials (one for each imbed-
ding-type) into which a genus polynomial must be partitioned.

2. The imbedding-types, the production matrix, and the partial genus polynomials
(which are the coordinates of a pgd-vector) can be calculated by a computer pro-
gram, which enables us to generate a much larger set of experimental data.

Beyond using string operations in new calculations of enumerative results on graph
imbeddings, some new theoretical insights may arise from them. One may reasonably
consider how the paradigm of string operations relates to the log-concavity conjecture, that
every genus polynomial is log-concave (see [16, 18]). We observe that using Theorem 4.7.2
of [29] could give generating functions for the individual entries of a power of a production
matrix.

In a sequel [15], we regard a linear family of graphs as a Markov process is which the
states are i-types and a slightly modified form of the production matrix is the transition
matrix. We explore the properties of such Markov processes.

The methods described here seem amenable to extension. Suppose that instead of a
fixed production matrix M(z) for a graph sequence {Gn : n = 0, 1, . . .}, with pgd-vectors
Vn(z) we had a sequence of production matrices Mn(z), such that Recursion (4.1) was
generalized to

Mn(z)vn(z) = Vn+1(z),

and Equation (4.2) to

Vn(z) = Mn−1(z)Mn−2(z) · · ·M0(z)V0(z).

A tractable recursion or a closed formula for Mn(z) would enable us to calculate the pgd-
vector Vn(z) reasonably rapidly. Of course, such a sequence of production matrices corre-
sponds to a non-stationary Markov process.
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Abstract

In this paper, we consider the finite groups which act on the 2-sphere S2 and the pro-
jective plane P2, and show how to visualize these actions which are explicitly defined. We
obtain their quotient types by distinguishing a fundamental domain for each action and
identifying its boundary. If G is an action on P2, then G is isomorphic to one of the fol-
lowing groups: S4, A5, A4, Zm or Dih(Zm). For each group, there is only one equivalence
class (conjugation), and G leaves an orientation reversing loop invariant if and only if G
is isomorphic to either Zm or Dih(Zm). Using these preliminary results, we classify and
enumerate the finite groups, up to equivalence, which act on P2×I and the twisted I-bundle
over P2. As an example, if m > 2 is an even integer and m/2 is odd, there are three equiv-
alence classes of orientation reversing Dih(Zm)-actions on the twisted I-bundle over P2.
However if m/2 is even, then there are two equivalence classes.

Keywords: Achiral symmetry, chiral symmetry, equivalence of actions, finite group action, isometry,
orbifold, symmetry.

Math. Subj. Class.: 57S25, 05E18, 57M60, 57R18, 58D19, 57M20

1 Introduction
The finite orientation preserving groups which act effectively on S2 are known. (See for
example Gross and Tucker [5] and Zimmermann [9].) They are the octahedral symmetric
group S4, the dodecahedral/icosahedral alternating group A5, the tetrahedral alternating
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group A4, the cyclic group Zm or the dihedral group Dih(Zm). Using this classification,
the actions on the projective plane P2 are also known as folklore, and one can easily com-
pute them by this theorem of Singerman [7] and Tucker [8].

Theorem. Let F be a closed non-orientable surface and let p : F̃ → F be the orientable
double cover with covering translation t : F̃ → F̃ . Then any finite group G acting on F ,
lifts to an orientation preserving action of G on F̃ that commutes with t. Moreover, the
action of G on F is determined by the action of G× 〈t〉 on F̃ .

If t : S2 → S2 is the covering translation such that S2/〈t〉 = P2, one checks that
any rotation of S2 commutes with t. Therefore since these groups consists of rotations,
it follows that the orientation preserving actions on S2 project to P2, giving the following
corollary.

Corollary. Any finite group acting on P2 is isomorphic to one of the following groups: S4,
A5, A4, Zm or Dih(Zm).

A finite G-action on a manifold M is a monomorphism ϕ : G → Homeo(M), where
G is a finite group, and Homeo(M) is the group of homeomorphisms of M . Two actions
ϕ1 and ϕ2 are equivalent if there exists a homeomorphism h ofM such that hϕ1(G)h−1 =
ϕ2(G). For an action ϕ, the quotient space M/ϕ is an orbifold which is referred to as the
quotient type of the action.

In this paper, we describe how to visualize the finite groups which act on the 2-sphere
S2 and the projective plane P2, and show how to obtain their quotient types. Our approach,
for the groups which are not cyclic or dihedral, is to view these groups as subgroups of the
symmetric group Sn for an appropriate n, tiling the 2-sphere with appropriate polygons
with n vertices for each group, and explicitly defining each action. As for the cyclic and
dihedral groups, we use spherical coordinates to precisely describe their actions on S2. For
all these groups, we can easily identify an explicit fundamental region for each action and
see its quotient type, which is obtained by identifying the boundary of the fundamental
region. In this way, it is easy to see the actions on S2, P2 and their quotient types. This part
of the paper may be considered expository, and we obtain the following theorem where the
description of these quotient types may be found in Figure 1.

Theorem 7.1. Let ϕ : G→ Homeo(P2) be a finite group action on P2. Then G is isomor-
phic to one of the following groups: S4, A5, A4, Zm or Dih(Zm). The orbifold quotient
P2/ϕ is an orbifold homeomorphic to one of the following orbifolds: Oh, Ih, T v , Zhm,
S2m, Dv

m or Dh
m. There is only one equivalence class for each group.

(1) G ' S4 if and only if P2/ϕ = Oh.

(2) G ' A5 if and only if P2/ϕ = Ih.

(3) G ' A4 if and only if P2/ϕ = T v .

(4) G ' Zm and m is even if and only if P2/ϕ = Zhm.

(5) G ' Zm and m is odd if and only if P2/ϕ = S2m.

(6) G ' Dih(Zm) and m odd if and only if P2/ϕ = Dv
m.

(7) G ' Dih(Zm) and m even if and only if P2/ϕ = Dh
m.
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This approach relates to topics in topological graph theory found in Gross and
Tucker [5]. There, graphs are embedded on surfaces and finite groups act on these spaces
with quotient spaces, branch covering maps and branch points, relating to orbifold covering
maps and cone points.

Using the above result, we classify in Theorem 7.4 the finite group actions, up to equiv-
alence, on P2 × I for I = [0, 1]. If G is an action on P2 × I , then G is isomorphic to
one of the following groups: S4, S4 × Z2, A5, A5 × Z2, A4, A4 × Z2, Zm, Zm × Z2,
Dih(Zm) or Dih(Zm)×Z2. We indicate the number of equivalence classes for each group
in Theorem 7.4. If W is the twisted I-bundle over the projective plane P2, then we obtain
the following results:

Corollary 8.12. Let ϕ : G → Homeo(W ) be a finite orientation preserving G-action on
W . Then G is isomorphic to one of the following groups: S4, A5, A4, Zm or Dih(Zm).
The orbifold quotient for each action is a twisted I-bundle orbifold over the following
2-orbifolds: Oh (for S4), Ih (for A5), T v (for A4), Zhm (for Zm and m even), S2m (for
Zm and m odd), Dv

m (for Dih(Zm) and m odd) and Dh
m (for Dih(Zm) and m even).

There is one equivalence class for each quotient type.

Theorem 9.4. Let ϕ : G → Homeo(W ) be an orientation reversing G-action. Then G
is isomorphic to one of the following groups: S4, Zm with m even, Dih(Zm), S4 × Z2,
A5 × Z2, A4 × Z2, Zm × Z2 or Dih(Zm)× Z2.

(1) If G is either S4, S4 × Z2, A5 × Z2, A4 × Z2, Zm × Z2 with m even or Dih(Zm)
with m odd, there is only one equivalence class.

(2) If G is Zm with m > 2 even and m/2 odd, then there are two equivalence classes of
Zm = Zm/2 × Z2-actions on W .

(3) If G is Zm with either m/2 even or m = 2, then there is only one equivalence class.

(4) If G is Dih(Zm) with m > 2 and m/2 even, there are two equivalence classes of
Dih(Zm)-actions on W .

(5) If G is Dih(Zm) with m > 2 and m/2 odd, there are three equivalence classes of
Dih(Zm)-actions on W .

(6) If G is Dih(Zm)× Z2 with m even, there is only one equivalence class.

(7) If G is Dih(Zm)× Z2 with m odd, then Dih(Zm)× Z2 ' Dih(Z2m) and there are
three equivalence classes of Dih(Z2m)-actions on W .

We list all the closed 2-orbifolds with positive Euler number, of which there are 14.
(See Figure 1.) In referring to these orbifolds, we use Schönflies notation found in Coxeter
and Moser [1], and Dunbar [3].

There are five orientable 2-orbifolds with positive Euler number which have as their
underlying space a 2-sphere with the cone points indicated in the notation. They are
Σ(2, 2, n) = Dn, Σ(2, 3, 3) = T , Σ(2, 3, 4) = O, Σ(2, 3, 5) = I , and Σ(n, l) = Cn,l.
These double cover the following nine non-orientable 2-orbifolds where the double lines
are reflector lines. The superscripts h and v stand for horizontal and vertical reflections in
their orientable double covers. Except for Σ(n, l) = Cn,l where the cone points are at the
north and south poles, all the cone points are located on the equator.

In this article, where appropriate and depending on the context, we use the same symbol
to denote the quotient space and the group acting on S2. For example, O = Σ(2, 3, 4) and
O also denote the octahedral group.
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Figure 1: The nine non-orientable 2-orbifolds of positive Euler number.

Here is a brief outline of the paper. We consider each of these orbifolds in Sections 2
through 6, and give model maps which we consider as standard actions, to obtain each
quotient type. Summarizing we give the main results for finite actions on P2 and P2 × I
in Section 7. Sections 8 and 9 are devoted to classifying the finite actions on the twisted
I-bundle W over P2.

The authors wish to thank the referees for many helpful comments and suggestions.

2 Chiral octahedral symmetry O and achiral octahedral symmetry Oh

We describe the groupsO = S4 andOh = S4×Z2 acting on the 2-sphere S2, and show how
O acts on the projective plane P2. We view S2 as an octahedron which has eight triangles
(faces): 4125,4145,4126,4146,4235,4236,4345 and4346. (See Figure 2.)

Consider elements of S6 where a = (1, 2)(3, 4)(5, 6) and b = (1, 2, 5)(3, 4, 6). The
two elements act on the octahedron. We can see that a is a 180◦ rotation about the axis
passing through the midpoint of edges 1, 2 and 3, 4. On the other hand, b is a 120◦ rotation
about the axis passing through the barycenter of 4125 and 4346 respectively. Further,
ab = (2, 6, 4, 5) where ab is a 90◦ rotation about the axis passing through vertices 1 and
3. As a result, the two elements a and b generate a group isomorphic to S4, and we denote
this group by O = 〈a, b | a2 = b3 = (ab)4 = 1〉, the octahedral group.

Next, we use Σ to denote the quotient space of S2 byO, and we will find a fundamental
region for Σ on S2. We first claim that4125 will tile the whole octahedron S2 by the action
of O. Observe that the action by a sends4125 to4216. Further, b2(ab)b−2 = (1, 4, 3, 2)
is a 90◦ rotation about the axis passing through vertices 5 and 6, which shows our claim.

Note that the number of fundamental regions for Σ on S2 must be 24 as the number is
the order of the octahedral group O = S4. Since the S2 currently has eight faces, we will
have to triangulate them further. Our approach is that we will add one more vertex on the
barycenter on each triangle. For instance, one of the triangulations on 4125 is shown in
the Figure 2.

We now show that 412y becomes a fundamental region for Σ. Since a rotational axis
of b passes the vertex y, the barycenter of 4125, one can see that b permutes those three
triangles 412y, 451y and 425y. In the meantime, edges 1, x1 and 2, x1 are identified
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Figure 2: S2 as an octahedron.

by a. Likewise, edges 1, y and 2, y are identified by b. Points 1, x1 and y will be cone
points under the action. Each has an order 4, 2 and 3 respectively. Consequently, we obtain
Σ = S2/O = Σ(2, 3, 4).

In order to obtainOh, we consider an action i = (1, 3)(2, 4)(5, 6) which is the antipodal
map on S2. Notice that the antipodal map commutes with the elements in O, hence it
induces the reflection map on S2/O = Σ(2, 3, 4). Now, we choose a triangle whose vertices
are 1, x1 and y. Apply (ab)2b(ab)i on the triangle gives us the triangle with vertices 2, x1
and y. Notice that segments 1x1 and 2x1; 1y and 2y have been identified under O-action
and the segment x1y has been fixed under the map (ab)2b(ab)i. This argument shows that
41x1y is a fundamental region for O × 〈i〉-action on S2. The vertices of 41x1y become
corner reflectors, and the edges minus the vertices become the reflector lines. As a result,
S2/[O × 〈i〉] = Oh, where O × 〈i〉 = S4 × Z2 = π1(Oh).

We remark that S2/〈i〉 = P2 is the projective plane. Since the antipodal map i com-
mutes with O, the octahedral action on S2 induces the action generated by ā and b̄ on P2,
which is isomorphic to the octahedral groupO. As a result, we also obtain P2/〈ā, b̄〉 = Oh.
We will now describe the octahedral action O on P2.

The left diagram in Figure 3 illustrates a fundamental region on S2 used to obtain P2

under the antipodal map i = (1, 3)(2, 4)(5, 6). For any arc x, y, z, we let [x, y, z] be its
projection in P2. The arc 1, 2, 3 (or 3, 4, 1 etc) on S2 projects to an orientation reversing
loop [1, 2, 3] on P2. The generator a maps the loop [1, 2, 3] onto [2, 1, 4] = [2, 1][1, 4] =
[2, 1][3, 2], which traces the same loop as [1, 2, 3] starting at a different point. Thus a leaves
the loop [1, 2, 3] invariant and restricted to this loop is a rotation. On the other hand, the
map bmaps the loop [1, 2, 3] onto [2, 5, 4] whose image is shown as a bold line in the middle
diagram in Figure 3 above. Moreover, b

2
maps the loop [1, 2, 3] onto the loop [1, 3, 5]. Thus

the Z3-action generated by b does not leave the orientation reversing loop [1, 2, 3] on P2

invariant.
However, it is important to emphasize that this does not imply the Z3-action leaves no

orientation reversing loops invariant. In fact, we can find another orientation reversing loop
on P2 which is left invariant under the map b. It can be found by looking at the octahedron
S2 which double covers P2. Consider the circle on S2 which contains the vertices consisting
of the midpoints of 4, 5, 5, 3, 3, 2, 2, 6, 6, 1 and 1, 4. One can check that this circle is left
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invariant under b and the covering translation i, hence it projects to an orientation reversing
loop on P2 left invariant under b. It follows that the entire S4-action on P2 does not leave
any orientation reversing loop invariant.
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Figure 3: Fundamental region on octahedron.

Lemma 2.1. Let Z2 be a subgroup of π1(Oh) such that P2 → Oh is the covering corre-
sponding to Z2. Then Z2 = 〈i〉.

Proof. We will show that there is only one element of order two in Oh = S4 × Z2 acting
on S2 which is fixed point free and orientation reversing, and that element is i. Since the
elements in S4 and Z2 commute, we will first look at all elements of order two in S4.
In this group, there are nine such elements. Six of them are a rotation of 180◦ where
their rotational axes are on midpoints of edges. For example, one rotational axis passes
the midpoint of 1, 4 and 2, 3. Another one passes the midpoint of 2, 5 and 4, 6. Notice
that all six types of these rotations are conjugate in S4. Moreover, there are three types
of 90◦ rotations, call them r1, r2 and r3, where r1 = (1, 2, 3, 4), r2 = (1, 6, 3, 5) and
r3 = (2, 5, 4, 6) respectively. Clearly, they generate three kinds of 180◦ rotations which
are conjugate in S4. As a result, S4 has two conjugacy classes of order two elements, and
we will choose a and (ab)2 from the group to represent each class. There is an easy way to
verify if two elements in Sn are conjugate for n ∈ N by checking their cycle types. (See [2,
Chapter 4].) Now, we compose them with the antipodal map i to obtain ai = (1, 4)(2, 3)
and (ab)2i = (1, 3). Since both maps have a fixed point, if P2 → Oh is the covering
corresponding to any Z2, then Z2 = 〈i〉.

Proposition 2.2. Let ϕ : G→ Homeo(P2) be a finite action such that P2/ϕ is homeomor-
phic to Oh. Then G ' S4 and ϕ is conjugate to the standard action S4 = 〈ā, b̄〉. Moreover,
no orientation reversing loop is left invariant by the G-action.

Proof. Let ν : P2 → P2/〈ā, b̄〉 and νϕ : P2 → P2/ϕ be the orbifold covering maps. By
assumption there exists a homeomorphism h : P2/〈ā, b̄〉 → P2/ϕ. By Lemma 2.1, the Z2

subgroup of π1(P2/ϕ) giving rise to a covering P2 → P2/ϕ is unique. Hence h lifts to a
homeomorphism h̃ : P2 → P2 and we obtain the following commutative diagram:

P2 h̃−→ P2

↓ν ↓νϕ
P2/〈ā, b̄〉 h−→ P2/ϕ

This implies that G ' S4 and h̃ conjugates ϕ to the standard action 〈ā, b̄〉.
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3 Chiral dodecahedral/icosahedral symmetry I and achiral dodeca-
hedral/icosahedral symmetry Ih

We describe the groups I = A5 and Ih = I × Z2 = A5 × Z2 acting on the 2-sphere S2,
and show how A5 acts on P2.

We view S2 as a dodecahedron consisting of 12 pentagons as shown in the first two
figures from the left in Figure 4. We also consider two elements a and b in S20 where
a = (1, 2)(3, 7)(4, 13)(5, 8)(6, 14)(9, 12)(10, 19)(11, 20)(15, 18)(16, 17) and the element
b = (2, 5, 7)(3, 6, 13)(4, 12, 8)(9, 11, 19)(10, 18, 14)(15, 17, 20). The two elements act
on the dodecahedron S2, and we can see that a is a 180◦ rotation about the axis passing
through the midpoint of edges 1, 2 and 16, 17. On the other hand, b is a 120◦ rotation about
the axis passing through the vertices 1 and 16. Moreover, ab−1 is a 72◦ rotation about the
axis passing through the barycenter of the pentagon whose vertices are 1, 2, 3, 4, 5 and
16, 17, 18, 19, 20 respectively since ab−1 = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)(11, 12, 13, 14, 15)
(16, 17, 18, 19, 20). Consequently, a and b generate a group isomorphic to I = A5 written
by I = 〈a, b | a2 = b3 = (ab−1)5 = 1〉.

We use Σ to denote the quotient space of S2 by I , and we will look for a fundamental
region for Σ on S2. We will first observe that one of the pentagons consists of vertices 1, 2,
3, 4 and 5 tiles the remaining pentagons on S2. This pentagon is sent to the pentagon with
the vertices 1, 5, 6, 12, 7 by b. Then, ab−1 permutes the remaining pentagons in the front
of S2. On the other hand, (ab−1)2 sends the vertices 1, 5, 6, 12, 7 to the vertices 4, 3, 9, 15,
10. Then, the map a sends them to the vertices 13, 7, 12, 18, 19 on the back of S2. At this
stage, one can see that ab−1 permutes all pentagons on the back of S2 except the one on
the center whose vertices are 16, 17, 18, 19, 20. However, it can be obtained by applying
the map b−1(ab−1)2 on the vertices 4, 3, 9, 15, 10.
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Figure 4: S2 as a dodecahedron.

Next, we will add a vertex on the barycenter of the pentagon 1, 2, 3, 4, 5 (see Figure 4),
which we denote by y. We also add vertices xi (1 ≤ i ≤ 5) on this pentagon. We can
see that 412y tiles the remaining triangles on the pentagon 1, 2, 3, 4 and 5 (see Figure 4)
by the map ab−1. By the argument above, this proves that 412y is a fundamental region
for Σ. Now the edges 1, x1 and 2, x1 are identified by a ∈ I . Likewise, ab−1 ∈ I
identifies edges 1, y and 2, y. The vertices 1, x1 and y are fixed by the elements b, a and
ab−1 respectively. Thus, the vertices project to the cone points on Σ of orders 3, 2 and 5
respectively. Consequently, Σ = S2/I = Σ(2, 3, 5).
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In order to obtain Ih, we consider an antipodal map on S2 defined by i = (1, 16)(2, 17)
(3, 18)(4, 19)(5, 20)(6, 14)(7, 15)(8, 11)(9, 12)(10, 13). It is easy to check that the antipo-
dal map commutes with the elements of I , hence I × Z2 = 〈a, b, i | a2 = b3 = (ab−1)5 =
i2 = 1, [a, i] = [b, i] = 1〉. As a result, i induces the reflection map on S2/I = Σ(2, 3, 5).

We choose a triangle whose vertices are 1, x1 and y on the fundamental region 412y.
When the map a(ab−1)3b−1(ab)i is applied on41x1y, its image is44x3y. Since44x3y
is identified to42x1y by (ab−1)−2 ∈ I , this shows the antipodal map i on S2 induces the
reflection map on Σ(2, 3, 5) at its equator line. Consequently, S2/[I × 〈i〉] = Ih, where
I × 〈i〉 = A5 × Z2. The quotient space S2/[I × 〈i〉] is a mirrored disk where cone points
of order 2, 3 and 5 are on the mirror.

Note that S2/〈i〉 = P2 is the projective plane and the map i commutes with I . Thus, the
icosahedral action on S2 induces the action generated by ā and b̄ on P2, which is isomorphic
to the icosahedral group I . Hence, we obtain P2/〈ā, b̄〉 = Ih.

We will now describe the I = A5-action on P2, and show that it is unique up to conju-
gation. The front and back of S2 in Figure 4 describe a fundamental region used to obtain
P2 = S2/〈i〉 where i is the antipodal map on S2. Note that the boundary of each region
in the diagram is left invariant and the interior of each region is exchanged under i. The
arc 7, 13, 8, 14, 9, 15 (or 15, 10, 11, 6, 12, 7 etc) projects to an orientation reversing loop
[7, 13, 8, 14, 9, 15] on P2. The map ab−1 leaves the outer most loop containing the arc in-
variant up to the covering translation i. Thus, the induced map ab−1 in P2 leaves this orien-
tation reversing loop invariant. On one hand, a leaves the circle containing vertices 1, 2, 3,
9, 15, 16, 17, 18, 12, 7, 1 in S2 invariant which double covers an orientation reversing loop
on P2. Note that a leaves this orientation reversing loop invariant. However, the orientation
reversing loops [7, 13, 8, 14, 9, 15] and [3, 4, 5, 6, 12, 18] = [3, 4, 5, 6, 9, 3] in P2 are ex-
changed by a. Finally, b will induce a map b on P2. One can see this since three orientation
reversing loops in P2, namely [7, 13, 8, 14, 9, 15], [2, 3, 4, 10, 11, 17] = [2, 3, 4, 10, 8, 2]
and [5, 6, 12, 18, 4, 5] = [5, 6, 9, 3, 4, 5], are permuted under b.

Note that although we can find an orientation reversing loop left invariant under b, no
common orientation reversing loop exists which is left invariant by both a and b since the
two maps generate an A5-action on P2.

Lemma 3.1. Let Z2 be a subgroup of π1(Ih) such that P2 → Ih is the covering corre-
sponding to Z2. Then Z2 = 〈i〉.

Proof. We claim that there is only one element of order two in Ih = A5 × Z2 acting
on S2 which is fixed point free and orientation reversing up to a conjugacy. Notice that
all elements in Ih have the form of albmin for some l,m, n ∈ Z where a, b ∈ A5 and
i ∈ Z2. Since a corresponding covering space must be regular, the group generated by
albmin must be a normal subgroup in Ih. In particular, albm generates a normal subgroup
of A5 which is impossible unless l = m = 0. Therefore, a covering space of the orbifold
Ih corresponding to a Z2 subgroup in π1(Ih) = A5 × Z2 is S2/〈i〉 = P2. Therefore, an
A5-action on P2 with quotient type Ih is unique up to conjugacy.

Proposition 3.2. Let ϕ : G→ Homeo(P2) be a finite action such that P2/ϕ is homeomor-
phic to Ih. Then G ' A5 and ϕ is conjugate to the standard action I = 〈ā, b̄〉. Moreover,
no orientation reversing loop is left invariant by the G-action.

Proof. The proof is similar to that of Proposition 2.2 and uses the above Lemma 3.1.
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4 Chiral tetrahedral symmetry T and pyritohedral symmetry T v

We consider the groups T = A4 and T v = T × Z2 = A4 × Z2 acting on the 2-sphere S2
and describe how T acts on the projective plane.
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Figure 5: S2 as a tetrahedron.

We view S2 as a tetrahedron which has four faces: 4124,4134,4234 and4123 (see
Figure 5). We add a total of 14 vertices on the faces to triangulate the tetrahedron, and
4123 in the Figure 5 illustrates a “bottom” of the tetrahedron.

Consider elements of S14 where a = (1, 2, 3)(5, 6, 7)(9, 14, 13)(10, 12, 11) and b =
(1, 2)(3, 4)(5, 8)(6, 7)(10, 13)(11, 14). These two generators act on the tetrahedron S2.
For instance, a is a 120◦ rotation about the axis passing throught the vertices 4 and 8; and
b is a 180◦ rotation about the axis passing throught the vertices 9 and 12. It is easy to see
that ab = (1, 3, 4)(5, 8, 6)(9, 14, 10)(11, 13, 12) is a 120◦ rotation about the axis passing
through the vertices 2 and 7. Hence, the two elements a and b generate a group isomorphic
to A4, and we call this group by T = 〈a, b | a3 = b2 = (ab)3 = 1〉, which is the tetrahedral
group.

Let Σ be the quotient space of S2 by the group T . We will observe that the face4123
on the “bottom” of this tetrahedron tiles the rest of its faces. To understand this, we look
at the map b which sends from 4123 to 4124. Then, the map a permutes 4124 by 120◦

each time to tile the whole tetrahedron. However, this argument shows that we may choose
4128 for a fundamental region for Σ since the map a permutes within the three triangles
4128,4238 and4318 on the “bottom” face4123 of S2.

Notice that b, which has the order two, fixes the vertex 9. Hence, it becomes an excep-
tional point of order two. Further, b identifies edges 1, 9 and 2, 9. On the other hand, a fixes
the vertex 8, hence this vertex becomes a cone point of order three. Also, a identifies edges
1, 8 and 2, 8. Moreover, the map ab, which has an order three, fixes the vertex 2 to obtain
an additional cone point of order three. Consequently, Σ = S2/T = Σ(2, 3, 3).

Next, we will discuss how to obtain T v . An antipodal map defined by i = (1, 6)(2, 7)
(3, 5)(4, 8)(9, 12)(10, 13)(11, 14) on S2 commutes with the elements in T , hence we have
T × Z2 = 〈a, b, i | a3 = b2 = (ab)3 = i2 = 1, [a, i] = [b, i] = 1〉 and i induces a map on
S2/T = Σ(2, 3, 3). However, it requires some work to analyze what map i induces on the
orbifold Σ(2, 3, 3).

First, let x and y be the mid-point of the edge 1, 8 and 2, 8 respectively. Since the points
x and y are identified in Σ(2, 3, 3) by a ∈ T , we may view the union of x, 9 and 9, y as
the vertical equator line on Σ(2, 3, 3). Notice that the induced map i on Σ(2, 3, 3) fixes all
points on the vertical equator line. It can be checked by observing that a−1(ab)−1(a2b)i
fixes the points on the line x, 9; and (ab)(a2b)i fixes the points on the line 9, y.

Secondly, we will show that the induced map i on Σ(2, 3, 3) is a reflection on the
vertical equator line x, 9 ∪ 9, y. To see this, consider 4189 lying on our fundamental
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region 4128. Apply the map a(ab)2i on 4189 gives us 4819 which is a reflection on
x, 9. Likewise,4289 is reflected on 9, y by the map a(ab)2bi to get4829. As a result, the
induced map i on Σ(2, 3, 3) is a reflection at the vertical equator line on the orbifold.

By the argument above, S2/[T × 〈i〉] = T v , where T × 〈i〉 = A4 × Z2 and the
quotient space S2/[T × 〈i〉] is a mirrored disk containing a corner reflector containing one
exceptional points of order 2 and 3 on it and one exceptional point of order 3 in its interior.

Recall that the antipodal map i commutes with T on S2, hence a, b ∈ T induce maps
ā and b̄ on S2/〈i〉 = P2. Moreover, P2/〈ā, b̄〉 = S2/[T × 〈i〉] = T v , where 〈ā, b̄〉 is
isomorphic to T .

We will now describe the T = A4-action on P2 and show that it is unique up to conju-
gacy.
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Figure 6: Fundamental region on tetrahedron.

The left diagram in Figure 6 above illustrates a fundamental region on S2 used to obtain
P2 under the antipodal map i, where S2 is viewed as in Figure 5 and S2/〈i〉 = P2. This
can be seen by observing the circle containing vertices, 5, 2, 14, 3, 7, 11 is left invariant by
i, and the vertices 4, 10, 6, 12 are sent to 8, 13, 1, 9 respectively. The projective plane is
obtained by identifying the opposite side in this polygon.

Recall a and b are generators of the tetrahedral group T = A4 operating on S2. Further-
more i /∈ T = A4. Thus T induces an action on P2 and the elements a, b ∈ T induce maps
a, b on P2. Notice that the generator a maps the loop [5, 2, 14, 3] = [5, 2][2, 14][14, 3] in P2

onto [6, 3][3, 13][13, 1] = [6, 3][5, 10][10, 6] = [6, 3, 5, 10, 6] = [5, 10, 6, 3], and a2 maps
this loop onto [2, 6, 12, 7]. Each image is expressed as a bold line in the Figure 6 above.
Thus, the map a does not leave this orientation reversing loop invariant in P2. Likewise, ab
and (ab)

2
map the loop [5, 2, 14, 3] = [2, 14, 3, 7] onto [2, 10, 4, 7] and [2, 6, 12, 7] respec-

tively. Furthermore, b maps the loop [5, 2, 14, 3] onto [11, 4, 6, 14]. The loop consists of
vertices 2, 6, 12, 7, 1 and 9 on the tetrahedron S2 is left invariant by the map b ∈ T and the
covering translation i, hence the arc having vertices 2, 6, 12 and 7 projects to an orientation
reversing loop on P2. There is no orientation reversing loop in P2 which is left invariant by
both a and b.

Lemma 4.1. Let Z2 be a subgroup of π1(T v) such that P2 → T v is the covering corre-
sponding to Z2. Then Z2 = 〈i〉.

Proof. We will show that the orbifold T v has only one P2 covering space up to a conjugacy.
Notice that A4 has three elements of order two. These elements are b, aba−1 and a2ba−2,
which are all equivalent. Thus, A4 × Z2 has two conjugacy classes of order two elements
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which reverse orientation, namely bi and i. Since bi = (1, 7)(2, 6)(3, 8)(4, 5)(9, 12) fixing
vertices 10, 11, 13 and 14, we have a desired conclusion.

Proposition 4.2. Let ϕ : G → Homeo(P2) be a finite action such that P2/ϕ = T v . Then
G ' A4 and ϕ is conjugate to the standard action generated by 〈ā, b̄〉. Moreover, no
orientation reversing loop is left invariant by the G-action.

Proof. The proof follows as in Proposition 2.2 and uses Lemma 4.1.

We remark that [4] contains excellent figures to show us how each element in A4 acts
on a tetrahedron.

5 Achiral tetrahedral symmetry T h

In Section 1, we have seen the O = S4-action on S2 where S2/O is Σ(2, 3, 4), which is
an orientable orbifold. In this section, we will investigate another O = S4-action on S2.
However, the resulting quotient space S2/O = Th will be non-orientable this time. More
specifically, it will be a mirrored disk which contains two cone points of order three and
one cone point of order two on the mirror. Note that we will triangulate S2 as shown in
Section 4 which is a tetrahedron.

First, we will begin by providing generators to define a group isomorphic to S4. Con-
sider two elements a = (1, 2)(6, 7)(10, 11)(13, 14) and b = (2, 4, 3)(5, 7, 8)(9, 11, 13)
(10, 12, 14) in S14. We can see that a is a reflection on the circle containing vertices 4, 5,
9, 8, 3 and 12 in S2. On the other hand, b is a 120◦ rotation about the axis passing through
vertices 1 and 6. It is easy to check ab = (1, 2, 4, 3)(5, 6, 7, 8)(9, 10, 12, 13)(11, 14). Al-
though ab reverses an orientation, it is called improper rotation. As a result, S4 = 〈a, b |
a2 = b3 = (ab)4 = 1〉.

Secondly, A4 is an index two subgroup of S4 and the subgroup can be expressed by
using the two generators for S4. In order to get a presentation for A4, consider (ab)2 =
(1, 4)(2, 3)(5, 7)(6, 8)(9, 12)(10, 13) which is a 180◦ rotation about the axis passing
through vertices 11 and 14. Then, b(ab)2 = (1, 3, 4)(5, 8, 6)(9, 14, 10)(11, 13, 12) is a
120◦ rotation about the axis passing through vertices 2 and 7. Consequently, we obtain a
desired subgroup A4 = 〈b, (ab)2 | [(ab)2]2 = b3 = [b(ab)2]3 = 1〉.

Thirdly, we will look for a fundamental region for S2/A4. It is easy to compute that the
map b permutes4134,4123 and4142. Further, b(ab)2 maps from4123 to4432. Thus,
we will look at4134. However,4137 tiles4134 using the element b(ab)2. Then, the ver-
tices 1 and 7 become order 3 cone points since they are fixed by b and b(ab)2 respectively.
Thus, we may choose4137 for our fundamental region. Notice that the vertex 11 is fixed
under (ab)2, which becomes the order 2 cone point, and it is identified to the vertex 13 by
b(ab)2 ∈ A4. Now, b(ab)2 identifies 1, 7 and 3, 7; b(ab)2b−1 identifies 1, 13 and 3, 13. As
a result, the quotient space S2/A4 is indeed Σ(2, 3, 3).

Finally, we will discuss how to obtain the orbifold Th. Recall the map a ∈ S4 re-
flects on the circle containing vertices 4, 5, 9, 8, 3 and 12 in S2. We compose this map
by a covering translation (ab)−1[(ab)2b]2(ab) = (1, 2, 3)(5, 6, 7)(9, 14, 13)(10, 12, 11) ∈
A4, which is a 120◦ rotation about the axis passing through vertices 4 and 8. Then,
(ab)−1[(ab)2b]2(ab)a sends the triangle containing vertices 1, 13 and 7 to the triangle
containing vertices 3, 7 and 13. Notice that 1, 7 and 3, 7 are identified in Σ(2, 3, 3). Like-
wise, 1, 13, and 3, 13 are identified. Thus, the circle containing vertices 1, 7, 13 becomes
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the line of reflection under the map induced by a on Σ(2, 3, 3). Consequently, we obtain
S2/S4 = Th.

Unlike the previous orbifolds, Th is not covered by a projective plane. Notice that
π1(Th) = S4 contains six elements of order two which are orientation reversing. All
of them are a reflection at a plane whose intersection with the tetrahedron is a triangle
containing either vertices 2, 11, 3; vertices 1, 12, 2; vertices 3, 10, 1; vertices 4, 9, 3;
vertices 4, 13, 2; or vertices 4, 14, 1. Clearly, none of them give a fixed point free action on
the tetrahedron S2, and hence this yields the following lemma.

Lemma 5.1. The orbifold Th is not covered by a projective plane.

6 Cyclic and dihedral actions
We describe the cyclic and dihedral actions on S2 and the projective plane P2. In describ-
ing these actions, it is convenient to use spherical coordinates. Therefore for any point
(x, y, z) ∈ S2, we let x = sinφ · cos θ, y = sinφ · sin θ and z = cosφ.

We begin by defining a rotation of order m on S2 as follows:

r(x, y, z) =
(

sinφ · cos(θ + 2π
m ), sinφ · sin(θ + 2π

m ), cosφ
)
.

Note that r fixes only the points (0, 0, 1) and (0, 0,−1).
A spinning map s which rotates through an angle of π about the y-axis is defined by

s(x, y, z) = (−x, y,−z). In terms of the spherical coordinate system, the map is defined
by

s(x, y, z) =
(

sin(φ+ π) · cos(−θ), sin(φ+ π) · sin(−θ), cos(φ+ π)
)
.

One can check that s ◦ r ◦ s−1 = r−1, and therefore 〈r, s〉 generates a dihedral group
Dih(Zm) acting on S2.

Finally we define the antipodal map i on S2 by i(x, y, z) = (−x,−y,−z). In terms of
the spherical coordinate system,

i(x, y, z) =
(

sin(φ+ π) · cos θ, sin(φ+ π) · sin θ, cos(φ+ π)
)
.

We have S2/〈i〉 = P2. Observe that i ◦ s ◦ i−1 = s and i ◦ r ◦ i−1 = r. Hence i commutes
with r and s which implies the following lemma:

Lemma 6.1. The maps r and s induce homeomorphisms r̄ and s̄ on P2 respectively.

Let k(x, y, z) =
(

sinφ · cos(θ+ π
m ), sinφ · sin(θ+ π

m ), cosφ
)
. A computation shows

that k ◦ s ◦ k−1 = r ◦ s, k ◦ r ◦ k−1 = r and k ◦ i = i ◦ k. This implies that the induced
map k̄ on P2 conjugates s̄ to r̄ ◦ s̄ and commutes with r̄.

Notice that we can express the three maps above in terms of a PL-category. Letm ∈ N.
We assume that vertices from 1 to 2m are located on the equator line of S2. The vertices
2m+1 and 2m+2 are on the poles. As a result, we obtain 4mmany faces (triangles) from
these vertices on S2.

Ifm > 1 is odd, then the rotation r is expressed by r = (1, 3, . . . , 2m−1)(2, 4, . . . , 2m)
whose order is m. On one hand, if m is even, then r = (1, 2, 3, . . . , 2m) whose or-
der is 2m. In each case, the vertices 2m + 1 and 2m + 2 are fixed under r since they
are the north and the south poles. The spinning map for m > 1 passing through the
y-axis is defined by s = (2, 2m)(3, 2m − 1) · · · (m,m + 2)(2m + 1, 2m + 2). The
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vertices 1 and m + 1 are fixed under s. The antipodal map for m > 1 is defined by
i = (1,m+ 1)(2,m+ 2) · · · (m, 2m)(2m+ 1, 2m+ 2).

For the case when r has order two, we place vertices 1 to 4 on the equator of S2 and
vertices 5 and 6 are on the poles (see the Figure 2 in Section 2). Then r = (1, 3)(2, 4),
s = (2, 4)(5, 6), and i = (1, 3)(2, 4)(5, 6). Define a map j = (1, 6, 3, 5). A computation
shows that j ◦ s ◦ j−1 = r, j ◦ r ◦ j−1 = s and j ◦ i ◦ j−1 = i. Therefore s̄ is conjugate to
r̄ on P2. Summarizing we have the following lemma:

Lemma 6.2. There exists a homeomorphism k̄ on P2 which conjugates s̄ to r̄ ◦ s̄ and
commutes with r̄. When r̄ has order two, there exists a homeomorphism j̄ on P2 which
conjugates r̄ to s̄ and s̄ to r̄.

6.1 Quotient types Σ(0,m,m), Σ(2, 2,m), Dν
m and Dh

m

The space Σ(0,m,m) is an orbifold whose underlying space is a 2-sphere with two cone
points each of order m. Similarly Σ(2, 2,m) is an orbifold whose underlying space is a
2-sphere with three cone points, two of order 2 and one of order m. The orbifold Dν

m is
a mirrored disk containing a cone point of order m and 2 on the mirror and its interior
respectively. The orbifold Dh

m is a mirrored disk with three cone points on the mirror, one
of order m and two of order 2.

Observe that we obtain S2/〈r〉 = Σ(0,m,m), which double covers S2/〈r, s〉 =
Σ(2, 2,m). Since i commutes with r and s, we have Dih(Zm)× Z2 = [〈r〉 ◦−1 〈s〉]× 〈i〉
acting on S2. Now r and s acting on S2 induce a Dih(Zm)-action on S2/〈i〉 = P2. Further-
more, i operating on S2 induces an orientation reversing involution i on Σ(2, 2,m), and we
have Σ(2, 2,m)/〈i〉 = P2/〈r, s〉 = S2/(Dih(Zm) × Z2). Thus the fundamental group of
the quotient space P2/〈r, s〉 is Dih(Zm)× Z2 = [〈r〉 ◦−1 〈s〉]× 〈i〉.

Let p : S2 → S2/〈r, s〉 = Σ(2, 2,m) be the orbifold covering map and note that
p(0, 0, 1) = p(0, 0,−1) is the cone point of order m. Since i(0, 0, 1) = (0, 0,−1) and
s(0, 0,−1) = (0, 0, 1), it follows that i(p(0, 0, 1)) = p(0, 0, 1), and thus i fixes the cone
point of order m in Σ(2, 2,m). Hence i is a reflection. If m is odd, rk(0, 1, 0) 6= (0,−1, 0)
for any k. Thus p(0, 1, 0) and p(0,−1, 0) are the two distinct cone points of order 2 in
Σ(2, 2,m). If m is even, then p(0, 1, 0) = p(0,−1, 0) is a cone point of order 2 since
r

m
2 (0, 1, 0) = (0,−1, 0). We will consider the cases m odd and m even separately.

Suppose m is odd. Then since i(0, 1, 0) = (0,−1, 0), it follows that i(p(0, 1, 0)) =
p(0,−1, 0) and thus i exchanges the two cone points of order 2. Since i fixes the cone point
of order m, it follows that P2/〈r, s〉 = Dν

m. The order two elements in Dih(Zm)×Z2 are:
i, s, rjsi. One can check that

rjsi(x, y, z) =
(

sinφ · cos(−θ + 2πj
m ), sinφ · sin(−θ + 2πj

m ), cosφ
)
.

By choosing φ = 0 or π, the map fixes the points (0, 0,±1) on S2. Note that Σ(0, 2, 2) =
S2/〈s〉 is not a regular covering space of Dν

m since 〈s〉 is not a normal subgroup of
π1(Dν

m) = Dih(Zm) × Z2. Thus i is the only orientation reversing element which is
fixed-point free. This implies that when m is odd, π1(Dν

m) has a unique normal Z2 sub-
group generated by a fixed-point free orientation reversing element, and the covering of
Dν
m corresponding to this subgroup is P2.

Next we suppose m is even and show how to obtain Dν
m. Write m = 2n and observe

that the rotation r of order 2n on S2 is defined as follows:

r(x, y, z) =
(

sinφ · cos(θ + π
n ), sinφ · sin(θ + π

n ), cosφ
)
.
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Note that r fixes only the points (0, 0,±1), and since rns(1, 0, 0) = (1, 0, 0) it follows that
p(1, 0, 0) is one of the cone points of order 2 in Σ(2, 2, 2n).

Consider the point
(

sin(π2 ) · cos( π2n ), sin(π2 ) · sin( π2n ), cos(π2 )
)
. We see that rn+1s

fixes
(

sin(π2 ) · cos( π2n ), sin(π2 ) · sin( π2n ), cos(π2 )
)
, and so it follows that the point

p
((

sin(π2 ) · cos( π2n ), sin(π2 ) · sin( π2n ), cos(π2 )
))

is the other cone point of order 2 in
Σ(2, 2,m).

Define a reflection l : S2 → S2 by

l(x, y, z) =
(

sin(−φ) · cos(−θ + π
2n ), sin(−φ) · sin(−θ + π

2n ), cos(−φ)
)
.

A calculation shows that lsl−1 = rs and lrl−1 = r−1. Thus we have Dih(Z2n)◦Z2 =
[〈r〉 ◦−1 〈s〉] ◦ 〈l〉 acting on S2 and an induced map l̄ acting on Σ(2, 2,m) = S2/〈r, s〉. A
further computation shows that l(1, 0, 0) = l(sin(π2 ) · cos(0), sin(π2 ) · sin(0), cos(π2 )) =
(sin(−π2 ) · cos( π2n ), sin(−π2 ) · sin( π2n ), cos(−π2 )). Applying rn to this element, we see that

rn
(

sin(−π2 ) · cos( π2n ), sin(−π2 ) · sin( π2n ), cos(−π2 )
)

=(
sin(π2 ) · cos( π2n ), sin(π2 ) · sin( π2n ), cos(π2 )

)
.

Hence the induced map l̄ exchanges the two cone points of order two. In addition, consider
a set F ⊆ S2 defined by

F =
{

(sinϕ · cos( π4n + π), sinϕ · sin( π4n + π), cosϕ) | ϕ ∈ R
}
.

Notice that

l
(

sinϕ · cos( π4n + π), sinϕ · sin( π4n + π), cosϕ
)

=
(

sin(−ϕ) · cos(− π
4n − π + π

2n ), sin(−ϕ) · sin(− π
4n − π + π

2n ), cos(−ϕ)
)

=
(
− sinϕ · cos( π4n + π),− sinϕ · sin( π4n + π), cos(ϕ)

)
= r

m
2

(
sinϕ · cos( π4n + π), sinϕ · sin( π4n + π), cosϕ

)
.

Therefore, p(F ) = fix{l} in Σ(2, 2,m) where p denotes the covering map. Consequently,
l is a reflection exchanging the cone points of order 2. Thus Σ(2, 2,m)/〈l̄〉 = Dv

2n, and
π1(Dv

2n) = Dih(Z2n) ◦ Z2 = [〈r〉 ◦−1 〈s〉] ◦ 〈l〉 where lsl−1 = rs and lrl−1 = r−1. The
elements of order two are: rn, rks, rkl (for any integer k = 0, 1, . . . , 2n − 1). The only
orientation reversing elements of order two are rkl, and they all fix the points (0, 0, 1) and
(0, 0,−1). Thus there is no orbifold covering P2 → Dv

2n. We summarize the above in the
following theorem.

Theorem 6.3. Let ϕ : G→ Homeo(P2) be a finite action such that P2/ϕ = Dν
m. Then m

is odd, G ' Dih(Zm) and ϕ is conjugate to the standard action generated by 〈r̄, s̄〉.

Proof. By the above m is odd. Let ν : P2 → Dν
m = P2/〈r̄, s̄〉 be the covering map corre-

sponding to the standard action. For the action ϕ : G→ Homeo(P2) with P2/ϕ = Dν
m, let

µ : P2 → P2/ϕ be the covering map and h : Dν
m → P2/ϕ be a homeomorphism. By the

above the subgroup µ∗(π1(P2)) in π1(P2/ϕ) is unique. Thus h lifts to a homeomorphism
h̃ of P2 such that hν = µh̃. This implies that the two actions are conjugate by h̃.
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Suppose m is even. Since r
m
2 (0, 1, 0) = (0,−1, 0) and i(0, 1, 0) = (0,−1, 0), it

follows that i fixes the cone point p(0, 1, 0). Since i also fixes the cone point of order m,
we have that i is a reflection leaving each cone point fixed and P2/〈r, s〉 = Dh

m. The order
two elements in Dih(Zm) × Z2 are: i, s, rjsi or r

m
2 i. Since rjsi(0, 0, 1) = (0, 0, 1), we

only need to consider

r
m
2 i(x, y, z) =

(
sin(φ+ π) · cos(θ + π), sin(φ+ π) · sin(θ + π), cos(φ+ π)

)
.

Letting φ = π
2 and θ = 0, we see that the point (1, 0, 0) is fixed by r

m
2 i. Thus Dh

m has
a unique P2 covering up to conjugation. This implies that when m is even, π1(Dh

m) has a
unique normal Z2 subgroup generated by a fixed-point free orientation reversing element,
and the covering of Dh

m corresponding to this subgroup is P2.
We now supposem is odd and show how to obtainDh

m. Define a reflection l0 : S2 → S2
by

l0(x, y, z) =
(

sin(−φ) · cos(−θ), sin(−φ) · sin(−θ), cos(−φ)
)

= (−x, y, z).

One can check that l0sl−10 = s and l0rl−10 = r−1. Hence Dih(Zm)◦Z2 = [〈r〉◦−1〈s〉]◦〈l0〉
acting on S2 and an induced map l̄0 acting on Σ(2, 2,m) = S2/〈r, s〉. Clearly l0 fixes the
points (0, 1, 0) and (0,−1, 0). Recall p(0, 1, 0) 6= (0,−1, 0). Hence the induced map l̄0
on Σ(2, 2,m) is a reflection which fixes each cone point. Thus Σ(2, 2,m)/〈l̄0〉 = Dh

m and
π1(Dh

m) = Dih(Zm) ◦ Z2 = [〈r〉 ◦−1 〈s〉] ◦ 〈l0〉.
The elements of order two are: s, rks, rkl0 (any integer k = 0, 1, . . . ,m− 1), and sl0.

The only orientation reversing elements of order two are rkl0 and sl0, but they all have
fix-points. Thus there is no orbifold covering P2 → Dh

m. We summarize the above in the
following theorem whose proof is similar to Theorem 6.3.

Theorem 6.4. Let ϕ : G→ Homeo(P2) be a finite action such that P2/ϕ = Dh
m. Then m

is even, G ' Dih(Zm) and ϕ is conjugate to the standard action generated by 〈r̄, s̄〉.

6.2 Quotient types S2m and Zhm

We use S2m and Zhm to denote a projective plane that has one cone point of order m and
a mirrored disk containing an order m cone point in its interior respectively. The orbifold
Zh0 denotes a mirrored disk without an exceptional point within its interior, and if m = 1,
then S2(1) = P2. Recall 〈r〉 × 〈i〉 = Zm × Z2 acts on S2. Hence, the involutions in this
group are either i, r

m
2 or ir

m
2 for an even number m.

If m is even, then ir
m
2 (x, y, z) =

(
sinφ · cos θ, sinφ · sin θ, − cosφ

)
. The fixed

point set of this map is the circle at the equator on S2 and occurs when φ = π
2 . Thus,

S2/〈irm
2 〉 = S2/Z2 = Zh0 . Furthermore, r on S2 induces a rotation r on Zh0 fixing a

point not on the mirror, and inducing an action r̂ acts on P2 = S2/〈i〉. In the meantime,
i on S2 induces a reflection i on Σ(0,m,m) = S2/〈r〉 since r

m
2 (−1, 0, 0) = (1, 0, 0) and

i(1, 0, 0) = (−1, 0, 0). As a result, we obtain Zhm = Zh0 /〈r〉 = P2/〈r̂〉 = Σ(0,m,m)/〈i〉
for m is even. Note that π1(Zhm) ' Zm × Z2 is generated by r and i, where i is the only
fixed-point free orientation reversing element. This implies that when m is even, π1(Zhm)
has a unique normal Z2 subgroup generated by a fixed-point free orientation reversing
element, and the covering of Zhm corresponding to this subgroup is P2.

We now show how to obtain Zhm when m is odd. Let ρ be a homeomorphism of S2
defined by ρ(x, y, z) =

(
sinφ · cos θ, sinφ · sin θ,− cosφ

)
. A computation shows that
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ρ and r commute. We obtain an orbifold covering map S2 → Σ(0,m,m) = S2/〈r〉 with
ρ inducing a reflection ρ on Σ(0,m,m). The quotient space Σ(0,m,m)/〈ρ〉 = Zhm and
π1(Zhm) ' Zm × Z2 is generated by r and ρ. Since m is odd, the only element of order 2
in π1(Zhm) is ρ which has fixed points. Thus there is no orbifold covering P2 → Zhm when
m is odd. Consequently, the following theorem is obtained:

Theorem 6.5. Let ϕ : G→ Homeo(P2) be a finite action. If P2/ϕ = Zhm, then m is even,
G ' Zm and ϕ is conjugate to the standard action generated by 〈r̂〉.

If m is odd, we again have r inducing a map r̂ on P2 = S2/〈i〉, and one can check that
the induced map i on Σ(0,m,m) = S2/〈r〉 is the antipodal map. Consequently, we obtain
S2m = P2/〈r̂〉 = Σ(0,m,m)/〈i〉. Furthermore π1(S2m) ' Zm × Z2 is generated by r
and i, where the only order two fixed-point free orientation reversing element is i. Hence
when m is odd, π1(S2m) has a unique normal Z2 subgroup generated by a fixed-point
free orientation reversing element, and the covering of S2m corresponding to this subgroup
is P2.

To obtain S2m when m is even, we write m = 2n and define a homeomorphism h of
S2 by h(x, y, z) =

(
sin(φ + π) · cos(θ + π

2n ), sin(φ + π) · sin(θ + π
2n ), cos(φ + π)

)
.

Observe that h is a composition of the antipodal map and a rotation through π/2n, and h
generates a Z2(2n)-action on S2 and S2/〈h2〉 = Σ(0, 2n, 2n). It follows that the induced
map h on Σ(0, 2n, 2n) is the antipodal map and Σ(0, 2n, 2n)/〈h〉 = S2(2n). Further-
more π1(S2(2n)) ' Z2(2n) is generated by h. The only element of order 2 is h2n, and
h2n(x, y, z) =

(
sinφ · cos(θ + π), sinφ · sin(θ + π), cosφ

)
has fixed-points. Thus there

is no orbifold covering P2 → S2m when m is even. Summarizing these results we obtain
the following theorem:

Theorem 6.6. Let ϕ : G→ Homeo(P2) be a finite action. If P2/ϕ = S2m, then m is odd,
G ' Zm and ϕ is conjugate to the standard action generated by 〈r̂〉.

6.3 Nonexistence of quotient type Cν
m,m

The orbifold Cνm,m is a mirrored disk with two cone points on the mirror of order m.
We will show that the orbifold Cνm,m is obtained by some covering translations on S2.
Recall the reflection map on the yz-plane defined on R3 by l0(x, y, z) = (−x, y, z) and the
rotation r(x, y, z) =

(
sinφ · cos(θ + 2π

m ), sinφ · sin(θ + 2π
m ), cosφ

)
. It is easy to check

that Dih(Zm) = 〈r〉 ◦−1 〈l0〉. Then, we obtain Σ(0,m,m) = S2/〈r〉 and the reflection
on S2 induces a reflection l0 on Σ(0,m,m). As a result, Cνm,m = Σ(0,m,m)/〈l0〉 where
π1(Cνm,m) = Dih(Zm). The order two elements in π1(Cνm,m) are rj l0 for 0 ≤ j ≤ m, or
r

m
2 for m even. A calculation shows that

rj l0(x, y, z) =
(

sin(−φ) · cos(−θ + 2π
m ), sin(−φ) · sin(−θ + 2π

m ), cos(−φ)
)
,

which has fixed points at (0, 0,±1) ∈ S2 when φ = 0 or π. Since l0 and r
m
2 when m is

even, have fixed points, Cνm,m is not covered by P2. We therefore have shown the following
proposition:

Proposition 6.7. The projective plane does not cover Cνm,m.
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7 Finite group actions on P2 and P2 × I

In this section, we summarize the above results and classify the finite group actions on P2

and P2 × I .

Theorem 7.1. Let ϕ : G→ Homeo(P2) be a finite group action on P2. Then G is isomor-
phic to one of the following groups: S4, A5, A4, Zm or Dih(Zm). The orbifold quotient
P2/ϕ is an orbifold homeomorphic to one of the following orbifolds: Oh, Ih, T v , Zhm,
S2m, Dv

m or Dh
m. There is only one equivalence class for each group.

(1) G ' S4 if and only if P2/ϕ = Oh.

(2) G ' A5 if and only if P2/ϕ = Ih.

(3) G ' A4 if and only if P2/ϕ = T v .

(4) G ' Zm and m is even if and only if P2/ϕ = Zhm.

(5) G ' Zm and m is odd if and only if P2/ϕ = S2m.

(6) G ' Dih(Zm) and m odd if and only if P2/ϕ = Dv
m.

(7) G ' Dih(Zm) and m even if and only if P2/ϕ = Dh
m.

Proof. Let ϕ : G→ Homeo(P2) be a finite group action. Then P2/ϕ is a non-orientable 2-
orbifold with positive euler number χ(P2/ϕ). The non-orientable good orbifolds (orbifolds
which have manifolds for their universal covering spaces) with positive euler numbers are
the following: Cvm,m, S2m, Zhm, Dh

m, Dv
m, Th, Oh, Ih and T v . The result then follows by

the above.

Theorem 7.2. Let ϕ : G → Homeo(P2) be a finite group action. The action ϕ(G) does
not leave any orientation reversing loop in P2 invariant if and only if G is isomorphic to
S4, A5 or A4. Furthermore, ϕ is equivalent to one of these standard actions.

Proof. This follows from Sections 2 through 6.

Theorem 7.3. Let ϕ : G → Homeo(P2 × I) be a finite group action. If for every g ∈ G
ϕ(g)(P2 × {0}) = P2 × {0}, then G is isomorphic to one of the following groups: S4,
A5, A4, Zm or Dih(Zm). Furthermore, there is only one equivalence class for each group
which is represented by one of the standard actions.

Proof. By the comment following Theorem 8.1 in [6], we may conjugate ϕ(G) so that
it is a product action. This implies that there is a G-action ϕ1 : G → Homeo(P2) such
that for any g ∈ G, we have ϕ(g)(z, t) = (ϕ1(g)(z), t). By Theorem 7.1, there exists a
homeomorphism k of P2 such that kϕ1(G)k−1 is one of the standard actions (1) through
(7) listed there. Conjugating this action further by k × id proves the result.

Theorem 7.4. Let ϕ : G→ Homeo(P2×I) be a finite group action. ThenG is isomorphic
to one of the following groups: S4, S4 × Z2, A5, A5 × Z2, A4, A4 × Z2, Zm, Zm × Z2,
Dih(Zm) or Dih(Zm)× Z2.

(1) If G is isomorphic to S4, then there are two equivalence classes.

(2) If G is isomorphic to either S4 × Z2, A5, A5 × Z2, A4, A4 × Z2, Zm × Z2 or
Dih(Zm)× Z2, then there is one equivalence class.
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(3) Suppose G is isomorphic to Zm. If m is odd, then there is one equivalence class. If
m is even, then there are two equivalence classes.

(4) Suppose G ' Dih(Zm). If m = 2 or if m is odd, then there are two equivalence
classes. If m > 2 and m is even, there are 3 equivalence classes.

Proof. Again by [6], we may assume ϕ : G → Homeo(P2 × I) is a product action.
Thus there exists a homomorphism ϕ1 : G → Homeo(P2) such that for any g ∈ G,
ϕ(g)(z, t) = (ϕ1(g)(z), t) or ϕ(g)(z, t) = (ϕ1(g)(z), 1 − t). There exists a Z2-action
on P2 × I generated by a map R defined by R(z, t) = (z, 1− t).

Suppose first that ϕ1 : G→ Homeo(P2) is not one-to-one. This implies there exists an
element g0 6= 1 ∈ G such that ϕ1(g0)(z) = z for all z ∈ P2, and so ϕ(g0)(z, t) = (z, 1−t)
or ϕ(g0) = R. Since R commutes with (ϕ1(g)(z), t) and (ϕ1(g)(z), 1− t), it follows that
g0 commutes with every element of G. Let H = {g ∈ G | ϕ(g)(z, t) = (ϕ1(g)(z), t)}.
If ϕ(g)(z, t) = (ϕ1(g)(z), 1 − t), then ϕ(g2)(z, t) = (ϕ1(g2)(z), t) showing g2 ∈ H . It
follows that H is an index two normal subgroup of G, and G = H ×Z2 where Z2 = 〈g0〉.
Furthermore ϕ1|H : H → Homeo(P2) is one-to-one. By Theorem 7.1, H is isomorphic
to S4, A5, A4, Zm or Dih(Zm) and conjugate to one of the standard actions. As in Theo-
rem 7.3, we may conjugate ϕ|H : H → Homeo(P2 × I) by a homeomorphism k × id to a
standard action, proving the result in this case.

Suppose ϕ1 : G → Homeo(P2) is one-to-one, and hence is a G-action. Note that in
this case R /∈ ϕ(G). By Theorem 7.1, G is isomorphic to S4, A5, A4, Zm or Dih(Zm)
and conjugate to one of the standard actions. Thus as above by conjugating ϕ(G), we may
assume that ϕ1 is one of the standard actions. Suppose G = S4 and ϕ1(G) = 〈ā, b̄ |
ā2 = b̄3 = (āb̄)4 = 1〉. Let A and B be actions on P2 × I defined by A(z, t) = (ā(z), t)
and B(z, t) = (b̄(z), t). If B ◦ R ∈ ϕ(G), then (B ◦ R)3 = R ∈ ϕ(G), and this
would imply that ϕ1 : G → Homeo(P2) is not one-to-one. Thus B ∈ ϕ(G) and we either
have A ∈ ϕ(G) or A ◦ R ∈ ϕ(G). Consequently there are two possibilities ϕ(G) =
〈A,B〉 or ϕ(G) = 〈A ◦ R,B〉, both isomorphic to S4. They are not conjugate since the
quotient space (P2 × I)/〈A,B〉 has two boundary components while the quotient space
(P2×I)/〈A◦R,B〉 has only one boundary component. SupposeG = A5 and let ϕ1(G) =
〈ā, b̄ | ā2 = b̄3 = (āb̄−1)5 = 1〉. As above we obtain actions A and B on P2 × I
defined by A(z, t) = (ā(z), t) and B(z, t) = (b̄(z), t). We see as in the previous case that
B◦R /∈ ϕ(G). Furthermore since (A◦R◦B−1)5 = R, it follows thatA◦R /∈ ϕ(G). Thus
ϕ(G) = 〈A,B〉 with only one equivalence class. The proof is similar for A4. If G ' Zm,
then when m is odd the action is conjugate to (r × id); and when m is even the action is
conjugate to either (r× id) or (r× id) ◦R. We now suppose ϕ1(G) = Dih(Zm) = 〈r̄, s̄〉.
We first suppose m is even. The possible groups for ϕ(G) are: H1 = 〈(r̄ × id), (s̄× id)〉,
H2 = 〈(r̄×id)◦R, (s̄×id)〉,H3 = 〈(r̄×id), (s̄×id)◦R〉,H4 = 〈(r̄×id)◦R, (s̄×id)◦R〉.
Clearly, H1 is not conjugate to any of the other groups since no element of H1 exchanges
the boundary components of P2 × I . The element of order two (s̄ × id) in H2 does not
exchange boundary components, however every element of order two in H3 exchanges
boundary components showing H2 is not conjugate to H3. Similarly, the element (r̄ × id)
of order m in H3 cannot be conjugate to (r̄ × id) ◦ R in H4, showing H3 and H4 are not
conjugate. Notice H4 = 〈(r̄ × id) ◦ R, (s̄ × id) ◦ R〉 = 〈(r̄ × id) ◦ R, (r̄s̄ × id)〉. Using
Lemma 6.2, it follows that H2 is conjugate to H4, showing there are three equivalence
classes when m > 2. When m = 2, Lemma 6.2 also shows that H2 and H3 are conjugate,
and so we have only two equivalence classes in this case. When m is odd, the only two
possibilities are 〈(r̄ × id), (s̄× id)〉 and 〈(r̄ × id), (s̄× id) ◦R〉.
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8 Finite actions on twisted I-bundle over P2

For S2 × I , define a fixed-point free orientation preserving involution α : S2 × I → S2 × I
by α(z, t) = (i(z), 1 − t). The manifold S2 × I/〈α〉 = W is a twisted I-bundle over the
one-sided projective plane P2. Let ν : S2 × I → W be the covering map and note that
ν(S2×{1/2}) = P2 is a one-sided projective plane. The levels of W are ν(S2×{t}), and
a homeomorphism h of W is level preserving if h(ν(S2 × {t})) = ν(S2 × {t}). We may
view W as the set of equivalence classes {[z, t] | (z, t) is equivalent to (i(z), 1− t)}.

Let Homeo(W,P2) be the group of homeomorphisms which leave the projective plane
P2 invariant. Denote by Centp(α) the subgroup of the centralizer of α which leaves S2 ×
{1/2} invariant and preserves the sides of S2×{1/2}. Every homeomorphism which leaves
P2 invariant lifts to two homeomorphisms of S2 × I , one of which preserves the sides of
S2 × {1/2} while the other doesn’t. Thus for any homeomorphism f ∈ Homeo(W,P2)
there is a unique lift f̃ ∈ Centp(α), and we obtain an isomorphism L : Homeo(W,P2)→
Centp(α). Note that since ν|S2×{0} : S2 × {0} → ∂W is a homeomorphism, it follows
that f is orientation preserving if and only if f̃ is orientation preserving. We obtain the
following proposition.

Proposition 8.1. L : Homeo(W,P2)→ Centp(α) is an isomorphism.

There exists a map R : Homeo(W,P2) → Homeo(P2) defined by restricting any
homeomorphism to P2.

Proposition 8.2. Let ϕ : G → Homeo(W,P2) be an effective orientation preserving G-
action. Then the restriction Rϕ : G→ Homeo(P2) is an effective G-action.

Proof. Let ϕ̃ = L ◦ ϕ : G → Centp(α) be an orientation preserving G-action on S2 × I .
Suppose there exists an element g ∈ G such thatRϕ(g) = id, and thus ϕ̃(g)|S2×{1/2} = id
or i. Since ϕ̃(g) does not reverse the sides of S2×{1/2} and ϕ̃(g) is orientation preserving,
we have that ϕ̃(g)|S2×{1/2} = id implying ϕ̃(g) = id. This implies that ϕ(g) = id proving
the result.

Remark 8.3. The assumption that theG-action in Proposition 8.2 be orientation preserving
is necessary. For if we define an involution ρ of W by ρ[z, t] = [z, 1 − t] = [i(z), t], then
Rρ = id|P2 but ρ 6= id on W .

Proposition 8.4. Let ϕ1, ϕ2 : G → Homeo(W,P2) be two orientation preserving G-
actions such that Rϕ1 and Rϕ1 are effective G-actions on P2 with Rϕ1(G) = Rϕ2(G).
Then there exists a homeomorphism k ofW isotopic to the identity such that kϕ1(G)k−1 =
ϕ2(G).

Proof. Let Rϕ1 = ϕ̄1 and Rϕ2 = ϕ̄2 be the effective G-actions on P2. Replacing ϕ2 by
ϕ2ϕ̄

−1
2 ϕ̄1, we may assume ϕ̄1 = ϕ̄2. Let Lϕ1 = ϕ̃1 and Lϕ2 = ϕ̃2. Since ϕ1 and ϕ2

are both orientation preserving, it follows that ϕ̃1(g)|S2×{1/2} = ϕ̃2(g)|S2×{1/2} for any
g ∈ G.

Consider ϕ̃i(G)|S2×[0,1/2] : S2 × [0, 1/2] → S2 × [0, 1/2]. Again using [1], both
these actions are conjugate to product actions, and hence there exist homeomorphisms
ki such that kiϕ̃i(G)k−1i is a product action. The conjugating maps ki may be cho-
sen to be the identity on S2 × {1/2}. Since both actions agree on S2 × {1/2}, we
have k1ϕ̃1(G)k−11 = k2ϕ̃2(G)k−12 . Letting h = k−12 k1, we obtain a homeomorphism
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h : S2 × [0, 1/2] → S2 × [0, 1/2], isotopic to the identity relative to S2 × {1/2}, such
that h(ϕ̃1(G)|S2×[0,1/2])h−1 = ϕ̃1(G)|S2×[0,1/2]. Extend h to S2 × [1/2, 1] by letting
h|S2×[1/2,1] = (α|S2×[0,1/2]) ◦ (h|S2×[0,1/2]) ◦ (α|S2×[1/2,1]) and note that h and α com-
mute. Let g ∈ G and z ∈ S2 × [1/2, 1]. Now we have

hϕ̃1(g)h−1(z) = hϕ̃1(g)(α ◦ h−1|S2×[0,1/2] ◦ α)(z) =

α(hϕ̃1(g)h−1)(α(z)) = αϕ̃2(g′)α(z)

for some g′ ∈ G. Since αϕ̃2(g′)α(z) = ϕ̃2(g′)(z), we have shown hϕ̃1(G)h−1 = ϕ̃2(G).
Letting L−1(h) = k, we have hϕ1(G)h−1 = ϕ2(G) proving the result.

Remark 8.5. The assumption in Proposition 8.4 that the actions are both orientation pre-
serving is necessary. For example, let f : S2 → S2 be an orientation preserving home-
omorphism commuting with i such that f2n = id. Define two Z2n-actions on W by
F [z, t] = [f(z), t] and G[z, t] = [if(z), t]. Clearly G|P2 = F |P2 since i projects to the
identity on P2, however they are not conjugate as F is orientation preserving, and G is
orientation reversing.

Corollary 8.6. Let ϕ1, ϕ2 : G → Homeo(W,P2) be effective orientation preserving G-
actions such that Rϕ1(G) = Rϕ2(G). Then there exists a homeomorphism k of W iso-
topic to the identity such that kϕ1(G)k−1 = ϕ2(G).

Proof. By Proposition 8.2 Rϕ1 and Rϕ1 are effective G-actions on P2, and so the result
follows by Proposition 8.4.

Proposition 8.7. Let ϕ : G→ Homeo(P2) be an effective G-action. Then ϕ extends to an
effective level preserving orientation preserving G-action ϕ̂ on W .

Proof. By [7] and [8], there exists an action ϕ̃ : G → Cent+(i) where Cent+(i) consists
of orientation preserving elements in the centralizer Cent(i) of i in Homeo(S2). Define an
action θ : G→ Centp(α) by θ(g)(x, t) = (ϕ̃(g)(z), t). Then L−1θ : G→ Homeo(W,P2)
is the extension.

Let E(P2, G) be the set of equivalence classes of effective G-actions on P2, and let
E+(W,G) be the set of equivalence classes of effective orientation preserving G-actions
on W . Denote by E+((W,P2), G) the subset of E+(W,G) which have a representative that
leaves a one-sided projective plane invariant.

Proposition 8.8. Let ϕ : G → Homeo(W ) be a finite action on W . Then there exists a
one-sided projective plane P such that ϕ(g)(P ) = P for all g ∈ G.

Proof. Let Homeo(S2 × I, S2 × {0}) be the group of homeomorphisms which leave S2 ×
{0} invariant. There exists an injection L0 : Homeo(W ) → Homeo(S2 × I, S2 × {0}) ∩
Cent(α) defined by lifting any homeomorphism to a homeomorphism of S2 × I leaving
S2 × {0} invariant. Letting L0ϕ = ϕ̃ : G → Homeo(S2 × I, S2 × {0}) ∩ Cent(α), we
obtain a G × Z2 action on S2 × I where the Z2-action is generated by α, which projects
to the ϕ-action on W . This action is equivalent to a product action by [1], and thus there
is an G × Z2-invariant 2-sphere S in int(S2 × I). Furthermore, α(S) = S and ν(S) is a
ϕ(G)-invariant projective plane in W .

Corollary 8.9. E+((W,P2), G) = E+(W,G).
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Proposition 8.10. Let P be a one-sided projective plane in W . Then there exists a homeo-
morphism k of W , isotopic to the identity, such that k(P ) = P2.

Proof. Isotope P to intersect P2 in simple closed curves. We may assume the number of
curves in P ∩ P2 is minimal. We will show that the number of simple closed curves in
P ∩P2 is one. Note first that P ∩P2 6= ∅, for otherwise P ⊂W −P2 which is isomorphic
to S2 × [0, 1), and this is impossible. If the number of intersections of P ∩ P2 exceeds
one, and hence the number of simple closed curves in P exceeds one, then there is a simple
closed curve δ ∈ P ∩ P2 which bounds a disk ∆ in P . We may assume ∆ is innermost
in P , in the sense that int(∆) ∩ P2 = ∅. Since δ bounds a disk in W , it follows that δ is
an orientation preserving loop in P2, and thus bounds a disk D in P2. Now D ∪ ∆ is a
separating 2-sphere. If D ∪∆ bounds a ball, then we may isotope P to eliminate δ.

We therefore assumeD∪∆ does not bound a ball, and is therefore parallel to the sphere
boundary ∂W = ν(S2 × {0}). Lift P to an α-invariant 2-sphere S in S2 × I , let ∆1 and
∆2 be the two lifts of ∆ in S, and let D1 and D2 be the two lifts of D in S2 × {1/2}.
Denote ∂∆i by δi. We may assumeD1∪∆1 ⊂ S2× [0, 1/2] andD2∪∆2 ⊂ S2× [1/2, 1].
Furthermore, there is an α-invariant simple closed curve γ ∈ S ∩ S2 × {1/2}, separating
δ1 and δ2. Note that (S2 × {1/2} − int(D1)) is a disk in S2 × {1/2} whose boundary is
the boundary of the disk ∆1 in S. Now D1 ∪∆1 is parallel to S2×{0}, which implies that
∆1 ∪ (S2 × {1/2} − int(D1)) bounds a ball in S2 × [0, 1/2]. Thus we may construct an
α-equivariant isotopy, relative to γ, which eliminates the intersections δ1 and δ2. Projecting
this isotopy to W eliminates the δ-intersection of P ∩ P2.

Thus we have shown that S ∩ S2 × {1/2} is a single simple closed curve γ which
projects to a non-contractable simple closed curve γ in P ∩ P2. By an argument similar
to the one above, there is an α-equivariant isotopy, relative to γ, which isotopes S to S2 ×
{1/2}. Projecting this isotopy to W , we obtain an isotopy taking P to P2.

Theorem 8.11. The map Γ: E(P2, G)→ E+((W,P2), G) defined by extending G-actions
from P2 to W is a bijection.

Proof. Let [ϕ] ∈ E(P2, G). By Proposition 8.7, ϕ can be extended to a G-action ϕ̂ on W .
Define Γ([ϕ]) = [ϕ̂]. Suppose ψ is a G-action on P2 such that [ψ] = [ϕ] ∈ E(P2, G).
Then there exists a homeomorphism h of P2 such that hϕ(G)h−1 = ψ(G). Lift h to
an orientation preserving homeomorphism k of S2 and note that ik = ki. Extend k to
a homeomorphism k̂ by k̂(x, t) = (k(x), t). Letting ĥ = L−1k̂. we see that ĥ is an
extension of h. Since R(ĥϕ̂(G)ĥ−1) = hϕ(G)h−1 = ψ(G) = R(ψ̂(G)), it follows by
Proposition 8.4 that [ϕ̂] = [ψ̂], and thus Γ is well defined.

Let [δ] ∈ E((W,P2), G). Thus there is a one-sided projective plane P such that
δ(g)(P ) = P for all g ∈ G. By Proposition 8.10, there exists a homeomorphism of
W taking P to P2. This implies that we may choose a representative δ′ in [δ] such that
δ′(g)(P2) = P2 for all g ∈ G. By Proposition 8.2, the restriction Rδ′ is an effective G-
action on P2 and therefore represents an element in E(P2, G). Let Γ([Rδ′]) = [R̂δ′]. Since
R(R̂δ′) = Rδ′, it follows by Proposition 8.4 that [R̂δ′] = [δ′], and thus Γ([Rδ′]) = [δ′]
showing Γ is a surjection.

To show Γ is one-to-one, suppose that [ϕ], [θ] ∈ E(P2, G) are such that their level pre-
serving extensions [ϕ̂] = [θ̂] in E+((W,P2), G). Now W/ϕ and W/θ are homeomorphic
twisted I-bundle orbifolds over one of the following 2-orbifolds: Oh, Ih, T v , Zhm, S2m,
Dv
m or Dh

m. Since by Theorem 7.1, there is only one equivalence class for each action
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on P2 which determines a unique quotient type, it follows that [ϕ] = [θ] showing Γ is
one-to-one.

Corollary 8.12. Let ϕ : G → Homeo(W ) be a finite orientation preserving G-action on
W . Then G is isomorphic to one of the following groups: S4, A5, A4, Zm or Dih(Zm).
The orbifold quotient for each action is a twisted I-bundle orbifold over the following
2-orbifolds: Oh (for S4) , Ih (for A5), T v (for A4), Zhm (for Zm andm even), S2m (for Zm
and m odd), Dv

m (for Dih(Zm) and m odd) and Dh
m (for Dih(Zm) and m even). There is

one equivalence class for each quotient type.

9 Orientation reversing finite actions on twisted I-bundle over P2

Recall that W = {[z, t] | (z, t) is equivalent to (i(z), 1 − t)} with P2 = {[z, 1/2] ∈ W},
and L : Homeo(W,P2) → Centp(α) is an isomorphism. Let f1 be a homeomorphism of
P2, and let f̃1 be a lift of f1 to S2. We remark that f̃1 commutes with i. A homeomorphism
f : W → W is a product homeomorphism if f [z, t] = [f̃1(z), t]. Note that f |P2 = f1.
Let Homeo(S2 × I, S2 × {1/2}) be the group of homeomorphisms of S2 × I which leave
S2 ×{1/2} invariant. Define the map R̃ : Homeo(S2 × I, S2 ×{1/2})→ Homeo(S2) by
restricting any homeomorphism to S2 × {1/2}.

Lemma 9.1. Let ϕ : G→ Homeo(W,P2) be an effective G-action and let ϕ̃ = Lϕ : G→
Centp(α) ⊂ Homeo(S2 × I, S2 × {1/2}). Then R̃ϕ̃ : G → Homeo(S2) is an effective
G-action.

Proof. Suppose there exists an element g ∈ G such that R̃ϕ̃(g) = id|S2×{1/2}. Since
R̃ϕ̃(g) does not reverse the sides of S2 × {1/2}, it follows that ϕ̃(g) = id.

Remark 9.2. Note that the involution ρ of W defined by ρ[z, t] = [i(z), t] = [z, 1 − t],
has the property that Rρ = id|P2 , but R̃Lρ(z, t) = (i(z), t) and thus does not restrict to the
identity on S2 × {1/2}.

Theorem 9.3. Let ϕ : G → Homeo(W ) be an effective G-action. Then ϕ is conjugate to
a product action on W .

Proof. By Propositions 8.8 and 8.10, we may assume ϕ(g)(P2) = P2 for every g ∈ G. Let
ϕ̃ = Lϕ : G→ Centp(α). By Lemma 9.1, R̃ϕ̃ : G→ Homeo(S2) is an effective G-action
which commutes with i. Define an action θ̃ : G→ Centp(α) ⊂ Homeo(S2×I, S2×{1/2})
by θ̃(g) = R̃ϕ̃(g) × id. Thus θ̃(g)|S2×{1/2} = ϕ̃(g)|S2×{1/2} for any g ∈ G. Projecting
this action to W , we obtain an effective product action θ : G → Homeo(W,P2). We now
use the proof in Proposition 8.4 to construct a homeomorphism h which commutes with α
and conjugates θ̃(G) to ϕ̃(G). The homeomorphism h projects to a homeomorphism of W
which conjugates θ(G) to ϕ(G), thus completing the proof.

We will now define the standard actions S4 × Z2, A4 × Z2, A4 × Z2, Zm × Z2 or
Dih(Zm) × Z2 on W . Consider first the group S4 = 〈a, b | a2 = b3 = (ab)4 = 1〉 acting
on S2 commuting with i, and its projection S4 = 〈ā, b̄ | ā2 = b̄3 = (āb̄)4 = 1〉 to P2.
Define the product maps A,B : W → W by A[z, t] = [a(z), t] and B[z, t] = [b(z), t].
Note that 〈A,B, ρ〉 = S4 × Z2. The other standard group actions on W are defined in a
similar fashion.
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Theorem 9.4. Let ϕ : G → Homeo(W ) be an orientation reversing G-action. Then G
is isomorphic to one of the following groups: S4, Zm with m even, Dih(Zm), S4 × Z2,
A5 × Z2, A4 × Z2, Zm × Z2 or Dih(Zm)× Z2.

(1) If G is either S4, S4 × Z2, A5 × Z2, A4 × Z2, Zm × Z2 with m even or Dih(Zm)
with m odd, there is only one equivalence class.

(2) If G is Zm with m > 2 even and m/2 odd, then there are two equivalence classes of
Zm = Zm/2 × Z2-actions on W .

(3) If G is Zm with either m/2 even or m = 2, then there is only one equivalence class.

(4) If G is Dih(Zm) with m > 2 and m/2 even, there are two equivalence classes of
Dih(Zm)-actions on W .

(5) If G is Dih(Zm) with m > 2 and m/2 odd, there are three equivalence classes of
Dih(Zm)-actions on W .

(6) If G is Dih(Zm)× Z2 with m even, there is only one equivalence class.

(7) If G is Dih(Zm)× Z2 with m odd, then Dih(Zm)× Z2 ' Dih(Z2m) and there are
three equivalence classes of Dih(Z2m)-actions on W .

Proof. Let ϕ : G → Homeo(W ) be an effective orientation reversing G-action. We may
assume by Theorem 9.3, that there exists G-actions ϕ̃1 : G → Homeo(S2) and ϕ1 : G →
Homeo(P2), such that ϕ(g)[z, t] = [ϕ̃1(g)(z), t] and ϕ̃1(g) is a lift of ϕ1(g). Note that
ϕ̃1 : G→ Homeo(S2) is an effective orientation reversing G-action on S2 by Lemma 9.1.

