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ABSTRACT

The structure model index (SMI) is a means of subsuming theltgy of a homogeneous random closed set
under just one number, similar to the isoperimetric shaptfa used for compact sets. Originally, the SMl is
defined as a function of volume fraction, specific surface ared first derivative of the specific surface area,
where the derivative is defined and computed using a surfastimg. Thayeneralise®teiner formula yields
however a derivative of the specific surface area that is -6 @pconstant — the density of the integral of mean
curvature. Consequently, an SMI can be defined withoutniefgto a discretisation and it can be estimated
from 3D image data without need to mesh the surface but using the eofileccurrences of 2 x 2 pixel
configurations, only. Obviously, it is impossible to contplg describe a random closed set by one number.
In this paper, Boolean models of balls and infinite straighinders serve as cautionary examples pointing
out the limitations of the SMI. Nevertheless, shape facligesthe SMI can be valuable tools for comparing
similar structures. This is illustrated on real microstures of ice, foams, and paper.

Keywords: image analysis, integral of mean curvatureijrisitc volume densities, random closed set, shape
factor.

INTRODUCTION intersecting affine subspaces. The Euler numbers in
turn can be determined efficiently using the Euler-

Nowadays, a variety of imaging techniquesirst  Poincaré formula for all Z 2 x 2 pixel configurations
of all computed tomography, but also so-called FIBand exploiting additivity.The core of the algorithm
tomography, electron tomography or atomic forcefirst outlined by Langet al. (2001) consists in a
microscopy —are able to produce high qualiyD  convolution of the binary image with a22 x 2 mask,
images of microstructures, increasing the demantesulting in an 8 bit grey value imagepding the
for subsequent quantitative analysis. Assumin@ x 2 x 2 pixel configurations in the original binary
macroscopic homogeneity, the microstructure caimage. Subsequently, the grey value histogram of this
be modelled by a stationary (or macroscopicallyimage is multiplied by a vector of suitable weights to
homogeneous) random closed set. derive the desired intrinsic volume. It is particularly

In many applications, geometric characteristics Opoteworthy that the size of the grey value histogram

the random closed set have to be estimated from th (I)es not depend on |rr(1ja%e s%ed(_)r cc?ntfent. Mhorec_)velr
iven image. A very attractive set of such global® Measurements are deduced directly from the pixe
9 . ' o o configurationsthere is no need to approximate the
geometric characteristics are the densities of thé
T : . Surface by a surface mesh.
intrinsic volumes (or quermassintegrals or Minkowski o _
functionals). In3D, they are, up to constants, volume A further characteristic for macroscopically
fraction W, surface area densit§,, density of the homogeneous random sefsin the Euclidean space
integral of mean curvaturddy, and Euler number R2is thestructure model inde¢gSMI) defined as

densityxy .

These characteristics can be estimated efficiently fsm =6

S

Sz/ 9
from observations in digital binary (black-and-white) h q he f derivative’ of th
images based on discretised Croftantersection Where S, denotes the ‘first derivative’ of the

formulae (Ohseret al, 2009: Ohser and Schiaditz, Surface densis,. The SMI was first suggested by

2009). These classical integral geometric formulagiiidePrand and Ruegsegger (1997ab) for evaluating

allow to compute the intrinsic volumes by calculation®©N€ Structure.
of Euler numbers in lower dimensional intersections  In order to define the derivativ&,, Hildebrand and
and subsequent integration over all positions of th&liegsegger use a surface meshing. Roughly, the mesh
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is moved outwards slightly thus defining a dilatiorcof  Euler numbely, the indexj is defined as
by a small ball. The derivative is then approximated by
the difference quotient. In this pap&; is defined via
the Steiner formula. As a consequence, the SMI cah % Y) = if xe X,
be expressed in terms of the densities of the intrinsic 0, otherwise

volumes which in turn allows to estimate the SMI for all X € # and x,y € RS. It follows from the

from the grey value histogram of the convolved imageadditivity of the Euler number that the indei is
described above. The definition for the SMI withoutqgitive in its first argument, too. Now, introducing

referring to a discretisation as well as the mesh freg,ca| parallel sets with multiplicity we define the local

lim lim x (X NB(x,8) NB(Y, [|[x— Y] —
im lim x (X N1B(x,8) NB(y [x— [ )

estimator are derived in the section below. measure, (X, -) by

Being a shape factor, the SMI can clearly not _/
capture completely the random closed set under PXA) = [ (X Ay)dy, >0
consideration. This is emphasised by the possible ' ]R3_
ranges for the SMI of Boolean models of balls and ~ with ¢:(X,A)y) =5 j(XNB(Y,r),xy),
infinite straight cylinders. On the other hand, the xeA\{y}

