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Steganography which facilitates covert communication creates a potential problem when misused for planning 
criminal activities. Its counter measure steganalysis is focused on detecting (the main goal of this research), 
tracking, extracting, and modifying secret messages transmitted through a subliminal channel. In this paper, a 
feature classification technique, based on the analysis of content independent statistical properties, is proposed 
to blindly (i.e., without knowledge of the steganographic schemes) determine the existence of hidden messages 
in an image. To be effective in class separation, the genetic-X-means classifier was exploited. For performance 
evaluation, a database composed of 5600 plain and stego images (generated by using seven different 
embedding schemes) was established. Based on this database, extensive experiments were conducted to prove 
the feasibility and diversity of our proposed system. Our main results and findings are as follows:
1. a 80%+ positive-detection rate.(promising rate for a blind steganalyzer)
2. The removal of content dependency from features enhances the discriminatory power of the classifier.
3. Universal, blind steganalyzer. (not limited to the detection of a particular steganographic scheme ) 
4. Detection of stego images with an embedding rate as low as 5% of the maximum payload.

Povzetek: Opisana je metoda iskanj skritih sporočil v slikah.

1 Introduction
Steganography has been known and used for a very long 
time, as a way to establish covert communication 
between parties, by embedding the secret message in 
another, apparently innocuous, document. The goal of 
steganography is to communicate as many bits as 
possible without creating any detectable artifacts in the 
cover-object. Although steganography is an ancient 
subject, its modern formulation is often given in terms of
the prisoner’s problem by Simmons in 1983 [1]. In 
today’s digital world, this has taken a new facet, 
however, and it must be approached in a spanking new 
view. 

Due to the proliferation of the digital media and the 
easy accessibility to Internet, development of new 
technologies for network based multimedia systems and 
advanced multimedia services have been intensified. 
Many of the multimedia processing operations like 
editing, storage, transmission, and access of multimedia 
are easily done by any subject. Early methods exploited 
cryptography for secure transmission, to prevent 
unauthorized access and tampering of secret messages. 

However, the encrypted form may attract special 
attention of network warders and is thus not fully secret. 
Current information hiding techniques are developed to 
deceive warders by embedding messages into multimedia 
in an imperceptible manner, but still maintain their 
original formats and quality. Unlike cryptography, where 
the goal is to secure   communications from an 
eavesdropper, steganographic techniques strive to hide 
the very presence of the message itself from an observer.

Steganography may provoke negative effects in the 
outlook of personal privacy, business activity, and 
national security. The scandalous can abuse the 
technique for planning criminal activities.  For example, 
commercial spies or traitors may thieve confidential 
trading or technical messages and deliver them to 
competitors for a great benefit by using hiding 
techniques. Terrorists may also use related techniques to 
cooperate for international attacks (like the 9/11 event in 
the U.S.) and prevent themselves from being traced. 
Some others may even think of the possibility of 
conveying a computer virus or Trojan horse programs via 
data hiding techniques. Thus, it raises the concerns of 
enhancing warders’ capability and lessening these 
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negative effects by developing the techniques of 
“steganalysis”. 

It should be noted that the primary goal of 
steganography is to set up a subliminal communication 
channel in a completely undetectable manner. In this 
context, “steganalysis” refers to the set of techniques that 
are designed to distinguish between cover-objects and 
stego-objects. Even though nothing might be gleaned 
about the contents of the secret message, when the 
existence of hidden message is known, revealing its 
content is not always necessary. Just disabling and 
rendering it useless will defeat the very purpose of 
steganography. This implies that the warder should be 
capable of discriminating suspicious objects from a large 
number of innocuous ones (i.e., the so-called passive 
steganalysis [3], [5]). In contrast to passive steganalysis, 
the goal of active steganalysis is to retrieve, modify, and 
even fabricate the embedded messages for destroying or 
interfering with covert communications and rendering 
hidden data useless. Applications of steganalysis then 
include, for example, an inlet/outlet content-monitoring 
program that inspects and intercepts suspected 
multimedia data transmitted on the network. In addition, 
steganalysis techniques can also be utilized to evaluate 
the security of covert communication channels under 
construction. 

On the outset, deciding whether the cover media 
contains any secret message embedded in it or not is 
essential to steganalysis. Although it is uncomplicated to 
inspect suspicious objects and extract hidden messages 
by comparing them to the original versions, the restricted 
portability and accessibility of original cover-signals 
generally make blind steganalysis more attractive and 
reasonable in many practical applications. Blindness is 
meant to analyze stego-data without knowledge of the 
original signal and without exploiting the embedding 
algorithm. Hence, detecting the existence of hidden 
information becomes quite difficult and complex without 
exactly knowing which embedding algorithm, hiding 
domain, and steganographic keys were used. Apart from 
these issues, a steganalysis algorithm is required to 
possess other properties such as low complexity and low 
classification risk. A low-complexity algorithm makes 
the system capable of inspecting objects at a high 
throughput rate. An algorithm of low classification risk 
generally makes tradeoffs between costs resulting from 
missing errors (i.e., false negative) and from false alarms 
(i.e., false positive). This motivates our current research: 
devising a content independent feature-based algorithm 
to classify multimedia objects as bearing hidden data or 
not. Our objective is not to extract the hidden messages 
or to identify the existence of particular information (as it 
is in watermarking applications), but only to determine 
whether a multimedia object was modified by 
information hiding techniques. Once classified, the 
suspicious objects can then be inspected in detail by any 
particular data embedding/retrieving algorithms. This 
pre-process would particularly contribute to save time in 
active steganalysis. 

As is well known, steganography and watermarking 
constitute two main applications of information hiding 

techniques. Though both applications share many 
common principles in data embedding/extraction 
schemes, they differ in some criteria, such as robustness, 
embedding capacity, requirement of original messages, 
etc. In certain scenarios, content owners might need to 
determine the existence of hidden watermark in a 
multimedia object, when the authentication program fails 
to extract or match the targeted watermarks (due to 
inversion attack, geometric attacks, de-synchronization 
attacks etc.). In a possibly negative viewpoint, users may 
use this steganalytic feature to identify the existence of 
watermarks in an object. To summarize, steganalysis has 
promising applications to detect both the steganographic 
and watermarking schemes. 