Suppose that ϕ1 : G→ Homeo(P2) is not an effective G-action, and so there exists an
element g0 6= 1 ∈ G such that ϕ1(g0) = id: P2 → P2. Since ϕ̃1(g0) is a lift of ϕ1(g0) and
ϕ̃ is an effective action, we see that ϕ̃1(g0)(z) = i(z) andϕ(g0)[z, t] = [i(z), t] = [z, 1−t].
Thus ϕ(g0) = ρ ∈ ϕ(G), and note that ρ commutes with every element in ϕ(G). Let
H = {g ∈ G | ϕ(g) is orientation preserving}, and observe that G = H × 〈g0〉. Since
(ϕ|H) : H → Homeo(W,P2) is an effective orientation preserving action, it follows by
Proposition 8.2 that (ϕ1|H) : H → Homeo(P2) is an effective action. By Theorem 7.1,
there exists a homeomorphism k1 : P2 → P2 such that k1ϕ1(H)k−11 is one of the standard
actions S4, A5, A4, Zm or Dih(Zm) on P2. Lifting k1 to a homeomorphism k̃1 : S2 → S2,
we see that k̃1ϕ̃1(H)k̃1 is the same standard action S4, A5, A4, Zm or Dih(Zm) on S2.
Define a homeomorphism k : W → W by k[z, t] = [k̃1(z), t]. Since ρ[z, t] = [z, 1 − t],
it follows that kρk−1 = ρ. Therefore kϕ(G)k−1 is one of the standard actions: S4 × Z2,
A5 × Z2, A4 × Z2, Zm × Z2 or Dih(Zm)× Z2, where the Z2 group is generated by ρ.

Assume first that ϕ1 : G → Homeo(P2) is an effective G-action on P2. Hence by
Theorem 7.1, ϕ1(G) is conjugate to one of the following standard actions on P2: S4, A5,
A4, Zm or Dih(Zm).

Suppose there exists a homeomorphism k1 of P2 such that k1ϕ1(G)k−1 = 〈ā, b̄ | ā2 =
b̄3 = (āb̄)4 = 1〉 = S4. Let k̃1 be a lift of k1 to S2, and note that k̃1ϕ̃1(G)k̃−11 projects to
〈ā, b̄〉, and is therefore one of the following groups: 〈ai, b〉, 〈a, bi〉 or 〈ai, bi〉. The group
〈a, b〉 is not in the list, since it is orientation preserving on S2. Since (bi)3 = i, it follows
that 〈a, bi〉 = 〈ai, bi〉 = 〈a, b〉 × 〈i〉 = S4 × Z2, and hence must be excluded. Thus,
k̃1ϕ̃1(G)k̃−11 = 〈ai, b〉. Define a homeomorphism k of W by k[z, t] = [k̃1(z), t], and note
that kϕ(G)k−1 = 〈Aρ,B〉 ' S4.

We now suppose there exists a homeomorphism k1 of P2 such that k1ϕ1(G)k−1 =
〈ā, b̄ | ā2 = b̄3 = (āb̄)5 = 1〉 = A5. As in the previous paragraph, there exists a lift k̃1
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such that k̃1ϕ̃1(G)k̃−11 is one of the following groups: 〈ai, b〉, 〈a, bi〉 or 〈ai, bi〉. We see
that (bi)3 = i and (aib)5 = i. This implies 〈ai, b〉 = 〈a, bi〉 = 〈ai, bi〉 = A5 × Z2, and
therefore must be excluded. A similar argument shows that ϕ1(G) cannot be conjugate
to A4.

Next, assume that G is isomorphic to Zm, and so we have a homeomorphism k1 of
P2 such that k1ϕ1(G)k−11 = 〈r̄〉. For the lifted homeomorphism k̃1 on S2, we have
k̃1ϕ̃1(G)k̃1 = 〈ri〉. However if m is odd, then (ri)m = i, implying G isomorphic to
Zm × Z2, which is a contradiction. Thus m is even. Let k be a homeomorphism of W de-
fined by k[z, t] = [k̃1(z), t]. Observe that kϕ(G)k−1 = 〈Rρ〉 where R[z, t] = [r(z), t] and
Rm = id. If m/2 is odd and greater than one, then Zm = Zm/2 ×Z2 = 〈R2〉 × 〈Rm/2ρ〉,
and note that ρ is not an element of this group. Thus when m/2 is odd, there are two
non-equivalent Zm-actions on W . They are 〈R2〉 × 〈Rm/2ρ〉 and 〈R2〉 × 〈ρ〉, the first in
which no element restricts to the identity on P2, and the second that has an element which
restricts to the identity on P2. If eitherm = 2 orm/2 is even, there is only one equivalence
class.

Finally, we assume G is isomorphic to Dih(Zm). Again we have a homeomorphism k1
of P2 such that k1ϕ1(G)k−11 = 〈r̄〉 ◦−1 〈s̄〉, and its lift k̃1 such that k̃1ϕ̃1(G)k̃−11 is one of
the following groups: 〈ri〉◦−1 〈s〉 = H1, 〈r〉◦−1 〈si〉 = H2, 〈ri〉◦−1 〈si〉 = H3. Consider
first the case when m is odd. Since (ri)m = i, we obtain H1 = H3 = Dih(Zm)×Z2, and
so these cases are excluded. Therefore we only consider H2. Likewise ϕ(G) is conjugate
to the group 〈R,Sρ〉 where S[z, t] = [s(z), t], and there is one equivalence class. Suppose
that m is even. There exists a homeomorphism k of S2 commuting with r and i such that
ksk−1 = rs (see Section 6 after Lemma 6.1). Therefore for ri and si in H3, krik−1 =
ri ∈ H1 and ksik−1 = rsi ∈ H1, showing H3 is conjugate to H1. If m = 2, there exists
a homeomorphism j of S2 commuting with i such that jrj−1 = s and jsj−1 = r (see
Section 6 before Lemma 6.2). This implies that we may conjugate ϕ(G) to either 〈Rρ, S〉
or 〈R,Sρ〉 when m > 2, or to 〈Rρ, S〉 when m = 2. If m > 2, then any generator of
Zm in 〈Rρ, S〉 is an odd power of Rρ relatively prime to m, and thus orientation reversing.
On the other hand, any generator of Zm in 〈R,Sρ〉 is orientation preserving. Hence these
groups cannot be conjugate. This implies that if m/2 is even, there are two equivalence
classes of Dih(Zm)-actions.

We note that when m/2 is odd and not equal to one, there are three equivalence classes
of Dih(Zm)-actions. They are 〈Rρ〉 ◦−1 〈S〉, 〈R〉 ◦−1 〈Sρ〉 and 〈R2ρ〉 ◦−1 〈S〉. The
last group has an element (R2ρ)m/2 = ρ restricting to the identity on P2, and the group
may be viewed as (〈R2〉 ◦−1 〈S〉) × 〈ρ〉 = Dih(Zm/2) × Z2.This group was identified in
the second paragraph of this proof when we assumed ϕ1 : G → Homeo(P2) was not an
effective G-action.

The proof is completed by noting that if G is isomorphic to Dih(Zm) × Z2 and m is
odd, then Dih(Zm)× Z2 is isomorphic to Dih(Z2m), and this case has already been dealt
with.
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José Carlos Rosales
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1 Introduction
Let Z and N be the sets of integers and non-negative integers, respectively. Let us suppose
that we want to compute a set C ⊂ N of six elements such that the following conditions
are fulfilled.

(C1) If x, y are positive integers such that x+ y ∈ C, then C ∩ {x, y} 6= ∅.

(C2) If x ∈ C and x− 4 is a positive integer, then x− 4 ∈ C.

(C3) If x ∈ C and x−1
2 is a positive integer, then x−1

2 ∈ C.

(C4) 5 6∈ C.

The purpose of this work will be to give an answer to this type of combinatorial problems.
Let a = (a1, . . . , an) and b = (b1, . . . , bn) be two n-tuples (with n ≥ 1) of positive

integers, let X be a non-empty subset of N \ {0}, and let g be a positive integer. Let us
denote by P(a, b,X, g) the problem of computing all the subsets C of N \ {0} that fulfill
the following conditions.

(P1) The cardinality of C is equal to g.

(P2) If x, y ∈ N \ {0} and x+ y ∈ C, then C ∩ {x, y} 6= ∅.

(P3) If x ∈ C and x−bi
ai
∈ N \ {0} for some i ∈ {1, . . . , n}, then x−bi

ai
∈ C.

(P4) X ∩ C = ∅.

With the previous notation, we observe that the problem proposed at the beginning is
just P

(
(1, 2), (4, 1), {5}, 6

)
.

A numerical semigroup (see [6]) is a submonoid S of (N,+) such that N \ S is finite.
The cardinality of N \ S is the so-called genus of S and is denoted by g(S).

It is easy to see that C is a solution of P(a, b,X, g) if and only if S = N \ C is a
numerical semigroup that fulfills the following conditions.

(S1) g(S) = g.

(S2) If s ∈ S \ {0}, then as+ b ∈ Sn (where as+ b = (a1s+ b1, . . . , ans+ bn)).

(S3) X ⊆ S.

Let us denote by N (a, b,X) the set{
S | S is a numerical semigroup, X ⊆ S, and as+ b ∈ Sn for all s ∈ S \ {0}

}
.

With this notation, the solutions of P(a, b,X, g) are the elements of the set{
N \ S | S ∈ N (a, b,X) and g(S) = g

}
.

Let S be a numerical semigroup. The Frobenius number of S (see [2]), denoted by
F(S), is the maximum integer that does not belong to S.

A Frobenius variety (see [5]) is a non-empty family of numerical semigroups V that
fulfills the following conditions.
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(V1) If S, T ∈ V , then S ∩ T ∈ V .

(V2) If S ∈ V and S 6= N, then S ∪ {F(S)} ∈ V .

Before to show the structure of this paper, let us see some remarks in order to delimit
the problem P(a, b,X, g) inside the theory of numerical semigroups.

Remark 1.1. If we only impose condition (C1) (equivalently, condition (P2)), then we
are considering the family S of all numerical semigroups that, obviously, is a Frobenius
variety. Moreover, in [6] it is shown how to arrange the elements of S in a tree with root N.

Remark 1.2. Keeping in mind only conditions (C1) and (C4) (equivalently, conditions
(P2) and (P4) or condition (S3)), we have the family S(X) of all numerical semigroups
containing X . Once again, it is not difficult to check that S(X) is a Frobenius variety. In
addition, following the ideas of this paper, it will be clear how we can arrange the elements
of S(X) in a tree with root N.

Remark 1.3. Now let us consider only conditions (C1), (C2) and (C3) (equivalently, condi-
tions (P2) and (P3) or condition (S2)). In this case we get families of numerical semigroups
satisfying a set non-homogeneous patterns (see [1]). This case is related to the results of
[1], where the concept of m-variety makes possible to arrange the elements of certain fam-
ilies in trees with root Sm = {0,m,→} = {0}∪ {n ∈ N | n ≥ m}. Precisely, m-varieties
are examples of Frobenius pseudo-varieties (see [4]).

In Section 2 we will see that N (a, b,X) is a Frobenius variety. In addition, we will
show that such a variety is finite if and only if gcd(X ∪{b1, . . . , bn}) = 1 (where, as usual,
gcd(A) is the greatest common divisor of the elements in A).

Let us denote by M(a, b,X) the intersection of all the elements in N (a, b,X). Ob-
serve that M(a, b,X) is always a submonoid of (N,+). In addition, we will prove that
M(a, b,X) is a numerical semigroup if and only ifN (a, b,X) has finitely many elements.

In Section 2 we will show that P(a, b,X, g) has a solution if and only if the cardinality
of N \M(a, b,X) is greater than or equal to g. Moreover, we will give an algorithm in
order to compute M(a, b,X). Therefore, we will have an algorithmic process to decide
whether P(a, b,X, g) has a solution.

In Section 3, with the help of some results from [5], we will arrange the elements of
N (a, b,X) in a tree with root N. Moreover, we will characterize the children of a ver-
tex in such a tree and, consequently, will have a recursive procedure in order to build
N (a, b,X). Accordingly, we will have an algorithmic process to compute all the elements
of N (a, b,X) with a fixed genus and, in particular, an algorithm to compute all the solu-
tions of P(a, b,X, g).

Finally, using the concept of Frobenius pseudo-variety, we will state and solve a gener-
alization of P(a, b,X, g) in Section 4.

2 (a, b)-monoids
In this work, unless stated otherwise, a = (a1, . . . , an) and b = (b1, . . . , bn) denote two
n-tuples of positive integers. If X ⊆ N, then N (a, b,X) is the set{

S | S is a numerical semigroup, X ⊆ S, and as+ b ∈ Sn for all s ∈ S \ {0}
}
,

with as+ b = (a1s+ b1, . . . , ans+ bn).
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Proposition 2.1. N (a, b,X) is a Frobenius variety.

Proof. It is clear that N ∈ N (a, b,X) and, therefore, N (a, b,X) 6= ∅. It is also clear
that, if S, T ∈ N (a, b,X), then S ∩ T ∈ N (a, b,X). Now, let S ∈ N (a, b,X) such
that S 6= N. In order to show that S ∪ {F(S)} ∈ N (a, b,X), it is enough to see that
aF(S) + b ∈ (S ∪ {F(S)})n. Observe that, if i ∈ {1, . . . , n}, then aiF(S) + bi > F(S)
and, therefore, aiF(S)+bi ∈ S∪{F(S)}. Consequently, aF(S)+b ∈ (S∪{F(S)})n.

We will say that M is an (a, b)-monoid if M is a submonoid of (N,+) fulfilling that
am+ b ∈Mn for all m ∈M \ {0}.

Proposition 2.2. Let X be a non-empty subset of N. Then M is an (a, b)-monoid that
contains X if and only if there exists J ⊆ N (a, b,X) such that M =

⋂
S∈J S.

Proof. The sufficient condition is trivial. For the necessary one, let Mk = M ∪ {k,→},
for all k ∈ N (where {k,→} = {n ∈ N | n ≥ k}). Then it is clear that Mk ∈ N (a, b,X)
and that M =

⋂
k∈NMk.

Let us observe that, if we denote by M(a, b,X) =
⋂

S∈N (a,b,X) S, then M(a, b,X) is
the smallest (a, b)-monoid containing X .

Theorem 2.3. Let X be a non-empty subset of N\{0} and let g be a positive integer. Then
the problem P(a, b,X, g) has a solution if and only if the cardinality of N \M(a, b,X) is
greater than or equal to g.

Proof. (Necessity.) If C is a solution of P(a, b,X, g) and we take S = N \ C, then S ∈
N (a, b,X) and g(S) = g. Since M(a, b,X) ⊆ S, we have that N \ S ⊆ N \M(a, b,X)
and, thereby, the cardinality of N \M(a, b,X) is greater than or equal to g.

(Sufficiency.) Let us suppose that N \M(a, b,X) = {c1 < · · · < cg < · · · }. If we
take S = M(a, b,X) ∪ {cg + 1,→}, then it is clear that S ∈ N (a, b,X) and g(S) = g.
Therefore, C = N \ S is a solution of P(a, b,X, g).

Let us observe that, if P(a, b,X, g) has a solution and, in addition, we have computed
M(a, b,X), then the proof of the sufficient condition in the previous theorem gives us a
method to compute a solution of P(a, b,X, g).

If X is a non-empty subset of N, then we denote by 〈X〉 the submomoid of (N,+)
generated by X , that is,

〈X〉 = {λ1x1 + · · ·+ λkxk | k ∈ N \ {0}, x1, . . . , xk ∈ X, and λ1, . . . , λk ∈ N}.

IfM = 〈X〉, then we will say thatM is generated byX or, equivalently, thatX is a system
of generators of M . The next result is well known (see, for instance, [6]).

Lemma 2.4. If X ⊆ N, then 〈X〉 is a numerical semigroup if and only if gcd(X) = 1.

We know that M(a, b,X) is a submonoid of (N,+). From the following proposition
we will get that, if X ⊆ N \ {0}, then M(a, b,X) is a numerical semigroup if and only if
gcd(X ∪ {b1, . . . , bn}) = 1.

Proposition 2.5. If X ⊆ N \ {0}, then gcd(M(a, b,X)) = gcd(X ∪ {b1, . . . , bn}).
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Proof. Let d = gcd(M(a, b,X)) and d′ = gcd(X ∪ {b1, . . . , bn}). In order to prove the
proposition, we will show that d′ | d and d | d′. (As usual, if p, q are positive integers, then
p | q means that p divides q.)

First of all, it is clear that 〈{d′}〉 is an (a, b)-monoid containingX . Thus,M(a, b,X) ⊆
〈{d′}〉 and, consequently, d′ | d.

Now, let us take x ∈ X . Then {x, a1x + b1, . . . , anx + bn} ⊆ M(a, b,X) and
gcd{x, a1x + b1, . . . , anx + bn} = gcd{x, b1, . . . , bn}. Therefore, we have that X ∪(⋃n

i=1{aix+ bi | x ∈ X}
)
⊆M(a, b,X) and gcd

(
X ∪

(⋃n
i=1{aix+ bi | x ∈ X}

))
=

gcd(X ∪ {b1, . . . , bn}) = d′. Accordingly, d | d′.

In the next result we show when the Frobenius variety N (a, b,X) is finite.

Theorem 2.6. Let X be a subset of N \ {0}. Then the following conditions are equivalent.

1. N (a, b,X) is finite.

2. M(a, b,X) is a numerical semigroup.

3. gcd(X ∪ {b1, . . . , bn}) = 1.

Proof. The equivalence between conditions 2 and 3 is a consequence of Lemma 2.4 and
Proposition 2.5. Now, let us see the equivalence between conditions 1 and 2.

(1.⇒ 2.) It is enough to observe that the finite intersection of numerical semigroups is
another numerical semigroup.

(2. ⇒ 1.) If S ∈ N (a, b,X), then M(a, b,X) ⊆ S. Thus, S = M(a, b,X) ∪ Y
with Y ⊆ N \M(a, b,X). Since N \M(a, b,X) is finite, we conclude that N (a, b,X) is
finite.

Our next aim in this section will be to give an algorithm in order to computeM(a, b,X).
For this is fundamental the following result.

Proposition 2.7. Let M be a submonoid of (N,+) generated by X ⊆ N \ {0}. Then M is
an (a, b)-monoid if and only if ax+ b ∈Mn for all x ∈ X .

Proof. The necessary condition is trivial. For the sufficiency, let m ∈ M \ {0}. Then
there exist x1, . . . , xt ∈ X such that m = x1 + · · · + xt. If t = 1, then m = x1 and
am+ b = ax1 + b ∈Mn. If t ≥ 2, then

am+ b = a(x1 + · · ·+ xt) + b = a(x1 + · · ·+ xt−1) + axt + b.

Since a(x1 + · · ·+ xt−1), axt + b ∈Mn, we finish the proof.

The above proposition will be useful in order to determine whether a submonoid M of
(N,+) is or is not an (a, b)-monoid. Let us see an example.

Example 2.8. S = 〈{4, 5, 11}〉 is an
(
(1, 2), (4, 1)

)
-monoid because (1, 2)4 + (4, 1) =

(8, 9) ∈ S2, (1, 2)5 + (4, 1) = (9, 11) ∈ S2, and (1, 2)11 + (4, 1) = (15, 23) ∈ S2.
Nevertheless, T = 〈{5, 7, 9}〉 is not an

(
(1, 2), (4, 1)

)
-monoid because (1, 2)5 + (4, 1) =

(9, 11) /∈ T 2 (observe that 11 /∈ T ).
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With the help of Proposition 2.7, it would be possible to give an algorithm in order to
computeM(a, b,X). However, we are going to postpone such an algorithm because, as we
will see now, we can focus on case in which gcd(X ∪{b1, . . . , bn}) = 1, and thus simplify
the computations.

We say that an integer d divides an n-tupla of integers c = (c1, . . . , cn) if d | ci for all
i ∈ {1, . . . , n}. In such a case, we denote by c

d =
(
c1
d , . . . ,

cn
d

)
. If A ⊆ Z and k ∈ Z,

then kA = {ka | a ∈ A}. Finally, if A ⊆ Z, d ∈ Z, and d | a for all a ∈ A, then
A
d =

{
a
d | a ∈ A

}
.

Lemma 2.9. Let M be an (a, b)-monoid such that M 6= {0}. If gcd(M) = d, then

1. d divides b;

2. if d′ ∈ N \ {0} and d′ | d, then M
d′ is an

(
a, b

d′

)
-monoid;

3. if k ∈ N \ {0}, then kM is an (a, kb)-monoid.

Proof. 1. If we take X = M \ {0}, and having in mind that M(a, b,X) is the smallest
(a, b)-monoid containing X , then this item is a consequence of Proposition 2.5.

2. It is clear that M
d′ is a submonoid of (N,+). In addition, if x ∈ M

d′ \ {0}, then
d′x ∈M \ {0} and, therefore, ad′x+ b ∈Mn. Consequently, ax+ b

d′ ∈ Mn

d′ =
(
M
d′

)n
.

3. It is clear that kM is a submonoid of (N,+). Now, arguing as in the previous item,
if x ∈ kM \ {0}, then x

k ∈ M \ {0} and, therefore, ax
k + b ∈ Mn. Consequently,

ax+ kb ∈ k ·Mn = (kM)n.

The next result says us that, in order to compute M(a, b,X), it is sufficient to calculate
d = gcd

(
X ∪ {b1, . . . , bn}

)
and M

(
a, bd ,

X
d

)
. Observe that gcd

(
X
d ∪

{
b1
d , . . . ,

bn
d

})
= 1

and, therefore, M
(
a, bd ,

X
d

)
is a numerical semigroup.

Proposition 2.10. Let X be a subset of N \ {0}. If gcd(X ∪ {b1, . . . , bn}) = d, then
M(a, b,X) = d ·M

(
a, bd ,

X
d

)
.

Proof. From item 3 of Lemma 2.9, we have that d ·M
(
a, bd ,

X
d

)
is an (a, b)-monoid con-

taining X . Therefore, M(a, b,X) ⊆ d ·M
(
a, bd ,

X
d

)
.

On the other hand, from Proposition 2.5 and item 2 of Lemma 2.9, we deduce that
M(a,b,X)

d is an
(
a, bd

)
-monoid containing X

d . Consequently, M
(
a, bd ,

X
d

)
⊆ M(a,b,X)

d , that
is, d ·M

(
a, bd ,

X
d

)
⊆M(a, b,X).

We are now ready to show the announced algorithm.

Algorithm 2.11.
INPUT: A non-empty finite set of positive integers X such that

gcd
(
X ∪ {b1, . . . , bn}

)
= 1.

OUTPUT: M(a, b,X).

(1) A = ∅ and G = X .
(2) If G \A = ∅, then return 〈G〉 and stop the algorithm.
(3) m = min(G \A).
(4) H =

{
aim+ bi | i ∈ {1, . . . , n} and aim+ bi /∈ 〈G〉

}
.

(5) If H = ∅, then go to (7).
(6) G = G ∪H .
(7) A = A ∪ {m} and go to (2).
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In order to justify the performance of this algorithm, let us observe that, if the algorithm
stops, then it returns 〈G〉 such that ag + b ∈ 〈G〉n for all g ∈ G. Therefore, by applying
Proposition 2.7, we have that 〈G〉 is an (a, b)-monoid. In addition, by construction, it is
clear that G must be a subset of every (a, b)-monoid which contains X . Thus, 〈G〉 is the
smallest (a, b)-monoid containing X . Consequently, in order to justify the algorithm, it
will be enough to see that the algorithm stops. In fact, when we arrive to step (7) at the first
time, we have that gcd(G) = 1 and, thereby, 〈G〉 is a numerical semigroup. Therefore,
N \ 〈G〉 is finite and we can go to the step (6) only in a finite number of times.

Let us illustrate the performance of Algorithm 2.11 with two examples. In the first one
M(a, b,X) is a numerical semigroup.

Example 2.12. We are going to compute M =M
(
(1, 2), (4, 1), {5}

)
.

• A = ∅ and G = {5}.

• m = 5, H = {9, 11}, G = {5, 9, 11}, and A = {5}.

• m = 9, H = {13}, G = {5, 9, 11, 13}, and A = {5, 9}.

• m = 11, H = ∅, G = {5, 9, 11, 13}, and A = {5, 9, 11}.

• m = 13, H = {17}, G = {5, 9, 11, 13, 17}, and A = {5, 9, 11, 13}.

• m = 17, H = ∅, G = {5, 9, 11, 13, 17}, and A = {5, 9, 11, 13, 17}.
Therefore, M = 〈{5, 9, 11, 13, 17}〉.

Going back to the problem P
(
(1, 2), (4, 1), {5}, 6

)
of the introduction, we have that,

since N \M = {1, 2, 3, 4, 6, 7, 8, 12} has cardinality equal to 8, then Theorem 2.3 asserts
that the proposed problem has a solution. Moreover, the solutions will be some subsets,
with cardinality equal to 6, of {1, 2, 3, 4, 6, 7, 8, 12}. In addition, by the proof of the suffi-
ciency of Theorem 2.3, we know that {1, 2, 3, 4, 6, 7} is a solution of such a problem.

Let us see now an example in which M(a, b,X) is not a numerical semigroup.

Example 2.13. Let us see that P
(
(2, 3), (4, 2), {6, 8}, 9

)
has a solution. For that, we begin

with the computation of M
(
(2, 3), (4, 2), {6, 8}

)
. By applying Proposition 2.10, since

gcd({6, 8, 4, 2}) = 2, we get that M
(
(2, 3), (4, 2), {6, 8}

)
= 2 ·M

(
(2, 3), (2, 1), {3, 4}

)
.

Now, from Algorithm 2.11, M
(
(2, 3), (2, 1), {3, 4}

)
= 〈{3, 4}〉. Therefore,

M
(
(2, 3), (4, 2), {6, 8}

)
= 〈{6, 8}〉 = {0, 6, 8, 12, 14, 16, . . .}.

Since N\M
(
(2, 3), (4, 2), {6, 8}

)
has infinitely many elements, its cardinality is greater

than or equal to 9 and, consequently, Theorem 2.3 assures that P
(
(2, 3), (4, 2), {6, 8}, 9

)
has a solution. Moreover, by the proof of the sufficiency of Theorem 2.3, we have that
{1, 2, 3, 4, 5, 7, 9, 10, 11} is a solution.

Remark 2.14. If we suppose, for a moment, that X = ∅ (in a sense, we are removing
condition (P4) in P(a, b,X, g) such as is observed in Remark 1.2), then it is obvious that
Sk = {0, k,→}, for all k ∈ N, are numerical semigroups that belong to N (a, b,X) inde-
pendently of the chosen n-tuples a, b. Thus M(a, b,X) = {0}, that is, the submonoid of
(N,+) generated by X = ∅.
Remark 2.15. Now, let us suppose that a, b are 0-tuples, that is, we remove condition (P3)
in P(a, b,X, g) (see Remark 1.3). In this case, it is straightforward to show thatM(a, b,X)
is just the monoid generated by X .
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3 The tree associated to N (a, b,X)

A graph G is a pair (V,E), where

• V is a non-empty set whose elements are called vertices of G,

• E is a subset of {(v, w) ∈ V × V | v 6= w} whose elements are called edges of G.

A path (of length n) connecting the vertices x and y of G is a sequence of different edges
of the form (v0, v1), (v1, v2), . . . , (vn−1, vn) such that v0 = x and vn = y.

We say that a graph G is a tree if there exists a vertex r (known as the root of G) such
that, for every other vertex x of G, there exists a unique path connecting x and r. If (x, y)
is an edge of the tree, then we say that x is a child of y.

We define the graph G
(
N (a, b,X)

)
in the following way.

• N (a, b,X) is the set of vertices of G
(
N (a, b,X)

)
;

• (S, S′) ∈ N (a, b,X)×N (a, b,X) is an edge of G
(
N (a, b,X)

)
if S′ = S∪{F(S)}.

By Proposition 2.1 and [5, Theorem 27], we have that G
(
N (a, b,X)

)
is a tree with root

N. Our first purpose in this section will be to establish what are the children of a vertex in
such a tree. For this we need to introduce some concepts.

Let S be a numerical semigroup and let G be a system of generators of S. We say that
G is a minimal system of generators of S if S 6= 〈Y 〉 for all Y ⊂ G. It is well known (see
[6]) that every numerical semigroup admits a unique minimal system of generators and
that, in addition, such a system is finite. Observe that, if we denote by msg(S) the minimal
system of generators of S, then msg(S) =

(
S \ {0}

)
\
(
(S \ {0}) + (S \ {0})

)
. On the

other hand, we have (see [6]) that, if S is a numerical semigroup and s ∈ S, then S \ {s}
is another numerical semigroup if and only if s ∈ msg(S).

An immediate consequence of [5, Proposition 24, Theorem 27] is the next result.

Theorem 3.1. The graph G
(
N (a, b,X)

)
is a tree with root N. Moreover, the set of children

of a vertex S ∈ N (a, b,X) is{
S \ {m} | m ∈ msg(S), m > F(S), and S \ {m} ∈ N (a, b,X)

}
.

In the next result we will show the conditions that must satisfy m ∈ msg(S) in order
to have S \ {m} ∈ N (a, b,X).

Proposition 3.2. Let S ∈ N (a, b,X) and let m ∈ msg(S). Then S \ {m} ∈ N (a, b,X)
if and only if m−bi

ai
/∈ S \ {0} for all i ∈ {1, . . . , n} and m /∈ X .

Proof. (Necessity.) Since X ⊆ S \ {m}, we have that m /∈ X . Let us suppose that there
exists i ∈ {1, . . . , n} such that m−bi

ai
∈ S \ {0}. Since m−bi

ai
6= m, we have that m−bi

ai
∈

S \ {0,m} and that ai
(
m−bi
ai

)
+ bi = m 6∈ S \ {m}. Therefore, S \ {m} /∈ N (a, b,X).

(Sufficiency.) If S \ {m} /∈ N (a, b,X), then there exists s ∈ S \ {0,m} and there
exists i ∈ {1, . . . , n} such that ais+ bi /∈ S \ {m}. Since S ∈ N (a, b,X), we know that
ais+ bi ∈ S. Therefore, ais+ bi = m and, consequently, m−bi

ai
= s ∈ S \ {0}.

Our next purpose will be to build recurrently G
(
N (a, b,X)

)
from its root and joining

each vertex with its children by means of edges. In order to make easy that construction, we
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will study the relation between the minimal system of generators of a numerical semigroup
S and the minimal system of generators of S \ {m}, where m is a minimal generator of
S greater than F(S). First of all, it is clear to observe that, if S is minimally generated
by {m,m + 1, . . . , 2m − 1} (that is, S = {0,m,→}), then S \ {m} = {0,m + 1,→}
is minimally generated by {m + 1,m + 2, . . . , 2m + 1}. In other case we can apply the
following result, which is [3, Corollary 18].

Proposition 3.3. Let S be a numerical semigroup with minimal system of generators
msg(S) = {n1 < n2 < · · · < np}. If i ∈ {2, . . . , p} and ni > F(S), then

msg(S \ {ni}) =


{n1, . . . , np} \ {ni}, if there exists j ∈ {2, . . . , i− 1}

such that ni + n1 − nj ∈ S;(
{n1, . . . , np} \ {ni}

)
∪ {ni + n1}, in other case.

Let us illustrate the previous results with an example.

Example 3.4. By Proposition 2.7, it is easy to see that S = 〈{5, 7, 8, 9, 11}〉 belongs to
N
(
(1, 2), (4, 1), {5}

)
. On the other hand, from Theorem 3.1, we know that the set of

children of S in the tree G
(
N
(
(1, 2), (4, 1), {5}

))
is{

S \ {m} | m ∈ msg(S), m > F(S), and S \ {m} ∈ N
(
(1, 2), (4, 1), {5}

)}
.

Since F(S) = 6, we have that {m ∈ msg(S) | m > F(S)} = {7, 8, 9, 11}. Furthermore,
by Proposition 3.2, we know that S \ {m} ∈ N

(
(1, 2), (4, 1), {5}

)
if and only if m /∈ {5}

and
{
m − 4, m−12

}
∩
(
S \ {0}

)
= ∅. Thus, since that

{
7 − 4, 7−12

}
∩
(
S \ {0}

)
={

8 − 4, 8−12
}
∩
(
S \ {0}

)
= ∅,

{
9 − 4, 9−12

}
∩
(
S \ {0}

)
6= ∅, and

{
11 − 4, 11−12

}
∩(

S \ {0}
)
6= ∅, we conclude that S = 〈{5, 7, 8, 9, 11}〉 has two children. Namely, they are

〈{5, 7, 8, 9, 11}〉\{7} = 〈{5, 8, 9, 11, 12}〉 and 〈{5, 7, 8, 9, 11}〉\{8} = 〈{5, 7, 9, 11, 13}〉,
where we have applied Proposition 3.3.

Following the idea of the previous example, we can build G
(
N
(
(1, 2), (4, 1), {5}

))
in

a recurrent way starting from its root, that is, from N = 〈{1}〉 (see Figure 1).
Let us observe that, since gcd({5} ∪ {4, 1}) = 1 and by Theorem 2.6, then we know

that N ((1, 2), (4, 1), {5}) is a finite Frobenius variety and, thereby, we have been able of
building it completely in a finite number of steps.

Let us also observe that, if S ∈ N (a, b,X), then g(S) is equal to the length of the path
connecting S with N in the tree G

(
(N (a, b,X)

)
. Therefore, in order to build the elements

ofN (a, b,X) with a fixed genus g, we only need to build the elements ofN (a, b,X) which
are connected to N through a path of length less than or equal to g. Consequently, we have
an algorithmic process to compute all the solutions of the problem P(a, b,X, g).

For instance, in the tree G
(
N
(
(1, 2), (4, 1), {5}

))
, the numerical semigroups which

are connected to N through a path of length 6 are 〈{5, 8, 9, 11, 12}〉, 〈{5, 7, 9, 11, 13}〉, and
〈{5, 6, 9, 13}〉. Therefore, the problem proposed in the introduction has three solutions.
Namely, N\〈{5, 8, 9, 11, 12}〉 = {1, 2, 3, 4, 6, 7}, N\〈{5, 7, 9, 11, 13}〉 = {1, 2, 3, 4, 6, 8},
and N \ 〈{5, 6, 9, 11, 13}〉 = {1, 2, 3, 4, 7, 8}.

We finish with an example in which N (a, b,X) is an infinite Frobenius variety.

Example 3.5. Let us compute all the solutions of P
(
(2, 3), (4, 2), {6, 8}, 4

)
. First of all,

from Example 2.13, we know that M
(
(2, 3), (4, 2), {6, 8}

)
= 〈{6, 8}〉 and, by Theo-

rem 2.3, that the problem has a solution. Moreover, since gcd({6, 8} ∪ {4, 2}) = 2 6= 1,
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〈{1}〉

〈{2, 3}〉
�� @@

〈{3, 4, 5}〉 〈{2, 5}〉



PPPPP

〈{4, 5, 6, 7}〉 〈{3, 5, 7}〉
�
� @@

XXXXXX
〈{5, 6, 7, 8, 9}〉 〈{4, 5, 7}〉 〈{4, 5, 6}〉


 JJ

PPPPP
PPPPP

〈{5, 7, 8, 9, 11}〉 〈{5, 6, 8, 9}〉 〈{5, 6, 7, 9}〉 〈{4, 5, 11}〉


 JJ

b
bb

〈{5, 8, 9, 11, 12}〉 〈{5, 7, 9, 11, 13}〉 〈{5, 6, 9, 13}〉

〈{5, 9, 11, 12, 13}〉

〈{5, 9, 11, 13, 17}〉

Figure 1: Tree associated to the finite Frobenius variety N
(
(1, 2), (4, 1), {5}

)
.

we have that N
(
(2, 3), (4, 2), {6, 8}

)
is a infinite Frobenius variety. However, in a finite

number of steps, we can compute the elements of G
(
N
(
(2, 3), (4, 2), {6, 8}

))
which are

connected to N through a path of length 4, such as we show in Figure 2.

〈{1}〉 = N

〈{2, 3}〉
"

""
b
bb

〈{3, 4, 5}〉 〈{2, 5}〉
�����

HH
H

b
bb

〈{4, 5, 6, 7}〉 〈{3, 5, 7}〉 〈{3, 4}〉 〈{2, 7}〉
������
�
�

@
@

b
bb

XXXXXX
@
@

〈{5, 6, 7, 8, 9}〉 〈{4, 6, 7, 9}〉 〈{4, 5, 6}〉 〈{3, 7, 8}〉 〈{3, 5}〉 〈{2, 9}〉

Figure 2: Five first levels of the tree associated to the infinite Frobenius variety
N
(
(2, 3), (4, 2), {6, 8}

)
.

Therefore, the sets N \ 〈{5, 6, 7, 8, 9}〉 = {1, 2, 3, 4}, N \ 〈{4, 6, 7, 9}〉 = {1, 2, 3, 5},
N \ 〈{4, 5, 6}〉 = {1, 2, 3, 7}, N \ 〈{3, 7, 8}〉 = {1, 2, 4, 5}, N \ 〈{3, 5}〉 = {1, 2, 4, 7}, and
N \ 〈{2, 9}〉 = {1, 3, 5, 7} are the (six) solutions of P

(
(2, 3), (4, 2), {6, 8}, 4

)
.
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Remark 3.6. Let us observe that, in the construction of the trees, we can assume that
X = ∅ or that a, b are 0-tuples (see Remarks 2.14 and 2.15). Then, we obtain all the
possible solutions in each case. In particular, if we consider jointly such assumptions, then
we get the tree associated to the full family of numerical semigroups (see Remark 1.1).

4 A generalization of the problem
Along this section r and g are non-negative integers, a = (a1, . . . , an) and b = (b1, . . . , bn)
are n-tuples of positive integers, andX is a non-empty subset of {r+1,→}. We will denote
by Pr(a, b,X, g) the (generalised) problem of computing all the subsets C of {r + 1,→}
that fulfill the following conditions.

(GP1) The cardinality of C is equal to g.

(GP2) If x, y ∈ {r + 1,→} and x+ y ∈ C, then C ∩ {x, y} 6= ∅.

(GP3) If x ∈ C and x−bi
ai
∈ {r + 1,→} for some i ∈ {1, . . . , n}, then x−bi

ai
∈ C.

(GP4) X ∩ C = ∅.

Let us observe that P0(a, b,X, g) = P(a, b,X, g).
It is clear that a set C is a solution of Pr(a, b,X, g) if and only if S = {0, r+1,→}\C

is a numerical semigroup that fulfills the following conditions.

(GS1) g(S) = r + g.

(GS2) If s ∈ S \ {0}, then as+ b ∈ Sn.

(GS3) X ⊆ S.

Let us denote by Nr(a, b,X) the set of all numerical semigroups which are subsets of
{0, r + 1,→} and satisfy the conditions (GS2) and (GS3). Let us observe that, with this
notation, the solutions of Pr(a, b,X, g) are the elements of the set{

{0, r+, 1→} \ S | S ∈ Nr(a, b,X) and g(S) = r + g
}
.

Moreover, Nr(a, b,X) =
{
S ∈ N (a, b,X) | S ⊆ {0, r + 1,→}

}
.

The following proposition is analogous to Theorem 2.3.

Proposition 4.1. Let us take Mr(a, b,X) =
⋂

S∈Nr(a,b,X) S. Then Pr(a, b,X, g) has a
solution if and only if the cardinality of N \Mr(a, b,X) is greater than or equal to g + r.

Proof. (Necessity.) If C is a solution of Pr(a, b,X, g), then S = {0, r+1,→}\C belongs
to Nr(a, b,X) and g(S) = g + r. Since Mr(a, b,X) ⊆ S, then we conclude that the
cardinality of N \Mr(a, b,X) is greater than or equal to g + r.

(Sufficiency.) If {0, r + 1,→} \ Mr(a, b,X) = {c1 < · · · < cg < · · · } and S =
Mr(a, b,X) ∪ {cg + 1,→}, then it is easy to see that S ∈ Nr(a, b,X) and g(S) = g + r.
Therefore, C = {0, r + 1,→} \ S is a solution of Pr(a, b,X, g).

Observe that the cardinality of N \Mr(a, b,X) is greater than or equal to g + r if and
only if the cardinality of {0, r + 1,→} \Mr(a, b,X) is greater than or equal to g.

Proposition 4.2. Mr(a, b,X) =M(a, b,X).
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Proof. Since Nr(a, b,X) ⊆ N (a, b,X), then we have that

M(a, b,X) =
⋂

S∈N (a,b,X) S ⊆
⋂

S∈Nr(a,b,X) S =Mr(a, b,X).

Let us now see the other inclusion. Since {0, r+1,→} ∈ N (a, b,X) andN (a, b,X) is
a Frobenius variety, we have that, if S ∈ N (a, b,X), then S∩{0, r+1,→} ∈ N (a, b,X).
In addition, S∩{0, r+1,→} ⊆ {0, r+1,→} and, thus, S∩{0, r+1,→} ∈ Nr(a, b,X).
In this way, R =

{
S ∩ {0, r + 1,→} | S ∈ N (a, b,X)

}
⊆ Nr(a, b,X). Consequently,

Mr(a, b,X) =
⋂

S∈Nr(a,b,X) S ⊆
⋂

S∈R S =
⋂

S∈N (a,b,X) S =M(a, b,X).

As an immediate consequence of Proposition 4.2 and Proposition 2.10, we have the
next result.

Corollary 4.3. If gcd
(
X ∪ {b1, . . . , bn}

)
= d, then Mr(a, b,X) = d ·M

(
a, bd ,

X
d

)
.

Let us observe that, as a consequence fo the previous corollary, we can use Algo-
rithm 2.11 in order to compute Mr(a, b,X).

The following result is the analogous to Theorem 2.6 for the current problem.

Corollary 4.4. The following conditions are equivalent.

1. Nr(a, b,X) is finite.

2. Mr(a, b,X) is a numerical semigroup.

3. gcd(X ∪ {b1, . . . , bn}) = 1.

Proof. The equivalence between conditions 2 and 3 is a consequence of Proposition 4.2
and Theorem 2.6. Now, let us see the equivalence between conditions 1 and 2.

(1.⇒ 2.) It is enough to observe that the finite intersection of numerical semigroups is
another numerical semigroup.

(2.⇒ 1.) If S ∈ Nr(a, b,X), then Mr(a, b,X) ⊆ S. Thus, S = Mr(a, b,X) ∪ Y for
some Y ⊆ N \Mr(a, b,X). Since N \Mr(a, b,X) is finite, then we can conclude that
Nr(a, b,X) is finite.

Let us illustrate the previous results with several examples.

Example 4.5. Let us see that Pr

(
(1, 2), (4, 1), {5}, 6

)
has a solution if and only if r ∈

{0, 1, 2}. Since {5} ⊆ {r + 1,→}, then r ∈ {0, 1, 2, 3, 4}. By Proposition 4.2 and
Example 2.12, we have that M = Mr

(
(1, 2), (4, 1), {5}, 6

)
= 〈{5, 9, 11, 13, 17}〉. Since

N \M = {1, 2, 3, 4, 6, 7, 8, 12} has cardinality equal to 8, by applying Proposition 4.1, we
easily deduce that Pr

(
(1, 2), (4, 1), {5}, 6

)
has a solution if and only if r ∈ {0, 1, 2}.

Example 4.6. If r ∈ {0, 1, 2, 3, 4, 5}, then Nr

(
(2, 3), (4, 2), {6, 8}

)
is an infinite set. In

fact, this is an immediate consequence of Corollary 4.4 and that gcd({4, 2, 6, 8}) = 2 6= 1.

Example 4.7. Let us compute P3

(
(2, 3), (4, 2), {6, 8}, 9

)
. By Proposition 4.2 and Exam-

ple 2.13, we have thatM3

(
(2, 3), (4, 2), {6, 8}

)
= 〈{6, 8}〉. Now, if we apply the construc-

tion given in the sufficiency of Proposition 4.1, we have that {4, 5, 7, 9, 10, 11, 13, 15, 17}
is a solution.

If G is a tree and u, v are two vertices of G such that there exists a path between them,
then we will say that u is a descendant of v. The next result has an easy proof.
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Proposition 4.8. Nr(a, b,X) is the set of all descendants of {0, r + 1,→} in the tree
G
(
N (a, b,X)

)
.

A Frobenius pseudo-variety (see [4]) is a non-empty family P of numerical semigroups
that fulfills the following conditions.

(PV1) P has a maximum element max(P) (with respect to the inclusion order).

(PV2) If S, T ∈ P , then S ∩ T ∈ P .

(PV3) If S ∈ P and S 6= max(P), then S ∪ F(S) ∈ P .

As an immediate consequence of Proposition 4.8 and the comment above to Example 7 in
[4], we have the following result.

Proposition 4.9. Nr(a, b,X) is a Frobenius pseudo-variety.

Let us observe that, if r ≥ 1, then max(Nr(a, b,X)) = {0, r+1,→} 6= N. Therefore,
by applying [4, Proposition 1], we have that Nr(a, b,X) is not a Frobenius variety.

Now, let us notice that the subgraph, of a tree, which is formed by a vertex and all its
descendants is also a tree. We will denote by G

(
Nr(a, b,X)

)
the subtree of G

(
N (a, b,X)

)
formed by {0, r + 1,→} and all its descendants.

Example 4.10. The root of G
(
N3

(
(1, 2), (4, 1), {5}

))
is {0, 4,→} = 〈{4, 5, 6, 7}〉. Thus,

from Example 3.4, we have that such a tree is given by Figure 3.

〈{4, 5, 6, 7}〉
�
� @@

XXXXXX
〈{5, 6, 7, 8, 9}〉 〈{4, 5, 7}〉 〈{4, 5, 6}〉


 JJ

PPPPP
PPPPP

〈{5, 7, 8, 9, 11}〉 〈{5, 6, 8, 9}〉 〈{5, 6, 7, 9}〉 〈{4, 5, 11}〉


 JJ

b
bb

〈{5, 8, 9, 11, 12}〉 〈{5, 7, 9, 11, 13}〉 〈{5, 6, 9, 13}〉

〈{5, 9, 11, 12, 13}〉

〈{5, 9, 11, 13, 17}〉

Figure 3: Tree associated to the Frobenius pseudo-variety N3

(
(1, 2), (4, 1), {5}

)
.

Let us observe that Nr(a, b,X) is the set of vertices in G
(
Nr(a, b,X)

)
, and that

(S, S′) ∈ Nr(a, b,X) × Nr(a, b,X) is an edge of G
(
Nr(a, b,X)

)
if and only if S′ =

S ∪ {F(S)}. It is also clear that, if S ∈ Nr(a, b,X), then the set formed by the children of
S inNr(a, b,X) is the same that the set formed by the children of S inN (a, b,X). In this
way, by applying Theorem 3.1, we have the next result.

Proposition 4.11. The graph G
(
Nr(a, b,X)

)
is a tree with root {0, r+ 1,→}. Moreover,

the set of children of a vertex S in G
(
Nr(a, b,X)

)
is{

S \ {m} | m ∈ msg(S), m > F(S), and S \ {m} ∈ N (a, b,X)
}
.
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Now, let us notice that, by using Propositions 3.2 and 3.3, we can compute the children
of any vertex S in G

(
Nr(a, b,X)

)
and, consequently, we have an algorithmic process to

recurrently build the elements of Nr(a, b,X).
We finish this section with an illustrative example about the above comment.

Example 4.12. Let us compute all the solutions of P3

(
(2, 3), (4, 2), {6, 8}, 4

)
. In order

to do this, we have to determine the vertices of G
(
N3

(
(2, 3), (4, 2), {6, 8}

))
which are

connected to {0, 4,→} = 〈{4, 5, 6, 7}〉 through a path of length 4.
Let us observe that, if A is the set of vertices (of a tree) which are connected to

the root through a path of length k, then the set formed by all vertices that are children
of some vertex of A is just the set of vertices which are connected to the root through
a path of length k + 1. Thus, if we denote by Ai the set formed by the vertices of
G
(
N3

(
(2, 3), (4, 2), {6, 8}

))
which are connected to 〈{4, 5, 6, 7}〉 through a path of length

i, then (by applying Propositions 4.11, 3.2, and 3.3) we obtain recurrently the following
sets.

• A0 =
{
〈{4, 5, 6, 7}〉

}
• A1 =

{
〈{5, 6, 7, 8, 9}〉, 〈{4, 6, 7, 9}〉, 〈{4, 5, 6}〉

}
• A2 =

{
〈{6, 7, 8, 9, 10, 11}〉, 〈{5, 6, 8, 9}〉, 〈{5, 6, 7, 8}〉, 〈{4, 6, 9, 11}〉, 〈{4, 6, 7}〉

}
• A3 =

{
〈{6, 8, 9, 10, 11, 13}〉, 〈{6, 7, 8, 10, 11}〉, 〈{6, 7, 8, 9, 11}〉, 〈{6, 7, 8, 9, 10}〉,
〈{5, 6, 8}〉, 〈{4, 6, 11, 13}〉, 〈{4, 6, 9}〉

}
• A4 =

{
〈{6, 8, 10, 11, 13, 15}〉, 〈{6, 8, 9, 11, 13}〉, 〈{6, 8, 9, 10, 13}〉,
〈{6, 8, 9, 10, 11}〉, 〈{6, 7, 8, 11}〉, 〈{6, 7, 8, 10}〉, 〈{6, 7, 8, 9}〉,
〈{4, 6, 13, 15}〉, 〈{4, 6, 11}〉

}
Therefore, the set of solutions of P3

(
(2, 3), (4, 2), {6, 8}, 4

)
is{

〈{4, 5, 6, 7}〉 \ S | S ∈ A4

}
=
{
{4, 5, 7, 9}, {4, 5, 7, 10}, {4, 5, 7, 11}, {4, 5, 7, 13},

{4, 5, 9, 10}, {4, 5, 9, 11}, {4, 5, 10, 11}, {5, 7, 9, 11}, {5, 7, 9, 13}
}
.
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Abstract

Several articles deal with tilings with squares and dominoes of the well-known regular
square mosaic in Euclidean plane, but not any with the hyperbolic regular square mosaics.
In this article, we examine the tiling problem with colored squares and dominoes of one
type of the possible hyperbolic generalization of (2× n)-board.

Keywords: Tiling, domino, hyperbolic mosaic, Fibonacci numbers, combinatorial identity.

Math. Subj. Class.: 05A19, 05B45, 11B37, 11B39, 52C20

1 Introduction
In the hyperbolic plane there exist infinite types of regular mosaics, they are denoted by
Schläfli’s symbol {p, q}, where the positive integers p and q have the property (p− 2)(q−
2) > 4, see [5]. If p = 4 they are the regular square mosaics and each vertex of the mosaic
is surrounded by q squares. Note that if p = q = 4 we obtain the Euclidean square mosaic.

Now we define the (2 × n)-board on mosaic {4, q}, where q ≥ 4. First we take a
square S1 with vertices A0, A1, B1, B0 according to Figure 1, and later to Figures 2 and 3.
As the second step we consider the square S2, which has a common edge A1B1 with S1.
The two new vertices are A2, B2. Similarly, we define the squares S3, . . . , Sn, their newly
constructed vertices are Ai and Bi (3 ≤ i ≤ n), respectively. The union of Si (1 ≤ i ≤ n)
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forms the first level of the board. It is depicted with yellow colors in Figures 1-3. (On
the left-hand side of Figure 2 the mosaic {4, 5} and the (2 × 4)-board are illustrated in
Poincaré disk model and on the right-hand side there is a “schematic” (2 × 4)-board from
the mosaic.) The second level of the board is formed by the squares of the mosaic having
at least one vertex from the set {A1, A2, . . . , An} and not from {B1, B2, . . . , Bn, An+1},
where the last point is the appropriate point of the virtually joined square Sn+1 (A0 is not
in the first set, see Figure 3). These are the light blue squares in the figures. In the first
level, independently from q there are n squares, while the second level contains n(q − 3)
squares (see Figure 3).

Let rn be the number of the different tilings with (1×1)-squares and (1×2)-dominoes
(two squares with a common edge) of a (2 × n)-board of mosaic {4, q}. It is known
that the tilings of a (1 × n)-board on the Euclidean square mosaic can be counted by
the Fibonacci numbers [2, 4]. In fact, rn = fn, where {fn}∞n=0 is the shifted Fibonacci
sequence (Fn = fn−1, where Fn is the n-th Fibonacci number, A000045 in OEIS [12]), so
that

fn = fn−1 + fn−2 (n ≥ 2)

holds with initial values f0 = f1 = 1 (and f−1 = 0).

1

10 0 0 01 1 12 2 23 3

1 2 540 0
A

BB B B BB B BB B BB B

A A AAA A

1 1 2 2 23 31 1S S S S SS SS S

4B

4S

1 2 30
A A AA

Figure 1: (2× 4)-board on Euclidean mosaic {4, 4}.

1B0B 4B
2B 3B

1

2 3

4S
S S

S 0 1 2 3B B B B

2 31 S SS

4B

4S

Figure 2: (2× 4)-board on hyperbolic mosaic {4, 5}.

McQuistan and Lichtman [9] (generalizations in [6]) studied the tilings in case of the
Euclidean square mosaic {4, 4} and they proved that rn satisfies the identity

rn = 3rn−1 + rn−2 − rn−3 (1.1)

for n ≥ 3 with initial values r0 = 1, r1 = 2 and r2 = 7 (A030186 in [12]).
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0

q-3

1A

q-4

Figure 3: (2× 1)-board and (2× 4)-board on hyperbolic mosaic {4, q} (q ≥ 5).

In the work [3], the generalized Fibonacci number un, where

un = aun−1 + bun−2, (n ≥ 2) (1.2)

with initial values u0 = 1, u1 = a (and u−1 = 0), is interpreted as the number of ways
to tile a (1 × n)-board using a colors of squares and b colors of dominoes. Obviously, if
a = b = 1 then un = fn. Belbachir and Belkhir proved a couple of general combinatorial
identities related to un in [1].

Let Rn be the number of tilings of (2 × n)-board of mosaic {4, q} using a colors of
squares and b colors of dominoes. When q = 4 Katz and Stenson [7] showed the recurrence
rule

Rn = (a2 + 2b)Rn−1 + a2bRn−2 − b3Rn−3, (n ≥ 3) (1.3)

with initial values R0 = 1, R1 = a2 + b and R2 = a4 + 4a2b+ 2b2.
In this article, we examine the tilings of (2 × n)-board on mosaic {4, q} (q ≥ 4) with

colored squares and dominoes in a general way and we obtain the following main theorem.

Theorem 1.1. Assume q ≥ 4. The sequence {Rn}∞n=0 can be described by the fourth order
linear homogeneous recurrence relation

Rn = αq Rn−1 + βq Rn−2 + γq Rn−3 − b2(q−2)Rn−4, (n ≥ 4) (1.4)

where (explicit formulas later)

αq+2 = aαq+1 + bαq, (1.5)

βq+3 = (a2 + b)βq+2 + b(a2 + b)βq+1 − b3βq, (1.6)

γq+2 = −abγq+1 + b3γq (1.7)

with initial values

α4 = a2 + b, α5 = a(a2 + 3b),

β4 = 2b(a2 + b), β5 = b(a2 + b)(a2 + 2b), β6 = b(a6 + 6a4b+ 10a2b2 + 2b3),

γ4 = b2(a2 − b), γ5 = −ab3(a2 + b),

moreover R0 = 1, R1 = uq−2, R2 = u2q−2 + abuq−4uq−3 + bu2q−3 + b2u2q−4, R3 =
(u2q−2 +2abuq−4uq−3 +2bu2q−3 +2b2u2q−4)uq−2 + b2(uq−3uq−4 + (a2 + b)uq−4uq−5 +
au2q−4)uq−3 + ab3u2q−4uq−5.

If a = b = 1, then Theorem 1.1 leads to the following corollary. Recall that fn = Fn+1

(shifted Fibonacci numbers).
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Corollary 1.2. The sequence {rn}∞n=0 can be given by the fourth order linear homoge-
neous recurrence relation

rn = 2fq−3 rn−1 +
(
5f2q−4 + (−1)q−1

)
rn−2 + 2(−1)qfq−5 rn−3 − rn−4, (n ≥ 4)

(1.8)
with initial values r0 = 1, r1 = fq−2, r2 = 7f2q−4 + 7fq−4fq−5 + 2f2q−5 and r3 =
22f3q−4 + 36f2q−4fq−5 + 19fq−4f

2
q−5 + 3f3q−5.

Observe, that if q = 4, then (1.4) returns with (1.3) (compute the sum of Rn and
bRn−1). Similarly, the extension of (1.1) is (1.8).

2 Tilings on mosaic {4, q}
We can see that our tiling exercise of the hyperbolic (2 × 1)-board on the mosaic {4, q}
(q ≥ 5) is the same as the tiling exercise of the Euclidean

(
1 × (q − 2)

)
-board. So R1 =

uq−2 and r1 = fq−2 (Figure 3).
Before the discussion of the main result, we define the break-ability of a tiling. A

tiling of a (2 × n)-board is breakable in position i for 1 ≤ i ≤ n − 1, if this tiling is a
concatenation of the tilings of a (2× i)-subboard and a

(
2×(n− i)

)
-subboard. Clearly, the

number of colored tilings of such a board is RiRn−i. A tiling is unbreakable in position i
in three different ways: if a domino covers the last square of the first subboard and the first
square of the second subboard either in the first or the second level, or on both levels (see
Figure 4).

i i i in n n n0 0 0 01 1 1 1

i i iA B C

Figure 4: Breakable and unbreakable tilings in position i when q = 7.

Now, we define three subboards. Let Ai, Bi and Ci be the subboards of (2 × i)-board
(1 ≤ i ≤ n), respectively, where the last square from second level, the last square from
first level and the last squares from both levels are deleted from (2× i)-board. In Figure 4
these subboards are illustrated. Let Ai, Bi and Ci denote the number of different colored
tilings of Ai, Bi and Ci, respectively.

2.1 Proof of Theorem 1.1 and Corollary 1.2

Our proof is based on the connections among (2 × n)-board, An, Bn and Cn subboards.
We can easily give the number of tilings if n = 1. They are R1 = uq−2, A1 = uq−4,
B1 = uq−3 and C1 = uq−4. Moreover let R0 = 1, A0 = B0 = C0 = 0.

Generally, if n ≥ 2, then Figure 5 shows the recurrence connections of the subboards.
For example, let us see the first row. We can build a full (2 × n)-board by four different
ways from the full

(
2 × (n − 1)

)
-board or from the subboards An−1, Bn−1 and Cn−1. If

we join a suitable (2 × 1)-board to a
(
2 × (n − 1)

)
-board, then the coefficient uq−2 is

obvious in case of the breakable tilings in position n − 1. When we complete An−1 to a
full (2 × n)-board, we have a domino in the second level with b different colors, and we
put a square onto the first level with a colors. (If we replace the laid down domino in the
second level with two squares, then these tilings would be a part of the first case when we
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completed the
(
2 × (n − 1)

)
-board.) The rest part can be tiled freely. Consequently, the

coefficient of An−1 is abuq−4 and these are unbreakable tilings in position n− 1. Now, let
us complete Bn−1 and Cn−1 to be full (2×n)-board with a domino in the first level or with
two dominoes, one is in the first level and the other in the second level, respectively. The
rest parts can be tiled freely. We obtain buq−3 and b2uq−4 new (unbreakable in position
n− 1) tilings. Summarising the result of the first row of Figure 5 we have the first equation
of the system of recurrence equations (2.1). The determinations of the other rows can be
explained similarly. We mention, that, for example, in the fourth row Bn−1 does not appear,
because when we complete it to Cn we do not have new tiling type, the tilings are in the first
tiling types in the same row. (The yellow square would be in the grey

(
2× (n− 1)

)
-board

– see the last row in Figure 5.) Hence the recurrence equations for n ≥ 1 satisfy the system

uu

uu

u

u u

u

u

u u

u

q–4q–2

q–5q–3

q–4

q–3 q–4
2

2

q–3

q–5

q–4 q–5

q–4

RA A B Cn -1n n -1 n -1 n -1

R A B

B

C

C

n -1n n -1 n -1

n -1

n -1

n -1

RR A B Cn -1n n -1 n -1 n -1

B

RC An -1n n -1

= +ab

= +ab

= +b

+b +b

= +b

+b +b

Figure 5: Base of recurrence connections of the subboards.

Rn = uq−2Rn−1 + ab uq−4An−1 + b uq−3Bn−1 + b2 uq−4Cn−1

An = uq−3Rn−1 + ab uq−5An−1 + b uq−4Bn−1 + b2 uq−5Cn−1 (2.1)
Bn = uq−3Rn−1 + b uq−4An−1

Cn = uq−4Rn−1 + b uq−5An−1.

Recall that the initial values are R0 = 1, A0 = B0 = C0 = 0. The matrix of the
coefficients of (2.1) is

M =


uq−2 ab uq−4 b uq−3 b2 uq−4
uq−3 ab uq−5 b uq−4 b2 uq−5
uq−3 b uq−4 0 0
uq−4 b uq−5 0 0

 .

As usual, the characteristic equation of M provides the recurrence relation for {Rn} (and
{An}, {Bn}, {Cn}; see the proof in [10]. The computation was made by the help of
software MAPLE.) Thus we have

Rn = αq Rn−1 + βq Rn−2 + γq Rn−3 + δqRn−4 (n ≥ 4), (2.2)



342 Ars Math. Contemp. 15 (2018) 337–346

where (with some calculation using (1.2))

αq = abuq−5 + uq−2,

βq = b(b2u2q−5 − auq−5uq−2 + 2bu2q−4 + auq−4uq−3 + u2q−3),

γq = −b2(bu2q−5uq−2 − 2uq−4u
2
q−3 + auq−5u

2
q−3 + u2q−4uq−2),

δq = −b4(u2q−5u2q−3 − 2uq−5u
2
q−4uq−3 + u4q−4).

Moreover, we obtain the initial values of the recurrence for n = 1, 2, 3 from system (2.1).
They are R1 = uq−2, R2 = u2q−2 + abuq−4uq−3 + bu2q−3 + b2u2q−4 and

R3 = (u2q−2 + abuq−4uq−3 + bu2q−3 + b2u2q−4)uq−2

+ (abuq−2uq−4 + a2b2uq−4uq−5 + b2uq−3uq−4 + b3uq−4uq−5)uq−3

+ (buq−2uq−3 + ab2u2q−4)uq−3 + (b2uq−2uq−4 + ab3uq−4uq−5)uq−4.

In the next part, we prove that relations (1.5)–(1.7) hold. Firstly, we insert αq+2, αq+1

and αq into (1.5) to have

abuq−3 + uq = a(abuq−4 + uq−1) + b(abuq−5 + uq−2). (2.3)

Apply (1.2) consecutively with n = q, q− 1, . . . as follows. First plug uq into the equation
(2.3), then substitute uq−1 in the new equation, and so an. Finally, when n = q − 3, we
find that (2.3) is an identity, so (1.5) holds. If q = 4 and q = 5, then αq provides the initial
values. The proofs of (1.6) and (1.7) go similarly.

Finally, we show that δq = −b2(q−2). For q = 4 we immediately obtain δ4 =
−b4(u24−5u24−3 − 2u4−5u

2
4−4u4−3 + u44−4) = −b2·2. Then we consider the recurrence

relation (q ≥ 4)
xq+1 = b2xq. (2.4)

Some calculations show that both expressions (δq and −b2(q−2)) satisfies recursion (2.4),
which implies the equality.

We express the values by uq−4 and uq−5 by using relation (1.2). Thus we have

αq = (a2 + b)uq−4 + 2abuq−5,

βq = (2a2 + 2b)bu2q−4 + (−a3 + 2ab)buq−4uq−5 + (−a2b+ 2b2)bu2q−5,

γq = (a2 − b)b2u3q−4 − (a3 − 3ab)b2u2q−4uq−5 − (3a2b− b2)b2uq−4u2q−5 − 2ab4u3q−5,

δq = −b2(q−2).

As F 2
n − FnFn−1 − F 2

n−1 = (−1)n−1, if a = b = 1, then we obtain

αq = 2fq−4 + 2fq−5 = 2fq−3,

βq = 4f2q−4 + fq−4fq−5 + f2q−5 = 5f2q−4 + (−1)q−1,
γq = 2f2q−4fq−5 − 2fq−4f

2
q−5 − 2f3q−5 = 2(−1)qfq−5,

δq = −1.

Now the initial values Ri lead to the initial values ri (i = 1, 2, 3).
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2.2 Unbreakable tilings

In this subsection we determine the number of unbreakable tilings. Let r̃n (and R̃n) be the
number of different unbreakable tilings with (colored) squares and dominoes of (2 × n)-
board of {4, q}. Moreover, let Ãi, B̃i and C̃i denote the number of the different unbreakable
colored tilings of Ai, Bi and Ci, respectively.

Theorem 2.1. The sequence {R̃n} can be described by the binary recurrence relation

R̃n = abuq−5R̃n−1 + b2
(
u2q−4 + bu2q−5

)
R̃n−2, (n ≥ 3)

where the initial values are R̃1 = uq−2 and R̃2 = abuq−3uq−4 + bu2q−3 + b2u2q−4.

Proof. The proof is similar to the proof of the first theorem. By deleting the breakable
tilings from Figure 5 (the second column) we gain the system of recurrence sequences
(n ≥ 2)

R̃n = abuq−4Ãn−1 + buq−3B̃n−1 + b2uq−4C̃n−1

Ãn = abuq−5Ãn−1 + buq−4B̃n−1 + b2uq−5C̃n−1

B̃n = buq−4Ãn−1

C̃n = buq−5Ãn−1

with initial values R̃1 = uq−2, Ã1 = uq−3, B̃1 = uq−3, C̃1 = uq−4. The character-
istic equation of its coefficients matrix gives the recurrence for R̃n. From the system of
recurrence sequences we gain R̃2.

Supposing a = b = 1, together with

r̃2 = 3f2q−4 + 3fq−4fq−5 + f2q−5 = 4f2q−4 + 2fq−4fq−5 + (−1)q−1

= 2fq−4(2fq−4 + fq−5) + (−1)q−1,

we obtain the following corollary.

Corollary 2.2. The sequence {r̃n} satisfies the binary recurrence relation

r̃n = fq−5r̃n−1 +
(
f2q−4 + f2q−5

)
r̃n−2, (n ≥ 3)

with coefficients linked to Fibonacci numbers, where the initial values are r̃1 = fq−2 and
r̃2 = 2fq−4fq−2 + (−1)q−1.

3 Some identities
In the sequel, we give certain identities related to the sequences {Rn} and {R̃n}. The
proofs are based on the tilings, not on the recursive formulae.

Identity 3.1. If n ≥ 1, then

Rn =

n−1∑
i=0

RiR̃n−i.
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Proof. Let us consider the breakable colored tilings in position i (0 ≤ i < n) of (2 × n)-
board, where the tilings on the right

(
2× (n− i)

)
-subboard are unbreakable (see Figure 6).

The number of this tilings is RiR̃n−i. If i = 0, then the tilings are unbreakable on the
whole (2 × n)-board. Clearly, when i goes from 1 to n − 1, we have different tilings and
we consider all of them exhaustedly.

i n0

i n-iR R

Figure 6: Breakable tilings in position i in case of Identity 3.1.

An equivalent form of Identity 3.1 is

Identity 3.2. If n ≥ 1, then

Rn =

n∑
i=1

Rn−iR̃i.

The next statement gives another rule of summation.

Identity 3.3. If m ≥ 1 and n ≥ 1, then

Rn+m = RnRm +

n∑
i=1

m∑
j=1

Rn−iRm−jR̃i+j .

Proof. Let us consider a
(
2×(n+m)

)
-board as the concatenation of (2×n)-board and (2×

m)-board (in other words, tilings are breakable in position n). First we take the breakable
tilings in position n, their cardinality is RnRm. Then we examine the unbreakable tilings
in this position. We cover the position n by i + j long unbreakable tilings from position
n− i to n+ j. They give the rest tilings. Figure 7 illustrates these two cases.

n-i n j+n n m+ n m+0 0

n m n-i m-jR R R Ri j+R

Figure 7: Tilings in case of Identity 3.3.

Identity 3.3 admits the following remarkable specific cases by the choice of m = 1,
m = (k − 1)n and n = n− k, m = n+ k, respectively.

Identity 3.4. If n ≥ 1, then

Rn+1 = RnR1 +

n∑
i=1

Rn−iR̃i+1.

Identity 3.5. If n ≥ 1 and k ≥ 2, then

Rkn = RnR(k−1)n +

n∑
i=1

(k−1)n∑
j=1

Rn−iR(k−1)n−jR̃i+j .
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Identity 3.6. If n > k ≥ 0 then

R2n = Rn−kRn+k +

n−k∑
i=1

n+k∑
j=1

Rn−k−iRn+k−jR̃i+j .

Finally, we give an identity about the product of two arbitrary terms of the sequence
{Rn}.

Identity 3.7. If n,m ≥ 1, then

RnRm =

n−1∑
i=0

m−1∑
j=0

RiRjR̃n−iR̃m−j .

Proof. Consider a
(
2× (n+m)

)
-board as a concatenation of (2× n)-board and (2×m)-

board. The result is derived in a direct manner from the number of the breakable tilings in
position n. See Figure 8.

i n j+n n m+0

i jn-i m-jR RR R

Figure 8: Tilings in case of Identity 3.7.

4 Conclusion and future work
In this article, we introduced a generalization of the square boards on the hyperbolic regu-
lar square mosaics and examined the combinatorial properties of tilings on these mosaics
with colored squares and dominoes. As there are the infinite number of regular mosaics
in the hyperbolic plane we hope that the examinations of the combinatorial properties of
other tilings give some useful results. Moreover, we are informed on two additional timely
articles about hyperbolic space tilings [8, 11].
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Abstract

A regular mapM is an embedding of a finite connected graph into a compact surface S
such that its automorphism group Aut+(M) acts transitively on the directed edges. A re-
flection ofM fixes a number of simple closed geodesics on S, which are called mirrors. In
this paper, we prove two theorems which enable us to calculate the total number of mirrors
fixed by the reflections of a regular map and the lengths of these mirrors. Furthermore, by
applying these theorems to Hurwitz maps, we obtain some interesting results. In particular,
we find an upper bound for the number of mirrors on Hurwitz surfaces.

Keywords: Riemann surface, regular map, Hurwitz map, reflection, mirror.

Math. Subj. Class.: 05C10, 30F10

1 Introduction
Let S be a compact Riemann surface of genus g. It is known that S can be expressed in
the form U/Λ, where U is the Riemann sphere Σ, the Euclidean plane C, or the hyperbolic
plane H, depending on whether g is 0, 1 or > 1, respectively, and Λ is a discrete group of
isometries of U. A conformal or anti-conformal homeomorphism f : S → S is called an
automorphism of S. If S admits an anti-conformal involution r : S → S, then it is called
symmetric and r is called a symmetry of S. The fixed-point set of r is either empty, or
consists of disjoint simple closed geodesics on S. These geodesics are called the mirrors
of r and their number cannot exceed g + 1 by a classical theorem of Harnack [10]. All
automorphisms of S form a group under composition and it is denoted by Aut±(S). The
subgroup of Aut±(S) consisting of orientation-preserving automorphisms is denoted by
Aut+(S).
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also like to thank David Singerman for suggesting the alternative proof of Theorem 3.1 described in Remark 3.4.
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Let T be a triangle in U, with angles π/2, π/m and π/n, where m and n are integers
greater than one and 1

m + 1
n is greater than, equal to or less than 1

2 depending on whether
U is Σ, C or H, respectively. Such a triangle is said to be a (2,m, n)-triangle. Let Γ be
the group generated by the rotations about the corners of T . Then it is called the ordinary
triangle group Γ[2,m, n] and it has a presentation

〈x, y, z | x2 = ym = zn = xyz = 1〉.

If Γ is the group generated by the reflections in the sides of T , then it is called the extended
triangle group Γ(2,m, n), which has a presentation

〈a, b, c | a2 = b2 = c2 = (ab)2 = (bc)m = (ca)n = 1〉.

A map M on S is an embedding of a finite connected graph G into S such that the
interior of each face (a component of S \G) is homeomorphic to an open disc. The genus
of M is defined to be the genus of S. A directed edge of M is called a dart and M
is said to be of type {m,n} if every face of M has m sides and n darts meet at every
vertex. An automorphism of S that leavesM invariant and preserves incidence is called
an automorphism of M. All automorphisms of M form a group under composition and
this group is denoted by Aut±(M). The subgroup of Aut±(M) consisting of orientation-
preserving automorphisms is denoted by Aut+(M). If Aut+(M) is transitive on the darts,
thenM is called regular. It is clear that ifM is regular, then the number of darts is equal
to |Aut+(M)| andM has |Aut+(M)|/2 edges, |Aut+(M)|/m faces and |Aut+(M)|/n
vertices.

IfM is a regular map of type {m,n} and S = U/Λ is the underlying Riemann surface,
then by [12], Λ is normal in the ordinary triangle group Γ[2,m, n]. If Λ is also normal in the
extended triangle group Γ(2,m, n), thenM is called reflexible. In that caseM admits an
anti-conformal involution r, which is a symmetry of S with fixed-points, called a reflection
ofM.

In this paper, we prove two theorems which enable us to calculate the total number of
mirrors fixed by the reflections of a regular map and the lengths of these mirrors. Further-
more, we use these theorems to obtain an upper bound for the total number of mirrors in
Hurwitz maps.

Throughout this paper, we assume that the maps we deal with are regular and reflexible.

2 Patterns and mirror automorphisms
LetM be a regular map of type {m,n} on a compact Riemann surface S of genus g. By
joining the centers of the faces ofM to the midpoints of the neighboring edges and vertices
by geodesic arcs, we can divide S into |Aut±(M)| (2,m, n)-triangles. If T is one of these
triangles, then the group Aut±(M) can be generated by the reflections in the sides of T
and it has a presentation of the form

〈A,B,C | A2 = B2 = C2 = (AB)2 = (BC)m = (CA)n = · · · = 1〉. (2.1)

Similarly, the group Aut+(M) can be generated by the rotations about the corners of T
and it has a presentation of the form

〈X,Y, Z | X2 = Y m = Zn = XY Z = · · · = 1〉. (2.2)
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Note that if g = 0, then the groups Aut±(M) and Aut+(M) are finite and the explicitly
listed relations in (2.1) and (2.2) give presentations for these groups, respectively. If g ≥ 1,
then these presentations must contain at least one more relation.

Following [7], we label the vertices, edge-centers and face-centers ofM with 0, 1 and
2, respectively. They are called the geometric points ofM. As an automorphism preserves
the geometric points, it follows that a mirror of a reflection of M passes through some
geometric points of M and these geometric points form a periodic sequence. Since S is
compact, this sequence is finite and it is called the pattern of the mirror. As an example,
consider the icosahedral map on the sphere, which has type {3, 5}. Each reflection of this
map fixes a mirror with pattern 010212010212, which is abbreviated as (010212)2; see
[7]. Each repeated part of a pattern is called a link, and the number of links is called the
link index. So in this example, 010212 is a link and the link index is 2.

In [15], it has been shown that the pattern of a mirror is always obtained from one of the
six links 01, 02, 12, 0102, 0212, 010212, and there cannot be more than three mirrors
with different patterns on the same Riemann surface. (See Figures 1 and 2, which repre-
sent regular maps admitting two and three different patterns, respectively.) The following
theorem expresses this idea and it can be deduced from [15].

Theorem 2.1. LetM be a regular map of type {m,n} on a compact Riemann surface S
and let M be a mirror of a reflection ofM. Then:

(i) If m and n are odd, then M has pattern of the form (010212)`;

(ii) If m is even and n is odd, then M has pattern of the form (0102)`1 or (12)`2 ;

(iii) If m is odd and n is even, then M has pattern of the form (0212)`1 or (01)`2 ;

(iv) If m and n are even, then M has pattern of the form (01)`1 , (02)`2 or (02)`3 .

Here `, `1, `2 and `3 are positive integers, which depend only onM, not on M . Further-
more, `is in different lines need not be equal.

Note that all the patterns listed in each part of Theorem 2.1 do occur. For example,
in part (ii) the surface S contains two classes of mirrors such that the mirrors in different
classes have different patterns, namely (0102)`1 and (12)`2 . The same argument applies
to all parts of Theorem 2.1.

Now letM be a regular map on a compact Riemann surface S and let M be a mirror of
a reflection ofM. Suppose that ` is the link index of the pattern of M . If ` > 2, then there
exist two orientation-preserving automorphisms ofM of order `, which fix M setwise and
have no fixed points on M . They rotate M in opposite directions and cyclically permute
the links of the pattern of M . These automorphisms are inverses of each other and they are
called the mirror automorphisms of M . Note that if ` = 2, then M has a unique mirror
automorphism. If ` = 1, then we assume that the mirror automorphism ofM is the identity.
Associated to each pattern, there is a conjugacy class of mirror automorphisms such that
the order of each mirror automorphism in this conjugacy class is equal to the link index
of the pattern; see [15, Lemma 1]. In Table 1, for each pattern, a representative mirror
automorphism is displayed in terms of the generators of Aut+(M) in (2.2). Note that in
the table, for each pattern, only one link is displayed. See [15] for details.
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Table 1: Patterns and mirror automorphisms.

Case Link Mirror automorphism

1 01 Z
n
2X

2 02 Y
m
2 Z

n
2

3 12 Y
m
2 X

4 0102 Z
n+1
2 Y Z

n+1
2 Y

m
2

5 0212 Z
n
2 Y

m+1
2 ZY

m+1
2

6 010212 Y
m+1

2 ZY
m+1

2 Z
n+1
2 Y Z

n+1
2

3 Number of mirrors
From now on, ‖M‖ will denote the total number of mirrors fixed by the reflections of a
regular mapM.

Theorem 3.1. Let M be a regular map of type {m,n} on a compact Riemann surface,
and let `, `1, `2, `3 be as in Theorem 2.1. Then:

(i) If m and n are odd, then ‖M‖ = |Aut+(M)|
2` ;

(ii) If m and n have different parities, then ‖M‖ = |Aut+(M)|
2 ( 1

`1
+ 1

`2
);

(iii) If m and n are even, then ‖M‖ = |Aut+(M)|
2 ( 1

`1
+ 1

`2
+ 1

`3
).

Proof. (i) By Theorem 2.1, every mirror of a reflection ofM has pattern (010212)
`. It is

clear that each of these mirrors contains ` edges ofM. SinceM has |Aut+(M)|
2 edges, we

find that ‖M‖ = |Aut+(M)|
2` .

(ii) Suppose that m is even and n is odd. It follows from Theorem 2.1 that the pattern
of a mirror of a reflection of M is either (0102)

`1 or (12)
`2 . It is known that M has

|Aut+(M)|
m faces and a mirror with pattern (0102)

`1 passes through the centers of `1 faces
ofM. Also, the number of mirrors with pattern (0102)

`1 passing through the center of a
face F ofM is m/2. (See Figure 1, where m = 6 and n = 3. The dashed lines denote the
mirrors that have pattern (0102)

`1 and pass through the center of F .) Therefore, there are

|Aut+(M)|
m

1

`1

m

2
=
|Aut+(M)|

2`1

mirrors with pattern (0102)
`1 . A similar argument shows that there are

|Aut+(M)|
m

1

`2

m

2
=
|Aut+(M)|

2`2

mirrors with pattern (12)
`2 . As a result, we find that

‖M‖ =
|Aut+(M)|

2

(
1

`1
+

1

`2

)
.
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Figure 1: Mirrors with pattern (0102)
`1 , passing through a face-center.

The case where m is odd and n is even is similar.
(iii) In this case, by Theorem 2.1, the pattern of a mirror is either (01)

`1 , (12)
`2 or

(02)
`3 . We know thatM has |Aut+(M)|

n vertices and a mirror with pattern (01)
`1 passes

through `1 vertices of M. Moreover, the number of mirrors with pattern (01)
`1 passing

through a vertex ofM is n/2. (See Figure 2, where m = n = 4. The dashed lines denote
the mirrors that have pattern (01)

`1 and pass through a vertex v ofM.) Thus, there are

|Aut+(M)|
n

1

`1

n

2
=
|Aut+(M)|

2`1

mirrors with pattern (01)
`1 . Similar arguments show that there are |Aut+(M)|

2`2
mirrors with

pattern (12)
`2 and |Aut+(M)|

2`3
mirrors with pattern (02)

`3 . Consequently, we find that

‖M‖ = |Aut+(M)|
2 ( 1

`1
+ 1

`2
+ 1

`3
).
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Figure 2: Mirrors with pattern (01)
`1 , passing through a vertex.

Note that if M is a reflexible regular map and if we are given a presentation for
Aut+(M) as in (2.2), then we can easily determine the link indices by using Table 1
and MAGMA [1]. This is because the link indices are the orders of the mirror automor-
phisms (see [15, Lemma 1]), and the latter are explicitly known (see Table 1). Then by
using Theorem 3.1 we can easily calculate ‖M‖.
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Example 3.2. Let S be the Riemann surface of genus 7 admitting 504 conformal automor-
phisms. This surface is known as the Fricke-Macbeath surface; see [8, 14]. It is known that
S underlies a regular mapM of type {3, 7}, which is called the Fricke-Macbeath map. It
follows from [15] that Aut+(M) has a presentation

〈X,Y, Z | X2 = Y 3 = Z7 = XY Z = (Y 2ZY 2Z4Y Z4)2 = 1〉,

and Y 2ZY 2Z4Y Z4 is a mirror automorphism. Since this automorphism has order 2, by
Theorem 2.1 every mirror on S has pattern (010212)

2. Thus, by using Theorem 3.1 we
find that ‖M‖ = 504

4 = 126.