SMI is helpful for comparing structures that are¢y, gorel setsA C R3. Here the sum is taken over
sufficiently similar like the pore systems in Greenlandypy finitely many summands different from zero. The
firn from different depths or for assessing the degree of;nctional 0r inherits the additivity from the index.
closedness of technical foams. The Steiner formula for the local functional and
its extension on the convex ring is given in Schneider
(1993, Section 4.4) and Schneider and Weil (2008,

DERIVATION OF THE MESH FREE Segction 14.4). Here we will use the special case
R?, only. That is, we consider the functional
ESTIMATOR

p:(X) =pr (X, R®). @)

The class of all compact convex sets (convex Let now = be a macroscopically homogeneous
bodies) inR2 is denoted by# . Furthermore, we use random closed set dR? with realisations oE almost
the symbolZ for theconvex ringconsisting of all finite  surely belonging to the extended convex rigg We
unions of convex bodies. Finally, we introduce theassume thakE is observed through a compact and
extended convex ring” consisting of all setX ¢ R®  convex windowW with nonempty interior. Moreover,
such thatX N K is an element of#Z for eachK € .#. assume that= fulfils the integrability condition

Denote byB, a ball with radiusr and centred in the E2*=") < e for any convex bodK € ., where #
origin. LetB(x,r) be a ball with centrec and radiug, ~ denotes the minimal numbersuch that the set has a

that isB(x,r) = B +x. representatioX = K;U...UKnWith Kq,...,Kn€ 7.

The volume density, 3 of = is the expectation of

The Steiner formulaexpresses the volume of the the volume fraction oF in W,

parallel seK & B; of a convex bodK at distance > 0 _
as a polynomial of the intrinsic volumes KfandB;, Wa(Z) = EV3(=nW)
vw)

3 . . :

3—k V(W) > 0. This definition of the volume density can be
VIK®B) = ) 1" ks k(K), 120, Ker, e>5ter)1ded to the densities of the other intrinsicyvolumes.
(1) The realisations of= intersected withaw, a > 0
(Schneider, 1993, p. 197). Hexg denotes the volume are poly-convex sets. Hence, the intrinsic volumes
of the k-dimensional unit ball. The intrinsic volumes Vk(=NaW),k=0,...,3, existand théntrinsic volume
Vi,k = 0,...,3, are defined by (1). They are up to densities V) of = can be defined by the limits

k=0

constants volum¥ = Vs, surface are&= 2V5, integral B . EVk(Znaw)

of mean curvaturt = nvy, and Euler numbey = Vo, Wik(=) = lim TVaw) k=0,1,2,

and the integral of mean curvature is closely related to ] ] o
the mean widthvl = 271b. (cf. Schneider and Weil, 2008). 18D the intrinsic

volume densities are (up to multiplicative constants)
The Steiner formula can be extended to the convethe volume density W= W, 3, the surface densityr
ring #. We useSchneider’s index function(X,x,y)  specific surface area\S= 2\, the density of the
of a setX € # at x with respect toy, as defined in integral of mean curvature = r\4, 1, and thedensity
Schneider and Weil (2008, Section 14.4). Using thef the Euler numbegy =W o.
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The functionalp, (X) as defined in Equation (2) is For an example where the two concepts differ see the
additive, translation invariant and locally bounded andfollowing section.