Our research starts with the analysis and 
categorization of existing image hiding algorithms. This 
approach is based on the extension of the fact that hiding 
information in digital media requires alterations of the 
signal properties that introduce some form of 
degradation, no matter how small. These degradations 
can act as signatures that could be used to reveal the 
existence of a hidden message. For example, in the 
context of digital watermarking, the general underlying 
idea is to create a watermarked signal that is perceptually 
identical but statistically different from the host signal. A 
decoder uses this statistical difference in order to detect 
the watermark. However, the very same statistical 
difference that is created could potentially be exploited to 
determine if a given image is watermarked or not. The 
addition of a watermark or message leaves unique 
artifacts, which can be detected using the various 
distortion metrics i.e., Image Quality Measures (IQM) 
[4]. This paper extends the work in [4] and focuses on 
selecting the content independent features as potential 
evidences in revealing the presence of hidden messages. 
We intend to prove that this removal of content 
dependency enhances the sensitivity of the steganalyzer.

To blindly classify hiding status of an image, we 
propose an algorithm in which a set of image distortion 
metrics are defined and utilized to determine the 
existence of covert channels in the spatial or 
transformation domain or not. A systematic image 
database was constructed for algorithm evaluation and a 
genetic-X-means classifier [42] [43] was trained based
on these evaluated features.

2 Steganography vs. steganalysis 
race

Conventional approaches to data hiding within images 
can be categorized into spatial or transform (e.g., DCT, 
DWT, Ridgelet etc.) domains [5]. Least Significant Bit 
(LSB) addition [6],[7],[8] or substitution [10], [11] 
method is the most popular hiding technique. These 
techniques operate on the principle of tuning the 
parameters (e.g., the payload or disturbance) so that the 
difference between the cover signal and the stego signal 
is little and imperceptible to the human eyes. Yet, 
computer statistical analysis is still promising to detect 
such a distinction that human beings are difficult to 
perceive. Some tools, such as StegoDos, S-Tools, and 
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EzStego, provide spatial-domain-based steganographic 
techniques [2], [5].

There were some spatial-domain steganalytic 
algorithms [12], [13], [14], [15], [4], [16] developed to 
be against the above steganographic schemes. Fridrich et 
al. [14] proposed a steganalysis technique based on the 
fact that bit planes in typical images are more or less 
correlated so that the LSB plane can be estimated from 
the other seven ones. This estimation becomes less 
reliable as the content of the LSB bit plane is further 
randomized. Kong et al. [16] proposed to evaluate the
image complexity, following a statistical filter, to 
determine the existence of secret messages or not, based 
on the phenomenon that randomization of the LSB bit 
plane content becomes heavier after information hiding. 
Sanjay Kumar et al., in [9] discuss an active steganalysis 
where the estimation about the hidden message length is 
made. The proposed algorithm reduces the initial-bias, 
and estimates the LSB embedding message ratios by 
constructing equations with the statistics of difference 
image histogram.

Chandramouli et al. [12], [13] had ever assumed a 
Gaussian variation model for LSB disturbances, 
proposed a maximize a posterior (MAP) detector, and 
analyzed the maximum embedding capacity under which 
a steganalyst cannot detect the presence of hidden data 
with a desired probability. Unfortunately, neither detailed 
implementation of this MAP detector was given nor 
realistic experiments were reported in their work. 
Besides, their analysis was restricted to the Gaussian 
modelling of embedding disturbances. Gokhan Gul et al., 
in [46] briefly describe PQ and propose singular value 
decomposition (SVD)-based features for the steganalysis 
of JPEG-based PQ data hiding in images. They show that 
JPEG-based PQ data hiding distorts linear dependencies 
of rows/columns of pixel values, and proposed features 
can be exploited within a simple classifier for the 
steganalysis of PQ. Andrew A. Ker [18] proposes more 
accurate attacks on LSB embedding through a weighted 
stego image detector for finding the sequential image 
replacement.

Hiding can also be performed in the transform 
domain, e.g., DCT [19], [20], [21], [22], [23], [24], [25] 
or DWT domain [23], [26]. Regardless of which domain, 
“significant” transform coefficients are often selected to 
mix with secret/perturbing signal in a way such that 
information hiding or watermarking is transparent to 
human eyes. For instance, Cheng et al. [24] proposed an 
additive approach to hiding secret information in the 
DCT and DWT domains. Wu et al. [25] proposed a two-
level data embedding scheme, in principle of additive 
spread spectrum and spectrum partition, for applications 
in copy control, access control, robust annotation, and 
content-based authentication. There exist some tools, 
such as J-Steg and Outguess, providing this category of
steganographic techniques [5], [15]. 

Some steganalytic methods [14], [27], [28] were 
proposed in the DCT domain. Manikopoulos et al. [27] 
applied the differences in the coefficients of the block 
DCT transforms of the original as features to the 
detection of block DCT-based steganography in gray-

scale images. The model utilizes statistical pre-
processing, over an observation region of each image that 
generates feature vectors over the regions. These vectors 
are then fed into a simple neural network classifier. 
Fridrich et al. [14] described that a modified image block 
will most likely become saturated (i.e., at least one pixel 
with the gray value 0 or 255) in a JPEG-format stego-
image after information hiding. If no saturated blocks can 
be found, there will be no secret messages therein. 
Otherwise, a spatial-domain steganalytic method [14] 
mentioned earlier can be used to analyze these saturated 
blocks. In [28], the author modelled the common 
steganographic schemes as a linear transform between 
the cover and stego images, which can be estimated after 
at least two copies of a stego image were obtained. This 
is similar to a blind source separation problem that can 
be solved by using the independent component analysis 
(ICA) [29] technique. In [30], a steganalytic scheme was 
devised to deal with information hiding schemes mixing 
a secret and a cover signal in an addition rule. The 
phenomenon, that the center of mass of the histogram 
characteristic function in a stego image moves left or 
remains the same to that of the cover image, was 
observed and exploited to distinguish stego images from 
plain ones.

It is noticed that most of the steganalytic schemes 
were designed either in specific operating domain, or 
even for particular steganographic algorithm. Building a 
universal steganalytic system is, up to now, a challenging 
exercise. 

