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Popravni kolièniki za izraèun Youngovega modula iz
resonanènega upogibnega nihanja

Correction Coefficients for Calculating the Young�s Modulus from the Resonant
Flexural Vibration

Igor �tubòa - Anton Trník
(Constantine the Philosopher University, Nitra)

Enostavna enaèba, dobljena iz poenostavljene diferencialne enaèbe upogibnega nihanja za primer
z enakomernim prerezom, nam ne da toène vrednosti Youngovega modula oz. hitrosti zvoka, èe je razmerje
dol�ine in premera (oz. dol�ine in debeline) vzorca manj�e od 20. Napako lahko odpravimo z mno�enjem
izmerjene resonanène frekvence ali izraèunanega Youngovega modula s popravnim koliènikom. V prispevku
predstavljamo nekaj enaèb za popravne koliènike in novo enaèbo ter jih primerjamo z enaèbami Ameri�kega
zdru�enja za preizku�anje in materiale (American Society for Testing and Materials - ASTM).
© 2006 Strojni�ki vestnik. Vse pravice pridr�ane.
(Kljuène besede: nihanja upogibna, frekvence resonanène, moduli Youngovi, izraèuni)

A simple formula derived from the simplified differential equation of flexural vibration of a sample
with a uniform cross-section does not give exact values for the Young�s modulus or the velocity of sound if the
ratio of the length to the diameter (or the length to the thickness) of the sample is less than 20. The error can
be eliminated by multiplying the measured resonant frequency or the calculated Young�s modulus by a
correction coefficient. Some formulae for the correction coefficients as well as a new formula are presented
and compared with the ASTM formulae.
© 2006 Journal of Mechanical Engineering. All rights reserved.
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0  INTRODUCTION

 One of the best methods for determining the
velocity of sound or the Young�s modulus of solids
is based on the resonant flexural vibrating of a sample
of a cylindrical or a prismatic shape. It is easy to
excite this vibration, and its magnitude is sufficiently
high. Its resonant frequency is less than the resonant
frequency of a longitudinal vibration of a sample
with the same length. These properties of the flexural
vibration make it preferable for measuring the
Young�s modulus or the velocity of sound.

For measuring purposes the most suitable
vibration is the vibration of a free-free sample
because of the relative ease of fulfilling the boundary
condition of the theoretical solution. A widely used
method, which is also suitable for high temperatures,
is based on Föster�s idea [1], later improved by
Spinner and Tefft [2].

The solution for the three-dimensional form
of the partial differential equation of flexural vibration
is complex, but the mathematical approach can be
simplified, and a reasonably exact solution can be
obtained. For long samples the simplified partial
differential equation of the flexural vibration can be
used. This equation has the form [3]:

                    (1),

where x and y are the coordinates of the mass element
of the sample, t is time, c

0
 is the velocity of sound

(i.e., the velocity of longitudinal wave propagation
in the sample), i is the radius of inertion of the cross-
section. For a sample with a circular cross-section,
the radius of inertion is / 4i d=  and for a sample
with a rectangular cross-section it is / 12i d= ,
where d is the diameter of a cylindrical sample or the
thickness of a prismatic sample in the direction of
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the vibration.  The frequency equation derived from
Eq. (1) for the free-free sample is:

(2),

where l is length of the sample, 0/( )a icw= , w is a
resonant angular frequency.

 
The formulae for the

velocity of sound c
0
 and the Young�s modulus E

derived from Eq. (2) have the form:

(3),

where f is the resonant frequency, r is the material
density and the values of the constant K are:
K = 1.12336 for a cylindrical sample and the

fundamental resonant frequency,
K = 0.97286 for a prismatic sample and the

fundamental resonant frequency,
K =  0.40752 for a cylindrical sample and the 1st

overtone,
K = 0.35292 for a prismatic sample and the 1st

overtone.
If a relatively short sample is used (with the

ratio l/d < 20) it is necessary to take into account the
influence of the shear forces and the rotary inertia.
There are two possible ways to do this: 1) solving
the complicated frequency equation derived from
the partial differential equation accounting for these
influences, 2) using the simple formula (3) and
multiplying the calculated Young�s modulus (or
measured resonant frequency) by a correction
coefficient.