hence, its density For a system= of non-overlapping balls of

o . Ep,(ZNnaWw) constant radius wit_h ball density (mean number of
Py, (Z) = "’I‘[’anW) ; (3)  balls per volume unit) we get
gxistg and satisfies a Steiner-type formula, toopas fom(Z) = 12V\/(E)l\/l_\/( ) 2/\ amria2mer B
oes: S (2) A216mr4
= =y 2 3k - A macroscopically homogeneous system of plate-
pV’r(_)_kZOr Ka-h(2) r=0. @ like structures can only be obtained as a dilated

random hyperplane system. Thus we hile= 0 and
(see Schneider and Weil, 2008, p. 428). Now it followsconsequentlyfsy = 0, too.

that The third special case considered by Hildebrand

d_  _ _ and Ruegsegger (1997a;b) are spherical cylinders. Let
[EPVJ(:)] —o: KiW2(Z) = S = be a random system of non-overlapping infinite
= spherical cylinders of constant radius that is a
and random system of dilated straight lineghis can be
2 achieved e.g. by dilating a system of lines parallel to
— =) — the z-axis whose feet form a hard core point process
[drzp\”( )} o 22Wa(2) = 2My. in the x-y-planeLet = have length density (mean total
) ] length per volume unit). ThenW, (=) = AA = Amr?,
In this sense we formally writ&, = 2My and the S/(Z) =AL=A27r, andMy (=) = A 71, whereA andL

structure model indefswi is given by denote the section area and the section circumference
WMy of the cylinders. Thus
fom = 12—5—, ®)
87 ATIA T
. - fom(Z) =125 =3
which has a similar structure as a shape factor for (A2mm)

convex bodies: Consider the three isoperimetric shape
factors forK € ¢

SMI FOR BOOLEAN MODELS

V(K) V(K)
fulk) = 6vm S(K)’ T2(K) = 48712|\/|3(K) Let = be a homogeneous and isotropic Boolean
S(K) model in R3 with typical grain Xo and densityA.
f3(K) = 4nM2(K)' That is, = = ™1 (% + %), where® = {x}, is a
homogeneous Poisson point field, thkeare i. i. d.

These shape factors are normalised such thdike Xo, isotropic, and independent df. LetV, S b
fi(Br) = fz(Br) = f3(B;) = 1. Deviations from 1 denote the expectations of the volume, the surface area,
describe various aspects of deviations from baland the mean width of the grai, respectivelyi. e.,
shape. The shape factdf(K) = f2(K)/(3f2(K)) =V =EVs(Xo), 5= 2EV,(Xo) andb = JEVy(Xo). Then
3V(K)M(K)/S(K) derived from f, and f3 is  the volume fractiont, the surface densit§,, and the
analogous to the structure model index which thus Caﬂensity of the integra| of the mean curvative of =
be seen as a shape factor for random sets. can be expressed in terms ofV, 5, andb by Miles'

Note however, thag, in this sense is in general formulae:
not the same as the derivative 8f derived from

an infintesimal dilation as defined by Hildebrand and W(E)=1-e?Y,

Ruegsegger (1997a). Roughly speaking, this is due to AV

the fact that the index function used in the definition S(2)=eAS

of the functionalp counts signed surface points and =) AV AG nz)\zgz
thus does not describe a dilation in the case of Mv(Z) = 2mb— ’

overlapping grains. Nevertheless, tha, as defined
here coincides with the orignal SMI by Hildebrand (Miles, 1976), which is a special case of Schneider and
and Ruegsegger (1997a) for non-overlapping graindVeil (2008, p. 389). By definition of the SMI we get

181



OHSERJET AL: Mesh free SMI

v v = TPAZ ther; be i. i. d. asrg and denote byA = riEr2 the
fswi(Z) =12(1— e V)e AV (2mb— —o-§ | be I 1. d. asfo ¢ 0
smi(Z) (1—e)e T 32 mean cylinder section area ahd= 2milEry the mean
AV 1 circumference. The density of the Poisson line field is
' 222 A. TheMiles’ formulaefor W/, S, andMy how become
= 24m(e"V — 1) (%G_’D, W —=1_e A
A o
S, =ALe A