Remark 3.3. LetM be a regular map andM∗ be its dual. Since the reflections ofM and
M∗ coincide, the mirrors ofM∗ are the same as those ofM. So ‖M‖ = ‖M∗‖.
Remark 3.4. Let M be a regular map on a compact Riemann surface S and let M be
a mirror of a reflection of M. If ` is the link index corresponding to the pattern of M ,
then the stabilizer of M in Aut+(M) is the dihedral group D`. Here D` is generated by
a mirror automorphism of M and an involution fixing two antipodal points of M . Since
Aut+(M) is transitive on the mirrors with the same pattern, the orbit of M consists of the
mirrors on S which have the same pattern as M . So by the Orbit-Stabilizer theorem, we
find that there are |Aut+(M)|/2` mirrors in the orbit of M . By Theorem 2.1, there are at
most three orbits, and their sizes can be determined in the same way. Therefore, we obtain
an alternative proof of Theorem 3.1.

4 Lengths of mirrors
LetM be a regular map of type {m,n} on a compact Riemann surface S of genus g and
let M be a mirror of a reflection ofM. As pointed out in Section 2, S can be divided into
|Aut±(M)| (2,m, n)-triangles and M is a combination of the sides of (2,m, n)-triangles.
Let a, b and c be the lengths of the sides of a (2,m, n)-triangle as indicated in Figure 3. If
g > 1, then by using sine and cosine rules for hyperbolic triangles, we can calculate a, b
and c. So the length of M can be calculated as described below.
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..............
..............
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..............
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..............

...............
..............

..............
..............

..........

a

b

c

0

1 2

π
n

π
m

π
2

Figure 3: A (2,m, n)-triangle with side lengths a, b, c.

Let m and n be odd. Then M will have pattern of the form (010212)`. Now every
link corresponds to a segment of M , which has length 2(a + b + c). Thus, M has length
2`(a + b + c). Clearly, every mirror has the same length as M in this case. If m and n
have different parities, then there are two classes of mirrors on S. Ifm and n are both even,
then there are three classes of mirrors on S. In both cases the mirrors in each class have the
same length and pattern. In each case, the lengths of the mirrors can be calculated in the
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same way. Note that if g = 0 or 1, then it is not difficult to find the length of the mirrors
explicitly. So we have the following result:

Theorem 4.1. LetM be a regular map of type {m,n} on a compact Riemann surface S
and let the lengths of the sides of a (2,m, n)-triangle be a, b and c as indicated in Figure 3.
Then the lengths of the mirrors of the reflections ofM can be determined by the formulae
in Table 2, where `, `1, `2 and `3 are the link indices and `is in different lines need not be
equal.

Table 2: Lengths of mirrors.

Case Pattern Length of mirror

m and n are odd (010212)` 2`(a+ b+ c)

m odd n even (01)`1 2`1a
m odd n even (0212)`2 2`2(b+ c)

m even n odd (12)`1 2`1b
m even n odd (0102)`2 2`2(a+ c)

m and n are even (01)`1 2`1a
m and n are even (12)`2 2`2b
m and n are even (02)`3 2`3c

5 Application to Hurwitz maps
By a classical theorem of Hurwitz [11], a compact Riemann surface of genus g > 1 has at
most 84(g− 1) conformal automorphisms. Any such surface S = H/Λ is called a Hurwitz
surface, and in that case Aut+(S) is called a Hurwitz group. It is known that if S is a
Hurwitz surface, then Λ is normal in the ordinary triangle group Γ[2, 3, 7]. Thus, every
Hurwitz surface underlies a regular map of type {3, 7}, which is called a Hurwitz map.
Furthermore, Aut+(M) is isomorphic to Aut+(S) and has a presentation of the form

〈X,Y, Z | X2 = Y 3 = Z7 = XY Z = · · · = 1〉.

It has been shown by [13] that the upper bound in Hurwitz’s theorem is attained for in-
finitely many values of the genus g. Thus, there exist infinitely many Hurwitz maps and
surfaces. See [2, 3, 4, 5, 13] for further details.

Theorem 5.1. LetM be a Hurwitz map of genus g and let S be the underlying surface.
Then ‖M‖ ≤ 21(g − 1), where equality holds if and only if S is the Fricke-Macbeath
surface.

Proof. Let ` be the link index ofM. By Theorem 3.1, we find that

‖M‖ =
|Aut+(M)|

2`
=

84(g − 1)

2`
=

42(g − 1)

`
.

It follows from [15, Theorem 5] that ` ≥ 2 and hence ‖M‖ ≤ 21(g − 1) and that equality
holds if and only if S is the Fricke-Macbeath surface. See also [9, Theorem 4.1].
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It follows from Theorem 5.1 that if M is a Hurwitz map of genus g with link index
`, then ‖M‖ is bounded above by 21(g − 1). When this upper bound is attained, ` = 2
and the underlying surface is the Fricke-Macbeath surface. However, ‖M‖ cannot have a
lower bound in terms of g. This follows from the theorem below, which was given in [6].

Theorem 5.2. For every positive integer n, there exist Hurwitz maps with link indices 2n
and 3n. In particular, the link index of a Hurwitz map can be any even positive integer.

Let L be the sum of the lengths of the sides a (2, 3, 7)-triangle. Then by using the
sine and cosine rules for hyperbolic triangles we find that L ' 1.4490747226. It follows
from Theorem 4.1 that the length of a mirror on a Hurwitz surface is 2`L, where ` is the
link index. Also, the minimum possible length of a mirror on a Hurwitz surface is 4L '
5.7962988904, and in that case the underlying surface is the Fricke-Macbeath surface; see
[15, Theorem 6]. However, by Theorem 5.2, there is no upper bound on the lengths of
mirrors on Hurwitz surfaces.
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Abstract

The thickness of a graph G is the minimum number of planar subgraphs whose union
is G. In this paper, we obtain the thickness of complete 3-partite graph K1,n,n,K2,n,n and
complete 4-partite graph K1,1,n,n.

Keywords: Thickness, complete 3-partite graph, complete 4-partite graph.

Math. Subj. Class.: 05C10

1 Introduction
The thickness θ(G) of a graph G is the minimum number of planar subgraphs whose

union is G. It was first defined by W. T. Tutte [7] in 1963, then a few authors obtained the
thickness of hypercubes [5], complete graphs [1, 2, 8] and complete bipartite graphs [3].
Naturally, people wonder about the thickness of the complete multipartite graphs.

A complete k-partite graph is a graph whose vertex set can be partitioned into k parts,
such that every edge has its ends in different parts and every two vertices in different
parts are adjacent. Let Kp1,p2,...,pk

denote a complete k-partite graph in which the ith
part contains pi (1 ≤ i ≤ k) vertices. For the complete 3-partite graph, Poranen proved
θ(Kn,n,n) ≤

⌈
n
2

⌉
in [6], then Yang [10] gave a new upper bound for θ(Kn,n,n), i.e.,

θ(Kn,n,n) ≤
⌈
n+1
3

⌉
+ 1 and obtained θ(Kn,n,n) =

⌈
n+1
3

⌉
, when n ≡ 3 (mod 6). And

also Yang [9] gave the thickness number of Kl,m,n(l ≤ m ≤ n) when l + m ≤ 5 and
showed that θ(Kl,m,n) = d l+m

2 e when l +m is even and n > 1
2 (l +m− 2)2; or l +m is

odd and n > (l +m− 2)(l +m− 1).
In this paper, we obtain the thickness of complete 3-partite graph K1,n,n and K2,n,n,

and we also deduce the thickness of complete 4-partite graph K1,1,n,n from that of K2,n,n.
∗Supported by the National Natural Science Foundation of China under Grant No. 11401430.
†Corresponding author.
E-mail addresses: guoxia@tju.edu.cn (Xia Guo), yanyang@tju.edu.cn (Yan Yang)
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2 The thickness of K1,n,n

In [3], Beineke, Harary and Moon gave the thickness of complete bipartite graphs Km,n

for most value of m and n, and their theorem implies the following result immediately.

Lemma 2.1 ([3]). The thickness of the complete bipartite graph Kn,n is

θ(Kn,n) =

⌈
n+ 2

4

⌉
.

In [4], Chen and Yin gave a planar decomposition of the complete bipartite graph
K4p,4p with p+ 1 planar subgraphs. Figure 1 shows their planar decomposition of K4p,4p,
in which {u1, . . . , u4p} = U and {v1, . . . , v4p} = V are the 2-partite vertex sets of it.
Based on their decomposition, we give a planar decomposition of K2,n,n with p + 1 sub-
graphs when n ≡ 0 or 3 (mod 4) and prove the following lemma.

v4r

v4r−3

u4r−1 u4r−2

v4r−2

v4r−1

u4r

u4r−3

5

4

3

1

2

p⋃
i=1,i 6=r

{v4i−3, v4i−1} , V r
1

p⋃
i=1,i 6=r

{v4i−2, v4i} , V r
2

p⋃
i=1,i 6=r

{u4i−1, u4i} , Ur
2

p⋃
i=1,i 6=r

{u4i−3, u4i−2} , Ur
1

(a) The graph Gr (1 ≤ r ≤ p).

u1

v1

u2

v2

u4p−1

v4p−1

u4p

v4p

(b) The graph Gp+1.

Figure 1: A planar decomposition of K4p,4p.

Lemma 2.2. The thickness of the complete 3-partite graph K1,n,n and K2,n,n is

θ(K1,n,n) = θ(K2,n,n) =

⌈
n+ 2

4

⌉
,

when n ≡ 0 or 3 (mod 4).

Proof. Let the vertex partition of K2,n,n be (X,U, V ), where X = {x1, x2}, U =
{u1, . . . , un} and V = {v1, . . . , vn}.
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When n ≡ 0 (mod 4), let n = 4p (p ≥ 1). Let {G1, . . . , Gp+1} be the planar
decomposition of Kn,n constructed by Chen and Yin in [4]. As shown in Figure 1, the
graph Gp+1 consists of n paths of length one. We put all the n paths in a row, place vertex
x1 on one side of the row and the vertex x2 on the other side of the row, join both x1
and x2 to all vertices in Gp+1. Then we get a planar graph, denote it by Ĝp+1. It is easy
to see that {G1, . . . , Gp, Ĝp+1} is a planar decomposition of K2,n,n. Therefore, we have
θ(K2,n,n) ≤ p + 1. Since Kn,n ⊂ K1,n,n ⊂ K2,n,n, combining it with Lemma 2.1, we
have

p+ 1 = θ(Kn,n) ≤ θ(K1,n,n) ≤ θ(K2,n,n) ≤ p+ 1,

that is, θ(K1,n,n) = θ(K2,n,n) = p+ 1 when n ≡ 0 (mod 4).
When n ≡ 3 (mod 4), then n = 4p + 3 (p ≥ 0). When p = 0, from [9], we have

θ(K1,3,3) = θ(K2,3,3) = 2. When p ≥ 1, since Kn,n ⊂ K1,n,n ⊂ K2,n,n ⊂ K2,n+1,n+1,
according to Lemma 2.1 and θ(K2,4p,4p) = p+ 1, we have

p+ 2 = θ(Kn,n) ≤ θ(K1,n,n) ≤ θ(K2,n,n) ≤ θ(K2,n+1,n+1) = p+ 2.

Then, we get θ(K1,n,n) = θ(K2,n,n) = p+ 2 when n ≡ 3 (mod 4).
Summarizing the above, the lemma is obtained.

Lemma 2.3. There exists a planar decomposition of the complete 3-partite graph
K1,4p+2,4p+2 (p ≥ 0) with p+ 1 subgraphs.

Proof. Suppose the vertex partition of the complete 3-partite graph K1,n,n is (X,U, V ),
where X = {x}, U = {u1, . . . , un} and V = {v1, . . . , vn}. When n = 4p + 2, we will
construct a planar decomposition of K1,4p+2,4p+2 with p+1 planar subgraphs to complete
the proof. Our construction is based on the planar decomposition {G1, G2, . . . , Gp+1} of
K4p,4p given in [4], as shown in Figure 1 and the reader is referred to [4] for more details
about this decomposition. For convenience, we denote the vertex set

⋃p
i=1,i6=r{u4i−3,

u4i−2},
⋃p

i=1,i6=r{u4i−1, u4i},
⋃p

i=1,i6=r{v4i−3, v4i−1} and
⋃p

i=1,i6=r{v4i−2, v4i} by Ur
1 ,

Ur
2 , V r

1 and V r
2 respectively. We also label some faces of Gr (1 ≤ r ≤ p), as indicated

in Figure 1, for example, the face 1 is bounded by v4r−3u4rvju4r−1 in which vj is some
vertex from V r

1 .
In the following, for 1 ≤ r ≤ p + 1, by adding vertices x, u4p+1, u4p+2, v4p+1, v4p+2

and some edges to Gr, and deleting some edges from Gr such edges will be added to the
graph Gp+1, we will get a new planar graph Ĝr such that {Ĝ1, . . . , Ĝp+1} is a planar
decomposition of K1,4p+2,4p+2. Because v4r−3 and v4r−1 in Gr (1 ≤ r ≤ p) is joined by
2p−2 edge-disjoint paths of length two that we call parallel paths, we can change the order
of these parallel paths without changing the planarity of Gr. For the same reason, we can
do changes like this for parallel paths between u4r−1 and u4r, v4r−2 and v4r, u4r−3 and
u4r−2. We call this change by parallel paths modification for simplicity. All the subscripts
of vertices are taken modulo 4p, except that of v4p+1, v4p+2, u4p+1 and u4p+2 (the vertices
we added to Gr).

Case 1. When p is even and p > 2.

(a) The construction for Ĝr , 1 ≤ r ≤ p, and r is odd.
Step 1: Place the vertex x in the face 1 of Gr, delete edges v4r−3u4r and u4rv4r−1 from
Gr. Do parallel paths modification, such that u4r+6 ∈ Ur

1 , v4r+1 ∈ V r
1 and u4r−3, u4r−1,
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u4r, v4r−3, v4r−2, v4r−1 are incident with a common face which the vertex x is in. Join x
to u4r−3, u4r−1, u4r, v4r−3, v4r−2, v4r−1 and u4r+6, v4r+1.
Step 2: Do parallel paths modification, such that u4r+11, u4r+12 ∈ Ur

2 are incident with a
common face. Place the vertex v4p+1 in the face, and join it to both u4r+11 and u4r+12.
Step 3: Do parallel paths modification, such that u4r+7, u4r+8 ∈ Ur

2 are incident with a
common face. Place the vertex v4p+2 in the face, and join it to both u4r+7 and u4r+8.
Step 4: Do parallel paths modification, such that v4r+10, v4r+12 ∈ V r

2 are incident with a
common face. Place the vertex u4p+1 in the face, and join it to both v4r+10 and v4r+12.
Step 5: Do parallel paths modification, such that v4r+6, v4r+8 ∈ V r

2 are incident with a
common face. Place the vertex u4p+2 in the face, and join it to both v4r+6 and v4r+8.

(b) The construction for Ĝr, 1 ≤ r ≤ p, and r is even.
Step 1: Place the vertex x in the face 3 of Gr, delete edges v4ru4r−3 and u4r−3v4r−2 from
Gr. Do parallel paths modification, such that u4r+7 ∈ Ur

2 , v4r+4 ∈ V r
2 and u4r−3, u4r−2,

u4r, v4r−2, v4r−1, v4r are incident with a common face which the vertex x is in. Join x to
u4r−3, u4r−2, u4r, v4r−2, v4r−1, v4r and u4r+7, v4r+4.
Step 2: Do parallel paths modifications, such that u4r+5, u4r+6 ∈ Ur

1 , u4r+1, u4r+2 ∈ Ur
1 ,

v4r+5, v4r+7 ∈ V r
1 , v4r+1, v4r+3 ∈ V r

1 are incident with a common face, respectively. Join
v4p+1 to both u4r+5 and u4r+6, join v4p+2 to both u4r+1 and u4r+2, join u4p+1 to both
v4r+5 and v4r+7, join u4p+2 to both v4r+1 and v4r+3.

Table 1 shows how we add edges to Gr (1 ≤ r ≤ p) in Case 1. The first column lists
the edges we added, the second and third column lists the subscript of vertices, and we also
indicate the vertex set which they belong to in brackets.

Table 1: The edges we add to Gr(1 ≤ r ≤ p) in Case 1.

edge

subscript case
r is odd r is even

xuj 4r − 3, 4r − 1, 4r 4r + 6 (Ur
1 ) 4r − 3, 4r − 2, 4r 4r + 7 (Ur

2 )

xvj 4r − 3, 4r − 2, 4r − 1 4r + 1 (V r
1 ) 4r − 2, 4r − 1, 4r 4r + 4 (V r

2 )

v4p+1uj 4r + 11, 4r + 12 (Ur
2 ) 4r + 5, 4r + 6 (Ur

1 )

v4p+2uj 4r + 7, 4r + 8 (Ur
2 ) 4r + 1, 4r + 2 (Ur

1 )

u4p+1vj 4r + 10, 4r + 12 (V r
2 ) 4r + 5, 4r + 7 (V r

1 )

u4p+2vj 4r + 6, 4r + 8 (V r
2 ) 4r + 1, 4r + 3 (V r

1 )

(c) The construction for Ĝp+1.

From the construction in (a) and (b), the subscript set of uj that xuj is an edge in Ĝr

for some r ∈ {1, . . . , p} is

{4r − 3, 4r − 1, 4r, 4r + 6 (mod 4p) | 1 ≤ r ≤ p, and r is odd}
∪ {4r − 3, 4r − 2, 4r, 4r + 7 (mod 4p) | 1 ≤ r ≤ p, and r is even} = {1, . . . , p}.
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The subscript set of uj that v4p+1uj is an edge in Ĝr for some r ∈ {1, . . . , p} is

{4r + 11, 4r + 12 (mod 4p) | 1 ≤ r ≤ p, and r is odd}
∪ {4r + 5, 4r + 6 (mod 4p) | 1 ≤ r ≤ p, and r is even}

= {4r − 3, 4r − 2, 4r − 1, 4r | 1 ≤ r ≤ p, and r is even}.

Using the same procedure, we can list all the edges incident with x, v4p+1, v4p+2, u4p+1

and u4p+2 in Ĝr (1 ≤ r ≤ p), so we can also list the edges that are incident with x, v4p+1,
v4p+2, u4p+1 in K1,4p+2,4p+2 but not in any Ĝr (1 ≤ r ≤ p). Table 2 shows the edges
that belong to K1,4p+2,4p+2 but not to any Ĝr, 1 ≤ r ≤ p, in which the the fourth and
fifth rows list the edges deleted form Gr (1 ≤ r ≤ p) in step one of (a) and (b), and the
sixth row lists the edges of Gp+1. The Ĝp+1 is the graph consists of the edges in Table 2,
Figure 2 shows Ĝp+1 is a planar graph.

Table 2: The edges of Ĝp+1 in Case 1.

edges subscript

xv4p+1, xu4p+1, v4p+1uj , u4p+1vj j = 4r − 3, 4r − 2, 4r − 1, 4r, 4p+ 2 (r = 1, 3, . . . , p− 1)

xv4p+2, xu4p+2, v4p+2uj , u4p+2vj j = 4r − 3, 4r − 2, 4r − 1, 4r, 4p+ 1 (r = 2, 4, . . . , p)

v4r−3u4r, u4rv4r−1 r = 1, 3, . . . , p− 1

v4ru4r−3, u4r−3v4r−2 r = 2, 4, . . . , p

ujvj j = 1, . . . , 4p+ 2
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Figure 2: The graph Ĝp+1 in Case 1.

A planar decomposition {Ĝ1, . . . , Ĝp+1} of K1,4p+2,4p+2 is obtained as above in this
case. In Figure 3, we draw the planar decomposition of K1,18,18, it is the smallest example
for the Case 1. We denote vertex ui and vi by i and i′ respectively in this figure.

Case 2. When p is odd and p > 3. The process is similar to that in Case 1.

(a) The construction for Ĝr, 1 ≤ r ≤ p, and r is odd.
Step 1: Place the vertex x in the face 1 of Gr, delete edges v4r−3u4r and u4rv4r−1 from
Gr, for 1 ≤ r ≤ p, and delete v2u1 from G1 additionally.
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Figure 3: A planar decomposition of K1,18,18.



X. Guo and Y. Yang: The thickness of K1,n,n and K2,n,n 361

For 1 < r < p, do parallel paths modification to Gr, such that u4r+6 ∈ Ur
1 , v4r+1 ∈

V r
1 and u4r−3, u4r−1, u4r, v4r−3, v4r−2, v4r−1 are incident with a common face which the

vertex x is in. Join x to u4r−3, u4r−1, u4r, v4r−3, v4r−2, v4r−1 and u4r+6, v4r+1.
Similarly, in G1, join x to u1, u3, u4, v1, v2, v3, v4 and u10 ∈ U1

1 , v5 ∈ V 1
1 . In Gp, join

x to u4p−3,u4p−1,u4p,v4p−3,v4p−2,v4p−1 and u2 ∈ Up
1 .

Step 2: For 1 ≤ r < p, do parallel paths modification to Gr, such that u4r+11, u4r+12 ∈
Ur
2 , u4r+7, u4r+8 ∈ Ur

2 , v4r+10, v4r+12 ∈ V r
2 and v4r+6, v4r+8 ∈ V r

2 are incident with
a common face, respectively. Join v4p+1 to both u4r+11 and u4r+12, join v4p+2 to both
u4r+7 and u4r+8, join u4p+1 to both v4r+10 and v4r+12, join u4p+2 to both v4r+6 and
v4r+8.

Similarly, in Gp, join v4p+1 to u5, u6 ∈ Up
1 , join v4p+2 to u7, u8 ∈ Up

2 , join u4p+1 to
v6, v8 ∈ V p

2 , join u4p+2 to v5, v7 ∈ V p
1 .

(b) The construction for Ĝr, 1 ≤ r ≤ p, and r is even.
Step 1: Place the vertex x in the face 3 of Gr, delete edges v4ru4r−3 and u4r−3v4r−2 from
Gr, 1 ≤ r ≤ p− 1.

Do parallel paths modification toGr, 1 ≤ r < p−1, such that u4r+7 ∈ Ur
2 , v4r+4 ∈ V r

2

and u4r−3, u4r−2, u4r, v4r−2, v4r−1, v4r are incident with a common face which the vertex
x is in. Join x to u4r−3, u4r−2, u4r, v4r−2, v4r−1, v4r and u4r+7, v4r+4. Similarly, in
Gp−1, join x to u4p−7, u4p−6, u4p−4, v4p−6, v4p−5, v4p−4 and u7 ∈ Up−1

2 , v4p ∈ V p−1
2 .

Step 2: Do parallel paths modifications, such that u4r+5, u4r+6 ∈ Ur
1 , u4r+1, u4r+2 ∈ Ur

1 ,
v4r+5, v4r+7 ∈ V r

1 , v4r+1, v4r+3 ∈ V r
1 are incident with a common face, respectively. Join

v4p+1 to both u4r+5 and u4r+6, join v4p+2 to both u4r+1 and u4r+2, join u4p+1 to both
v4r+5 and v4r+7, join u4p+2 to both v4r+1 and v4r+3.

Table 3 shows how we add edges to Gr (1 ≤ r ≤ p) in Case 2.

(c) The construction for Ĝp+1.
With a similar argument to that in Case 1, we can list the edges that belong to

K1,4p+2,4p+2 but not to any Ĝr, 1 ≤ r ≤ p, in this case, as shown in Table 4. Then
Ĝp+1 is the graph that consists of the edges in Table 4. Figure 4 shows Ĝp+1 is a planar
graph.

Therefore, {Ĝ1, . . . , Ĝp+1} is a planar decomposition of K1,4p+2,4p+2 in this case.
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Figure 4: The graph Ĝp+1 in Case 2.
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Table 3: The edges we add to Gr (1 ≤ r ≤ p) in Case 2.

edge

subscript case

r is odd r is even

xuj

4r − 3,
4r − 1,

4r

4r + 6, r 6= p (Ur
1 )

2, r = p (Ur
1 )

4r − 3,
4r − 2,

4r

4r + 7, r 6= p− 1 (Ur
2 )

7, r = p− 1 (Ur
2 )

xvj

4r − 3,
4r − 2,
4r − 1

4, 5, r = 1

4r + 1, r 6= 1, p (V r
1 )

4r − 2,
4r − 1,

4r

4r + 4 (V r
2 )

v4p+1uj

4r + 11, 4r + 12, r 6= p (Ur
2 )

5, 6, r = p (Ur
1 )

4r + 5, 4r + 6 (Ur
1 )

v4p+2uj 4r + 7, 4r + 8 (Ur
2 ) 4r + 1, 4r + 2 (Ur

1 )

u4p+1vj
4r + 10, 4r + 12, r 6= p (V r

2 )

6, 8, r = p (V r
2 )

4r + 5, 4r + 7 (V r
1 )

u4p+2vj
4r + 6, 4r + 8, r 6= p (V r

2 )

5, 7, r = p (V r
1 )

4r + 1, 4r + 3 (V r
1 )

Table 4: The edges of Ĝp+1 in Case 2.

edges subscript

xv4p+1, v4p+1uj
j = 4r − 3, 4r − 2, 4r − 1, 4r, 7, 8, 4p+ 2

(r = 3, 5, 7, . . . , p)

xu4p+1, u4p+1vj
j = 4r − 3, 4r − 2, 4r − 1, 4r, 5, 7, 4p+ 2

(r = 3, 5, 7, . . . , p)

xv4p+2, v4p+2uj
j = 4r − 3, 4r − 2, 4r − 1, 4r, 5, 6, 4p+ 1

(r = 1, 4, 6, 8, . . . , p− 1)

xu4p+2, u4p+2vj
j = 4r − 3, 4r − 2, 4r − 1, 4r, 6, 8, 4p+ 1

(r = 1, 4, 6, 8, . . . , p− 1)

u1v2, v4r−3u4r, u4rv4r−1 r = 1, 3, . . . , p

v4ru4r−3, u4r−3v4r−2 r = 2, 4, . . . , p− 1

ujvj j = 1, . . . , 4p+ 2
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Case 3. When p ≤ 3.

When p = 0, K1,2,2 is a planar graph. When p = 1, 2, 3, we give a planar decomposi-
tion for K1,6,6, K1,10,10 and K1,14,14 with 2, 3 and 4 subgraphs respectively, as shown in
Figure 5, Figure 6 and Figure 7.
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Figure 5: A planar decomposition of K1,6,6.
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Figure 6: A planar decomposition of K1,10,10.

Lemma follows from Cases 1, 2 and 3.
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Figure 7: A planar decomposition of K1,14,14.

x2v4p+1

u4p+1x1

v2

u2

v3

u3

v4p−2

u4p−2

v4p−1

u4p−1

v1

u1

v4

u4

v4p

u4p

v4p−3

u4p−3

Figure 8: The graph Ĝp+1 in Case 1.
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Theorem 2.4. The thickness of the complete 3-partite graph K1,n,n is

θ(K1,n,n) =

⌈
n+ 2

4

⌉
.

Proof. When n = 4p, 4p+ 3, the theorem follows from Lemma 2.2.
When n = 4p + 1, n = 4p + 2, from Lemma 2.3, we have θ(K1,4p+2,4p+2) ≤ p + 1.

Since θ(K4p,4p) = p+ 1 and K4p,4p ⊂ K1,4p+1,4p+1 ⊂ K1,4p+2,4p+2, we obtain

p+ 1 ≤ θ(K1,4p+1,4p+1) ≤ θ(K1,4p+2,4p+2) ≤ p+ 1.

Therefore, θ(K1,4p+1,4p+1) = θ(K1,4p+2,4p+2) = p+ 1.
Summarizing the above, the theorem is obtained.

3 The thickness of K2,n,n

Lemma 3.1. There exists a planar decomposition of the complete 3-partite graph
K2,4p+1,4p+1 (p ≥ 0) with p+ 1 subgraphs.

Proof. Let (X,U, V ) be the vertex partition of the complete 3-partite graph K2,n,n, in
which X = {x1, x2}, U = {u1, . . . , un} and V = {v1, . . . , vn}. When n = 4p + 1, we
will construct a planar decomposition of K2,4p+1,4p+1 with p+ 1 planar subgraphs.

The construction is analogous to that in Lemma 2.3. Let {G1, G2, . . . , Gp+1} be a
planar decomposition of K4p,4p given in [4]. In the following, for 1 ≤ r ≤ p + 1, by
adding vertices x1, x2, u4p+1, v4p+1 to Gr, deleting some edges from Gr and adding some
edges to Gr, we will get a new planar graph Ĝr such that {Ĝ1, . . . , Ĝp+1} is a planar
decomposition of K2,4p+1,4p+1. All the subscripts of vertices are taken modulo 4p, except
that of u4p+1 and v4p+1 (the vertices we added to Gr).

Case 1. When p is even and p > 2.

(a) The construction for Ĝr , 1 ≤ r ≤ p.
Step 1: When r is odd, place the vertex x1, x2 and u4p+1 in the face 1, 2 and 5 of Gr

respectively. Delete edges v4r−3u4r and u4r−1v4r−2 from Gr.
When r is even, place the vertex x1, x2 and u4p+1 in the face 3, 4 and 5 of Gr, respec-

tively. Delete edge v4ru4r−3 and u4r−2v4r−1 from Gr.
Step 2: Do parallel paths modifications, then join x1, x2, u4p+1 and v4p+1 to some uj and
vj , as shown in Table 5.

(b) The construction for Ĝp+1.

We list the edges that belong to K2,4p+1,4p+1 but not to any Ĝr, 1 ≤ r ≤ p, as shown
in Table 6. Then Ĝp+1 is the graph that consists of the edges in Table 6. Figure 8 shows
Ĝp+1 is a planar graph.

Therefore, {Ĝ1, . . . , Ĝp+1} is a planar decomposition of K2,4p+1,4p+1 in this case. In
Figure 9, we draw the planar decomposition of K2,17,17 it is the smallest example for the
Case 1. We denote vertex ui and vi by i and i′ respectively in this figure.
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Table 5: The edges we add to Gr (1 ≤ r ≤ p) in Case 1.

edge

subscript case
r is odd r is even

x1uj 4r − 1, 4r 4r + 5 (Ur
1 ) 4r − 3, 4r − 2 4r + 8 (Ur

2 )

x1vj 4r − 3, 4r − 1 4r + 1 (V r
1 ) 4r − 2, 4r 4r + 4 (V r

2 )

x2uj 4r − 1, 4r 4r + 3 (Ur
2 ) 4r − 3, 4r − 2 4r + 2 (Ur

1 )

x2vj 4r − 2, 4r 4r + 7 (V r
1 ) 4r − 3, 4r − 1 4r + 6 (V r

2 )

u4p+1vj 4r − 2, 4r − 1

v4p+1uj 4r + 4, 4r + 8 (Ur
2 ) 4r − 11, 4r − 7 (Ur

1 )

Table 6: The edges of Ĝp+1 in Case 1.

edges subscript

x1uj
j = 4r − 2, 4r + 3, 4p+ 1 (r = 1, 3, . . . , p− 1)

x1vj

x2uj
j = 4r − 7, 4r, 4p+ 1 (r = 2, 4, . . . , p)

x2vj

u4p+1vj j = 4r − 3, 4r (r = 1, 2, . . . , p)

v4p+1uj j = 4r − 2, 4r − 1 (r = 1, 2, . . . , p)

v4r−3u4r, v4r−2u4r−1 r = 1, 3, . . . , p− 1

u4r−3v4r, u4r−2v4r−1 r = 2, 4, . . . , p

ujvj j = 1, . . . , 4p+ 1
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Figure 9: A planar decomposition of K2,17,17.
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Case 2. When p is odd and p > 3.

(a) The construction for Ĝr, 1 ≤ r ≤ p.
Step 1: When r is odd, place the vertex x1, x2 and u4p+1 in the face 1, 2 and 5 of Gr

respectively. Delete edges v4r−3u4r and u4r−1v4r−2 from Gr.
When r is even, place the vertex x1, x2 and u4p+1 in the face 3, 4 and 5 of Gr, respec-

tively. Delete edge v4ru4r−3 and u4r−2v4r−1 from Gr.
Step 2: Do parallel paths modifications, then join x1, x2, u4p+1 and v4p+1 to some uj and
vj , as shown in Table 7.

Table 7: The edges we add to Gr (1 ≤ r ≤ p) in Case 2.

edge

subscript case

r is odd r is even

x1uj
4r − 1,

4r

4r + 5, r 6= p (Ur
1 )

1, r = p (Ur
1 )

4r − 3,
4r − 2

4r + 8, r 6= p− 1 (Ur
2 )

8, r = p− 1 (Ur
2 )

x1vj
4r − 3,
4r − 1

4r + 1, r 6= p (V r
1 )

4r − 2,
4r

4r + 4 (V r
2 )

x2uj
4r − 1,

4r

4r + 3, r 6= p (Ur
2 )

8, r = p (Ur
2 )

4r − 3,
4r − 2

4r + 2 (Ur
1 )

x2vj
4r − 2,

4r

4r + 7, r 6= p (V r
1 )

3, r = p (V r
1 )

4r − 3,
4r − 1

4r + 6, r 6= p− 1 (V r
2 )

6, r = p− 1 (V r
2 )

u4p+1vj 4r − 2, 4r − 1

v4p+1uj

4r + 4, 4r + 8, r 6= p (Ur
2 )

4, r = p (Ur
2 )

4r − 11, 4r − 7 (Ur
1 )

(b) The construction for Ĝp+1.
We list the edges that belong to K2,4p+1,4p+1 but not to any Ĝr, 1 ≤ r ≤ p, as shown

in Table 8. Then Ĝp+1 is the graph that consists of the edges in Table 8. Figure 10 shows
Ĝp+1 is a planar graph.

Therefore, {Ĝ1, . . . , Ĝp+1} is a planar decomposition of K2,4p+1,4p+1 in this case.

Case 3. When p ≤ 3.

When p = 0, K2,1,1 is a planar graph. When p = 1, 2, 3, we give a planar decomposi-
tion for K2,5,5, K2,9,9 and K2,13,13 with 2, 3 and 4 subgraphs respectively, as shown in
Figure 11, Figure 12 and Figure 13.

Summarizing Cases 1, 2 and 3, the lemma follows.
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Table 8: The edges of Ĝp+1 in Case 2.

edges subscript

x1uj j = 2, 4r + 3, 4r + 6, 4p+ 1 (r = 1, 3, . . . , p− 2)

x1vj j = 2, 4, 4r + 3, 4r + 6, 4p+ 1 (r = 1, 3, . . . , p− 2)

x2uj j = 1, 2, 9, 4r, 4r + 1, 4p+ 1 (r = 4, . . . , p− 1)

x2vj j = 1, 8, 9, 4r, 4r + 1, 4p+ 1 (r = 4, . . . , p− 1)

u4p+1vj j = 4r − 3, 4r (r = 1, 2, . . . , p)

v4p+1uj j = 4r − 2, 4r − 1, 4p− 7 (r = 1, 2, . . . , p)

v4r−3u4r, v4r−2u4r−1 r = 1, 3, . . . , p

u4r−3v4r, u4r−2v4r−1 r = 2, 4, . . . , p− 1

ujvj j = 1, . . . , 4p+ 1

v
4
p
−
2

u
4p−

2

u
4p−1

v
4
p
−
1

v
4p−7

u
4p−7

u
4p−4

v
4p−4

x2v4p+1

u4p+1x1

v2

u2

v3

u3 u4p−5

v 4
p
−
5 v4p−6

u4p−6

v4

u4

v1

u1

v4p−3

u4p−3

v4p

u4p

Figure 10: The graph Ĝp+1 in Case 2.
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Figure 11: A planar decomposition K2,5,5.
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Figure 12: A planar decomposition K2,9,9.
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Figure 13: A planar decomposition of K2,13,13.
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Theorem 3.2. The thickness of the complete 3-partite graph K2,n,n is

θ(K2,n,n) =

⌈
n+ 3

4

⌉
.

Proof. When n = 4p, 4p+ 3, from Lemma 2.2, the theorem holds.
When n = 4p + 1, from Lemma 3.1, we have θ(K2,4p+1,4p+1) ≤ p + 1. Since

θ(K4p,4p) = p+ 1 and K4p,4p ⊂ K2,4p+1,4p+1, we have

p+ 1 = θ(K4p,4p) ≤ θ(K2,4p+1,4p+1) ≤ p+ 1.

Therefore, θ(K2,4p+1,4p+1) = p+ 1.
When n = 4p + 2, since K4p+3,4p+3 ⊂ K2,4p+2,4p+2, from Lemma 2.1, we have

p + 2 = θ(K4p+3,4p+3) ≤ θ(K2,4p+2,4p+2). On the other hand, it is easy to see
θ(K2,4p+2,4p+2) ≤ θ(K2,4p+1,4p+1) + 1 = p+ 2, so we have θ(K2,4p+2,4p+2) = p+ 2.

Summarizing the above, the theorem is obtained.

4 The thickness of K1,1,n,n

Theorem 4.1. The thickness of the complete 4-partite graph K1,1,n,n is

θ(K1,1,n,n) =

⌈
n+ 3

4

⌉
.

Proof. When n = 4p+1, we can get a planar decomposition for K1,1,4p+1,4p+1 from that
of K2,4p+1,4p+1 as follows.

(1) When p = 0, K1,1,1,1 is a planar graph, θ(K1,1,1,1) = 1. When p = 1, 2 and
3, we join the vertex x1 to x2 in the last planar subgraph in the planar decomposition for
K2,5,5, K2,9,9 and K2,13,13 which was shown in Figure 11, 12 and 13. Then we get the
planar decomposition for K1,1,5,5, K1,1,9,9 and K1,1,13,13 with 2, 3 and 4 planar subgraphs
respectively.

(2) When p ≥ 4, we join the vertex x1 to x2 in Ĝp+1 in the planar decomposition for
K2,4p+1,4p+1 which was constructed in Lemma 3.1. The Ĝp+1 is shown in Figure 8 or 10
according to p is even or odd. Because x1 and x2 lie on the boundary of the same face,
we will get a planar graph by adding edge x1x2 to Ĝp+1. Then a planar decomposition for
K1,1,4p+1,4p+1 with p+ 1 planar subgraphs can be obtained.

Summarizing (1) and (2), we have K1,1,4p+1,4p+1 ≤ p+ 1.
On the other hand, from Lemma 2.1, we have θ(K4p+1,4p+1) = p + 1. Due to

K4p+1,4p+1 ⊂ K1,1,4p,4p ⊂ K1,1,4p+1,4p+1, we get

p+ 1 ≤ θ(K1,1,4p,4p) ≤ θ(K1,1,4p+1,4p+1).

So we have
θ(K1,1,4p,4p) = θ(K1,1,4p+1,4p+1) = p+ 1.

When n = 4p + 3, from Theorem 3.2 , we have θ(K2,4p+2,4p+2) = p + 2. Since
K2,4p+2,4p+2 ⊂ K1,1,4p+2,4p+2 ⊂ K1,1,4p+3,4p+3 ⊂ K1,1,4(p+1),4(p+1), and the ideas
from the previous case establish, we have

p+ 2 ≤ θ(K1,1,4p+2,4p+2) ≤ θ(K1,1,4p+3,4p+3) ≤ θ(K1,1,4(p+1),4(p+1)) = p+ 2,

which shows
θ(K1,1,4p+2,4p+2) = θ(K1,1,4p+3,4p+3) = p+ 2.

Summarizing the above, the theorem follows.
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Abstract

Let V be a set of 2m (1 ≤ m < ∞) points in the plane. Two segments I, J with
endpoints in V cross if relint I ∩ relint J is a singleton. A (perfect) cross-matching M on
V is a set of m segments with endpoints in V such that every two segments in M cross. A
halving line of V is a line l spanned by two points of V such that each one of the two open
half planes bounded by l contains fewer than m points of V . Pach and Solymosi proved
that if V is in general position, then V admits a perfect cross-matching iff V has exactly m
halving lines. The aim of this note is to extend this result to the general case (where V is
unrestricted).

Keywords: Bigraphs, cross-matching, halving lines, perfect matchings.

Math. Subj. Class.: 05C62, 68R10, 52C35

1 Introduction, notions and main results
Let V be a set of 2m distinct points in the plane R2 (1 ≤ m <∞). By a (perfect geometric)
matching of V we mean a setM = {I1, . . . , Im} ofm non-degenerate closed line segments
whose endpoints are (all) the points of V . The number of matchings of V is

(2m− 1)!! =

m∏
i=1

(2i− 1) =
(2m)!

2m ·m!
.
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If V is in general position (no three points on a line), then two distinct segments I, J ∈
M may be

(a) disjoint (I ∩ J = ∅),

(b) or they may cross, i.e., share a unique point that lies in the relative interior of both I
and J .

When V is unrestricted, two more possibilities arise.

(c) The unique common point of I and J maybe an interior point of I and an endpoint
of J (or vice versa).

(d) If the four endpoints of I and J are collinear, then I and J may share a line segment.
(This includes the possibility that I ⊂ relint J , or vice versa.)

We shall say that two segments I, J touch if they have at least one point in common
(I∩J 6= ∅). We callM a simple matching (SM) if the segments ofM are pairwise disjoint.

It is well known and quite easy to show (see [2, Theorem 4.2]) that if V is in general
position, then the number sm(V ) of simple matchings on V is bounded from below by the
m-th Catalan number Cm, i.e.,

sm(V ) ≥ Cm =
1

m+ 1

(
2m

m

)
. (1.1)

Equality holds for m = 1 or when V is the set of vertices of a convex 2m-gon. (It can be
shown that if V is in general position but not in convex position, then sm(V ) > Cm, with
only one exception: when m = 3 and V consists of the vertices of a convex pentagon P
plus a sixth point that lies in the interior of the pentagon formed by the diagonals of P .)

Call M a cross-matching (CM) if each two distinct segments of M cross. Let us call
M a touching matching (TM) if every two segments of M touch.

1.1 Halving lines

Definition 1.1. A line L is a halving line of V if each of the two open half-planes L+, L−

bounded by L contains fewer than m points of V .

This clearly implies that |L∩V | ≥ 2, i.e., that the line L is spanned by V . When V is in
general position, then necessarily |L∩V | = 2, and |L− ∩V | = |L+ ∩V | = m− 1. When
V is unrestricted we call L a halving line of order k if max(|L− ∩ V |, |L+ ∩ V |) = m− k
(1 ≤ k ≤ m). In that case we may assume that, say, |L+ ∩ V | = m − k, |L− ∩ V | =
m− k − ε, and |L ∩ V | = 2k + ε, for some ε, 0 ≤ ε ≤ m− k. (See Figure 1.)

1.2 Halving lines and TMs

If M is a TM on V, I is a segment of M , and L = aff I is the line spanned by I , then L is
a halving line. Indeed, an open half-plane bounded by L contains no endpoint of I , and at
most one endpoint of each other segment of M .

The connection between the number h(V ) of halving lines of V , and the existence of a
cross-matching on V, in the case where V is in general position, was established by Pach
and Solymosi in [3] as follows: They observed that each point of V lies on at least one
halving line, hence h(V ) ≥ m. Then they found that either each point of V lies on just one
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halving line, h(V ) = m and V admits a unique CM, or at least one point of V lies on more
than one halving line, h(V ) > m, and V admits no CM at all. This result was generalized
in [1] (see Theorem 1 and Corollary 3 there). In [4] we prove an extremal property of CMs,
namely that if V admits a CM M , and M ′ is another (perfect) geometric matching on V,
then the sum of the (Euclidean) lengths of the edges of M ′ is strictly less than the sum of
the lengths of the edges of M . An analogous result holds for TMs. The geometric graph
whose edges span (all) the halving lines of its vertex set V (with |V | even and V in general
position) is said to be a bigraph. We refer to [5] regarding results on bigraphs.

The aim of this note is to extend the result of [3] to arbitrary, unrestricted 2m-subsets
V of R2.

In the next section we define the notion of “a halving line at a point p ∈ V ”, and show
that a halving line of order k is a halving line at exactly 2k points. We also show that the
number of halving lines at any point p ∈ V is odd, hence ≥ 1. The main results can be
summarized as follows:

Theorem 1.2. Suppose L1, . . . , Lt (t = h(V )) are all the halving lines of V, with Li of
order ki (1 ≤ ki ≤ m, i = 1, . . . , t). If for each p ∈ V there is just one halving line at p,
then

t∑
i=1

ki = m,

and the number of TMs of V is precisely

t∏
i=1

(ki!).

If, for some p ∈ V, there is more than one halving line at p, then

t∑
i=1

ki > m,

and V has no TM.

In particular we have

Corollary 1.3. The set V has a unique TM iff V has exactly m halving lines, each of
order 1. The unique TM is a CM if each of the m halving lines contains just two points
of V.

ak ak−1 a1 b1 b2 bε c1 c2 ck

|V ∩ L−| = m− k − ε

|V ∩ L+| = m− k

L

Figure 1: A halving line of order k.
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2 Proofs
We start with the definition of “a halving line of V at p”, where V is a set of 2m points
in R2, and p ∈ V. For a point p ∈ V and a unit vector u = (u1, u2), denote by L(p, u)
the directed line {p + λu : λ ∈ R}. (The direction is from small λ to larger λ.) Note that
L(p,−u) is the same line, directed backwards. Define u+ = (−u2, u1),

L(p, u)F = L(p, u) + {µu+ : µ > 0}, and
L(p, u)B = L(p, u) + {µu+ : µ < 0}.

F and B stand for “Front” and “Back”, respectively.
L(p, u)F and L(p, u)B are the two open half-planes bounded by L(p, u). Now move

the unit vector u continuously on the unit circle in counterclockwise direction. Note that
L(p, u)F and L(p, u)B switch when u is replaced by−u. As long as L(p, u) does not meet
V \ {p}, we find that

|V ∩ L(p, u)F |+ |V ∩ L(p, u)B | = |V − {p}| = 2m− 1,

and therefore one side of L(p, u) (the “major” side) contains at leastm points of V, whereas
the other side (the “minor” side) contains at most m− 1 points of V.

As we change the direction u, the major side of L(p, u) will remain (Front or Back) as
long as the rotating line L(p, u) does not meet V \ {p}. We call L(p, uo) a halving line
of V at p if the major side of L(p, u) switches (from B to F or vice versa) as u passes
through uo.

Proposition 2.1. If L = L(p, uo) is a halving line of V at p, then L is a halving line of V.

Proof. We must show that both open sides of L, L(p, uo)F and L(p, uo)B , contain fewer
thanm points of V each. If, say, |V ∩L(p, uo)F | ≥ m, then V ∩L(p, u)F ⊃ V ∩L(p, uo)F ,
and therefore |V ∩ L(p, u)F | ≥ m, for all unit vectors u sufficiently close to uo, on both
sides of uo, so the major side of L(p, u) does not switch at u = uo.

Proposition 2.2. For each point p ∈ V, the number of halving lines of V at p is odd
(hence ≥ 1).

Proof. Choose an initial direction uo, such that V ∩ L(p, uo) = {p}. Suppose the major
side ofL(p, uo) is, say, L(p, uo)F . Rotate the line through p counterclockwise by 180°, i.e.,
move u along a semicircle, until we reach L(p,−uo). Now the major side is L(p,−uo)B
(= L(p, uo)F ). We conclude that on the way the major side switched (from F to B or vice
versa) an odd number of times.

Proposition 2.3. Suppose L is a halving line of V of order k (1 ≤ k ≤ m). Then L is a
halving line of V at p for exactly 2k points of V.

Proof. Assume, w.l.o.g., that

|V ∩ L−| = m− k − ε, |V ∩ L+| = m− k, and |V ∩ L| = 2k + ε,

for some 0 ≤ ε ≤ m− k. Label the points of V ∩ L in order

ak, ak−1, . . . , a1, b1, . . . , bε, c1, . . . , ck,
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as in Figure 1. Fix a point p ∈ V ∩ L, and consider a line that rotates counterclockwise
through p. As the rotating line passes through the horizontal position (see Figure 1), the
major side switches from Above to Below if p is one of the ai’s, and from Below to Above
if p is one of the ci’s. But if p is one of the bi’s, then the major side remains Above (at least
in a small neighborhood on both sides of the horizontal position).

Next we show that if L is a halving line of V of order k, as in Figure 1, and M is a TM
on V , then M matches the ai’s with the ci’s (and vice versa).

Proposition 2.4. Suppose V = S ∪ T is a partition of V into two sets of equal size
(|S| = |T | = m), and convS ∩ conv T = ∅. If M is a TM of V, then each segment I ∈M
connects a point of S with a point of T .

Proof. Assume, on the contrary, that some segment I ∈ M has both endpoints in S. This
leaves (at most) m − 2 points of S to be matched to points of T , and thus some other
segment J ∈M has both endpoints in T . But then I ∩ J ⊂ convS ∩ conv T = ∅.

Now look again at the halving line L in Figure 1. Define A = {a1, . . . , ak}, B =
{b1, . . . , bε}, C = {c1, . . . , ck}, D− = B ∪ (V ∩ L−) and D+ = V ∩ L+ (|D−| =
|D+| = m − k). Applying Proposition 2.4 twice, first with S = A ∪D−, T = C ∪D+,
and then with S′ = C ∪D−, T ′ = A ∪D+, we find:

Proposition 2.5. If M is a TM of V, then each segment I ∈ M with one endpoint in A
has its other endpoint in C (and vice versa), and each segment J ∈ M with one endpoint
in D− has its other endpoint in D+ (and vice versa).

Note also that for any permutation θ of {1, 2, . . . , k}, the intersection of the k segments
[ai, cθ(i)] (i = 1, . . . , k) is the segment [a1, c1], that connects the k’th point of V ∩ L from
the right with the k’th point of V ∩L from the left. We call this segment [a1, c1] the central
segment of the halving line L.

Suppose L1, . . . , Lt (t = h(V )) are all the halving lines of V, with Li of order ki for
i = 1, . . . , t. For p ∈ V, denote by h(p) the number of halving lines at p. In view of
Propositions 2.1 – 2.3, we have

t∑
i=1

ki =
1

2

∑
p∈V

h(p) ≥ m,

with equality (= m) iff h(p) = 1 for all p ∈ V.

Proposition 2.6. If h(p) > 1 for some p ∈ V, then there is no TM on V.

Proof. Suppose, on the contrary, that V admits a TM M . Let I = [p, q] be a segment in
M with one endpoint p. Let L,L′ be two different halving lines of V at p (h(p) > 1). By
Proposition 2.5 we have q ∈ L ∩ L′. But L ∩ L′ = {p}.

Assume, from now on, that h(p) = 1 for all p ∈ V. Thus
∑t
i=1 ki = m. In other

words, on each line Li we can match two disjoint subsets of V ∩ Li, each of order ki, Ai
(the ki “leftmost” points of V ∩ Li) and Ci (the ki “rightmost” points of V ∩ Li). Li is a
halving line of V at p iff p ∈ Ai∪Ci. The setsA1, C1, . . . , At, Ct form a partition of V. As
we have seen in Proposition 2.5, any TM of V will match the points ofAi with those of Ci.
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There are ki! ways to match Ai with Ci, and in each of these matchings, the intersection of
the connecting segments is the “central segment” of the halving line Li. To show that the
individual TM’s of Ai ∪ Ci on Li (i = 1, . . . , t) yield a TM of V, it suffices to show that
the central segments of different halving lines Li and Lj do meet (assuming, of course, that
h(p) = 1 for all p ∈ V ). This will be done in the next proposition.

Proposition 2.7. Suppose L is a halving line of V of order k, with V ∩L labelled ak, . . . ,
a1, b1, . . . , bε, c1, . . . , ck as in Figure 1, A = {ak, . . . , a1}, C = {c1, . . . , ck}, and let L′

be another halving line of V, of order k′, with V ∩ L′ labelled similarly: a′k′ , . . . , a
′
1, b
′
1,

. . . , b′ε′ , c
′
1, . . . , c

′
k′ , A

′ = {a′k′ , . . . , a′1}, C ′ = {c′1, . . . , c′k′}. If the central segments
[a1, c1] (of L) and [a′1, c

′
1] (of L′) do not meet, then h(p) > 1 for some p ∈ {a1, c1, a′1, c′1}.

Proof. The two distinct lines L,L′ cannot be parallel. If they are, and L′ lies, say, above L,
then the open side L+ of L includes the closed side clL′

+ of L′, and therefore |V ∩L+| ≥
|V ∩ clL′+| > m, which is impossible. Let z be the crossing point of L and L′, and
suppose, w.l.o.g., that z misses the central segment [a1, c1] of L, and lies to the left of a1
on L, see Figure 2.

Lz a1 c1

L′ L′′

Figure 2: Proof of Proposition 2.7.

Consider a directed line that rotates counter-clockwise through a1. As it passes through
L (directed from left to right), the major side of V switches from Front to Back. As it
reaches L′′ (parallel to L′), or any direction sufficiently close to that of L′, the major side
of V is again Front, since the open half-plane to the left ofL′′ includes the closed half-plane
to the left of L′, which in turn contains at least m+ k′ points of V . Thus, there must have
been another switch from Back to Front on the way, or, in other words, h(a1) > 1.

3 Algorithmic aspects
The insights gained in the earlier sections of this note can be used to device an algorithm
that decides whether a set P ⊂ R2 (|P | = 2m) admits a TM, and to find a TM (or all TMs)
if one exists. The algorithm is conceptually simple, and seems to be also computationally
quite effective, though not as efficient as the one proposed in [3] (m2 vs. m logm).

Step 1: Find the point p0 = (x0, y0) ∈ P that is the first in P with respect to the lexico-
graphic order of points (x, y) ∈ R2. p0 is a vertex of the convex hull [P ] = convP .

Step 2: Calculate the slopes of the 2m − 1 segments [p0, p] ( p ∈ P \ {p0}), arrange
them in non-decreasing order and find the median slope (this can be shared by several
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segments, of course). This slope determines the (unique) halving line L of P at p0. Find
the number of points of P that lie below L, on L and above L, and order the points of
P ∩L lexicographically. This enables us to determine the order k of the halving line L, and
the sets A, C consisting of the first (resp. last) k points of P ∩ L. These are the 2k points
p ∈ P ∩ L such that L is a halving line at p. Erase these 2k points, and call the remaining
set P ′ (|P ′| = 2(m − k)). If P ′ = ∅, stop. Otherwise, return to Step 1 with P replaced
by P ′.

To see that this really works, we make the following observations:

(A) If P admits a TM M , then M contains k segments (on L) that connect points of A
with points of C. The rest of M is a TM of P ′ (= P \ (A ∪ C)). Moreover, if L̃
is any halving line of P other than L, of order k̃, then removal of A ∪ C leaves L̃ a
halving line of P ′ of the same order k̃. This is clear when the central segments of L
and of L̃ meet at a point that is interior to the central segment [a1, c1] of L. In that
case we lose k points on each side of L̃.

The case when the common point of these two central segments is an endpoint, say
a1, of [a1, c1], is shown in Figure 3. (The reason why C is included in L̃+ and not in
L̃−, is given below.)

|Ã| = k̃ |C̃| = k̃

a1

|B̃| = ε̃ ≥ 1A

c1
C

|P ∩ L̃−| = m− k̃ − ε̃

|P ∩ L̃+| = m− k̃

L̃

Figure 3: Two central segments whose common point is an endpoint in one of them.

Since M matches P ∩ L̃+ with (P ∩ L̃−)∪ B̃ and a1 (a1 ∈ B̃ and a1 ∈ A ⊂ P ∩L)
with some point ofC (Proposition 2.5),C ⊂ P∩L̃+ (as in Figure 3). Thus, removing
A ∪ C will reduce |P ∩ L̃+| by k to (m− k)− k̃, P ∩ B̃ by 1 to ε̃− 1 (≥ 0, since
a1 ∈ B̃1), and |P ∩ L̃−| by k − 1 to (m− k)− k̃ − (ε̃− 1).

(B) If M ′ is a TM of P ′, and N is a matching of A to C (on P ∩L), then M = M ′ ∪N
is a TM of P iff the central segment [a1, c1] of L meets the central segment of each
halving line of P ′. Thus, if applying our algorithm to P ′ we find that P ′ has no TM,
then the same holds for P . If P ′ does admit a TM, then P has a TM iff the central
segment of Lmeets the central segment of each halving line of P ′. To check this, we
may need O(m2) operations.
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Abstract

Dirac and Shuster in 1954 exhibited a simple proof of Kuratowski theorem by showing
that any 1-crossing-critical edge of G belongs to a Kuratowski subdivision of G. In 1983,
Širáň extended this result to any 2-crossing-critical edge e with endvertices b and c of a
graph G with crossing number at least two, whenever no two blocks of G − b − c contain
all its vertices. Calling an edge f of G k-exceptional whenever f is k-crossing-critical and
it does not belong to any Kuratowski subgraph of G, he showed that simple 3-connected
graphs with k-exceptional edges exist for any k ≥ 6, and they exist even for arbitrarily
large difference of cr(G)− cr(G− f). In 1991, Kochol constructed such examples for any
k ≥ 4, and commented that Širáň’s result holds for any simple graph.

Examining the case when two blocks contain all the vertices of G − b − c, we show
that graphs with k-exceptional edges exist for any k ≥ 2, albeit not necessarily simple.
We confirm that no such simple graphs with 2-exceptional edges exist by applying the
techniques of the recent characterization of 2-crossing-critical graphs to explicitly describe
the set of all graphs with 2-exceptional edges and noting they all contain parallel edges.
In this context, the paper can be read as an accessible prelude to the characterization of
2-crossing-critical graphs.
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1 Introduction
The crossing number cr(G) of a graph G is the minimum number of pairwise crossings of
edges in a drawing of G in the plane. An edge e of a graph G is said to be k-crossing-
critical, if cr(G) ≥ k > cr(G− e), and a graph is k-crossing-critical, if each its edge
is k-crossing-critical. Therefore K3,3 and K5 are the only 3-connected 1-crossing-critical
graphs. Any subdivision of K3,3 or K5 in G is called a Kuratowski subgraph of G and
an edge e is a Kuratowski edge, if e belongs to a Kuratowski subgraph of G. Any edge of
G which is not a Kuratowski edge, will be called a non-Kuratowski edge. Following [12],
we call an edge e of G k-exceptional if e is k-crossing-critical and e is a non-Kuratowski
edge. Note that the existence of a k-exceptional edge in G for k > 0 implies the existence
of a Kuratowski subgraph, and hence that G is non-planar. Since loops are irrelevant for
crossing number purposes, all graphs in this paper are loopless, but they may have multiple
edges.

In their simple proof of Kuratowski theorem from 1954, Dirac and Shuster established
that any 1-crossing-critical edge e of a graph G belongs to a Kuratowski subdivision of
G [6]. In 1983, Širáň showed that the number of non-Kuratowski edges (and hence the
number of exceptional edges) of a 3-connected simple non-planar graph of order at least 6
is at most 4 [13]. The following statement was exhibited in the same year.

Statement 1.1 (Theorem 2 in [12]). Let e be a crossing-critical edge of a graph G, for
which cr(G− e) ≤ 1. Then e belongs to a Kuratowski subgraph of G.

Figure 1: A minimal graph with two 2-exceptional edges.

We have found a family of exceptions (see Figure 1) to Statement 1.1, i.e. a family of
graphs with 2-exceptional edges. That such graphs exist was already exhibited by Kochol
[8], who noted without proof that Širáň’s result may only be true for simple graphs. Closely
investigating Širáň’s proof, it establishes [12] the following:

Theorem 1.2 (Theorem 2 in [12]). Let e with endvertices b and c be a crossing-critical
edge of a graph G for which cr(G− e) ≤ 1. If no two blocks of G − b − c contain all its
vertices, then e belongs to a Kuratowski subgraph of G.

The correct statement indicates that the structure of graphs with 2-exceptional edges is
limited, and the aim of the present paper is to characterize these graphs, i.e. to explicitly
describe the family E of graphs with 2-exceptional edges.

The rest of this paper is organized as follows. In the following section, we exhibit
some known and new properties of Kuratowski edges in graphs, and offer their character-
ization in Theorem 2.6, as well as introduce our main result. In Section 3, we sketch our
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overall approach, which follows a simplified version of the recent characterizatizaton of 2-
crossing-critical graphs [4]. The description of all 3-connected graphs with 2-exceptional
edges is given in Section 4, along with the proof of the sufficiency direction of the charac-
terization and some other properties of graphs with 2-exceptional edges.

The remainder of the paper is devoted to proving necessity of the characterization of
3-connected graphs with 2-exceptional edges. A skeleton graph, the basic subgraph that
is used to describe 3-connected graphs with exceptional 2-edges, is studied in Section 5.
Bridges of the skeleton graph are studied in Section 6. Also the necessity of characteri-
zation is established there. We conclude with some corollaries bearing upon existence of
k-exceptional edges and some open problems in Section 7.

2 Kuratowski edges
First we introduce some notation, aligned with the notation of [4]. Any vertex of a graph
G of degree at least 3 is called a node of G. A branch is a maximal path with no internal
nodes connecting two nodes of G. Two distinct nodes u, v of a subdivision K of K3,3 are
said to be independent if any u, v-path in K contains a node of K different from u and v,
i.e. if there is no branch between them. Let A, B be either two subsets of V (G) or two
subgraphs of G. Then, an A,B-path is a path with first end in A and last end in B that is
internally disjoint from both A and B.

When A = {s} and B = {t} are just vertices, we shorten the notation to just s, t-path.
When the ends need to be emphasized, we write P = sP t = [sP t], the former emphasizing
ends of P and the latter emphasizing that the complete path with ends is considered. When
either end or both ends of P are removed from the path, we use P − t = [sP t), P − s =
(sP t], and P − s− t = (sP t). We refer to these paths as the (semi) open paths P .

Let G be a graph and H its subgraph. A path P is H-avoiding, if all the non-end
vertices and all the edges of P are not in H . The ends of an H-avoiding path are allowed
to be in H .

In [13], J. Širáň gave a characterization of Kuratowski edges in k-connected graphs
with k ≥ 3, cf. Lemmas 2.1 and 2.2. In this section, we extend his a characterization to
any graph. Next two lemmas were proved in [13] and will be very useful for our purposes.

Lemma 2.1 (Lemma 1 in [13]). Let K be a subdivision of K3,3 and let u, v be distinct
vertices of K. Let K ′ := K + P be a graph obtained by joining u, v with a path P
internally disjoint of K. Then any edge of P is Kuratowski edge of K ′ if and only if u, v
are not independent nodes of K.

Lemma 2.2 (Lemma 2 in [13]). Let G be a 3-connected non-planar graph. Let e = uv
be an edge of G which belongs to no subdivision of K3,3 in G. Then u, v are independent
vertices of any subdivision of K3,3 in G.

Although [13] considered only simple graphs, it is easy to see that the two lemmas
apply to multigraphs as well. Our first statement is an easy exercise.

Lemma 2.3. Let G be a graph and let G′ be a subdivision of G. Let e be an edge of G and
let P be the path of G′ obtained by subdividing e. The following are equivalent:

(i) e is a Kuratowski edge of G,

(ii) every edge of P is a Kuratowski edge of G′,
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(iii) some edge of P is a Kuratowski edge of G′.

The proof of our next result is essentially the same as that of Lemma 1 in [13].

Lemma 2.4.

(i) LetK be a subdivision ofK5 and let u, v be distinct vertices ofK. LetK ′ := K+P
be a graph obtained by joining u, v with a path P internally disjoint of K. Then any
edge of P is a Kuratowski edge of K ′.

(ii) LetG be a 2-connected graph that contains a subdivision ofK5 as a subgraph. Then
every edge of G is a Kuratowski edge.

Proof. For (i), one can easily check using the symmetry of K5 that there are exactly six
homeomorphism classes of graphs to which K ′ can belong. In all of them, it is easy to find
the required subdivision of K5 or K3,3 in K ′: if both u, v are on the same branch of K,
a slight rerouting establishes the claim. In other cases we find a suitable K3,3 subdivision
including a degree-three vertex in one part, and its nearest degree at least 3 vertices in the
other part.

For (ii), let e be an edge of G with ends u and v and let K be a subgraph of G, which
is isomorphic to a subdivision of K5. If e ∈ K, we are done. Thus, we may assume that
e is not an edge of K. By Menger’s theorem, G contains two disjoint paths P1 := uP1x1
and P2 := vP2x2 with x1, x2 ∈ V (K) such that V (K) ∩ Pi = {xi} for i = 1, 2. Now by
applying (i) to P := x1P1uevP2x2 and K, we have that e is a Kuratowski edge.

The following is immediate from the definition of exceptional edge, Kuratowski’s the-
orem and Lemma 2.4.

Lemma 2.5. If G is a 2-connected graph containing exceptional edges, then G contains
at least one Kuratowski subgraph and every Kuratowski subgraph of G is a subdivision
of K3,3.

The above gives the following characterization of Kuratowski edges in general graphs:

Theorem 2.6. Let G be a graph and let e be an edge of G. Then e is a Kuratowski edge of
G if and only if G contains a Kuratowski subgraph K and a path P such that:

(i) P contains e,

(ii) P joins distinct vertices u, v of K,

(iii) u, v are not independent nodes of K, and

(iv) either P is contained in K or P is internally disjoint from K.

Proof. The necessity part is immediate: if e is a Kuratowski edge of G, then e belongs to a
Kuratowski subgraph K1 and K := K1, P := e satisfy conditions (i)–(iv).

The sufficiency follows from previous lemmas: assume that G contains subgraphs K
and P satisfying (i)–(iv), and apply Lemma 2.1 or 2.4 to the pair K,P depending on
whether K is a subdivision of K3,3 or K5.

This characterization is important due to the following corollary, which allows us to
restrict ourselves to 2-connected graphs when characterizing all graphs with 2-exceptional
edges:
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Corollary 2.7. Let G be a graph, let e be an edge of G and let B be the block of G
containing e. Then e is a Kuratowski edge of G if and only if e is a Kuratowski edge of B.

Following [12], for a (possibly empty) subset S of vertices of G, a pair (H,K) of
subgraphs of G is an S-decomposition, if

(i) each edge of G belongs to precisely one of H,K and

(ii) H ∩K = S.

For |S| = 0, 1, let H+ = H , K+ = K, and for |S| = 2, let H+ (respectively K+) be
obtained from H (respectively, K) by adding an edge between the two vertices of S.

Lemma 2.8. Let G be a graph with a 2-exceptional edge and let (H,K) be an S-decom-
position of G with |S| ≤ 2. Then, precisely one of H+, K+ is non-planar.

Proof. If both are planar, so is G, a contradiction, so at least one is non-planar.
Suppose that both are non-planar. As e is not on any Kuratowski graph of G, G − e

has the same Kuratowski graphs as G. Let KH be a Kuratowski graph of H+ and KK a
Kuratowski graph of K+. Since at most one branch of KK and KH contains S, for each
K ∈ {KK ,KH}, every drawing ofK has a crossed edge that is not an edge of the graph in
{KK ,KH} \ {K}. This shows that any drawing of KK ∪KH has at least two crossings,
implying that cr(G− e) ≥ 2, a contradiction.

For k = 0, 1, 2, 3, let Ek be the family of k-connected graphs that contain 2-exceptional
edges. Our main theorem describes these sets, but recursive description of E2 \ E3 requires
an additional lemma:

Lemma 2.9 ([12]). Let (H,K) be an {u, v}-decomposition ofG and suppose that cr(H) =
cr(H+). Then, cr(G) = cr(K + λuv) + cr(H), where λ is the maximum number of edge-
disjoint paths from u to v in H .

Theorem 2.10. Let G be a graph that has a 2-exceptional edge e with endvertices b and c.
Then

1. G ∈ E0 \ E1 is disconnected, all but one of its components are planar, and the non-
planar component belongs to E1.

2. G ∈ E1 \ E2 is connected, but not 2-connected, all but one of its blocks are planar,
and the non-planar block belongs to E2.

3. G ∈ E2 \ E3 is obtained from a subdivision of G′ ∈ E3 by replacing its edge st of
multiplicity µ with a planar graph H containing vertices s and t, such that H + st
is 2-connected and there are at least µ edge-disjoint s, t-paths in H .

4. G ∈ E3 is a cyclization of four tiles, as described in Theorem 4.2.

Proof. Claims 1 and 2 follow from applying Lemma 2.8, with |S| = 0, 1, respectively. As
we defer the proof of Theorem 4.2 to the next sections, we only need to prove Claim 3.

Suppose that (H,K) is a {u, v}-decomposition of G that has exceptional edges. By
Lemma 2.8, we may assume H+ is planar. Then by Lemma 2.9, cr(G) = cr(K + λuv)
and cr(G− e) = cr((K − e) + λuv). Therefore, e is exceptional in K + λuv. Applying
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this reduction to any (H,K) decomposition in which H has vertices not in K reduces G to
a subdivision of a graph in E3. This reduction has a constructive counterpart: any edge f of
a graph in E2 can be subdivided, yielding a graph of E2. If the original edge was exceptional,
so are both new edges. Furthermore, if e = uv is not the only exceptional edge of G, then
e can be replaced by any planar 2-connected H , for which H + uv is also planar. The
resulting graph is again in E2. Moreover, if uv has multiplicity λ, some of its edges can be
replaced by H simultaneously, provided H has at least that many edge-disjoint u, v-paths.
Thus, any graph of E2 can be obtained starting with a graph in E3, applying subdivisions
and replacing edges by described planar graphs, proving Claim 3.

3 Tile decomposition method
For clarity, we describe the structure of our characterization of graphs with 2-exceptional
edges in this section. It will follow the ideas of recent characterization of 2-crossing-
critical graphs [4]. The approach can be abstracted into the following steps, which allow
to decompose an abstract graph with properties of interest into smaller pieces called tiles.
The tiles are a tool often applied in the investigation of crossing critical graphs [2, 3, 4, 7,
9, 10, 11]. The method structures arguments as follows:

1. Limit connectivity of graphs of interest. In both instances, we focus on 3-connected
graphs, showing how to obtain graphs of lower connectivity from these and identi-
fying exceptional less connected instances. For us, this step is simple as all graphs
fit the pattern; in characterization of 2-crossing-critical graphs, it involved analyzing
the exceptional graphs.

2. Identify a skeleton graph K. In the case of 2-crossing-critical graphs, the skeleton
graph K is V10. In our case, it is the graph K in which contracting the edge incident
with two degree three vertices produces K5.

3. Study drawings or embeddings of the skeleton graph. In the case of 2-crossing-
critical graphs, V10 has two nonhomeomorphic drawings in the plane, which turned
to be better analyzed as two essentially different projective-planar embeddings. For
a graph G with 2-exceptional edge e and the skeleton graph K, we show that in any
optimal drawing of G− e, the subdrawing of K − e is determined up to homeomor-
phism.

4. Find a skeleton graphH ∼= K and its drawing/embedding that offers sufficient struc-
ture for finding tiles. Usually this amounts to a skeleton graph, for which in the
selected embedding, all bridges lie in well-controlled faces. For 2-crossing-critical
graphs, there were three steps (friendly embedding, pre-tidy V10, tidy V10). Showing
existence of such embeddings and skeleton graphs turned to be an important step in
both cases. After this step, a standard quadruple was introduced in both cases to
carry the information about the investigated graph G, its selected drawing or embed-
ding Π, and the tidy skeleton graph K ∼= H ⊆ G that were required for subsequent
proofs. Once a special skeleton graph and its drawing are defined, introduce a stan-
dard labelling with respect to that skeleton and its drawing.

5. Restrict bridges of (parts of) the skeleton graph. In the case of 2-crossing-critical
graphs, bridges of V10 are shown to be either edges or small stars, and their at-
tachments are near in the V10 subdivision. In our case, we show that there exists a
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skeleton graph K, such that all its bridges that are not edges lie in the infinite face
of some of its optimal drawings, and that after removing the K4 subgraph of the
skeleton with its parallel edges, we (roughly) obtain a join of two 3-connected planar
graphs.

6. Combine bridges into tiles. In the case of 2-crossing-critical graphs, this analysis
relies on identifying types of edges in the V10 subdivision and then splitting pieces
between two consecutive edges of a specific type. Our instance is simpler: we show
that our bridges constitute a sequence of four tiles, whose cyclization yields a graph
of interest.

7. Prove that every tiled structure yields a graph of interest. Once the structure is
determined, this is usually an easy task, and to confirm intuition about the listed
steps, it can even be done as soon as the tiles are conjectured.

We conclude this section by introducing the needed notation related to tiles. As in
our approach we do not need the gadgets limiting crossing numbers of tiles, only the very
basics are needed. For most recent developments on the theory of tiles, see [3, 4].

A tile is a triple T = (G,λ, ρ), where G is a graph and λ, ρ are two disjoint se-
quences of distinct vertices of G, called the left and right wall of T , respectively. Two
tiles T = (G,λ, ρ) and T ′ = (G′, λ′, ρ′) are compatible, if |ρ| = |λ′|. The join of two
compatible tiles T and T ′ with ρ = (ρ1, . . . , ρw) and λ′ = (λ′1 . . . , λ

′
w) is defined as

the tile T ⊗ T ′ := (G′′, λ, ρ′), where G′′ is the graph obtained from the disjoint union
of G and G′ by identifying ρi with λ′i, for i = 1, . . . , w. Specially, if ρi = λ′i is a ver-
tex with precisely two neighbors (after the identification), we replace it with a single edge
in G′′ of multiplicity equal to the smaller of the multiplicities of the edges incident with
ρi = λ′i. This technical detail is important when considering 3-connected graphs. Since
the operation ⊗ is associative, we can safely define the join of a compatible sequence of
tiles T = (T0, T1, . . . , Tm) as ⊗T = T0 ⊗ T1 ⊗ . . . ⊗ Tm. The cyclization of a self-
compatible tile T = (G,λ, ρ), denoted by ◦T , is the ordinary graph obtained from G by
identifying λi with ρi for i = 1, . . . , w. The cyclization of a self-compatible sequence of
tiles T = (T0, T1, . . . , Tm) is ◦ T := ◦(⊗T ). Again, possible vertices with two neighbors
are replaced with an edge maintaining smaller edge multiplicity, as above. We will also
need the concept of a reversed tile of T , which is the tile with the two walls exchanged,
T↔ = (G, ρ, λ).

4 3-connected graphs with 2-exceptional edges
In this section, we describe the class of graphs whose members are precisely all the 3-
connected graphs containing at least one 2-exceptional edge. In particular, we define such
a class and show that all its elements are 3-connected and have 2-exceptional edges. In the
following sections, we show that any graph with 2-exceptional edges belongs to this class.

For i ≥ 1, let Gi
1 = uivi be an edge of multiplicity i, and Oi = (Gi

1, (ui), (vi)) a
corresponding tile. Let O be the family of all tiles Oi, i ≥ 1.

For i, j ≥ 1, let iGj
2 be the graph obtained by identifying the vertices vi and uj of Oi

and Oj , respectively. Then iGj
2 has a vertex w of degree i + j and two vertices ui, vj of

degree i, j, respectively, see Figure 2. By iQj = (iGj
2, (ui), (vj , w)), we denote the tile

constructed using iGj
2.
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Let s1, s2, s3 and s4 be the vertices of K4. We use H = 0H0
1,1 to denote the graph

obtained from such a K4 by doubling the edges of the path s4s1s2s3 and adding to s3 and
s4 a new edge leading to a new vertex w2 and w1, respectively (see Figure 2). The graph
Hi = 0Hi

1,1 is obtained from the disjoint union of H and Gi
1 by identifying s1 of H with

vi of Gi
1, and let jHi = jHi

1,1 be the graph obtained from the disjoint union of Gj
1 and Hi

by identifying the vertex uj of Gj
1 with s2 of Hi. Note that for i, j = 0 the graph iHj is

defined independently of Gi
1, Gj

1, which only exist for i, j ≥ 1.
For k a positive integer, we denote by jHi

k the graph obtained from jHi by increasing
multiplicity of one of the edges s1s3 or s2s4 (but not both) to k. Finally, for l a positive
integer, the graph jHi

k,l is obtained from jHi
k by increasing the multiplicity of the edge

s3s4 to l.
For any integers i, j, k and l such that i, j ≥ 0, and k, l ≥ 1, we define a tile jRi

k,l =

(jHi
k,l, (ui, w2), (vj , w1)); for i, j = 0, we set u0 = s1 and v0 = s2, respectively.
We use R to denote the family consisting of all the tiles jRi

k,l and all the tiles that
can be obtained from these by arbitrarily increasing multiplicity of each edge on the path
s4s1s2s3 (which must, however, remain at least two).

u3 v3

w2

u2

v4s1
s2

s3s4
w1u3

v4

w

Figure 2: From left to right: O3, 3Q4, and 2R4
2,3.

Let P be the family that contains each tile T that can be obtained from any 3-connected
planar G containing a degree three vertex x with neighbors u, v, w as T = (G − x, (u),
(v, w)). In addition to these, let us assume that P also contain each tile iQj , with i, j ≥ 1.

A pre-exceptional sequence T of tiles has four tiles (T1, T2, T3, T4), such that:

(C1) T1 = Oi1 ∈ O,

(C2) T2 ∈ P ,

(C3) T3 = i3Rj3
k3,l3

∈ R,

(C4) T↔4 ∈ P , and

(C5) if T2 = i2Qj2 , then i3 ≥ 1 (respectively, if T↔4 = i4Qj4 then j3 ≥ 1).

Then there are exactly six types of pre-exceptional sequences: depending on whether T2
(respectively, T4) comes from a 3-connected planar graph, or T2 = i2Qj2 (respectively, if
T↔4 = i4Qj4 ), we have sixteen types of T ’s, which are reduced to six by considering (C5)
and the symmetry. Such six types of T ’s are shown in Figure 3.

The signature of a pre-exceptional sequence T = (T1, T2, T3, T4) is an ordered list
of integers σ(T ) = (i1, i2, j2, i3, j3, k3, l3, i4, j4) which is obtained from T as follows:
the integer i1 is taken from T1 = Oi1 . If T2 comes from a 3-connected planar graph
G, then i2 and j2 are both equal to the number of edge-disjoint u, v-paths in G, and in
the other case, we take them from T2 = i2Qj2 . The integers i3, j3, k3, l3 are taken from
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Figure 3: The six types of pre-exceptional sequences.

T3 = i3Rj3
k3,l3

. Finally, if T4 ∈ P comes from a 3-connected planar graph G, then i4 and
j4 are both equal to the number of edge-disjoint u, v-paths in G, and in the other case, we
take them from T↔4 = i4Qj4 . The relevant signature ρ(T ) is the set of positive values in
{i1, i2, j2, i3, j3, i4, j4}. An pre-exceptional sequence T is exceptional, if either

(i) min ρ(T ) = 2 or

(ii) min ρ(T ) = 1 and l3 ≥ 2.

The following technical observation is also needed in our proof.

Lemma 4.1. Let G be a graph, and let {u, v, w} be a vertex cut of G such that {u, v, w}
is not the neighborhood of a vertex in G. Let Gi be a non-trivial bridge of {u, v, w} in G,
and obtain G′i by connecting a new vertex ti to each of u, v, w. Then, G is 3-connected, if
and only if each of G′i is 3-connected.

Proof. First we assume that G is 3-connected. Let p, q be any two vertices in G′i. If p = ti,
choose as p any vertex of Gj for j 6= i. The three internally disjoint paths in G connecting
p and q can be easily converted to three internally disjoint paths connecting ti and q. If
both p and q are distinct from ti, there are three internally disjoint paths pP1q, pP2q, pP3q
in G. At least two of these paths are in Gi, and if the third one is not, it uses two of the
vertices u, v, w. We may assume it is pPuuP

′
3vPvq. But then, pPuutivPvq is a path of Gi,

internally disjoint from P1, P2, completing the necessity direction.
For sufficiency direction, let p, q be two arbitrary vertices of G. If they are in the

same Gi, there are three internally disjoint paths in G′i that connect them, which can eas-
ily be augmented to paths in G. If p ∈ Gi, q ∈ Gj , i 6= j, then let pP p

uuti, pP
p
v vti,

pP p
wwti be three internally disjoint paths between p and ti in Gi, and similarly qP q

uutj ,
qP q

v vtj , qP q
wwtj be three internally disjoint paths between q and tj inGj . Then, pP p

uuP
q
uq,

pP p
v vP

q
v q, pP p

wwP
q
wq are three internally disjoint paths between p and q in G.

Theorem 4.2.

(I) A graphG is in E3, if and only ifG can be described as a cyclization of an exceptional
sequence T = (T1, T2, T3, T4).
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(II) G has two 2-exceptional edges if and only if k3 = 1 in T3 = i3Rj3
k3,l3

.