In [31], Wen et al. has modelled a universal 
steganalyzer that operates to distinguish stego images 
from clean images using two features only namely 
gradient energy and statistical variance of the Laplacian 
parameter. The system lacks the ability to strongly attack 
a wavelet based stego systems. But that can be solved by 
using a feature that is more sensitive to such embedding 
strategy. In [44] Der et al. proposes an universal 
steganalysis scheme that focuses on the differences of 
statistical features formed by embedding algorithms and 
applies a support vector machine to distinguish the stego-
image from suspicious images. Even though many 
steganalytic systems have been developed, each system 
only identifies a subset of the available embedding 
methods and with varying degrees of accuracy. Benjamin 
in [45] applies Bayesian model averaging to fuse 
multiple steganalysis systems and identify the embedding 
used to create a stego JPEG image. 

There are several fundamental questions one may 
ask: 

Which features contribute more to the discriminating 
power of the universal steganalyzer? 

Until what point does steganalysis performance 
improve with the number of features used? These 
questions are all related to a crucial ingredient of any 
blind steganalyzer.

Avcibas et al. [4] proposed a concept that any image 
will incur quality degradation after smoothing or low-
pass filtering and this degradation (reacting on image 
quality) depends on the type of the test image, especially 
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a a 

in categories of with or without embedded information. 
That is, by observing quality difference between a test 
image and its smoothed version, it is possible to 
discriminate images with and without hidden messages. 
They hence utilized a regression analysis with several 
quality measuring operators for steganalysis. They have 
analyzed 26 image quality metrics for the purpose of 
discrimination. All features are not equally valuable to 
the learning system. Furthermore, using too many 
features is undesirable in terms of classification 
performance due to the curse of dimensionality [29]: one 
cannot reliably learn the statistics of too many features 
given a limited training set. Hence, we need to evaluate 
the features’ usefulness and select the most relevant ones.

However it was discovered that removing the 
inherent content dependency in distortion measures as 
calculated in [4] is beneficial. So we propose a novel 
method to remove this content dependency from 
distortion measurements. These content-independent 
measurements are then used to build a classifier to 
differentiate cover-signals and stego-signals. The 
experimental results justify how the proposed technique 
enhances the discriminatory power of the features used in 
the classifier. 

3 Effect of removing content 
dependence features

This paper quantifies steganalysis task in the 
information-theoretic prescription context of data hiding 
i.e., hiding in independent and identically distributed 
Gaussian host samples [3]. It is quite common to choose 
the embedding signal i.e., message to be conveyed as a 
zero mean, white Gaussian process with finite variance. 
It is known from information theory that a Gaussian 
signal is the best choice for a Gaussian channel. Since 
most image steganography methods conveniently assume 
the image pixel distribution and common transform 
coefficient distribution to be Gaussian, the choice of 
secret message as Gaussian is justified.

The prospects of certain image quality metrics in 
envisaging the presence of watermarking and 
steganographic signals within an image is described in 
[4]. The presence of the steganographic artifact can then 
be put into evidence by recovering the original cover 
signal, or alternatively, by de-noising the suspected 
stego-signal. The steganalyzer can directly apply a 
statistical test on the denoising residual, xx ˆ , where 

x̂ is the estimated original signal. This residual must 
also correspond to the artifact due to embedding of a 
hidden message. Notice that, even if the test signal does 
not contain any hidden message, the de-noising step will 
still yield an output, whose statistics can be expected, 
however, to be different from those of a true embedding.  
There subsists a motive to utilize more than one 
distortion measure, in order to investigate different 
quality aspects of the signal, which could be brunt during 
data hiding manipulations. In pursuing such a task, there 
is often the risk that the variability in the signal content 
itself surpasses the detector from the alterations. Thus, it 

is required that, whatever features are selected, the 
detector responds only to the induced distortions, which 
is Gaussian distributed [3], during data hiding and not be 
confused by the statistics of the signal content. 
Moreover, the original signal apparently will not be 
available during the testing stage. Therefore, some 
reference signal must be created that is common to both 
the training and testing stages. 

In [4], a denoised version of the given signal is used 
as the reference. Anyway, this self-referencing, which is 
creating a reference signal via its own denoised version, 
is obviously a content-dependent scheme. The classifier 
performance can be inferior as it responds to both the 
signal content based statistics and to the distortions 
stimulated by data embedding operation. To eliminate 
this content dependency, it is recommended to use a 
single reference signal that is common to all signals to be 
tested. Thus, a content independent reference signal and 
its altered versions according to the type of data 
embedding are employed. 

Figure 1: Signal vectors: original signal a , its embed-
ded version a  , reference signal b and its embed-ded 

version b  .

Let a denote a test signal and a  be its stego version, 

and similarly, let b and b  indicate the reference 

signal and its stego version. Besides, let us consider a 
generic distortion functional ( , )Distortion x y between 

the signals x and y . For example, for the mean-square 

distortion, one simply has 2( , ) [( ) ]Distortion x y E x y� , 

with E being the expectation operator. The detector 
operates on the basis of the statistical differences of the 
distortions. This implicitly ensues two assumptions. First, 
data embedding leads to additive distortion, that is, the 
altered signals can be represented as a  and b  . 

Second, the additive distortions of the test and reference 
signals should not be mutually orthogonal, that is, 

{ , } 0E    . This assumption was indirectly justified by 

analysis of variance (ANOVA) [4] and the test results 
given in the experimental results section. 

It is to be shown that self-referencing, as employed 
in [4], causes content-dependent distortion. Let  be the 
specific operation by which the reference signal is 
generated; for example, in [4], denoising operation has 

b b
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been used ( ) ( )b a denoise a   . The outcomes of this 

operation are given by ( )a a and 

( )a a    , respectively, for original signal 

and its stego version. To illustrate the point, for the case 
of the mean-square distortion, one obtains 

which is content dependent, because the signal terms a
and ( )a survive in the difference of distortion 

functions. The above difference should be some function 
of only the distortion term and should not contain a or 
any of signal derived from it, to ensure content 
independence and to be a real indicator of data 
embedding effects. 