The dilation of a Boolean model is the same as 2 B
the Boolean model of the dilated grains.(Chadcef My = <n)\ — _()\[)2> e A
et al, 2008). Thus a derivative 08, can also be 32
deduced from Miles’ formula. As already noted in the _
previous section, this is not the same $sdefined Spiess and Spodarev (2009) proved the surface density
above. Consider the special case of the typical graiformula for the anisotropic case and genekal
Xo = B, being a ball of constant radius> 0. We have Hoffmann (2007a;b) derived further generalisations to
o , inhomogeneous Poisson line fields.
) — @ A3
S(=)=e At In the case of the typical grakk = B, being a ball

and thus of constant radius > 0 the Miles’ formulae further
43 simplify to
S/(Z) =e 3™ (8mAr — (4mAr?)?)
2
while W=1- e_z“"
S, =e " 2mr

2My (3) = e A3 (8mAt — (1PAT2)?) .

Nevertheless, all following considerations regarding
the significance ofsy, hold analogously for the SMI
in the sense of Hildebrand and Ruegsegger (1997ajhich gives for the SMI

My = e A" m) (1 g)\ﬁ) ,

too.
In the special case of the typical gray = B, (1—e ™) m <1— %Arz) g A
being a ball of constant radius > O this further fsmi(Z) = 12 5
P 2322 (@—Amr2
simplifies to 41PA%r2 (e )
1 g
e (1 S 1) (e 5.
=33 ) (). A2 8
fs|\/||( ) 3(6/\ l) <)\rrr3 8 ) T
Thus limy fSMI(E) — _o. On the other hand, Thus, limy, e fSMI(E) = —oo While fSM|(E) > 0 for

fsmi() > 0 for A < 8/m3r3. Hence, already for one A < 8/mr.
model — the Boolean model with constant ball radius —

. . Given the ranges for the SMI for Boolean models
fsmi can attain a wide range of values.

of balls and infinite straight cylinders derived above,
As a second example we consider now a Booleathere are clearly sets of parameters such that the
cylinder model formed by a Poisson line field with systems of overlapping balls and the cylinder system
each line dilated by a convex bodg € 2. The have the same SMI. As a special case consider Boolean
union of the resulting cylinders is a (generalisedjmodels=y, of balls with point density\, and fixed ball
Boolean model. More precisely, et = {Li}{*, be @  radjusr, and= of cylinders with length density and

macroscopically homogeneous and isotropic Poissogoss section radius. Thenfsy (Zp) = fsmi(Sc) = 0
point field in the space of straight lines R3. Let

Ki,Ko,... be i. i. d. convex bodies. Then the random 38 8
closed seE = > ;(Li ©Ki) is a Boolean model of Ab=—7575 and Ac= .
AP : . er erz
infinite straight cylinders. b

In the special case of thi = B, being balls, These equations hold for instance fgy= 1000,r, =
formulae for the densities of the intrinsic volumes0.064, Ac = 28668, andr. = 0.03. Realisations of
in terms of the model parameters were derived byhese two models, which are obviously not plate-like,
Davy (1978), see also Ohser and Schladitz (2009). Letre shown in Fig. 1.
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of spheres and cylinders with theoreticaIAvaIlmﬁ:
0. (a) Boolean model of spheres, estimateg (Zp) = \§
—0.022, (b) Boolean model of cylinders, estimated |

fsmi(Zc) = —0.200.

APPLICATION

The section above shows that the informative value
of fgu is rather restricted. This holds however for all
shape factors. Nevertheledsy is surely a valuable
tool for comparing similar microstructures. In the
following we will discuss several examples.

GREENLAND FIRN (SINTERED SNOW)

(e) 74m

During the densification of polar firn, significant
changes of the microstructure can be obsenafd ( Fig. 2. Visualisations of reconstructed tomographic
Freitag et al, 2004, and references therein). Thesémages of firn samples from five different
include a decrease of porosity with increasing deptiepths. Samples and imaging: J. Freitag, Alfred-
but also changes of the topological structure of the por¥é/egener Institute for Polar and Marine Research,
space from a connected system of pore channels toB{€merhaven. The pore system is visualised.