Formulae for calculating the correction
coefficients for the fundamental mode as well as for
the first overtone of the flexural vibration of a
cylindrical or a prismatic sample and comparisons of
these coefficients are given in this paper.

1  CORRECTION COEFFICIENTS DERIVED
FROM AN ALTERNATIVE EQUATION

If the ratio of l/d > 20, the measured resonant
frequency is in a good agreement with that calculated
from Eq. (3). If the ratio of l/d < 20, the measured
resonant frequency is less than the frequency
calculated from Eq. (3) for the same sound velocity:
the shorter the sample, the bigger the discrepancy
between the theoretical and the measured
frequencies. To avoid this disagreement, the effect
of the shear forces and the rotary inertia has to be
taken into account. This leads to Timoshenko�s
equation [1] or to the alternative equation [4]:

(4).

Here 2(1 ) /p m k= + , where m is Poisson�s
ratio, and k  = 0.710. The frequency equation for the
�free-free sample� derived from Eq. (4) is:

(5),

where:

The frequency equation (5) is complex and
can be solved only by a numerical method. This is
the reason why correction coefficients are used.

If the measured resonant frequency f is
multiplied by the correction coefficient Q then the
correct value of the velocity of sound (or the Young�s
modulus) can be obtained from Eq. (3). Then Eq. (3)
becomes:

(6),

where the coefficients K are the same as above. The
correction coefficient Q was obtained from the
resonant frequencies f

(2)
 and f

(5)
 computed using the

numerical bisection method from the frequency
equations (2) and (5) respectively. Then the
correction coefficient is:

(7).

The correction coefficients Q are dependent
on the ratio of l/d as well as on Poisson�s ratio m, but
the dependence between Q and m is weak. The values
of Q could be considered constant for l/d > 6 and
0.15 < m < 0.4 (see Fig. 1 and 2). The values of Q were
computed for the fundamental mode and l/d > 2.5,
and for l/d > 5 for the 1st overtone. The tabulated
coefficients Q for the fundamental mode of flexural
vibration and the cylindrical and prismatic samples
are shown in [5] and [6] and for the 1st overtone of
the flexural vibration and cylindrical and prismatic
samples in [7].

It is often more convenient to have correction
coefficients in the form of a formula than a table.
Therefore, the formula for calculating the correction
coefficients was suggested [8]:
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cross-section  
Parameter circular square 

A 
B 
C 
D 

0.00002 
2.5719 

-0.14069 
-2.43588 

-0.00002 
3.44347 
-0.44952 
-3.34228 

 

(8).

Parameters A, B, C, D were obtained from a
regression analysis of the correction coefficients
listed in [5] to [7]. The values of the parameters A, B,
C, D are in Tab. 1 and Tab. 2.

2  CORRECTION COEFFICIENTS DERIVED
FROM TIMOSHENKO�S EQUATION

Timoshenko�s equation describes the flexural
vibration of samples with a uniform cross-section
with a sufficient precision [3]. Resonant frequencies
predicted by the frequency equation derived from
Timoshenko�s equation are in agreement with
experimentally measured values. But this frequency
equation is complex (even more than Eq. (5)) so
correction coefficients together with the simple
formula (3) are commonly used. The values of these
coefficients calculated by Pickett are in table form in
[9]. Pickett�s values served as the basis for the
formulae of correction coefficients for the
fundamental mode of flexural vibration ([9] to [13]).
The application of Pickett�s coefficient T consists of
its multiplication by the Young�s modulus calculated
from the simple formula (3). For the fundamental
mode and a cylindrical sample:

(9).

For the fundamental mode and the prismatic sample:

(10).

Then the correct value of the Young�s
modulus is 0 (3)cE T E=  or 0 (3)pE T E= , where E

(3) 
is

calculated by Eq. (3). Another, complicated formula
was proposed by Martinèek [14].

The relationship T(m) or Q(m) is weak, and for
l/d > 10 the correction coefficients can be considered
independent of the Poisson�s ratio (see Fig. 1, Fig.
2). Therefore, a simpler formula for the correction
coefficient can be used in such a case. For example,
Acegorian and Choèian used:

(11),

where i is a radius of inertia of the cross-section and
l is the length of the sample [15].