We propose an alternative way and suggest to 
consider an unique signal b as a reference signal. Then 
the distortion metrics can be measured between a and 
a  , using b and b  as reference signals. The 

relationship of these signals and the distortion vis-à-vis 
the reference signals b and b  illustrated in Fig. 1. In 

this figure, the length of the vector ab


is simply equal 
to ( , )Distortion a b . The distance between the tips of the 

vectors ab


and ( )a b 


is 

( , ) ( , )d Distortion a b Distortion a b    and simi-larly 

' ( , ) ( , )d Distortion a b Distortion a b       , denotes 
the distance between the tips of the dashed pair of 
vectors. 

For the case of mean-square distortion it follows that 
2 2 2

2

[( ) ( ) 2( ) ]

[2( ) ]

d E a b a b a b

E a b

 

 

       

 

2 2 2

2

' [( ) ( ) 2 ( ) ]

(2 ( ) 2 ]

d E a b a b a b

E a b

    

   

         

    
. 

To remove the content dependency it is enough that 
we calculate the difference between d and 'd . 

2 [ ]D E �

The same effect of eliminating content dependency can 
be shown with another distortion metric, the correlation 
coefficient given by ( , ) [( )]Distortion x y E xy� .  

Here [ ] [ ( )] [ ]d E ab E a b E a      and 

' [( ) ] [( )( )]

( ] [ ]

d E a b E a b

E a E

  
 

    
  

. 

The removal of content dependency can be shown as the 
difference between d and 'd like ' [ ]D d d E   � .

4 Design of the steganalyzer
This paper mainly concentrates on designing a blind 
steganalyzer that can distinguish between a clean image 
and an adulterated image, using an appropriate set of 
content independent IQMs. Objective image quality 
measures are based on image features, a functional of 
which, should correlate well with subjective judgment, 
that is, the degree of (dis)satisfaction of an observer [32]. 
Objective quality measures have been utilized in coding 
artifact evaluation, performance prediction of vision 
algorithms, quality loss due to sensor inadequacy etc. 
[33]. In [4] they have extensively studied the use of 
image quality measures specifically as a steganalysis
tool, that is, as features in detecting watermarks or 
hidden messages.

4.1 Content Independent Image Quality 
Metrics (CIIQMs) as features

A good IQM should be accurate, consistent and 
monotonic in predicting quality. In the context of 
steganalysis, prediction accuracy can be interpreted as 
the ability of the measure to detect the presence of 
hidden message with minimum error on average. 
Similarly, prediction monotonicity signifies that IQM 
scores should ideally be monotonic in their relationship 
to the embedded message size or watermark strength. 
Finally, prediction consistency relates to the quality 
measure’s ability to provide consistently accurate 
predictions for a large set of watermarking or 
steganography techniques and image types. This implies 
that the spread of quality scores due to factors of image 
variety, active warden or passive warden steganography 
methods should not eclipse the score differences arising 
from message embedding artifacts. In order to 
understand how these metrics measure up to the above 
desiderata [4] resorted to analysis of variance (ANOVA) 
techniques. The ranking of the goodness of the metrics 
was done according to the F-scores in the ANOVA tests 
to identify the ones that responded most consistently and 
strongly. In the final analysis a list of IQMs is obtained 
that are sensitive specifically to steganography effects, 
that is, those measures for which the variability in score 
data can be explained better because of some treatment 
rather then as random variations due to the image set.

The stego-detector we develop is based on analysis 
of a number of relevant but content independent IQMs. 
The idea behind detection of watermark or hidden 
message presence is to obtain a consistent distance 
metric for images containing a watermark or hidden
message vis-à-vis those without, with respect to a 
common reference. The reference processing should 
possibly include a general signal common to both testing 
and training. Our approach differs from [4] in using a 
random signal as the common reference signal rather 
than using a denoised signal. 

The quality metrics exploited in [4] are categorized 
into six groups according to the type of information they 
use. The categories used are:

2

2 2

( , ( )) ( , ( )) [ ( )

2 2( ) ( ) 2 ( ) ( ) ]

Distortion a a Distortion a a E a

a a a a a a

  

   

       

        

(1)

(2)

(3)

(4)

(5)

(6)
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Pixel Difference-based Measures: Mean square 
error, Mean absolute error, Modified infinity norm, 
L*a*b perceptual error, Neighborhood error and Multi-
resolution error.

Correlation-based Measures: Measures based on 
correlation of pixels, or of the vector angular directions 
like Normalized cross correlation, Image fidelity, 
Czenakowski correlation, Mean angle-magnitude 
similarity and Mean angle similarity. 

Edge-based measures: Measures based on the 
displacement of edge positions or their consistency 
across resolution levels like Pratt edge measure and Edge 
stability measure.

Spectral distance-based Measures: Measures based 
on the Fourier magnitude and/or phase spectral 
discrepancy on a block basis like Spectral phase error, 
Spectral phase-magnitude error, Block spectral 
magnitude error, Block spectral phase error and Block-
spectral phase-magnitude error.

Proposed Algorithm: CIIQM Based Steganalyzer

Phase: Learning 

Input: A database of images

Output: A knowledge base capable of discriminating between a clean and a stego image

1. Image data base construction: Prepare an image data base containing clean images and stego images 
generated out of difference embedding schemes.

2. Removal of content dependency: A single random reference signal that is common to all the signals is 
selected for evaluating IQMs

3. IQM evaluation: The various IQMs mentioned in Section 5 like Pixel Difference-based Measures, 
Correlation-based Measures, Edge-based measures, Spectral distance-based Measures and Context-based 
Measures are evaluated, between the test signal and the common reference signal.

4. Genetic Algorithm based feature selection: The content independent features that are sensitive to data 
embedding operation are selected based on genetic search strategy. Genetic-X-means algorithm is described in 
the listing 2.

5. Data set formation: A data set is formed out of the selected features.

6. Training: The steganalyzer is subjected to learning by applying the X-means algorithm over this data set and 
a knowledge base is constructed. 

7. System Ready: The steganalyzer system is now ready for universal blind steganalysis. 

Phase: Detecting

Input: A test signal which is to be categorized as a clean or stego bearing image.

Output: Categorization of the signal as clean or stego-bearing

1. Network Daemon: It monitors traffic and channelises the multimedia data to the IIU. 

2. Image Identification Unit: This is used for identification of the image data files. It is achieved by observing 
the header information of each and every incoming data packet. Various image files being identified by this 
component are .BMP, .GIF, .TIFF, .PNG etc.