(III) If G ∈ E0, then cr(G) = 2.

Proof. We show Claims (II) and (III), and sufficiency of Claim (I). The necessity of
Claim (I) is covered in the subsequent sections.

Let G be a cyclization of T = (T1, T2, T3, T4) as above. In this proof, we use the
notation and drawings provided in Figure 3. Without loss of generality, we may assume
that the edge of T3 with endvertices s1 and s3 has multiplicity k3.

In order to show that G ∈ E3, we need verify that it is 3-connected and that it contains
2-exceptional edges. From the construction of G and Lemma 4.1 it is not difficult to see
that G is 3-connected. Thus it is enough to show that the edge e = s2s4 is a 2-exceptional
edge of G. In other words, we need to show that:

(I1) cr(G− e) ≤ 1,

(I2) e is not a Kuratowski edge of G, and

(I3) cr(G) ≥ 2.

For r ∈ {2, 4}, we assume that in any drawing of G under consideration, the restriction
of such a drawing to Tr is a plane graph. Indeed, since there exists a drawing of Tr that has
all the wall vertices on the same face, such a face can be made the infinite face by inversion
and the resulting drawing or its mirror can be used to form the required drawing of G.

Then, regardless the multiplicities of the edges in T1 or T3, the drawings in Figure 3
imply that cr(G) ≤ 2 and cr(G− e) ≤ 1, which reduces (I1) to (I3).

For (I2), seeking a contradiction, assume that e lies on some Kuratowski subgraph K
of G. As G has exactly 4 vertices not in T2 ∪ T4 (namely, s1, s2, s3 and s4), then for some
r ∈ {2, 4}, Tr contains at least one node of K. On the other hand, the planarity of Tr and
the fact that Tr contains only three wall vertices imply that at least one node of K is not
in Tr. Because Tr is joined to exactly three vertices of G − Tr, K is not homeomorphic
to K5. Then K is homeomorphic to K3,3. Since any set of four edges with an end in Tr
and the other in G− Tr contain at least one pair of parallel edges, the number of nodes of
K in Tr must be exactly one. In particular, this implies that s1, s2, s3, and s4 are nodes of
K, and that each of T2 and T4 contains exactly one node of K. Since the node of K in T4
is joined to s2 and s4, these vertices belong to the same chromatic class in K, however, as
e = s2s4 is an edge in K, s2 and s4 belong to distinct chromatic classes, a contradiction.

Now we show that (I3) cr(G) ≥ 2. We analyze separately two cases, depending on
whether min ρ(T ) = 2 or min ρ(T ) = 1.

Case 1. min ρ(T ) ≥ 2. Let H be the graph that results by deleting from G all the vertices
of T2 and T4 that are not in the face containing the wall vertices. Note that if T2 (respec-
tively, T4) comes from a 3-connected planar graph, then T2 ∩H (respectively, T4 ∩H) is
a cycle of length at least 3, and in the other case, T2 ∩ H = T2 = i2Qj2 (respectively,
T4 ∩ H = T4 = i4Qj4 ). Clearly, cr(G) ≥ cr(H). Now we verify that cr(G) ≥ 2 by
showing that cr(H) ≥ 2.

Let D be an optimal drawing of H . As usual, we assume that parallel edges are placed
very closely to each other in D, and hence, that they have the same number of crossings.
Then if any edge of the path P := s4s1s2s3 is crossed in D, we are done.
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Let h be an edge of H with endvertices s1 and s3. From Figure 3, we can see that H
contains a subgraph J homeomorphic toK3,3 that avoids e and h (the thick edges). Indeed,
the nodes of J are s1, s2, s3, s4 and p, q the endvertices of T1. If the restriction D[J ] of D
to J has at least two crossings, or at least one of e, h is crossed in D, we are done. Thus
we assume that cr(D[J ]) = 1 and that both e, h are clean in D. In particular, note that the
restriction D′ of D to the subgraph H ′ of H induced by s1, s2, s3 and s4 is a plane graph
and that H ′ contains to K4 as subgraph.

On the other hand, min ρ(T ) ≥ 2 implies that the number of parallel edges between p
and q is at least 2, and hence both p and q are in the same face of D′, or we are done. By
using stereographic projection if necessary, we may assume that such a face is the infinite
face of D′. Then exactly one vertex of H ′, say s′, is in the triangular finite face formed by
the other three vertices. Moreover, from the definition of J it follows that at least one of p
or q is joined with s′ by a path P ′, which is internally disjoint of H ′.

Since, for r = 1, 2, H contains at least two p, sr-paths edge disjoint and internally
disjoint from H ′, then s′ /∈ {s1, s2}, or such p, sr-paths provide the required crossings. If
s′ ∈ {s3, s4}, then P ′ crosses at least one edge of E(P ) ∪ {e, h}, which is impossible.

Case 2. min ρ(T ) = 1 and l3 ≥ 2. Since T2 and T4 are connected and l3 ≥ 2, then G
contains a subgraph H which is homeomorphic to the graph shown in Figure 4. As before,
we verify cr(G) ≥ 2 by showing that cr(H) ≥ 2.

Let C be the double cycle of H whose vertices are s1, s2, s3, and s4, and let D be an
optimal drawing of H . If any edge of C is crossed, we are done. Then we may assume that
the restriction D[C] of D looks like in Figure 4. Then u and v must be in the same face
of D[C]: otherwise, at least one edge of C is crossed by the edge with endvertices u and v
and we are done. Without loss of generality, we assume that both are in the infinite face of
D[C], as shown in Figure 4. Note that the paths s1us3 and s2vs4 cross each other because
they have alternating ends in C. Similarly, if the edges s1s3 and s2s4 are in the same face
of C, we have the required crossing. Then at least one of them is in the infinite face of C
and such an edge must cross with some of s1us3 or s2vs4 providing the required crossing.
This proves (I3) and hence sufficiency of (I).

The inequality in (I3) was independently checked with the crossing number computing
tool of Chimani et al. [5]

s1
s2

s3s4 v

u

Figure 4: A drawing of H .

Now we show (II) that G has two 2-exceptional edges if and only if k3 = 1 in T3 =
i3Rj3

k3,l3
. Note that, by symmetry, the argument used in (I2) also shows that any edge of G

with endvetices s1 and s3 is a not a Kuratowski edge. Let us denote by K3 the set of edges
of G with ends s1 and s3.

On the other hand, from the definition of i3Rj3
k3,l3

, we know that e is the only edge of G
with ends s2 and s4. Then Lemmas 2.2 and 2.5 imply that s1 and s3 (respectively, s2 and
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s4) are in the same chromatic class of nodes of a subdivision K of K3,3 in G.
We derive a contradiction from the assumption that G contains a non-Kuratowski edge

e′ /∈ K3 ∪ {e}. Then Lemma 2.2 implies that e′ joins two nodes in the same chromatic
class of nodes of K. Furthermore, since e′ /∈ K3 ∪ {e}, then it must have an end in
{s1, s2, s3, s4} and the other in a node of K \ {s1, s2, s3, s4}. The existence of such an e′

implies that K ∪K3∪{e, e′} ⊆ G contains K5 as subdivision. This and Lemma 2.5 imply
that all the edges of G are Kuratowski edges, a contradiction.

Let us assume that k3 = 1 in T3 = i3Rj3
k3,l3

. Then K3 consists of an edge h. From (I1)
and (I3) we have cr(G) = 2. Now, if we draw e inside of the square s1s2s3s4 in Figure 3,
we get, in all the cases, an optimal drawing of G in which h is crossed by e. This proves
that h is 2-crossing-critical, and hence e and h are both 2-exceptional edges.

On the other hand, since cr(G) = 2 for any k3 ≥ 1, then if k3 ≥ 2 we have that no
edge in K3 is 2-crossing-critical and since K3 ∪ {e} are the only non-Kuratowski edges of
G, then k3 > 1 implies that e is the only 2-exceptional edge of G. This proves (II).

Finally, we show (III) that if G ∈ E0, then cr(G) = 2.

(1) If G ∈ E3 we are done by (I1) and (I3).

(2) If G ∈ E2 \ E3 then, by Theorem 2.10(3), there exists G′ ∈ E3 such that cr(G) =
cr(G′). Since cr(G′) = 2, we are done.

(3) IfG ∈ E1\E2 then, by Theorem 2.10(2), all but one of blocks ofG, sayB, are planar
and B ∈ E2. Then cr(G) = cr(B). If B ∈ E3 (respectively B ∈ E2 \ E3) we are
done by (1) (respectively (2)).

(4) If G ∈ E0 \ E1 then, by Theorem 2.10(1), all but one of the components of G, say C,
are planar and C ∈ E1. Then cr(G) = cr(C). Clearly, exactly one of the following
is true: C ∈ E3, C ∈ E2 \ E3, or C ∈ E1 \ E2. Note that these three cases have
been studied, respectively, in (1), (2), and (3), and in all of them the conclusion is
cr(C) = 2, as required.

5 The skeleton graph
In this section, we present the skeleton graph, which is the essential structure of 3-connected
graphs with 2-exceptional edges.

First, we introduce some notation, aligned with the notation of [4]. Let H be a subdivi-
sion of a graph G and let e be an edge of G. If s and t are the ends of e, then we denote by
sHt the s, t-path of H which results from subdividing e. We use vst to denote an arbitrary,
but fixed, vertex of (sHt).

Following this general notation, we turn our attention to the specific graph K ′′, which
we show to constitute the skeleton of graphs in E3. It is depicted in Figure 5. We always
use the labelling from the figure (and we call it standard labelling), so {{a, b, c}, {x, y, z}}
constitute the bipartition of a subdivision K ∼= K3,3, and bc, yz are the exceptional edges
of K ′′. We will use K ′ for K + bc, and refer to it as a pre-skeleton.

A bypass of a non-Kuratowski edge e of K ′′ is the union of any two K3,3 branches that
together with e form a cycle containing exactly 3 nodes of K ′′. A bypass is open, if the
endvertices of e are removed from it and closed if they are contained in it. The common
node t ∈ {a, b, c, x, y, z} of the K ′′ branches used in the bypass is the peak of the bypass,
and we denote the bypass by Kt. For instance, Kx = bK ′′xK ′′c and Kb = yK ′′bK ′′z.
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a b c

x y z

a

Figure 5: The skeleton graph K ′′.

We will be vague by using Kt both for open and closed bypass, but where distinction will
be required, (Kt) is open and [Kt] is closed.

Besides bypasses, claws at a and x will play a significant role. We define them by
Da := aK ′x ∪ aK ′y ∪ aK ′z and Dx := xK ′a ∪ xK ′b ∪ xK ′c. A talon of a claw is its
one degree vertex. A claw is open, if we remove its talons. Again, we will use [Da] and
[Dx] for closed, and (Da), (Dx) for open claws. The graph K ′′4 := K ′′ \ ((Da) ∪ (Dx))
is a subdivision of K4. When H ∼= K ′′ is a subdivision of K ′′, we extend the definition of
bypasses and claws naturally to H .

The next lemmas restrict the possible bridges of a skeleton graph in G. The first one
shows that graphs in E3 do not contain a subdivision of a graph, obtained from K ′ by
adding a path with ends in two distinct bypasses, except for three exceptions.

Lemma 5.1. Let H := K ′ + P , where P is a path joining two distinct elements of
{(Kx), (Ky), (Kz)} and internally disjoint from K ′. Then every edge of H is a Kura-
towski edge, or P joins distinct vertices of {x, y, z}.

Proof. By Lemma 2.3, we may assume that H has no vertices of degree 2. In particular,
P is an edge. Assume that P does not join distinct vertices of {x, y, z}. Let q and r be
the endvertices of P . As (Kx), (Ky), and (Kz) are open, P does not join two vertices of
{a, b, c}. By Lemma 2.1, we have that all the edges in H except bc are Kuratowski edges.
It remains to show that in each case, bc belongs to a subdivision of K3,3. By the symmetry
of K ′, we need only analyze the cases in which q ∈ {y, vyb} and r ∈ {vbz, vcz}.

If q = y and r = vbz , then H \ {by, cx} is the required subdivision.
If q = y and r = vcz , then H \ {bx, cy} is the required subdivision.
If q = vyb and r = vbz , then H \ {cx, bvbz} is the required subdivision.
If q = vyb and r = vcz , then H \ {x} is the required subdivision.

The next lemma restricts paths adjacent to paths linking two nodes of K.

Lemma 5.2. Let H := K ′ + P + Q, where P is a path joining two distinct elements of
{x, y, z} and internally disjoint from K ′, and Q is a path joining an inner vertex p of P
with a vertex q ∈ V (K ′) \ V ((Da)) and internally disjoint from K ′ + P . Then every edge
of H is a Kuratowski edge, or cr(H − bc) ≥ 2, or q ∈ P .

Proof. Without loss of generality, we may assume P = yPz. By Lemma 2.3, we may
assume that H has no vertices of degree 2. Lemma 2.1 implies that all the edges in H
except bc and possibly edges of P ∪Q are Kuratowski edges.
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Since q /∈ V ((Da)) and H has no vertices of degree 2, then q is a node of H distinct
from a. If q ∈ {y, z}, we are done. If q = x, then (K ′ − bc) ∪ P ∪ Q is a subdivision of
K3,4, and cr(H) ≥ 2. So we assume that q ∈ {b, c}. By symmetry, we may assume that
q = b. In this case, H \ {cx, by, bz} is a subdivision of K3,3 that uses the edge bc and all
edges of P ∪Q, concluding the proof.

Lemma 5.1 implies the following useful structure of optimal drawings of G− e:

Lemma 5.3. Let G ∈ E3 and let e be its 2-exceptional edge with endvertices b and c, and
letK3,3

∼= K ⊆ G. IfD is an optimal drawing ofG−e andDK is the induced subdrawing
of K, then the ends of e lie on a face of DK that is not incident with its crossing.

Proof. By Lemma 2.2, b, c are independent nodes of K, so they are on the boundary of
some (possibly different) face(s) of DK . Up to homeomorphism, DK is drawn in Figure 6.
The parts in the bipartition of K3,3 are {1, 3, 5} and {2, 4, 6}. Any pair of independent
nodes of K lies on a common face of DK , and E1, E2 are the only faces contradicting the
conclusion of Lemma 5.3.

O1

1

O2

2

6

5
E2

E1

43

×

Figure 6: The unique drawing of K3,3, up to homeomorphisms.

By symmetry, we may assume b, c lie inE1, implying {b, c} = {2, 6}. As cr(G− e) ≤
1, the crossing of DK is the only crossing of D. As cr(G) ≥ 2, there is an arc in D
connecting the two segments of the boundary of E1 having b, c as ends. As this path avoids
the only crossing of D, it is a path in G − e that connects two distinct open bc-bypasses,
and at least one of its endvertices is not a node of K, contradicting Lemma 5.1.

Therefore, b, c lie either in O1 or O2, and neither of these is incident with the crossing
of D, as claimed.

In the analysis, we use the following result from [12]. We also repeat some notation.

Lemma 5.4 (Lemma 3 in [12]). Let G be a 3-connected non-planar graph, and let e be a
non-Kuratowski edge of G with endvertices b and c. Then the graph G/e is 2-connected
but not 3-connected, and the graph G− b− c is connected, but not 2-connected.

LetH := G−b−c and let T (H) be the block-cutpoint tree of the graphH . Lemma 5.4
implies that T (H) is a non-trivial tree. According to Theorem 1.2,G−b−c has all vertices
in two blocks for any graph G with 2-exceptional edge bc.

By now, we are ready to establish that the pre-skeleton graph is a subdivision contained
in any graph with a 2-exceptional edge.
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Theorem 5.5. Let G ∈ E3 with e its 2-exceptional edge with endvertices b and c. There
exist a pre-skeleton subgraph H with K ′ ∼= H ⊆ G and an edge f of G, such that H + f
is a subdivision of the skeleton graph K ′′.

Proof. By Lemma 2.5, G has a subdivision K ∼= K3,3. As e is not a Kuratowski edge, e
is not in K. Let uPv be any maximal K-avoiding path containing e. As G is 3-connected,
Theorem 2.6 implies that u, v are distinct nodes of K; we choose the standard labelling of
K such that {u, v} = {b, c}. As G is 3-connected, P is either an edge, or there exists a
K + P -avoiding path pQq connecting a vertex of p ∈ (P ) with a vertex q ∈ G \ V (P ).
One of the paths bPQq and cPQq contains e, hence Theorem 2.6 applied to it implies
q = a. Then, K ∪ P ∪ Q is a subdivision of K3,4 containing e, a contradiction to e not
being a Kuratowski edge. Hence Q does not exist and bPc is just a single edge, showing
that H := K + e is a pre-skeleton in G.

Next we prove that there exists a K ′-avoiding path Q, connecting two nodes from
{x, y, z}. We may be forced to change K ′ for this.

Claim 5.6. There exists a pre-skeleton subdivision K̄ ′ in G, such that K ′ ∩ K̄ ′ contains
the closed bypasses of e (in particular, b, c, x, y, z are nodes of K̄ ′), and there is an K̄ ′-
avoiding path P of G connecting q, r ∈ {x, y, z}.

Proof. As there are two blocks of H = G − b − c containing all its vertices, at least two
vertices p, q of {x, y, z} are in the same block B of H . We may assume without loss of
generality that they are y and z. AsB is 2-connected, there are two internally disjoint paths
yP1z and yP2z in B. By Lemma 5.1, the intersection of P1 ∪ P2 with Kx ∪Ky ∪Kz is
contained in {x, y, z}.

Suppose that x /∈ P1 ∪P2. If either P1 ∩ (Da) or P2 ∩ (Da) is empty, it is the required
path and K̄ ′ = K ′. So we may assume they are both non-empty. Let a′ be a vertex
of P1 ∪ P2, such that xDaa

′ has no vertex of P1 ∪ P2. We may assume a′ ∈ P1. As
(P1 ∪ a′Dax) ∩K ′ is contained in [Da], K̄ ′ := (K ′ − (Da)) ∪ (P1 ∪ a′DaaDax) is the
required skeleton and P2 is the required K̄ ′-avoiding y, z-path.

Now we may assume x ∈ P1 ∪ P2. Then x, y, z split C := P1 ∪ P2 into three arcs
Cxy := xCy, Cyz := yCz, and Czx := zCx, such that C = xCyyCzzCx. Let ax, ay, az
be the a-closest vertices of P1 ∪ P2 in xDaa, yDaa, zDaa, respectively; they may all be
equal to a.

If each segment of Cxy, Cyz, Czx contains a vertex of ax, ay, az , then let a′′ be the
one of ax, ay, az in Cyz and let a′ be any other one. Then, C ∪ (([axDaa] ∪ [ayDaa] ∪
[azDaa]) − (aDaa

′′) − (Cyz)) contains an x, y, z-claw T with center a′ and is internally
disjoint from Cyz . Hence, K̄ ′ = (K ′− (Da))∪T is the required pre-skeleton and Cyz the
y, z-path internally disjoint from K̄ ′.

If a segment Cxy, Cyz, Czx contains two vertices of ax, ay, az , and a segment C0 con-
tains none, we relabel {x, y, z}, so that Cyz = C0. Then Da ∪ P1 ∪ P2 − (Cyz) contains
a claw T with center a and talons x, y, z so that Cyz is internally disjoint from it; again,
K̄ ′ = (K ′−(Da))∪T is the required pre-skeleton and Cyz the y, z-path internally disjoint
from K̄ ′.

If a segment C3 of Cxy, Cyz, Czx contains all three vertices of ax, ay, az , then in C ∪
Da, there is a C-avoiding path pRq from (C3) to C − [C3]. We relabel {x, y, z}, so that
p ∈ Cxy and q ∈ Cxz . Then, (C ∪ pRq)− (Cyz) contains an x, y, z-claw T , with center in
p, so that Cyz is internally disjoint from it; again, K̄ ′ = (K ′ − (Da)) ∪ T is the required
pre-skeleton and Cyz the y, z-path internally disjoint from K̄ ′.
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Without loss of generality, we label the nodes of K so that P = yPz.

Claim 5.7. The path yPz from Claim 5.6 is an edge.

Proof. Seeking a contradiction, assume that P has an internal vertex v. Consider an opti-
mal drawing D of G− e. Since K ⊂ G− e and cr(G− e) ≤ 1, we have cr(G− e) = 1.
Thus the drawing D restricted to K is homeomorphic to the drawing DK in Figure 6. Be-
causeG is 3-connected,G−y−z contains a pathQ from v toK−y−z, which is internally
disjoint from K ∪ P . If q is the endvertex of Q in K, Lemma 5.2 implies q ∈ V (Da).

Since the crossing d ofDK is the only crossing ofD, no edge of P ∪Q is crossed inD.
Hence P is drawn in a face of DK incident with two independent nodes. By the symmetry
of DK , we may assume that v ∈ E1 or v ∈ O1. See Figure 6.

If v ∈ O1, then {y, z} = {4, 6} or {y, z} = {1, 5}. By the symmetry of DK , we
may assume {y, z} = {4, 6}, and hence x = 2. This implies that a = 1 or a = 5. If
a = 5, then {b, c} = {1, 3}. Since cr(G− e) < cr(G), then there must be a simple arc α
of D contained in O2, with endpoints on its boundary and separating b from c (1 from 3 in
Figure 6). Since d is the only crossing of D, α corresponds to a path R of G which joins
two vertices of V (K ′) \ V (Da). Lemma 5.1 implies R joins x and z. Now it is easy to see
that K ′ ∪ P ∪R contains a subdivision of K5, contradicting Lemma 2.4.

For the final case, v ∈ E1. Then, without loss of generality, P connects y = 2 and
z = 6, implying x = 4. As q is on some path in the boundary of E1, a can be any of
the vertices 1, 3, or 5. Suppose a = 1. This implies bc = 35, contradicting Lemma 5.3.
Suppose next a = 3, implying bc = 15. As cr(G) ≥ 2, there is an arc in D separating
1 from 5 in O1. By Lemma 5.1 and as there is only one crossing in D, this arc is a path
R from 4 to 6. As K ′ ∪ P ∪ R has a subdivision of K5, it contradicts Lemma 2.4. The
subcase a = 5 is similar, with bc = 13 and 2R4.

Thus f is an edge connecting y and z, andK ′∪f is a subdivision ofK ′′, as claimed.

Proposition 5.8. Let G ∈ E3 and let K ′′ ∼= H ⊆ G be its skeleton subgraph with standard
labelling. Then G does not contain a path P internally disjoint from K ′′ with endvertices
in any of the pairs {a, b}, {a, c}, {x, y}, {x, z}.

Proof. Let u, v be the endvertices of P . If {u, v} ∈ {{a, b}, {a, c}, {x, y}, {x, z}} then
the subgraph (K ′′ + P ) ⊂ G contains K5 as subdivision. This and Lemma 2.4 imply that
G has no exceptional edges, a contradiction.

Corollary 5.9. Let G ∈ E3. Any non-Kuratowski edge g of G is parallel to e or f .

Proof. Let u, v be the endvertices of g. By Lemma 2.2, we know that u, v are independent
vertices of K and by Proposition 5.8, we have that {u, v} = {b, c} or {u, v} = {y, z}.

Let e and f be the exceptional edges of G ∈ E3. The graph obtained from G by adding
a parallel edge f ′ to f is also an exception to Statement 1.1, but such a graph contains only
e as an exceptional edge, because both edges f and f ′ are non-critical. These observations
yield the following corollary to Theorem 4.2:

Corollary 5.10. Let G ∈ E3. The number of 2-exceptional edges of G is at most two.
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Proof. By Corollary 5.9, it is enough to show that if f and f ′ are parallel edges of G, then
they are not critical.

Suppose an arbitrary of them is and let it be f . Then cr(G− f) ≤ 1. As K ⊂ G− f ,
there exists an optimal drawing D of G−f in which f ′ /∈ K has no crossings. By drawing
f very close to f ′ in D, we get a drawing of G with exactly one crossing, a contradiction
implying that f is not critical and hence not exceptional.

6 Bridges of the skeleton graph
Let H be a subgraph of a graph G. An H-bridge is either an edge not in H together with
its two incident vertices that are in H or is obtained from a component J of G − V (H)
by adding all edges incident with a vertex of J together with their incident vertices in H .
This concept will be helpful for the remainder of this section. A bridge is trivial, if it is
just an edge, and non-trivial otherwise. For a graph H and its bridge B, any vertex of
att(B) := V (H) ∩ V (B) is an attachment of B.

First we exhibit the structure of an optimal drawing of G− e.

Lemma 6.1. Let G ∈ E3, let K ′′ be its skeleton graph, let e be its 2-exceptional edge
with endvertices b and c, and let f be a non-Kuratowski edge not parallel to e. If D is an
optimal drawing of G− e, then the drawing D restricted to K + f is homeomorphic to the
drawing in Figure 7 (right) and b, c are the ends of e.

Proof. Let D be an optimal drawing of G− e and K the K3,3 subdivision in K ′′. As e is a
2-exceptional edge, D has a unique crossing and D restricted to K is homeomorphic to the
drawing DK in Figure 7 (left). Using symmetry, stereographic projection, and Lemma 5.3,
we may assume that the ends of e are b and c. Hence, f ∈ {xy, yz, xz}.

If f ∈ {xy, xz}, cr(G) ≥ 2 implies there is a path P of G − e that is by Lemma 5.1
drawn from y to z in E, yielding a K5 subdivision in K ′′ ∪ P , contradicting Lemma 2.4.
Thus y and z are the ends of f and the drawing D restricted to K + f is homeomorphic to
the drawing in Figure 7 (right), as required.

× E

O

x xb b

a a yy

cc

z z

f

Figure 7: If D is an optimal drawing of G − e, then the drawing D restricted to K + f is
homeomorphic to the right drawing.

In what follows, we call (G,H, e,D) a standard quadruple, abbreviated sq, if G ∈ E3,
K ′′ ∼= H ⊆ G, such that H has standard labelling, e is a 2-exceptional edge of G, and D is
an optimal drawing of G− e, with the induced subdrawing of H − e drawn as in Figure 7.

Lemma 6.2. Let G ∈ E3. Then, there exists a standard quadruple (G,H, e,D) contain-
ing G.
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Proof. As G ∈ E3, there exists a 2-exceptional edge e of G. Theorem 5.5 guarantees
existence of the skeleton graph H in G, that is a subdivision of K ′′. Finally, Lemma 6.1
yields existence of the desired drawing D of G− e.

Lemma 6.3. Let G ∈ E3, let K ′′ ∼= H ⊆ G with the standard labelling. If B is a bridge
of H , v ∈ att(B), and v is not a node of H , then att(B) ⊆ [Da] ∪ [Dx].

Proof. Let v be as in the statement. Seeking a contradiction, suppose that there exists
u ∈ att(B) \ ([Da] ∪ [Dx]). Then u ∈ (Ky) ∪ (Kz) (or equivalently, u ∈ (Kb) ∪ (Kc)).
Since B is connected, it contains an u, v-path, say P . From Lemma 5.1 and the hypothesis
that v is not a node of H , we have that v ∈ (aHx). By the symmetry of K ′′4 , we need
only analyze the case in which u = vby . But in such a case, (H ∪ P ) \ {ay, bx, cz} is
a subdivision of K3,3 containing both bc and yz as edges, which contradicts that bc is a
2-exceptional edge.

Let G ∈ E3. In what follows, we will denote with H4 as the subgraph of G induced by
the four vertices that are ends of the non-Kuratowski edges of G. By Corollary 5.9, H4 is
well-defined for any G, i.e. it is independent of the choice of H .

Lemma 6.4. Let (G,H, e,D) be a standard quadruple of a graph G ∈ E3. The subgraph
H4 of G is isomorphic to K4 with some multiple edges, and it has only one bridge that
contains both a and x and the only crossing of D.

Proof. As G is 3-connected and H4 is induced in G, H4 has no trivial bridges.
As there exists an H4-avoiding path aHx, a and x are in the same H4-bridge B, and

that bridge is crossed in D. If B is the only bridge, we are done, otherwise let B′ be any
other bridge.

As G is 3-connected, each of B, B′ has at least three attachments. As e /∈ B′ and the
only crossing of D is in B, B′ is drawn planarly in D. Then D implies the attachments of
B′ are either b, y, z or c, y, z, both contradicting Lemma 5.2.

Let {u, v} ∈ {{c, z}, {b, z}, {b, y}, {c, y}}. Now consider the branch of H connecting
u to v. If such branch is not an edge, then it has one internal vertex, say w. Using the
3-connectivity, the drawing D, and the fact that B is the only bridge in H4, we know that
there is a path, that is internally disjoint from H , connecting w to a vertex in (Da)∪ (Dx).
However, no such path exists by Lemma 6.3.

For a graph G ∈ E3, we will denote the only bridge of its graph H4 by B4.

Lemma 6.5. Let K ′′ ∼= H ⊆ G and let P be a path from u ∈ (Ka) to v ∈ [Kx] with
{u, v} 6= {a, x}, and internally disjoint fromH . Then every edge ofH+P is a Kuratowski
edge. The claim also holds with the role of a and x exchanged.

Proof. By Lemma 2.3, we may assume that H has no vertices of degree 2. It is enough to
show that in each case H has a subdivision of K3,3 or K5 containing either bc or yz. By
the symmetry of H , we need only analyze the following cases; the same arguments also
show the claim with the role of a and x interchanged:

If u = vaz and v = vcx, (H ∪ P ) \ {by, cz, xHv} is a subdivision of K3,3.
If u = vaz and v = c, (H ∪ P ) \ {xc, cz, by} is a subdivision of K3,3.
If u = a and v = vcx, (H ∪ P ) \ {xv} is a subdivision of K5.
If u = a and v = c, (H ∪ P )− xc is a subdivision of K5.
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Lemma 6.6. Let (G,H, e,D) be a standard quadruple of a graph G ∈ E3. If P is a
b, y-path of length at least 2 contained in B4, then P intersects [aHx].

Proof. Seeking a contradiction suppose that P ∩ [aHx] = ∅.
By Lemma 6.5 and our hypothesis, at least one of P ∩ (Ka) or P ∩ (Kx) is empty. By

symmetry, we may assume that P ∩ (Ka) = ∅.
If P ∩(Kx) is also empty, then P is internally disjoint fromH . Then, (H−(by))∪P is

a different choice of H for G whose structure contradicts Lemma 6.4, as the H4 produced
by this H has a subdivided edge by. Hence, P ∩ (Kx) is nonempty.

Lemma 6.1 and disjointness of P from (Da) + x imply that there is a H-bridge B
with attachments in y and (xHb]. By the previous paragraph, at least one attachment is in
(xHb). However, any path in B from y to (xHb) contradicts Lemma 6.5, concluding the
proof.

Lemma 6.7. Let (G,H, e,D) be a standard quadruple of a graph G ∈ E3. Then, there
exist vertices vc and vz in B4, such that vcc and vzz are the only attaching edges of B4 at
c and z. Moreover, these edges are crossed in D.

Proof. We show the claim for vcc, the claim for vzz is analogous. Let × be the crossing
of D. By Lemma 6.5, there is no H-avoiding path in B4 from (×Hc) to [Da] avoiding ×.
Let F be any face of D incident with the segment (×Hc).

As V (∂F ) ⊂ V ([Da]) ∪ V ((×Hc)), existence of a vertex in (×Hc) would contradict
3-connectivity of G. Hence, (×Hc) lies on some edge cvc of B4, and cvc is crossed in D.
Analogously, we can conclude that (×Hz) lies on some edge vzz ofB4, and hence cvc and
vzz are the only two crossing edges of D.

By Lemma 6.5 we know that G does not have a path internally disjoint from H , with
an end in c and the other end belonging to (Ka). Thus, the existence of any other edge of
B4 attaching at c, together with the location of c in D imply that at least one of vzz or zy
is crossed by some edge in B4 − cvc, contradicting that cr(D) = 1.

Lemma 6.8. Let (G,H, e,D) be a standard quadruple of a graph G ∈ E3. There exists
K ′′ ∼= H ′ ⊆ G and an optimal drawing D′ of G − e, such that a′z and cx′ are edges of
H ′, and any face incident with the crossing of D′ has no bridges of H ′ drawn in it.

Proof. By Lemma 6.7, there exist vertices vc and vz , such that cvc and zvz are edges of G.
Moreover, cvc crosses zvz in D and such a crossing × is the only crossing of D.

Let D′′ be the subdrawing of D, induced by G − c − z. Since × is the only crossing
of D, then b, vc, vz and y lie in the same face F of D′′. Note that F contains (in the
interior) vertices c and z. By Lemma 6.1, the boundary walk ∂F can be decomposed into
bP1vcP2vzP3yb.

Note that if some P ∈ {P1, P2, P3} is not a path, then P must have a cut vertex, say w.
By Lemma 6.7 we know that vc, y and vz, b are the only vertices of B4 adjacent to c and z,
respectively. From this and the supposition that w is a cut vertex of P it follows that w is a
cut vertex of G− e, which contradicts the connectivity of G− e. Thus we can assume that
P1, P2 and P3 are paths. Define H ′ = H − (Da)− (Dx) ∪ [bP1vcP2vzP3y] ∪ cvc ∪ zvz .
We relabel a′ := vz and x′ := vc. Observing how H ′ is drawn in D, the claim follows
with D = D′.

A standard quadruple (G,H ′, e,D′) from Lemma 6.8 is called a tidy standard quadru-
ple, abbreviated tsq.
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Lemma 6.9. Let (G,H, e,D) be a tsq of a graph G ∈ E3. Then, B = B4 − c− z has two
cut vertices u, v in [aHx], and uHv is an edge of G, and any u, v-path in G avoiding H is
an edge.

Proof. Let F be the face of the subdrawing of D of the cycle C = bHxHaHyb not
containing the crossing of D. As C is clean in D, ∂F = C. Tidiness implies that D[B]
is contained in F and that D[B + by] is planar. Now, let F ′ be the face of the subdrawing
D[B] containing the edge by. Note thatD[B] is a drawing ofB4−c−z and hence contains
no edges of H4. We decompose the boundary of F ′ into two paths, bHxHaHy and P as
follows:

As H is tidy, bHxHaHy is on the boundary of F ′, and let P be the remaining part of
the boundary, i.e. ∂F ′ = yPbHxHaHy. As P is a b, y-path in B, P intersects [aHx] in a
vertex v by Lemma 6.6. As v appears twice in the boundary of F ′, it is a cut-vertex of B.

Let P = yP1vP2b and assume that P1 − v, P2 − v do not intersect [aHx]. Then,
H4 +P1 +P2 +vHxc+vHaz is a subdivision ofK5, a contradiction to Lemma 2.4. Thus
there is a vertex u ∈ P ∩ [aHx], u 6= v, and u is another cut-vertex of B.

Now consider any {u, v}-bridge B′ in B with attachments in both u and v that has a
vertex w distinct from u, v. As G is 3-connected, either B′ contains (i) b or (ii) y, or (iii)
an attachment of B on H + cx + az. The latter option (iii) is dismissed by tidiness: az,
cx are the only edges from c, z to B in a tsq, and the vertices b, y can be interpreted as (i)
or (ii). The former two options (i) and (ii) both contradict the claim that both u, v are cut
vertices of B.

As any H-avoiding u, v-path is either an edge uv or contained in a B-bridge with
attachments u, v, the lemma follows.

Lemma 6.10. Let (G,H, e,D) be a tsq. If there are no two internally disjoint b, x- (re-
spectively a, y-) paths in B4, then there is a cut vertex v ∈ bHx (respectively, v′ ∈ aHy),
such that bv (yv′) is an edge and any H-bridge B′ ⊆ B4 attaching at b (y) is an edge bv
(yv′).

Proof. We prove the claim for bHx, the proof for aHy is analogous.
Suppose there are no two disjoint b, x-paths, implying there is a cut-vertex v ∈ bHx.

Let u be any vertex of bHv. As G is 3-connected, there is a path from u to G − (bHv) in
G − b − v. This path is in B, and by Lemma 5.1, it does not attach to H4. Therefore it
attaches in (Da)∪ (Dx)− bHv, a contradiction to v being a cut. Therefore if there is a cut
vertex v, then bv is an edge.

The same argument implies that any H-bridge B′ ⊆ B attaching at b has attachments
only at b and v, and is therefore a trivial bridge.

Lemma 6.11. Let (G,H, e,D) be a tsq. The edges by, bz, cy have multiplicity at least two.

Proof. Suppose on the contrary that at least one of the mentioned edges has multiplicity
one. First we handle bz and cy with a slightly modified drawing with the existing crossing
of xc, az replaced by a crossing of an edge with assumed multiplicity one, and for by we
also twist the modified drawing:

Augment the sub-drawing D[B4] by contracting the edges xc, az slightly with c, z
following their edge’s drawings past the crossing, so that xc, az no longer cross, and call
this new drawing D′ (cf. Figure 8 left). As B4 contains all the vertices of G and all edges
not in B4 are connecting nodes of H4, it is a routine exercise to extend the drawing D′ to a
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drawing of G with just one crossing, in which either bz is crossing cx or cy is crossing az,
contradicting criticality of bc whenever either bz or cy have multiplicity one.

b

y

b

a a

P2

P1
P1

P2

u

z

c c

u

z

x x

y

Figure 8: A twist in a drawing demonstrating multiplicity of certain edges.

For by, we need to twist D′: As u is a cut-vertex of the bridge B by Lemma 6.9,
the outer face of D′ has the following boundary: bHxcxHuvHazaHyP1vuP2b. Let
D′′ be obtained by twisting D′ at u, so that D′′ is a drawing of B with the outer face
bHxcxHuP1yHazaHuP2b (cf. Figure 8, right). Then D′′ can be augmented to a drawing
of G in which the only crossing is between by and az, a contradiction.

Lemma 6.12. Let (G,H, e,D) be a tsq. If there do not exist two edge disjoint p, q-paths
in B4 for any of {p, q} ∈ {{a, x}, {a, y}, {b, x}}, then cz has multiplicity at least two.

Proof. In the proof, we use the drawings D′ and D′′ defined in the proof of Lemma 6.11.
For {p, q} = {b, x}, suppose there are no two edge disjoint b, x-paths. Therefore, there

are no internally disjoint b, x-paths. By Lemma 6.10, there is a cut-vertex v in bHx and
bv is an edge, and any other H-bridge attaching at b is a trivial edge bv. If the edge bv
has multiplicity two, then there are two edge-disjoint b, x paths in B4: vP2uHx and vHx
(they are edge disjoint, as them sharing an edge would imply G is not 3-connected). Hence
the edge b, v has multiplicity one.

If cz is a single edge, then the drawing D′′ can be modified to a drawing of G in
which the only crossing is of cz with bv, a contradiction establishing cz is a double edge.
Symmetric arguments apply to the case {p, q} = {y, a}.

In the final case of {p, q} = {a, x}, Lemma 6.9 implies there is an edge uv in G, such
that u, v are cut-vertices, uv is a single edge and D′′ is obtained from D[B] by twisting at
the vertex u. If cz is a single edge, D′′ can be augmented to a drawing of G by cz crossing
uv as its only crossing, the final contradiction establishing the claim.

Now we have all the ingredients to establish necessity in Theorem 4.2.

Proof of necessity in Theorem 4.2, (i). Let G ∈ E3, and let (G,H, e,D) be its tidy stan-
dard quadruple, whose existence is guaranteed by Lemma 6.8. By Lemma 6.9, there exist
two vertices p, q in [aHx], such that G contains an edge h with endvertices p and q and
any H-avoiding p, q-path is an edge. Let O be the union of all these edges; then T1 :=
(O, (p), (q)) ∈ O. Without loss of generality, we may assume that aHx = aHqhpHx.

By definition of the tidy standard quadruple, az and cx are edges of G. Furthermore,
Lemma 6.10 asserts that either there is an edge g with endvertices b and v such that any
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H-bridge B′ ⊆ B4 attaching at b is an edge parallel to g, or there are two internally
disjoint b, x-paths (in this case, we let b = v) in the bridge B4. Symmetrically by the same
lemma, there is an edge g′ with endvertices u, y with H-bridges within B4 restricted to
edges parallel to g′, or there are two internally-disjoint a, y-paths in B4 (in this case, we let
y = u).

Let H4 be the subgraph of G, induced by the vertices {b, c, y, z}. We let R to be
obtained fromH4 by adding the two edges az and cx, and, if b 6= v, all the edges which are
parallel to g, and, if y 6= u, all the parallel edges to g′. Note that when T2 (respectively, T4)
is a Q-tile, we have v = x (respectively u = a) in G due to suppression of vertices with
two neighbors when joining tiles, but in R, we always have u 6= a and v 6= x. Lemma 6.11
implies that the edges by, bz, and cy have multiplicity at least 2. As bc is a single edge, we
have that T3 = (R, (a, u), (x, v)) is a tile inR.

Now consider the vertices p, v, and x. As cx is an edge, v is a vertex-cut in B4, which
disconnects b from x, and x, v are two attachments of an R-bridge B′. As p is a vertex-cut
in B4 disconnecting a from x, then {p, x, v} form a cut in G, or they are all equal. If they
are a cut, then they are all three distinct as G is 3-connected.

We first analyze the case when they are all distinct. Let P be a bridge of {p, x, v}
disjoint from R, and let P ′ be the graph obtained from P by adding a vertex t adjacent
to precisely its three attachments. As G is 3-connected, Lemma 4.1 implies that P ′ is
3-connected, so the tile T2 = (P, (p), (x, v)) is a tile in P .

Suppose now that p = x = v. Then v 6= b. Let i be the multiplicity of the edge pq, and
let j be the multiplicity of the edge vb. We set T2 = (iQj , (q), (p, b)), which is a tile in P .

Symmetric arguments applied to y, a, q, and u imply that there is a tile T4, such that
T↔4 ∈ P . As vertices with just two neighbors are suppressed when joining tiles, we have
that G is a join ◦T of a pre-exceptional sequence T = (T1, T2, T3, T4).

To see that T is exceptional, assume that min ρ(T ) = 1. Thus, after joining the tiles,
one of the edges pq, bv, or yu is a single edge. This implies that in G, there are no two
internally disjoint w, s-paths for one of {w, s} ∈ {{a, x}, {a, y}, {b, x}}, and Lemma 6.12
implies cz has multiplicity at least two. In terms of σ(T ), l3 ≥ 2 as desired.

7 Conclusions
We conclude with some comments regarding the existence of k-exceptional edges. Theo-
rem 4.2 immediately gives the following corollary, claimed by Širáň [12] and Kochol [8]:

Corollary 7.1. Let G be a simple graph and e its crossing-critical edge with cr(G− e) ≤
1. Then, e is a Kuratowski edge of G.

It is also easy to obtain the following:

Corollary 7.2. For any integer k ≥ 2, there exist infinitely many 3-connected graphs with
k-exceptional edges.

Proof. For k = 2, the claim follows from Theorem 4.2. For higher k, we only sketch the
proof by induction; an attentative reader will be able to provide the technical details. Let
Fk be the family of 3-connected graphs with k-exceptional edges containing a tidy skeleton
subdivision H , such that G − az − bc − cz is planar. By induction and Theorem 4.2, we
assume that Fk−1 is infinite for k ≥ 3. Let G ∈ Fk−1 be arbitrary. Assuming the standard
labelling of H , we produce a graph G′ ∈ Fk as follows:
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i) For G1, we make any edge of G − az − bc − cx have multiplicity at least k. Note
that G1 is still planar.

ii) For G2, we add to G1 single edges az, cx; this graph has crossing number 1 and any
optimal drawing of G2 has az crossing cx.

iii) For G3, we add the edge bc with multiplicity k − 1. In any optimal drawing, bc
edges cross the edge az, implying the crossing number of the graph G to be at most
k. Should any other edge be crossed, that would add at least k crossings, imply-
ing crossing number ≥ k. As the edges of G need to cross at least twice (this is
the technical detail we omit, but it is true due to the construction of graphs in F2),
cr(G3) = k and cr(G3 − e) < k for any edge parallel to bc, hence G′ = G3 has
k-exceptional edges and the claim follows.

Note that the graphs of Corollary 7.2 cannot be made simple by subdividing edges and
connecting the new vertices in a cycle (the operation is called π-subdivision in [1]), as was
done in [8]: then the new vertices introduced in π-paths would violate Lemma 2.5 and a
K5 would be introduced in the new graph. Hence, the following remain open:

Problem 7.3 ([8]). What is the smallest k, for which simple 3-connected graphs with k-
exceptional edges exist? Clearly, 3 ≤ k ≤ 4.

Hence, the simple graphs obtained by Kochol do not follow our tile structure, but as all
the K3,3’s of G need to share the endvertices of the exceptional edges, there may still exist
an explicit description of graphs with k-exceptional edges. We therefore conclude with the
following:

Problem 7.4. Is there a descriptive characterization (i.e. a tile description) of 3-connected
graphs with k-exceptional edges?
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(i) α2 = 1;

(ii) if g ∈ G, then α(g−1)g /∈ S;

(iii) if g, h ∈ G and α(g−1)h ∈ S, then α(h−1)g ∈ S,

then the structure Γ = GC(G,S, α) is called a generalized Cayley graph with V (Γ) = G,
E(Γ) = {{g, h} | α(g−1)h ∈ S}. The neighborhood of a vertex g ∈ G is the set of
vertices adjacent to g, denoted by N(g). Then N(g) = {α(g)s | s ∈ S}.

According to condition (i), α is either the identity of Aut(G) or an involution. When
α is the identity, then the definition of GC(G,S, α) is just the same as that of Cayley
graphs, and thus GC(G,S, α) = Cay(G,S). In this case, S is symmetrical, i.e., S =
S−1 = {s−1 | s ∈ S} and for σ ∈ Aut(G), we have that σ acts on V (Γ) naturally
as V (Γ) = G. Also, if T = Sσ , then there is a bijection from Γ to Γσ = Cay(G,T )
induced by σ, defined as σ : V (Γ) → V (Γσ), g 7→ gσ . It follows Γ ∼= Γσ . This kind
of isomorphism between Cayley graphs induced by the automorphisms of G is called the
Cayley isomorphism. It should be mentioned that not all isomorphisms between Cayley
graphs are Cayley isomorphisms. In fact, there are pairs of isomorphic Cayley graphs with
no Cayley isomorphism between them. This encourages us to investigate the so-called
CI-graphs and CI-groups defined below.

Definition 1.1. A Cayley graph Cay(G,S) is called a CI-graph of G, if for any Cayley
graph Cay(G,T ), Cay(G,S) ∼= Cay(G,T ) implies Sσ = T for some σ ∈ Aut(G). In
this case, S is called a CI-subset. Furthermore, G is called a CI-group if any symmetrical
subset not containing the identity is a CI-subset.

For those graphs having particular transitive properties, such as Cayley graphs and bi-
Cayley graphs, their isomorphism problems are well studied in the literature (recall that a
bi-Cayley graph is a graph which admits a semiregular group of automorphisms with two
orbits on the vertices). The isomorphism problem for Cayley graphs was proposed decades
ago and has been investigated deeply up to now. It was initiated by Ádám in 1967 who
conjectured that any cyclic group is a DCI-group, where a DCI-group satisfies that any
subset not containing the identity and not necessarily symmetrical is a CI-subset. Although
this conjecture was soon denied by Elspas and Turner [4], it stimulated the study of CI- and
DCI-groups. Alspach, Parsons [1] and Babai [3] presented a criteria for CI-graphs. Muzy-
chuk [18, 19] obtained a complete classification of the CI-groups in finite cyclic groups.
Li [14] showed that all finite CI-groups are solvable. The isomorphism problem and the
automorphism groups for bi-Cayley graphs have also been studied flourishingly; one may
refer to [10, 11, 28]. Other related results could be found in [15, 16, 23, 24, 26, 27].

The concept of generalized Cayley graphs was introduced by Marušič et al. [17] when
they dealt with the double covering of graphs. Answering a question in [17], the authors in
[8] found some vertex-transitive generalized Cayley graphs which are not Cayley graphs.
Further, the authors in [25] studied the isomorphism problems of generalized Cayley graphs
and found that the alternating group An is a restricted GCI-group if and only if n = 4.

The present paper can be regarded as the continuance of the above work, and also pro-
vides support to the question at the end of [8], where the authors asked for the classification
of all generalized Cayley graphs arising from cyclic groups. The structure of this paper is
as follows. In Section 2, we give several properties of the generalized Cayely graphs and
some lemmas which will be used later. In Section 3, we introduce two types of natural
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isomorphisms for any generalized Cayley graph. In Section 5, we study the GCI-groups in
cyclic groups. We show that when G is a dihedral group of order 2n with n an odd prime
power, if G is a CI-group, then Z2n is a restricted GCI-group. In Section 6, we study the
GCI-groups in dihedral groups. We show that when G is a cyclic group of order 2n with n
an odd prime power, if G is a CI-group, then D2n is a restricted GCI-group. In Section 7,
we study the Cayley regressions, a concept relating to both Cayley graphs and generalized
Cayley graphs. We show that the cyclic group Z2n is a 4-quasi-Cayley regression if and
only if n = 3. Finally, we propose some questions for future research.

2 Preliminaries
All graphs considered in the paper are simple, finite and undirected. All the automorphisms
in the paper that induce generalized Cayley graphs are assumed to be some involutions.

Let G be a finite group that admits an automorphism α of order two. For g = 1,
we have α(h−1) ∈ S whenever h ∈ S, by condition (iii), implying α(S) = S−1. Let
ωα : G→ G be the mapping defined by ωα(g) = α(g−1)g for any g ∈ G. Note that ωα is
not necessarily a bijection. Let ωα(G) = {ωα(g) | g ∈ G}. We use the same notation and
terminology as in [8]. Suppose s ∈ S, then α(s) ∈ α(S), and thus α(s) ∈ S−1. Therefore
s ∈ S if and only if α(s−1) ∈ S. Let Ωα be the set containing all elements satisfying
α(g) = g−1 in G \ ωα(G), and fα be the set containing all elements in G satisfying
α(g) 6= g−1. Let Kα = {g ∈ G | α(g)g = 1}. Then we have

Proposition 2.1 ([25]). Let GC(G,S, α) be a generalized Cayley graph of G. Then

(1) S ∩ ωα(G) = ∅. Conversely, if S ∩ ωα(G) = ∅, α is an involution in Aut(G) and
α(S) = S−1, then G,S, α can induce a generalized Cayley graph.

(2) G = Kα ∪fα and Kα = ωα(G)∪Ωα. Furthermore, ωα(G),Ωα,fα are all symmet-
rical.

(3) S = S1 ∪ S2, where S1 ⊆ Ωα and S2 ⊆ fα.

Proposition 2.2. Let G be a finite group admitting two automorphisms α, β of order two.
If α, β are conjugate in Aut(G), then Cay(G,ωα(G) \ {1}) ∼= Cay(G,ωβ(G) \ {1}).

Proof. By Proposition 2.1, we have ωα(G) = ωα(G)−1 and ωβ(G) = ωβ(G)−1. Since
α, β are conjugate, there exists some γ ∈ Aut(G) such that β = γαγ−1 = αγ . Therefore

γ(ωα(G)) = {γ(α(g−1)g) | g ∈ G}
= {γαγ−1γ(g−1)γ(g) | g ∈ G}
= {β(γ(g)−1)γ(g) | γ(g) ∈ G}
= ωβ(G).

It follows that γ(ωα(G) \ {1}) = ωβ(G) \ {1}. Hence the result follows.

Theorem 2.3. Let G be a finite group admitting an automorphism α of order two, S ⊆ G
such that S ∩ ωα(G) = ∅. Let Φ(g) = α(g)Sg−1. If S is symmetrical and Φ(g) = S for
any g ∈ G, then GC(G,S, α) ∼= Cay(G,S).
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Proof. Let Γ1 = GC(G,S, α) and Γ2 = Cay(G,S). Let φ : V (Γ1) → V (Γ2), x 7→ x−1

be a bijection between these two graphs. For any {g, h} ∈ E(Γ1), there exists some
s ∈ S such that h = α(g)s. {g, h}φ = {g−1, h−1}. Note that gh−1 = gs−1α(g)−1 =
α(α(g))s−1α(g)−1. Since S is symmetrical and Φ(g) = S for any g ∈ G, we have
α(α(g))s−1α(g)−1 ∈ S. This implies {g, h}φ ∈ E(Γ2), and thus GC(G,S, α) ∼=
Cay(G,S).

Theorem 2.3 can be regarded as a criteria to judge whether some generalized Cayley
graphs are Cayley graphs or not.

Theorem 2.4. Let G be any finite group admitting an automorphism α of order 2. Then
we have GC(G,S, α) ∼= Cay(G,S), where S = fα,Ωα or G \ ωα(G).

Proof. By proposition 2.1, G = ωα(G) ∪ Ωα ∪ fα. For any g ∈ G, G = α(g)Gg−1.
For any x ∈ ωα(G), there exists some h ∈ G such that x = α(h−1)h. So α(g)xg−1 =
α(g)α(h−1)hg−1 = α((hg−1)−1)hg−1, and hence ωα(G) = α(g)ωα(G)g−1. As a result,
Ωα ∪ fα = α(g)Ωαg

−1 ∪ α(g)fαg−1.
For any s ∈ Ωα, assume that α(g)sg−1 ∈ fα, then α(α(g)sg−1)−1 ∈ fα and

α(g)sg−1 6= α(α(g)sg−1)−1. Since α(α(g)sg−1)−1 = α(g)α(s−1)g−1, we have that
s 6= α(s−1), which is a contradiction as s ∈ Ωα. This means α(g)sg−1 ∈ Ωα. Thus,
Ωα = α(g)Ωαg

−1 and fα = α(g)fαg−1. By Theorem 2.3, we get the result.

Let Fix(α) = {g ∈ G | α(g) = g}. So Fix(α) ≤ G and we have the following lemma.

Lemma 2.5 ([8]). |ωα(G)| = |G|
|Fix(α)| .

Note that some references also use CG(α) to denote Fix(α). Those papers mainly
investigate the properties of the finite groups which admit involutory automorphisms; one
can refer to [2, 13, 21, 22]. Although those problems are not considered in this paper, we
borrow the following well-known result.

Lemma 2.6 ([7]). Let G be a finite group of odd order admitting an automorphism φ of
order two. Then the following statements hold.

(1) G = FK = KF , F ∩K = 1, and |K| = |G : F |, where F = CG(φ) and K = Kφ;

(2) Two elements of K conjugate in G are conjugate by an element of F ;

(3) If H is a subgroup of F , then NG(H) = CG(H)NF (K).

By Lemmas 2.5 and 2.6, we get

Proposition 2.7. Let G be a group of odd order admitting an automorphism α of order
two. Then Ωα = ∅.

Proof. By Lemmas 2.5 and 2.6, |Kα| = |ωα(G)| = |G|
|Fix(α)| . As Kα = ωα(G) ∪ Ωα, we

obtain Ωα = ∅.

Remark 2.8. By Proposition 2.7, for any generalized Cayley graph GC(G,S, α), if |G|
is odd, S ⊆ fα. We present an alternative proof avoiding Lemmas 2.5 and 2.6. If Ωα 6=
∅, assume that fα = ∅. Then G is an abelian group of odd order by Proposition 2.1.
Thus α is a fixed-point-free automorphism of G. Then Kα = ωα(G) = G according
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to [7, Lemma 10.1.1], which is a contradiction. This implies that fα 6= ∅. Since the
S in GC(G,S, α) are choosen from Ωα and fα. Therefore |S| must be odd, which is a
contradiction as, there are no regular graphs of odd order with odd valency. This implies
Ωα = ∅.

It is well known that a finite group G of odd order is solvable by Feit-Thompson Theo-
rem [5]. From above, we can see that the classification of GC(G,S, α) of finite group G of
odd order seems to be more clear as the elements of S can only be chosen from fα since
Ωα = ∅.

In [8], Hujdurović et al. defined the following set

Aut(G,S, α) = {ϕ ∈ Aut(G) | ϕ(S) = S, αϕ = ϕα}.

Moreover, one sees that Aut(G,S, α) = Aut(G,S) ∩ CAut(G)(α), where Aut(G,S) =
Aut(G,S, 1).

Proposition 2.9. Let S be the set as in (3) of Proposition 2.1. Then Aut(G,S, α) =
Aut(G,S1, α)∩Aut(G,S2, α) = Aut(G,S1)∩Aut(G,S2)∩CAut(G)(α). Furthermore,
the couples of the form like {s, α(s−1)} are imprimitive blocks of Aut(G,S, α).

Proof. For any s ∈ S1 and s′ ∈ S2, if there exists some ϕ ∈ Aut(G,S, α) such that
s = ϕ(s′), then αϕ(s′) = α(s). Since αϕ = ϕα and s = α(s−1), ϕα(s′−1) = s.
This implies α(s′) = s′−1, which is a contradiction as s′ ∈ S2. Hence ϕ(S1) = S1 and
ϕ(S2) = S2 for any ϕ ∈ Aut(G,S, α).

Let ∆ = {s, α(s−1)} be a couple in S2. For any ϕ ∈ Aut(G,S, α), ∆ϕ ⊆ S2. If
∆ ∩∆ϕ 6= ∅, then s = ϕ(s) or s = ϕα(s−1). If s = ϕ(s), then α(s−1) = ϕα(s−1). If
s = ϕα(s−1), then α(s−1) = ϕ(s). This implies that ∆ = ∆ϕ. Thus ∆ is an imprimitive
block.

Let GC(G,S, α) be a generalized Cayley graph of G. Under the condition of Propo-
sition 2.9, S ∩ S−1 = (S1 ∪ S2) ∩ (S1 ∪ S2)−1 = (S1 ∩ S−11 ) ∪ (S1 ∩ S−12 ) ∪ (S2 ∩
S−11 ) ∪ (S2 ∩ S−12 ). Note that S1 ∩ S−12 = S2 ∩ S−11 = ∅, it follows that S ∩ S−1 =
(S1 ∩ S−11 ) ∪ (S2 ∩ S−12 ). Since S1 ⊆ Ωα, and Ωα is symmetrical, so S1 ∩ S−11 ⊆ Ωα.
Similarly, S2 ∩ S−12 ⊆ fα. Let T = S ∩ S−1. It follows that GC(G,T, α) is still
a generalized Cayley graph of G. We call GC(G,T, α) the induced generalized Cayley
graph of GC(G,S, α). Note that T−1 = T , this encourages us to consider the Cayley
graph Cay(G,T ), called the induced Cayley graph of GC(G,S, α). Next we consider
Aut(G,S, α), Aut(G,T, α) and Aut(G,T ).

Proposition 2.10. Aut(G,S, α) ≤ Aut(G,T, α) ≤ Aut(G,T ). Furthermore,
Aut(G,S, α) < Aut(G,T, α) if S is not symmetrical; Aut(G,T, α) = Aut(G,T ) if
α ∈ Z(Aut(G)).

Proof. For any ϕ ∈ Aut(G,S, α), we have ϕ(S) = S and ϕ(S−1) = S−1, thus
ϕ(T ) = T , ϕ ∈ Aut(G,T, α). If S is not symmetrical, we have α /∈ Aut(G,S, α) as
α(S) = S−1 6= S, but α ∈ Aut(G,T, α) as α(T ) = T . Aut(G,T, α) ≤ Aut(G,T )
is obvious by the definition. Since Aut(G,T, α) = Aut(G,T ) ∩ CAut(G)(α), we get the
result.

Finally, we introduce a lemma about the connectivity of the generalized Cayley graph.
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Lemma 2.11. Let G be a group, A ⊆ G and α ∈ Aut(G) of order 2. The generalized
Cayley graph X = GC(G,A, α) is connected if and only if A is a left generating set for
(G, ∗), where f ∗ g = α(f)g for all f, g ∈ G.

3 Two basic types of isomorphisms
In this section, we will introduce two types of natural isomorphisms of generalized Cayley
graphs for any finite group. First, we introduce the first type of natural isomorphism found
by A. Hujdurović et al.

Theorem 3.1 ([9]). GC(G,S, α) ∼= GC(G,Sβ , αβ) for any β ∈ Aut(G), where
αβ = βαβ−1.

Remark 3.2. From Theorem 3.1, one can see that if α, γ are conjugate, then there is a
generalized Cayley graph GC(G,S, α) if and only if there is a generalized Cayley graph
GC(G,Sβ , γ) with γ = αβ such that these two graphs are isomorphic. Hence, if we
intend to study all the generalized Cayley graphs of some group G, we only need to study
the generalized Cayley graphs related to the representatives of the conjugacy classes of
elements in Aut(G).

Corollary 3.3. GC(G,S, α) ∼= GC(G,S−1, α).

Proof. Let β = α. Then GC(G,S, α) ∼= GC(G,α(S), αα) by Theorem 3.1. Note that
α(S) = S−1, this completes the proof.

Next, we introduce the second type of natural isomorphism.

Theorem 3.4. Let GC(G,S, α) be a generalized Cayley graph. Then GC(G,α(g)Sg−1, α)
is also a generalized Cayley graph of G for any g ∈ G. Furthermore, GC(G,S, α) ∼=
GC(G,α(g)Sg−1, α).

Proof. For any x ∈ G, if α(x−1)x ∈ α(g)Sg−1, α(g−1)α(x−1)xg ∈ S, that is,
α((xg)−1)xg ∈ S, which conflicts with condition (ii). If α(x−1)y ∈ α(g)Sg−1, then
we have α((xg)−1)yg ∈ S. Thus α((yg)−1)xg ∈ S by condition (iii). It follows that
α(y−1)x ∈ α(g)Sg−1. Therefore, GC(G,α(g)Sg−1, α) is also a generalized Cayley
graph of G for any g ∈ G.

Let Γ = GC(G,S, α) and Γg = GC(G,α(g)Sg−1, α). Let θ : V (Γ) → V (Γg),
a 7→ ag−1. So θ is a bijection. For any {a, b} ∈ E(Γ), α(a−1)b ∈ S. Since

α((ag−1)−1)(bg−1) = α(g)(α(a−1)b)g−1 ∈ α(g)Sg−1,

we have {ag−1, bg−1} ∈ E(Γg). Therefore {a, b} ∈ E(Γ) if and only if {a, b}θ ∈ E(Γα).
Thus they are isomorphic.

According to Theorem 3.1, Γ ∼= Γβ for any β ∈ Aut(G), we call the mapping x 7→ xβ

the the first basic type of isomorphism of Γ. By Theorem 3.4, Γ ∼= Γg for any g ∈ G, we
call the mapping x 7→ xg−1 the second basic type of isomorphism of Γ.

For any g ∈ G, R(g) : x 7→ xg is a permutation of G. Set R(H) = {R(h) | S =
α(h)Sh−1}.

Theorem 3.5. Let Γ = GC(G,S, α) be a generalized Cayley graph. Then R(H) ≤
Aut(Γ).
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Proof. For any {a, b} ∈ E(Γ), it suffices to show that {a, b}R(h) ∈ E(Γ) for any R(h) ∈
R(H). Since {a, b} ∈ E(Γ), α(a−1)b ∈ S = α(h)Sh−1. It follows that α((ah)−1)bh ∈
S, which implies that {ah, bh} ∈ E(Γ). Thus R(h) ∈ Aut(Γ). For any R(h), R(h′) ∈
R(H), S = α(h)Sh−1 and S = α(h′)Sh′−1. Therefore S = α(h′−1h)S(h′−1h)−1, thus
R(h′−1h) ∈ R(H). This implies that R(H) ≤ Aut(Γ).

4 GCI, restricted GCI and strongly GCI groups
Similarly to the CI-groups in Cayley graphs and BCI-groups in bi-Cayley graphs, we pro-
pose the following definitions relating to generalized Cayley graphs.

Definition 4.1. Let G be a finite group. Let M be the set of all Cayley graphs and N be
the set of all generalized Cayley graphs constructed by automorphisms of order two. Then

1. G is called a GCI-group if both of the following are satisfied:

(i) for any two nontrivial generalized Cayley graphs GC(G,S, 1) and GC(G,T, 1)
in M , whenever GC(G,S, 1) ∼= GC(G,T, 1), there exists δ ∈ Aut(G) such
that Sδ = T .

(ii) for any two nontrivial generalized Cayley graphs GC(G,S, α) and GC(G,T, β)
in N , whenever GC(G,S, α) ∼= GC(G,T, β), there exists δ ∈ Aut(G) such
that β = αδ = δαδ−1 and T = αδ(g)Sδg−1.

2. G is called a restricted GCI-group if (ii) is satisfied.

3. G is called a strongly GCI-group if for any nontrivial GC(G,S, α), whenever
GC(G,S, α) ∼= GC(G,T, β), there exists δ ∈ Aut(G) such that β = αδ = δαδ−1

and T = αδ(g)Sδg−1.

Remark 4.2.

1. The definition is based on Theorems 3.1 and 3.4 and Definition 1.1. The two basic
types of isomorphisms and their compositions are called the natural isomorphisms
of generalized Cayley graphs. For instance, GC(G,S, α) ∼= GC(G,Sγ , αγ) by
Theorem 3.1, GC(G,Sγ , αγ) ∼= GC(G,αγ(g)Sγg−1, αγ) by Theorem 3.4, then we
have GC(G,S, α) ∼= GC(G,αγ(g)Sγg−1, αγ).

2. The word ‘nontrivial’ in the definition means that the null graph is not considered.
In fact, if it is included, for a finite group G which has an automorphism α of or-
der 2, GC(G, ∅, 1) and GC(G, ∅, α) are both isomorphic to the null graph. By the
definition, G cannot be a strongly GCI-group, otherwise it will make the definition
meaningless, thus the null graph is not considered in the definition.

3. If a finite group G has no automorphisms of order two, then we still consider that (ii)
is satisfied for G.

4. By definition, strongly GCI-group implies GCI-group, GCI-group implies CI-group
and restricted GCI-group. However, restricted GCI does not imply GCI and does not
imply CI either. If G is not a restricted GCI-group or a CI-group, then it is not a
GCI-group either.

Next we will give some examples of finite groups satisfying special conditions:
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Example 4.3. Let G = Z4. Then G is a GCI group by Theorem 5.2. However, let
α : x 7→ −x be an involution. Thus GC(G, {1}, α) is a generalized Cayley graph of G.
Also, GC(G, {2}, 1) is a generalized Cayley graph of G. Although GC(G, {1}, α) ∼=
GC(G, {2}, 1) but, α is not conjugate to 1, that means G is not a strongly GCI group.
Therefore Z4 is a GCI but not strongly GCI group.

Let G = Z8. Then G is a CI group [19]. However, Z2n is a GCI group if and only if it
is Z2 or Z4 by Theorem 5.2. It follows that G is not a GCI group. Thus Z8 is a CI but not
GCI group.

Though we find example of CI but not restricted GCI groups, like Z8, we have not
found out the example of restricted GCI but not CI groups up to now. Thus we propose the
following question:

Question 4.4. Is every restricted GCI group a CI group?

The next theorem is useful to determine whether a group is a restricted GCI-group or
not.

Theorem 4.5. Let G be a finite group admitting two automorphisms α, β of order two. If
α, β satisfy the following three conditions:

(1) α and β are not conjugate;

(2) |ωα(G)| 6= |Kα|;

(3) |ωβ(G)| 6= |Kβ |,

then G is not a restricted GCI-group.

Proof. Assume |G| = n. If these three conditions are satisfied, then n is even by Proposi-
tion 2.7. Furthermore, there must exist two generalized Cayley graphs, say GC(G, {s}, α)
and GC(G, {s′}, α), which are both isomorphic to n

2K2. But there is no natural automor-
phism as α and β are not conjugate. Hence G is not a restricted GCI-group.

To conclude, we give the characterization of strongly GCI-groups.

Theorem 4.6. A finite group G is a strongly GCI-groups if and only if G is a CI-group and
one of the following is true for G:

(1) G has no involutory automorphisms;

(2) all involutory automorphisms are fixed-point-free.

Proof. First we show the necessity. If G is a strongly GCI-groups, then G must be a CI-
group. If not all involutory automorphisms of G are fixed-point-free automorphisms or, as
we will show thatG has no automorphisms of order two. If there exists some involutory au-
tomorphism which is not fixed-point-free, say α, this means |Fix(α)| 6= 1. By Lemma 2.5,
we get ωα(G) 6= G. Since G = ωα(G) ∪ Ωα ∪ fα by Proposition 2.1, it follows that
Ωα ∪ fα 6= ∅. Thus at least one of Ωα and fα, say Ωα, is not an empty set. According to
Theorem 2.4, GC(G,Ωα, α) ∼= GC(G,Ωα, 1) which is not a null graph. This is a contra-
diction to the fact that G is a strongly GCI-group. Therefore G has no automorphisms of
order two since otherwise all automorphisms of order two of G are fixed-point-free auto-
morphisms. If G has no automorphisms of order two, then G must be a CI-group as G is a
strongly GCI-group.
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Next we show the sufficiency. Suppose that all automorphisms of order two of G are
fixed-point-free. Let α ∈ Aut(G) be such an involution. Then G = ωα(G) by Lemma 2.5,
so any generalized Cayley graph induced by involutory automorphism is a null graph.

5 The cyclic GCI groups
Theorem 5.1. The cyclic group of order pn with p an odd prime is a GCI-group if and only
if it is a CI-group.

Proof. LetG = Zpn . ThenG has only one automorphism of order two, that is α : x 7→ −x.
Note that ωα(G) = {α(g−1)g | g ∈ G} = {2g | g ∈ G}, it follows that S = ∅ as any
non-identity of G is a square since |G| is odd. Thus the only generalized Cayley graph of
G induced by automorphisms of order two is GC(G, ∅, α) ∼= pnK1.

Babai [3] classified the CI-groups of cyclic groups of order 2p with p a prime. God-
sil [6] classified the CI-groups of cyclic groups of order 4p. Next we will classify the
GCI-groups of cyclic groups of even order. We will deal with the problem step by step in
this section.

Theorem 5.2. Let G be a finite cyclic group of order 2n. Then G is a GCI-group if and
only if n = 1, 2.

Proof. Let G = Z2n = {0, 1, . . . , 2n − 1}. When n = 1, Aut(G) = 1, there are no
automorphisms of order two in Aut(G). Therefore G is a GCI-group by Definition 4.1.
When n = 2, then Aut(G) ∼= Z2, there is a unique element of order two in Aut(G) since
Aut(G) is cyclic, say α : x 7→ −x. If g ∈ G, then α(g−1)g = 2g /∈ S. Hence S ⊆ {1, 3}.
Therefore there are only three generalized Cayley graphs of G, with S being {1}, {3} and
{1, 3}, respectively. Let Γ1 = GC(G, {1}, α), Γ2 = GC(G, {3}, α). Note that −1 ≡ 3
(mod 4), and so Γ1

∼= Γ2 by Corollary 3.3.
When n ≥ 3, then Aut(G) ∼= Z2 × Z2n−2 , and there are only three automorphisms of

order two in Aut(G), say,

α : x 7→ −x, β : x 7→ (2n−1 − 1)x, γ : x 7→ (2n−1 + 1)x.

Let S = {1, 2n−1 + 1}. Since 1 6≡ 2n−1 + 1 (mod 2n) and they are both odd, we have
S ∩ωα(G) = ∅ as ωα(g) = α(g−1)g = 2g is even for any g ∈ G. Further, S ∩ωβ(G) = ∅
as ωβ(g) = β(g−1)g ≡ 2n−1g + 2g (mod 2n) is also even for any g ∈ G. Recall that
β(−1) = 2n−1 + 1, α(−1) = 1 and α(−(2n−1 + 1)) = 2n−1 + 1, hence α(S) = S−1

and β(S) = S−1. Therefore both GC(G,S, α) and GC(G,S, β) are generalized Cayley
graphs of G.

Let Γ1 = GC(G,S, α). Since |S| = 2, the valency of Γ1 is two. For any x ∈ V (Γ1),
N(x) = {α(x) + y | y ∈ S} = {−x+ 1,−x+ 2n−1 + 1}. Consider the vertex 2n−1 + x
(mod 2n), it follows that x 6≡ 2n−1+x (mod 2n). N(2n−1+x) = {α(2n−1+x)+y | y ∈
S} = {2n−1−x+1,−x+1}. Thus ‘x→ (−x+1)→ (2n−1+x)→ (2n−1−x+1)→ x’
is a 4-cycle in Γ1. Therefore Γ1

∼= 2n−2C4.
Let Γ2 = GC(G,S, β). Since |S| = 2, the valency of Γ2 is two. For any x ∈ V (Γ2),

N(x) = {β(x) + y | y ∈ S} = {(2n−1 − 1)x + 1, (2n−1 − 1)(x − 1)}. We consider
the vertex 2n−1 + x (mod 2n). Then N(2n−1 + x) = {β(2n−1 + x) + y | y ∈ S} =
{(2n−1−1)x−2n−1+1, (2n−1−1)x+1}. Thus ‘x→ (2n−1−1)x+1→ (2n−1+x)→
(2n−1 − 1)(x− 1)→ x’ is a 4-cycle in Γ1. Therefore Γ2

∼= 2n−2C4.
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From above, GC(G,S, α) ∼= GC(G,S, β) ∼= 2n−2C4, but α and β are not conjugate in
Aut(G) as Aut(G) is abelian, henceG is not a restricted GCI-group by Definition 4.1.

Theorem 5.3. LetG be a finite cyclic group of order 2apb with p an odd prime and a, b > 0.
If G is a restricted GCI-group, then a = 1.

Proof. Since G is a finite cyclic group of order 2apb, let G = G1 ×G2, where G1 = Z2a

and G2 = Zpb .
We claim that a ≤ 2. Now we suppose a ≥ 3. By Theorem 5.2, α : (g1, g2) 7→

(−g1, g2) and β : (g1, g2) 7→ ((2n−1 − 1)g1, g2) are two different automorphisms of G
with order two when a ≥ 3. Let S = {(1, 0), (2n−1, 0)}. Then GC(G,S, α) and
GC(G,S, β) are two generalized Cayley graphs of G. According to Theorem 5.2, we
have GC(G,S, α) ∼= GC(G,S, β) ∼= 2n−2pbC4. Note that α and β are not conjugate in
Aut(G), it follows that a ≤ 2.

Assume a = 2. Note that α : (g1, g2) 7→ (−g1, g2), β : (g1, g2) 7→ (g1,−g2) are two
automorphisms of G. Furthermore, ωα(G) = {(0, 0), (2, 0)}, Kα = {(g1, 0) | g1 ∈ G1}.
Therefore Ωα = {(1, 0), (3, 0)}. ωβ(G) = {(0, g2) | g2 ∈ G2}, Kβ = {(0, g2), (2, g2) |
g2 ∈ G2}. Thus Ωβ = {(2, g2) | g2 ∈ G2}. Let S1 = {(1, 0)} and S2 = {(2, 0)}. We can
see that GC(G,S1, α) ∼= GC(G,S2, β) ∼= 2pbK2. However α and β are not conjugate as
Aut(G) is abelian. It follows from above discussion that a = 1.

Theorem 5.4. Let G be a finite cyclic group of order n, where n is even with at least two
different odd prime divisors. Then G is not a restricted GCI-group.

Proof. Suppose that n = ps00 ·p
s1
1 · · · p

sk
k , where p0 = 2, pi, pj are different odd primes for

any i, j ∈ {1, . . . , k} and st ≥ 1 is an integer for any t ∈ {0, 1, . . . , k}, k ≥ 2. It follows
that G can be decomposed into the direct product of some cyclic groups, say

G = G0 × · · · ×Gk = Z2s0 × Zps11 × · · · × Zpskk , where Gi = Zpsii
, i = 0, 1, . . . , k.

Let
α : (x0, x1, . . . , xk) 7→ (x0,−x1, . . . , xk)

and
β : (x0, x1, x2, . . . , xk) 7→ (x0, x1,−x2, . . . , xk).

Since k ≥ 2, then suchα, β can not appear in Aut(G). Obviously ωα(G) = {(0, x1, 0, . . . ,
0) | x1 ∈ G1} and ωβ(G) = {(0, 0, x2, . . . , 0) | x2 ∈ G2}. Let gi ∈ Gi, i ∈ {0, 1, . . . , k}
and g0 the element of order two. Then (g0, g1, 0, . . . , 0) ∈ Ωα and (g0, 0, g2, 0, . . . , 0) ∈
Ωβ . Therefore GC(G, {(g0, g1, 0, . . . , 0)}, α) and GC(G, {(g0, 0, g2, 0, . . . , 0)}, β) are
both generalized Cayley graphs of G. In fact, they are both isomorphic to n

2K2, but α and
β are not conjugate in Aut(G). Thus G is not a restricted GCI-group by Theorem 4.5.

Theorem 5.5. Let G = Z2n, where n is an odd prime power. Then G is not a strongly
GCI-group.

Proof. Let G = 〈a, b | an = b2 = 1, ab = ba〉. It can be checked that the mapping
α : a 7→ a−1, b 7→ b is the only automorphism of G of order two. Also Ωα = {aib |
i ∈ {1, . . . , n}} and fα = ∅ by direct computation. Let GC(G,S, α) be any generalized
Cayley graph of G. Then S ⊆ Ωα. Let H = 〈a′, b′ | a′n = b′2 = 1, b′a′b′ = a′−1〉 and
ϕ : as 7→ a′s, atb 7→ a′−tb. It follows that ϕ is a bijection from G to H . Furthermore,
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GC(G,S, α) ∼= Cay(H,ϕ(S)). Let S = {ab, a2b}. Then ϕ(S) = {a−1b, a−2b}, this
implies Cay(H,ϕ(S)) ∼= C2n as 〈ϕ(S)〉 = H . Let T = {ab, a−1b}. Then 〈T 〉 = G,
therefore Cay(G,T ) ∼= C2n. Thus GC(G,S, α) ∼= GC(G,T, 1) ∼= C2n, which means
that G is not a strongly GCI-group from Definition 4.1.

Theorem 5.6. Let G = Z2n, H = D2n, where n is an odd prime power. Then G is a
restricted GCI-group if H is a CI-group.

Proof. Let G = 〈a, b | an = b2 = 1, ab = ba〉 and H = 〈a′, b′ | a′n = b′2 =
1, b′a′b′ = a′−1〉. It is easy to see that α : a 7→ a−1, b 7→ b is the only automorphism
of G of order two. Then we have Ωα = {aib | i ∈ {1, . . . , n}} and fα = ∅ by direct
computation. Let GC(G,S, α) be any generalized Cayley graph of G. Then S ⊆ Ωα.
Let ϕ : as 7→ a′s, atb 7→ a′−tb. Obviously ϕ is a bijection from G to H . Further-
more, GC(G,S, α) ∼= Cay(H,ϕ(S)). Assume that GC(G,S1, α) ∼= GC(G,S2, α), then
Cay(H,ϕ(S1)) ∼= Cay(H,ϕ(S2)). Since H is a CI-group, there exists some γ ∈ Aut(H)
such that γ(ϕ(S1)) = ϕ(S2). Without loss of generality, assume that there exist k, l sat-
isfying (k, n) = 1 and 1 ≤ l ≤ n such that γ is the mapping a′ 7→ a′k, b′ 7→ a′lb′. Let
δ : a 7→ ak, b 7→ b. Then δ ∈ Aut(G). Since n is some odd prime power, there must exist
some 1 ≤ m ≤ n such that al = a2m. Therefore there exist δ ∈ Aut(G) and g = a−m

such that S2 = α(g)Sδ1g
−1. Hence G is a restricted GCI-group.

Theorem 5.7. Let G be a finite cyclic group of odd order n, where n has at least two
different prime divisors. Then G is not a strongly GCI-group.

Proof. Let G = G1 × G2 × · · · × Gs where Gi = Z
p
ki
i

, pi is some odd prime. Let
α : (g1, g2, . . . , gs) 7→ (−g1, g2, . . . , gs). Then ωα(G) = G1, and thus G \ ωα(G) 6= ∅.
By Theorem 2.4, GC(G,S, α) ∼= GC(G,S, 1), where S = G \ ωα(G). It follows that G
is not a GCI-group.

6 The GCI-groups in dihedral groups
Theorem 6.1. Let G = D2n (n ≥ 3) be a dihedral group. If G is a restricted GCI-group,
then n is some odd prime power.

Proof. Let G = D2n = 〈a, b | an = b2 = 1, bab−1 = a−1〉 be a GCI-group. As-
sume first that n is even. Let α : a 7→ a−1, b 7→ b. Then α ∈ Aut(G) is of order two.
ωα(G) = {α(g−1)g | g ∈ G} = {ai ∈ G | i is even}. Kα = {α(g)g = 1 | g ∈
G} = {ai, b, an

2 b | ai ∈ G}. It follows that Ωα(G) = {ai, b, an
2 b | i is odd}. This im-

plies GC(G, {a}, α) and GC(G, {b}, α) are always generalized Cayley graphs of G. Note
that they are both isomorphic to nK2. Furthermore, α(g)aγg−1 = a−2i+j if g = ai and
aγ = aj , α(g)aγg−1 = a−2i−j if g = aib and aγ = aj . It follows that α(g)aγg−1 ∈ 〈a〉.
Since G is a GCI-group, α(g)aγg−1 = b for some g ∈ G and γ ∈ Aut(G), but this is
impossible. Thus n is not even.

