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The Network Scale-Up Method:

A Simulation Study in Case of

Overlapping Sub-Populations
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Abstract

The network scale-up method is a social network estimator for the size

of hidden or hard-to-count subpopulations. These estimators are based on

a simple model which have however strong assumptions. The basic idea is

that the proportion of the mean number of people known by respondent in

a subpopulation E of T of size e is the same of the proportion that the

subpopulation E forms in general population T of size t: m
c

= e
t
, where

c is the number of persons known by each respondent and m is the mean

number of persons known by each respondent in the subpopulation E. The

persons known by every subject is called the ”social network”, and its size is

c, estimated by several estimators proposed in the recent literature. In this

paper we present a Monte Carlo simulation study aimed at understanding the

behavior of the scale-up method type estimators under several conditions. The

first goal was to understand what would be the ideal number of subpopulations

of known size to be used in planning the research. The second goal was to

analyze what happens when we use overlapped subpopulations. Our results

showed that with the scale-up estimator we always obtain biased estimates for

any number of subpopulations employed in estimates. With the Killworth’s

ML estimator, the improvement of scale-up method, we have substantially

unbiased estimates under any condition. Also in case of overlapping, and

increasing the degree of it among subpopulations, bias raises with scale-up

method, instead it remains close to zero with ML estimator.
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1 Introduction

During the last few years, Bernard (Bernard, 1991; Bernard, 1989; Killworth, 1998a;
Killworth, 1998b; Bernard, 2001) proposed some new approaches aimed at estimat-
ing the size of hidden or hard-to-count populations. These methods are largely
based on the concept of social network: a loose definition of it is the set of people
that a person knows. The width of the network thus dependents on the definition
of “knowing” someone. Beside the difficulties on defining exactly this concept, the
main advantage of the technique consists in asking people about problems indirectly,
i.e.: problems that in principle are not regarding him/her directly, asking instead
on how many people he/she knows with the specific characteristic. The resulting
samples are smaller as compared to those obtained using common estimators for
events with small prevalence.

The general set up of these methods assumes a total population T of size t and a
subpopulation E of T of size e. Thus, the basic assumption underlying the scale-up
method’s class of estimators is

m

c
=

e

t
(1.1)

where m is the mean number of persons known in E and c is a constant representing
the social network size of any member of T . Hence, the proportion of subjects in E
known to any member of T is the same as the proportion of members of E belonging
to general population T , i.e.: e/t.

In order to estimate the unknown size e we need the number c of people that a
person knows (the social network). In the past, several estimators of the social net-
work size were proposed (Freeman, 1989; McCarty, 2000; Bernard, 1990; Killworth,
1990). Some of these estimators propose to estimate c using the number of persons
known by each respondent in several subpopulations of the known size (Killworth,
1998a). Thus, the basic idea is to ask respondents how many people they know in
the target subpopulation and how many people they know in a certain number of
subpopulations of the known size. For example, one could ask: “How many people
do you know who are seropositive?” (the unknown size subpopulation) and “How
many people do you know that owing a VISA card?” (the known size subgroup).

Killworth et al. (Killworth, 1998a; Killworth, 1998b) presented two estimators
for the dimension of e: a revision of the original scale-up estimator and another one
based on maximum likelihood.

Several strong assumptions are underlying the scale-up method approach to the
estimate of unknown population sizes, which can lead to several problems in esti-
mates (McCarty, 2000): (i) each subject in T has the same probability to know a
person in subgroup E, (ii) everyone in T knows all about his/her acquaintance and
(iii) the negligible difficulty that is to recall in short time all people known in a
certain subpopulation.

The violation of these assumptions can conduct to some problems, spotted in
the literature and known as the barrier, transmission and estimation effects. Indeed,
some social and geographical characteristics can create a barrier in knowing some
specific groups of persons. The second effect faces us when information about a
person is not transmitted with the same probability to his/her acquaintance. The
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difficulty to recall people belonging to a certain subpopulation can lead to estimation
effects.