3. Common reference signal selector: The same signal chosen in the learning phase is chosen to evaluate the 
CIIQMs.

4. CIIQM Evaluator: The content independent IQMs selected in Step 4 of the learning phase are evaluated 
against the same common reference signal chosen in the learning phase.

5. Genetic-X-means Clustering Engine: The derived feature vector is given to the X-means classifier engine 
for diagnosis. Based on the knowledge constructed in learning phase this component decides whether the 
document is adulterated or untouched and identifies the specific steganographic technique used. The algorithm 
is given in the Listing 2. 

6. Actioner: Actioner’s role is to take necessary actions when a marked document is detected. When an 
adulterated file is detected exactly, the actioner does one of the following operations. 1. Warn the system 
administrator 2. Warn the end user 3. Kill the specific application, which executed that image file 4. Prevent 
the end user from running any further application.5. Extract the hidden information from/in the image file. 
Case 2, 3, 4 & 5 can be achieved locally at the client workstation.

Listing 1. Framework of the CIIQM based Steganalyzer.
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Context-based Measures: Measures based on 
penalties for various functional of the multidimensional 
context probability like Rate distortion measure, 
Hellinger distance, Generalized Matusita distance and 
Spearman rank correlation.

4.2 Choice of genetic-X-means paradigm
According to whether the steganalysis is based on 
supervised or unsupervised learning, stego-anomaly 
detection schemes can be classified into two categories: 
unsupervised stego-anomaly detection and supervised 
stego-anomaly detection. In supervised strategy, profiles 
of clean/stego files are established by training using a 
labelled dataset. Unsupervised detection uses unlabelled 
to identify anomalies. The main drawback of supervised 
detection is the need to label the training data, which 
makes the process error-prone, costly and time 
consuming. Unsupervised anomaly detection addresses 
these issues by allowing training based on an unlabelled 
dataset and thus facilitating online learning and 

improving detection accuracy. By facilitating online 
learning, unsupervised approaches provide a higher 
potential to find new attacks. By removing the need of 
labelling, unsupervised detection creates a greater 
potential for accurate detection.

Clustering is the organization of data patterns into 
groups or clusters based on some measure of similarity.  
When applying clustering techniques for steganalysis, 
determining the number of clusters is a difficult issue 
since the data hiding algorithm is unknown. The general 
approach and current practice assume that data instances 
are always divided into two categories: normal clusters 
and anomalous clusters. However, this assumption need 
not always true in practice. The number of clusters is not 
supposed to be determined in advance. When data 
instances include only normal behavioral data, the 
assumptions will lead to a high false alert rate and a vice-
versa case when data instances include only stego 
patterns. In order to achieve an efficient and effective 
detection, we propose in this paper, a new unsupervised 
stego-anomaly detection framework which consists of a 
clustering algorithm, named X-means and a CIIQM 
feature extraction based on genetic search. X-means 

Algorithm            : Genetic-X-means algorithm 
applied to image steganalysis.
Input               :  Training set 
D={(x1,y1),(x2,y2),…:(xn,yn)}, Lower bound=α 
,Upper bound=β . 

Output               : The clustered model with the 
maximum BIC (Bayesian Information Criterion) 
Score, the respective value of K and K centroid 
parameters.

1. Genetic_Feature_Selection()

Initialize K= α, 

2. Improve Params: Run direct k-means to 
convergence, with the features selected using 
genetic search algorithm

Improve Structure: Add new centroids where 
needed by applying SPLITLOOP system as in 
Gaussian Mixture model identification [43].

For the locally evolved model Mj, evaluate the 
BIC Score locally evolved, with k=1 and k=2 :

( ) ( ) log
2

j
j j

p
BIC M i D R 

where ( )
j

Di is the log-likelihood of the data 

according to the j-th model and taken at the 
maximum-likelihood point, 

j
p is the number of 

parameters in  
jM and R D .

Sustain the model 
jM having greater BIC score.

Record the parameters of the model evolved, 
like: K, BIC score of the entire model, K Centroid 
values.

8.    If K< β, Goto 2.

Listing 2: Pseudo code for Genetic-X-Means algorithm 
applied to Image Steganalysis.

Algorithm       : direct K-means()

Inputs: 
I = {i1,i2,…ik} (Stego/Clean instances to be 

clustered)
n (Number of Clusters)

             (Threshold value as a stopping criterion)
Outputs:

C = {c1,c2,…,ck} (Cluster centroids)
m: I C (Cluster membership)

Initialize k prototype  1 2
, ....

kw w w such that 

jw = 
li , 1,2,...,j k , 1,2,...,l n .

Each cluster 
jC is associated with prototype 

jw
Repeat

For each input vector 
li , where 1,2,...,l n do

{1.. }
( ) arg minj

k n
m i


 distance(ij,ck)

     For each cluster 
jC ,where 1,2,...,j k do

Update the prototype 
jw to be the centroid of all 

samples currently in 
jC so that 

l j

j l j

i C
w i C



 

and 
{1.. }

( ) arg minj
k n

m i


 distance(ij,ck)

Compute the error function

                E=
2

1
l j

K

l j
j i C

i w
 

 
Until E  or cluster membership no longer c

hanges.

Listing 3: Pseudo code for direct k-means algorithm.
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algorithm extends appropriately k-means with some 
evolutionary steps, integrates the capability of 
determining automatically the optimal number of clusters 
for a set of data, and thus addresses the limitation of 
traditional clustering based intrusion detection 
approaches.

5 Proposed algorithm for CIIQM 
genetic-X-means image 
steganalyzer model 

The proposed algorithm for genetic-X-means based 
image steganalysis system is provided here. This can be 
set up in the network of the corporate sectors. The 
multimedia traffic (image, video, image, text, HTML 
pages etc.,) is keenly monitored by the system. Whenever 
the entry of image documents is sensed, the steganalyzer 
is triggered. The system consists of two main stages. 
They are 1. Learning Stage 2. Detecting Stage.