Assume n is odd and has at least two different prime factors, say n = pr11 · · · p
rt
t is

the prime decomposition and t ≥ 2. By [20, Lemma 3.4], Aut(G) = Aut(G1) × · · · ×
Aut(Gt), where Gi = 〈ai, b〉 and 〈a〉 = 〈a1〉 × · · · × 〈at〉. It can be checked that there
must exist two automorphisms α : a1 7→ a−11 , ai 7→ ai, b 7→ b and β : a2 7→ a−12 , aj 7→ aj ,
b 7→ b in Aut(G). Notice that each is of order two, and they are not conjugate in Aut(G)
as they belong to Aut(G1) and Aut(G2) respectively, and Aut(G) is the direct prod-
uct of these Aut(Gi). Furthermore, b ∈ Ωα(G) ∩ Ωβ(G). Thus GC(G, {b}, α) and
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GC(G, {b}, β) are two generalized Cayley graphs of G which are isomorphic to nK2.
However α and β are not conjugate. Thus n is some odd prime power.

Theorem 6.2. Let G = D2n, H = Z2n, with n odd prime power. Then G is a restricted
GCI-group if H is a CI-group.

Proof. Let G = 〈a, b | an = b2 = 1, bab = a−1〉 and H = Z2n = {0, 1, . . . , 2n − 1}.
We will show first that any two automorphisms of G of order two are conjugate. Let
α : a 7→ ai, b 7→ ajb and β : a 7→ ak, b 7→ alb be two automorphisms of order two. Then
i, k = −1. Let γ : a 7→ as, b 7→ atb with (n, s) = 1. Then γ ∈ Aut(G). We can see
that γ−1 : a 7→ ar, b 7→ a−rtb with rs ≡ 1 (mod n). It follows that γαγ−1 : a 7→ a−1,
b 7→ a2t+sjb. For any j, l, the equation 2t+ sj ≡ l (mod n) has a solution. It follows that
α, β are conjugate.

According to the Remark 3.2, it suffices to consider the isomorphisms of the generalized
Cayley graphs induced by the same automorphisms. Without loss of generality, we consider
α : a 7→ a−1, b 7→ b. Let s = n−1

2 and I = {1, . . . , s}. Then ωα(G) = {α(g−1)g | g ∈
G} = 〈a〉. Kα = {b} ∪ 〈a〉. Thus Ωα = {b} and fα = ∪i∈I{aib, a−ib}.

Let GC(G,S, α) and GC(G,T, α) be any two isomorphic generalized Cayley graphs.
We divide the proof into two cases.

Case 1: Ωα ⊆ S.
If Ωα ⊆ S, then Ωα ⊆ T . Suppose S = ∪i∈I1⊆I{aib, a−ib} ∪ Ωα and T =

∪i∈I2⊆I{aib, a−ib} ∪ Ωα. Let ϕ : G → H, as 7→ 2s, atb 7→ n − 2t. Then ϕ is a bi-
jection from G to H . Furthermore, GC(G,S, α) ∼= Cay(H,ϕ(S)) and GC(G,T, α) ∼=
Cay(H,ϕ(T )), where ϕ(S) = ∪i∈I1⊆I{n− 2i, n+ 2i} ∪ {n} and ϕ(T ) = ∪i∈I2⊆I{n−
2i, n + 2i} ∪ {n}. Since H is a CI-group, there exists some automorphism φ ∈ Aut(H)
such that ϕ(T ) = φ(ϕ(S)). Since n is the unique involution in H , φ(n) = n and
φ(n − 2i) = φ(n) − 2φ(i) = n − 2φ(i) for any i ∈ I1 ⊆ I . This implies that φ can
induce an automorphism φ of G with rules ai 7→ aφ(i), b 7→ b. As φα = αφ, there exist
φ and g = 1 ∈ G such that the isomorphism between GC(G,S, α) and GC(G,T, α) is a
natural isomorphism.

Case 2: Ωα * S.
If Ωα * S, then Ωα * T . The rest of the proof is similar to that of Case 1.

The next result is about the graph structure. Recall that a graph Γ is Hamiltonian if it
contains a cycle passing through all vertices of Γ.

Theorem 6.3. Let G = D2n with n odd prime power. Then any connected generalized
Cayley graph of G is Hamiltonian.

Proof. LetH = Z2n and ϕ : G→ H, as 7→ 2s, atb 7→ n−2t be the bijection fromG toH .
Then any generalized Cayley graph GC(G,S, α) of G is isomorphic to the Cayley graph
Cay(H,ϕ(S)) of H . Therefore GC(G,S, α) is connected if and only if Cay(H, δ(S)) is
connected. It is well known that Cay(H,ϕ(S)) is connected if and only if 〈ϕ(S)〉 = H .
〈ϕ(S)〉 = H if and only if there exist some aib, a−ib ∈ S satisfying (i, n) = 1 as ϕ(aib) =
n − 2i. Then there always exists a Hamilton cycle GC(G, {aib, a−ib}, S) in a connected
generalized Cayley graph of G. This completes the proof.
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7 Cayley regression
First of all, we give the following related definitions.

Definition 7.1. Let G be a finite group.

(1) G is called a Cayley regression if any generalized Cayley graph of G is isomorphic to
some Cayley graph of G.

(2) G is called an α-Cayley regression if any generalized Cayley graph of G induced by
α ∈ Aut(G) is isomorphic to some Cayley graph of G.

(3) G is called a quasi-Cayley regression if any generalized Cayley graph not induced by
the automorphism x 7→ x−1 is isomorphic to some Cayley graph of G.

(4) G is called an m-Cayley regression if any generalized Cayley graph of G with valency
at most m is isomorphic to some Cayley graph of G.

(5) G is called an m-quasi-Cayley regression if any generalized Cayley graph not induced
by the automorphism x 7→ x−1 of G with valency at most m is isomorphic to some
Cayley graph of G.

(6) G is called a skew Cayley regression if any generalized Cayley graph ofG is isomorphic
to some generalized Cayley graph of another finite group.

It is well known that every Cayley graph is also a generalized Cayley graph. But many
examples, see [8] for instance, reveal that the converse is not true. Therefore a natural
question arises.

Question 7.2. Characterize Cayley regressions.

Remark 7.3. If α : x 7→ x−1 is an automorphism ofG, thenG is abelian. This case is very
special as Kα = G and fα = ∅. In fact, Hujdurović et al. in [9] had already noticed this
situation. They studied the relationship between the generalized Cayley graphs induced by
involutory automorphism and Cayley graphs. They obtained two families of generalized
Cayley graphs induced by involutory automorphisms on Z2m ×Z2n and Z2×Z2×Z2k+1

respectively (where m ≥ 1, n ≥ 2, k ≥ 1) are not vertex-transitive. Therefore we propose
the definition of ‘quasi-Cayley regression’ and ‘m-quasi-Cayley regression’. Also, we
propose the following problem: Are there finite groups which are quasi-Cayley regressions
but not Cayley regressions?

WhenG is an abelian simple group, thenG is a cyclic group of prime order and Aut(G)
is not necessarily a Cayley regression.

Example 7.4. For the prime p = 61, obviously, Aut(Zp) ∼= Zp−1 = Z60. Let G =
Aut(Zp), S = {±6,±12, 5, 25} and α(x) = 31x. By [17, Theorem 4.4], we have
GC(G,S, α) is not a Cayley graph. Thus G is not a Cayley regression.

Theorem 7.5. Let G be a finite cyclic group of odd order n. Then G is a Cayley regression
if and only if n is some odd prime power.



420 Ars Math. Contemp. 15 (2018) 407–424

Proof. The sufficiency is obvious by Theorem 5.1, it suffices to show the necessity. As-
sume on the contrary that n has at least two different odd prime divisors, say n = q1q2m,
where q1 and q2 are different prime powers and (q1, q2) = 1, then we have G = G1 ×
G2 × G3, where |G1| = q1, |G2| = q2 and |G3| = m. Let α : G → G, (g1, g2, g3) 7→
(−g1, g2, g3). It is easy to see that the order of α is two, so α can induce some gen-
eralized Cayley graphs of G. Note that ωα(G) = {(g1, 0, 0) | g1 ∈ G1}. Let S =
{(0, 1, 0), (0, q2 − 1, 0)}. Then Γ = GC(G,S, α) is a generalized Cayley graph of G.
Consider the vertex of the form (0, g2, g3) in Γ for any g2 ∈ G2, g3 ∈ G3. For any
fixed g3, there are q2 vertices of the form {(0, g2, g3) | g2 ∈ G2} which induce a cycle
of length q2. For any other vertex of the form (g1, g2, g3) with g1 6= 0, there are 2q2 ver-
tices {(g1, g2, g3), (−g1, g2, g3) | g2 ∈ G} which induce a cycle of length 2q2. Therefore
Γ1 = mCq2 ∪

(q1−1)m
2 C2q2 , which is not vertex-transitive. Thus GC(G,S, α) is not a

Cayley graph, and hence G is not a Cayley regression.

Theorem 7.6. Let G = Zn × · · · × Zn︸ ︷︷ ︸
s

with n odd, s ≥ 2. Then G is not a Cayley

regression.

Proof. Let α : (i1, i2, i3 . . . , is) 7→ (i2, i1, i3, . . . , is) for all it ∈ Zn. So α ∈ Aut(G) and
o(α) = 2. Therefore α can induce generalized Cayley graphs ofG. Let S = {(1, 0, . . . , 0),
(0, n− 1, 0, . . . , 0)}. It follows that GC(G,S, α) is a generalized Cayley graph of G.

Consider vertex (0, . . . , 0), then vertices like (i, i, 0, . . . , 0) and (i, i − 1, 0, . . . , 0) are
in the same cycle with (0, . . . , 0). Thus (0, . . . , 0) is in a cycle of length 2n.

Consider vertex (0, n−12 , 0, . . . , 0), then vertices like (i, n−12 + i, 0, . . . , 0) and (n+1
2 +

i, i, . . . , 0) are in the same cycle with (0, n−12 , 0, . . . , 0). It follows that (0, n−12 , 0, . . . , 0)
is in a cycle of length n.

Therefore GC(G,S, α) is not vertex-transitive, and thus GC(G,S, α) is not a Cayley
graph. That completes the proof.

From Theorem 7.5, we see that the cyclic group of odd non prime power order is not an
m-Cayley regression for any m > 0. So we only consider the cyclic groups of even order
in the rest of this section.

Corollary 7.7 ([9]). Let G = Z2n. Then GC(G,S, α) is isomorphic to a Cayley graph on
D2n, where α : x 7→ −x.

According to Corollary 7.7, we can see that Z2pn (with p an odd prime) is a skew-
Cayley regression since α : x 7→ −x is the only automorphism of G of order two.

Theorem 7.8. Let G be a finite cyclic group of order 2n with n ≥ 3. Then

(1) G is a 3-quasi-Cayley regression;

(2) G is a 4-quasi-Cayley regression if and only if n = 3.

Proof. Assume that G = {0, 1, . . . , 2n − 1}. By Theorem 5.2, we have that α : x 7→
(2n−1 − 1)x and β : x 7→ (2n−1 + 1)x are the only two automorphisms of G of order
two except the automorphism x 7→ −x. Also, the valency of the generalized Cayley of G
induced by α or β are even as x+ α(x) 6= 0 and x+ β(x) 6= 0 for any x ∈ G.
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(1) Consider the generalized Cayley graphs induced by α, β respectively. For any
g ∈ G,

ωα(G) = {α(−g)g | g ∈ G} = {(2n−1 − 1)(−g) + g | g ∈ G}
= {2n−1g + 2g (mod 2n) | g ∈ G} = {g | g ≡ 0 (mod 2)} = Kα.

ωβ(G) = {β(−g)g | g ∈ G} = {(2n−1 + 1)(−g) + g (mod 2n) | g ∈ G}
= {−2n−1g (mod 2n) | g ∈ G} = {0, 2n−1} = Kβ .

It follows that for any generalized Cayley graph GC(G,S, α), S contains no even integers
and, for any generalized Cayley graph GC(G,S, β), 0 and 2n−1 are not contained in S.

For any g ∈ G with g odd,

α(−g) = (2n−1 − 1)(−g) (mod 2n)

= g − 2n−1g (mod 2n)

= 2ng + g − 2n−1g (mod 2n)

= 2n−1g + g (mod 2n)

= 2n−1 + g (mod 2n).

This implies that there are 2n−2 couples can be included in S, that is, S1 = {1, 2n−1 + 1},
S3 = {3, 2n−1 + 3}, . . . , S2n−1−1 = {2n−1 − 1, 2n − 1}.

For any g ∈ G \ ωβ(G),

β(−g) = (2n−1 + 1)(−g) (mod 2n) = −g − 2n−1g (mod 2n)

= 2ng − g − 2n−1g (mod 2n) = 2n−1g − g (mod 2n).

Then we have

β(−g) =

{
2n−1 − g, if g is odd;
2n − g, if g is even.

This implies that there are (2n−1 − 1) couples which could be included in S, they are:

S1 = {1, 2n−1 − 1},
S3 = {3, 2n−1 − 3},
. . .

S2n−2−1 = {2n−2 − 1, 2n−2 + 1},
S2n−1+1 = {2n−1 + 1, 2n − 1},

. . .

S2n−1+2n−2−1 = {2n−1 + 2n−2 − 1, 2n−1 + 2n−2 + 1},
T2 = {2, 2n − 2},
. . .

T2n−1−2 = {2n−1 − 2, 2n−1 + 2}.

Let Γ = GC(G,S, α), where S = Si, then Γ ∼= 2n−2C4 by Theorem 5.2. Let
Γ = GC(G,S, β). If S = Si, we have GC(G,S, β) ∼= C2n as Si is the left generat-
ing set for (G, ∗) by Lemma 2.11. If S = Ti, then GC(G,S, β) is isomorphic to 2n−kC2k
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if 2ki ≡ 0 (mod 2n); and isomorphic to C2n otherwise. In conclude, all of the 2-valent
generalized Cayley graphs of G induced by α or β are Cayley graphs and, this implies that
G is a 3-quasi-Cayley regression.

(2) When n = 3, it is easy to check that those 4-valent generalized Cayley graphs
induced by α and β, respectively, are all Cayley graphs. Next we construct a family of
generalized Cayley graphs which is not vertex-transitive to show the necessity.

Let S = Si ∪ Tj , where i ∈ {1, . . . , 2n−2 − 1} ∪ {2n−1 + 1, . . . , 2n−1 + 2n−2 − 1}
is odd and j ∈ {2, . . . , 2n−1 − 2} is even. If x is odd, then N(x) = {2n−1 + x + i, x −
i, 2n−1+x+j, 2n−1+x−j}. If x is even, thenN(x) = {x+i, 2n−1+x−i, x+j, x−j}.
SupposeX is the bicirculant such that the vertex set V (X) can be partitioned into to subsets
U = {uk | k ∈ Z2n−1} and V = {vk | k ∈ Z2n−1}, and there is an automorphism of
X such that ρ(uk) = uk+1 and ρ(vk) = vk+1, k ∈ Z2n−1 . The edge set E(X) can be
partitioned into three subsets:

L = ∪k∈Z2n−1 {uk, uk+l | l ∈ L},
M = ∪k∈Z2n−1 {uk, vk+m | m ∈M},
R = ∪k∈Z2n−1 {vk, vk+r | r ∈ R},

so we have L = {±(2n−2 + j
2 )}, M = {2n−2 + i+1

2 ,− i−12 }, R = {± j2}. Then
X = BC2n−1 [L,M,R]. Let γ be the mapping as follows:

γ :=

{
x 7→ u x−1

2
, if x is odd;

x 7→ v x
2
, if x is even.

It follows that Γ ∼= X . Note that BC2n−1 [L,M,R] ∼= BC2n−1 [aL, aM + b, aR] with
a, b ∈ Z2n−1 and a invertible [12]. Then Γ ∼= BC2n−1 [L,M ′, R] with M ′ = M + i−1

2 =
{0, 2n−2 + i}. In particular, Γ is connected since 〈L,M ′, R〉 = Z2n−1 . When j = 2i, there
are no triangles with three vertices of the form {uk, vk+2n−2+ i+1

2
, vk− i−1

2
}, but there is a

triangle with three vertices as {vk′ , uk′+ i−1
2
, uk′−2n−2− i+1

2
} since for n > 3,

k + 2n−2 +
i+ 1

2
± j

2
6≡ k − i− 1

2
(mod 2n−1)

k′ +
i− 1

2
−
(

2n−2 +
j

2

)
≡ k′ − 2n−2 − i+ 1

2
(mod 2n−1).

This implies that there is no automorphism of X which permutates uk and vk′ . So X
is not vertex-transitive when n > 3. This completes the proof.

At last, we propose the following questions for further research.

Question 7.9. Classify finite GCI-groups, such as Zm where m is odd with at least two
different prime divisors, abelian groups, dihedral groups and some classes of finite simple
groups.

Question 7.10. Characterize the structure of the automorphism group of any generalized
Cayley graph.

Question 7.11. Classify Cayley regressions for certain types of group, such as the cyclic
groups and the dihedral groups.
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1 Introduction
Expander graphs are sparse graphs that have strong connectivity properties. Expander con-
structions have found extensive applications in computer science [13, 16], in constructing
of algorithms, error correcting codes [12], random walks [23], and sorting networks [1]. If
one chooses at random a family of d-regular graphs, it is almost certain to be an expander
graph [10]. Nevertheless, constructing expander families is not an easy task. Most con-
structions use deep algebraic and combinatorial techniques; mainly through Cayley graphs
and the Zig-Zag product (see for example [15, 19]).

Like Cayley graphs, G-graphs are defined from groups, but they correspond to an al-
ternative construction. These graphs, introduced in [6], have highly regular properties. In
particular, because the algorithm for constructingG-graphs is simple, it appears to be a use-
ful tool to construct new symmetric and semi-symmetric graphs [7]. Several extensively
studied problems in graph theory such as the hamiltonicity of Cayley graphs (see e.g. [3, 18]
for the latest development on this problem) may as well be approached using these objects.
For instance, G-graphs are used to characterize new classes of Hamiltonian Cayley graphs
[4], and to improve some upper bounds in the cage graphs problem [6]. Recently in [9], the
authors studied some robustness properties of G-graphs such as edge/vertex-connectivity
and vertex/edge-transitivity. It turns out, that several families of G-graphs are optimally
connected where an optimally connected graph can be thought of as a graph whose vertex-
connectivity is equal to its minimum degree. Because of their nice properties, it is natural
to consider the problem of constructing an expander family of G-graphs.

One of the chief tools for constructing a family of expander graphs is the concept of
Cayley graphs. The main advantage for using such graphs is that at first it enables us
when fixing the size of the generating set, to construct a large family of sparse graphs
in an effective and concise way. Additionally, the underlying properties of a group G
and its generating set S can give us an insightful gaze on the expansion properties of its
corresponding Cayley graph Cay(G,S). Generally speaking, it is hard to prove that a
certain family of Cayley graphs is an expander family. Concerning this, a huge amount of
research in the last few decades has been devoted to dealing with the following question:
which sequence of groups corresponds to an expander family of Cayley graphs? Using
some algebraic techniques that depend mainly on Kazhdan constant, many partial results
were obtained. In fact, most of these results gave negative answers to this question for
certain groups (see [14] and [17], see also Example 3.2 below). The purpose of this article is
to present a technique for constructing such families. Our construction is based on a relation
between some known expander families of Cayley graphs and certain expander families of
G-graphs. More precisely, for a group G and a subset S of G with S∗ =

⋃
s∈S 〈s〉 \ {e}

(i.e. if S = {s1, . . . , sk}, then S∗ = {s1, . . . , s
o(s1)−1
1 , . . . , sk, . . . , s

o(sk)−1
k }, where o(si)

denotes the order of si), we prove the following main result (see below for terminology).

Theorem 1.1. If {Cay(Gn, S
∗
n), n ∈ N+} is an expander family, then {Φ̃(Gn, Sn), n ∈

N+} is also an expander family.

The rest of the paper is organized as follows. In Section 2, we give a review of some
basic facts concerning groups, multigraphs, G-graphs and expander graphs that are needed
for our purposes. In Section 3, we shall prove the preceding theorem. In addition, just
like in the case of Cayley graphs, we prove that abelian groups can not yield an expander
family of G-graphs. In Sections 4 and 5, we first identify a new method for generating
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an infinite regular family of Cayley graphs from another one by switching specific edges.
This leads to a new infinite expander family of Cayley graphs on the projective special
linear group PSL(2,Z/pZ). Consequently, we construct several new infinite families of
expander G-graphs on the special linear group SL(2,Z/pZ) and projective special linear
group PSL(2,Z/pZ). These families are formed of irregular graphs, in particular semi-
regular, which are of the very few ones.

2 Preliminaries
This section has been designed to give a general introduction to some of the basic facts
needed from the theory of groups, multigraphs, expanders andG-graphs. This introduction
is given here to provide a convenient repository for all readers. We discuss briefly the
material we shall require from these theories and for more details on any of these subjects,
see for example [2, 11, 14, 17, 20].

2.1 Groups

Throughout this paper, all groups are assumed to be finite. Let (G, ., e) be a group, where
e denotes the identity element of G and “.” denotes the group operation (multiplicative
notation). For every g inGwe define the order of g, denoted by o(g), as the smallest integer
l such that gl = e. Let S = {s1, . . . , sk} be a non-empty subset ofG, and letOmax(S) and
Omin(S) be respectively the maximum and the minimum o(si) for all i ∈ {1, . . . , k}. A
subset S of G is said to be symmetric if every element in S has its inverse in S. We define
〈S〉 to be the smallest subgroup of G which contains S. If 〈S〉 = G, then set S is said to be
a generating set of G, or G is generated by S. If H is a subgroup of G then the set Hx is
called right coset of H in G, and we denote by G/H to be the set of all right cosets of H
in G. A subset TH of G is said to be a right transversal for H if TH contains exactly one
element from each right coset ofH inG. LetA andB be subsets of a set U, then we denote
B \ A = {x ∈ B and x /∈ A} and A = U \ A. The special linear group SL(2,Z/qZ) is
defined as follows:

SL(2,Z/qZ) =
{(

a1 a2

a3 a4

)
; a1, a2, a3, a4 ∈ Z/qZ and a1a4 − a2a3 = 1

}
.

The projective special linear group PSL(2,Z/qZ) = SL(2,Z/qZ)/{± I2}, where I2 is the
2× 2 identity matrix.

2.2 Multigraphs

All multigraphs considered in this paper are undirected and finite. Generally, we define an
undirected multigraph Γ as the triple (V (Γ), E(Γ), ξΓ), where V (Γ) is the set of vertices,
E(Γ) is the set of edges, and ξΓ is an incidence function that associates with each edge of
Γ an unordered pair of vertices of Γ. In addition, we denote by {u, v} the multi-edge that
links vertices u and v. The multiplicity of the multi-edge {u, v} is the cardinality of the
set of edges that links u and v. A multi-edge with identical end-points is called a loop. A
multigraph is a simple graph if it has neither loops nor multi-edges with multiplicity greater
than or equal to 2.

The neighborhood of vertex u denoted byN(u) is the set of all vertices that are adjacent
to u. The degree of a vertex v in a multigraph Γ, denoted by d(v) is the number of edges



428 Ars Math. Contemp. 15 (2018) 425–440

of Γ incident to v where each loop counts as two edges. The maximum and minimum
degree of a multigraph Γ are denoted by ∆(Γ) and δ(Γ) respectively. A multigraph Γ is
d-regular if d(u) = d for all u ∈ V (Γ). A family of d-regular multigraphs is formed
of regular multigraphs where each has degree d, while a family of regular multigraphs is
formed of regular multigraphs with possibly varying degrees. The distance d(u, v) between
two vertices u and v is the number of edges in a shortest path that connects u and v. The
diameter diam(Γ) of a multigraph Γ is defined by:

diam(Γ) = max{d(u, v);u, v ∈ V (Γ)}.

Let Γ1 = (V1, E1, ξ1) and Γ2 = (V2, E2, ξ2) be two multigraphs, a homomorphism
from Γ1 to Γ2 is a couple (f, f#) where f : V1 → V2 and f# : E1 → E2 such that if
ξ1(a) = {u, v} then ξ2(f#(a)) = {f(u), f(v)}. A graph isomorphism is the couple
(f, f#) where f and f# are bijective. We say that Γ1 is isomorphic to Γ2 if there exists an
isomorphism between Γ1 and Γ2. In such a case, we write Γ ' Γ′.

A multigraph Γ = (V,E, ξΓ) is k-partite if there is a partition of V into k parts such
that each part is a stable set. We will write Γ = (

⊔
i∈I Vi;E) where I = {1, . . . , k}. A

multigraph is minimum k-partite (k ≥ 1) if it is k-partite and not (k − 1)-partite. It is easy
to verify that for any multigraph Γ, there exists k such that Γ is minimum k-partite. If a
multigraph Γ is k-partite, then we will say that (Vi)i∈{1,2,...,k} is a k-representation of Γ.

Cayley graphs offer a combinatorial depiction of groups and their generators. More
precisely, the Cayley graph Cay(G,S) is the multigraph with vertex setG and two elements
x and y of G are adjacent if and only if y = s.x for some s ∈ S. It is well-known that
Cay(G,S) is connected if and only if G = 〈S〉 (see for example [14]).

2.3 G-graphs

Definition 2.1. Let (G, ., e) be a finite group. Let S be a nonempty subset of G. For s ∈ S,
consider the cycles (s)x = (x, sx, . . . , so(s)−1x) of permutation gs : x 7→ sx. Note that
〈s〉x is the set {x, sx, . . . , so(s)−1x}.We define theG-graph Φ(G,S) in the following way:

1. The vertex set of Φ(G,S) is V =
⊔

s∈S Vs where Vs = {(s)x, x ∈ T〈s〉} where
T〈s〉 is a right transversal for the subgroup 〈s〉 .

2. For each (s)x, (t)y ∈ V , there exists edge between (s)x and (t)y labeled g for each
g ∈ 〈s〉x ∩ 〈t〉y, such an edge will be denoted by ({(s)x, (t)y}, g). If card(〈s〉x ∩
〈t〉y) = p, p ≥ 1 then there exists p labeled edges between (s)x and (t)y, or
{(s)x, (t)y} is a multi-edge with multiplicity p.

Since the cosets of 〈s〉 form a partition ofG, (Vs)s∈S is a |S|-representation of Φ(G,S).
Every vertex (s)x has o(s) loops. We denote by Φ̃(G,S) the multigraph Φ(G,S) without

loops. The multigraph ˜̃Φ(G,S) is the simple graph underlying Φ(G,S), that is, the vertices

(s)x and (t)y in V ( ˜̃Φ(G,S)) are connected by a single edge if 〈s〉x ∩ 〈t〉y is non-empty.
If S = {s1, . . . , sk} then the level of any si, noted Vsi (or simply Vi), is the stable set of
Φ̃(G,S) which comprises all the vertices of the form (si)x where x ∈ G. Note that each
level Vs contains |G|o(s) vertices, therefore we have the following relation:

|V (Φ̃(G,S))| = |G|
∑
s∈S

1

o(s)
.
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The principal clique1 of x ∈ G, denoted by Cx, is the subgraph of Φ̃(G,S) induced by the
set of vertices which contain x. In Φ̃(G,S) there are |G| principal cliques; each contains
|S| vertices.

Example 2.2. Let G be the cyclic group of order 6, i.e. G = {e, a, a2, a3, a4, a5}. Clearly
G can be generated by an element of order 3 and another of order 2. Let S be {a2, a3}.
Then the vertices of the corresponding G-graph without loops Φ̃(G,S) are

(a2)e = (e, a2e, a4e) = (e, a2, a4), (a2)a = (a, a2a, a4a) = (a, a3, a5)

which are the 3-cycles and

(a3)e = (e, a3), (a3)a = (a, a3a) = (a, a4), (a3)a2 = (a2, a3a2) = (a2, a5)

which are the 2-cycles. Obviously, in this case the multigraph Φ̃(G,S) is isomorphic to
K2,3 (Figure 1). The levels Va2 and Va3 are respectively {(a2)e, (a2)a} and {(a3)e, (a3)a,
(a3)a2}. There are 6 principal cliques each of size |S| = 2. For instance, the principal
cliques Ce and Ca are the induced subgraphs of Φ̃(G,S) with vertex set {(a2)e, (a3)e}
and {(a2)a, (a3)a} respectively.

Figure 1: The bipartite multigraph K2,3.

The next 3 propositions can be found in [5].

Proposition 2.3 ([5]). Φ(G,S) and Φ̃(G,S) are minimum |S|-partite graphs.

Proposition 2.4 ([5]). Φ̃(G,S) is connected if and only if S is a generating set of G.

Proposition 2.5 ([5]). Let Φ̃(G,S) = (
⊔

s∈S Vs;E) be a G-graph with |G| = n and
|S| = k. Then the following holds.

d((s)x) = o(s)(k − 1), for all (s)x ∈ Vs,∑
(s)x∈Vs

d((s)x) = n(k − 1), for all s ∈ S,

|E(Φ̃(G,S))| = nk(k − 1)

2
.

2.3.1 New results on G-graphs

Proposition 2.6. Let Φ̃(G,S) be any G-graph such that |S| = {s1, . . . , sk}. Then the
following are equivalent:

1This definition is due to [4].
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i. Φ̃(G,S) is d-regular,

ii. o(si) = d
k−1 , for all i ∈ {1, . . . , k},

iii. |Vsi | = |Vsj |, for all i, j ∈ {1, . . . , k}.

Proof. Let (s)x ∈ Vs, where s ∈ S. From Proposition 2.5, we have

d((s)x) = o(s)(k − 1) or o(s) =
d((s)x)

k − 1
,

and then

|Vs| =
|G|
o(s)

=
|G|(k − 1)

d((s)x)
.

Therefore o(si) = o(sj) if and only if |Vsi | = |Vsj |, for all i, j ∈ {1, . . . , k}.

Remark 2.7. When Φ̃(G,S) is a regular multigraph, we use the notationO instead of o(s)
for any s ∈ S.

The following lemma can be found in [22].

Lemma 2.8 ([22]). Let Φ(G,S) be a G-graph with S = {s1, . . . , sk} a generating set
of G, then all the multi-edges between levels Vsi and Vsj have the same multiplicity
| 〈si〉 ∩ 〈sj〉 |.

As a result, we have the following corollary.

Corollary 2.9. Let Φ̃(G,S) be a G-graph with S = {s1, . . . , sk}. Then Φ̃(G,S) is a
simple graph if and only if 〈si〉 ∩ 〈sj〉 = {e} for all i, j ∈ {1, . . . , k} with i 6= j.

2.4 Expanders

Before we define expander graphs, we need to define some expansion parameters. Let
Γ = (V,E, ξΓ) be a non-oriented multigraph with |V | ≥ 2 and V ′ be a subset of V . The
edge boundary of V ′ in Γ denoted by ∂V ′(Γ) (or simply ∂V ′ when no ambiguity occurs)
is defined as follows:

∂V ′(Γ) = {α ∈ E; ξΓ(α) ∈ V ′ × V̄ ′}.

In other words, this is the set of edges emanating from the set V ′ to its complement. The
rate of expansion of Γ is then defined as follows:

h(Γ) = min
0<|V ′|≤ |V |2

|∂V ′|
|V ′|

.

Definition 2.10. For ε ∈ R∗+, a multigraph Γ is said to be an ε-expander if

ε ≤ h(Γ).

Definition 2.11. If a family of multigraphs {Γi = (Vi, Ei, ξi), i ∈ N+} satisfies the
following three conditions:

i. |Vi| → ∞ as i→∞,
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ii. There exists r ∈ N+ such that ∆(Γi) ≤ r for all i ∈ N+. That is {Γi, i ∈ N+} is a
sequence of bounded degree multigraphs,

iii. There exists ε ∈ R∗+ such that Γi is an ε-expander for all i ∈ N+,

then this family is called an expander family and an element of this family is an expander
graph.

If Γ is a d-regular multigraph, then in [14] it is proved that logd |V (Γ)| ≤ diam(Γ).
The next proposition is a simple generalization of this result.

Proposition 2.12. Let Γ be a connected multigraph such that ∆(Γ) ≤ r ∈ N+. Then

logr |V (Γ)| ≤ diam(Γ).

Proof. Consider v ∈ V (Γ) and define Bl(v) = {u ∈ V (Γ); d(v, u) ≤ l}. We show by
induction that |Bl(v)| ≤ rl. The result is trivial for l = 0. Suppose it is true up to l− 1 and
let’s prove it for l. Since every vertex in Bl−1(v) has at most r − 1 neighbors in Bl−1(v),
then |Bl(v)| ≤ (r−1)|Bl−1(v)|+ |Bl−1(v)| = r|Bl−1(v)| ≤ rrl−1 = rl. If l = diam(Γ),
then Bl(v) = V (Γ) and therefore |V (Γ)| ≤ rdiam(Γ).

3 Cay-expanders and G-expanders
In this section, we are mainly concerned with proving Theorem 1.1. First, we need to
introduce more auxiliary materials. We start with the following definition which is virtually
an interpretation of Definition 2.11 for the G-graph and Cayley graph cases.

Definition 3.1. Let {Gi, i ∈ N+} be a family of finite groups. We say that {Gi, i ∈ N+}
is a G-expander family, if for every i ∈ N+ there exists a generating subset Si of Gi such
that {Φ̃(Gi, Si), i ∈ N+} is an expander family. More precisely, {Gi, i ∈ N+} is a
G-expander family if the following 3 conditions are satisfied:

i. |V (Φ̃(Gi, Si))| = |Gi|
∑

s∈Si

1
o(s) →∞ as i→∞.

ii. There exists a positive integer r such that ∆(Φ̃(Gi, Si)) ≤ r for all i ∈ N+ which by
Proposition 2.5 means that for every (s)x ∈ Vs we have d((s)x) = (|Si| − 1)o(s) ≤
∆(Φ̃(Gi, Si)) ≤ r ∈ N+ for all i ∈ N+. This in turn means that there exists
r1, r2 ∈ N+ such that 2 ≤ |Si| ≤ r1 and o(s) ≤ r2 for all s ∈ Si and for all i ∈ N+.
In addition, since ∆(Φ̃(Gi, Si)) ≤ r for all i ∈ N+, then clearly Condition i. is
equivalent to saying that |Gi| → ∞ as i→∞.

iii. There exists an ε ∈ R∗+ such that ε ≤ h(Φ̃(Gi, Si)) for all i ∈ N+.

Note that 2 ≤ |Si| since otherwise Φ̃(Gi, Si) will be a disconnected multigraph so that
h(Φ̃(Gi, Si)) = 0, and so it is clear that max{r1, r2} ≤ r.

On the other hand, we say that {Gi, i ∈ N+} is a Cay-expander family, if for every
i ∈ N+ there exists a symmetric generating subset Si of Gi such that {|Si| : i ∈ N+}
is uniformly bounded and provided that {Cay(Gi, Si), i ∈ N+} is an expander family.
More explicitly, {Gi, i ∈ N+} is a Cay-expander family if the following 2 conditions are
satisfied:

i. |V (Cay(Gi, Si))| = |Gi| → ∞ as i→∞,
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ii. There exists an ε ∈ R∗+ such that ε ≤ h(Cay(Gi, Si)) for all i ∈ N+.

Example 3.2. For every i ∈ N+, let D2i be the dihedral group:

D2i =
〈
s, f | s2 = f i = e, sf = f−1s

〉
.

In 2002, Rosenhouse [21] showed that h(Cay(D2i, {f, f−1, s})) = 4
i . Hence, h(Cay(D2i,

{f, f−1, s})) → 0 as i → ∞. Thus {Cay(D2i, {f, f−1, s}), i ∈ N+} is not an ex-
pander family. In fact, it was shown later (see [14]) that for any set of generator Si of
D2i, {Cay(D2i, Si), i ∈ N+} is not an expander family. Thus {D2i, i ∈ N+} is not a
Cay-expander family.

It is well-known that no family of abelian groups is a Cay-expander [14]. Before we
prove the same result for the G-expander case, we need the following lemma.

Lemma 3.3. Let G be an abelian group generated by S = {s1, . . . , sk} and let Φ̃(G,S)
be the corresponding G-graph, then

diam(Φ̃(G,S)) ≤ |S|.

Proof. Let (sp)x, (sq)y ∈ V (Φ̃(G,S)), where x, y ∈ G and 1 ≤ p, q ≤ |S| = k. Since
G = 〈S〉 is an abelian group, then

x = si11 . . . sipp . . . siqq . . . s
ik
k y = si11 . . . sipp . . . s

iq−1

q−1 s
iq+1

q+1 . . . s
ik
k s

iq
q y,

where 1 ≤ il ≤ o(sl) for all 1 ≤ l ≤ k. It is easy to see that (sp)x is adjacent to
(s1)si22 . . . sikk y which is in turn connected to (s2)si33 . . . sikk y and so on up to (sk)s

iq
q y

which is connected to (sq)y. Thus d((sp)x, (sq)y) ≤ |S|.

Corollary 3.4. No family of abelian groups is a G-expander.

Proof. Suppose that {Gi, i ∈ N+} is a family of finite abelian groups and that {Φ̃(Gi, Si),
i ∈ N+} is an expander family. Then there exists r ∈ N+ such that |Si| ≤ r for all i ∈ N+.
But then by the preceding lemma diam(Φ̃(Gi, Si)) ≤ |Si| ≤ r ∈ N+, and that contradicts
Proposition 2.12.

Now we are ready to prove the main result of this paper which is Theorem 1.1.

Proof of Theorem 1.1. Since Cay(Gn, S
∗
n) is an expander family, then |Gn| → ∞ as

n → ∞ and there is an r ∈ N+ such that |S∗n| ≤ r for all n ∈ N+. Hence |Sn| ≤ r
and Omax(Sn) ≤ r for every n ∈ N+. Then |V (Φ̃(Gn, Sn))| → ∞ as n → ∞ and
∆(Φ̃(Gn, Sn)) < r2 for all n ∈ N+.

Suppose that H ⊂ V (Φ̃(Gn, Sn)) where 0 < |H| < |V (Φ̃(Gn,Sn))|
2 , and Hi = H ∩ Vi

for every 1 ≤ i ≤ |Sn|. Then, clearly we have

H =
⊔
i

Hi.

Let W =
⋂

i

⋃
(s)x∈Hi

〈s〉x ⊂ G. Since |H| ≤ |V (Φ̃(Gn,Sn))|
2 , we have |W | ≤ |G|2 . Now

let Xi = {(si)x ∈ Hi | 〈si〉x ⊂ W}, then |Xi| ≤ |W |. Denote by X and Y the following
sets of vertices,

X =

|Sn|⊔
i=1

Xi, and Y = H \X.
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If (s)x ∈ Y , there is an edge between (s)x and a vertex in V (Φ̃(Gn, Sn)) \H . Hence

|∂H| ≥ |Y |.

In Cay(Gn, S
∗
n), we have |∂W | ≥ ε|W |. Let f : ∂W → ∂H , {x, y} 7→ ({(si)x, (sj)y}, y),

where x ∈W , y /∈W , i and j are chosen so that xy−1 ∈ 〈si〉 and y /∈
⊔

(s)x∈Hj
〈s〉x (note

here that there may be several possible choices for i and j). Now observe that if f(x, y) =

f(x′, y′), then xx′−1 ∈ 〈si〉 and y = y′. So for all α ∈ ∂H , |f−1(α)| ≤ Omax(Sn).
Hence,

|∂H| ≥ |∂W |
Omax(Sn)

≥ ε|W |
Omax(Sn)

≥ εmaxi |Xi|
Omax(Sn)

≥ ε|X|
Omax(Sn)|Sn|

.

Using |∂H| ≥ |Y | and |H| = |X|+ |Y |, we obtain

|∂H| ≥ 1

2
min

{
ε

Omax(Sn)|Sn|
, 1

}
|H| ≥ 1

2
min

{ ε

r2
, 1
}
|H|.

This completes the proof.

The following results are obvious consequences of Theorem 1.1.

Corollary 3.5. If {Gn, n ∈ N+} is a Cay-expander family, then it is also a G-expander
family.

Corollary 3.6. If {Cay(Gi, S
∗
i ), i ∈ N+} is an expander family, then { ˜̃Φ(Gi, Si), i ∈

N+} is also an expander family.

Proof. By Theorem 1.1, {Φ̃(Gi, Si), i ∈ N+} is an expander family. By Definition 3.1,
there exists r ∈ N+ such that o(sj) ≤ r, for every sj ∈ Si. Then | 〈sj1〉 ∩ 〈sj2〉 | ≤ r for

all sj1 , sj2 ∈ Si. Thus h(Φ̃(Gi,Si))
r ≤ h( ˜̃Φ(Gi, Si)).

Remark 3.7.

1. Unlike most constructed expander families which are d-regular, our construction pro-
duces expander families that may be d-regular, regular, or irregular. More specifi-
cally, by Proposition 2.6, if the order of all elements in the generating set Si is the
same, then the constructed family is either a d-regular or regular family depending
on whether there exist si ∈ Si and sj ∈ Sj such that o(si) 6= o(sj). Otherwise, it
will be an irregular family.

2. By Corollary 2.9, if 〈sj1〉 ∩ 〈sj2〉 = {e} for all sj1 ∈ Si, sj2 ∈ Si \ sj1 , and for
every i ∈ N+, then the constructed expander family {Φ̃(Gi, Si), i ∈ N+} is formed

of simple graphs. Note that { ˜̃Φ(Gi, Si), i ∈ N+} is always an expander family of
simple graphs.

3. In Table 1, we compare some graph invariants for the Cayley graph Cay(G,S∗) and
the G-graph Φ̃(G,S).

It is worthy to note that |S∗| =
∑

s∈S o(s) − |S| and every vertex in level Vs of
Φ̃(G,S) has degree equal to o(s)(|S| − 1) where |Vs| = |G|

o(s) . Thus, the degree
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Table 1: Some graph invariants of Cay(G,S∗) and Φ̃(G,S).

Cay(G,S∗) Φ̃(G,S)

Order |G|
∑

s∈S
|G|
o(s)

Degree |S∗|-regular multigraph d(u) = o(s)(|S| − 1)
for all u ∈ Vs and s ∈ S

Size 1
2 |G||S

∗| = 1
2 |G|(

∑
s∈S o(s)−|S|)

1
2 |G||S|(|S| − 1)

of most vertices of Φ̃(G,S) is smaller than |S∗| (see also the remark after Theo-
rem 5.10). In other words, this means that G-graphs enable us to construct sparser
multigraphs than those which can be constructed using the family Cay(G,S∗), and
in some cases even sparser than the ones constructed from the family Cay(G,S),
with possibly smaller expansion ratios (see the proof of Theorem 1.1).

4 Applications
In this section, we present some direct results of Theorem 1.1. But first we start with some
auxiliary materials.

Proposition 4.1. Let xi ∈ Gi \ Si. If {Cay(Gi, Si), i ∈ N+} is an expander family, then
{Cay(Gi, Si ∪ xi±1), i ∈ N+} is also an expander family.

Proof. Since {Cay(Gi, Si), i ∈ N+} is an expander family, then there exists r ∈ N+ such
that |Si| ≤ r, for all i ∈ N+. Thus |Si ∪ xi±1| ≤ r + 2 for all i ∈ N+, so the second
condition of Definition 2.11 is satisfied. Note that Cay(Gi, Si) is a spanning subgraph of
Cay(Gi, Si ∪ xi±1), hence

0 < ε ≤ h(Cay(Gi, Si)) ≤ h(Cay(Gi, Si ∪ xi±1)).

A direct consequence of the preceding proposition is the following.

Corollary 4.2. Let {Cay(Gi, Si), i ∈ N+} be an expander family. If there exists l ∈ N+

such that |S∗i | ≤ l for all i ∈ N+, then {Cay(Gi, S
∗
i ), i ∈ N+} is also an expander family.

The following theorem was proved by Breuillard and Gamburd in [8].

Theorem 4.3 ([8]). There exists ε ∈ R∗+ and an infinite set of prime numbers P′ such that
for every p ∈ P′ and every generating set {x, y} of SL(2,Z/pZ), the family

Cay(SL(2,Z/pZ), {x±1, y±1})

is an ε-expander.

Let

S1 =

(
0 −1
1 0

)
, S2 =

(
0 1
−1 0

)
and S3 =

(
1 1
0 1

)
.
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It is well-known that SL(2,Z/pZ) = 〈S1, S3〉 = 〈S2, S3〉. The order of S1, S2 is 4, while
the order of S3 in Z/pZ is p. Thus SL(2,Z/pZ) is also generated by one of the following
sets: {S1, S1S3}, {S1, S3S1}, {S2, S2S3}, {S2, S3S2} . Where

S1S3 =

(
0 −1
1 1

)
, S3S1 =

(
1 −1
1 0

)
,

S2S3 =

(
0 1
−1 −1

)
, and S3S2 =

(
−1 1
−1 0

)
.

Note that the orders of S1S3, S3S1, S2S3, and S3S2 are respectively 6, 6, 3 and 3. With
the above notation, we have the following conclusion.

Corollary 4.4. Let

A1 = {S±1
1 , S1S3, S

−1
3 S−1

1 }, A2 = {S±1
1 , S3S1, S

−1
1 S−1

3 },
A3 = {S±1

2 , S2S3, S
−1
3 S−1

2 }, and A4 = {S±1
2 , S3S2, S

−1
2 S−1

3 }.

There exist sets Pa
i of prime numbers such that {Cay(SL(2,Z/pZ), Ai); p ∈ Pa

i } is an
expander family for all 1 ≤ i ≤ 4.

Let B1 = {S1, S1S3}, by Corollaries 4.2 and 4.4 we directly deduce that there exists
a set P′ of prime numbers such that {Cay(SL(2,Z/pZ), B∗1); p ∈ P′} is an expander
family. Using Theorem 1.1, we can easily deduce that {Φ̃(SL(2,Z/pZ), B1); p ∈ P′} is
an expander family. By the same analogy, we obtain the following.

Corollary 4.5. Let

B1 = {S1, S1S3}, B2 = {S1, S3S1},
B3 = {S2, S2S3}, and B4 = {S2, S3S2}.

There exist sets Pb
i of prime numbers such that {Φ̃(SL(2,Z/pZ), Bi); p ∈ Pb

i} is an
expander family for all 1 ≤ i ≤ 4.

In a similar fashion, many other G-graph families on the special linear group
SL(2,Z/qZ) can be constructed.

5 New expander families of G-graphs
In this section, we present a method for constructing a family of Cayley graphs from
another given family by rearrangement of edges in such a way to almost maintain the same
expansion ratio. Consequently, we prove that if the family of Cayley graphs
{Cay(Gi, {s±1

1 , s±1
2 }); i ∈ N+} is an expander, then so is the family of Cayley graphs

{Cay(Gi, {s±1
1 , s1s2, s

−1
2 s−1

1 }); i ∈ N+}. Then using Theorem 1.1, several expander
families of G-graphs are constructed. But first we need to introduce more notation.

Remark 5.1. Let Cay(G,S) be a Cayley graph and let H ′ ⊆ H ⊆ G. Let s ∈ S, we
denote by Ns(H) and Ns(H)(H ′) the set of vertices of Cay(G,S) that are defined in the
following way:

i. Ns(H) = sH ∩ H̄,
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ii. Ns(H)(H ′) = sH ′ ∩ H̄.

Next, we start by the following simple lemma.

Lemma 5.2. Let Cay(G,S) be a Cayley graph, where S = {s±1
1 , . . . , s±1

k }. Let H ⊆ G,
then

|∂H(Cay(G,S))| = 2
∑

i|o(si)>2

|Nsi(H)|+
∑

i|o(si)=2

|Nsi(H)| =
∑

1≤i≤k

|Ns±1
i

(H)|.

Proof. Let x, y ∈ H such that y = six for some si ∈ S, then x = s−1
i y. Thus the

number of edges in the subgraph H of G that corresponds to si is equal to that of s−1
i and

|Nsi | = |Ns−1
i
|. It is easy to see that: |∂H(Cay(G,S))| =

∑
1≤i≤k |Ns±1

i
(H)| and the

proof is complete.

Example 5.3. Let (Z/nZ,+, 0), n ≥ 10 and S = {±1,±2}. Then Cay(Z/nZ, S) is 4-
regular multigraph on n vertices. LetH be a subgraph of Cay(Z/nZ, S) such that V (H) =
{1, 2, 3, 7}. Let s1 = +1 and s2 = +2. Then Ns1(H) = {4, 8}, Ns−1

1
(H) = {0, 6},

Ns2(H) = {4, 5, 9}, and Ns−1
2

(H) = {0, 5, n− 1}. Thus

|∂H(Cay(Z/nZ, S))| = 2
(
|Ns1(H)|+ |Ns2(H)|

)
= 10.

Next, we shall show that it is possible to construct an expander family of Cayley graphs
from another one by switching some of its edges.

Corollary 5.4. Let {Cay(Gi, {s±1
1 , s±1

2 }); i ∈ N+} be an expander family. If o(s1),
o(s2), and o(s1s2) > 2, then {Cay(Gi, {s±1

1 , s1s2, s
−1
2 s−1

1 }); i ∈ N+} is also an ex-
pander family.

Proof. Let V (H) = {x1, . . . , xt} ∈ G. Define ∂′H , ∂′′H to be the sets of emanat-
ing edges from V (H) in the multigraphs Cay(Gi, {s±1

1 , s±1
2 }) and Cay(Gi, {s±1

1 , s1s2,
s−1

2 s−1
1 }) respectively. By Lemma 5.2, we have:

|∂′H| = 2|Ns1(H)|+ 2|Ns2(H)|, and (1)
|∂′′H| = 2|Ns1(H)|+ 2|Ns1s2(H)|. (2)

Let y ∈ Ns2(H), y = s2x for some x ∈ H .

i. If s1y /∈ H , then s1s2x /∈ H and s1s2x ∈ Ns1s2(H).

ii. And if s1y ∈ H , then s1s2x ∈ H .

Let H1 and H2 be the set of vertices of H defined as follows:

H1 = {x ∈ H/s2x /∈ H and s1s2x /∈ H},
H2 = {x ∈ H/s2x /∈ H and s1s2x ∈ H}.

From equalities (1) and (2), we have

2|Ns1(H)|+ 2|Ns2(H)(H1)|+ 2|Ns2(H)(H2)| = |∂′H|,
2|Ns1(H)|+ 2|Ns1s2(H)(H1)|+ 2|Ns1s2(H)(H2)| ≤ |∂′′H|.
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From the definition of H2, we have |Ns1s2(H)(H2)| = 0, then

2|Ns1(H)|+ 2|Ns1s2(H)(H1)| ≤ |∂′′H|.

Therefore, it holds that

2|Ns1(H)|+ 4|Ns1s2(H)(H1)| − 2|Ns2(H)(H1)| − 2|Ns2(H)(H2)| ≤ 2|∂′′H| − |∂′H|.

From the definition of H1, we have |Ns1s2(H)(H1)| = |Ns2(H)(H1)| and similarly from
the definition of H2, we have |Ns2(H)(H2)| = |Ns−1

1
(H) ∩Ns2(H)|. Thus,

2|Ns1(H)|+ 2|Ns2(H)(H1)| − 2|Ns−1
1

(H) ∩Ns2(H)| ≤ 2|∂′′H| − |∂′H|.

Noticing that
|Ns−1

1
(H) ∩Ns2(H)| ≤ |Ns−1

1
(H)| = |Ns1(H)|,

then
2|Ns2(H)(H1)| ≤ 2|∂′′H| − |∂′H|.

Finally, we obtain

0 < ε ≤ |∂
′H|

2|H|
≤ |∂

′′H|
|H|

.

Remark 5.5. Note that in general {Cay(Gi, {s±1
1 , s±1

2 }); i ∈ N+} and {Cay(Gi, {s±1
1 ,

s1s2, s
−1
2 s−1

1 }); i ∈ N+}may be not isomorphic. An example of this situation is given by
the dihedral group D2i which is defined earlier as follows:

D2i =
〈
s, f | s2 = f i = e, sf = f−1s

〉
.

Let s1 = s and s2 = f , then S = {s±1
1 , s±1

2 } = {s, f±1} and L = {s±1
1 , s1s2, s

−1
2 s−1

1 } =
{s, sf}. Clearly, the 3-regular Cay(D2i, {s±1

1 , s±1
2 }) is not isomorphic to the 2-regular

multigraph Cay(D2i, {s±1
1 , s1s2, s−1

2 s−1
1 }).

The next theorem is Theorem 4.4.2 in [16].

Theorem 5.6 ([16]). Let P be the set of all prime numbers, then {Cay(PSL(2,Z/pZ),
{S±1

2 , S±1
3 }); p ∈ P} is an expander family.

As a consequence, we have the following.

Corollary 5.7. Let P be the set of all prime numbers, then {Cay(PSL(2,Z/pZ); {S±1
2 ,

S2S3, S
−1
3 S−1

2 }); p ∈ P} is an expander family.

Corollary 5.8. Let P be the set of all prime numbers, then {PSL(2,Z/pZ); p ∈ P} is a
Cay-expander family.

Remark 5.9. The order of S2 and S2S3 are 4 and 3 respectively. Let L = {S2, S2S3}
and W = {S2, S

2
2 , S2S3}, then we see that max{|L∗|, |W ∗|} ≤ 7. Using Corollaries 4.2

and 5.7, we deduce that {Cay(PSL(2,Z/pZ), L∗}); p ∈ P} and {Cay(PSL(2,Z/pZ),
W ∗}); p ∈ P} are all expander families. Now by Theorem 1.1, we are able to directly
construct several expander families of G-graphs.

Thus, we can conclude the following.
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Theorem 5.10. Let P be the set of all prime numbers. Then the G-graphs families given
by

1.
{

Φ̃(PSL(2,Z/pZ), {S2, S2S3}); p ∈ P
}
,

2.
{

Φ̃(PSL(2,Z/pZ), {S2, S
2
2 , S2S3}); p ∈ P

}
.

are expanders.

Remark 5.11.

1. Using Corollary 2.9, it is easy to check that the first expander family given in Theo-
rem 5.10 is formed of simple graphs, while the second one is not. By Proposition 2.6,
we also deduce that the multigraphs in both families are semiregular; in otherwords
the above two expander families are irregular.

2. Each {Cay(Gi, S
∗
i ); i ∈ N+} expander family enables us to construct several ex-

pander families of G-graphs depending on the choice of Si in S∗i with the possibility
that some of these families may be isomorphic. For example, the following expander
families {Φ̃(PSL(2,Z/pZ), {S2, S

−1
3 S−1

2 }); p ∈ P}, {Φ̃(PSL(2,Z/pZ), {S−1
2 ,

S2S3}); p ∈ P
}

, and {Φ̃(PSL(2,Z/pZ), {S−1
2 , S−1

3 S−1
2 }); p ∈ P} are all isomor-

phic to {Φ̃(PSL(2,Z/pZ), {S2, S2S3}); p ∈ P
}

. Similarly, the expander families
{Φ̃(PSL(2,Z/pZ), {S2, S

2
2 , S

−1
3 S−1

2 }); p ∈ P}, {Φ̃(PSL( 2,Z/pZ), {S−1
2 , S2

2 ,
S2S3}); p ∈ P}, and {Φ̃(PSL(2,Z/pZ), {S−1

2 , S2
2 , S

−1
3 S−1

2 }); p ∈ P} are all
isomorphic to {Φ̃(PSL( 2,Z/pZ), {S2, S

2
2 , S2S3}); p ∈ P}.

Table 2: Comparison of some graph invariants between Cay(G,S∗) and Φ̃(G,S) for S =
L and S = W .

Cay(G,L∗) Φ̃(G,L)

Order |G|
∑

s∈S
|G|
o(s) = 7

12 |G|

Degree 5-regular multigraph d(u) = 4 for all u ∈ VS2

d(v) = 3 for all v ∈ VS2S3

Size 5
2 |G| |G|

Cay(G,W ∗) Φ̃(G,W )

Order |G| 13
12 |G|

Degree 6-regular multigraph d(u) = 8 for all u ∈ VS2

d(v) = 6 for all v ∈ VS2S3

d(w) = 4 for all w ∈ VS2
2

Size 3|G| 3|G|

3. Let G be the projective special linear group, that is G = PSL(2,Z/pZ). In Table 2,
we compare the order, the degree, and the size of the following expander family of
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Cayley graphs {Cay(G,L∗), p ∈ P} (resp. {Cay(G,W ∗), p ∈ P}) with their corre-
sponding ones in the G-graphs family {Φ̃(G,L); p ∈ P} (resp. {Φ̃(G,W ); p ∈ P})
(see Theorem 5.10). Form the preceding table, it is easy to see that the infinite ex-
pander family of G-graphs Φ̃(G,L) is sparser than the original expander family of
the 4-regular graphs Cay(G,L±1) and the 5-regular graphs Cay(G,L∗). The same
can be said concerning the infinite expander family of G-graphs Φ̃(G,W ) and the
Cayley graph one Cay(G,W ∗).

We close this section by the following corollary which can be easily obtained by using
Theorem 5.10 and Corollary 3.6.

Corollary 5.12. Let P be the set of all prime numbers. Then the family of G-graphs given
by

{ ˜̃Φ(PSL(2,Z/pZ), {S2, S
2
2 , S2S3}); p ∈ P}

is an expander family.
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Abstract

The modified Hosoya polynomial of double weighted graphs, i.e. edge and vertex
weighted graphs, is introduced that enables derivation of closed expressions for Hosoya
polynomial of some special graphs including unicyclic graphs. Furthermore, the Hosoya
polynomial is given as a sum of edge contributions generalizing well known analogous
results for the Wiener number. A linear algorithm for computing the Hosoya polynomial
on cactus graphs is provided. Hosoya polynomial is extensively studied in chemical graph
theory, and in particular its weighted versions have interesting applications in theory of
communication networks.

Keywords: Wiener number, Hosoya polynomial, Wiener polynomial, edge contributions, communica-
tion network, cactus graph, linear algorithm.
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1 Introduction
The Hosoya polynomial was first studied by Hosoya [12], and later introduced indepen-
dently under the name Wiener polynomial [20], perhaps because of its property that the
first derivative of the polynomial evaluated at x = 1 equals the Wiener number. The name
Hosoya-Wiener polynomial may be a good compromise [25, 26], however the majority
of researchers nowadays use the term Hosoya polynomial. The main advantage of the
Hosoya polynomial is that it contains a wealth of information about distance based invari-
ants. Besides the above mentioned relation to the Wiener number, natural relations to other
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indices are known including the hyper-Wiener index [3] and Tratch-Stankovich-Zefirov
index [1, 10]. The Hosoya polynomial has been investigated on many special classes of
graphs, and vast literature includes some very recent studies, for example [4, 7, 14, 16].

The Hosoya polynomial generalizes nicely to the weighted graphs, as noted already in
[25]. It seems that many properties of the polynomial remain valid in the weighted case,
starting with the relations to the weighted Wiener number and hyper-Wiener index [25].
It may be interesting to note that the Wiener number, the polynomial and the correspond-
ing generalizations also have natural applications in theory of communication networks,
because the distance properties of a graph are of central importance there [6, 8, 18, 24].
In [26], a recursive formula for the Hosoya polynomial is derived yielding a linear time
algorithm for computing the polynomial on trees. A generalization to cactus graphs was
left as an open problem in [26]. The main motivation for this work was to design a linear
algorithm for the Hosoya polynomial on double weighted cactus graphs. To achieve the
main objective, we provide some auxiliary structural results that may be of independent
interest, for example we show how the polynomial of a graph with cut edge can be ex-
pressed in terms of certain polynomials of the subgraphs (Lemma 4.1). Analogous results
are given for graphs with cut vertex (Lemma 4.4) and for graphs generalizing unicyclic
graphs (Lemma 5.1). As a related result that may be of independent interest, we show how
the Hosoya polynomial can be expressed in terms of edge-contributions. Again, this may be
of particular importance in theory of communications, as the edge contributions are under
some natural assumptions directly related to communication load of edges (i.e. communi-
cation links). Finally, we outline a linear algorithm for computing the Hosoya polynomial
on double weighted cactus graphs. More precisely, our algorithm is linear in the number of
basic operations on polynomials i.e. addition and multiplication of polynomials.

The rest of the paper is organized as follows. In the next two sections some basic defini-
tions including the definition of Hosoya polynomial are recalled. In Section 4, the Hosoya
polynomials of some special graphs are calculated. In Section 5, cycle-like graphs are con-
sidered. For later use, the “modified Hosoya polynomial” of two variables is introduced.
In Section 6, the Hosoya polynomial is expressed in terms of edge contributions. In Sec-
tion 7, the algorithm for calculating the Hosoya polynomial is outlined in some details and
its linear time complexity is shown.

2 Definitions
A double weighted graph G = (V,E,w, λ) is a combinatorial object consisting of an
arbitrary set V = V (G) of vertices, a set E = E(G) of unordered pairs {u, v} = uv = e
of distinct vertices of G called edges, and two weighting functions, w and λ. The weight
function w : V (G) 7→ IR+ assigns positive real numbers (weights) to vertices and the
distance function λ : E(G) 7→ IR+ assigns positive real numbers (lengths) to edges. The
order and size of G are n = |V (G)| and m = |E(G)|, respectively.

A path P between u and v is a sequence of distinct vertices u = vi, vi+1, . . . , vk−1,
vk = v such that each pair vlvl+1 is connected by an edge. The length of the path P is the
sum of the lengths of its edges,

`(P ) =

k−1∑
l=i

λ(vlvl+1).

The distance dG(u, v), or simpler d(u, v), between vertices u and v in graphG is the length
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of a shortest path between u and v. If there is no such path, we write d(u, v) = ∞. The
diameter of a graph G is the maximal distance in G, D(G) = maxu,v∈V (G) dG(u, v).

A graph G is connected if d(u, v) <∞ for any pair of vertices u, v ∈ V (G). A vertex
v is a cut vertex if after removing v and all edges incident to it the resulting graph is not
connected. A graph without a cut vertex is called nonseparable. A block is a maximal
nonseparable graph. Here, a cycle is an induced subgraph which is connected and every
vertex is of degree two. A cactus is a graph in which every block of three or more vertices
is a cycle. We also can say that cactus is a graph in which every edge is a part of at most
one cycle.

The weighted Wiener number of a weighted connected graph G is defined as

W (G) =
∑

{u,v}⊆V (G)

w(u)w(v)d(u, v).

This is obviously a generalization of the usual definition of (unweighted) Wiener number,
the sum of distances over all unordered pairs of vertices of G. The definition also general-
izes the definition of the Wiener number for vertex-weighted graphs as used in [13]. Let us
only mention that the Gutman index or the Schultz index of the second kind [9], where the
weights of vertices are their degrees, is listed in [15] as an example of weighted versions of
the Wiener index.

3 The Hosoya polynomial
A notion closely related to the Wiener number is the Hosoya polynomial of a graph G
which is defined as

H(G, x) =
∑

u,v∈V (G)

xd(u,v), (3.1)

where the sum runs over all unordered pairs of vertices u, v ∈ V (G). This definition,
which is used for example in [11], slightly differs from the definition used by Hosoya [12]:

Ĥ(G, x) =
∑

{u,v}⊆V (G)

xd(u,v). (3.2)

Obviously, H(G, x) = Ĥ(G, x) + |V (G)|, because in (3.2) the sum runs over all
unordered pairs {u, v} of distinct vertices (u, v ∈ V (G), u 6= v), while in (3.1) u and v
need not be distinct.

The Hosoya polynomial of a weighted graph G is defined as

Ĥ(G, x) =
∑

{u,v}⊆V (G)

w(u)w(v)xd(u,v), (3.3)

where the sum runs over all unordered pairs {u, v} of distinct vertices (u, v ∈ V (G),
u 6= v), as in definition (3.2). In the case when all weights of edges and vertices equal 1,
we get the Hosoya polynomial as usually defined for unweighted graphs.

Remark 3.1. If G is a graph with one vertex and no edges, G = {v}, we define

Ĥ({v}, x) := 0. (3.4)
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Note that Ĥ(G, x) may not be a polynomial if edge lengths are allowed to be arbi-
trary real numbers. Obviously, if positive integers are used for edge lengths, the function
Ĥ(G, x) is a polynomial. Hence, with appropriate scaling factor, we can always consider
Ĥ(G, x) to be a polynomial, for any model using rational edge lengths.

The Hosoya polynomial has many interesting properties [10, 12, 25], perhaps the most
interesting of them is that its derivative at 1 equals the Wiener number.

For a connected graph G with more than one vertex, denote the modified Hosoya
polynomial by

M(G, x) =
∑

{u,v}⊆V (G)

d(u, v)w(u)w(v)xd(u,v). (3.5)

Then clearly,

M(G, x) = x · d
dx
Ĥ(G, x), and Ĥ(G, x) =

∫ x

0

M(G, t)

t
dt.

Later we will use the contributions of a vertex to the Hosoya polynomial. More pre-
cisely, we denote the contribution of all paths from a fixed vertex a to all vertices of some
subgraph H of G (it is also possible a ∈ H) by

Ĥa(H,x) =
∑

v∈V (H)

w(a)w(v)xd(a,v) = w(a)
∑

v∈V (H)

w(v)xd(a,v) (3.6)

and

Ma(H,x) =
∑

v∈V (H)

d(a, v)w(a)w(v)xd(a,v) = w(a)
∑

v∈V (H)

d(a, v)w(v)xd(a,v).

Obviously,
Ĥa({a}, x) = w(a)2, Ma({a}, x) = 0

and

Ĥ(G, x) =
1

2

∑
a∈V (G)

(
Ĥa(G, x)− w(a)2

)
.

Remark 3.2. Note that Ĥa(G, x) may be regarded as a natural generalization of “partial
Wiener polynomial” Ha(G, x) used by Došlić [5] on unweighted graphs. More precisely,

Ha(G, x) =
∑

v∈V (G),v 6=a

w(a)w(v)xd(a,v) = Ĥa(G, x)− w(a)2 . (3.7)

4 Auxiliary results
Following the idea of [17], we calculate the Hosoya polynomial of some special examples
of weighted graphs from the Hosoya polynomials of the given subgraphs. For later refer-
ence, auxiliary polynomials Ĥa(G, x), i.e. the contributions of all paths from fixed vertex
a to all vertices of G, are also explicitly evaluated. Until further notice, the subgraphs
considered are assumed to have at least one edge.
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Lemma 4.1. Let Ga and Gb be disjoint rooted graphs with roots a and b respectively, and
let G be a disjoint union of Ga and Gb by the edge e = ab, see Figure 1. Then the Hosoya
polynomial of G equals to

Ĥ(G, x) = Ĥ(Ga, x) + Ĥ(Gb, x) +
1

w(a)w(b)
Ĥa(Ga, x) Ĥb(Gb, x)x

λ(e)

and

Ĥa(G, x) = Ĥa(Ga, x) +
w(a)

w(b)
Ĥb(Gb, x)x

λ(e).

Figure 1: A graph with a bridge.

Proof.

Ĥ(G, x) =
∑

{u,v}⊆V (G)

w(u)w(v)xd(u,v) =
∑

{u,v}⊆V (Ga)

w(u)w(v)xd(u,v) +

+
∑

{u,v}⊆V (Gb)

w(u)w(v)xd(u,v) +
∑

u∈V (Ga)
v∈V (Gb)

w(u)w(v)xd(u,v)

It is obvious that first two sums equal to Ĥ(Ga, x) and Ĥ(Gb, x), respectively. Further-
more, observe that

1

w(a)
Ĥa(Ga, x) =

∑
u∈V (Ga)

w(u)xd(u,a),

1

w(b)
Ĥb(Gb, x) =

∑
v∈V (Gb)

w(v)xd(b,v),

and
1

w(a)
Ĥa(Ga, x) ·

1

w(b)
Ĥb(Gb, x) =

∑
u∈V (Ga)
v∈V (Gb)

w(u)w(v)xd(u,a)+d(b,v).
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Thus

xλ(e) · 1

w(a)
Ĥa(Ga, x) ·

1

w(b)
Ĥb(Gb, x) =

∑
u∈V (Ga)
v∈V (Gb)

w(u)w(v)xd(u,v),

since

d(u, a) + λ(e) + d(b, v) = d(u, v).

Similarly,

Ĥa(G, x) = w(a)
∑
v∈G

w(v)xd(a,v) =

= w(a)
∑
v∈Ga

w(v)xd(a,v) + w(a)
∑
v∈Gb

w(v)xd(a,v) =

= Ĥa(Ga, x) + w(a)
1

w(b)
Ĥb(Gb, x)x

λ(e).

Example 4.2. Let Gb = {b}, Ga = {a} and G = {a, b}∪ab (see Figure 2, left). From the
definition (3.3) of the Hosoya polynomial it follows Ĥ(G, x) = w(a)w(b)xλ(ab). On the
other hand, using Lemma 4.1 we get (the initial values for vertices a and b are determined
as in (3.4)):

Ĥ(G, x) = Ĥ(Ga, x) + Ĥ(Gb, x) +
1

w(a)w(b)
Ĥa(Ga, x) Ĥb(Gb, x)x

λ(ab) =

= 0 + 0 +
1

w(a)w(b)
w(a)2w(b)2xλ(ab).

Figure 2: A graph G with two vertices (left), a rooted graph G with a bridge (right).

Example 4.3. Let Gb = {b} and Ga be an arbitrary rooted graph, such that b /∈ V (Ga).
Let G be the rooted graph G = Ga ∪ {b} ∪ ab (see Figure 2, right). Using Lemma 4.1 and
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equation (3.4)

Ĥ(G, x) = Ĥ(Ga, x) + Ĥ(Gb, x) +
1

w(a)w(b)
Ĥa(Ga, x) Ĥb(Gb, x)x

λ(ab) =

= Ĥ(Ga, x) + 0 +
1

w(a)w(b)
Ĥa(Ga, x)w(b)

2 xλ(ab) =

= Ĥ(Ga, x) + w(a)w(b)xλ(ab) + w(b)
∑

v∈V (Ga)
v 6=a

w(v)xd(v,a)+λ(ab).

Lemma 4.4. Let G1 and G2 be graphs with one common vertex a and let G1 − a and
G2 − a be disjoint. If G = G1 ∪G2 (see Figure 3), the Hosoya polynomial of the graph G
equals to

Ĥ(G, x) = Ĥ(G1, x) + Ĥ(G2, x) +

+
1

w(a)2

(
Ĥa(G1, x)− w(a)2

)(
Ĥa(G2, x)− w(a)2

)
and

Ĥa(G, x) = Ĥa(G1, x) + Ĥa(G2, x)− w(a)2.

Figure 3: Two graphs with a common vertex.

Proof. Similarly to the proof of Lemma 4.1, we have

Ĥ(G, x) =
∑

{u,v}⊆V (G)

w(u)w(v)xd(u,v) =

=
∑

{u,v}⊆V (G1)

w(u)w(v)xd(u,v) +
∑

{u,v}⊆V (G2)

w(u)w(v)xd(u,v) +

+
∑

u∈V (G1)
v∈V (G2)

w(u)w(v)xd(u,a)+d(a,v) −
∑

u∈V (G1)

w(u)w(a)xd(u,a) −

−
∑

v∈V (G2)

w(a)w(v)xd(a,v) + w(a)2 =
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= Ĥ(G1, x) + Ĥ(G2, x) +

+
Ĥa(G1, x)

w(a)
· Ĥa(G2, x)

w(a)
− Ĥa(G1, x)− Ĥa(G2, x) + w(a)2 =

= Ĥ(G1, x) + Ĥ(G2, x) +
1

w(a)2

(
Ĥa(G1, x)− w(a)2

)(
Ĥa(G2, x)− w(a)2

)
.

We used the fact that, because G1 and G2 share the vertex a,

∑
u∈V (G1)
v∈V (G2)

=
∑

u∈V (G1)
v∈V (G2)
u6=v

+
∑

u=v=a

.

The second equation holds because

Ĥa(G, x) =
∑

v∈V (G)

w(a)w(v)xd(a,v) =

=
∑

v∈V (G1)

w(a)w(v)xd(a,v) +
∑

v∈V (G2)

w(a)w(v)xd(a,v) − w(a)2 =

= Ĥa(G1, x) + Ĥa(G2, x)− w(a)2.

Remark 4.5. The statement of Lemma 4.4 is a generalization of Theorem 2.1 from [4]
for the case when two double weighted connected graphs G1 and G2 are point-attached to
obtain G. However, it is easy to see that Lemma 4.4 can be generalized to the general case
with any finite number of graphs. As the proof is short, we write and prove the following
theorem for completeness of presentation.

Theorem 4.6. Let Gi be graphs with one common vertex a and let Gi − a be disjoint. If
G =

⋃n
i=1Gi, the Hosoya polynomial of the graph G equals to

Ĥ(G, x) =

n∑
i=1

Ĥ(Gi, x) +

+

n−1∑
i=1

n∑
j=i+1

1

w(a)2

(
Ĥa(Gi, x)− w(a)2

)(
Ĥa(Gj , x)− w(a)2

)
(4.1)

and

Ĥa(G, x) =

n∑
i=1

Ĥa(Gi, x)− (n− 1)w(a)2.

Proof. For n = 2 the result follows from Lemma 4.4, and for arbitrary n the result follows
by induction. Suppose the equation (4.1) is valid for n − 1, let G0 =

⋃n−1
i=1 Gi and G =



T. Novak et al.: The Hosoya polynomial of double weighted graphs 449

G0 ∪Gn. Then, using Lemma 4.4,

Ĥ(G, x) = Ĥ(G0, x) + Ĥ(Gn, x) +

+
1

w(a)2

(
Ĥa(G0, x)− w(a)2

)(
Ĥa(Gn, x)− w(a)2

)
=

=

n−1∑
i=1

Ĥ(Gi, x) + Ĥ(Gn, x) +

+

n−2∑
i=1

n−1∑
j=i+1

1

w(a)2

(
Ĥa(Gi, x)− w(a)2

)(
Ĥa(Gj , x)− w(a)2

)
+

+
1

w(a)2

(( n−1∑
i=1

Ĥa(Gi, x)
)
− (n− 2)w(a)2 − w(a)2

)(
Ĥa(Gn, x)− w(a)2

)
=

=

n∑
i=1

Ĥ(Gi, x) +

n−2∑
i=1

n−1∑
j=i+1

1

w(a)2

(
Ĥa(Gi, x)− w(a)2

)(
Ĥa(Gj , x)− w(a)2

)
+

+

n−1∑
i=1

1

w(a)2

(
Ĥa(Gi, x)− w(a)2

)(
Ĥa(Gn, x)− w(a)2

)
=

=

n∑
i=1

Ĥ(Gi, x) +

n−1∑
i=1

n∑
j=i+1

1

w(a)2

(
Ĥa(Gi, x)− w(a)2

)(
Ĥa(Gj , x)− w(a)2

)
and

Ĥa(G, x) = Ĥa(G0, x) + Ĥa(Gn, x)− w(a)2 =

=

n−1∑
i=1

Ĥa(Gi, x)− (n− 2)w(a)2 + Ĥa(Gn, x)− w(a)2 =

=

n∑
i=1

Ĥa(Gi, x)− (n− 1)w(a)2 .

5 Cycle-like and unicyclic graphs
We now consider the case when the specific vertices a1, a2, . . . , an in G are vertices of a
cycle.

Lemma 5.1. LetGa1 , Ga2 , . . . , Gan be disjoint rooted graphs and denote byGC the union
ofGa1 , Ga2 , . . . , Gan , joined by the edges a1a2, a2a3, . . . , an−1an and ana1, see Figure 4.
In this case the Hosoya polynomial of GC equals to

Ĥ(GC , x) =

n∑
i=1

Ĥ(Gai , x) +

+

n−1∑
i=1

n∑
j=i+1

1

w(ai)w(aj)
Ĥai(Gai , x) · Ĥaj (Gaj , x) · xd(ai,aj) (5.1)
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and

Ĥai(G
C , x) = Ĥai(Gai , x) +

n∑
j=1
j 6=i

w(ai)

w(aj)
Ĥaj (Gaj , x) · xd(ai,aj)

for every i = 1, 2, . . . , n.

Figure 4: A cycle-like graph GC .

Remark 5.2. In Lemma 5.1, the graph GC can be any connected graph with a cycle such
that all vertices a1, a2, . . . , an of the cycle C are cut-vertices, and the Gai can be any
subgraphs. Clearly, this includes as a special case the unicyclic graphs.

Proof of Lemma 5.1. Following the idea of the proof of Lemma 4.1, we write

Ĥ(GC , x) =
∑

{u,v}⊆V (G)

w(u)w(v)xd(u,v) =

=

n∑
i=1

∑
{u,v}⊆V (Gai

)

w(u)w(v)xd(u,v) +

n−1∑
i=1

n∑
j=i+1

∑
u∈V (Gai

)

v∈V (Gaj
)

w(u)w(v)xd(u,v) =

=

n∑
i=1

Ĥ(Gai , x) +

n−1∑
i=1

n∑
j=i+1

1

w(ai)
Ĥai(Gai , x) · xd(ai,aj) ·

1

w(aj)
Ĥaj (Gaj , x)

and

Ĥai(G
C , x) =

∑
v∈V (G)

w(ai)w(v)x
d(ai,v) =

=
∑

v∈V (Gai
)

w(ai)w(v)x
d(ai,v) +

n∑
j=1
j 6=i

∑
v∈V (Gaj

)

w(ai)w(v)x
d(ai,aj)+d(aj ,v) =
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= Ĥai(Gai , x) +

n∑
j=1
j 6=i

w(ai)

w(aj)
Ĥaj (Gaj , x) · xd(ai,aj),

as claimed in Lemma 4.1.

Example 5.3. Let C be a cycle on three vertices a, b and c, with edges ab, bc and ca (see
Figure 5). From Lemma 5.1 it follows

Ĥ(C, x) = Ĥ(Ga, x) + Ĥ(Gb, x) + Ĥ(Gc, x) +

+
1

w(a)w(b)
Ĥa(Ga, x)Ĥb(Gb, x)x

λ(ab) +

+
1

w(b)w(c)
Ĥb(Gb, x)Ĥc(Gc, x)x

λ(bc) +
1

w(c)w(a)
Ĥc(Gc, x)Ĥa(Ga, x)x

λ(ca) =

= w(a)w(b)xλ(ab) + w(b)w(c)xλ(bc) + w(c)w(a)xλ(ca).

The result is the same as expected, from the definition (3.3). A similar reasoning applies to
larger cycles.

Figure 5: A cycle graph C.

Recall that our original motivation was to design a linear algorithm for calculating the
Hosoya polynomial of a cactus graph. Observe that from equation (5.1) it appears that a
double sum needs to be calculated which yields quadratic complexity. Therefore, we are
going to consider this case more carefully and provide an alternative expression that will
later be used to show the existence of a linear algorithm.

First, we will consider path-like graphs, and introduce, for technical reasons, polyno-
mials of two variables that will in turn allow a natural generalization to handle cycle-like
graphs.

Let GP be a path-like graph, i.e. the union of disjoint graphs Ga1 , Ga2 , . . . , Gan ,
rooted at a1, a2, . . . , an respectively, and joined by the edges a1a2, a2a3, . . . , an−1an. The
Hosoya polynomial Ĥ(GP , x) and the polynomial Ĥan(G

P , x) can be calculated recur-
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sively using Lemma 4.1 (n− 1) times. For such a path-like graph GP , we use the notation

H1 = Ga1 ,

Hj =

j⋃
i=1

Gai ∪ {a1a2, a2a3, . . . , aj−1aj} ,

where GP = Hn. By Lemma 4.1, the Hosoya polynomial and the corresponding polyno-
mials Ĥaj are, for j = 1:

Ĥ(H1, x) = Ĥ(Ga1 , x),

Ĥa1(H1, x) = Ĥa1(Ga1 , x),

and, for j > 1:

Ĥ(Hj , x) = Ĥ(Gaj , x) + Ĥ(Hj−1, x) +

+
1

w(aj)w(aj−1)
Ĥaj (Gaj , x)Ĥaj−1(Hj−1, x)x

λ(aj−1aj),

Ĥaj (Hj , x) = Ĥaj (Gaj , x) +
w(aj)

w(aj−1)
Ĥaj−1

(Hj−1, x)x
λ(aj−1aj) .

The recursion above implies that, given polynomials Ĥ(Gai , x) and Ĥai(Gai , x), i =
1, 2, . . . , n, we need 3(n − 1) additions and 2(n − 1) multiplications (of polynomials) to
obtain all Ĥ(Hi, x) and Ĥai(Hi, x).

From the definition of the graphs Hi and the recursions written above, we also have

Lemma 5.4. For the graphs Hj , j = 2, . . . , n, the following is true

Ĥ(Hj , x) =

j∑
i=1

Ĥ(Gai , x) +

+

j−1∑
i=1

j∑
`=i+1

1

w(ai)w(a`)
Ĥai(Gai , x)Ĥa`(Ga` , x)x

∑`−1
k=i λ(akak+1),

Ĥaj (Hj , x) = Ĥaj (Gaj , x) +

j−1∑
i=1

w(aj)

w(ai)
Ĥai(Gai , x)x

∑j−1
k=i λ(akak+1) .