Several issues have been raised in the past literature on the statistical behavior
of these estimators. Most of the critics are related to the loose definition of network,
which is rarely consistent among applications (Freeman, 1989; Bernard, 1989; Mc-
Carty, 2000), possibly leading to very different estimates for the same phenomenon.

On the other hand the proposed estimators have been presented and justified
using mostly heuristic arguments, missing a strict definition of the statistical prop-
erties, which affect the capability of implementing a statistical plan in designing a
field research. For instance, Killworth et al. (Killworth, 1998a; Killworth, 1998b)
suggested, in a very limited setting, that using at least 20 subpopulations of a known
size to estimate social network dimension leads with the scale-up method to unbiased
estimates of the target subgroup size.

Moreover, the problem of overlapping subpopulations has not been addressed
explicitly. For overlapping subpopulations we intend that a person can belong to one
or more subgroups, e.g. a subject can stay in a subpopulation definite by “persons
calling Michael” and simultaneously belong to “people possessing a swimming pool”.
This problem face us potentially in all studies using subpopulations. The exception
is when we use subpopulation based on names, where overlapping is not possible.

In the present paper we investigate, using a Monte Carlo simulation experiment,
the statistical behavior of the scale-up method and the ML estimator under several
conditions with populations with different degrees of subpopulation overlapping.

2 The social network based estimators

Both the scale-up and the ML estimators are extensions of the basic model described
in Section 1.

The scale-up method Assuming that E0 is a subpopulation of T of unknown
size e0, then the estimator (Killworth, 1998a) of e0 is:

1ê0 =
1

n

n
∑

i=1

mi0 · t

ci

(2.1)

where mi0 is the number of persons known by respondent i in the unknown subpop-
ulation E0 and ci is the network size of i-th respondent.

If we have a sufficient large random sample of n members of T , the distribution of
the number known by each respondent in the target subpopulation mi0 is virtually
normal (Johnsen, 1995). In this case the standard error of 1ê0 is:

s.e.(1ê0) =

√

t

n

n
∑

i=1

s.e.(mi0)
√

ci

. (2.2)
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The maximum likelihood estimator The ML estimator (Killworth, 1998b) is
found by maximizing the probability

Prob(ci, mi0, e0) =
∏

i

(

mi0

ci

)

pmi0

0
(1 − p0)

ci−mi0 where p0 =
e0

t
, (2.3)

by varying e0, obtaining

2ê0 = t

∑

i
mi0

∑

i ci

. (2.4)

It is demonstrated that the maximum likelihood estimator is unbiased, i.e.: with
E(2ê0) = e0 and standard error given by

S.E.(2ê0) =

√

t · 2ê0
∑

i ci

. (2.5)

The main difference between the two estimators is that the scale-up estimator
requires the sum of the ratios for each respondent i of mi0 (the number of persons
known by respondent i in the target subpopulation) and ci (the network size of i-th
respondent). The maximum likelihood estimator computes the ratio of the sum of
mi0 over all respondents and the sum of ci social networks size over all respondents.

The estimation of social network size The only unknown variable in the above
mentioned estimators is the social network size of each respondent, and therefore
we have to substitute ci with a good estimate of it.

In order to estimate social network sizes there are two estimators that use sub-
populations of known sizes (Killworth, 1998a). The first is the subgroup estimator,
which can be obtained by maximizing:

Prob(i knows mij , j = 1, 2, · · · , L) = Pci
=

L
∏

j=1

(

mij

ci

)

p
mij

j q
ci−mij

j (2.6)

where mij is the number of persons known by respondent i in the j-th subpopulation
of known size (j = 1, . . . , L) and pj =

ej

t
is the fraction of subpopulation Ej in T .

Another network size estimator is the proportional estimator

ĉi = t ·

∑L

j=1
mij

∑L

j=1
ej

(2.7)

with standard error

s.e.(ĉi) =

√

tĉi
∑L

j=1
ej

. (2.8)

Killworth et al. (Killworth, 1998a) proved that for small values of mij/c and pj, the
estimate of ci is almost the same of that obtained by the subgroup estimate.