6 Experimental topology
In our experiments, the discrimination performance of 
content independent features is analyzed first. Then the  
classification performance of our steganalyzer under the 
prepared test image set is reported. Besides, the impacts 
of embedding rate and mismatch between the training 
and test sets (e.g., modified by using different embedding 
schemes) on the classification rate are also explored.

6.1 Preparation of test images and schemes
The design of experiments is important in evaluating our 
steganalytic algorithm. The key considerations include 
the following.

1) First, from the point of “generalization”, the 
proposed content independent image features and 
associated classifier should be capable of identifying the 
existence of hidden data which are possibly generated by 
using various kinds of embedding methods, regardless of 
steganography or watermarking, and regardless of spatial 
or transform-domain operations.

2) Second, in outlook of “performance”, the 
classifier should, on the one hand, detect hidden data as 
likely as possible (regardless of how transparent the 
embedded secret information is), and on the other hand, 
keep false alarms to as few as possible for plain images.

3) Third, in view of “robustness”, the classifier 
should be capable of differentiating the effect of ordinary 
image processing operations (such as filtering, 
enhancement, etc.) from that of data embedding. 

On the grounds of the above considerations, six 
published methods based on two types of principles, LSB 
embedding and spread spectrum, were chosen for 
evaluation.

scheme #1: Digimarc [34] 
scheme #2: PGS [35]
scheme #3: Cox et al.’s [22]

Algorithm : Genetic_Feature_Selection()

Input    : 
             Encoded binary string of length 26 (one bit for each IQM), number of generations, and population size, 
Cross over probability Pc, Mutation Probability Pm.

Output   : 
              A set of selected  features.

1. Initialize the population randomly

2. W1 = 104, W2 = 0.4, 

3. N = total number of records in the training set
4. For each chromosome in the new population

5. Apply uniform crossover operator to the chromosome with a probability of Pc.6. Apply mutation 
operator to the chromosome with a probability of Pm.

7. Evaluate Fitness = W1 * Accuracy + W2 * Zeros

8. Select the top best 50% chromosomes into new population using Tournament Selection operator.

9. If number of generations is not reached, go to step 4.

Listing 4: Pseudo Code for  Feature Selection by Genetic-Search Strategy.
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scheme #4: S-Tools [36]

scheme #5: Steganos [37]
scheme #6: JSteg [38]
scheme #7: Kim et al.’s [39]

They can be further categorized into:

1) steganography (#4, #5, #6) or watermarking 
(#1,#2,#3) purpose;

2) spatial (#2, #4, #5), or transform (#1, #3, #6) domain 
operation.

For further testing and to verify the effectiveness of 
the features selected, we select an extra scheme based on 
the wavelet domain:

3)  scheme #7: Kim et al.’s method [39].

It is expected that the difference between a 
cover image and its stego version can be easily detected 
when more secret messages are embedded. Hence the 
capacity of the payload of a steganography scheme 
should be taken into account in evaluating the detection 
capacity of a steganalytic classifier. To depict this, the 
embedding rate (ER) characterizing a scheme which is 
defined as the ratio between the number of embedded 
bits and the number of pixels in an image, is used. 

Table I: content independent distortion measures selected 
by genetic search

The wavelet-based steganography scheme #7 was used to 
test our steganalytic scheme, although the proposed 
features are trained only on the spatial and the DCT 
domains.

To test the performance of the proposed method, our 
cover image dataset consists of 200 with a dimension of 
256 X 256 8-bit gray-level photographic images, 
including standard test images such as Lena, Baboon, 
and also images from [40]. Our cover images contain a 
wide range of outdoor/indoor and daylight/night scenes, 
including nature (e.g., landscapes, trees, flowers, and 
animals), portraits, manmade objects (e.g., ornaments, 
kitchen tools, architectures, cars, signs, and neon lights), 
etc. Some of the sample images are shown in Fig. 2. This 
database is augmented with the stego versions of these 
images using the above mentioned seven schemes, at 
various embedding rates. Also a separate image set was 
generated by applying the image processing techniques 
like JPEG compression (at several quality factors), low-
pass filtering, image sharpening etc.  Our generation 

procedure is aimed at making even contributions to 
database images from different embedding schemes, 
from original or stego, and from processed or non-
processed versions, so that the evaluation results can be 
more reliable and fair. Three different ERs are attempted 
for each scheme in generating the database like (#1) 5% 
(#2) 10% (#3) 20% of the maximum payload capacity 
prescribed by the techniques. The entire database 
contains 200*4*7=5600 (No. of images * No. of varying 
ER - 3 ER + 1 for clean set* No. of schemes evaluated) 
images on the whole.

6.2 Content independent features selection

Applying the proposed methodology and the algorithm, 
the content dependency was removed and the six 
measures as in Table I are selected after removing the 
content dependency from the signal. 

6.3 Feature discrimination capability

Before proceeding to evaluate the performance of the 
classifier, discrimination capability of the proposed 
features is to be analyzed. The experiment involves 
breaking of different steganographic or watermarking 
strategies, which may adapt extremely different 
techniques for embedding ranging from LSB substitution 
to embedding inside the wavelet co-efficient.

Hence the feature set formed has to be normalized 
before feeding into the classifier for training to achieve a 
uniform semantics to the feature values. A set of 
normalized feature vectors as per the data smoothing 
function [41],

min

max min
i i

i
i i

f f
f

f f







, 

are calculated for each seed image to explore relative 
content independent feature variations after and before it 

is modified. if


, min
if and max

if represents the ith feature 

vector value, the corresponding feature’s minimum and 
maximum value respectively. 

6.4 Genetic-X-means classifier
In the sequel, the model is incorporated in Java JGAP 
[42] and the algorithm described in section [6] is 
implemented as per the framework proposed. The 
classifier was trained and evaluated by using 4800 
images out of the whole database, excluding those 
generated by using scheme #7 (employed as the test 
images to see how the proposed features behave when 
there is a mis-match between the operation domains). 
Here, two-thirds (3200) of images were randomly chosen 
as the training set and the others (1600 images) act as the 
validation set. 
Before evaluation, some performance indices are first 
defined.
 Positive detection (PD)—classifying the stego 

images correctly.

 Mean square error
 Median block weighted spectral distance

HVS based L2
 HVS normalized absolute error
 Weighted spectral distance 
 Cross correlation.