Proof. Lemma follows directly by the induction on j, using Lemma 4.1 and the recursive
formulae above.

Before generalizing from path-like to cycle-like graphs, we introduce auxiliary poly-
nomials of two variables. For technical reasons, to distinguish the exponents based on the
distance on the path and off the path, i.e. the exponents based on the distance within the
graphs Gai , we introduce a second variable y. For example, assume that a shortest path
from u ∈ V (Gai) to v ∈ V (Gaj ) has distance d(u, v) = d(u, ai) + d(ai, aj) + d(aj , v).
Then the contribution to the auxiliary polynomial is w(u)w(v)xd(u,ai)yd(ai,aj)xd(aj ,v).
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More formally,

Ĥ(Hj , x, y) :=

j∑
i=1

Ĥ(Gai , x) + (5.2)

+

j−1∑
i=1

j∑
`=i+1

1

w(ai)w(a`)
Ĥai(Gai , x)Ĥa`(Ga` , x)y

∑`−1
k=i λ(akak+1),

Ĥaj (Hj , x, y) := Ĥaj (Gaj , x) +

j−1∑
i=1

w(aj)

w(ai)
Ĥai(Gai , x)y

∑j−1
k=i λ(akak+1) .

After the introduction of the new variable y, the recursion formulae become

Ĥ(H1, x, y) = Ĥ(Ga1 , x), (5.3)

Ĥa1(H1, x, y) = Ĥa1(Ga1 , x) (5.4)

for j = 1 and at every step of the recursion we have

Ĥ(Hj , x, y) = Ĥ(Gaj , x) + Ĥ(Hj−1, x) + (5.5)

+
1

w(aj)w(aj−1)
Ĥaj (Gaj , x)Ĥaj−1(Hj−1, x)y

λ(aj−1aj),

Ĥaj (Hj , x, y) = Ĥaj (Gaj , x) +
w(aj)

w(aj−1)
Ĥaj−1(Hj−1, x)y

λ(aj−1aj) . (5.6)

It is obvious that

Ĥ(Hj , x, x) = Ĥ(Hj , x) and Ĥaj (Hj , x, x) = Ĥaj (Hj , x) .

Let GC be a cycle-like graph, i.e. the union of disjoint graphs Ga1 , Ga2 , . . . , Gan ,
rooted at a1, a2, . . . , an respectively, and joined by the edges a1a2, a2a3, . . . , an−1an and
ana1. Denote by L the girth of the cycle C on vertices a1, a2, . . . , an, specifically

L = λ(ana1) +

n−1∑
i=1

λ(aiai+1) .

Define new modified polynomials of two variables of the path-like graph GP as follows

Ĥm(GP , x, y) :=

n∑
i=1

Ĥ(Gai , x) +

+

n−1∑
i=1

n∑
`=i+1

1

w(ai)w(a`)
Ĥ(Gai , x)Ĥ(Ga` , x)y

min{
`−1∑
k=i

λ(akak+1),L−
`−1∑
k=i

λ(akak+1)}
,

Ĥm
an(G

P , x, y) := Ĥan(Gan , x) +

+

n−1∑
i=1

w(an)

w(ai)
Ĥai(Gai , x)y

min{
n−1∑
k=i

λ(akak+1),L−
n−1∑
k=i

λ(akak+1)}
.

According to Lemma 5.1, the next statement is obvious.
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Proposition 5.5.

Ĥm(GP , x, x) = Ĥ(GC , x) and Ĥm
an(G

P , x, x) = Ĥan(G
C , x) .

Example 5.6. Let GC be a cycle-like graph which is the union of disjoint graphs Ga1 ,
Ga2 , Ga3 and Ga4 and edges a1a2, a2a3, a3a4 and a4a1. We assume that the polynomials
Ĥai(Gai , x) and Ĥ(Gai , x) are given and that λ(a1a2) = 2, λ(a2a3) = 5, λ(a3a4) = 3
and λ(a4a1) = 1 as we see in Figure 6. In this case L = 11. The computations below

Figure 6: A cycle-like graph with given lengths of cycle’s edges.

are following the recursion for the path-like graph and the idea of the separation of the
exponents, and, in addition, we observe that the distances on the path change when the
path is closed to a cycle with the edge a4a1. The base of the recursion is

Ĥa1(H1, x, y) = Ĥa1(Ga1 , x),

Ĥ(H1, x, y) = Ĥ(Ga1 , x) .

Other steps are clearly

Ĥa2(H2, x, y) = Ĥa2(Ga2 , x) +
w(a2)

w(a1)
Ĥa1(H1, x, y)y

2 =

= Ĥa2(Ga2 , x) +
w(a2)

w(a1)
Ĥa1(Ga1 , x)y

2,

Ĥ(H2, x, y) = Ĥ(Ga2 , x) + Ĥ(H1, x, y) +

+
1

w(a2)w(a1)
Ĥa2(Ga2 , x)Ĥa1(H1, x, y)y

2 =

= Ĥ(Ga2 , x) + Ĥ(Ga1 , x) +
1

w(a2)w(a1)
Ĥa2(Ga2 , x)Ĥa1(Ga1 , x)y

2,

Ĥa3(H3, x, y) = Ĥa3(Ga3 , x) +
w(a3)

w(a2)
Ĥa2(h2, x, y)y

5 =

= Ĥa3(Ga3 , x) +
w(a3)

w(a2)
Ĥa2(Ga2 , x)y

5 +
w(a3)

w(a1)
Ĥa1(Ga1 , x)y

7,
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Ĥ(H3, x, y) = Ĥ(Ga3 , x) + Ĥ(H2, x, y) +

+
1

w(a3)w(a2)
Ĥa3(Ga3 , x)Ĥa2(H2, x, y)y

5 =

= Ĥ(Ga3 , x) + Ĥ(Ga2 , x) + Ĥ(Ga1 , x) +

+
1

w(a2)w(a1)
Ĥa1(Ga1 , x)Ĥa2(Ga2 , x)y

2 +

+
1

w(a3)w(a2)
Ĥa3(Ga3 , x)Ĥa2(Ga2 , x)y

5 +

+
1

w(a3)w(a1)
Ĥa3(Ga3 , x)Ĥa1(Ga1 , x)y

7 .

Similarly,

Ĥa4(H4, x, y) = Ĥa4(Ga4 , x) +
w(a4)

w(a3)
Ĥa3(H3, x, y)y

3 =

= Ĥa4(Ga4 , x) +
w(a4)

w(a3)
Ĥa3(Ga3 , x)y

3 +

+
w(a4)

w(a2)
Ĥa2(Ga2 , x)y

8 +
w(a4)

w(a1)
Ĥa1(Ga1 , x)y

10

and

Ĥ(H4, x, y) = Ĥ(Ga4 , x) + Ĥ(H3, x, y) +

+
1

w(a4)w(a3)
Ĥa4(Ga4 , x)Ĥa3(H3, x, y)y

3 =

= Ĥ(Ga4 , x) + Ĥ(Ga3 , x) + Ĥ(Ga2 , x) + Ĥ(Ga1 , x) +

+
1

w(a2)w(a1)
Ĥa1(Ga1 , x)Ĥa2(Ga2 , x)y

2 +

+
1

w(a3)w(a2)
Ĥa3(Ga3 , x)Ĥa2(Ga2 , x)y

5 +

+
1

w(a3)w(a1)
Ĥa3(Ga3 , x)Ĥa1(Ga1 , x)y

7 +

+
1

w(a4)w(a3)
Ĥa4(Ga4 , x)Ĥa3(Ga3 , x)y

3 +

+
1

w(a4)w(a2)
Ĥa4(Ga4 , x)Ĥa2(Ga2 , x)y

8 +

+
1

w(a4)w(a1)
Ĥa4(Ga4 , x)Ĥa1(Ga1 , x)y

10 .

Than the modified polynomials of two variables are

Ĥm
a4(H4, x, y) = Ĥa4(Ga4 , x) +

w(a4)

w(a3)
Ĥa3(Ga3 , x)y

3 +

+
w(a4)

w(a2)
Ĥa2(Ga2 , x)y

3 +
w(a4)

w(a1)
Ĥa1(Ga1 , x)y =



456 Ars Math. Contemp. 15 (2018) 441–466

= Ĥa4(Ga4 , x) +
w(a4)

w(a1)
Ĥa1(Ga1 , x)y +

+
(w(a4)
w(a3)

Ĥa3(Ga3 , x) +
w(a4)

w(a2)
Ĥa2(Ga2 , x)

)
y3

and

Ĥm(H4, x, y) = Ĥ(Ga4 , x) + Ĥ(Ga3 , x) + Ĥ(Ga2 , x) + Ĥ(Ga1 , x) +

+
1

w(a2)w(a1)
Ĥa1(Ga1 , x)Ĥa2(Ga2 , x)y

2 +

+
1

w(a3)w(a2)
Ĥa3(Ga3 , x)Ĥa2(Ga2 , x)y

5 +

+
1

w(a3)w(a1)
Ĥa3(Ga3 , x)Ĥa1(Ga1 , x)y

4 +

+
1

w(a4)w(a1)
Ĥa4(Ga4 , x)Ĥa1(Ga1 , x)y

1 +

+

(
1

w(a4)w(a3)
Ĥa4(Ga4 , x)Ĥa3(Ga3 , x) +

+
1

w(a4)w(a2)
Ĥa4(Ga4 , x)Ĥa2(Ga2 , x)

)
y3 .

Hence, the Hosoya polynomial and the polynomial Ĥa4(G
C , x) are

Ĥ(GC , x) = Ĥm(H4, x, x) and Ĥa4(G
C , x) = Ĥm

a4(H4, x, x) .

Observe that the time complexity of the transformation of a polynomial of two vari-
ables x and y to the polynomial of one variable x (where y → x) is comparable to time
complexity of multiplication of polynomials. Thus, we can conclude:

Theorem 5.7. The Hosoya polynomial of a cycle-like graph can be computed using the
recursion (5.3), (5.4), (5.5), (5.6) in linear time, in the model where addition and multipli-
cation of polynomials are atomic operations.

6 The Hosoya polynomial in terms of edge contributions
It is well-known that the Wiener number can be expressed as a sum of edge contributions,
see for example [19]. Recall, for example, the version for weighted graphs.

Lemma 6.1 ([22]). For a weighted graph G,

W (G) =
∑
e=uv

λ(e) ·
∑
P∗

a,b3e

n∗(a, b, e)

n∗(a, b)
w(a)w(b),

where P ∗a,b 3 e denotes a shortest path between a and b, n∗(a, b) is the number of short-
est paths with endpoints a and b and n∗(a, b, e) is the number of all shortest paths with
endpoints a and b traversing edge e.
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Hence, the quotient n
∗(a,b,e)
n∗(a,b) represents the proportion of all shortest paths between a

in b including e, among all shortest paths between a and b. On a tree, there is a unique
shortest path between any pair of vertices, thus n∗(a, b, e) = n∗(a, b) = 1 for all a, b. If G
is a cactus graph, n

∗(a,b,e)
n∗(a,b) can only have value 1 or 1

2 . Clearly, n
∗(a,b,e)
n∗(a,b) = 1

2 exactly when
a and b are opposite vertices of a cycle and edge e is on this cycle. (More precisely, with
opposite vertices of a cycle we mean that d(a, b) = L/2 where L is the girth of the cycle.)

It may be interesting to note that this formulation has an interesting meaning when
considering the weighted graphs as communication networks [6, 18, 24]. In this case the
Wiener number is interpreted as the total communication traffic in the network, where
naturally the communication between nodes u and v contributes d(u, v)w(u)w(v) (distance
times population sizes of the two nodes). Assuming that all the communication is routed
on the shortest paths and that it is evenly distributed among shortest paths if there are many
of them, the edge contribution corresponds to the communication load on the edge.

Example 6.2. LetG be a communication network represented in Figure 7, where all edges
have lengths 1. There are exactly three shortest paths between vertices u and v. Ratios
indicating the part of the communication load are attached to the edges on the shortest
paths.

u

v

1/3

1/3

1/3

2/3

1/3 1/3

1/3

1/3

Figure 7: The quotients n∗(u,v,e)
n∗(u,v) at edges on all shortest paths between vertices u and v.

As shown in [26], the Hosoya polynomial can be represented as a sum of the contribu-
tions of all shortest paths:

Lemma 6.3 ([26]). For a weighted graph G,

Ĥ(G, x) =
∑

{a,b}⊆V (G)

∑
P∗

a,b

1

n∗(a, b)
w(a)w(b)

∏
e∈P∗

a,b

xλ(e),

where P ∗a,b denotes a shortest path between a and b and n∗(a, b) is the number of all
shortest paths with endpoints a and b.

Representing the Hosoya polynomial in terms of edge contributions is hence somewhat
more complicated: For each path crossing the edge, one needs to know the amount of
traffic (the intensity of the traffic corresponds to 1

n∗(a,b) w(a)w(b)) but also the length of
the paths.
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In case when G is a weighted tree, the Hosoya polynomial was expressed as a sum
of edge contributions and a recursive formula for computing the Hosoya polynomial was
given in [26].

In this section we show that the Hosoya polynomial can be similarly expressed as a
sum of edge contributions on general graphs, and then provide a somewhat more elaborated
expression that holds for cactus graphs.

Lemma 6.4. The modified Hosoya polynomial, defined by (3.5), is a sum of edge contribu-
tions

M(G, x) =
∑

e∈E(G)

λ(e) ·Me(G, x), (6.1)

where Me(G, x) is given by

Me(G, x) =
∑

P∗
u,v3e

n∗(u, v, e)

n∗(u, v)
w(u)w(v)xd(u,v). (6.2)

Here P ∗u,v 3 e denotes a shortest path between u and v including e, n∗(u, v) is the number
of all shortest paths with endpoints u and v and n∗(u, v, e) is the number of all shortest
paths with endpoints a and b including edge e.

Proof. To see this, it is enough to sum up the contribution of each edge to M(G, x) in
two different ways. Each pair of vertices u, v contributes d(u, v)w(u)w(v)xd(u,v) to the
modified Hosoya polynomial. This can be regarded as a contribution of the pair u, v or it
can be divided into n∗(u, v, e)/n∗(u, v) path contributions, which can be further regarded
as a sum of edge contributions along the path. An edge contributes as many times as it
appears on various shortest paths. Hence, one can sum up the lengths of all shortest paths,
or, equivalently, sum up the contributions of all edges.

Let G be a cactus graph. Recall that each edge e of a cactus graph is on at most one
cycle, in other words, either e is not on a cycle or there is a unique cycle C with e ∈ C. On
the other hand, a vertex in a cactus graph can lie on more than one cycle.

In case when the edge e = ab does not lie on a cycle, we can write our graph G
as disjoint union of two graphs, denote them Ga and Gb, connected with edge e = ab
(defined in Lemma 4.1), see Figure 1.

On the other side, when edge e with endpoints a and b lies on a cycle C, we can use
notations from Lemma 5.1, see Figure 4: e is one of the edges named aiai+1 with ai = a
and ai+1 = b,Gai = Ga,Gai+1 = Gb for some i ∈ {1, 2, . . . , n}. We can also say thatGa
is the connected component of G− E(C) with a ∈ G− E(C), where G− E(C) denotes
the graph G without edges of the cycle C.

According to Lemma 4.1 and Lemma 5.1, we can derive the Hosoya polynomials
Ĥ(G, x) and M(G, x) for a cactus graph G as sums of edge contributions.

Theorem 6.5. The modified Hosoya polynomial M(G, x) on a weighted cactus graph G
is a sum of edge contributions

M(G, x) =
∑

e=ab∈E(G)
e not on a cycle

λ(e)
xλ(e)

w(a)w(b)

 x∫
0

Ma(Ga, t)

t
dt

 ·
 x∫

0

Mb(Gb, t)

t
dt

+
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+
∑

e=ab∈E(G)
e on a cycle

λ(e)

K∑
i=0

M∑
j=0

(
1

2

)Nij xd(ai,bj)

w(ai)w(bj)

 x∫
0

Mai(Gai , t)

t
dt

·
 x∫

0

Mbj (Gbj , t)

t
dt

.
In case when e = ab is on a cycle C with girth L and vertices

b = b0, b1, b2, . . . , bM , aK , aK−1, . . . , a1, a0 = a,

we define Nij =

{
1, d(ai, bj) = L/2

0, otherwise.

Proof. As every edge e of a cactus graph G does not lie on a cycle or there is unique cycle
including e, we can discuss separately the two cases.

Case 1: The edge ewith endpoints a and b does not lie on a cycle. ThenG = Ga∪{e}∪Gb
(see Figure 1) and, obviously, n

∗(u,v,e)
n∗(u,v) = 1 for all u ∈ Ga and all v ∈ Gb.

Using the definition (3.6)

Ĥa(Ga, x) · Ĥb(Gb, x) = w(a)w(b)
∑

u∈V (Ga)
v∈V (Gb)

w(u)w(v)xd(u,a)+d(b,v)

and
Ĥa(Ga, x) · Ĥb(Gb, x) · xλ(e)

w(a)w(b)
=

∑
u∈V (Ga)
v∈V (Gb)

w(u)w(v)xd(u,v),

since d(u, a) + λ(e) + d(b, v) = d(u, v). So, the contribution (6.2) of the edge e in Case 1
is equal to

Me(G, x) =
Ĥa(Ga, x) · Ĥb(Gb, x) · xλ(e)

w(a)w(b)
=

=
xλ(e)

w(a)w(b)

 x∫
0

Ma(Ga, t)

t
dt

 ·
 x∫

0

Mb(Gb, t)

t
dt

 .

Case 2: The edge e with endpoints a and b lies on a cycle C with girth L. Let A =
{a = a0, a1, a2, . . . , aK} be the set of vertices of C that are closer to a than to b, i.e.
d(a, ai) ≤ d(b, ai). B = {b = b0, b1, b2, . . . , bM} the set of vertices of C that are closer to
b than to a, i.e. d(b, bi) < d(a, bi).

Clearly, for a pair of vertices ai ∈ A, bj ∈ B the edge e lies on the unique shortest path
between them exactly when d(a, b) = d(a, ai) + λ(e) + d(b, bj) < L/2. Furthermore, e is
on one of the two shortest paths exactly when d(a, b) = d(a, ai) + λ(e) + d(b, bj) = L/2
and is not on a shortest path between ai and bj when d(a, b) < d(a, ai) + λ(e) + d(b, bj).

Denote

Ĥai(Gai , x) =
∑
u∈Gai

w(u)w(ai)x
d(u,ai) = w(ai)

∑
u∈Gai

w(u)xd(u,ai),

i = 0, 1, . . . ,K
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Ĥbj (Gbj , x) =
∑
v∈Gbj

w(bj)w(v)x
d(bj ,v) = w(bj)

∑
v∈Gbj

w(v)xd(bj ,v),

j = 0, 1, . . . ,M.

Since
Ĥai(Gai , x) · Ĥbj (Gbj , x) · xd(ai,bj)

w(ai)w(bj)
=

∑
u∈V (Gai

)

v∈V (Gbj
)

w(u)w(v)xd(u,v),

the contribution (6.2) of the edge e in Case 2 is equal to

Me(G, x) =

K∑
i=0

M∑
j=0

(
1

2

)Nij Ĥai(Gai , x) · Ĥbj (Gbj , x) · xd(ai,bj)

w(ai)w(bj)
=

=

K∑
i=0

M∑
j=0

(
1

2

)Nij xd(ai,bj)

w(ai)w(bj)

 x∫
0

Mai(Gai , t)

t
dt

 ·
 x∫

0

Mbj (Gbj , t)

t
dt

 ,

where

Nij =

{
1, d(ai, bj) = L/2

0, otherwise.

As we mentioned earlier, the case n∗(u,v,e)
n∗(u,v) = 1

2 appears only when u ∈ Gai , v ∈ Gbj and
ai and bj are opposite vertices of a cycle C, such that d(ai, bj) = L/2. In all other cases
n∗(u,v,e)
n∗(u,v) = 1.

7 Linear algorithm
In this section we give some details of the algorithm for computing Hosoya polynomial
of a weighted cactus graph that is based on results provided in previous sections. Before
writing the algorithm outline we recall the skeleton structure of a cactus graph and the
depth first search algorithm. The algorithm and analysis of its time complexity are given in
Subsection 7.2. The section is concluded with an example.

7.1 The structure of cactus graph and DFS algorithm

In the skeleton structure (elaborated for example in [2]) that corresponds to every cactus
graph G = (V (G), E(G)), the vertices are of three types:

• C-vertex is a vertex on a cycle of degree 2,

• G-vertex is a vertex not included in any cycle,

• H-vertex or a hinge is a vertex which is included in at least one cycle and is of
degree ≥ 3.

The depth first search (DFS) algorithm is a well known method for exploring graphs. It
can be used for recognizing cactus graphs providing the data structure (see [17, 21, 22, 23]).
LetGr be a rooted cactus graph with a root r. After running the DFS algorithm, the vertices
of Gr are DFS ordered. The order is given by the order in which DFS visits the vertices.
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(Note that the DFS order of a graph is not unique as we can use any vertex as the starting
vertex (the root) and can visit the neighbors of a vertex in any order. However, here we can
assume that the DFS order is given and is fixed.)

For any vertex v ∈ V (G) we denote by DFN(v) the position of v in the DFS order and
we set DFN(r) = 0. DFN is called the depth first number. Following [22], it is useful to
store the information recorded during the DFS run in four arrays, called the DFS (cactus)
data structure:

• FATHER(v) is the unique predecessor (father) of the vertex v in the rooted tree,
constructed with the DFS.

• ROOT(v) is the root vertex of the cycle containing v i.e. the first vertex of the cycle
(containing v) in the DFS order. If v does not lie on a cycle, then ROOT(v) = v by
definition. We set ROOT(r) = r. (In any DFS order, if DFN(w) < DFN(v) and w
is the root of the cycle containing v and v is the root of another cycle (it is a hinge),
then ROOT(v) = w.)

• For vertices on a cycle (i.e. ROOT(v) 6= v), orientation of the cycle is given by
ORIEN(v) = z, where z is the son of ROOT(v) that is visited on the cycle first. If
ROOT(v) = v, then ORIEN(v) = v.

• IND(v) := |{u | FATHER(u) = v}| is the number of sons of v in the DFS tree.

We omit detailed description of DFS algorithm here, as it is well known, see for exam-
ple [21]. The pseudocode of the DFS algorithm is also written in [17]. Some properties
of the DFS ordered vertices of cactus and the relationship between the definitions of C, G,
H-vertices in a rooted cactus Gr and arrays in the DFS table is described in [17].

In the rest of the paper the following notations are used. For a given cactus graph G
and a vertex v ∈ V (G) let Gv be the rooted induced subgraph of G with the root v. The
set of vertices of Gv is the set V (Gv) = {w ∈ V (G) | DFN(w) ≥ DFN(v)}. Let
u = FATHER(v) and let the edge uv not be an edge of a cycle of G (i.e. ROOT(v) = v).
The graph G̃u is the induced rooted subgraph of G with the root u. The set of vertices of
G̃u is the set V (G̃u) = {w ∈ V (G) | DFN(u) ≤ DFN(w) < DFN(v)}. The sketch of
rooted graphs Gv , G̃u and Gu is shown in Figure 8.

Figure 8: A rooted graph Gu.
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7.2 The algorithm

The linear algorithm consists of three steps. First, the representation of a given weighted
cactus is found, then, in Step 2 the initialization for the recursive algorithm is done and
in the third step, the Hosoya polynomials of certain rooted subgraphs are computed re-
cursively that finally give the Hosoya polynomial of the whole graph. More precisely, in
Step 3 we traverse the DFS tree of the cactus in the reversed DFS order and for each vertex
v compute Ĥv(Gv, x) and Ĥ(Gv, x). The algorithm continues until the last vertex in the
back DFS order is considered, which is the root r of the cactus. The result follows from
the fact that Ĥ(G, x) = Ĥ(Gr, x).

We now give more details of each step.

Step 1: Cactus recognition
Using a DFS algorithm on the rooted cactus G (any vertex chosen for a root) the

data structure of cactus graph can be derived, including arrays DFN(v), FATHER(v),
ROOT(v), ORIEN(v) and IND(v).

Step 2: Initialization
For every vertex v we set

Ĥv(Gv, x) = Ĥv({v}, x) = w(v)2 and Ĥ(Gv, x) = Ĥ({v}, x) = 0.

Step 3: Computation of polynomials Ĥ
Start with v, the last vertex in the DFS order. Let u = FATHER(v).
While v 6= u (i.e. v = u is not the root of G) do (3a) or (3b):

(3a) If the edge e = uv is not an edge of a cycle of G (i.e. ROOT(v) = v):

• If DFN(u) 6= DFN(v)− 1 (i.e. DFN(u) < DFN(v)− 1), there exists rooted
subgraph G̃u (see Figure 8). The algorithm calls itself recursively for the
subgraph G̃u, the rooted subcactus with root u and vertices in DFS table
with DFN(u), . . . ,DFN(v) − 1. We obtain Ĥ(Gu, x) = Ĥ(G̃u, x) and
Ĥu(Gu, x) = Ĥu(G̃u, x).

• After the recursion or when u and v are the sequential vertices in the DFS order,
polynomials Ĥu(Gu, x) and Ĥ(Gu, x) are calculated according to Lemma 4.1:

Ĥ(Gu, x) = Ĥ(Gu, x) + Ĥ(Gv, x) +
1

w(u)w(v)Ĥu(Gu, x)Ĥv(Gv, x)x
λ(uv)

Ĥu(Gu, x) = Ĥu(Gu, x) +
w(u)
w(v) Ĥv(Gv, x)x

λ(uv).

• v = u and u = FATHER(v).

(3b) If the edge e = uv lies on a cycle C (i.e. r = ROOT(v) 6= v):

• We have to read and remember all cycle’s vertices. Denote them by a1, a2, . . . ,
an where a1 = v, an−1 = ORIEN(v) and an = r = ROOT(v).

• If DFN(aj) < DFN(aj−1)− 1, denote by Kaj the rooted subcacti on vertices
with DFN: DFN(aj) ≤ DFN < DFN(aj−1) for j = 2, 3, . . . , n − 1. Re-
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cursively calculate polynomials Ĥ(Kaj , x) and Ĥaj (Kaj , x) and repair poly-
nomials Ĥ(Gaj , x) and Ĥaj (Gaj , x) following Lemma 4.4:

Ĥ(Gaj , x) = Ĥ(Gaj , x) + Ĥ(Kaj , x) +

+ 1
w(aj)2

(
Ĥaj (Gaj , x)− w(aj)2

)(
Ĥaj (Kaj , x)− w(aj)2

)
Ĥaj (Gaj , x) = Ĥaj (Gaj , x) + Ĥaj (Kaj , x)− w(aj)2.

• According to the discussion in Section 5 we calculate Ĥr(Gr, x) and Ĥ(Gr, x)
using details Ĥ(Gaj , x) and Ĥaj (Gaj , x), j = 1, 2, . . . , n.

• u is the vertex with DFN(u) = DFN(ORIEN(v))− 1.

• v = u and u = FATHER(v).

We conclude the subsection summarizing the time complexity. Step 1: It is well-known
that traversing the graph with DFS algorithm and computing arrays DFN(v), FATHER(v),
ROOT(v), ORIEN(v) and IND(v) can be done within O(m) time. Obviously, Step 2
can be computed in O(m) time. In Step 3, existence of implementation that uses O(m)
additions and multiplications of polynomials follows from Lemmata 4.1, 4.4, 5.1, and The-
orem 5.7. Hence we can conclude that the algorithm runs in linear time.

Theorem 7.1. The algorithm for the Hosoya polynomial on a weighted cactus graph (given
in Subsection 7.2) correctly calculates the polynomial, in linear time in the model where
the addition and multiplication of polynomials are atomic operations.

7.3 Example

Example 7.2. Let G be a cactus graph in Figure 9 (high) with representing DFS tree (one
of possibilities) in Figure 9 (low) and its DFS structure in Table 1.

Table 1: The DFS structure of graph G.

v DFN(v) FATHER(v) ROOT(v) ORIEN(v) IND(v)

v1 0 v1 v1 v2 2
v2 1 v1 v1 v2 3
v3 2 v2 v3 v3 0
v4 3 v2 v4 v4 0
v5 4 v2 v1 v2 2
v6 5 v5 v6 v6 1
v7 6 v6 v7 v7 0
v8 7 v5 v1 v2 1
v9 8 v8 v9 v9 0

Starting from the initialization (Step 2) and following the algorithm (Step 3), we obtain

• v = v9, u = v8: Gv9 = {v9}, Gv8 = {v8, v9} ∪ v8v9,

– step 2: Ĥv9(Gv9 , x) = 1, Ĥ(Gv9 , x) = 0,
– step (3a): Ĥv8(Gv8 , x) = x+ 1, Ĥ(Gv8 , x) = x.
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Figure 9: A weighted cactus graph G (high) and its DFS tree (low).

• v = v8, u = v5: v5v8 is on cycle with a1 = v8, a2 = v5, a3 = v2, a4 = v1,

– step (3b): Kv5 = {v5, v6, v7}∪v5v6∪v6v7, Kv2 = {v2, v3, v4}∪v2v3∪v2v4,
– recursively:

Ĥ(Kv5 , x) = 2x3 + 2x2 + x, Ĥv5(Kv5 , x) = 2x3 + 2x2 + 4,

Ĥ(Kv2 , x) = 2x3 + 4x2 + 2x, Ĥv2(Kv2 , x) = 4x2 + 2x+ 4,

– from Lemma 4.4:

Gv5 = {v5, v6, v7, v8, v9} ∪ v5v6 ∪ v6v7 ∪ v5v8 ∪ v8v9,
Gv2 = {v2, v3, v4, v5, v6, v7, v8, v9} ∪ v2v3 ∪ v2v4 ∪ v2v5 ∪ v5v6 ∪

∪ v6v7 ∪ v5v8 ∪ v8v9,
Ĥ(Gv5 , x) = x6 + 2x5 + x4 + 4x3 + 4x2 + 2x,

Ĥv5(Gv5 , x) = 4x3 + 4x2 + 4,

Ĥ(Gv2 , x) = 5x6 + 8x5 + 7x4 + 14x3 + 14x2 + 8x,

Ĥv2(Gv2 , x) = 4x4 + 4x3 + 4x2 + 4x+ 4,



T. Novak et al.: The Hosoya polynomial of double weighted graphs 465

– according to discussion in Section 5 we calculate (Gv1 = G)

Ĥ(Gv1 , x) = 6x6 + 9x5 + 9x4 + 17x3 + 13x2 + 9x,

Ĥv1(Gv1 , x) = x6 + x5 + 2x4 + 3x3 + 3x2 + x+ 1,

• v = v1, u = v1: end of the algorithm.

Finally, the Hosoya polynomial of graph G equals

Ĥ(G, x) = Ĥ(Gv1 , x) = 6x6 + 9x5 + 9x4 + 17x3 + 13x2 + 9x.
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[13] S. Klavžar and I. Gutman, Wiener number of vertex-weighted graphs and a chemical applica-
tion, Discrete Appl. Math. 80 (1997), 73–81, doi:10.1016/s0166-218x(97)00070-x.



466 Ars Math. Contemp. 15 (2018) 441–466
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Abstract

We consider a family of I-graphs I(n, k, l), which is a generalization of the class of
generalized Petersen graphs. In the present paper, we provide a new method for counting
Jacobian group of the I-graph I(n, k, l). We show that the minimum number of generators
of Jac(I(n, k, l)) is at least two and at most 2k+ 2l− 1. Also, we obtain a closed formula
for the number of spanning trees of I(n, k, l) in terms of Chebyshev polynomials. We
investigate some arithmetical properties of this number and its asymptotic behaviour.

Keywords: Spanning tree, Jacobian group, I-graph, Petersen graph, Chebyshev polynomial.
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1 Introduction
The notion of the Jacobian group of a graph, which is also known as the Picard group,
the critical group, and the dollar or sandpile group, was independently introduced by many
authors ([1, 2, 4, 9]). This notion arises as a discrete version of the Jacobian in the classical
theory of Riemann surfaces. It also admits a natural interpretation in various areas of
physics, coding theory, and financial mathematics. The Jacobian group is an important
algebraic invariant of a finite graph. In particular, its order coincides with the number of
spanning trees of the graph, which is known for some simplest graphs, such as the wheel,
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fan, prism, ladder, and Möbius ladder [6], grids [23], lattices [25], prism and anti-prism
[26]. At the same time, the structure of the Jacobian is known only in particular cases
[4, 7, 9, 17, 20, 21] and [22]. We mention that the number of spanning trees for circulant
graphs is expressed is terms of the Chebyshev polynomials; it was found in [8, 27], and
[28]. We show that similar results are also true for the I-graph I(n, k, l).

The generalized Petersen graph GP (n, k) has vertex set and edge set given by

V (GP (n, k)) = {ui, vi | i = 1, 2, . . . , n}
E(GP (n, k)) = {uiui+1, uivi, vivi+k | i = 1, 2, . . . , n},

where the subscripts are expressed as integers modulo n. The classical Petersen graph
is GP (5, 2). The family of generalized Petersen graphs is a subset of so-called I-graphs
([3, 14]). The I-graph I(n, k, l) is a graph of the following structure

V (I(n, k, l)) = {ui, vi | i = 1, 2, . . . , n}
E(I(n, k, l)) = {uiui+l, uivi, vivi+k | i = 1, 2, . . . , n}.

where all subscripts are given modulo n.
Since I(n, k, l) = I(n, l, k) we will usually assume that k ≤ l. In this paper we will

deal with 3-valent graphs only. This means that in the case of even n and l = n/2 the
graph under consideration has multiple edges. The graph I(n, l, k) is connected if and
only if gcd(n, k, l) = 1. If gcd(n, k, l) = m > 1, then I(n, k, l) is a union of m copies
of the graph I(n/m, k/m, l/m). If m = 1 and gcd(k, l) = d, then the graphs I(n, k, l)
and I(n, k/d, l/d) are isomorphic [5, 16, 24]. In the case of l = 1 it easy to see that
the graph I(n, k, 1) coincides with the generalized Petersen graph GP (n, k). The number
of spanning trees and the structure of Jacobian group for the generalized Petersen graph
were investigated in [19]. The spectrum of the I-graph was found in [11]. Even though
the number of spanning trees of a given graph can be computed through eigenvalues of its
Laplacian matrix, it is not easy to find the number of spanning trees for I(n, k, l) using
them. In this paper, we obtained a closed formula for the number of spanning trees for
I(n, k, l), investigate some arithmetical properties of this number and provide its asymp-
totic behavior. Also, we suggest an effective way for calculating Jacobian of I(n, k, l) and
find sharp upper and lower bounds for the rank of Jac(I(n, k, l)).

2 Basic definitions and preliminary facts
Consider a connected finite graphG, allowed to have multiple edges but without loops. We
endow each edge ofGwith the two possible directions. SinceG has no loops, this operation
is well defined. Let O = O(G) be the set of directed edges of G. Given e ∈ O(G), we
denote its initial and terminal vertices by s(e) and t(e), respectively. Recall that a closed
directed path in G is a sequence of directed edges ei ∈ O(G), i = 1, . . . , n such that
t(ei) = s(ei+1) for i = 1, . . . , n− 1 and t(en) = s(e1).

Following [1] and [2], the Jacobian group, or simply Jacobian Jac(G) of a graph G is
defined as the (maximal) Abelian group generated by flows ω(e), e ∈ O(G), obeying the
following two Kirchhoff laws:

K1: the flow through each vertex of G vanishes, that is
∑
e∈O,t(e)=x ω(e) = 0 for all

x ∈ V (G);
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K2: the flow along each closed directed path W in G vanishes, that is
∑
e∈W ω(e) = 0.

Equivalent definitions of the group Jac(G) can be found in papers [1, 2, 4, 9, 12, 18, 20].
We denote the vertex and edge set of G by V (G) and E(G), respectively. Given u, v ∈

V (G), we set auv to be equal to the number of edges between vertices u and v. The matrix
A = A(G) = {auv}u,v∈V (G), called the adjacency matrix of the graphG. The degree d(v)
of a vertex v ∈ V (G) is defined by d(v) =

∑
u auv. LetD = D(G) be the diagonal matrix

indexed by the elements of V (G) with dvv = d(v). Matrix L = L(G) = D(G)−A(G) is
called the Laplacian matrix, or simply Laplacian, of the graph G.

Recall [20] the following useful relation between the structure of the Laplacian matrix
and the Jacobian of a graph G. Consider the Laplacian L(G) as a homomorphism Z|V | →
Z|V |, where |V | = |V (G)| is the number of vertices in G. The cokernel coker(L(G)) =
Z|V |/ im(L(G)) — is an Abelian group. Let

coker(L(G)) ∼= Zd1 ⊕ Zd2 ⊕ · · · ⊕ Zd|V |

be its Smith normal form satisfying the conditions di
∣∣di+1, (1 ≤ i ≤ |V |). If the graph is

connected, then the groups Zd1 ,Zd2 , . . . ,Zd|V |−1
— are finite, and Zd|V | = Z. In this case,

Jac(G) ∼= Zt1 ⊕ Zt2 ⊕ · · · ⊕ Zd|V |−1

is the Jacobian of the graphG. In other words, Jac(G) is isomorphic to the torsion subgroup
of the cokernel coker(L(G)).

Let M be an integer n× n matrix, then we can interpret M as a homomorphism from
Zn to Zn. In this interpretation M has a kernel kerM, an image imM, and a cokernel
cokerM = Zn/ imM. We emphasize that cokerM of the matrix M is completely deter-
mined by its Smith normal form.

In what follows, by In we denote the identity matrix of order n.
We call an n×n matrix circulant, and denote it by circ(a0, a1, . . . , an−1) if it is of the

form

circ(a0, a1, . . . , an−1) =


a0 a1 a2 . . . an−1
an−1 a0 a1 . . . an−2

...
...

...
. . .

...
a1 a2 a3 . . . a0

 .

Recall [10] that the eigenvalues of matrix C = circ(a0, a1, . . . , an−1) are given by the
following simple formulas λj = p(εjn), j = 0, 1, . . . , n−1 where p(x) = a0+a1x+ · · ·+
an−1x

n−1 and εn is the order n primitive root of the unity. Moreover, the circulant matrix
C = p(T ), where T = circ(0, 1, 0, . . . , 0) is the matrix representation of the shift operator
T : (x0, x1, . . . , xn−2, xn−1)→ (x1, x2, . . . , xn−1, x0).

By [15, Lemma 2.1] the 2n × 2n adjacency matrix of the I-graph I(n, k, l) has the
following block form

A(I(n, k, l)) =

(
Ckn In
In Cln

)
,

where Ckn is the n× n circulant matrix of the form

Ckn = circ(0, . . . , 0︸ ︷︷ ︸
k times

, 1, 0, . . . , 0︸ ︷︷ ︸
n−2k−1

, 1, 0, . . . , 0︸ ︷︷ ︸
k−1 times

).
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Denote by L = L(I(n, k, l)) the Laplacian of I(n, k, l). Since the graph I(n, k, l) is
three-valent, we have

L = 3I2n −A(I(n, k, l)) =
(
3In − Ckn −In
−In 3In − Cln

)
.

3 Cokernels of linear operators
Let P (z) be a bimonic integer Laurent polynomial. That is P (z) = zp + a1z

p+1 + · · · +
as−1z

p+s−1 + zp+s for some integers p, a1, a2, . . . , as−1 and some positive integer s.
Introduce the following companion matrix A for the polynomial P (z):

A =

(
0 Is−1

−1,−a1, . . . ,−as−1

)
,

where Is−1 is the identity (s− 1)× (s− 1) matrix. We will use the following properties of
A. Note that detA = (−1)s. Hence A is invertible and inverse matrix A−1 is also integer
matrix. The characteristic polynomial of A coincides with z−pP (z).

Let A = 〈αj , j ∈ Z〉 be a free Abelian group freely generated by elements αj , j ∈ Z.
Each element of A is a linear combination

∑
j cjαj with integer coefficients cj .

Define the shift operator T : A→ A as a Z-linear operator acting on generators of A by
the rule T : αj → αj+1, j ∈ Z. Then T is an endomorphism of A. Let P (z) be an arbitrary
Laurent polynomial with integer coefficients, then A = P (T ) is also an endomorphism of
A. Since A is a linear combination of powers of T, the action of A on generators αj can
be given by the infinite set of linear transformations A : αj →

∑
i ai,jαi, j ∈ Z. Here

all sums under consideration are finite. We set βj =
∑
i ai,jαi. Then imA is a subgroup

of A generated by βj , j ∈ Z. Hence, cokerA = A/ imA is an abstract Abelian group
〈xi, i ∈ Z |

∑
i ai,jxi = 0, j ∈ Z〉 generated by xi, i ∈ Z with the set of defining relations∑

i ai,jxi = 0, j ∈ Z. Here xj are images of αj under the canonical homomorphism
A → A/ imA. Since T and A = P (T ) commute, subgroup imA is invariant under the
action of T. Hence, the actions of T and A are well defined on the factor group A/ imA
and are given by T : xj → xj+1 and A : xj →

∑
i ai,jxi respectively.

This allows to present the group A/ imA as follows 〈xi, i ∈ Z | P (T )xj = 0, j ∈
Z〉. In a similar way, given a set P1(z), P2(z), . . . , Ps(z) of Laurent polynomials with
integer coefficients, one can define the group 〈xi, i ∈ Z | P1(T )xj = 0, P2(T )xj =
0, . . . , Ps(T )xj = 0, j ∈ Z〉.

We will use the following lemma.

Lemma 3.1. Let T : A → A be the shift operator. Consider endomorphisms A and B of
the group A given by the formulas A = P (T ), B = Q(T ), where P (z) and Q(z) are
Laurent polynomials with integer coefficients. Then B : A→ A induces an endomorphism
B|cokerA of the group cokerA = A/ imA defined byB|cokerA(α+imA) = B(α)+imA,
α ∈ A. Furthermore

〈xi, i ∈ Z | A(T )xj = 0, B(T )xj = 0, j ∈ Z〉 ∼=
cokerA/ im(B|cokerA) ∼= coker(B|cokerA).

Proof. The images imA and imB are subgroups in A. Denote by 〈imA, imB〉 the sub-
group generated by elements of imA and imB. Since P (z) and Q(z) are Laurent poly-
nomials, the operators A = P (T ) and B = Q(T ) do commute. Hence, subgroup imA
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is invariant under endomorphism B. Indeed for any y = Ax ∈ imA, we have By =
B(Ax) = A(Bx) ∈ imA. This means that B : A → A induces an endomorphism of the
group cokerA = A/ imA. We denote this endomorphism by B|cokerA. We note that the
Abelian group 〈xi, i ∈ Z | A(T )xj = 0, B(T )xj = 0, j ∈ Z〉 is naturally isomorphic to
A/〈imA, imB〉. So we have

A/〈imA, imB〉 ∼= (A/ imA)/ im(B|cokerA) ∼=
cokerA/ im(B|cokerA) ∼= coker(B|cokerA).

The lemma is proved.

4 Jacobian group for the I-graph I(n, k, l)

In this section we prove one of the main results of the paper. We start in the following
theorem.

Theorem 4.1. Let L = L(I(n, k, l)) be the Laplacian of a connected I-graph I(n, k, l).
Then

cokerL ∼= coker(An − I),

where A is 2(k + l)× 2(k + l) companion matrix for the Laurent polynomial

(3− zk − z−k)(3− zl − z−l)− 1.

Proof. Let L be the Laplacian matrix of the graph I(n, k, l). Then, as it was mentioned
above, L is a 2n× 2n matrix of the form

L =

(
3In − Ckn −In
−In 3In − Cln

)
,

where Ckn = circ(0, . . . , 0︸ ︷︷ ︸
k times

, 1, 0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
k−1 times

).

Consider L as a Z−linear operator L : Z2n → Z2n. In this case, coker(L) is an abstract
Abelian group generated by elements x1, x2, . . . , xn, y1, y2, . . . , yn satisfying the system
of linear equations 3xj − xj−k − xj+k − yj = 0, 3yj − yj−l − yj+l − xj = 0 for any
j = 1, . . . , n. Here the indices are considered modulo n. By the property mentioned in
Section 2, the Jacobian of the graph I(n, k, l) is isomorphic to the finite part of cokernel of
the operator L.

To study the structure of coker(L) we extend the list of generators to the two bi-infinite
sequences of elements (xj)j∈Z and (yj)j∈Z setting xj+mn = xj and yj+mn = yj for any
m ∈ Z. Then we have the following representation for cokernel of L:

coker(L) = 〈xi, yi, i ∈ Z | 3xj − xj+k − xj−k − yj = 0,

3yj − yj+l − yj−l − xj = 0, xj+n = xj , yj+n = yj , j ∈ Z〉.

Let T be the shift operator defined by the rule T : xj → xj+1, yj → yj+1, j ∈ Z.
Consider the operator P (T ) defined by P (T ) = (3− T k − T−k)(3− T l − T−l)− 1. We
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use the operator notation from Section 3 to represent the cokernel of L. Then we have

coker(L) = 〈xi, yi, i ∈ Z | (3− T k − T−k)xj = yj , (3− T l − T−l)yj = xj ,

Tnxj = xj , T
nyj = yj , j ∈ Z〉

= 〈xi, i ∈ Z | (3− T l − T−l)(3− T k − T−k)xj = xj , T
nxj = xj , j ∈ Z〉

= 〈xi, i ∈ Z | ((3− T k − T−k)(3− T l − T−l)− 1)xj = 0,

(Tn − 1)xj = 0, j ∈ Z〉
= 〈xi, i ∈ Z | P (T )xj = 0, (Tn − 1)xj = 0, j ∈ Z〉.

To finish the proof, we apply Lemma 3.1 to the operators A = P (T ) and B = Q(T ) =
Tn − 1.

Since the Laurent polynomial P (z) = (3− zk − z−k)(3− zl − z−l)− 1 is bimonic, it
can be represented in the form P (z) = z−k−l+a1z

−k−l+1+· · ·+a2k+2l−1z
k+l−1+zk+l,

where a1, a2, . . . , a2k+2l−1 are integers. Then the corresponding companion matrix A is(
0 I2k+2l−1

−1,−a1, . . . ,−a2k+2l−1

)
.

It is easy to see that detA = 1 and its inverse A−1 is also integer matrix.
For convenience we set s = 2k + 2l to be the size of matrix A.
Note that for any j ∈ Z the relations P (T )xj = 0 can be rewritten as xj+s =

−xj−a1xj+1−· · ·−as−1xj+s−1. Let xj = (xj+1, xj+2, . . . , xj+s)
t be s-tuple of gener-

ators xj+1, xj+2, . . . , xj+s. Then the relation P (T )xj = 0 is equivalent to xj = A xj−1.
Hence, we have x1 = A x0 and x−1 = A−1 x0, where x0 = (x1, x2, . . . , xs)

t. So,
xj = Aj x0 for any j ∈ Z. Conversely, the latter implies xj = A xj−1 and, as a con-
sequence, P (T )xj = 0 for all j ∈ Z.

Consider cokerA = A/ imA as an abstract Abelian group with the following repre-
sentation 〈xi, i ∈ Z | P (T )xj = 0, j ∈ Z〉.

Our present aim is to show that cokerA ∼= Zs. We have

cokerA = 〈xi, i ∈ Z | P (T )xj = 0, j ∈ Z〉
= 〈xj , j ∈ Z | x` + a1x`+1 + · · ·+ as−1x`+s−1 + x`+s = 0, ` ∈ Z〉
= 〈xj , j ∈ Z | (x`+1, x`+2, . . . , x`+s)

t = A(x`, x`+1, . . . , x`+s−1)
t, ` ∈ Z〉

= 〈xj , j ∈ Z | (x`+1, x`+2, . . . , x`+s)
t = A`(x1, x2, . . . , xs)t, ` ∈ Z〉

= 〈x1, x2, . . . , xs | ∅〉 ∼= Zs.

Now we describe the action of the endomorphism B|cokerA on the cokerA. Since the
operators A = P (T ) and T commute, the action T |cokerA : xj → xj+1, j ∈ Z on the
cokerA is well defined. First of all, we describe the action of T |cokerA on the set of
generators x1, x2, . . . , xs. For any i = 1, . . . , s − 1, we have T |coker(xi) = xi+1 and
T |cokerA(xs) = xs+1 = −x1 − a1x2 − · · · − as−2xs−1 − as−1xs. Hence, the action
of T |cokerA on the cokerA is given by the matrix A. Considering A as an endomorphism
of the cokerA, we can write T |cokerA = A. Finally, B|cokerA = Q(T |cokerA) = Q(A).
Applying Lemma 3.1, we finish the proof of the theorem.

Corollary 4.2. The Jacobian group Jac(I(n, k, l)) of a connected I-graph I(n, k, l) is
isomorphic to the torsion subgroup of coker(An − I), where A is the companion matrix
for the Laurent polynomial (3− zk − z−k)(3− zl − z−l)− 1.
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The Corollary 4.2 gives a simple way to find Jacobian group Jac(I(n, k, l)) for small
values of k, l and sufficiently large numbers n. The numerical results are given in the
Tables 2 and 3.

5 Counting the number of spanning trees for the I-graph I(n, k, l)

In what follows, we always assume that the numbers k and l are relatively prime. To get the
result for an arbitrary connected I-graph I(n, k, l) with gcd(n, k, l) = 1 and gcd(k, l) =
d > 1 we observe that I(n, k, l) is isomorphic to I(n, k′, l′), where the numbers k′ = k/d
and l′ = l/d are relatively prime.

Theorem 5.1. The number of spanning trees of the I-graph I(n, k, l) is given by the for-
mula

τk,l(n) = (−1)(n−1)(k+l)n
k+l−1∏
s=1

Tn(ws)− 1

ws − 1
,

where ws, s = 1, 2, . . . , k + l − 1 are roots of the order k + l − 1 algebraic equation

(3− 2Tk(w))(3− 2Tl(w))− 1

w − 1
= 0,

and Tj(w) is the Chebyshev polynomial of the first kind.

Proof. By the celebrated Kirchhoff theorem, the number of spanning trees τk,l(n) is equal
to the product of nonzero eigenvalues of the Laplacian of a graph I(n, k, l) divided by the
number of its vertices 2n. To investigate the spectrum of Laplacian matrix we note that
matrix Ckn = T k+T−k, where T = circ(0, 1, . . . , 0) is the n×n shift operator. The latter
equality easily follows from the identity Tn = In. Hence,

L =

(
3In − T k − T−k −In

−In 3In − T l − T−l
)
.

The eigenvalues of circulant matrix T are εjn,where εn = e
2πi
n . Since all eigenvalues of

T are distinct, the matrix T is conjugate to the diagonal matrix T = diag(1, εn, . . . , ε
n−1
n ),

where diagonal entries of diag(1, εn, . . . , εn−1n ) are 1, εn, . . . , ε
n−1
n . To find spectrum of

L, without loss of generality, one can assume that T = T. Then the blocks of L are diag-
onal matrices. This essentially simplifies the problem of finding eigenvalues of L. Indeed,
let λ be an eigenvalue of L and (x, y) = (x1, . . . , xn, y1, . . . , yn) be the corresponding
eigenvector. Then we have the following system of equations{

(3In − T k − T−k)x− y = λx

−x+ (3In − T l − T−l)y = λy
.

From here we conclude that y = (3In−T k−T−k)x−λx = ((3−λ)In−T k−T−k)x.
Substituting y in the second equation, we have (((3−λ)In−T l−T−l)((3−λ)In−T k−
T−k)− 1)x = 0.

Recall the matrices under consideration are diagonal and the (j+1, j+1)-th entry of T
is equal to εjn. Therefore, we have ((3−λ−εjkn −ε−jkn )(3−λ−εjln −ε−jln )−1)xj+1 = 0
and yj+1 = (3− λ− εjln − ε−jln )xj+1.



474 Ars Math. Contemp. 15 (2018) 467–485

So, for any j = 0, . . . , n − 1 the matrix L has two eigenvalues, say λ1,j and λ2,j
satisfying the quadratic equation (3− λ− εjkn − ε−jkn )(3− λ− εjln − ε−jln )− 1 = 0. The
corresponding eigenvectors are (x, y), where

x = ej+1 = (0, . . . , 1︸︷︷︸
(j+1)-th

, . . . , 0) and

y = (3− λ− T k − T−k)ej+1.

In particular, if j = 0 for λ1,0, λ2,0 we have (1− λ)(1− λ)− 1 = λ(λ− 2) = 0. That is,
λ1,0 = 0 and λ2,0 = 2. Since λ1,j and λ2,j are roots of the same quadratic equation, we
obtain λ1,jλ2,j = P (εjn), where P (z) = (3− zk − z−k)(3− zl − z−l)− 1.

Now we have

τk,l(n) =
1

2n
λ2,0

n−1∏
j=1

λ1,jλ2,j =
1

n

n−1∏
j=1

λ1,jλ2,j =
1

n

n−1∏
j=1

P (εjn).

To continue we need the following lemma.

Lemma 5.2. The following identity holds

(3− zk − z−k)(3− zl − z−l)− 1 = (3− 2Tk(w))(3− 2Tl(w))− 1,

where Tk(w) is the Chebyshev polynomial of the first kind and w = 1
2 (z+z

−1). Moreover,
if k and l are relatively prime then all roots of the Laurent polynomial

(3− zk − z−k)(3− zl − z−l)− 1

counted with multiplicities are 1, 1, z1, 1/z1, . . . , zk+l−1, 1/zk+l−1, where we have
|zs| 6= 1, s = 1, 2, . . . , k + l − 1. So, the right-hand polynomial has the roots 1, w1, . . . ,
wk+l−1, where ws 6= 1 for all s = 1, 2, . . . , k + l − 1.

Proof. Let us substitute z = ei ϕ. It is easy to see thatw = 1
2 (z+z

−1) = cosϕ, so we have
Tk(w) = cos(k arccosw) = cos(kϕ). Then the first statement of the lemma is equivalent
to the following trigonometric identity

(3− 2 cos(kϕ))(3− 2 cos(lϕ))− 1 = (3− 2Tk(w))(3− 2Tl(w))− 1.

To prove the second statement of the lemma we suppose that the Laurent polynomial
P (z) = (3 − zk − z−k)(3 − zl − z−l) − 1 has a root z0 such that |z0| = 1. Then
z0 = ei ϕ0 , ϕ0 ∈ R. Now we have (3 − 2 cos(kϕ0))(3 − 2 cos(lϕ0)) − 1 = 0. Since
3−2 cos(kϕ0) ≥ 1 and 3−2 cos(lϕ0) ≥ 1 the equations holds if and only if cos(kϕ0) = 1
and cos(lϕ0) = 1. So kϕ0 = 2πs0 and lϕ0 = 2πt0 for some integer s0 and t0. As k and
l are relatively prime, so there exist two integers p and q such that kp + ql = 1. Hence
ϕ0 = ϕ0(kp + lq) = 2π(ps0 + qt0) ∈ 2πZ. As a result z0 = ei ϕ0 = 1. Now we have
to show that the multiplicity of the root z0 = 1 is 2. Indeed, P (1) = P ′(1) = 0 and
P ′′(1) = −2(k2 + l2) 6= 0.

Let us set H(z) =
∏m
s=1(z − zs)(z − z−1s ), where m = k + l − 1 and zs are roots of

P (z) different from 1. Then by Lemma 5.2, we have P (z) = (z−1)2
zk+l

H(z).
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Lemma 5.3. Let H(z) =
∏m
s=1(z − zs)(z − z−1s ) and H(1) 6= 0. Then

n−1∏
j=1

H(εjn) =

m∏
s=1

Tn(ws)− 1

ws − 1
,

where ws = 1
2 (zs+z

−1
s ), s = 1, . . . ,m and Tn(x) is the Chebyshev polynomial of the first

kind.

Proof. It is easy to check that
∏n−1
j=1 (z − εjn) =

zn−1
z−1 if z 6= 1. Also we note that 1

2 (z
n +

z−n) = Tn(
1
2 (z + z−1)). By the substitution z = ei ϕ, the latter follows from the evident

identity cos(nϕ) = Tn(cosϕ). Then we have

n−1∏
j=1

H(εjn) =

n−1∏
j=1

m∏
s=1

(εjn − zs)(εjn − z−1s )

=

m∏
s=1

n−1∏
j=1

(zs − εjn)(z−1s − εjn)

=

m∏
s=1

zns − 1

zs − 1

z−ns − 1

z−1s − 1
=

m∏
s=1

Tn(ws)− 1

ws − 1
.

Note that
∏n−1
j=1 (1 − εjn) = lim

z→1

∏n−1
j=1 (z − εjn) = lim

z→1

zn−1
z−1 = n and

∏n−1
j=1 ε

j
n =

(−1)n−1. As a result, taking into account Lemma 5.2 and Lemma 5.3, we obtain

τk,l(n) =
1

n

n−1∏
j=1

P (εjn) =
1

n

n−1∏
j=1

(εjn − 1)2

(εjn)k+l
H(εjn)

=
(−1)(n−1)(k+l)n2

n

n−1∏
j=1

H(εjn)

= (−1)(n−1)(k+l)n
k+l−1∏
s=1

Tn(ws)− 1

ws − 1
.

Corollary 5.4. τk,l(n) = n
∣∣∣∏k+l−1

s=1 Un−1

(√
1+ws

2

)∣∣∣2 , where ws, s = 1, 2, . . . , k are

the same as in Theorem 5.1 and Un−1(w) is the Chebyshev polynomial of the second kind.

Proof. Follows from the identity Tn(w)−1
w−1 = U2

n−1

(√
1+w
2

)
.

The following theorem appeared after fruitful discussion with professor D. Lorenzini.

Theorem 5.5. Let τ(n) = τk,l(n) be the number of spanning trees of the graph I(n, k, l).
Then there exist an integer sequence a(n) = ak,l(n), n ∈ N such that

1◦ τ(n) = na2(n) when n is odd,

2◦ τ(n) = 6na2(n) when n is even and k + l is even,

3◦ τ(n) = na2(n) when n is even and k + l is odd.



476 Ars Math. Contemp. 15 (2018) 467–485

Proof. Recall that all nonzero eigenvalues are given by the list {λ2,0, λ1,j , λ2,j , j =

1, . . . , n− 1}. By the Kirchhoff theorem we have 2nτ(n) = λ2,0
∏n−1
j=1 λ1,jλ2,j .

Since λ2,0 = 2, we have nτ(n) =
∏n−1
j=1 λ1,jλ2,j . We note that λ1,jλ2,j = P (εjn) =

P (εn−jn ) = λ1,n−jλ2,n−j . So, we get nτ(n) = (
∏(n−1)/2
j=1 λ1,jλ2,j)

2 if n is odd and

nτ(n) = λ1,n2 λ2,
n
2
(
∏n/2−1
j=1 λ1,jλ2,j)

2, if n is even. The value λ1,n2 λ2,n2 = P (−1) =

(3 − 2(−1)k)(3 − 2(−1)l) − 1 is equal to 4 if k and l are of different parity and 24 if
both k and l are odd. The case when both k and l are even is impossible, since k and l are
relatively prime.

The graph I(n, k, l) admits a cyclic group of automorphisms isomorphic to Zn which
acts freely on the set of spanning trees. Therefore, the value τ(n) is a multiple of n. So
τ(n)
n is an integer. Hence

1◦ τ(n)
n =

(∏(n−1)/2
j=1 λ1,jλ2,j

n

)2

when n is odd,

2◦ τ(n)
n = 6

(
2
∏n/2−1
j=1 λ1,jλ2,j

n

)2

when n is even and k + l is even,

3◦ τ(n)
n =

(
2
∏n/2−1
j=1 λ1,jλ2,j

n

)2

when n is even and k + l is odd.

Each algebraic number λi,j comes into both products
∏(n−1)/2
j=1 λ1,jλ2,j and∏n/2−1

j=1 λ1,jλ2,j with all its Galois conjugate elements. Therefore, both products are in-
teger numbers. From here we conclude that in equalities 1◦, 2◦ and 3◦ the value that
is squared is a rational number. Because τ(n)

n is integer and 6 is a squarefree, all these

rational numbers are integer. Setting a(n) =
∏(n−1)/2
j=1 λ1,jλ2,j

n if n is odd and a(n) =
2
∏n/2−1
j=1 λ1,jλ2,j

n if n is even, we finish the proof of the theorem.

From now on, we aim to estimate the minimum number of generators for the Jacobian
of I-graph I(n, k, l).

Lemma 5.6. For any given I-graph I(n, k, l) the number of spanning trees τ(n) satisfies
the inequality τ(n) ≥ n3.

Proof. Recall that for any j = 0, . . . , n − 1, the Laplacian matrix L of I(n, k, l) has two
eigenvalues, say λ1,j and λ2,j , which are roots of the quadratic equationQj(λ) = (3−λ−
εjkn −ε−jkn )(3−λ−εjln−ε−jln )−1 = 0. So, λ1,jλ2,j = (3−εjkn −ε−jkn )(3−εjln−ε−jln )−1 =
P (εjn). Note that λ1,0 = 0 and λ2,0 = 2. Furthermore {λ1,j , λ2,j | j = 0, . . . , n − 1} is
the set of all eigenvalues of L. The Kirchhoff theorem states the following

2n τk,l(n) = 2n τ(n) = λ2,0

n−1∏
j=1

λ1,jλ2,j = 2

n−1∏
j=1

λ1,jλ2,j .

Hence nτ(n) =
∏n−1
j=1 P (ε

j
n), where P (εjn) = (3−2 cos( 2jkπn ))(3−2 cos( 2jlπn ))−1.
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It is easy to prove the following trigonometric identity

(
3− 2 cos

(2jkπ
n

))(
3− 2 cos

(2jlπ
n

))
− 1 =

4 sin2
(jkπ
n

)
+ 4 sin2

(jlπ
n

)
+ 16 sin2

(jkπ
n

)
sin2

(jlπ
n

)
.

Connectedness of I-graph implies gcd(n, k, l) = 1. It may happen that gcd(n, k) =
m 6= 1 and gcd(n, l) = m′ 6= 1. We will use the notation n = mq = m′q′, k = pm, l =
p′m′. We introduce three sets, J, Jk and Jl in the following way

J = {1, 2, . . . , n− 1},
Jk = {j | j = d q, d = 1, . . . ,m− 1} and
Jl = {j | j = d′ q′, d′ = 1, . . . ,m′ − 1}.

If j ∈ Jk then sin( j k πn ) = 0 and if j ∈ Jl then sin( j l πn ) = 0. We note that Jk and Jl do
not intersect. Otherwise, for j ∈ Jk ∩ Jl we have λ1,jλ2,j = P (εjn) = 0. Then at least one
of the eigenvalues λ1,j and λ2,j is equal to zero. This leads to contradiction, as we have
the unique zero eigenvalue λ1,0 = 0. Now we are going to find a low bound for τ(n). As
n τ(n) =

∏n−1
j=1 P (ε

j
n) we evaluate the product

n−1∏
j=1

P (εjn) =

n−1∏
j=1

(
4 sin2

(jkπ
n

)
+ 4 sin2

(jlπ
n

)
+ 16 sin2

(jkπ
n

)
sin2

(jlπ
n

))
≥
∏
j∈Jk

4 sin2
(jlπ
n

) ∏
j∈Jl

4 sin2
(jkπ
n

) ∏
j∈J\(Jk∪Jl)

16 sin2
(jkπ
n

)
sin2

(jlπ
n

)
=

∏
j∈J\Jk

4 sin2
(jkπ
n

) ∏
j∈J\Jl

4 sin2
(jlπ
n

)
.

Now we analyze individual component of the product. We make use of the following
simple identity cos( 2jpπq ) = cos( 2(j+q)pπq ).

∏
j∈J\Jk

4 sin2
(jkπ
n

)
=

∏
j∈J\Jk

(
2− 2 cos

(2jkπ
n

))
=
∏

j∈J\Jk

(
2− 2 cos

(2jmpπ
mq

))

=
∏

j∈J\Jk

(
2− 2 cos

(2jpπ
q

))
=

q−1∏
j=1

(
2− 2 cos

(2jpπ
q

))m
.

The Chebyshev polynomial Tq(x) = cos(q arccos(x)) has the following property. The
roots of the equation Tq(x) − 1 = 0 are cos( 2jπq ), j = 0, 1, . . . , q − 1. Since the leading
coefficient of Tq(x) is 2q−1, for x 6= 1 we have the identity

q−1∏
j=1

(
2x− 2 cos

(2jπ
q

))
=
Tq(x)− 1

x− 1
.
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As p and q are relatively prime we obtain

q−1∏
j=1

(
2− 2 cos

(2jpπ
q

))m
=

q−1∏
j=1

(
2− 2 cos

(2jπ
q

))m
=

(
lim
x→1

Tq(x)− 1

x− 1

)m
= (q2)m =

( n
m

)2m
.

Hence ∏
j∈J\Jk

4 sin2
(jkπ
n

)
=
( n
m

)2m
.

In a similar way we obtain

∏
j∈J\Jl

4 sin2
(jlπ
n

)
=
( n
m′

)2m′
.

To get the final result we use the following trivial inequality. For any integers a ≥ 2
and b ≥ 2 we have ab ≥ ab. Since q = n/m ≥ 2 and q′ = n/m′ ≥ 2, we conclude

n τ(n) =

n−1∏
j=1

P (εjn) ≥
( n
m

)2m( n
m′

)2m′
≥ n2n2 = n4.

Using Lemma 5.6, one can show the following theorem.

Theorem 5.7. For any given I-graph I(n, k, l) the minimum number of generators for
Jacobian Jac(I(n, k, l)) is at least 2 and at most 2k + 2l − 1.

Proof. The upper bound for the number of generators follows from Theorem 4.1. Indeed,
by this theorem the group coker(L(I(n, k, l)) ∼= Jac(I(n, k, l))⊕Z is generated by 2k+2l
elements. One of these generators is needed to generate the infinite cyclic group Z. Hence
Jac(I(n, k, l)) is generated by 2k + 2l − 1 elements.

To get the lower bound we use Lemma 5.6. Let us suppose that Jac(I(n, k, l)) is gen-
erated by one element. Then it is the cyclic group of order τ(n). Denote by D be a product
of all distinct nonzero eigenvalues of I(n, k, l). By Proposition 2.6 from [20] the order of
each element of Jac(I(n, k, l)) is divisor ofD.Hence, τ(n) is divisor ofD and we have in-
equality D ≥ τ(n). By the Kirchhoff theorem we have 2nτ(n) = λ2,0

∏n−1
j=1 λ1,jλ2,j . We

note that all algebraic numbers λi,j comes into product together with its Galois conjugate,
so 2nτ(n) is a multiple of D. In particular 2nτ(n) ≥ D.

From the proof of Theorem 5.5 we have nτ(n) = (
∏(n−1)/2
j=1 λ1,jλ2,j)

2 if n is odd

and nτ(n) = λ1,n2 λ2,
n
2
(
∏n/2−1
j=1 λ1,jλ2,j)

2 if n is even. Moreover, the value λ1,n2 λ2,n2 is
equal to 4 if k and l are of different parity and 24 if both k and l are odd. The case when
both k and l are even is impossible as k and l are relatively prime.

Now, we have 4nτ(n) = (2
∏(n−1)/2
j=1 λ1,jλ2,j)

2 if n is odd. Again, all algebraic

numbers λi,j comes into the product ρ = 2
∏(n−1)/2
j=1 λ1,jλ2,j together with its Galois

conjugate. Therefore, the product ρ is an integer number and contains all distinct nonzero
eigenvalues. Hence ρ is a multiple of D. So we obtain 4nτ(n) = ρ2 ≥ D2 ≥ τ(n)2.
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Also we get 4nλ1,n2 λ2,n2 τ(n) = (2λ1,n2 λ2,
n
2

∏n/2−1
j=1 λ1,jλ2,j)

2 if n is even. By a
similar argument, taking into account the inequality 24 ≥ λ1,n2 λ2,n2 we obtain 96nτ(n) ≥
4nλ1,n2 λ2,

n
2
τ(n) ≥ D2 ≥ τ(n)2.

As result, by Lemma 5.6 we have 4n ≥ τ(n) ≥ n3 if n is odd and 96n ≥ τ(n) ≥ n3 if
n is even. For n ≥ 10 this is impossible. So, the rank of Jac(I(n, k, l)) is at least two for
all n ≥ 10. For n less than 10 this statement can be proved by direct calculation.

For graphs I(4, 2, 3) and I(6, 3, 4), the Jacobian group Jac(I(n, k, l)) is generated by
2 elements. The upper bound 2k + 2l − 1 for the minimum number of generators of
Jac(I(n, k, l)) is attained for graph I(34, 2, 3) and I(170, 3, 4). See Tables 2 and 3 in
Section 7.

So the lower bound 2 and the upper bound 2k + 2l − 1 for the minimum number of
generators of Jac(I(n, k, l)) are sharp.

6 Asymptotic for the number of spanning trees
The asymptotic for the number of spanning trees of the graph I(n, k, l) is given in the
following theorem.

Theorem 6.1. Let P (z) = (3 − zk − z−k)(3 − zl − z−l) − 1. Suppose that k and l are
relatively prime and set Ak,l =

∏
P (z)=0, |z|>1 |z|. Then the number τk,l(n) of spanning

trees of the graph I(n, k, l) has the asymptotic

τk,l(n) ∼
n

k2 + l2
Ank,l, n→∞.

Proof. By Theorem 5.1 we have

τk,l(n) = (−1)(n−1)(k+l)n
k+l−1∏
s=1

Tn(ws)− 1

ws − 1
,

where ws, s = 1, 2, . . . , k + l − 1 are roots of the polynomial

Q(w) =
(3− 2Tk(w))(3− 2Tl(w))− 1

w − 1
.

So we obtain

τk,l(n) = n

k+l−1∏
s=1

∣∣∣∣Tn(ws)− 1

ws − 1

∣∣∣∣ = n

k+l−1∏
s=1

|Tn(ws)− 1|
/ k+l−1∏

s=1

|ws − 1|.

By Lemma 5.2 we have Tn(ws) = 1
2 (z

n
s + z−ns ), where the zs and 1/zs are roots of

the polynomial P (z) with the property |zs| 6= 1, s = 1, 2, . . . , k + l − 1. Replacing zs by
1/zs, if it is necessary, we can assume that all |zs| > 1 for all s = 1, 2, . . . , k+ l− 1. Then
Tn(ws) ∼ 1

2z
n
s as n tends to∞. So |Tn(ws)− 1| ∼ 1

2 |zs|
n as n→∞. Hence

k+l−1∏
s=1

|Tn(ws)− 1| ∼ 1

2k+l−1

k+l−1∏
s=1

|zs|n =
1

2k+l−1

∏
P (z)=0, |z|>1

|z|n =
1

2k+l−1
Ank,l.
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Now we directly evaluate the quantity
∏k+l−1
s=1 |ws − 1|. We note that

Q(w) = a0w
k+l−1 + a1w

k+l−2 + · · ·+ ak+l−2w + ak+l−1

is an integer polynomial with the leading coefficient a0 = 2k+l. From here we obtain

k+l−1∏
s=1

|ws − 1| =
k+l−1∏
s=1

|1− ws| =
∣∣∣∣ 1a0Q(1)

∣∣∣∣ = 2(k2 + l2)

2k+l
=
k2 + l2

2k+l−1
.

Indeed,

Q(1) = lim
w→1

(3− 2Tk(w))(3− 2Tl(w))− 1

w − 1

= −2T ′k(1)(3− 2Tl(1))− 2T ′l (1)(3− 2Tk(1))

= −2kUk−1(1)(3− 2Tl(1))− 2lUl−1(1)(3− 2Tk(1)) = −2(k2 + l2)

and a0 = 2k+l.

In order to get the statement of the theorem we combine the above mentioned results.
Then

τk,l(n) ∼ n
Ank,l

2k+l−1

/k2 + l2

2k+l−1
=

n

k2 + l2
Ank,l as n→∞.

Remark 6.2. It was noted by professor A. Yu. Vesnin that constant Ak,l coincides with the
Mahler measure of Laurent polynomial P (z) = (3− zk− z−k)(3− zl− z−l)− 1. It gives
a simple way to evaluate Ak,l using the following formula

Ak,l = exp

(∫ 1

0

log |P (e2πit)|dt
)
.

See, for example, [13, p. 6] for the proof.

The numerical values for Ak,l, where k and l are relatively prime numbers 1 ≤ k ≤
l ≤ 9 will be given in Table 1 in the Section 7.

7 Examples and tables
7.1 Examples

1◦ The Prism graph I(n, 1, 1). We have the following asymptotic

τ1,1(n) = n(Tn(2)− 1) ∼ n

2
(2 +

√
3)n, n→∞.

2◦ The generalized Petersen graph GP (n, 2) = I(n, 1, 2). The the number of spanning
trees (see [19]) behaves like τ1,2(n) ∼ n

5A
n
1,2, n→∞, where

A1,2 =
7 +
√
5 +

√
38 + 14

√
5

4
∼= 4.39026.
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3◦ The smallest proper I-graph I(n, 2, 3) has the following asymptotic for the number
of spanning trees

τ2,3(n) ∼
n

13
An2,3, n→∞.

Here A2,3
∼= 4.84199 is a suitable root of the algebraic equation

1− 7x+ 13x2 − 35x3 + 161x4 − 287x5 + 241x6 − 371x7 + 577x8

− 371x9 + 241x10 − 287x11 + 161x12 − 35x13 + 13x14 − 7x15 + x16 = 0.

Here is the table for asymptotic constants Ak,l for relatively prime numbers 1 ≤ k ≤
l ≤ 9.

Table 1: Asymptotic constants Ak,l.

k\l 1 2 3 4 5 6 7 8 9

1 3.7320 4.3902 4.7201 4.8954 4.9953 5.0559 5.0945 5.1203 5.1382

2 - 4.8419 - 5.0249 - 5.1033 - 5.1414

3 - 5.0054 5.0541 - 5.1137 5.1320 -
4 - 5.0802 - 5.1244 - 5.1504

5 - 5.1201 5.1346 5.1461 5.1554

6 - 5.1438 - -
7 - 5.1589 5.1649

8 - 5.1691

7.2 The tables of Jacobians of I-graphs

Theorem 4.1 is the first step to understand the structure of the Jacobian for I(n, k, l). Also,
it gives a simple way for numerical calculations of Jac(I(n, k, l)) for small values of k and
l. See Tables 2 and 3.

The first example of Jacobian Jac(I(n, 3, 4)) with the maximum rank 13:

n = 170,

Jac(I(170, 3, 4)) ∼= Z2 ⊕ Z8
4 ⊕ Z6108 ⊕ Z30540 ⊕ Z22·3·5·103·509·1699·11593·p·q

⊕ Z22·3·5·17·103·509·1699·11593·p·q,

and

τ3,4(170) = 225 · 34 · 53 · 17 · 1032 · 5094 · 16992 · 115932 · p2 · q2,

where p = 16901365279286026289 and q = 34652587005966540929.



482 Ars Math. Contemp. 15 (2018) 467–485

Table 2: Graph I(n, 2, 3).

n Jac(I(n, 2, 3)) τ2,3(n) = | Jac(I(n, 2, 3))|
4 Z7 ⊕ Z28 196

5 Z19 ⊕ Z95 1805

6 Z19 ⊕ Z114 2166

7 Z83 ⊕ Z581 48223

8 Z161 ⊕ Z1288 207368

9 Z289 ⊕ Z2601 751689

10 Z1558 ⊕ Z3895 6068410

11 Z1693 ⊕ Z18623 31528739

12 Z5 ⊕ Z5 ⊕ Z665 ⊕ Z7980 132667500

13 Z25 ⊕ Z325 ⊕ Z325 ⊕ Z325 858203125

14 Z17513 ⊕ Z245182 4293872366

15 Z37069 ⊕ Z556035 20611661415

16 Z84847 ⊕ Z1357552 115184214544

17 Z6
2 ⊕ Z23186 ⊕ Z394162 584898568448

18 Z400843 ⊕ Z7215174 2892151991682

19 Z898243 ⊕ Z17066617 15329969253931

20 Z4
19 ⊕ Z5453 ⊕ Z109060 77502443441780

21 Z4301807 ⊕ Z90337947 388616412770229

22 Z9536669 ⊕ Z209806718 2000857223542342

23 Z20949827 ⊕ Z481846021 10094590780588367

24 Z5 ⊕ Z5 ⊕ Z9192295 ⊕ Z220615080 50598972420215000

25 Z101468531 ⊕ Z2536713275 257396569582449025

26 Z25 ⊕ Z325 ⊕ Z8923525 ⊕ Z17847050 1293976099416406250

27 Z490309597 ⊕ Z13238359119 6490894524578165043

28 Z49 ⊕ Z154342069 ⊕ Z4321577932 32683062689111444092

29 Z2376466133 ⊕ Z68917517857 163780147157583236981

30 Z19 ⊕ Z19 ⊕ Z275089049 ⊕ Z8252671470 819549256247415262830

31 Z11507960491 ⊕ Z356746775221 4105427794534925793511

32 Z25318259953 ⊕ Z810184318496 20512457185525873990688

33 Z55700389051 ⊕ Z1838112838683 102383600234281102459833

34 Z2 ⊕ Z6
4 ⊕ Z1915580948 ⊕ Z32564876116 511022336096582352633856

35 Z269747901677 ⊕ Z9441176558695 2546737566070056079431515
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Table 3: Graph I(n, 3, 4).

n Jac(I(n, 3, 4)) τ3,4(n) = | Jac(I(n, 3, 4))|
5 Z2 ⊕ Z10 ⊕ Z10 ⊕ Z10 2000

6 Z19 ⊕ Z114 2166

7 Z71 ⊕ Z497 35287

8 Z73 ⊕ Z584 42632

9 Z289 ⊕ Z2601 751689

10 Z2 ⊕ Z12 ⊕ Z60 ⊕ Z60 ⊕ Z60 5184000

11 Z1541 ⊕ Z16951 26121491

12 Z11 ⊕ Z11 ⊕ Z209 ⊕ Z2508 63424812

13 Z5 ⊕ Z5 ⊕ Z1555 ⊕ Z20215 785858125

14 Z16969 ⊕ Z237566 4031257454

15 Z2 ⊕ Z10 ⊕ Z17410 ⊕ Z52230 18186486000

16 Z71321 ⊕ Z1141136 81386960656

17 Z6
2 ⊕ Z23186 ⊕ Z394162 584898568448

18 Z400843 ⊕ Z7215174 2892151991682

19 Z37 ⊕ Z37 ⊕ Z23939 ⊕ Z454841 14906272578931

20 Z8 ⊕ Z12 ⊕ Z120 ⊕ Z79080 ⊕ Z79080 72042006528000

21 Z4487981 ⊕ Z94247601 422981442583581

22 Z10002631 ⊕ Z220057882 2201157792287542

23 Z22138559 ⊕ Z509186857 11272663275719063

24 Z187 ⊕ Z187 ⊕ Z259369 ⊕ Z6224856 56458663080288216

25 Z2114 ⊕ Z52850 ⊕ Z52850 ⊕ Z52850 312061332000250000
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Abstract

After fullerenes were discovered, Kroto in 1987 proposed first the isolated-pentagon
rule (IPR): the most stable fullerenes are those in which no two pentagons share an edge,
that is, each pentagon is completely surrounded by hexagons. To now the structures of the
synthesized and isolated (neutral) fullerenes meet this rule. The IPR can be justified from
local strain in geometry and π-electronic resonance energy of fullerenes. If two pentagons
abut in a fullerene, a 8-circuit along the perimeter of the pentalene (a pair of abutting pen-
tagons) occurs. This paper confirms that such a 8-circuit is always a conjugated cycle of
the fullerene in a graph-theoretical approach. Since conjugated circuits of length 8 desta-
bilize the molecule in conjugated circuit theory, this result gives a basis for the IPR in
π-electronic resonance. We also prove that each 6-circuit (hexagon) and each 10-circuit
along the perimeter of a pair of abutting hexagons are conjugated. Two such types of con-
jugated circuit satisfy the (4n+ 2)-rule, and thus stabilise the molecule.
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1 Introduction
The fullerenes are closed carbon-cage molecules such that every carbon atom has bonds
to three other atoms, and the length of each carbon ring is either 5 or 6. Ever since the
first fullerene, Buckministerfullerene C60, was discovered by Kroto et al. in 1985 [15], the
stabilities of fullerenes have attracted many theorist’s attentions. The simple Hückel molec-
ular orbital model that predicts reliably the relative stabilities of planar aromatic hydrocar-
bons is not generally found to work so well for fullerenes. Kroto [14] in 1987 proposed
first the isolated-pentagon rule (IPR): the most stable fullerenes are those in which no two
pentagons share an edge, that is, each pentagon is completely surrounded by hexagons.
Schmalz et al. [23] gave a more theoretical discussion of the rule in support of the fullerene
hypothesis. Indeed the structures of the synthesized and isolated fullerenes meet this rule.
The IPR can be justified from local strain and π-electronic resonance of fullerenes; for de-
tails, also see a book due to Fowler and Manolopoulos [7]. Pentagon adjacency leads to
higher local curvature of the molecule surface and increases the strain energy. On the other
hand, according to Hückel (4n+2)-rule, conjugated circuits of length 6, 10, 14, . . . stabilize
the molecule, whereas conjugated circuits of length 4, 8, 12, . . . destabilize the molecule.
Here a conjugated circuit is a cycle of alternating single and double bonds within a Kekulé
structure. If two pentagons abut in a fullerene, the conjugated or resonant 8-circuit along
the perimeter of the pentalene may occur, and this leads to resonance destabilization [22].
This is an interpretation of IPR in π-electronic resonation stabilization. However, a prob-
lem occurs: In a fullerene, is every 8-length circuit conjugated? To now we have not seen
any definite answer to this problem in mathematics. In this article we investigate nice
patches of a fullerene by applying some small cyclic edge-cuts of graphs and present a
positive answer to the above problem (a patch of a fullerene is nice if its Kekulé structure
can be extended to a Kekulé structure of the entire fullerene). As immediate consequences
of our main theorems, we have that every 8-length circuit of a fullerene surrounds a pental-
ene (a pair of abutting pentagons) and is conjugated or alternating with respect to a Kekulé
structure (see Corollary 3.4). This confirms the destabilization of any pentalene as a nice
substructure to the entire fullerene and thus gives a mathematical support for the IPR of
fullerenes. Furthermore we also show that in a fullerene every hexagon is a conjugated
6-circuit (see Corollary 3.3) and the boundary along a naphthalene (i.e. a pair of abutting
hexagons) is a conjugated 10-circuit (see Corollary 4.2). The former has already been
proved (see [26]). In conjugated circuit theory [10, 19, 20], conjugated 6-circuits and 10-
circuits contribute stabilizations of fullerenes and the small conjugated circuits have the
greatest effects (positive and negative) on stability. For recent discussions on the IPR of
fullerenes about steric strain factor and π-electronic resonance factor, see [1, 2, 8, 13, 21].
For mathematical aspects of fullerenes, see a recent survey [3].