3  CORRECTION COEFFICIENTS FOR SAMPLE
WITH CHAMFERED EDGES

If the prismatic sample is not ideal but has
chamfered or rounded edges an additional correction
should be made. Correction factors F are in the range
of 1.0031 to 1.0287 for the chamfer size of 0.08 to 0.25
mm. If the density of the sample is determined from
its weight and dimensions then the density correction
is made by multiplying Young�s modulus by the factor

(1.0011, 1.0105)PÎ  for the same chamfer size. The
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Table 1. Parameters A, B, C, D for the fundamental mode

Table 2. Parameters A, B, C, D for the 1st overtone

cross-section   
Parameter circular square 

A 
B 
C 
D 

-0.00131 
7.44851 
-3.56057 
-4.50048 

-0.00249 
10.0605 
-7.076 

-2.02022 
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true Young�s modulus E = FPE
0,
 where E

0
 is the

Young�s modulus calculated for the ideal prismatic
sample. The correction factors F and P as a function
of the chamfer size were calculated by G. Quinn [16].

4  COMPARISON OF THE CORRECTION
COEFFICIENTS

The correction coefficients calculated from
Eq. (10) and Eq. (8) for the fundamental mode and a
prismatic sample are shown in a graph in Fig. 3.  The
comparison of the coefficients Q

1p
 could not be made

because there is not a formula for the correction
coefficient for the 1st overtone and a prismatic sample
in the ASTM standards ([10] to [13]), and correction
coefficients for this case are not in [9]. An indirect
verification of the correctness of the coefficients Q

1p

calculated from the formula (8) is in good agreement

between resonant frequencies calculated from
commonly accepted Timoshenko�s equation and Eq.
(4), [4]. The graph of the correction coefficients Q

1p

calculated from Eq. (8) is in Fig. 6.
The correction coefficients calculated from

Eq. (9) and Eq. (8) for the fundamental mode and the
cylindrical sample are in Fig. 4, and the correction
coefficients for the 1st overtone and a cylindrical
sample are plotted in Fig. 5. The coefficients T

1c

tabulated in [9] served as a basis for the comparison.
As we can see in Fig. 3, 4 and 5, the correction

coefficients calculated from Formula (8) show good
agreement with those calculated with the help of Eq.
(9) and Eq. (10), and with the coefficients presented
in [9].
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Fig. 1. Correction coefficients Q
0p

 for the
fundamental mode and prismatic sample.

Graphs are (from the top) for:
l/d = 5, 6, 7, 10, 15, 20

Fig. 2. Correction coefficients Q
1c

 for 1st overtone
and cylindrical sample.

             Graphs are (from the top) for:
l/d = 5, 6, 8, 10, 12, 15, 20

Fig. 3. Correction coefficients for prismatic sample and fundamental mode: line - T
0p

  after ASTM,  points -
(Q

0p
)2 calculated from Eq. (8), m = 0.3



Strojni�ki vestnik - Journal of Mechanical Engineering 52(2006)5, 317-322

321Popravni kolièniki za izraèun - Correction Coefficients for Calculating

 

1

1,15

1,3

1,45

1,6

1,75

1,9

4 8 12 16 20

l/d

co
rr

ec
tio

n
 c

o
e

ff
ic

ie
n

t

 

1

1,1

1,2

1,3

1,4

1,5

1,6

1,7

4 8 12 16 20

l/d

co
rr

e
ct

io
n

 c
oe

ff
ic

ie
n

t

 

1

1,05

1,1

1,15

1,2

1,25

4 8 12 16 20

l/d

co
rr

e
ct

io
n

 c
oe

ff
ic

ie
n

t

Fig. 4. Correction coefficients for cylindrical sample and fundamental mode: line - T
0c

 after ASTM,  points
-  (Q

0c
)2 calculated from Eq. (8), m = 0.3

Fig. 5. Correction coefficients for cylindrical sample and the1st overtone: line - T
1c

 after ASTM,  points -
(Q

1c
)2 calculated from Eq. (8), m = 0.3

Fig. 6. Correction coefficients for prismatic sample and the 1st overtone: (Q
1p

)2 calculated from Eq. (8), m = 0.3
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