system of isolated spherical air bubbles. The SMI may The estimated values given in Table 1 show an
be used as a means to characterise these changes. jncrease offsw with increasing depth. The starting

value around 3 indicates a cylindrical structure. The
~ As an example we analysed several samples Qfigygjisations of the deeper samples already show a
firn from the firn core B26 which was drilled during nhymber ofisolated spherical pores. Therefore, a further
the North Greenland traverse of the Alfred Wegenencrease of sy, towards 4 can be expected when going
Institute Bremerhaven in 1995. The borehole wasleeper within the firn core.

located at 7715’N, 49°13'W. Five firn samples taken

fro.m different depths within the ice core were imageo'TabIe 1.SMl for firn samples with different porosities.
using a portableuCT scanner (1074SR SkyScan)

inside a cold room at-25°C. The analysis is based depth [m]  porosity [%] fom

on grey value images consisting of 40gixels with 56 1571 2 054
a pixel size of 40um. From these, binary images of 60 13.16 3.135
the pore system of the firn were obtained by global 69 10.11 3.373
thresholding by Freitagt al. (2004). Visualisations of 72 9.06 3.410
the firn samples are shown in Fig. 2. 74 7.83 3.503
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TECHNICAL FOAMS — a ceramic foam, used for filtering metal melts,

Foams are used in an increasing number of ©670%670x270 pixels, pixel size 788 um,

application areas including filters, heat exchangers
or sound absorbers. They are divided into open-cell
foams consisting of a connected system of struts
and closed-cell foams whose cells are bounded by
membrane-like walls. However, also mixed forms with

varying proportions of closed walls can be observed. . — .
The degree of closedness of a foam plays an important Visualisations of the f[om_ographlc 'mages of the
role for its macroscopic properties. Therefore, easjP@m Samples are shown in Fig. 3. The estimated SMis
ways for its characterisation are highly desirable. Here2"® given in Table 2. None of the estimated SMis is

we propose the SMI as a measure for the closedness@¢ar the value for an ideal cylinder structure. However,
a foam. the two open foams have a significantly higher SMI

than the (partially) closed samples and the SMI of
the closed PMI foam is close to the expected value
0. Moreover, the difference between the strut shape
between the aluminium foam (round) and the nickel-
chromium foam (trilobal) is clearly reflected by the
SMI, too.

a closed polymethacrylimide (PMI) foam, used
as lightweight core material for sandwich
applications, 480 480 x 360 pixels, pixel size
10.21pm.

Table 2.SMI for the foam samples.

sample fsmi

aluminium 2.188
nickel-chromium 1.695
ceramic 0.429
polymer 0.207

PAPER

The microstructure of paper determines important
properties like tensile strength or filtration properties.
Therefore, it has been studied for a long time,
(d) however mainly based on 2d images. Here we use a

Fig. 3. Visualisations of reconstructed tomographicBD image of a recycling paper samplg obtained by
images of four foam samples. (a) Open aluminiurr?ynChrOtmn'based phase contrast microtomography

foam, sample: m-pore GmbH, imaging: Fraunhoferdt beamline IDZZ of the _Euro'pean' light source
IZFP, (b) Open nickel-chromium foam, sample:ESRF (émploying an effective pixel size of Oum

Recemat Int. (RCM-NC-2733.10), imaging: RIL Microcorresponding to approx. 2m spatial resolution,
FOSECO GmbH, imaging: Fraunhofer IZFP, (d) details on the experimental setup and the phase

Closed polymer foam, sample and imaging: Rretrieval algorithm applied see Weitkarepal.(1999)
Schlimper, Fraunhofer IWM. and Paganiret al. (2002), respectively. Most of the

cellulose fibres are collapsed and the paper contains
We estimated the SMI from tomographic images of thevarious additives. This causes the microstructure to be
following foam samples showing different proportionsvery irregular. Nevertheless, estimation of the SMI on
of closed walls: seven 268 pixel subvolumes yields the values 0.19,
0.37, 0.50, -0.08, 0.2, 0.14, 0.29, still indicating a
rather plate like structure.

— an open aluminium foam, 820820x 278 pixels,
pixel size 6457 um,

— a nickel-chromium foam, used as sound absorber, Fig. 4 shows visualisations of the two samples with
800x 1600x 1600 pixels, pixel size .34 um, the minimal and maximal estimated SMI.
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