2 Preliminary
To obtain the above end we now start our arguments in a graph-theoretical approach. As a
molecular graph of a fullerene, a fullerene graph is a 3-connected planar cubic graph with
only pentagonal and hexagonal faces. It is well known that a fullerene graph on n vertices
exists for every even n ≥ 20 except n = 22 [9]. By Euler’s polyhedron formula, every
fullerene graph with n vertices has exactly 12 pentagonal faces and (n/2− 10) hexagonal
faces.

Let G be a graph with vertex-set V (G) and edge-set E(G). An edge set M of a graph
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G is called a matching if no two edges in M have a common endvertex. A matching M
of G is perfect if every vertex of G is incident with one edge in M . In organic molecular
graphs, perfect matchings correspond to Kekulé structures, playing an important role in
analysis of the resonance energy and stability of polycyclic aromatic hydrocarbons.

The following classical theorem is Tutte’s 1-factor theorem on the existence of perfect
matching of a graph [24]. For detailed monograph on matching theory, see Lovász and
Plummer [17].

Theorem 2.1. A graph G has a perfect matching if and only if odd(G−S) ≤ |S| for each
S ⊆ V (G), where odd(G−S) denotes the number of odd components in subgraph G−S.

Subgraph G′ of a graph G is called nice if G − V (G′) has a perfect matching. In
particular, an even cycle C of a graph G is nice if G has a perfect matching M such that
C is an M -alternating cycle, i.e. the edges of C alternate in M and E(G) \M . A nice
even cycle is also called resonant or conjugated cycle (or circuit) in chemical literature.
For convenience, a cycle of length k is said to be a k-cycle or k-circuit.

For nonempty subsets X,Y of V (G), let [X,Y ] denote the set of edges of G that each
has one end-vertex in X and the other in Y . If X = V (G) \X 6= ∅, then∇(X) := [X,X]
is called an edge-cut ofG, and k-edge-cut whenever |[X,X]| = k. The edges incident with
a single vertex form a trivial edge-cut. For a subgraph H of G, let H := G − V (H). We
simply write∇(H) for ∇(V (H)).

Lemma 2.2 ([25]). Every 3-edge-cut of a fullerene graph is trivial.

Lemma 2.3 ([25]). Every 4-edge-cut of a fullerene graph isolates an edge.

An edge-cut S = ∇(X) ofG is cyclic if at least two components ofG−S each contains
a cycle. The minimum size of cyclic edge-cuts of G is called cyclic edge-connectivity of
G, denoted by cλ(G).

Theorem 2.4 ([6, 12, 18]). Let F be any fullerene graph. Then cλ(F ) = 5.

From the definition with the above properties we know that each fullerene graph has
the girth 5 (the minimum length of cycles), and each of its 5-cycles and 6-cycles bounds a
face. A cyclic k-edge-cut of a graph isolating just a k-cycle will be called trivial.

Theorem 2.5 ([12, 16]). A fullerene graph with a non-trivial cyclic 5-edge-cut is a nan-
otube with two disjoint pentacaps (see Figure 1), and each non-trivial cyclic 5-edge-cut
must be an edge set between two consecutive concentric cycles of length 10.

A fullerene patch is a 2-connected plane graph with all faces pentagonal or hexagonal
except one external face, all internal vertices (not incident with the external face) of degree
3 and those incident with the external face having degree 2 or 3. The cycle bounding the
external face is the boundary of the patch. We can count the pentagons of a fullerene patch
as internal faces as follows.

Lemma 2.6 ([4]). For fullerene patch G, let p5 denote the number of pentagonal faces
other than the external face. Then

p5 = 6 + k3 − k2 = 6 + 2k3 − l, (2.1)

where k2 and k3 denote the number of vertices of degree 2 and 3 on the boundary of G,
respectively, and l is the boundary length.
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Figure 1: A fullerene with a non-trivial cyclic 5-edge-cut.

For T ⊆ V (G), the induced subgraph of G by T consists of T and all edges whose
endvertices are contained in T , denoted by G[T ].

In the next two sections we will investigate nice patches of fullerene graphs in cyclic
6-edge-cut and 8-edge-cut cases, respectively.

3 Cyclic 6-edge-cut
We first consider a more general case than fullerene patches.

Theorem 3.1. Let F0 be a connected induced subgraph of a fullerene graph F such that
interior faces of F0 exist and each one is a pentagon or hexagon. If F has exactly six edges
from F0 to the outside F 0 = F − V (F0), then F0 has a perfect matching.

Proof. Let n0 and ε0 denote the numbers of vertices and edges of F0 respectively. Then
3n0 = 2ε0 + 6, which implies that n0 is even, i.e. F0 has an even number of vertices.

We will prove that F0 has a perfect matching by Tutte’s theorem. To the contrary
suppose that F0 has no perfect matchings. By Theorem 2.1, there exists a subset X0 ⊂
V (F0) such that

odd(F0 −X0) > |X0|. (3.1)

For the sake of convenience, let α := odd(F0 − X0). Since α and |X0| have the same
parity, we have

α ≥ |X0|+ 2. (3.2)

Let G1, . . . , Gα and Gα+1, . . . , Gα+β denote respectively the odd components and the
even components of F0−X0, where β denotes the number of even components of F0−X0.
For i = 1, 2, . . . , α+β, letmi denote the number of edges of F0 which are sent toX0 from
Gi, and γi (resp. γ0) the number of edges of F from Gi (resp. X0) to F 0. Since ∇(F0) is
a 6-edge-cut of F , we have

|∇(F0)| =
α+β∑
i=0

γi = 6. (3.3)

Since F is 3-connected, for i = 1, . . . , α, . . . , α+ β we have

|∇(Gi)| = mi + γi ≥ 3. (3.4)
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Figure 2: Illustration for the proof of Theorem 3.1.

By taking the number of edges of F from the components Gi to F 0 and X0 into account
and by using Equation (3.3) and Inequalities (3.2) and (3.4) we have

3(α+ β) ≤
α+β∑
i=1

(mi + γi)

≤ 3|X0| − γ0 +
α+β∑
i=1

γi

= 3|X0|+ 6− 2γ0

≤ 3α− 2γ0,

(3.5)

which implies that β = 0, γ0 = 0 and equalities always hold. Hence
∑α
i=1 γi = 6, and

α = |X0|+2. Further, the second equality in (3.5) implies that X0 is an independent set of
F0. The first equality in (3.5) implies that mi + γi = 3 for each 1 ≤ i ≤ α, that is, ∇(Gi)
is a 3-edge-cut of F . So by Lemma 2.2 it is a trivial edge-cut and each Gi is a singleton.
Let Y0 denote the set of all singletons Gi. Then F0 is a bipartite graph with partite sets X0

and Y0.
If F0 has no vertices of degree one, then F0 is 2-connected. Otherwise, F0 has a

bridge, the deletion of which results in two components each containing a cycle. So the
bridge together with at most three edges in ∇(F0) form a cyclic edge-cut, contradicting
that cλ(F ) = 5 (Theorem 2.4). Hence F0 is a fullerene patch. Since k2 = |∇(F0)| = 6, by
Lemma 2.6 we have that the number p5 of pentagons contained in F0 is equal to the number
k3 of vertices of degree three lying on the boundary of F0. Since F0 is bipartite, k3 = p5 =
0, which implies that F0 is just a hexagon, contradicting that α = |Y0| = |X0|+ 2.

If F0 has a vertex x of degree one, let xy be the edge of F0, and xy1 and xy2 be the
other two edges in F incident with x. Then ∇(F0 − x) = (∇(F0) \ {xy1, xy2}) ∪ {xy}
forms a cyclic 5-edge-cut of F since F0 − x contains all cycles of F0 and F0 − x can
be obtained from F − F0 by adding a 2-length path y1xy2 and contains at least seven
pentagons. Since F0−x is bipartite, cyclic 5-edge-cut∇(F0−x) is not trivial, and F0−x
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is always 2-connected from Theorem 2.5. By Lemma 2.6 we have p5 = k3 + 1 for the
fullerene patch F0 − x, which implies that F0 has at least one pentagon, contradicting that
F0 is bipartite.

Corollary 3.2. For each cyclic 6-edge cut E0 of a fullerene graph F , both components of
F − E0 have a perfect matching.

Proof. It follows that F − E0 has exactly two components from Lemma 2.2 and 3-edge-
connectedness of F . Such two components fulfil the conditions of Theorem 3.1 and thus
each has a perfect matching.

Figure 3: Some nice substructures of fullerene graphs.

Figure 4: Some nice patches of fullerene graphs with six 2-degree vertices.

From Corollary 3.2 we can find many nice substructures of fullerene graphs, examples
of which are shown in Figures 3 and 4. It should be mentioned that the third nice sub-
structure fulvene in Figure 3 has been discovered by Došlić applying 2-extendability of
fullerenes [5, 27], and the first one has been proved in investigating k-resonance [26, 11];
see the following.

Corollary 3.3 ([26]). Each hexagon of a fullerene graph is resonant.

Corollary 3.4. Each 8-length cycle (if exists) of a fullerene graph bounds a pentalene (a
pair of abutting pentagons) and is thus resonant.

Proof. Let C be a 8-length cycle of a fullerene graph F . If F has an edge e whose endver-
tices both lie in C but e /∈ E(C), then e is called a chord of C. If C has no chords, then the
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eight edges issuing from C can be classified into two edge-cuts of size from 3 to 5, which
lie in the interior and the exterior of C respectively. If one is a 3-edge-cut, then Lemma 2.2
implies that it is trivial, and thus a triangle or quadrilateral appear, a contradiction. If both
are 4-edge-cuts, then Lemma 2.3 implies that F has only 12 vertices, also a contradiction.
So C must have a chord. Further, this chord and C form a pair of 5-length cycles sharing
this chord, which must bound pentagonal faces of F by Theorem 2.4. That is, C bounds a
pentalene and is resonant from Corollary 3.2.

4 Cyclic 8-edge-cut
Theorem 4.1. If E0 is a cyclic 8-edge-cut of a fullerene graph F and E0 is a matching,
then F − E0 has a perfect matching.

Proof. There exists a nonempty and proper subset X of vertex set V (F ) such that E0 =
∇(X) = [X,X]. Let F0 := F [X] and F 0 := F [X]. We claim that both F0 and F 0

are connected and E0 is a minimal edge-cut. If not, then one of F0 and F 0, say F 0, is
disconnected. Then F 0 has exactly two components since F is 3-connected. Since E0 is a
matching, F0 and each component of F 0 have the minimum degree 2 and contain a cycle.
So a cyclic edge-cut of at most four edges occurs in F , a contradiction. So the claim is
verified. Hence each of F0 and F 0 has exactly one face of size more than six, which has
exactly 8 two-degree vertices on its boundary.

We only show that F0 has a perfect matching (the same for F 0). If F0 has a bridge,
then it follows that F0 can be obtained from two pentagons by adding one edge between
them by Theorems 2.4 and 2.5. In this case F0 has a perfect matching. So in the following
we always suppose that F0 is a patch of F . We adopt similar arguments and notations as
in the proof of Theorem 3.1 (see Figure 2). It is known that F0 has an even number of
vertices. Suppose to the contrary that F0 has no perfect matchings. By Tutte’s theorem we
can choose a minimal subset X0 ⊂ V (F0) satisfying α := odd(F0 −X0) ≥ |X0|+ 2.

Let G1, . . . , Gα and Gα+1, . . . , Gα+β denote respectively the odd components and the
even components of F0 −X0. For i = 1, 2, . . . , α+ β, let mi denote the number of edges
of F0 which are sent to X0 from Gi, and γi (resp. γ0) the number of edges of F from Gi
(resp. X0) to the patch F 0. By |∇(F0)| =

∑α+β
i=0 γi = 8 and Inequality (3.4), we have

3(α+ β) ≤
α+β∑
i=1

(mi + γi)

≤ 3|X0| − γ0 +
α+β∑
i=1

γi

= 3|X0|+ 8− 2γ0

≤ 3α+ 2− 2γ0,

(4.1)

which implies that β = 0, 0 ≤ γ0 ≤ 1, and |X0| + 2 = α. So the forth equality in
Inequality (4.1) holds.

If γ0 = 1, then |[X − X0, X]| =
∑α+β
i=1 γi = 7 and all equalities in Inequality (4.1)

hold. Like the proof of Theorem 3.1 we have thatX0 is an independent set,mi+γi = 3 for
each 1 ≤ i ≤ α and each Gi is a singleton. Hence F0 is a bipartite graph. By Lemma 2.6
we have that F0 has two three-degree vertices on the boundary of F0. That implies that
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F0 is just the graph obtained by gluing two hexagons along an edge. So F0 has the same
cardinalities of two partite sets, which contradicts that |X0|+ 2 = α.

From now on we suppose that γ0 = 0. That is, each vertex of X0 has degree 3 in F0.
We claim that second equality in Inequality (4.1) must hold. Otherwise, F0[X0] has exactly
one edge, say uv, and the first equality holds, so each Gi is a singleton. Without loss of
generality, suppose that y1 and y2 are two neighbors of u other than v, and V (G1) = {y1}
and V (G2) = {y2}. Let X ′

0 := X0 \ {u}, and X1 := {u, y1, y2}. Then G′
1 := F0[X1] is

a 3-vertex path obtained by combining G1 and G2 with vertex u. Hence F0 −X ′
0 has the

odd components G′
1, G3, . . . , Gα, and odd(F0 −X ′

0) = α − 1 = |X ′
0| + 2, contradicting

the minimality of X0.
Hence X0 is an independent set of F0, and the first inequality is strict. Since for each

1 ≤ i ≤ α, mi + γi is always odd, there exists an i0 such that mi0 + γi0 = 5 and
mi + γi = 3 for all i 6= i0. For convenience, we may suppose that i0 = 1. So G1 is an odd
component with at least three vertices and G2, . . . , Gα are all singletons. Let Y0 denote
the set of all singletons Gi (2 ≤ i ≤ α). Then H := (X0, Y0) is a bipartite graph as the
induced subgraph of fullerene graph F .

If G1 is a tree, then it is a 2-length path, say xyz, since ∇(G1) has exactly five edges.
For F0, by Lemma 2.6 we have p5 = k3 − 2. Since E0 is a matching, x and z both have
neighbors in X0, so γ1 ≤ 3. The latter implies

∑α
i=2 γi ≥ 5. That is, the boundary of F0

contains at least 5 two-degree vertices belonging to Y0.
We assert that p5 ≤ 2. Since H is bipartite, any pentagon P of F0 must intersect G1.

If P only intersects a vertex of G1, say z, then P − z is a path of length 3 in H which
connects two vertices of X0, contradicting that any path between two vertices in the same
partite set of a bipartite graph has an even length. Similarly we have that P cannot contain
both edges of G1. If F0 has two distinct pentagons sharing the same edge of G1, then one
pentagon must have two edges G1, a contradiction. So the assertion holds.

By the assertion and p5 = k3 − 2 we have k3 ≤ 4. This implies that the boundary of
F0 has at most 4 vertices in X0. Let C be the boundary of F0. Then C − V (C) ∩X0 has
at most |V (C) ∩X0| components. On the other hand, C − V (C) ∩X0 has all singletons
in V (C) ∩ Y0 as components. But |V (C) ∩ Y0| ≥ 5, contradicting |V (C) ∩X0| ≤ 4.

From now on suppose that G1 contains a cycle. Then ∇(G1) is a cyclic 5-edge-cut
of F . By Theorem 2.5 ∇(G1) is a matching and G1 is also a patch (precisely, G1 is a
pentagon or contains a pentacap according as the cyclic 5-edge-cut∇(G1) is trivial or not),
so each vertex of H has degree at least two, and each component of H contains a cycle.
If H is disconnected, then H has exactly two components H1 and H2 since F0 is 2-edge-
connected and ∇(G1) has exactly five edges. Further, between G1 and each Hi has at
least two edges. So∇(G1) has two consecutive edges along the boundary of G1 separately
from G1 to H1 and H2. These two edges must be contained in a cycle of length at least 8
bounding a face of F , a contradiction. Hence H is connected.

Since G1 and F 0 are two connected subgraphs of F with exactly one face of size more
than six, there are two possible cases to be considered.

Case 1. G1 and F 0 lie in different faces of H . Suppose that G1 lies in a bounded face f of
H and F 0 does in the exterior face of H . Then the boundary ∂f of f is a 10-length cycle
since 5 neighbors of G1 in H belong to X0 and are separated by 5 vertices in Y0. Hence
F is a nanotube with two pentacaps and F0 has exactly 6 pentagons. By Lemma 2.6 the
boundary of F0 has exactly 8 vertices of degree 3 in F0. Hence the boundary of F0 is an
alternating cycle of three-degree and two-degree vertices. But in this nanotube there is only
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10-length cycle as such boundary of a patch, a contradiction.

0
F

1
G

e

f

H

Figure 5: Illustration for Case 2 in the proof of Theorem 4.1 (the vertices in X0 are colored
white and other vertices black).

Case 2. G1 and F 0 lie in the exterior face of H . Then the boundary of F0 is formed by a
path P of H and a path P1 of G1 and two edges between them. So 0 ≤ γ1 ≤ 3, and there
are 8 − γ1 two-degree vertices lying on P , which belong to Y0 and are thus non-adjacent
mutually. So there are at least 7 − γ1 three-degree vertices in X0 on P that can separate
them. Since the four end-vertices of P and P1 are all of degree three in F0, there are at least
11− γ1 vertices of degree three of F0 on the boundary. That is, for F0, k3 ≥ 11− γ1. On
the other hand, if G1 is a pentagon, then F0 has at most 5− γ1 pentagons, so k3 ≤ 7− γ1
by Lemma 2.6, a contradiction. Otherwise, ∇(G1) is a non-trivial cyclic 5-edge-cut and
F0 has exactly 6 pentagons. Hence, by Lemma 2.6 we have that for F0, k3 = 8. So γ1 = 3.
Take two consecutive edges e and f of ∇(G1) along the boundary of G1 separately from
G1 to F 0 and H . Since ∇(G1) is a non-trivial cyclic 5-edge-cut, by Theorem 2.5 we have
that e and f have non-adjacent end-vertices in G1. So these two edges belong to a cycle of
length at least 7 bounding a face of F (see Figure 5). But this is impossible.

From Theorem 4.1 we further find many nice substructures of fullerene graphs, which
are listed in Figure 6. In particular, the first one is the naphthalene (a pair of abutting
hexagons), whose boundary is a resonant cycle of length 10.

Corollary 4.2. Any adjacent hexagons of a fullerene graph form a nice substructure, and
the boundary (10-length cycle) is thus resonant.

However, not all 10-length cycles of fullerene graphs are resonant. For example, see
Figure 1. The following corollary gives a criterion for a 10-length cycle of a fullerene graph
to be resonant.

Corollary 4.3. A 10-length cycle C of a fullerene graph F is resonant if and only if it
bounds either the naphthalene or the second patch in Figure 4.

Proof. The sufficiency is immediate from Corollaries 3.2 and 4.2. So we only consider the
necessity. Suppose that 10-length cycle C of a fullerene graph F is resonant. Let F0 be
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Figure 6: Some nice patches of fullerene graphs with eight 2-degree vertices.

the patch of F bounded by 10-length cycle C with p5 ≤ 6. So F0 has an even number of
vertices, and we can have that k3 and k2 both are even. By Lemma 2.6 we have p5 = 2k3−4
and 2 ≤ k3 ≤ 5. The possible values of k3 are 2 and 4. If k3 = 2, then C bounds a pair of
adjacent hexagons. If k3 = 4, then F0 has exactly two vertices in the interior of C which
are adjacent by Lemma 2.3. In fact, F0 is the second patch in Figure 4.
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Abstract

A regular cover of a connected graph is called cyclic or dihedral if its transforma-
tion group is cyclic or dihedral respectively, and arc-transitive (or symmetric) if the fibre-
preserving automorphism subgroup acts arc-transitively on the regular cover. In this paper,
we give a classification of arc-transitive cyclic and dihedral covers of a connected pentava-
lent symmetric graph of order twice a prime. All those covers are explicitly constructed as
Cayley graphs on some groups, and their full automorphism groups are determined.

Keywords: Symmetric graph, Cayley graph, bi-Cayley graph, regular cover.
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1 Introduction
All groups and graphs considered in this paper are finite, and all graphs are simple, con-
nected and undirected, unless otherwise stated. Let G be a permutation group on a set Ω
and let α ∈ Ω. Denote by Gα the stabilizer of α in G, that is, the subgroup of G fixing the
point α. We say that G is semiregular on Ω if Gα = 1 for every α ∈ Ω, and regular if G is
transitive and semiregular. Denote by Zn, Z∗n, Dn, An and Sn the cyclic group of order n,
the multiplicative group of units of Zn, the dihedral group of order 2n, the alternating and
symmetric group of degree n, respectively. For two groups M and N , we use MN , M.N ,
M oN and M ×N to denote the product of M and N , an extension of M by N , a split
extension of M by N and the direct product of M and N , respectively. For a subgroup H
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of a group G, CG(H) means the centralizer of H in G and NG(H) means the normalizer
of H in G.

For a graph Γ, we denote its vertex set, edge set and full automorphism group by V (Γ),
E(Γ) and Aut(Γ), respectively. An s-arc in Γ is an ordered (s+ 1)-tuple (v0, v1, . . . , vs)
of vertices of Γ such that {vi−1, vi} ∈ E(Γ) for 1 ≤ i ≤ s, and vi−1 6= vi+1 for 1 ≤ i < s.
A 1-arc is just an arc. A graph Γ is (G, s)-arc-transitive for a subgroup G of Aut(Γ) if G
acts transitively on the set of s-arcs of Γ, and (G, s)-transitive if Γ is (G, s)-arc-transitive
but not (G, s + 1)-arc-transitive. A graph Γ is said to be s-arc-transitive or s-transitive if
it is (Aut(Γ), s)-arc-transitive or (Aut(Γ), s)-transitive, respectively. In particular, 0-arc-
transitive means vertex-transitive, and 1-arc-transitive means arc-transitive or symmetric.
A graph Γ is edge-transitive if Aut(Γ) is transitive on the edge set E(Γ).

Let Γ be a graph and N ≤ Aut(Γ). The quotient graph ΓN of Γ relative to the orbits
of N is defined as the graph with vertices the orbits of N on V (Γ) and with two orbits
adjacent if there is an edge in Γ between those two orbits. In particular, for a normal
subgroup N of Aut(Γ), if Γ and ΓN have the same valency, then ΓN is a normal quotient
of Γ, and if Γ has no proper normal quotient, then Γ is basic. To study a symmetric graph
Γ, there is an extensive used strategy consisting of two steps: the first one is to investigate
normal quotient graph ΓN for some normal subgroupN of Aut(Γ) and the second one is to
reconstruct the original graph Γ from the normal quotient ΓN by using covering techniques.
This strategy was first laid out by Praeger (see [31]), and it is usually done by taking the
normal subgroup N as large as possible and then the graph Γ is reduced a basic graph. In
the literature, there are many works about basic graphs (see [1, 14, 16] for example), while
the works about the second step, that is, covers of graphs, are fewer.

An epimorphism π : Γ̃→ Γ of graphs is called a regular covering projection if Aut(Γ̃)

has a semiregular subgroupK whose orbits in V (Γ̃) coincide with the vertex fibres π−1(v),
v ∈ V (Γ), and whose arc and edge orbits coincide with the arc fibres π−1((u, v)) and the
edge fibres π−1({u, v}), {u, v} ∈ E(Γ), respectively. In particular, we call the graph Γ̃
a regular cover or a K-cover of the graph Γ, and the group K the covering transforma-
tion group. If K is dihedral, cyclic or elementary abelian, then Γ̃ is called a dihedral,
cyclic or elementary abelian cover of Γ, respectively. An automorphism of Γ̃ is said to be
fibre-preserving if it maps a vertex fibre to a vertex fibre, and all such fibre-preserving auto-
morphisms form a group called the fibre-preserving group, denoted by F . It is easy to see
that F = NAut(Γ̃)(K). If Γ̃ is F -arc-transitive, we say that Γ̃ is an arc-transitive cover or a
symmetric cover of Γ. For an extensive treatment of regular cover, one can see [3, 26, 27].

Covering techniques have long been known as a powerful tool in algebraic and topo-
logical graph theory. Application of these techniques has resulted in many constructions
and classifications of certain families of graphs with particular symmetry properties. For
example, by using covering techniques, Djoković [10] constructed the first infinite family
of 5-arc-transitive cubic graphs as covers of Tutte’s 8-cage, and Biggs [4] constructed some
5-arc-transitive cubic graphs as covers of cubic graphs that are 4-arc-transitive but not 5-
arc-transitive. Gross and Tucker [18] proved that every regular cover of a base graph can
be reconstructed as a voltage graph on the base graph. Later, Malnič et al. [26] and Du et
al. [12] developed these ideas further in a systematic study of regular covering projections
of a graph along which a group of automorphisms lifts.

Based on the approaches studied in [12, 26], many arc-transitive covers of symmet-
ric graphs of small orders and small valencies have been classified. For example, Pan et
al. [29] studied arc-transitive cyclic covers of some complete graphs of small orders. One
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may see [2, 27] for other works. Moreover, a new approach was proposed by Conder and
Ma [7, 8] by considering a presentation (quotient group) of a universal group, which can be
obtained from Reidemeister-Schreier theory, and representation theory and other methods
are applied when determining suitable quotients. As an application, arc-transitive abelian
covers of the complete graph K4, the complete bipartite graph K3,3, the 3-dimensional
hypercube Q3, the Petersen graph and the Heawood graph, were classified. Later, arc-
transitive dihedral covers of these graphs were determined by Ma [25].

For arc-transitive covers of infinite families of graphs, Du et al. studied 2-arc-transitive
elementary abelian and cyclic covers of complete graphs Kn in [11, 13] and Kn,n − nK2

in [32, 33]. Recently, Pan et al. [28] determined arc-transitive cyclic covers of the complete
bipartite graph Kp,p of order 2p for a prime p. Compared with symmetric covers of graphs
of small orders and valencies, there are only a few contributions on symmetric covers of
infinite families of graphs.

Arc-transitive covers of non-simple graphs were also considered in literature. For ex-
ample, regular covers of the dipole Dipk (a graph with two vertices and k parallel edges)
were extensively studied in [2, 16, 26, 27, 34]. Such covers are called Haar graphs, and
in particular, cyclic regular covers of dipoles are called cyclic Haar graphs, which can be
regarded as a generalization of bipartite circulants and were studied in [21] (also see [15]).
Construction of Haar graphs have aroused wide concern. Marušič et al. [26] studied ele-
mentary abelian covers of the dipole Dipp for a prime p. In particular, symmetric elemen-
tary abelian covers and Z2

p × Zp-covers for a prime p of the dipole Dip5 were classified
completely in [16] and [34], respectively.

Let p be a prime. Pentavalent symmetric graphs of order 2p were classified by Cheng
and Oxley in [6], which are the complete graph K6 of order 6 and a family of Cayley
graphs CDp with p = 5 or 5

∣∣ (p− 1) on dihedral groups (see Proposition 3.4). It has been
shown that many pentavalent symmetric graphs are regular covers of them, see [16, 34]. In
this paper, we consider arc-transitive cyclic and dihedral covers of these graphs. For K6,
the cyclic covers have been classified in [29], which should be the complete bipartite graph
K6,6 and the Icosahedron graph I12 (note that I12 is missed in [29]). For CDp, the cyclic
covers consist of six infinite families of graphs, which are Cayley graphs on generalized
dihedral groups. In particular, one family of graphs are cyclic Haar graphs and the other
five families are non-cyclic Haar graphs. What is more, the full automorphism groups of
them are determined. Arc-transitive dihedral covers of K6 and CDp are also classified, and
there are only four sporadic graphs of order 24, 48, 60 and 120, respectively. A similar
work about cubic graphs was done by Zhou and Feng [37].

Different from regular covers of graphs mentioned above, the method to classify arc-
transitive cyclic covers used in this paper is related to the so called bi-Cayley graph. A
graph Γ is a bi-Cayley graph over some group H if Aut(Γ) has a semiregular subgroup
isomorphic to H having exactly two orbits on V (Γ). Clearly, a Haar graph is a bipartite
bi-Cayley graph. Recently, Zhou and Feng [38] gave a depiction of the automorphisms of
bi-Cayley graphs (see Section 4), and based on this work, we classify the cyclic covers. In
particular, all these covers are bi-Cayley graphs over some abelian groups. Note that vertex-
transitive bi-Cayley graphs of valency 3 over abelian groups were determined in [36], while
the case for valency 5 is still elusive. Indeed, even for arc-transitive pentavalent bi-Cayley
graphs over abelian groups, it seems to be very difficult to give a classification, and one
may see [2, 16, 34] for partial works.

The paper is organized as follows. After this introductory section, in Section 2 we give
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some notation and preliminary results. In Section 3, several infinite families of connected
pentavalent symmetric graphs are constructed as Cayley graphs on generalized dihedral
groups Dih(Zmpe × Zp), where e,m are two positive integers and p is a prime such that
(m, p) = 1. In Section 4, it is proved that these Cayley graphs include all arc-transitive nor-
mal bipartite bi-Cayley graphs over Zmpe × Zp, and using this result, arc-transitive cyclic
and dihedral covers of connected pentavalent symmetric graphs of order 2p are classified in
Sections 5 and 6, respectively. In Section 7, the full automorphism groups of these covers
are determined.

2 Preliminaries
In this section, we describe some preliminary results which will be used later. The follow-
ing result is important to investigate symmetric pentavalent graphs.

Proposition 2.1 ([19, Theorem 1.1]). Let Γ be a connected pentavalent (G, s)-transitive
graph for some G ≤ Aut(Γ) and s ≥ 1, and let v ∈ V (Γ). Then one of the following
holds:

(1) s = 1 and Gv ∼= Z5, D5 or D10;

(2) s = 2 andGv ∼= F20, F20×Z2, A5 or S5, where F20 is the Frobenius group of order
20;

(3) s = 3 andGv ∼= F20×Z4, A4×A5, S4×S5 or (A4×A5)oZ2 withA4oZ2 = S4

and A5 o Z2 = S5;

(4) s = 4 and Gv ∼= ASL(2, 4), AGL(2, 4), AΣL(2, 4) or AΓL(2, 4);

(5) s = 5 and Gv ∼= Z6
2 o ΓL(2, 4).

From [24, Theorem 9], we have the following proposition.

Proposition 2.2. Let Γ be a connected G-arc-transitive graph of prime valency, and let N
be a normal subgroup of G. If N has at least three orbits, then it is semiregular on V (Γ)
and the kernel of G on the quotient graph ΓN . Furthermore, ΓN is G/N -arc-transitive,
and Γ is a regular cover of ΓN with N as the covering transformation group.

Let G and E be two groups. We call an extension E of G by N a central extension
of G if E has a central subgroup N such that E/N ∼= G, and if further E is perfect, that
is, if it equals its derived group E′, we call E a covering group of G. Schur proved that
for every non-abelian simple group G there is a unique maximal covering group M such
that every covering group of G is a factor group of M (see [22, V, § 23]). This group M
is called the full covering group of G, and the center of M is the Schur multiplier of G,
denoted by Mult(G).

Lemma 2.3. Let G be a group, and let N be an abelian normal subgroup of G such that
G/N is a non-abelian simple group. If N is a proper subgroup of CG(N), then G = G′N
and G′ ∩N . Mult(G/N).

Proof. Since N is a proper subgroup of CG(N), we have 1 6= CG(N)/N EG/N , forcing
CG(N)/N = G/N becauseG/N is simple. ThusG = CG(N) and it is a central extension
of G/N by N . Since G/N = (G/N)′ = G′N/N ∼= G′/(G′ ∩ N), we have G = G′N ,
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and since G′ = (G′N)′ = (G′)′, G′ is a covering group of G/N . Hence G′ ∩ N .
Mult(G/N).

Denote by soc(G) the socle of G, that is, the product of all minimal normal subgroups
of G. A list of all proper primitive permutation groups of degree less than 1000 was given
by Dixon and Mortimer [9, Appendix B], and based on the list, we have:

Lemma 2.4. LetG be a primitive permutation group on a set Ω and let α ∈ Ω, where |Ω| ∈
{2, 4, 6, 8, 12, 16, 24, 72, 144, 288, 576}. If Gα is solvable, then either G . AGL(n, 2)
and |Ω| = 2n with 1 ≤ n ≤ 4, or soc(G) ∼= PSL(2, p), PSL(3, 3) or PSL(2, q) ×
PSL(2, q) with |Ω| = p+ 1, 144 or (q + 1)2 respectively, where p ∈ {5, 7, 11, 23, 71} and
q ∈ {11, 23}.

Proof. If |Ω| = 2 or 4, then G ≤ S2
∼= AGL(1, 2) or G ≤ S4

∼= AGL(2, 2), respectively.
Let |Ω| ≥ 6 and write N := soc(G). Then N E G and Nα E Gα. Since Gα is solvable,
Nα is solvable. By [9, Appendix B, Tables B.2 and B.3], G is an affine group, N ∼= A|Ω|,
or G is isomorphic to one group listed in [9, Tables B.2 and B.3]. If G is affine, then |Ω|
is a prime power and thus |Ω| = 2n with n = 3 or 4. By [9, Theorem 4.1A (a)], we have
G . AGL(n, 2). IfN ∼= A|Ω| thenNα ∼= A|Ω|−1, which is insolvable because |Ω|−1 ≥ 5,
a contradiction. In what follows we assume that G is isomorphic to one group listed in [9,
Tables B.2 and B.3]. Note that all groups in the tables are collected into cohorts and all
groups in a cohort have the same socle.

Assume that |Ω| = 144. By [9, Table B.4, pp. 324], there are one cohort of type
C, two cohorts of type H and four cohorts of type I (see [9, Table B.1, pp. 306] for
types of cohorts of primitive groups) of primitive groups of degree 144. For the cohort
of type C, by [9, Table B.2, pp. 314], N ∼= PSL(3, 3) and Nα ∼= Z13 o Z3. For the
two cohorts of type H , by [9, Table B.2, pp. 321], they have the same socle N ∼= M12

and Nα ∼= PSL(2, 11). For the four cohorts of type I , by [9, Table B.3, pp. 323], N ∼=
A12 × A12, PSL(2, 11)× PSL(2, 11), M11 ×M11 or M12 ×M12 and Nα ∼= A11 × A11,
(Z11 o Z5)× (Z11 o Z5), M10 ×M10 or M11 ×M11, respectively. Since Nα is solvable,
we have N ∼= PSL(3, 3) or PSL(2, 11)× PSL(2, 11).

For |Ω| ∈ {6, 8, 12, 16, 24, 72, 288, 576}, by [9, Tables B.2, B.3 and B.4], a similar
argument to the above paragraph implies that either N ∼= PSL(2, 23) × PSL(2, 23) with
degree 232 = 576 and Nα ∼= (Z23 o Z11)× (Z23 o Z11), or N ∼= PSL(2, p) with degree
p+ 1 and Nα ∼= Zp o Z p−1

2
where p ∈ {5, 7, 11, 23, 71}.

3 Graph constructions as Cayley graphs
Let G be a finite group and S a subset of G with 1 6∈ S and S−1 = S. The Cayley
graph Γ = Cay(G,S) on G with respect to S is defined to have vertex set V (Γ) = G
and edge set E(Γ) = {{g, sg} | g ∈ G, s ∈ S}. It is well-known that Aut(Γ) contains
the right regular representation R(G) of G, the acting group of G by right multiplica-
tion, and Γ is connected if and only if G = 〈S〉, that is, S generates G. By Godsil [17],
NAut(Γ)(R(G)) = R(G) o Aut(G,S), where Aut(G,S) = {α ∈ Aut(G) | Sα = S}.
A Cayley graph Γ = Cay(G,S) is said to be normal if R(G) is normal in Aut(Γ), and in
this case, Aut(Γ) = R(G) o Aut(G,S).

For an abelian groupH , the generalized dihedral group Dih(H) is the semidirect prod-
uct H o Z2, where the unique involution in Z2 maps each element of H to its inverse. In
particular, if H is cyclic, then Dih(H) is a dihedral group. In this section, we introduce
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several infinite families of connected pentavalent symmetric graphs which are constructed
as Cayley graphs on generalized dihedral groups.

Example 3.1. Let Dih(Z3
5) = 〈a, b, c, h | a5 = b5 = c5 = h2 = [a, b] = [a, c] = [b, c] =

1, ah = a−1, bh = b−1, ch = c−1〉, and define

CGD53 = Cay(Dih(Z3
5), {h, ah, bh, ch, a−1b−1c−1h}).

By [34, Theorem 1.1], Aut(CGD53) ∼= Dih(Z3
5) o S5 and CGD53 is the unique connected

pentavalent symmetric graph of order 250 up to isomorphism.

Let m be a positive integer. Consider the following equation in Zm
x4 + x3 + x2 + x+ 1 = 0. (3.1)

In view of [15, Lemma 3.3], we have the following proposition.

Proposition 3.2. Equation (3.1) has a solution r in Zm if and only if (r,m) ∈ {(0, 1),
(1, 5)} or m = 5tpe11 p

e2
2 · · · pess and r is an element in Z∗m of order 5, where t ≤ 1, s ≥ 1,

ei ≥ 1 and pi’s are distinct primes such that 5 | (pi − 1).

The following infinite family of Cayley graphs was first constructed in [23].

Example 3.3. Let m > 1 be an integer such that Equation (3.1) has a solution r in Zm.
Then m = 5, 11 or m ≥ 31. Let

CDm = Cay(Dm, {b, ab, ar+1b, ar
2+r+1b, ar

3+r2+r+1b})

be a Cayley graph on the dihedral groupDm = 〈a, b | an = b2 = 1, ab = a−1〉. Form = 5
or 11, by [6], Aut(CDm) ∼= (S5 × S5) o Z2 or PGL(2, 11), respectively. In particular,
CD5

∼= K5,5. For m ≥ 31, by [23, Theorem B and Proposition 4.1], Aut(CDm) ∼=
Dm o Z5, and obviously, if m has a prime divisor p with p < m, then Aut(CDm) has
a normal subgroup Zm/p, and by Proposition 2.2, CDm is a symmetric Zm/p-cover of a
connected pentavalent symmetric graph of order 2p.

By [6], we have the following proposition.

Proposition 3.4. Let Γ be a connected pentavalent symmetric graph of order 2p for a prime
p. Then Γ ∼= K6 or CDp with p = 5 or 5 | (p− 1).

In the remaining part of this section, we construct five infinite families of Cayley graphs
on some generalized dihedral groups, and for convenience, we always assume that G =
Dih(Zm × Zpe × Zp) = 〈a, b, c, h | am = bp

e

= cp = h2 = [a, b] = [a, c] = [b, c] =
1, ah = a−1, bh = b−1, ch = c−1〉 and r is a solution of Equation (3.1) in Zm, that is,
r4 + r3 + r2 + r + 1 ≡ 0 (mod m). By Proposition 3.2, m is odd and 52 - m.

Example 3.5. Assume that e ≥ 2 and p is a prime such that (m, p) = 1 and 5 | (p − 1).
Let λ be an element of order 5 in Z∗pe . Then λ is a solution of Equation (3.1) in Zpe . Set

T1(r, λ) =

{h, hab, har+1bλ+1c, har
2+r+1bλ

2+λ+1cλ
4+λ+1, har

3+r2+r+1bλ
3+λ2+λ+1c},

T2(r, λ) =

{h, hab, har+1bλ+1c, har
2+r+1bλ

2+λ+1cλ
3+λ+1, har

3+r2+r+1bλ
3+λ2+λ+1cλ},

T3(r, λ) =

{h, hab, har+1bλ+1c, har
2+r+1bλ

2+λ+1cλ
2+λ+1, har

3+r2+r+1bλ
3+λ2+λ+1cλ

2

}.
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It is easy to see that each of T1(r, λ), T2(r, λ) and T3(r, λ) generates G. Define

CGDimpe×p = Cay(G,Ti(r, λ)), i = 1, 2, 3.

The maps

a 7→ ar, b 7→ bλc, c 7→ cλ
4

, h 7→ hab;

a 7→ ar, b 7→ bλc, c 7→ cλ
3

, h 7→ hab;

a 7→ ar, b 7→ bλc, c 7→ cλ
2

, h 7→ hab

induce three automorphisms of order 5 of G, denoted by α1, α2 and α3 respectively, and
αi fixes the set Ti(r, λ) and permutes its five elements cyclicly. It follows that for each
i = 1, 2, 3, αi ∈ Aut(G,Ti(r, λ)) and 〈R(G), αi〉 ∼= G o Z5, which is arc-transitive on
CGDimpe×p.

The graphs CGD1
mpe×p, CGD2

mpe×p and CGD3
mpe×p for (m, e) = (1, 2) have been

introduced in [34, Example 4.4], and they are not isomorphic to each other by [34, Lem-
ma 4.5]. Indeed, we can also prove that the graphs CGD1

mpe×p, CGD2
mpe×p and CGD3

mpe×p
for each integers m ≥ 1 and e ≥ 2 are not isomorphic to each other. Since the proof is
similar to [34, Lemma 4.5], we omit it, and one can see [35] for a detailed proof.

Example 3.6. Let p be a prime such that p = 5 or 5 | (p ± 1). Assume that e = 1 and
(m, p) = 1. Then G = Dih(Zm × Zp × Zp). For p = 5, let λ = 0, and for 5 | (p± 1), let
λ ∈ Zp satisfying the equation λ2 = 5 in Zp. Set

S(r, λ) = {h, hab, har+1c, har
2+r+1b−2−1(1+λ)c2

−1(1+λ), har
3+r2+r+1b−2−1(1+λ)c}.

It is easy to see that S(r, λ) generates G. Define

CGD4
mp×p = Cay(G,S(r, λ)).

The map a 7→ ar, b 7→ b−1c, c 7→ b−2−1(3+λ)c2
−1(1+λ) and h 7→ hab induces an auto-

morphism of the group G, denoted by α4, which permutes the elements in S(r, λ) cyclicly.
Then α4 ∈ Aut(G,S(r, λ)) and 〈R(G), α4〉 ∼= G o Z5 acts arc-transitive on CGD4

mp×p.
Moreover, for m = 1 or 5, we have r = 0 or 1 respectively, and the map a 7→ a−1,
b 7→ b−2−1(1+λ)c, c 7→ b−2−1(1+λ)c2

−1(1+λ), h 7→ h induces an automorphism β of G.
It is easy to check that β ∈ Aut(G,S(r, λ)) and 〈α4, β〉 ∼= D5. In particular, by [16,
Theorem 6.1], CGD4

5×5 is the unique connected pentavalent symmetric graph of order 50
up to isomorphism.

Example 3.7. Assume that e = 1 and p is a prime such that (m, p) = 1 and 5 | (p − 1).
By [34, Case 2, page 14], x4 + 10x2 + 5 = 0 has a root λ in Zp. Set

S(r, λ) = {h, hab, har+1c, har
2+r+1b8

−1(λ3−λ2+7λ+1)c2
−1(λ+1),

har
3+r2+r+1b−8−1(λ3+λ2+7λ−1)c8

−1(λ3+λ2+11λ+3)}.

It is easy to check that S(r, λ) generates G. Define

CGD5
mp×p = Cay(G,S(r, λ)).
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The map a 7→ ar, b 7→ b−1c, c 7→ b8
−1(λ3−λ2+7λ−7)c2

−1(λ+1) and h 7→ hab induces
an automorphism of the group G, denoted by α5, which permutes the elements in S(r, λ)
cyclicly. Then α5 ∈ Aut(G,S(r, λ)) and 〈R(G), α5〉 ∼= G o Z5 acts arc-transitive on
CGD5

mp×p.

Let Γi = CGDimpe×p with p = 5 or 5
∣∣ (p − 1), where 1 ≤ i ≤ 5. By Examples 3.5 –

3.7, Aut(Γi) contains an arc-transitive subgroup R(G) o 〈αi〉 for each 1 ≤ i ≤ 5. Let Ni
be a subgroup of R(G) o 〈αi〉 as listed in Table 1. In particular, for Γ4 with 5

∣∣ (p − 1),
since λ2 = 5 in Zp, the equation x4 + 10x2 + 5 = 0 has a root t such that t2 = 2λ − 5
(see Example 3.7). It is easy to compute that Ni ∼= Zmpe and Ni E R(G) o 〈αi〉 for each
1 ≤ i ≤ 5 (see [35] for a detailed computation). By Proposition 2.2, we have the following
lemma.

Table 1: Subgroups of Aut(CGDimpe×p) for 1 ≤ i ≤ 5.

Γi p Ni

CGD1
mpe×p 5

∣∣ (p− 1) 〈R(a), R(b5c3λ
4+2λ2−λ+1)〉

CGD2
mpe×p 5

∣∣ (p− 1) 〈R(a), R(b−5c2λ
3+4λ2+λ+3)〉

CGD3
mpe×p 5

∣∣ (p− 1) 〈R(a), R(b−5c4λ
3+3λ2+2λ+1)〉

CGD4
mp×p

p = 5 〈R(a), R(b2c4)〉

5
∣∣ (p− 1) 〈R(a), R(bt+1cλ−3)〉 (t2 = 2λ− 5)

CGD5
mp×p 5

∣∣ (p− 1) 〈R(a), R(b2(λ2+5)−1(λ3+10λ+5)−(λ+3)c4)〉

Lemma 3.8. Let p be a prime such that p = 5 or 5
∣∣ (p − 1). Then for each 1 ≤ i ≤ 5,

CGDimpe×p is a connected symmetric cyclic cover of a connected pentavalent symmetric
graph of order 2p.

4 Pentavalent symmetric bi-Cayley graphs over abelian groups

Given a group H , let R, L and S be three subsets of H such that R−1 = R, L−1 = L,
and 1 /∈ R ∪ L. The bi-Cayley graph over H relative to the triple (R,L, S), denoted by
BiCay(H,R,L, S), is the graph having vertex set {h0 | h ∈ H} ∪ {h1 | h ∈ H} and
edge set {{h0, g0} | gh−1 ∈ R} ∪ {{h1, g1} | gh−1 ∈ L} ∪ {{h0, g1} | gh−1 ∈ S}.
For a bi-Cayley graph Γ = BiCay(H,R,L, S), it is easy to see that R(H) can be regarded
as a semiregular subgroup of Aut(Γ) with two orbits, which acts on V (Γ) by the rule
h
R(g)
i = (hg)i, i = 0, 1, h, g ∈ H . If R(H) is normal in Aut(Γ), then Γ is a normal

bi-Cayley graph over H .
Let Γ = BiCay(H, ∅, ∅, S) be a connected bi-Cayley graph over an abelian group H .

Then Γ is bipartite. By [38, Lemma 3.1], we may always assume that 1 ∈ S. Moreover,
Γ ∼= BiCay(H, ∅, ∅, Sα) for α ∈ Aut(H), and H = 〈S〉. Since H is abelian, there is
an automorphism of H of order 2, denoted by γ, induced by g 7→ g−1, ∀g ∈ H . For
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α ∈ Aut(H) and x ∈ H , define

δγ,1,1 : h0 7→ (h−1)1, h1 7→ (h−1)0, ∀h ∈ H;

σα,x : h0 7→ (hα)0, h1 7→ (xhα)1, ∀h ∈ H.

Set
F = {σα,x | α ∈ Aut(H), Sα = x−1S}.

Then δγ,1,1 ∈ Aut(Γ) and F ≤ Aut(Γ)10 (see [38, Lemma 3.3]). Since Γ is connected,
F acts on NΓ(10) faithfully. By [38, Theorem 1.1 and Lemma 3.2], we have the following
proposition.

Proposition 4.1. Let Γ = BiCay(H, ∅, ∅, S) be a connected bi-Cayley graph over an
abelian group H , and let A = Aut(Γ). Then NA(R(H)) = R(H)〈F, δγ,1,1〉 with vertex
stabilizer (NA(R(H)))10

= F, and Γ is isomorphic to the Cayley graph Cay(Dih(H), γS),
where Dih(H) = H o 〈γ〉.

The following lemma is from [2, Theorem 1.1].

Lemma 4.2. Let n be a positive integer and p a prime such that p ≥ 5. Let Γ be a
connected pentavalent symmetric bi-Cayley graph over Znp. Then Γ ∼= CDnp, as defined
in Example 3.3.

Let H = 〈x〉 × 〈y〉 × 〈z〉 = Zm × Zpe × Zp, where m and e are two positive integers
and p is a prime such that p ≥ 5 and (m, p) = 1. In the remaining of this section, we
always let Γ = BiCay(H, ∅, ∅, S) be a connected pentavalent bi-Cayley graph over H
such that NAut(Γ)(R(H)) is arc-transitive on Γ. Assume that S = {1, a, b, c, d}. Then
H = 〈a, b, c, d〉. By Proposition 4.1, there exists a σα,g ∈ F of order 5 permuting the
neighborhood {11, a1, b1, c1, d1} of 10 in Γ cyclicly. One may assume that 1

σα,g
1 = a1,

which implies that g = a because 1
σα,g
1 = g1, and that b1 = a

σα,a
1 , c1 = b

σα,a
1 , d1 = c

σα,a
1

and 11 = d
σα,a
1 . It follows that

aα = ba−1, bα = ca−1, cα = da−1, dα = a−1. (4.1)

For h ∈ H , denote by o(h) the order of h in H . Since aα = ba−1 by Equation (4.1),
o(ba−1) = o(aα) = o(a), forcing that o(b)

∣∣ o(a). Similarly, since dα = a−1 and
cα = da−1, we have o(d) = o(a) and o(c)

∣∣ o(a). Since H = 〈a, b, c, d〉, we have
o(x)

∣∣ o(a) for any x ∈ H , and since H = Zm × Zpe × Zp, we have o(a) = mpe and
|H : 〈a〉| = p.

Suppose that b ∈ 〈a〉, say b = ai for some integer i. By Equation (4.1), aα = ba−1 =
ai−1 ∈ 〈a〉 and ca−1 = bα = (ai)α = ai(i−1) ∈ 〈a〉, implying that c ∈ 〈a〉. Similarly,
d ∈ 〈a〉 because d = a · cα. Since H = 〈a, b, c, d〉, we have H = 〈a〉 ∼= Zmpe , a
contradiction. Hence b /∈ 〈a〉, and since |H : 〈a〉| = p, we have H = 〈a, b〉 and p

∣∣ o(b).
Let A = Aut(Γ). Since Γ is NA(R(H))-arc-transitive, F = NA(R(H))10

acts transi-
tively on NΓ(10). Let σβ,g ∈ F for some β ∈ Aut(H) and g ∈ H such that 1

σβ,g
1 = 11.

Then 11 = (1βg)1 = g1, forcing that g = 1. Hence F11
= {σβ,1 | β ∈ Aut(H), Sβ = S},

that is, F11
∼= Aut(H,S). By Proposition 4.1,

|NA(R(H))| = 2|H||F| = 2|H| · |NΓ(10)||F11 | = 10|H||Aut(H,S)|.
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Observation 4.3. o(a) = mpe, p
∣∣ o(b) , H = 〈a, b〉 and

|NA(R(H))| = 10|H||Aut(H,S)|.

In the following two lemmas we consider the two cases: e ≥ 2 and e = 1, respectively.

Lemma 4.4. If e ≥ 2, then 5
∣∣ (p − 1), Γ ∼= CGDimpe×p for some 1 ≤ i ≤ 3 and

|NA(R(H))| = 10|H|.

Proof. By Observation 4.3, o(a) = mpe, p
∣∣ o(b) and H = 〈a, b〉 = 〈x, y, z〉 = Zm ×

Zpe × Zp, where (m, p) = 1. Then H has an automorphism mapping xy to a, and thus
we may assume a = xy, which implies that b = xr+1yλ+1zι for some r + 1 ∈ Zm,
λ + 1 ∈ Zpe and 0 6= ι ∈ Zp because H = 〈a, b〉. Furthermore, H has an automorphism
fixing x, y and mapping z to zι, and so we may assume b = xr+1yλ+1z. Let c = xiyjzs

and d = xky`zt, where i, k ∈ Zm, j, ` ∈ Zpe and s, t ∈ Zp.
Note that both 〈x〉 = Zm and 〈y, z〉 = Zpe × Zp are characteristic in H . Since

aα = ba−1 by Equation (4.1), that is, (xy)α = xryλz, we have xα = xr and yα = yλz.
Since (xr+1yλ+1z)α = bα = ca−1 = xi−1yj−1zs, we have zα = (x−r−1)α · (y−λ−1)α ·
(xi−1yj−1zs) = x−r

2−r−1+iy−λ
2−λ−1+jzs−λ−1, implying that

zα = y−λ
2−λ−1+jzs−λ−1

and

−r2 − r − 1 + i ≡ 0 (mod m), (4.2)

λ2 − λ− 1 + j ≡ 0 (mod pe−1). (4.3)

Similarly, since cα = da−1 and dα = a−1 by Equation (4.1), we have xk−1y`−1zt =

cα = (xiyjzs)α = xiryλj+s(−λ
2−λ−1+j)zj+s(s−λ−1) and x−1y−1 = dα = (xky`zt)α =

xkryλ`+t(−λ
2−λ−1+j)z`+t(s−λ−1), and by considering the powers of x, y and z, we have

the following Equations (4.4) – (4.9).

ir ≡ k − 1 (mod m); (4.4)
kr ≡ −1 (mod m); (4.5)

λj + s(−λ2 − λ− 1 + j) ≡ `− 1 (mod pe); (4.6)

λ`+ t(−λ2 − λ− 1 + j) ≡ −1 (mod pe); (4.7)
j + s(s− λ− 1) ≡ t (mod p); (4.8)
`+ t(s− λ− 1) ≡ 0 (mod p). (4.9)

By Equation (4.2), i ≡ r2 + r + 1 (mod m), and by Equations (4.4) and (4.5), k ≡
r3 + r2 + r + 1 (mod m) and r4 + r3 + r2 + r + 1 ≡ 0 (mod m). It follows from
Proposition 3.2 that either (r,m) ∈ {(0, 1), (1, 5)}, or r is an element in Z∗m of order 5
and m = 5tpe11 · · · p

ef
f with t ≤ 1, f ≥ 1, eι ≥ 1 and pι’s are distinct primes such that

5
∣∣ (pι − 1) for 1 ≤ ι ≤ f .

Note that e ≥ 2. By Equation (4.3), j ≡ λ2+λ+1 (mod pe−1) and by Equations (4.6)
and (4.7), ` ≡ λ3 + λ2 + λ+ 1 (mod pe−1) and λ4 + λ3 + λ2 + λ+ 1 ≡ 0 (mod pe−1),
implying λ5 ≡ 1 (mod pe−1). It follows from Proposition 3.2 that either (λ, pe−1) =
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(1, 5), or 5 | (p − 1) and λ is an element in Z∗pe−1 of order 5, forcing that λ 6= 0 and
`−1 = (−λ4)−1 = −λ. Furthermore, one may assume that j ≡ λ2 + λ + 1 + s1p

e−1

(mod pe), ` ≡ λ3 + λ2 + λ+ 1 + s2p
e−1 (mod pe) and λ4 + λ3 + λ2 + λ+ 1 ≡ ιpe−1

(mod pe) for some s1, s2, ι ∈ Zp.
In what follows all equations are considered in Zp, unless otherwise stated. As p | pe−1,

the following equations are also true in Zp:

j = λ2 + λ+ 1,

` = λ3 + λ2 + λ+ 1,

λ4 + λ3 + λ2 + λ+ 1 = 0,

`−1 = −λ.

By s × (4.9) − t × (4.8), s = `−1(jt − t2) = −λ(jt − t2), and by Equation (4.9), we
have λt3 − (λ3 + λ2 + λ)t2 − (λ + 1)t + (λ3 + λ2 + λ + 1) = 0. Combined with
λ4 + λ3 + λ2 + λ + 1 = 0 and λ 6= 0, we have (t − 1)(t − λ)(t − λ2) = 0, which
implies that t = 1, λ or λ2. Recall that j = λ2 + λ + 1 and s = −λ(jt − t2). Thus
(t, s) = (1, λ4 + λ+ 1), (λ, λ3 + λ+ 1) or (λ2, λ2 + λ+ 1).

Since j ≡ λ2 +λ+1+s1p
e−1 (mod pe) and ` ≡ λ3 +λ2 +λ+1+s2p

e−1 (mod pe),
by Equations (4.6) and (4.7) we have:{

(λ+ s)s1p
e−1 ≡ s2p

e−1 (mod pe)

ts1p
e−1 + λs2p

e−1 ≡ −(λ4 + λ3 + λ2 + λ+ 1) (mod pe)
(4.10)

Recall that either (λ, pe−1) = (1, 5) or 5 | (p − 1). Suppose that pe−1 = 5. Then
p = 5, e = 2 and (λ, s, t) = (1, 3, 1). By Equation (4.10), we have 5s2 = 20s1 and
52s1 + 5 = 0 in Z52 , a contradiction. Hence 5 | (p − 1). Again by Equation (4.10), we
have −(t + λ2 + λs)s1p

e−1 ≡ ιpe−1 (mod pe), where ιpe−1 = λ4 + λ3 + λ2 + λ + 1.
Furthermore, {

(t+ λ2 + λs)s1 = −ι
(t+ λ2 + λs)s2 = −ι(λ+ s)

(4.11)

Since (t, s) = (1, λ4 +λ+1), (λ, λ3 +λ+1) or (λ2, λ2 +λ+1), we have t+λ2 +λs =
2λ2 + λ+ 2, λ4 + 2λ2 + 2λ or λ3 + 3λ2 + λ, respectively, and since (2λ2 + λ+ 2)(λ4 +
2λ2 + 2λ) = 6(λ4 + λ3 + λ2 + λ) + 1 = −5 and (λ3 + 3λ2 + λ)(λ4 − 2λ3 + λ2) =
λ4 + λ3 + λ2 + λ − 4 = −5, we have (t + λ2 + λs)−1 = −5−1(λ4 + 2λ2 + 2λ),
−5−1(2λ2 +λ+ 2) or−5−1(λ4− 2λ3 +λ2), respectively. By Equation (4.11), (s1, s2) =
(5−1ι(λ4+2λ2+2λ), 5−1ι(−3λ4+λ3+2λ2)), (5−1ι(2λ2+λ+2), 5−1ι(−3λ4+2λ3+λ))
or (5−1ι(λ4 − 2λ3 + λ2), 5−1ι(−2λ4 + λ2 + λ)). Note that a = xy, b = xr+1yλ+1z, and

(c, d) = (xr
2+r+1yλ

2+λ+1+s1p
e−1

zλ
4+λ+1, xr

3+r2+r+1yλ
3+λ2+λ+1+s2p

e−1

z),

(xr
2+r+1yλ

2+λ+1+s1p
e−1

zλ
3+λ+1, xr

3+r2+r+1yλ
3+λ2+λ+1+s2p

e−1

zλ) or

(xr
2+r+1yλ

2+λ+1+s1p
e−1

zλ
2+λ+1, xr

3+r2+r+1yλ
3+λ2+λ+1+s2p

e−1

zλ
2

),
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we have S = S1, S2 or S3, where

S1 = {1, xy, xr+1yλ+1z, xr
2+r+1yλ

2+λ+1+5−1(λ4+2λ2+2λ)ιpe−1

zλ
4+λ+1,

xr
3+r2+r+1yλ

3+λ2+λ+1+5−1(−3λ4+λ3+2λ2)ιpe−1

z},

S2 = {1, xy, xr+1yλ+1z, xr
2+r+1yλ

2+λ+1+5−1(2λ2+λ+2)ιpe−1

zλ
3+λ+1,

xr
3+r2+r+1yλ

3+λ2+λ+1+5−1(−3λ4+2λ3+λ)ιpe−1

zλ},

S3 = {1, xy, xr+1yλ+1z, xr
2+r+1yλ

2+λ+1+5−1(λ4−2λ3+λ2)ιpe−1

zλ
2+λ+1,

xr
3+r2+r+1yλ

3+λ2+λ+1+5−1(−2λ4+λ2+λ)ιpe−1

zλ
2

}.

Since x5 ≡ 1 (mod pe) implies that x5 ≡ 1 (mod pe−1), there exists f ∈ Zp such
that λ1 = λ + fpe−1 is an element of order 5 in Z∗pe . Then λ = λ1 − fpe−1, λ5

1 = 1 and
λ4

1 +λ3
1 +λ2

1 +λ1 +1 = 0 in Zpe . Hence ιpe−1 = λ4 +λ3 +λ2 +λ+1 = (λ1−fpe−1)4 +
(λ1 − fpe−1)3 + (λ1 − fpe−1)2 + (λ1 − fpe−1) + 1 = −(4λ3

1 + 3λ2
1 + 2λ1 + 1)fpe−1

in Zpe , and thus

S1 = {1, xy, xr+1yλ+1z, xr
2+r+1yλ

2+λ+1+5−1(λ4+2λ2+2λ)ιpe−1

zλ
4+λ+1,

xr
3+r2+r+1yλ

3+λ2+λ+1+5−1(−3λ4+λ3+2λ2)ιpe−1

z}

= {1, xy, xr+1yλ1+1y−fp
e−1

z, xr
2+r+1yλ

2
1+λ1+1y−(λ4

1+λ1+1)fpe−1

zλ
4
1+λ1+1,

xr
3+r2+r+1yλ

3
1+λ2

1+λ1+1y−fp
e−1

z}.

Let ϕ be the automorphism of H induced by x 7→ x, y 7→ y and z 7→ yfp
e−1

z. Then
(S1)ϕ = {1, xy, xr+1yλ1+1z, xr

2+r+1yλ
2
1+λ1+1zλ

4
1+λ1+1, xr

3+r2+r+1yλ
3
1+λ2

1+λ1+1z}.
Since BiCay(H, ∅, ∅, S1) ∼= BiCay(H, ∅, ∅, Sϕ1 ), we may assume that λ = λ1 is an ele-
ment of order 5 in Z∗pe , and

S1 = {1, xy, xr+1yλ+1z, xr
2+r+1yλ

2+λ+1zλ
4+λ+1, xr

3+r2+r+1yλ
3+λ2+λ+1z}.

Similarly, we can also assume that

S2 = {1, xy, xr+1yλ+1z, xr
2+r+1yλ

2+λ+1zλ
3+λ+1, xr

3+r2+r+1yλ
3+λ2+λ+1zλ},

S3 = {1, xy, xr+1yλ+1z, xr
2+r+1yλ

2+λ+1zλ
2+λ+1, xr

3+r2+r+1yλ
3+λ2+λ+1zλ

2

}.

By Proposition 4.1 and Example 3.5, Γ = BiCay(H, ∅, ∅, S) ∼= CGDimpe×p with
1 ≤ i ≤ 3.

Note that |NA(R(H))| = 10|H||Aut(H,S)| (see Observation 4.3). For S1, let β ∈
Aut(H,S1). Then Sβ1 = S1. Since 〈y, z〉 is characteristic in H = 〈x〉 × 〈y〉 × 〈z〉 =
Zm × Zpe × Zp, we have

{y, yλ+1z, yλ
2+λ+1zλ

4+λ+1, yλ
3+λ2+λ+1z}β

= {y, yλ+1z, yλ
2+λ+1zλ

4+λ+1, yλ
3+λ2+λ+1z}.

It follows that yβ = yszt with (s, t) = (1, 0), (λ + 1, 1), (λ2 + λ + 1, λ4 + λ + 1), or
(λ3 + λ2 + λ+ 1, 1). Furthermore, we have

(y · yλ+1z · yλ
2+λ+1zλ

4+λ+1 · yλ
3+λ2+λ+1z)β

= y · yλ+1z · yλ
2+λ+1zλ

4+λ+1 · yλ
3+λ2+λ+1z
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and
(yβy−1)λ

3+2λ2+3λ+4 = (z−λ
4−λ−3)βzλ

4+λ+3.

In particular, (yβy−1)(λ3+2λ2+3λ+4)p = 1. Note that λ4 + λ3 + λ2 + λ + 1 = 0 in Zpe
implies that λ4 + λ3 + λ2 + λ + 1 = 0 in Zp. If λ3 + 2λ2 + 3λ + 4 = 0 in Zp, then
λ3 = −2λ2− 3λ− 4, λ4 = λ ·λ3 = λ2 + 2λ+ 8, and thus 0 = λ4 +λ3 +λ2 +λ+ 1 = 5,
contrary to 5

∣∣ (p− 1). Hence λ3 + 2λ2 + 3λ+ 4 6= 0 in Zp and (yβy−1)p = 1.
Suppose that (s, t) 6= (1, 0). Then yβy−1 = ys−1zt with s − 1 = λ, λ2 + λ or

λ3+λ2+λ. Since λ4+λ3+λ2+λ+1 = 0 in Zp, we have λ 6= 0,−1 and thus (s−1, p) = 1.
This implies that yβy−1 = ys−1zt has order pe, and since e ≥ 2, we have (yβy−1)p 6= 1, a
contradiction. Hence (s, t) = (1, 0), that is, yβ = y. It follows that (yλ+1z)β = yλ+1zβ ∈
{yλ+1z, yλ

2+λ+1zλ
4+λ+1, yλ

3+λ2+λ+1z}, and thus zβ ∈ {z, yλ2

zλ
4+λ+1, yλ

3+λ2

z}. If
zβ = yλ

2

zλ
4+λ+1 or yλ

3+λ2

z, then (yλ
2

)p = 1 or (yλ
3+λ2

)p = 1. It forces that λ2 = 0
or λ3 + λ2 = 0 in Zpe−1 , and λ = 0,−1, a contradiction. Hence zβ = z. Noting that
〈x〉 is characteristic in H , we have (xy)β = xβy ∈ Sβ1 = S1. Then it is easy to check
that (xy)β = xy and thus xβ = x. It implies that β is the identity automorphism. Hence
|Aut(H,S1)| = 1 and |NA(R(H))| = 10|H|. By a similar argument as above, for S2 and
S3, we also have |Aut(H,S2)| = |Aut(H,S3)| = 1 and |NA(R(H))| = 10|H|.

Lemma 4.5. If e = 1, that is, H ∼= Zm × Zp × Zp, then one of the following holds:

(1) p = 5 or 5
∣∣ (p± 1) and Γ ∼= CGD4

mp×p as defined in Example 3.6. Furthermore,

(i) |NA(R(H))| = 10|H| if m 6= 1, 5;

(ii) |NA(R(H))| = 20|H| if m = 5;

(iii) |NA(R(H))| = 20|H| if m = 1 and p 6= 5; and

(iv) |NA(R(H))| = 40|H| if m = 1 and p = 5;

(2) 5
∣∣ (p− 1), Γ ∼= CGD5

mp×p as defined in Example 3.7 and |NA(R(H))| = 10|H|.

Proof. Note that (m, p) = 1. By Observation 4.3, we have o(a) = mp, p
∣∣ o(b) and

H = 〈a, b〉 = 〈x, y, z〉 = Zm × Zp × Zp. Then H has an automorphism mapping xy
to a, and we may assume a = xy, implying that b = xr+1yλzι for some r + 1 ∈ Zm,
ι, λ ∈ Zp and ι 6= 0 because H = 〈a, b〉. The group H also has an automorphism fixing
x, y and mapping z to yλzι, and we may further assume b = xr+1z. Let c = xiyjzs and
d = xky`zt, where i, k ∈ Zm, j, `, s, t ∈ Zp.

By Equation (4.1), aα = ba−1, that is, (xy)α = xry−1z. Since both 〈x〉 and 〈y, z〉
are characteristic in H , we have xα = xr and yα = y−1z. Again by Equation (4.1), since
(xr+1z)α = bα = ca−1 = xi−1yj−1zs, we have zα = (x−r−1)α · bα = x−r

2−r−1+i ·
yj−1zs, implying that zα = yj−1zs and

−r2 − r − 1 + i ≡ 0 (mod m). (4.12)

Moreover, we have

xk−1y`−1zt = da−1 = cα = (xiyjzs)α

= (xr)i(y−1z)j(yj−1zs)s = xriy−j+s(j−1)zj+s
2

,
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and

x−1y−1 = a−1 = dα = (xky`zt)α = (xr)k(y−1z)`(yj−1zs)t = xrky−`+(j−1)tzst+`.

Considering the powers of x, y and z, we have Equations (4.13) – (4.18). As shown in these
equations, in what follows all equations are considered in Zp, unless otherwise stated:

k − 1 ≡ ri (mod m); (4.13)
`− 1 = −j + s(j − 1); (4.14)

t = j + s2; (4.15)
−1 ≡ rk (mod m); (4.16)
−1 = −`+ (j − 1)t; (4.17)

0 = st+ `. (4.18)

By Equation (4.12), we have i ≡ r2 + r+ 1 (mod m) and by Equations (4.13) and (4.16),
k ≡ r3 + r2 + r + 1 (mod m) and r4 + r3 + r2 + r + 1 ≡ 0 (mod m). It follows from
Proposition 3.2 that either (r,m) ∈ {(0, 1), (1, 5)} or r is an element of order 5 in Z∗m and
the prime decomposition of m is 5tpe11 · · · p

ef
f with t ≤ 1, f ≥ 1, eι ≥ 1 and 5

∣∣ (pι − 1)
for 1 ≤ ι ≤ f .

By Equation (4.15), t = j + s2, and by Equations (4.14), (4.17) and (4.18), ` =
1 − j + s(j − 1), ` = 1 + (j − 1)t = 1 + (j − 1)(j + s2) and ` = −st = −sj − s3. It
follows

j2 + (s2 − s)j − (s2 − s) = 0; (4.19)

(2s− 1)j + s3 − s+ 1 = 0. (4.20)

By Equation (4.19), (2s − 1)2j2 + (2s − 1)2(s2 − s)j − (2s − 1)2(s2 − s) = 0, and
since (2s − 1)j = −(s3 − s + 1), we have s6 − 3s5 + 5s4 − 5s3 + 2s − 1 = 0, that
is, (s2 − s − 1)(s4 − 2s3 + 4s2 − 3s + 1) = 0. Hence, either s2 − s − 1 = 0 or
s4 − 2s3 + 4s2 − 3s+ 1 = 0.

Case 1: s2 − s − 1 = 0. Let λ = 2s − 1. Then s = 2−1(1 + λ) and λ2 = 5, and
thus (λ, p) = (0, 5) or 5 | (p ± 1) by [34, Example 4.6]. By Equations (4.19) and (4.20),
j2 + j − 1 = 0 and (2s− 1)j + (s+ 2) = 0.

For (λ, p) = (0, 5), j2 + j− 1 = 0 implies that j = 2 = −2−1(1 +λ). For 5
∣∣ (p± 1),

we have λ 6= 0, and since 2s − 1 = λ and (2s − 1)j + (s + 2) = 0, we have j =
−(2s− 1)−1(s+ 2) = −λ−1 · 2−1(λ+ 5) = −2−1(1 + λ) (note that 5 = λ2). It follows
from Equations (4.15) and (4.18) that t = j + s2 = 1 and ` = −st = −2−1(1 + λ).
Recall that i ≡ r2 + r + 1 (mod m) and k ≡ i3 + i2 + i + 1 (mod m). Hence c =

xr
2+r+1y−2−1(1+λ)z2−1(1+λ) and d = xr

3+r2+r+1y−2−1(1+λ)z. Now,

S = {1, xy, xr+1z, xr
2+r+1y−2−1(1+λ)z2−1(1+λ), xr

3+r2+r+1y−2−1(1+λ)z}.

By Proposition 4.1 and Example 3.6, Γ = BiCay(H, ∅, ∅, S) ∼= CGD4
mp×p.

For (m, p) = (1, 5), we have λ = 0 and S = {1, y, z, y−3z3, y−3z}. By MAGMA [5],
|NA(R(H))| = 40|H|. Assume that (m, p) 6= (1, 5), and let β ∈ Aut(H,S). Then
Sβ = S, and since both 〈x〉 and 〈y, z〉 are characteristic subgroups of H , we have

{x, xr+1, xr
2+r+1, xr

3+r2+r+1}β = {x, xr+1, xr
2+r+1, xr

3+r2+r+1},
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{y, z, y−2−1(1+λ)z2−1(1+λ), y−2−1(1+λ)z}β

= {y, z, y−2−1(1+λ)z2−1(1+λ), y−2−1(1+λ)z}.

Similarly to Lemma 4.4, the two equations imply that for m 6= 1, 5 (r 6= 0,±1), β is the
identity automorphism of H , and for m = 1 or 5 (r = 0 or 1), β has order 2 that are
induced by x 7→ xr

3+r2+r+1, y 7→ y−2−1(1+λ)z, and z 7→ y−2−1(λ+1)z2−1(λ+1) (one may
also see [35] for a detailed computation). It implies that |Aut(H,S)| = 1 for m 6= 1, 5
and |Aut(H,S)| = 2 for m = 1 or 5. By Observation 4.3, we have |NA(R(H))| = 10|H|
or 20|H|, respectively.

Case 2: s4 − 2s3 + 4s2 − 3s + 1 = 0. By Case 1, we may assume that s2 − s − 1 6= 0.
If p = 5, then s4 − 2s3 + 4s2 − 3s + 1 = 0 implies that s = 3 and thus s2 − s − 1 = 0,
a contradiction. Hence p 6= 5. By [34, Lemma 5.4, Case 2], we have 5 | (p − 1) and
s = 2−1(1 + λ), where λ4 + 10λ2 + 5 = 0 and λ 6= 0,±1.

Since s4 − 2s3 + 4s2 − 3s+ 1 = 0, we have (2s− 1)(8s3 − 12s2 + 26s− 11) = −5,
and since p 6= 5, we have (2s − 1)−1 = −5−1(8s3 − 12s2 + 26s − 11). Noting that
s4 = 2s3 − 4s2 + 3s − 1, we have s5 = −5s2 + 5s − 2 and s6 = −5s3 + 5s2 − 2s. By
Equation (4.20), j = −(2s− 1)−1(s3 − s+ 1) = 5−1(8s3 − 12s2 + 26s− 11)(s3 − s+
1) = s3 − 2s2 + 3s − 1 = 8−1(λ3 − λ2 + 7λ + 1) and by Equations (4.15) and (4.18),
t = j+s2 = s3−s2+3s−1 = 8−1(λ3+λ2+11λ+3) and ` = −st = −s3+s2−2s+1 =
−8−1(λ3 + λ2 + 7λ− 1). It follows that

S = {1, xy, xr+1z, xr
2+r+1y8−1(λ3−λ2+7λ+1)z2−1(1+λ),

xr
3+r2+r+1y−8−1(λ3+λ2+7λ−1)z8−1(λ3+λ2+11λ+3)}.

By Proposition 4.1 and Example 3.7, Γ = BiCay(H, ∅, ∅, S) ∼= CGD5
mp×p.

Let β ∈ Aut(H,S). Then Sβ = S. Since 〈x〉 and 〈y, z〉 are characteristic in H , we
have

{y, z, y8−1(λ3−λ2+7λ+1)z2−1(1+λ), y−8−1(λ3+λ2+7λ−1)z8−1(λ3+λ2+11λ+3)}β

= {y, z, y8−1(λ3−λ2+7λ+1)z2−1(1+λ), y−8−1(λ3+λ2+7λ−1)z8−1(λ3+λ2+11λ+3)},

and since λ 6= 0,±1, we have yβ = y and zβ = z (also see [35] for a detailed compu-
tation). Since (xy)β = xβy ∈ S, it is easy to check that (xy)β = xy and thus xβ = x.
Hence β is the identity automorphism of H and |Aut(H,S)| = 1. By Observation 4.3,
|NA(R(H))| = 10|H|.

5 Cyclic covers
In this section, we classify connected symmetric cyclic covers of connected pentavalent
symmetric graphs of order twice a prime. Denote by K6,6 − 6K2 the complete bipartite
graph of order 12 minus a one-factor and by I12 the Icosahedron graph. Edge-transitive
cyclic covers ofK6 were classified in [29, Theorem 1.1], and by [29, Line 20, pp. 40], such
graphs have order 12 and thus isomorphic to K6,6 − 6K2 or I12 by [20, Proposition 2.7]
(note that the graph I12 is missed in [29, Theorem 1.1]).

Theorem 5.1. Let Γ be a connected pentavalent symmetric graph of order 2p for a prime
p, and let Γ̃ be a connected symmetric Zn-cover of Γ with n ≥ 2. Then Γ̃ ∼= K6,6 − 6K2,
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I12, CDnp, or CGDimpe×p for 1 ≤ i ≤ 5 with n = mpe, (m, p) = 1, 5
∣∣ (p− 1) and e ≥ 1,

which are defined in Examples 3.3, 3.5, 3.6 and 3.7.

Proof. By Proposition 3.4, Γ ∼= K6 for p = 3, K5,5 for p = 5, or CDp for 5 | (p − 1).
If Γ ∼= K6 then Γ̃ ∼= K6,6 − 6K2 or I12 by [29, Theorem 1.1] (also see the proof in [2,
Theorem 3.6]). In the following, we assume that p ≥ 5. Let A = Aut(Γ̃).

LetK = Zn and F = NA(K). Since Γ̃ is a symmetricK-cover of Γ, F is arc-transitive
on Γ̃ and F/K is arc-transitive on Γ̃K = Γ. LetB/K be a minimal arc-transitive subgroup
of F/K. By Proposition 3.4, B/K ∼= Dp o Z5 for p > 11; by MAGMA [5], B/K ∼=
D11 oZ5 for p = 11, and B/K ∼= Z2

5 oZ2, Z2
5 oZ4 or Z2

5 oZ8 for p = 5. Each minimal
normal subgroup of B/K is isomorphic to Zp or Z2

5 with p = 5 and B/K ∼= Z2
5 o Z8.

Clearly, B is arc-transitive on Γ̃ and B/K is non-abelian.

Set C = CB(K). Since K is abelian, K ≤ Z(C) ≤ C, where Z(C) is the center
of C. Suppose K = C. Then B/K = B/C . Aut(K) ∼= Z∗n, which forces that B/K
is abelian, a contradiction. Hence K < C and 1 6= C/K E B/K. It follows that C/K
contains a minimal normal subgroup of B/K, say L/K. Then L E B and L ≤ C E B.
Furthermore, L/K ∼= Zp, or L/K ∼= Z2

5 with p = 5 and B/K ∼= Z2
5 o Z8.

Clearly, L and L/K have two orbits on V (Γ̃) and V (Γ̃K), and Γ̃ and Γ̃K are bipartite
graphs with the two orbits of L and L/K as their bipartite sets, respectively. Since K ≤
Z(C) and L ≤ C, K ≤ Z(L).

First, assume L/K ∼= Zp. Since K ≤ Z(L), L is abelian, and so L ∼= Znp or Zn × Zp
with p | n. For the latter, L ∼= Zm × Zpe × Zp with n = mpe, (m, p) = 1 and e ≥ 1.
Since L/K is semiregular on V (Γ̃K), L is semiregular on V (Γ̃) and thus Γ̃ is a bi-Cayley
graph over L. Noting that L C B, we have that NA(L) is arc-transitive on Γ̃, forcing that
Γ̃ ∼= BiCay(L, ∅, ∅, S) for some subset S ⊆ L. Recall that p ≥ 5. By Lemmas 4.2 – 4.5,
Γ̃ ∼= CDnp or CGDimpe×p (1 ≤ i ≤ 5), as required.