(7)
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 Negative detection (ND)—classifying the non-stego 
images correctly.

 False positive (FP)—classifying the presence of 
secret information for non-stego images.

 False negative (FN)—bypassing or ignoring the 
presence of hidden information in stego images.

The classification and error rates obtained by using 
different values are listed in Table II. Results show that 
the average classification rate does not change much 
(from 79.5% to 86.67%). We are interested in analysing 
the detectability of proposed features and classifier 
against embedding schemes of different applications or 

principles. Table III lists classification and error rates to 
see differentiation in performances between: 1) six 
targeted embedding schemes; 2) steganographic or 
watermarking applications; 3) spatial or DCT operation 
domain; and 4) types of processed non-stego images. We 
also analyzed the ND rates for the original, smoothed, 
sharpened, and JPEG-compressed non-stego images. It is 
found that our system has a better performance in 
recognizing the plainness of JPEG-compressed images. 
The higher ND rate for JPEG-compressed images is 
beneficial to real applications, since most images will be 
compressed in the JPEG form.

Scheme

PD ND
Classification 

Rate(PD+ND)/2

IQ
M CIIQM

IQ
M CIIQM

IQ
M CIIQM

DigiMarc 80% 85.63% 80% 84.97% 80% 85.30%

PGS 80% 81.02% 90% 92.31% 85% 86.67%

Cox 80% 84.96% 60% 72.30% 70% 78.63%

S-Tools 90% 93.31% 60% 78.04% 75% 85.68%

Steganos 80% 87.63% 60% 75.54% 70% 81.59%

Jsteg 70% 84.97% 70% 74.02% 70% 79.50%

Scheme

FP FN
Error Rate 

(FP+FN)/2

IQ
M CIIQM

IQ
M CIIQM

IQ
M CIIQM

DigiMarc 20% 14.37% 20% 15.03% 20% 14.70%

PGS 10% 19.98% 20% 7.69% 15% 13.84%

Cox 20% 15.04% 40% 27.70% 30% 21.37%

S-Tools 10% 6.69% 40% 21.96% 25% 14.33%

Steganos 20% 12.37% 40% 24.46% 30% 18.42%

Jsteg 30% 15.03% 30% 25.98% 30% 20.51%

Table 2: Performance comparison of the classifiers.

Differentiation categories PD rate

Schemes #1 85.3%

#2 86.67%

#3 78.63%

#4 85.68%

#5 81.59%

#6 79.5%

Applications Watermarking 83.53%

Steganography 82.25%

Operation 
domain

Spatial 84.64%

DCT 81.14%

DWT 86.32%

Differentiation categories ND rate

Type of 
processed non-
stego images

Original 82.34%

JPEG-compressed 89.40%

Smoothed 83.50%

Sharpened 58.10%

Table 3: Average pd/nd rates for performance differentiation between different target schemes, different 
applications, different operation domains, and different types of nonstego images.
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As for the detectability between different embedding 
schemes, we compare scheme #4 to #5 and scheme #1 to 
#3. Basically, embedding schemes #4 and #6 are similar 
in some aspects (both are in the spatial-domain, but for 
different applications), but the pixel change will be less 
for scheme #4 when embedding “0.” Accordingly, we 
got a higher PD rate for scheme #4 than for scheme #5. 

6.5 Influence of embedding rate
In this experiment, the images at various payload 
capacities were selected to see the influence on 
detectability. The ERs for the six embedding schemes 
were tried at 5%, 10% and 20% of the maximum hiding 
capacities in their proposed versions. The experimental 
results are listed in Table V, which depicts that the 
average PD rate still remains above 83.38% for 20%, 
78.78% for 10% and 74.47% for 5% of maximum 
payload capacity. The results for steganographic schemes 
are more promising than for the watermarking schemes, 
as the steganographic schemes carry more hidden data 
than those of watermarking schemes, which makes the 
measured features more distinguishable for detection. 
The results reveal that clearly, our proposed content 
independent features and genetic-X-means classifier still 
yield reasonable results for stego images of less ER.

6.6 Detection with mismatch between the 
training and test sets

Here we evaluate the performance when images modified 
by using different kinds of hiding schemes are employed 

for training and testing. Denote the training set and the 
test set as LS and TS   respectively. 

First, we created 1
LS by including stego images 

generated by using the steganographic schemes #1 and 
some processed plain images. On the other hand, 1

TS is 

constituted of stego images produced by using the 
watermarking schemes #2, #3 and other processed plain 
images. Essentially, 1

LS and 1
TS were made disjoint and 

consist of 400 and 600 images, respectively. We also 
evaluate the detection performances in presence of other 
mismatches In the second case, we interchanged the roles 
of 1

LS and 1
TS to form another two sets, 2

LS and 2
TS , i.e., 

2 1
L TS S and 2 1

T LS S . Similarly 3
LS includes stego 

images created using schemes #4 and #5. 3
TS constitutes 

the stego images processed by using scheme #6. 4
LS and 

4
TS represent the reversed role of  4

LS and 4
TS sets. 

Another set 5
LS and 5

TS contains the stego images created

by employing the schemes #1,#2,#4,#5 and tested on 
schemes #3 and #6 respectively. Their interchanged sets 
are 6

LS and 6
TS .The experimental results are listed in 

Table IV, which reveals that the average classification 
rate is 83.35%. Noticeable is that the PD rate for 2

TS , 
4
TS and 6

TS is much higher than that for 1
TS , 3

TS and 5
TS . 

The reason is that the steganographic schemes that 
embed in the spatial domain reveal more statistical 
evidence than the ones which hide in the transform 

Data Group PD ND Classification 
rate

FP FN Error rate

1 1,L TS S 70.71% 86.69% 78.7% 29.29% 13.31% 21.3%

2 2,L TS S 75.74% 87.08% 81.41% 24.26% 12.92% 18.59%

3 3,L TS S 79.28% 88.07% 83.68% 20.72% 11.93% 16.33%

4 4,L TS S 92.13% 83.37% 87.75% 7.87% 16.63% 12.25%

5 5,L TS S 73.74% 89.69% 81.72% 26.26% 10.31% 18.29%

6 6,L TS S 91.25% 82.48% 86.87% 8.75% 17.52% 13.14%

Table 4: Classification rates obtained when characteristics of the training and test sets mismatch to each other.

Schemes Classification rate Error rate

5% of 
maximum 
payload

10% of 
maximum 
payload

20% of 
maximum 
payload

5% of 
maximum 
payload

10% of 
maximum 
payload

20% of 
maximum 
payload

#1 80.40% 83.20% 85.30% 19.60% 16.80% 14.70%

#2 79.80% 83.10% 86.67% 20.20% 16.90% 13.33%

#3 70.11% 73.50% 78.63% 29.89% 26.50% 21.37%

#4 76.30% 79.22% 85.68% 23.70% 20.78% 14.32%

#5 71.20% 78.33% 81.59% 28.80% 21.67% 18.41%

#6 69.80% 74.55% 79.50% 30.20% 25.45% 20.50%

#7 73.66% 79.54% 86.32% 26.34% 20.46% 13.68%

Table 5: Classification and error rates for test sets at various embedding rate.
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domain. This makes the measured content independent 
features more distinguishable for detection. After 
examining Table IV, it was found that 2

TS , 4
TS and 6

TS

will gain a high PD rate than 1
TS , 3

TS and 5
TS . Hence, we 

have a conjecture that characteristics (e.g., ER, type of 
applications, or operating domain) of the test stego image 

may play an important role on PD rates, but mismatch 
between the training and test sets might not be so 
significant.

6.7 Application on a completely new 
steganography scheme
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Figure 2: Performance comparison curves depicting a) Positive detection rate b) Negative detection rate 
c) Classification rate d) False positive rate e) False negative rate f) Error rate



DETECTION OF STEGO ANOMALIES IN IMAGES... Informatica 33 (2009) 25–40 37

In order to show that the system is dynamic i.e., 
adaptable to detect any new steganographic technique, 
the system was tested on scheme #7, which is based on 
the wavelet-domain techniques.. It was found that the PD 
rate against scheme #7 is 86.32% as given in Table V. 
This proves that the identified content independent IQMs 
are sensitive to detect even any new stego systems. To 
accommodate the identification of more hiding schemes, 
other kinds of image features should be explored further.

7 Discussion and conclusion
Recently, information hiding techniques find its 
applications in several fields, e.g., watermarking, 
copyright protection, steganography, fingerprinting, 
digital rights management (DRM), etc. At one end there
are much research works focusing on addressing the 
various edges of data embedding techniques like 
enhancing the transparency, robustness and capacity. On 
the other end it is, however, interesting to detect the 
existence of hidden data resulting from any kind of 
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embedding scheme, known as the “steganalysis.” We 
have presented a rationale for a content independent 
distortion metrics based model for blind image 
steganalysis i.e., without knowledge of the kind of 
steganographic schemes and shown evidence using 
systematic experimental results. In our experiments, a 
database composed of processed plain images and stego 
images generated by using seven embedding schemes 
was utilized to evaluate the performance of our proposed 
features and classifier. Removal of content dependency 
from the measurements enhanced the classifier’s 
discriminatory power and proved to be useful, especially 
for steganographic data embedding, where the incurred 
distortions are much less pronounced than in 
watermarking. 
Table VI summarizes and compares characteristics of our 
proposed method with those of several other previous 
works in literature. In the table, not-reported (NRP) 
represents null information provided by the original 
work. For clarity, several key points are collected as 
follows. 
1. It seems that the classification performance is 

necessarily proportional to the removal of content 
dependency from the features, heavily dependent on 
the ER and number of embedding schemes under 
tests. 

2. Similar to [31], [36], and [43], our system is 
operated blindly and not restricted to the detection of 
a particular steganographic scheme (such as LSB or 
spread spectrum).

3. A nonlinear classifier that is easy to adapt to non-
separable classes is adopted in both [33] and our 
system. However, the system introduced in [33] was 
only dedicated to the detection of spread spectrum 
scheme and few test images were used.

4. Our training and test database collects a larger 

number of stego and non-stego image samples, that 
were generated by using different steganographic 
schemes (seven kinds), different embedding rates 
(5% –20% maximum payload), and different image 
processing (low-pass filtering, sharpening, JPEG 
compression). This diversity makes our system more 
approximate to real applications.

5. The average classification rate (83%, including the 
PD and ND rates) for our proposed system is 
superior to [31] in blind steganalysis research.

To make our system more practical, future work could 
include the following.
a. Fitting the proposed system to classify compressed 

images or videos.
b. Identifying the type of steganographic algorithm 

utilized to generate the stego image and locating the 
image regions exploited to hide secret messages 
(active steganalysis). After these, we may be able to 
locate, retrieve, and analyze the embedded messages 
to infer the conveyed information.

c. Improving the performance as well as the scalability 
of the blind steganalyzer using appropriate fusion 
techniques
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Steganalytic 
Systems

[13] [14] [27] [16] [4] [30] [31] Proposed

Number of features 1 4 164 2 10 1 2 5

Domains of Feature 
Extraction

Spatial
Spatia
l
DCT

DCT Spatial
Spatial

DFT
DFT

Spatial
DCT

Spatial
DCT
DWT

Training/Classifier Yes/Linear Yes/Linear Yes/Neural Yes/Linear Yes/Linear Yes/Linear Yes/Neural
Yes/Genetic-

X-means
Targeted 

embedding scheme
LSB Arbitrary

Spread 
spectrum

LSB Arbitrary Arbitrary
Arbitr

ary
Arbitrary

Number of test 
schemes

1 6 1 1 6 3 6 7

Payload of stego 
images

0.65 bpp >0.05bpp 0.016 bpp >0.05 bpp >0.01 bpp 1 bpp
0.01-2.66 

bpp
>0.01 bpp

Size of training 
database

NRP 331 28 NRP 12 20 1716 3200

Number of test 
images

NRP NRP 14 80 10 4 572 1600

Average PD rate NRP NRP 0 97% 72.08% 96.2% 80.28% 86.25%
Average ND rate NRP NRP 0 NRP NRP 94.8% 79.56% 79.53%
Side information 

constraint for 
classifier

No No
Average PDF 

of selected 
plain images.

No No No No No

Table 6: Summarization of previous works and our proposed system. *NRP-Not Reported
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