Now, assume L/K ∼= Z2
5. Then p = 5 and B/K ∼= Z2

5 o Z8. Since K ≤ Z(L) and
K = Zn, L = P ×H , where P and H are the Sylow 5-subgroup and the Hall 5′-subgroup
of L, respectively. Note that H ≤ K is abelian, but P may not. Since (L/K)vK ∼= Z5,
we have Lv = Pv ∼= Z5, where v ∈ V (Γ̃) and vK is an orbit of K on V (Γ̃) containing v.
Note that P EB as P is characteristic in L and LEB. By Proposition 2.2, P has at most
two orbits on V (Γ̃) because Pv 6= 1, and since L has exactly two orbits on V (Γ̃), P and L
have the same orbits. It follows that L = PLv = PPv = P , forcing that H = 1 and K is
a 5-group.

Suppose |K| = 5t with t ≥ 2. Since K is cyclic, K has a characteristic subgroup N
such that |K/N | = 25, and since K E B, N E B. By Proposition 2.2, Γ̃N is a connected
pentavalent B/N -arc-transitive graph of order 10|K|/|N | = 250, and by Example 3.1,
ΓN ∼= CGD53 . Since B/K ∼= Z2

5 o Z8 and |K/N | = 52, all Sylow 2-subgroups of B/N
are isomorphic to Z8 and |B/N | = 8 · 54. However, by MAGMA [5], Aut(CGD53) has
no arc-transitive subgroup of order 8 · 54 that has a Sylow 2-subgroup isomorphic to Z8, a
contradiction.

Since K 6= 1, we have |K| = 5 and |V (Γ̃)| = 10|K| = 50. By Example 3.6, Γ̃ ∼=
CGD4

5×5, as required.
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6 Dihedral covers
In this section, we aim to classify symmetric dihedral covers of connected pentavalent sym-
metric graphs of order twice a prime. First, we introduce four graphs which are from [30].

Example 6.1. Let

I
(2)
12 = Cay(D12, {b, ba, ba2, ba4, ba9}),
G48 = Cay(D24, {b, ba, ba3, ba11, ba20}).

be two Cayley graphs on the dihedral groups D12 = 〈a, b | a12 = b2 = 1, ab = a−1〉
and D24 = 〈a, b | a24 = b2 = 1, ab = a−1〉, respectively. By MAGMA [5], Aut(I

(2)
12 ) ∼=

A5 o D4 and Aut(G48) ∼= SL(2, 5) o D4, and their vertex stabilizers are isomorphic to
F20.

Example 6.2. Let

G60 = Cay(A5, {(1 4)(2 5), (1 3)(2 5), (1 3)(2 4), (2 4)(3 5), (1 4)(3 5)})

be a Cayley graph on A5. By MAGMA [5], it is a connected pentavalent symmetric graph
of order 60 and Aut(G60) ∼= A5 ×D5 with vertex stabilizer isomorphic to D5.

Example 6.3. Let G be a subgroup of S7 generated by the elements a = (1 4)(2 5)(6 7),
b = (1 3)(2 5)(6 7), c = (1 3)(2 4)(6 7), d = (2 4)(3 5)(6 7) and e = (1 4)(3 5)(6 7),
and define G120 = Cay(G, {a, b, c, d, e}). By MAGMA [5], G ∼= A5 × Z2 and G120 is a
connected pentavalent symmetric graph of order 120. Moreover, Aut(G120) ∼= A5 ×D10

with vertex stabilizer isomorphic to D5.

A list of all pentavalent G-arc-transitive graphs on up to 500 vertices with the vertex
stabilizer Gv ∼= Z5, D5 or F20 was given in MAGMA code by Potočnik [30]. Based on this
list, we have the following lemma.

Lemma 6.4. Let Γ be a G-arc-transitive graph of order 24, 48, 60, 120 or 240 with vertex
stabilizer Gv ∼= Z5, D5 or F20 for some G ≤ Aut(Γ) and v ∈ V (Γ). Then Γ is a
connected symmetric dihedral cover of K6 if and only if Γ ∼= I

(2)
12 , G48, G60 or G120.

Proof. To show the necessity, let Γ be a connected symmetric dihedral cover of K6. Then
Aut(Γ) has an arc-transitive subgroup having a normal dihedral subgroup of order
|V (Γ)|/6. Since Γ is G-arc-transitive with Gv ∼= Z5, D5 or F20, by [30] Γ is isomorphic
to one of the seven graphs: three graphs of order 24, 48 and 60 respectively, two graphs of
order 120 and two graphs of order 240. For the orders 24, 48 and 60, Γ ∼= I

(2)
12 , G48 or G60

by Examples 6.1 and 6.2. For the order 120, by MAGMA [5] one graph is isomorphic to
G120 and the other has no arc-transitive group of automorphisms having a normal dihedral
subgroup of order 20; in this case Γ ∼= G120. For the order 240, again by MAGMA [5] none
of the two graphs has an arc-transitive group of automorphisms having a normal dihedral
subgroup of order 40.

Now, we show the sufficiency. By MAGMA [5], Aut(I
(2)
12 ) has a normal subgroup

N ∼= D2. Clearly, N has more than two orbits on V (I
(2)
12 ), and by Proposition 2.2, the

quotient graph (I
(2)
12 )N is a connected pentavalent symmetric graph of order 6, that is, the

complete graph K6. Thus I(2)
12 is a D2-cover of K6. Similarly, one may show that G48, G60

or G120 is a symmetric D3-, D5- or D10-cover of K6, respectively.
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Now, we are ready to classify symmetric dihedral covers of connected pentavalent sym-
metric graphs of order 2p for any prime p. Clearly, we have p ≥ 3.

Theorem 6.5. Let Γ be a connected pentavalent symmetric graph of order 2p with p a
prime, and let Γ̃ be a connected symmetric Dn-cover of Γ with n ≥ 2. Then Γ̃ ∼= I

(2)
12 , G48,

G60 or G120.

Proof. Let K = Dn and let F be the fibre-preserving group. Since Γ̃ is a symmetric
K-cover of Γ, F is arc-transitive on Γ̃ and F/K is arc-transitive on Γ̃K = Γ.

Assume n = 2. Then |V (Γ̃)| = 2n · |V (Γ)| = 8p. Recall that p ≥ 3. By [20,
Proposition 2.9], Γ̃ ∼= I

(2)
12 or a graph G248 of order 248 with Aut(G248) = PSL(2, 31).

Since PSL(2, 31) has no proper subgroup of order divisible by 248 by MAGMA [5], Aut(Γ̃)

is the unique arc-transitive group of automorphisms of Γ̃, that is, F ∼= PSL(2, 31). It
implies that Γ̃ 6∼= G248 because F has no normal subgroup isomorphic to Dn. Hence
Γ̃ ∼= I

(2)
12 .

Assume n > 2. Let Zn be the cyclic subgroup of K = Dn of order n. Then Zn is
characteristic in K and so Zn E F as K E F . By Proposition 2.2, Γ̃Zn is a connected
pentavalent F/Zn-arc-transitive graph of order 4p, and by [20, Proposition 2.7], Γ̃Zn

∼=
I12 or K6,6 − 6K2. Thus Γ̃ is a symmetric Zn-cover of K6,6 − 6K2 or I12. Note that
|V (Γ̃)| = 12n.

Let Γ̃Zn
∼= K6,6 − 6K2. Since each minimal arc-transitive subgroup of Aut(K6,6 −

6K2) is isomorphic toA5×Z2 or S5 by MAGMA [5], F/Zn has an arc-transitive subgroup
B/Zn = A5×Z2 or S5. It follows that |Bv| = 10 for v ∈ V (Γ̃), and form Proposition 2.1
that Bv ∼= D5. In particular, B is arc-transitive on Γ̃ and B/Zn has a normal subgroup
M/Zn = A5, which is edge-transitive on Γ̃Zn and has exactly two orbits on V (Γ̃Zn). Thus
M E B is edge-transitive and has two orbits on V (Γ̃). Since |B : M | = 2, we have
Mv
∼= D5.
Clearly, Zn ≤ CM (Zn). If Zn = CM (Zn), then A5 = M/Zn = M/CM (Zn) ≤

Aut(Zn) = Z∗n, which is impossible. Hence Zn is a proper subgroup of CM (Zn), and
since Mult(A5) = Z2, Lemma 2.3 implies that either M = M ′ × Zn = A5 × Zn or
M = M ′Zn = SL(2, 5)Zn with M ′ ∩ Zn ∼= Z2. In particular, M/M ′ is cyclic. Since M ′

is characteristic inM andMEB, we haveM ′EB. IfM ′ has at least three orbits on V (Γ̃),
by Proposition 2.2, M ′ is semiregular on V (Γ̃) and Γ̃M ′ is a connected pentavalent B/M ′-
arc-transitive graph. The stabilizer of α ∈ V (Γ̃M ′) in M/M ′ is isomorphic to Mv

∼= D5,
but this is impossible because M/M ′ is cyclic. Thus M ′ has at most two orbits on V (Γ̃)

and so |V (Γ̃)|
∣∣ 2|M ′|, that is, 6n

∣∣ |M ′|. If M = A5 × Zn, then M ′ = A5 and 6n
∣∣ |M ′|

implies that n = 5 or 10 as n > 2. It follows that |V (Γ̃)| = 60 or 120. Since Bv ∼= D5,
we have Γ̃ ∼= G60 or G120 by Lemma 6.4. If M = SL(2, 5)Zn with M ′ = SL(2, 5) and
SL(2, 5) ∩ Zn ∼= Z2, then n is even and 6n

∣∣ |M ′| implies that n = 4, 10 or 20. It follows
that |V (Γ̃)| = 48, 120 or 240, and from Lemma 6.4 that Γ̃ ∼= G48 or G120.

Let Γ̃Zn
∼= I12. By MAGMA [5], under conjugation Aut(I12) has only one minimal arc-

transitive subgroup isomorphic toA5, and so F/Zn has an arc-transitive subgroupB/Zn ∼=
A5. By a similar argument as the previous paragraph,B = B′Zn andB′∩Zn . Mult(A5)
by Lemma 2.3, forcing that either B = B′ × Zn = A5 × Zn or B = B′Zn = SL(2, 5)Zn
with SL(2, 5) ∩ Zn ∼= Z2. Furthermore, B is arc-transitive on Γ̃ with Bv ∼= Z5 for
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v ∈ V (Γ̃), and B/B′ is cyclic. If B′ has more than two orbits on V (Γ), then Γ̃B′ is a
connected pentavalent B/B′-arc-transitive graph by Proposition 2.2, which is impossible
because B/B′ is abelian. Thus B′ has at most two orbits on V (Γ̃) and so 12n

∣∣ 2|B′|.
If B = A5 × Zn, then B′ ∼= A5, and 12n

∣∣ 2|B′| implies that n = 5 or 10. It follows
that |V (Γ̃)| = 60 or 120. Since Bv ∼= Z5, we have Γ̃ ∼= G60 or G120 by Lemma 6.4. If
B = SL(2, 5)Zn with SL(2, 5) ∩ Zn ∼= Z2, then B′ ∼= SL(2, 5) and n is even. Since
12n

∣∣ 2|B′|, we have n = 4, 10 or 20, and so |V (Γ̃)| = 48, 120 or 240. It follows from
Lemma 6.4 that Γ̃ ∼= G48 or G120.

7 Full automorphism groups of covers
Let Γ be a symmetric Dn- or Zn-cover of a connected symmetric pentavalent graph of
order 2p, where n ≥ 2 is an integer and p is a prime. In this section, we aim to determine
the full automorphism group of Γ. For Dn, by Theorem 6.5, Γ ∼= I

(2)
12 , G48, G60 or G120

and by Examples 6.1 – 6.3, Aut(Γ) is known. For Zn, by Theorem 5.1, Γ ∼= K6,6 − 6K2,
I12, CDnp (see Example 3.3), or CGDimpe×p with 1 ≤ i ≤ 5 (see Examples 3.5, 3.6 and
3.7). In particular, for the graph CGDimpe×p, we have mpe = n and m is given by

m = 5tpe11 · · · pess s.t. t ≤ 1, s ≥ 0, ej ≥ 1, 5 | (pj − 1) for 0 ≤ j ≤ s, (7.1)

where m, p, e satisfy the conditions as listed in the second column in Table 2. Note
that m is odd by Equation (7.1). By MAGMA [5], Aut(K6,6 − 6K2) = S6 × Z2 and
Aut(I12) = A5×Z2, and by Example 3.3, Aut(CDnp) = DnpoZ5. Hence we only need
to determine the full automorphism groups of CGDimpe×p for 1 ≤ i ≤ 5. All theses graphs
are connected symmetric cyclic covers of some pentavalent symmetric graph of order 2p
except CGD4

mp×p with 5
∣∣ (p+ 1), which are connected symmetric bi-Cayley graphs over

Zmp × Zp.

Theorem 7.1. Aut(CGDimpe×p) for 1 ≤ i ≤ 5 is isomorphic to one group listed in Table 2.

Table 2: Full automorphism groups of CGDimpe×p for 1 ≤ i ≤ 5.

Γ Conditions: (m, p) = 1, m: Eq. (7.1) Aut(Γ)

CGDimpe×p, i = 1, 2 5 | (p− 1) and e ≥ 2 Dih(Zmpe × Zp) o Z5

CGD4
mp×p

m 6= 1, 5, and p = 5 or 5 | (p± 1) Dih(Zmp × Zp) o Z5

m = 1 or 5, and 5 | (p± 1) Dih(Zmp × Zp) oD5

m = 1 and p = 5 (Dih(Z2
5)× F20).Z4

CGD5
mp×p 5 | (p− 1) Dih(Zmp × Zp) o Z5

Proof. Let Γ = CGDimpe×p for 1 ≤ i ≤ 5 and A = Aut(Γ). For (m, p) = (1, 5), we
have Γ = CGD4

5×5 and by [16, Theorem 4.3 (1)], Aut(Γ) ∼= (Dih(Z2
5) o F20).Z4. In

what follows we assume that (m, p) 6= (1, 5). By Examples 3.5, 3.6 and 3.7, A has an arc-
transitive subgroup F isomorphic to Dih(Zmpe × Zp) o Z5 for CGDimpe×p (i = 1, 2, 3),
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Dih(Zmp × Zp) o Z5 for CGD4
mp×p with m 6= 1, 5 and p = 5 or 5

∣∣ (p± 1), Dih(Zmp ×
Zp) oD5 for CGD4

mp×p with m = 1 or 5 and 5
∣∣ (p ± 1), and Dih(Zmp × Zp) o Z5 for

CGD5
mp×p with 5

∣∣ (p − 1). Note that Fv = Z5 or D5 for v ∈ V (Γ). Furthermore, F has
a normal semiregular subgroup K = Zmpe × Zp having two orbits on V (Γ), and hence Γ
is an F -arc-transitive bi-Cayley graph over K. By Lemmas 4.4 and 4.5, |NA(K)| = |F |,
implying that NA(K) = F . Note that |F | = 10|K| or 20|K|, that is, |F | = 10mpe+1 or
20mpe+1 with p = 5 or 5

∣∣ (p ± 1), and by Equation (7.1), both m and |K| are odd. In
particular, |V (Γ)| = 2|K| = 2mpe+1 is twice an odd integer.

Clearly, K = Zmpe × Zp has a characteristic Hall 5′-subgroup, say H . Then H E F
as K E F . If H 6= K, then 5 | mpe+1 and H has at least three orbits. For p 6= 5, we have
5 | m, and since 52 - m by Equation (7.1), we have |K : H| = 5. For p = 5, by Table 2,
Γ = CGD4

mp×p with (m, 5) = 1 and K = Zm × Zp × Zp, implying that |K : H| = 52.
By Proposition 2.2, ΓH is a connected pentavalent F/H-arc-transitive graph of order 2 · 5
or 2 · 52. By Proposition 3.4 and Example 3.6, ΓH ∼= K5,5 or ΓH ∼= CGD4

5×5. Since
|F | = 10|K| or 20|K| and |K| is odd, H is the characteristic Hall {2, 5}′-subgroup of F .
Thus we have the following claim.

Claim 7.2. H is the characteristic Hall {2, 5}′-subgroup of F , and we have H = K, or
|K : H| = 5 and ΓH ∼= K5,5, or |K : H| = 25 and ΓH ∼= CGD4

5×5.

To finish the proof, we only need to show that A = F . Suppose to the contrary that
A 6= F . Then A has a subgroup M such that F is a maximal subgroup of M . Since F is
arc-transitive on Γ, M is arc-transitive, and since NA(K) = F , we have K 5M .

By the definitions of the graphs CGDimpe×p (1 ≤ i ≤ 5) in Examples 3.5, 3.6 and 3.7,
Γ has the 6-cycle (1, h, a−r−1b−λ−1c−1, ha−rb−λc−1, a−rb−λc−1, hab, 1) for 1 ≤ i ≤ 3,
and the 6-cycle (1, h, a−r−1c−1, ha−rbc−1, a−rbc−1, hab, 1) for 4 ≤ i ≤ 5. Suppose that
Γ is (M, 4)-arc-transitive. Then each 4-arc lies in a 6-cycle in Γ and so Γ has diameter
at most three. It follows that |V (Γ)| = 2mpe+1 ≤ 1 + 5 + 5 · 4 + 5 · 4 · 4 = 106, that
is, mpe+1 ≤ 53. Since p = 5 or 5

∣∣ (p ± 1) and e + 1 ≥ 2 (see the second column
of Table 2), we have p = 5 and m ≤ 2. Since m is odd, (m, p) = (1, 5), contrary to
assumption. Thus Γ is at most 3-arc-transitive, and by Proposition 2.1, we have |Mv| ∈
{5, 10, 20, 40, 60, 80, 120, 720, 1440, 2880}.

Note that |M : F | = |Mv : Fv| ∈ {2, 4, 6, 8, 12, 16, 24, 72, 144, 288, 576} because
M 6= F and |Fv| = 5 or 10. Let [M : F ] be the set of right cosets of F in M . Consider the
action ofM on [M : F ] by right multiplication, and let FM be the kernel of this action, that
is, the largest normal subgroup of M contained in F . Then M/FM is a primitive permuta-
tion group on [M : F ] becauseF/FM is maximal inM/FM , and (M/FM )F = F/FM , the
stabilizer of F ∈ [M : F ] in M/FM . It follows that |M/FM | = |M : F ||F/FM | and so
|F/FM | = |M/FM |/|M : F |. Since |M : F | ∈ {2, 4, 6, 8, 12, 16, 24, 72, 144, 288, 576},
by Lemma 2.4 we have M/FM ≤ AGL(t, 2) with |M : F | = 2t and 1 ≤ t ≤ 4, or
soc(M/FM ) ∼= PSL(2, q), PSL(3, 3) or PSL(2, r) × PSL(2, r) with |M : F | = q + 1,
144 or (r + 1)2 respectively, where q ∈ {5, 7, 11, 23, 71} and r ∈ {11, 23}.

Suppose M/FM ≤ AGL(2, 2) and |M : F | = 4. Since a 2-group cannot be primitive
on [M : F ], we have 3

∣∣ |M/FM | and so 3
∣∣ |M/FM |/|M : F | = |F/FM |. Since

|F | = 10mpe+1 or 20mpe+1 with p = 5 or 5
∣∣ (p ± 1), we have 3

∣∣ m, which is
impossible by Equation (7.1). Thus M/FM 6≤ AGL(2, 2). Similarly, since 7 - m, we
have M/FM 6≤ AGL(3, 2), and if M/FM ≤ AGL(4, 2), then M/FM is a {2, 5}-group.
Furthermore, soc(M/FM ) 6∼= PSL(2, q), PSL(3, 3) or PSL(2, r) × PSL(2, r) for q ∈
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{7, 23, 71} and r = 23 because otherwise one of 7, 23, 13, 23 is a divisor of m. It follows
that M/FM ∼= Z2 with |M : F | = 2, M/FM ≤ AGL(4, 2) with |M : F | = 24 and
M/FM a {2, 5}-group, soc(M/FM ) ∼= PSL(2, q) with |M : F | = q + 1 and q ∈ {5, 11},
or soc(M/FM ) ∼= PSL(2, 11)× PSL(2, 11) with |M : F | = 144.

First assume that M/FM ∼= Z2 with |M : F | = 2. Then F EM and H EM as H
is characteristic in F by Claim 7.2. Let C = CM (H). Since K is abelian, H ≤ K ≤
C. Let P be a Sylow 5-subgroup of C containing the unique Sylow 5-subgroup of K.
Since H is the Hall 5′-group of K, K ≤ HP = H × P . Clearly, HP/H is a Sylow
5-subgroup of C/H . Recall that |F/K|

∣∣ 20 and |K/H|
∣∣ 25 (see Claim 7.2). Since

|M | = 2|F |, we have |M/H|
∣∣ 23 · 53, and by Sylow theorem, M/H has a normal Sylow

5-subgroup. In particular, C/H has a normal Sylow 5-subgroup, that is, HP/H E C/H .
This implies H × P EC, and since C EM and P is characteristic in C, we have P EM .
Since (m, p) 6= (1, 5) and |V (Γ)| = 2mpe+1, P has at least three orbits on V (Γ). By
Proposition 2.2, P is semiregular on V (Γ). Thus |P |

∣∣ |V (Γ)| and |P |
∣∣ |K|. It follows

that |HP | = |H||P |
∣∣ |K|, and since K ≤ HP , we have K = HP EM , a contradiction.

Assume that M/FM ≤ AGL(4, 2) with |M : F | = 24 and M/FM a {2, 5}-group.
Then M/FM has a regular normal subgroup of order 24, say L/FM , and hence L EM ,
24
∣∣ |L| and 5

∣∣ |M : L|. If L is semiregular then 24
∣∣ |V (Γ)| = 2mpe+1, which is

impossible. ThusL is not semiregular, and so 5
∣∣ |Lv|. By Proposition 2.2,L has one or two

orbits, yielding that |L| = |V (Γ)||Lv| or |L| = |V (Γ)||Lv|/2. Since |M | = |V (Γ)||Mv|,
we have |M : L| = |Mv : Lv| or 2|Mv : Lv|, and since 52 - |Mv|, we have 5 - |M : L|, a
contradiction.

Assume that soc(M/FM ) ∼= PSL(2, 5) with |M : F | = 6. Then M/FM = PSL(2, 5)
or PGL(2, 5), and |F/FM | = |M/FM |/|M : F | = 10 or 20. Since H is the unique
normal Hall {2, 5}′-subgroup of F , we have H ≤ FM and so H is characteristic in FM .
This implies H EM because FM EM . Since M/FM ∼= (M/H)/(FM/H), M/H is
insolvable, and since K 5M , we have H 6= K. By Claim 7.2, ΓH ∼= K5,5 or CGD4

5×5. If
ΓH ∼= CGD4

5×5 then Aut(ΓH) ∼= (Dih(Z2
5)×F20).Z4 is solvable and soM/H is solvable,

a contradiction. If ΓH ∼= K5,5 then as Aut(K5,5) = (S5 × S5) o Z2, it is easy to show
that each insolvable arc-transitive group of Aut(K5,5) contains A5×A5 (this is also easily
checked by MAGMA [5]), and so |M/H| ≥ 2 · 602. Noting that FM is semiregular on
V (Γ), we have |FM |

∣∣ |K|. By Claim 7.2, |K : H|
∣∣ 52, and hence |FM : H|

∣∣ 52. It
follows that |M/FM | = |M/H|/|FM/H| ≥ 2 · 602/52 > |PGL(2, 5)|, a contradiction.

Assume that L/FM := soc(M/FM ) ∼= PSL(2, 11) with |M : F | = 12. Then
M/FM = PSL(2, 11) or PGL(2, 11), and |F/FM | = |M/FM |/|M : F | = 55 or 110.
Moreover, L EM and K ≤ L as |K| is odd and |M : L| ≤ 2. Since 11

∣∣ |L/FM |, FM
has at least three orbits on V (Γ), and by Proposition 2.2 FM is semiregular and ΓFM is a
pentavalent F/FM -arc-transitive graph. Thus |FM |

∣∣ |V (Γ)| and |V (ΓFM )| is even. Since
|V (ΓFM )| = |V (Γ)|/|FM | = 2|K|/|FM |, |FM | is odd and |FM |

∣∣ |K|.
Recall that H is the characteristic Hall {2, 5}′-subgroup of F by Claim 7.2. Set

N = H∩FM . Since FM has odd order,N is the characteristic Hall 5′-subgroup of FM , and
since FM EM , we have N EM . Hence FM/N is a 5-subgroup. By Claim 7.2, 53 - |K|,
and since |FM |

∣∣ |K|, we have 53 - |FM |, that is, |FM/N |
∣∣ 25. Thus FM/N is abelian,

and Aut(FM/N) is cyclic or Aut(FM/N) ∼= GL(2, 5). If FM/N = CL/N (FM/N),
then PSL(2, 11) ∼= L/FM ∼= (L/N)/(FM/N) . Aut(FM/N), which is impossible.
Thus FM/N is a proper subgroup of CL/N (FM/N), and since Mult(PSL(2, 11)) ∼= Z2,
Lemma 2.3 implies that L/N = (L/N)′ × FM/N with (L/N)′ ∼= PSL(2, 11). Since
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|V (ΓN )| = |V (Γ)|/|N | = 2|K|/|N | with |K| odd, (L/N)′ ∼= PSL(2, 11) cannot be
semiregular on V (ΓN ), implying that 5

∣∣ |(L/N)′α| for α ∈ V (ΓN ). It follows from
Proposition 2.2 that (L/N)′ has at most two orbits on V (ΓN ), and so |(L/N)|/|(L/N)′| =
|V (ΓN )||(L/N)α|/(|V (ΓN )||(L/N)′α|) = |(L/N)α|/|(L/N)′α| or 2|(L/N)α|/|(L/N)′α|,
implying that 5 - (|L/N |/|(L/N)′|). Since |(L/N)/(L/N)′| = |FM/N | and FM/N is a
5-group, we have |FM/N | = 1, that is, L/N = (L/N)′ ∼= PSL(2, 11).

Since K 5 M and N E M , we have N 6= K, and since K ≤ CL(N) and |N | is
odd, Lemma 2.3 implies L = L′ × N with L′ ∼= PSL(2, 11). Note that L′ EM . Since
Γ has order twice an odd integer, L′ cannot be semiregular on Γ, yielding 5

∣∣ |L′v|. By
Proposition 2.2, L′ has at most two orbits, and so |PSL(2, 11)| = |L′| = |V (Γ)||L′v| or
|V (Γ)||L′v|/2. It implies that |V (Γ)|

∣∣ 2|PSL(2, 11)|, that is, |V (Γ)|
∣∣ 23 · 3 · 11. Since

|V (Γ)| = 2mpe+1 and it is not divided by 3 or 22 by Equation (7.1), we have |V (Γ)| = 22,
contrary to the fact that e+ 1 ≥ 2.

Assume that L/FM := soc(M/FM ) ∼= PSL(2, 11)×PSL(2, 11) with |M : F | = 144.
Then there exists L1/FM E L/FM such that L1/FM ∼= PSL(2, 11) and 11

∣∣ |L : L1|.
Since 11

∣∣ |L : FM |, FM has at least three orbits and so ΓFM has order twice an odd
integer. This implies that L/FM cannot be semiregular, and by Proposition 2.2, L/FM
has one or two orbits. If L/FM has one orbit then L1/FM is semiregular on ΓFM as
11
∣∣ |L : L1| implies that L1/FM has at least three orbits, and so 4

∣∣ |V (ΓFM )|, a
contradiction. If L/FM has two orbits then ΓFM is bipartite and L/FM is edge-transitive
on ΓFM . Furthermore, L1/FM fixes the bipartite sets setwise. Since 11

∣∣ |L : L1|,
L1/FM has at least two orbits on each bipartite set, and by [20, Proposition 2.4], L1/FM
is semiregular on ΓFM . Since L1/FM ∼= PSL(2, 11), again we have the contradiction that
4
∣∣ |V (ΓFM )|.
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Abstract

Extending results of Wyser, we determine formulas for the equivariant cohomology
classes of closed orbits of certain families of spherical subgroups of the general linear
group on the flag variety. Combining this with a slight extension of results of Can, Joyce
and Wyser, we arrive at a family of polynomial identities which show that certain explicit
sums of Schubert polynomials factor as products of linear forms.
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1 Introduction
Suppose that G is a connected reductive algebraic group over C. Suppose that B ⊇ T are
a Borel subgroup and a maximal torus of G, respectively, W is the Weyl group, and let t
denote the Lie algebra of T . By a classical theorem of Borel [1], the cohomology ring of
G/B with rational coefficients is isomorphic to the coinvariant algebra Q[t∗]/IW , where
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IW denotes the ideal generated by homogeneous W -invariant polynomials of positive de-
gree. Any subvariety Y of G/B defines a cohomology class [Y ] in H∗(G/B). It is then
natural to ask for a polynomial in Q[t∗] which represents [Y ]. In this paper, for certain fam-
ilies of subvarieties of certain G/B, we approach and answer this question in two different
ways. Relating the two answers leads in the end to our main result, Theorem 4.1, which,
roughly stated, says that certain non-negative linear combinations of Schubert polynomials
factor completely into linear forms.

Our group of primary interest is G = GLn, with B its Borel subgroup of lower-
triangular matrices, and T its maximal torus of diagonal matrices. In this case, there
is a canonical basis x1, . . . , xn of t∗ that correspond to the Chern classes of the tauto-
logical quotient line bundles on the variety of complete flags G/B. Let Zn denote the
center of GLn, consisting of diagonal scalar matrices. Let On denote the orthogonal
subgroup of GLn, and let Sp2n denote the symplectic subgroup of GL2n. Denote by
GOn (resp. GSp2n) the central extension ZnOn (resp. Z2nSp2n). For any ordered se-
quence of positive integers µ = (µ1, . . . , µs) that sum to n, GLn has a Levi subgroup
Lµ := GLµ1

× · · · ×GLµs , as well as a parabolic subgroup Pµ = Lµ nUµ containing
B, where Uµ denotes the unipotent radical of Pµ.

The subgroup
Hµ := (GOµ1

× · · · ×GOµs) nUµ

of GLn is spherical, meaning that it acts on GLn/B with finitely many orbits. Moreover,
there is a unique closed Hµ-orbit Yµ on GLn/B, which is our object of primary interest.

The reason for our interest in this family of orbits is that they correspond to the closed
B-orbits on the various G-orbits of the wonderful compactification of the homogeneous
space GLn/GOn. This homogeneous space is affine and symmetric, and it is classically
known as the space of smooth quadrics in Pn−1. Its wonderful compactification, classically
known as the variety of complete quadrics [9, 13], is a G-equivariant projective embedding
X which contains it as an open, dense G-orbit, and whose boundary has particularly nice
properties. (We recall the definition of the wonderful compactification in Section 2.1.)

It turns out that, with minor modifications, our techniques apply also to the wonder-
ful compactification X′ of the space GL2n/GSp2n, which parameterizes non-degenerate
skew-symmetric bilinear forms on C2n, up to scalar. Letting G = GL2n in this case, the
G-orbits on X′ are again parametrized by compositions

µ = (µ1, . . . , µs)

of n; note that this is of course equivalent to parametrizing them by compositions of 2n
with each part being even. Each G-orbit has the form G/H′µ, with

H′µ := (GSp2µ1
× · · · ×GSp2µs) nUµ,

a spherical subgroup which again acts on GL2n/B with a unique closed orbit Y′µ.
Let us consider two ways in which one might try to compute a polynomial represen-

tative of [Yµ] (or [Y′µ]). For the first, note that Yµ, being an orbit of Hµ, also admits an
action of a maximal torus Sµ of Hµ. Thus Yµ admits a class [Yµ]Sµ in the Sµ-equivariant
cohomology of GLn/B, denoted by H∗Sµ(GLn/B). In brief, this is a cohomology theory
which is sensitive to the geometry of the Sµ-action on GLn/B. It admits a similar Borel-
type presentation, this time as a polynomial ring in two sets of variables (the usual set of
x-variables referred to in the second paragraph, along with a second set which consists of
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y and z-variables) modulo an ideal. Moreover, the map H∗Sµ(GLn/B) → H∗(GLn/B)
which sets all of the y and z-variables to 0 sends the equivariant class of any Sµ-invariant
subvariety of GLn/B to its ordinary (non-equivariant) class. Thus if a polynomial repre-
sentative of [Yµ]Sµ can be computed, one obtains a polynomial representative of [Yµ] by
specializing y, z 7→ 0.

In [15], this problem is solved for the case in which µ has only one part, in which case
Hµ = GOn. Here, we extend the results of [15] to give a formula for the equivariant class
[Yµ]Sµ (and [Y′µ]S′

µ
) for an arbitrary composition µ. The main general result is Propo-

sition 3.4; it, together with Proposition 3.5, imply the case-specific equivariant formulas
given in Corollaries 3.6 and 3.8.

The formulas for [Yµ] and [Y′µ] obtained from these corollaries (by specializing y and
z-variables to 0) are as follows:

Corollary 1.1. The ordinary cohomology class of [Yµ] is represented in H∗(G/B) by the
formula

2d(µ)

(
n∏
i=1

x
R(µ,i)+δ(µ,i)
i

)
s∏
i=1

∏
νi+1≤j≤k≤νi+1−j

(xj + xk).

Corollary 1.2. The ordinary cohomology class of [Y′µ] is represented in H∗(G/B) by the
formula (

2n∏
i=1

x
R(µ,i)
i

)
s∏
i=1

∏
νi+1≤j<k≤νi+1−j

(xj + xk).

The notations νi, d(µ), R(µ, i), δ(µ, i), etc. will be defined in Sections 2 and 3. For
now, note that the representatives we obtain are factored completely into linear forms. In
fact, the formulas reflect the semi-direct decomposition of Hµ (resp., H′µ) as we will detail
in Section 3.

A second possible way to approach the problem of computing [Yµ] is to write it as a
non-negative integral linear combination of Schubert classes. For each Weyl group element
w in the symmetric group W = Sn, there is a Schubert class [Xw], the class of the
Schubert variety Xw = B+wB/B in GLn/B, where B+ denotes the Borel subgroup of
upper-triangular elements of GLn. The Schubert classes form a Z-basis for H∗(GLn/B).

Assuming that one is able to compute the coefficients in

[Yµ] =
∑
w∈W

cw[Xw], (1.1)

then one may replace the Schubert classes in the above sum with the corresponding Schu-
bert polynomials to obtain a polynomial in the x-variables representing [Yµ]. The Schu-
bert polynomials Sw are defined recursively by first explicitly setting

Sw0
:= xn−1

1 xn−2
2 · · ·x2

n−2xn−1,

and then declaring that Sw = ∂iSwsi if wsi < w in Bruhat order. Here, si = (i, i + 1)
represents the ith simple reflection, and ∂i represents the divided difference operator
defined by

∂i(f)(x1, . . . , xn) =
f(x1, . . . , xn)− f(x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xn)

xi − xi+1
.
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It is well-known that Sw represents [Xw] [10], and so if (1.1) can be computed, [Yµ] is
represented by the polynomial ∑

w∈W

cwSw.

In fact, a theorem due to M. Brion [2] tells us in principle how to compute the sum
(1.1) in terms of certain combinatorial objects. More precisely, to the variety Yµ there is
an associated subset of W, which we call the W -set of Yµ, and denote by W (Yµ). For
each w ∈W (Yµ), there is also an associated weight. In fact, this weight is always a power
of 2, and the aforementioned theorem of Brion says that the sum (1.1) can be computed as

[Yµ] =
∑

w∈W (Yµ)

2d(Yµ,w)[Xw] (1.2)

for non-negative integers d(Yµ, w). This can be turned into an explicit polynomial repre-
sentative via the aforementioned Schubert polynomial recipe, assuming that one can com-
pute the sets W (Yµ), and the corresponding exponents d(Yµ, w) explicitly. In fact, in
Section 2.4, we recall explicit descriptions of the W -sets W (Yµ) which have already
been given in [5, 6], slightly extending those results to also give an explicit description
of W (Y′µ) for arbitrary µ. (Previous results of [6] only described W (Y′µ) when µ con-
sisted of a single part.) And as we will note, the exponents d(Yµ, w) are straightforward
to compute.

This gives a second answer to our question, but note that it comes in a different form. In-
deed, the formulas of Corollaries 1.1 and 1.2 are products of linear forms in the x-variables
which are not obviously equal to the corresponding weighted sums of Schubert polynomi-
als. Of course, it is a priori possible that the two polynomial representatives are actually
not equal, but simply differ by an element of IW, the ideal defining the Borel model of
H∗(G/B). However, our main result, Theorem 4.1, states that in fact the apparent identity
in H∗(G/B) is an equality of polynomials.

The paper is organized as follows. Section 2 is devoted mostly to recalling various
background and preliminaries: We start by recalling necessary background on the wonder-
ful compactification in Section 2.1. We then give the explicit details of the examples which
we are concerned with in Section 2.2; this includes our conventions and notations regarding
compositions, as well as our particular realizations of all groups, including the groups Hµ

and H′µ. In Section 2.4, we review the notion of weak order and W -sets. We recall results
of [5, 6] which are relevant to the current work, giving a slight extension of those results to
the case of W (Y′µ) for arbitrary µ.

In Section 3, we briefly review the necessary details of equivariant cohomology and
the localization theorem. We then use those facts to extend the formulas of [15] to the
more general cases of this paper, obtaining Proposition 3.4 in a general setting, and its
case-specific Corollaries 3.6 and 3.8. Corollaries 1.1 and 1.2 are immediate consequences
of these.

Finally, in Section 4, we compare the representatives of [Yµ] and [Y′µ] obtained via our
two different approaches, obtaining Theorem 4.1.

2 Background, notation, and conventions
Throughout the text, we use italicized notation when we give arguments that apply to gen-
eral reductive groups. In that case, G is an arbitrary connected, reductive algebraic group
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defined over C. We fix a Borel subgroup B of G and a maximal torus T of G contained in
B. We let W denote the Weyl group of G and for every simple root α of T , we let sα ∈W
denote the associated simple reflection and Pα = B ∪BsαB denote the minimal parabolic
subgroup containing B associated to α.

By contrast, we use bolded notation to denote our two main examples

G/H = GLn/On and G/H = GL2n/Sp2n.

In these examples, we use the Borel subgroup B consisting of lower-triangular matrices
and the maximal torus T consisting of diagonal matrices. Furthermore, the Weyl group W
is isomorphic to the symmetric group Sn (respectively, S2n). We hope this helps the reader
distinguish our case-specific results from the general results that we need along the way.

2.1 The wonderful compactification

We review the notion of the wonderful compactification of a general spherical homoge-
neous space. Using our convention outlined above, let G be a connected, reductive alge-
braic group defined over C. An algebraic subgroup H of G, as well as the homogeneous
space G/H , is called spherical if a Borel subgroup B has finitely many orbits on G/H
(or equivalently, if H has finitely many orbits on G/B). Some such homogeneous spaces,
namely partial flag varieties, are complete, while others (for example, symmetric homoge-
neous spaces) are not. In the event that G/H is not complete, a completion of it is a com-
plete G-variety X which contains an open dense subset X0 G-equivariantly isomorphic
to G/H . X is a wonderful compactification of G/H if it is a completion of G/H which
is a “wonderful” spherical G-variety; this means that X is a smooth spherical G-variety
whose boundary (the complement of X0) is a union of smooth, irreducible G-stable divi-
sorsD1, . . . , Dr (the boundary divisors) with normal crossings and non-empty transverse
intersections, such that the G-orbit closures on X are precisely the partial intersections of
the Di’s. The number r is called the rank of the homogeneous space G/H .

The number of G-orbits on X is then 2r, and they are parametrized by subsets of
{1, . . . , r}, with a given subset determining the orbit by specifying the set of boundary
divisors containing its closure. It is well-known that the subsets of {1, 2, . . . , r} are in
bijection with the compositions of r + 1. A composition of n is simply a tuple µ =
(µ1, . . . , µs) with

∑
i µi = n. For a given composition µ = (µ1, . . . , µs), we define the

integers ν2, . . . , νs by the formula νi =
∑i−1
j=1 µj for i = 2, . . . , s. By convention, we set

ν1 = 0. In words, νi is the sum of the first i−1 parts of the composition µ. We parametrize
the G-orbits (G = GLn or G = GL2n) in our examples by compositions of n, with n−1
being the rank of both of the symmetric spaces GLn/GOn and GL2n/GSp2n.

2.2 Our examples

We now describe the two primary examples to which we will directly apply the general
results of this paper. The first is the wonderful compactification X of the space of all smooth
quadric hypersurfaces in Pn−1, i.e. G/H , where (G,H) = (GLn,GOn), classically
known as the variety of complete quadrics.

Choose B to be the lower-triangular subgroup of GLn, and T to be the maximal torus
consisting of diagonal matrices. We realize H0 = On as the fixed points of the involution
given by θ(g) = J(gt)−1J , where J is the n× n matrix with 1’s on the antidiagonal, and
0’s elsewhere. When H0 is realized in this way, H0 ∩B, the lower-triangular subgroup of
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H0, is a Borel subgroup, and S0 := H0 ∩ T is a maximal torus of H0, consisting of all
elements of the form

diag(a1, . . . , am, a
−1
m , . . . , a−1

1 ), (2.1)

where ai ∈ C∗ for i = 1, . . . ,m when n = 2m is even, and of the form

diag(a1, . . . , am, 1, a
−1
m , . . . , a−1

1 ),

where ai ∈ C∗ for i = 1, . . . ,m when n = 2m + 1 is odd. The Lie algebra s0 of S0 then
takes the form

diag(a1, . . . , am,−am, . . . ,−a1), (2.2)

where ai ∈ C for i = 1, . . . ,m in the even case, and

diag(a1, . . . , am, 0,−am, . . . ,−a1),

where ai ∈ C for i = 1, . . . ,m in the odd case.
Note that the diagonal elements of H form a maximal torus S of dimension one greater

than dimS0. The general element of S is of the form

diag(λa1, . . . , λam, λa
−1
m , . . . , λa−1

1 ) (2.3)

in the even case, and of the form

diag(λa1, . . . , λam, λ, λa
−1
m , . . . , λa−1

1 ) (2.4)

in the odd case. Here, λ is an element of C∗ and the ai’s are as before.
The Lie algebra s of S then consists of diagonal matrices of the form

diag(λ+ a1, . . . , λ+ am, λ− am, . . . , λ− a1) (2.5)

in the even case, and of the form

diag(λ+ a1, . . . , λ+ am, λ, λ− am, . . . , λ− a1). (2.6)

in the odd case. Here, λ is an element of C and the ai’s are as before.
Thus we have described the homogeneous space G/H, where G = GLn and H =

GOn, which is the dense G-orbit on X. We now describe the other G-orbits. As men-
tioned in Section 2.1, they are in bijection with compositions µ of n.

Corresponding to µ, we have a standard parabolic subgroup Pµ = LµnUµ containing
B whose Levi factor Lµ is GLµ1

× · · · ×GLµs , embedded in GLn in the usual way, as
block diagonal matrices. The G-orbitOµ corresponding to µ is then isomorphic to G/Hµ,
where Hµ is the group

(GOµ1 × · · · ×GOµs) nUµ,

where GOµi = ZµiOµi is realized in GLµi as described above. Then B ∩Hµ is a Borel
subgroup of Hµ, and Sµ := T ∩Hµ is a maximal torus of Hµ.

Note that Sµ is diagonal, and consists of s “blocks”, the ith block consisting of those
diagonal entries in the range νi + 1, . . . , νi + µi. If µi = 2m is even, then the ith block is
of the form

diag(λiai,1, . . . , λiai,m, λia
−1
i,m, . . . , λia

−1
i,1 ). (2.7)
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The corresponding ith block of an element of sµ is then of the form

diag(λi + ai,1, . . . , λi + ai,m, λi − ai,m, . . . , λi − ai,1). (2.8)

If µi = 2m+ 1 is odd, then the ith block is of the form

diag(λiai,1, . . . , λiai,m, λi, λia
−1
i,m, . . . , λia

−1
i,1 ). (2.9)

The ith block of an element of sµ is correspondingly of the form

diag(λi + ai,1, . . . , λi + ai,m, λi, λi − ai,m, . . . , λi − ai,1). (2.10)

Our second primary example is the wonderful compactification of (G,H′), (G,H′) =
(GL2n,GSp2n). H′ is a central extension of H′0 = Sp2n, the latter group being realized
as the fixed points of the involutory automorphism of GL2n given by g 7→ J̃(gt)−1J̃ ,
where J̃ is the 2n× 2n antidiagonal matrix whose antidiagonal consists of n 1’s followed
by n −1’s, reading from the northeast corner to the southwest. Let S′0 := Sp2n ∩T.

Once again taking B to be the lower-triangular Borel of GL2n, and T to be the diagonal
maximal torus of GL2n, one checks that H′0 ∩ B is a Borel subgroup of H′0, and that
S′0 := H′0 ∩ T is a maximal torus of H′0. The corresponding torus S′ of H′ is then
of exactly the same format as indicated in (2.3), while its Lie algebra s′ is as indicated
by (2.5).

The additional G-orbits on the wonderful compactification X′ of GL2n/GSp2n again
correspond to compositions µ = (µ1, . . . , µs) of n. For such a composition, we let Pµ =
Lµ nUµ be the standard parabolic subgroup whose Levi factor is GL2µ1

× · · · ×GL2µs ,
embedded in GL2n as block diagonal matrices. Then the G-orbit corresponding to µ is
isomorphic to G/H′µ, where

H′µ = (GSp2µ1
× · · · ×GSp2µs) nUµ,

with each GSp2µi = Z2µiSp2µi embedded in the corresponding GL2µi just as described
above.

The torus S′µ then consists of s “blocks”, just as in the orthogonal case. This time, each
block is of even dimension, so each is of the form described by (2.7). The corresponding
block of the Lie algebra s′µ is then of the form indicated in (2.8).

2.3 Some general results

We now introduce several general observations that are applicable to our chosen examples.
In this subsection, returning to the conventions set forth in the beginning of Section 2, let
G be an arbitrary connected, reductive algebraic group over C and let P be a parabolic
subgroup of G containing the Borel subgroup B with Levi decomposition P = L n U ,
where L is a Levi subgroup of G containing T and U is the unipotent radical of P . Let
HL be a subgroup of L and consider the G-variety V = G ×P L/HL, the quotient of
G×L/HL by the action of P , where P acts onG by right multiplication and on L/HL via
its projection to L. Note that V is aG-variety via left multiplication ofG on the first factor.
V is a homogeneous G-variety, and the stabilizer subgroup of the point [1, 1HL/HL] is
H := HLU ⊆ P . The construction of V ∼= G/H from L/HL (or equivalently of H ⊆ G
from HL ⊆ L) is called parabolic induction.
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Note that in our examples, Hµ is obtained via parabolic induction from GOµ1 × · · · ×
GOµk (playing the role ofHL) and H′µ is obtained via parabolic induction from GSpµ1

×
· · · ×GSpµk (likewise playing the role of HL). We now summarize some results from the
literature that describe the role of parabolic induction for wonderful varieties.

Definition 2.1. Let G be a reductive algebraic group. A subgroup H of G is said to be
symmetric if there exists an algebraic involution θ : G → G such that, letting K = Gθ =
{g ∈ G : θ(g) = g} and letting Z denote the center of G, we have ZK0 ⊆ H ⊆ ZK.

Proposition 2.2.

1. Let H be a symmetric subgroup of G such that G/H has a wonderful compactifi-
cation X . Then every G-orbit of X is obtained via parabolic induction from some
symmetric homogeneous space L/HL associated to some Levi subgroup L of G.

2. IfHL is a spherical subgroup of L such thatL/HL contains a single closedBL-orbit
(with BL a Borel subgroup of L) and H is the subgroup of G obtained by parabolic
induction, i.e. G/H ∼= G×P L/HL, then H is a spherical subgroup of G and G/H
contains a single closed B-orbit.

Proof. The first result is a reformulation of a result of de Concini and Procesi [7, Theo-
rem 5.2]. They show that a G-orbit V has a G-equivariant map V → G/P with fiber
L/HL. (In fact, they show that the closure of V maps G-equivariantly to G/P with fiber
the wonderful compactifcation of L/HL, from which our statement follows by restricting
the map to V .) It follows that there is a bijective morphism φ : G ×P L/HL → V , which
is an isomorphism if φ is separable [14, discussion after Theorem 2.2].

The second result follows from [4, Lemma 6], but we give a direct proof for com-
pleteness. We again consider the G-equivariant fibre bundle π : G/H → G/P , with fiber
L/HL. Since HL is a spherical subgroup of L and P is a spherical subgroup of G (by the
classical Bruhat decomposition), it follows that H is a spherical subgroup of G. Moreover,
since there is a unique closed BL-orbit in L/HL and a unique closed B-orbit in G/P ,
there is a unique closed B-orbit in G/H , namely the B-orbit which maps via π to the
closed B-orbit of G/P and whose fiber over the base point 1P/P is identified with the
closed BL-orbit in L/HL.

2.4 Weak order and W -sets

Let H be a spherical subgroup of the connected, reductive algebraic group G and assume
that there exists a wonderful compactification X of G/H . We continue with the notation
of the previous subsection. In this subsection we review the notion of the weak order on the
set of B-orbit closures of X . Note that X is a spherical variety, meaning that B has finitely
many orbits on X , so the set of B-orbits equipped with the weak order is a finite poset.

The weak order on the set ofB-orbit closures ofX is the one whose covering relations
are given by Y ≺ Y ′ if and only if Y ′ = PαY 6= Y for some simple root α of T relative
to B. In general, Y ≤ Y ′ if and only if Y ′ = Pαs · · ·Pα1

Y for some sequence of simple
roots α1, . . . , αs.

When considering the weak order on X , it suffices to consider it on the individual G-
orbits separately. Indeed, if Y and Y ′ are the closures of B-orbits Q and Q′, respectively,
and if Y ≤ Y ′ in weak order, then Q and Q′ lie in the same G-orbit. Therefore, we focus
on the weak order on B-orbit closures on a homogeneous space G/H . The Hasse diagram
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of the weak order poset can be drawn as a graph with labeled edges, each edge with a
weight of either 1 or 2. This is done as follows: For each cover Y ≺ Y ′ with Y ′ = PαY ,
we draw an edge from Y to Y ′, and label it by the simple reflection sα. If the natural map
Pα ×B Y → Y ′ is birational, then the edge has weight 1; if the map is generically 2-to-1,
then the edge has weight 2. (These are the only two possibilities.) The edges of weight 2
are frequently depicted as double edges [4].

In the graph described above, there is a unique maximal element, since G/H is the
closure of its dense B-orbit. Given a B-orbit closure Y , its W -set, denoted W (Y ), is
defined as the set of all elements of W obtained by taking the product of edge labels of
paths which start at Y and end at G/H . The weight d(Y,w) alluded to before (1.2) is
defined as the number of double edges in any such path whose edge labels multiply to
w. (Note that there is one such path for each reduced expression of w, but all such paths
have the same number of double edges, so that d(Y,w) is well-defined [4].) We have now
recalled all explanation necessary to understand (1.2).

Next, we briefly recall results of [5, 6] which give explicit descriptions of these W -sets
in the cases described in Section 2.2.

We begin by addressing the case of the extended orthogonal group H = GOn and the
variants Hµ. For a set A ⊆ [n] := {1, 2, . . . , n}, say that a < b are adjacent in A if there
does not exist c ∈ A such that a < c < b. LetWn denote the set of permutations w ∈ Sn
that have the following recursive property. Initialize A1 = [n]. For 1 ≤ i ≤ bn/2c, assume
that w(1), . . . , w(i − 1) and w(n + 2 − i), . . . , w(n) have already been defined. (This
condition is vacuous in the case i = 1.) Then w(i) and w(n + 1 − i) must be adjacent in
Ai and w(i) must be greater than w(n+ 1− i). Define Ai+1 := Ai \{w(i), w(n+ 1− i)}.
This completely defines w when n is even, and if n = 2k+1 is odd, thenAk+1 will consist
of a single element m, so define w(k + 1) = m. For example, W5 consists of the eight
elements of S5 given in one-line notation by 24531, 25341, 34512, 35142, 42513, 45123,
52314, 53124.

Proposition 2.3 ([5]). Let Y denote the closed B-orbit in G/H where G = GLn and
H = GOn. Then W (Y) =Wn.

Remark 2.4. The “W-set” of [5], which is denoted byDn there, differs slightly from ours.
More precisely, the relationship between Dn and ourW-set is

Wn = {w0w
−1w0 : w ∈ Dn}.

Let us explain the reason for the discrepancy. First, the partial order considered in [5] is the
opposite of the weak order on Borel orbits considered here, which necessitates inverting the
elements of Dn. Second, we consider here B to be the Borel subgroup of lower triangular
matrices in GLn, while [5] uses the Borel subgroup of upper triangular matrices. This
necessitates conjugating the elements by w0.

Similarly, we define a setWµ ⊆ Sn associated with a composition µ = (µ1, . . . , µs)
of n. We begin by recalling the notion of a µ-string [5]. Recall that we have defined
νk =

∑k−1
j=0 µj for 2 ≤ k ≤ s; by convention ν1 = 0. The ith µ-string of a permutation

w ∈ Sn, denoted by stri(w) is the word w(νi + 1)w(νi + 2) . . . w(νi+1). For example,
if w = 3715462 is a permutation from S7 (written in one-line notation) and µ = (2, 4, 1),
then the second µ-string of w is the word 1546. Let A ⊆ [n] have cardinality k and
assume a word ω of length k is given that uses each letter of A exactly once. Define a
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bijection between [k] and A by associating to i ∈ [k] the ith largest element of A. Under
this bijection, the word ω corresponds to the one-line notation of a permutation w in Sk.
Call w the permutation associated to the word ω. Continuing the example, the permutation
associated to the word ω = 1546 is 1324 ∈ S4 (in one-line notation).

The setWµ consists of all w ∈ Sn such that the letters of stri(w) are precisely those j
such that n−νi+1 < j ≤ n−νi and the permutation associated to stri(w) is an element of
Wµi . For example,W(4,2) consists of the three elements of S6 given in one-line notation
by 465321, 563421, 643521.

Proposition 2.5 ([5]). Let Yµ denote the closed B-orbit in G/Hµ where G = GLn
and Hµ = (GOµ1

× · · · × GOµs) n Uµ, i.e. Hµ is obtained by parabolic induction
from HL = GOµ1 × · · · × GOµs ⊆ L = GLµ1 × · · · × GLµs to G = GLn. Then
W (Yµ) =Wµ.

Just as in Remark 2.4, the relation betweenWµ and the set Dµ defined in [5] isWµ =
{w0w

−1w0 : w ∈ Dµ}.
We now turn to the extended symplectic case H′ = GSp2n and its variants H′µ. Con-

sider the inclusion of Sn into S2n via the map u 7→ φ(u) = v = v1v2 · · · v2n, where

[v1, v2, . . . , vn, vn+1, . . . , v2n−1, v2n] =

[2u(1)− 1, 2u(2)− 1, . . . , 2u(n)− 1, 2u(n), . . . , 2u(2), 2u(1)].

LetW ′2n = {φ(u) ∈ S2n : u ∈ Sn}. For example,W ′6 consists of the six elements of S6

given in one-line notation by 135642, 153462, 315624, 351264, 513426, 531246.

Proposition 2.6 ([6, 12]). Let Y′ denote the closed B-orbit in G/H′ where G = GL2n

and H′ = GSp2n. Then W (Y′) =W ′n.

We now proceed to define a setW ′µ ⊆ S2n for any composition µ = (µ1, . . . , µs) of
n. The setW ′µ consists of all w ∈ Sn such that the letters of stri(w) are precisely those j
such that n − νi+1 < j ≤ n − νi and the permutation associated to stri(w) is an element
ofW ′2µi . For example,W ′(2,4) consists of the two elements of S6 given in one-line notation
by 123564, 125346.

Proposition 2.7. Let Y′µ denote the closed B-orbit in G/H′µ where G = GL2n and
H′µ = (GSp2µ1

× · · · ×GSp2µs) nUµ, i.e. H′µ is obtained by parabolic induction from
HL = GSp2µ1

× · · · ×GSp2µs ⊆ L = GL2µ1 × · · · ×GL2µs to G = GL2n. Then
W (Y′µ) =W ′µ.

Proposition 2.7 is proved in exactly the same manner as Proposition 2.5 is proven in
[5, Theorem 4.11], so we omit its proof. Alternatively, it can be obtained as a corollary of
Proposition 2.6 by applying a general result of Brion on W -sets for homogeneous spaces
obtained by parabolic induction [2, Lemma 1.2].

3 Equivariant cohomology computations
3.1 Background

We start by reviewing the basic facts of equivariant cohomology that we will need to sup-
port our method of computation. All cohomology rings use Q-coefficients. Results of this
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section are generally stated without proof, as they are fairly standard. To the reader seeking
a reference we recommend [15] for an expository treatment, as well as references therein.

We will apply our results to equivariant cohomology with respect to the action of Sµ
(respectively, S′µ) on G/B, these tori having been defined in Section 2.2. Given a variety
X with an action of an algebraic torus S with Lie algebra s, the equivariant cohomology
is, by definition,

H∗S(X) := H∗((ES ×X)/S),

where ES denotes a contractible space with a free S-action. H∗S(X) is an algebra for the
ring ΛS := H∗S({pt.}), the ΛS-action being given by pullback through the obvious map
X → {pt.}. The ring ΛS is naturally isomorphic to the symmetric algebra Sym(s∗) on s∗.
Thus, if y1, . . . , yn are a basis for s∗, then ΛS ' Sym(s∗) is isomorphic to the polynomial
ring Q[y] = Q[y1, . . . , yn]. When X = G/B with G a reductive algebraic group and B
a Borel subgroup, and if S ⊆ T ⊆ B with T a maximal torus in G, then we have the
following concrete description of H∗S(X):

Proposition 3.1. Let R = Sym(t∗), R′ = Sym(s∗). Then H∗S(X) = R′ ⊗RW R. If
X1, . . . , Xn are a basis for t∗, and Y1, . . . , Ym are a basis of s∗, elements of H∗S(X) are
thus represented by polynomials in variables xi := 1⊗Xi and yi := Yi ⊗ 1.

To make this clear in the setting of our examples (cf. Section 2.2), if S is taken to be
the full maximal torus T of GLn, we let Xi (i = 1, . . . , n) be the function on t which
evaluates to ai on the element

t = diag(a1, . . . , an).

We denote by Yi (i = 1, . . . , n) a second copy of the same set of functions. We then have
two sets of variables as in Proposition 3.1, typically denoted x = x1, . . . , xn and y =
y1, . . . , yn, and T-equivariant classes are represented by polynomials in these variables.

If µ = (µ1, . . . , µs) is a composition of n, let T be the full torus of GLn, and let Sµ
be the torus of Hµ, as in Section 2.2. We denote by Xi the same function on t as described
above. We denote by Yi,j the function on sµ which evaluates to ai,j on an element of
the form in (2.8) (if µi is even) or (2.10) (if µi is odd). We denote by Zi the function
which evaluates to λi on an element of the form (2.8) or (2.10). Then letting lower-case x,
y, and z-variables correspond to these coordinates (with matching indices), H∗Sµ(G/B) is
generated by these variables, and when we seek formulas for certain Sµ-equivariant classes,
we are looking for polynomials in these particular variables.

We next recall the standard localization theorem for torus actions. For more on this
fundamental result, the reader may consult, for example, [3].

Theorem 3.2. Let X be an S-variety, and let i : XS ↪→ X be the inclusion of the S-fixed
locus of X . Then the pullback map of ΛS-modules

i∗ : H∗S(X)→ H∗S(XS)

is an isomorphism after a localization which inverts finitely many characters of S. In
particular, if H∗S(X) is free over ΛS , then i∗ is injective.

When X = G/B, H∗S(X) = R′ ⊗RW R is free over R′ (as R is free over RW ), so
any equivariant class is entirely determined by its image under i∗. We will only apply this
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result in the event that S = T is the full maximal torus of G, so the S-fixed locus is finite,
being parametrized by W . Then for us,

H∗S(XS) ∼=
⊕
w∈W

ΛS ,

so that in fact a class in H∗S(X) is determined by its image under i∗w for each w ∈ W ,
where here iw denotes the inclusion of the S-fixed point wB/B in G/B. Given a class
β ∈ H∗S(X) and an S-fixed point wB/B, we may denote the restriction i∗w(β) at wB/B
by β|w.

We end the section by recalling how the restriction maps are computed.

Proposition 3.3 ([15]). With the notation of the preceding paragraph, suppose that β ∈
H∗S(X) is represented by the polynomial f = f(x,y) in variables x, y. Then β|w ∈ ΛS is
the polynomial f(wY |s, Y ).

3.2 A general result

We continue with the general setup given at the beginning of Section 2. Let P = LU
be a parabolic subgroup of G containing B, with L a Levi factor containing T and U the
unipotent radical of P contained in B. Let HL denote a spherical subgroup of L and let
S := T ∩HL be a maximal torus of HL. Let X denote the generalized flag variety G/B.

Let H be the subgroup obtained by parabolic induction from HL ⊆ L to G, i.e. H =
HLU . As proven in Proposition 2.2, H is a spherical subgroup of G with a unique closed
B-orbit Q. The torus S is a maximal torus of H , and we seek to describe [Q] ∈ H∗S(X).

Denote by BL the Borel subgroup B ∩ L of L, and let Y denote the generalized flag
variety L/BL. Note that there is an S-equivariant embedding j : Y ↪→ X , which induces
a pushforward map in cohomology j∗ : H∗S(Y ) → H∗S(X). Given our setup, the orbit
Q′ = H · 1BL/BL is closed in Y . In fact, j(Q′) = Q. To see this we just observe that
1B/B ∼= 1BL/BL under the embedding j. Nonetheless, to avoid possible confusion, we
refer to the closed orbit as Q′ when thinking of it as a subvariety of Y , and as Q when
thinking of it as a subvariety of X .

Let WL ⊆ W denote the Weyl group of L. In the root system Φ for (G,T ), choose
Φ+ to be the positive system such that the roots of B are negative. Similarly, let ΦL be
the root system for (L, T ) and let Φ+

L = ΦL ∩ Φ+ be the positive roots of L such that the
roots of BL are negative. Given a root r ∈ Φ (resp., r ∈ ΦL), let gr denote the associated
one-dimensional root space in g (resp., l).

The next result relates the class of Q′ in H∗S(Y ) to the class of Q in H∗S(X).

Proposition 3.4. With notation as above, the classes j∗[Q] and [Q′] are related via mul-
tiplication by the top S-equivariant Chern class of the normal bundle NYX , i.e. j∗[Q] =
cSd (NYX)∩ [Q′]. This Chern class is the restriction of a T -equivariant Chern class for the
same normal bundle, and the latter class, which we denote by α, is uniquely determined by
the following properties:

α|w =

{∏
r∈Φ+\Φ+

L
wr if w ∈WL,

0 otherwise.

Proof. The first statement follows easily from the equivariant self-intersection formula [8,
p. 621, (4)], since [Q] = j∗[Q

′]. Since bothX and Y have T -actions (not simply S-actions,
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as is the case for Q and Q′), there does exist a top T -equivariant Chern class of NXY , and
clearly the S-equivariant version is simply the restriction of the T -equivariant one.

The properties which define α follow from analysis of tangent spaces at various fixed
points. Indeed, it is clear that the T -fixed points of Q′ lying in Y are those which corre-
spond to elements of WL ⊆ W . Thus for w /∈ WL, we have α|w = 0. For w ∈ WL, the
restriction is cTd (NXY )|w = cTd (NXY |w) = cTd (TwX/TwY ), where d = codimX(Y ).
Since both X and Y are flag varieties, it is straightforward to compute these two tan-
gent spaces, and their decompositions as representations of T . Indeed, TwX is sim-
ply

⊕
r∈Φ+ gwr, while TwY is

⊕
r∈Φ+

L
gwr. The quotient of the two spaces is then⊕

r∈Φ+\Φ+
L
gwr, which implies our claim on α|w.

Finally, that these restrictions determine α follows from the localization theorem, The-
orem 3.2.

We now determine an explicit formula for the T -equivariant Chern class α that is de-
fined in Proposition 3.4 when G is of type A. Let µ = (µ1, . . . , µs) be a composition of n,
let L = GLµ1 × · · · ×GLµs , and let T be the full diagonal torus of GLn.

For each 1 ≤ k ≤ n, let εk ∈ t∗ be given by εk(diag(t1, . . . , tn)) = tk. For any
1 ≤ k < l ≤ n, let αk,l = εk − ε` ∈ Φ+. Finally, let

hµ(x,y) :=
∏

αk,`∈Φ+\Φ+
L

(xk − y`).

An equivalent definition of hµ showing the explicit dependence on the composition µ
is as follows. For each pair i, j with 1 ≤ i < j ≤ s, we define a polynomial

hi,j(x,y) :=

νj+µj∏
k=νj+1

νi+µi∏
`=νi+1

(x` − yk).

Then it follows immediately that

hµ(x,y) =
∏

1≤i<j≤s

hi,j(x,y).

Proposition 3.5. The T -equivariant class α is represented by the polynomial hµ(x,y).

Proof. It is straightforward to verify that the polynomial representative we give satisfies
the restriction requirements of Proposition 3.4. Indeed, the Weyl group WL of L is a
parabolic subgroup of the symmetric group on n-letters, embedded as those permutations
preserving separately the sets {νi + 1, . . . , νi + µi} for i = 0, . . . , s − 1. Applying such
a permutation to the representative above (with the action by permutation of the indices
on the x-variables, as in Proposition 3.3) gives the appropriate product of weights. On the
other hand, applying any w /∈WL will clearly give 0, since such a permutation necessarily
sends some l ∈ {νi + 1, . . . , νi +µi} (for some i) to some k ∈ {νj + 1, . . . , νj +µj} with
i < j. This permutation forces the factor x`− yk to vanish, which, in turn, forces hµ(x,y)
to vanish. By Proposition 3.4, hµ represents α.
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3.3 The orthogonal case

We now apply these computations specifically to the two type A cases described in Sec-
tion 2.2, using all of the notational conventions defined there. We start with the case of
(G,H) = (GLn,GOn). Let µ = (µ1, . . . , µs) be a composition of n, and let B, T,
and Sµ be as defined in Section 2.2. Let Pµ = LµUµ be the standard parabolic subgroup
containing B whose Levi factor Lµ corresponds to µ.

With these choices made, let the x, y, and z variables be the generators forH∗Sµ(G/B)
explicitly described after the statement of Proposition 3.1. We seek a polynomial in the x,
y, and z-variables which represents the class of Hµ · 1B/B ∈ H∗Sµ(GLn/B).

To find such a formula, we use a known formula for the closed H0 = On-orbit on
GLn/B to deduce a formula for the Sµ-equivariant class of Hµ ·1B/B inH∗Sµ(Lµ/BLµ),
and then apply Proposition 3.4. Indeed, we know from [15, 16] that when H0 = On, the
class of H0 · 1B/B in H∗S0

(GLn/B) (here, S0 is the maximal torus of H0 described in
Section 2.2) is given by

[H0 · 1B/B]S0 =
∏

1≤i≤j≤n−i

(xi + xj) = 2bn/2c
∏
i≤n/2

xi
∏

1≤i<j≤n−i

(xi + xj). (3.1)

The formula of (3.1) is given in [15] in the case that n is even, while an alternative
formula is given in the case that n is odd. It is observed in [16] that the above formula
applies equally well when n is odd.

Recall that when H = GOn, a maximal torus S of H has dimension one greater
than the corresponding maximal torus S0 of H0. Thus the S-equivariant cohomology of
GLn/B has one additional “equivariant variable”, which we call z. In this case, it is no
harder to show that the class of H · 1B/B in H∗S(GLn/B) is given by

[H · 1B/B]S = Pn(x,y, z) :=
∏

1≤i≤j≤n−i

(xi + xj − 2z). (3.2)

Note that by restricting from H∗S(G/B) to H∗S0
(G/B) (which amounts to setting the ad-

ditional equivariant variable z to 0), we recover the original formula (3.1).
Combining these formulae with Proposition 3.4, for each composition µ of n we are

now ready to give case-specific formulae for the unique closed Hµ-orbit Hµ · 1B/B on
GLn/B. (Recall that each of these orbits corresponds to the unique closed B-orbit on the
corresponding G-orbit on the wonderful compactification of G/H.)

We consider the variables x = (x1, . . . , xn), y = (y1, . . . , yn), and z = (z1, . . . , zs),
where s is the number of parts in the composition µ. We divide the variables into smaller
clusters dictated by the composition µ. Let x(i) = (xνi+1, . . . , xνi+1) and y(i) = (yνi+1,
. . . , yνi+1). Then define

Pµ(x,y, z) :=

s∏
i=1

Pµi(x
(i),y(i), zi),

where Pµi is given by (3.2).
We now introduce an equivalent, but more explicit, description of the class

[Hµ · 1B/B]Sµ which reflects the block decomposition associated to µ. To this end, we
introduce new notation for a fixed composition µ = (µ1, . . . , µs) of n. First, for each of
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the s blocks of Sµ, define a polynomial fi(x, z) as follows:

fi(x, z) =

νi+bµi/2c∏
j=νi+1

(xj − zi).

In words, the xj occurring in the terms of this product are those occurring in the first half
of their block, and from each, we subtract the z-variable corresponding to that block. So
for example, if n = 11, µ = (6, 5), then

f1(x, z) = (x1 − z1)(x2 − z1)(x3 − z1),

while
f2(x, z) = (x7 − z2)(x8 − z2).

Next, for each block, define gi(x, z) as follows:

gi(x, z) =
∏

νi+1≤j<k≤2νi+µi−j

(xj + xk − 2zi).

(Note that gi(x, z) = 1 unless µi ≥ 3.) So for µ = (6, 5) as above, we have that

g1(x, z) = (x1 + x2 − 2z1)(x1 + x3 − 2z1)(x1 + x4 − 2z1)(x1 + x5 − 2z1)

(x2 + x3 − 2z1)(x2 + x4 − 2z1),

and

g2(x, z) = (x7 + x8 − 2z2)(x7 + x9 − 2z2)(x7 + x10 − 2z2)(x8 + x9 − 2z2).

Finally, we define a third polynomial hµ(x,y, z) in the x, y, and z-variables to simply
be hµ(x, ρ(y)), where ρ denotes restriction from the variables y1, . . . , yn corresponding to
coordinates on the full torus T to the variables yi,j , zi on the smaller torus Sµ. To be more
explicit, for each i, j with 1 ≤ i < j ≤ s define hi,j(x,y, z) to be{∏µi

k=1

∏µj/2
l=1 (xνi+k − yj,l − zj)(xνi+k + yj,l − zj) if µj is even,∏µi

k=1(xνi+k − zj)
∏bµj/2c
l=1 (xνi+k − yj,l − zj)(xνi+k + yj,l − zj) if µj is odd.

So for the case n = 4, µ = (2, 2), we have

h1,2(x,y, z) = (x1 − y2,1 − z2)(x1 + y2,1 − z2)(x2 − y2,1 − z2)(x2 + y2,1 − z2),

while for the case n = 5, µ = (2, 3), we have

h1,2(x,y, z) = (x1 − z2)(x2 − z2)(x1 − y2,1 − z2)(x1 + y2,1 − z2)

(x2 − y2,1 − z2)(x2 + y2,1 − z2).

Then we define
hµ(x,y, z) =

∏
1≤i<j≤s

hi,j(x,y, z).

Propositions 3.4 and 3.5 then imply the following formula for the Sµ-equivariant class
of Hµ · 1B/B in this case.



538 Ars Math. Contemp. 15 (2018) 523–542

Corollary 3.6. The Sµ-equivariant class of the unique closed Hµ-orbit Hµ · 1B/B on
G/B is represented by the polynomial

2d(µ)hµ(x,y, z)

s∏
i=1

fi(x, z)gi(x, z),

where d(µ) =
∑s
i=1bµi/2c.

Proof. The fact that the product 2d(µ)
∏s
i=1 fi(x, z)gi(x, z) is equal to the formula for

j∗[Q] follows from the formula of (3.2). It follows from Proposition 3.4 and Proposi-
tion 3.5 that the representative of [Q] is obtained from j∗[Q] by multiplying with the top
Sµ-equivariant Chern class of the normal bundle, which is represented by the polynomial
hµ(x,y, z).

Corollary 3.7. The Sµ-equivariant class [Hµ · 1B/B] is represented by the polynomial
Pµ(x,y, z)hµ(x,y, z).

Proof. This follows immediately from the observation that

Pµi(x
(i),y(i), zi) = 2bµi/2cfi(x, z)gi(x, z).

3.4 The symplectic case

We give similar (but simpler) formulas for the case when (G,H′) = (GL2n,GSp2n).
Recall from [15] that for the case (G,H′0) = (GL2n,Sp2n), the S′0-equivariant class (S′0
the maximal torus of H′0 described in Section 2.2) of the unique closed orbit H′0 · 1B/B is
given by

[H′0 · 1B/B]S′
0

=
∏

1≤i<j≤2n−i

(xi + xj). (3.3)

As before, it is no harder to see that if S′ is the maximal torus of diagonal elements of
H′, then the S′-equivariant class of the closed orbit H′ · 1B/B is represented by

[H′ · 1B/B]S′ = P ′n(x,y, z) :=
∏

1≤i<j≤2n−i

(xi + xj − 2z). (3.4)

Now let µ = (µ1, . . . , µs) be a composition of 2n with all even parts. Let H′µ be the
spherical group

(GSpµ1
× · · · ×GSpµs) nUµ,

as defined in Section 2.2. Let S′µ be the maximal torus of H′µ, with the y and z-variables
as defined above.

Corollary 3.8. InH∗S′
µ
(G/B), the class of the closed H′µ-orbit H′µ ·1B/B is represented

by

hµ(x,y, z)

s∏
i=1

gi(x, z).

Proof. The proof is identical to that of Corollary 3.6, using Proposition 3.4 combined with
(3.4) in the same way.
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Remark 3.9. Note that gi(x, z) = P ′µi(x
(i),y(i), zi), where P ′µi is given by (3.4), so that

again [H′µ · 1B/B] is equal to P ′µ(x,y, z)hµ(x,y, z), where

P ′µ(x,y, z) :=

s∏
i=1

P ′µi(x
(i),y(i), zi).

We now specialize these formulas to ordinary cohomology (by setting all y and z-
variables to 0), in order to prove Corollaries 1.1 and 1.2. First, we define the notations
used in those formulas which have not yet been defined. For each i = 1, . . . , n, let B(µ, i)
denote the block that the variable xi occurs in, i.e. B(µ, i) is the smallest integer j such
that

j∑
`=1

µ` ≥ i.

Then for each i = 1, . . . , n, define R(µ, i) to be

R(µ, i) :=
∑

B(µ,i)<j≤s

µj .

This is the combined size of all blocks occurring strictly to the right of the block in which
xi occurs.

Finally, again for each such i, define δ(µ, i) to be 1 if and only if xi occurs in the first
half of its block, and 0 otherwise. Note that by the “first half” we mean those positions less
than or equal to `/2 where ` is the size of the block; in particular, for a block of odd size,
the middle position is not considered to be in the first half of the block.

Proof of Corollaries 1.1 and 1.2. The formula of Corollary 1.1 comes from that of Corol-
lary 3.6; we simply set y = z = 0. The binomial terms xj+xk come from the polynomials
gi(x, 0). The monomial terms come from the polynomials fi(x, 0) and hi,j(x, 0, 0). The
x
δ(µ,i)
i term comes from fi(x, 0), the latter being xi if this variable occurs in the first half

of its block, and 1 otherwise. The remaining xR(µ,i)
i comes from the hi,j(x, 0, 0). Indeed,

it is evident that for an x-variable in block i, for each j > i the given x-variable appears in
precisely µj linear forms involving y, z terms associated with block j.

The proof of Corollary 1.2 is almost identical, except simpler.

4 Factoring sums of Schubert polynomials
We end by establishing explicit polynomial identities involving sums of Schubert polyno-
mials, using the cohomological formulae of the preceding section together with the results
of [5, 6] which were recalled in Section 2.4.

Note that by Brion’s formula (1.2) combined with the fact that the Schubert polynomial
Sw is a representative of the class of the Schubert variety Xw in H∗(G/B), we have the
following two families of identities in H∗(G/B):

∑
w∈W (Yµ)

2d(Yµ,w)Sw = 2d(µ)
n∏
i=1

x
R(µ,i)+δ(µ,i)
i

s∏
i=1

( ∏
νi+1≤j≤k≤νi+1−j

(xj + xk)

)
; (4.1)
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∑
w∈W (Y′

µ)

Sw =

2n∏
i=1

x
R(µ,i)
i

s∏
i=1

( ∏
νi+1≤j<k≤νi+1−j

(xj + xk)

)
. (4.2)

Equation (4.1) above simply combines (1.2) with Corollary 1.1. Likewise, (4.2) com-
bines (1.2) with Corollary 1.2, together with the fact that all B-orbit closures in the sym-
plectic case are known to be multiplicity-free, meaning d(Y′µ, w) = 0 for all w ∈W (Y′µ).

In fact, also in (4.1) above, the powers of 2 can be completely eliminated from both
sides of the equation. This follows from a result of Brion [4, Proposition 5], which states
that whenever G is a simply laced group (recall that for us, G = GLn is simply laced),
all of the coefficients appearing in (1.2) are the same power of 2. It is explained in [5,
Section 5] that the coefficients appearing on the left-hand side of (4.1) are in fact all equal
to 2d(µ). Since H∗(G/B) has no torsion, we have the simplified equality

∑
w∈W (Yµ)

Sw =

n∏
i=1

x
R(µ,i)+δ(µ,i)
i

s∏
i=1

( ∏
νi+1≤j≤k≤νi+1−j

(xj + xk)

)
. (4.3)

Now, note that a priori, the identities (4.2) and (4.3) hold only in H∗(G/B). That is,
we know only that the left and right-hand sides of the identities are congruent modulo the
ideal IW. We end with a stronger result.

Theorem 4.1. Both (4.2) and (4.3) are valid as polynomial identities.

Proof. We use the fact that the Schubert polynomials {Sw | w ∈ Sn} are a Z-basis for
the Z-submodule Γ of Z[x] spanned by monomials

∏
xcii with ci ≤ n − i for each i [11,

Proposition 2.5.4]. We claim that on the right-hand side of (4.3) (resp. (4.2)), each xi does
in fact occur with exponent at most n − i (resp. 2n − i). To see this, note that since the
right-hand side of each identity is a product of linear forms, it suffices to count, for each i,
the number of these linear factors in which xi appears.

In (4.3), we claim that xi appears in precisely
(∑s

j=B(µ,i) µj

)
− i of the linear factors.

Since
∑s
j=B(µ,i) µj ≤

∑s
j=1 µj = n, this establishes our claim that the right-hand side

lies in Γ. Indeed, clearly xi appears R(µ, i) + δ(µ, i) times as a monomial factor, so we
need only count the number of binomial factors of the form xj + xk that it appears in. One
checks easily that it appears in µi − i − 1 such factors if xi occurs in the first half of its
block, and in µi− i such factors otherwise. In other words, if Ni is the number of binomial
factors involving xi, then we have δ(µ, i) +Ni = µi − i. Thus

R(µ, i) + δ(µ, i) +Ni = R(µ, i) + µi − i

=

(
s∑

j=B(µ,i)+1

µj

)
+ µi − i

=

(
s∑

j=B(µ,i)

µj

)
− i,

as claimed.
Clearly, the right-hand side of (4.2) also lies in Γ, applying the same argument with n

replaced by 2n. Indeed, the only difference is in the lack of the additional monomial factor
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x
δ(µ,i)
i ; thus xi occurs in either

(∑s
j=B(µ,i) µj

)
−i or

(∑s
j=B(µ,i) µj

)
−i−1 of the linear

factors on the right-hand side of (4.2). In either event, this is at most 2n− i, as required.
Now, since the right-hand side of each of (4.2) and (4.3) are in Γ, they are expressible as

a sum of Schubert polynomials whose indexing permutations lie in S2n (for (4.2)) or Sn (for
(4.3)) in exactly one way. Furthermore, since the Schubert classes {[Xw]} are a Z-basis for
H∗(G/B), the cohomology class represented by the right-hand side of (4.2) and (4.3) is a
Z-linear combination of Schubert classes in precisely one way. Clearly, the same indexing
permutations must arise with the same multiplicities in both the polynomial expansion and
the cohomology expansion. Then since (4.2) and (4.3) are correct cohomologically, they
must also be polynomial identities.

Example 4.2. In the orthogonal case when µ = (3, 4), the identity (4.3) becomes

S6752431 + S6753412 + S6754213+S7562431 + S7563412 + S7564213 =

x5
1x

4
2x

4
3x4x5(x1 + x2)(x4 + x5)(x4 + x6).
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