Every estimate of ci has an error that is transmitted to the unknown subpopu-
lation size estimate. It is proven (Killworth, 1998b) that the effect of this error on
estimate is negligible if

∑

ij mij is sufficiently large.
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3 The Monte Carlo experiment

The simulations are organized in two parts: the first was intended to determine the
optimal number of subpopulations to be used in the estimate and to understand the
behavior of the estimators in case of small samples. In the second part we considered
the case of overlapped subgroups. In both parts of simulations we used both the
scale-up method and the maximum likelihood estimator.

For the simulations we used a total population T composed by a certain num-
ber of subpopulations of a known size, the social network size of each element of
population being c and the subpopulation to estimate having a sample size of n.

We simulated the network size of each member of the general population T with
random generation from an exponential distribution, with mean based on published
results (Killworth, 1998a; Killworth, 1998b). On this basis we generated two dif-
ferent network sizes, one with mean 105 (Killworth, 1998a) and another with mean
160:

c1 ∼ exp

(

1

105

)

and c2 ∼ exp

(

1

160

)

.

The social network size were estimated using the proportional estimator. Then,
we constructed four target subpopulations, with different relative sizes (p0 = e0

t
):

0.001, 0.002, 0.01 and 0.1.
Thousand simulations were carried out in the following way:

1. we extracted the sample from the total population;

2. for each element in the sample we estimated its network size (ĉi);

3. then we estimated the target subpopulation size for each member (êi0) using
ĉi;

4. eventually, we averaged the results obtained for each element in the sample
and calculated the standard error.

3.1 Non-overlapped subpopulations

We implemented the simulations with two different kind of subpopulations: homo-
geneous and non-homogeneous.

Homogeneous subpopulations

We constructed three general populations T of size 50.000, respectively owning 5,
25 and 100 subpopulations. In each of these subpopulations the subgroups were
homogeneous, i.e. they had the same size (eh = ej, for each subpopulation h and
j). In all cases, the total size of the subpopulations (

∑

j ej) added up to 20.000.
We extracted a sample of 2.000 members (n) from the general population and

we estimated the sizes of the four subpopulations. Both social network sizes were
simulated in the case of the network scale-up method; with the ML estimator we
used only the social network size distributed as exp

(

1

160

)

.
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Figure 1: Representation of the idea of the scale-up method estimators.

Non-homogeneous subpopulations

We constructed two populations of dimension t = 50.000 with non homogeneous
subpopulations, one with subpopulations total size of 20.000 and another one with
30.200.

We considered only a subpopulation with relative size 0.001, extracting a sam-
ple with size n equal to 2.000. For this simulation, the only social network size
considered was the one distributed as exp

(

1

160

)

.
In this first part, 40 simulations were implemented: 26 with the scale-up method

(4 different unknown subpopulations to estimate × 2 social network sizes × 3 dif-
ferent groups of homogeneous subpopulations with known size, and 2 with non-
homogeneous subgroups) and 14 with the ML estimator (4 different subpopulations
to estimate × 3 different homogeneous groups of known size × 1 social network size
and 2 with non-homogeneous subgroups).

3.2 Overlapped subpopulations

For this part of Monte Carlo simulations, we constructed five general populations
with different degrees of overlapping among subpopulations.

These populations had a dimension t of 50.000 subjects, organized in 25 sub-
groups which sizes are in the range 100-2.500: first subpopulation was 100, the
second 200, and so on until the 25th with a size of 2.500.

In the first generated population, the subgroups are not overlapped, i.e. each
population’s element can belong at most to one subpopulation, e.g. names subgroups
(see Figure 1).

The second population is constructed as follows: 25% of elements of the smallest
subpopulation (with size 100) belongs to all biggest subpopulations, 25% of elements
of second smallest subgroup belongs to all biggest subpopulations, and so on. Hence,
25% of all subpopulations has the character of the biggest subpopulation, that with
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Figure 2: Non overlapping subpopulations

Figure 3: Overlapping subpopulations.

2.500 members.

Other populations were constructed in the same manner but with overlapping
degrees of 50%, 75% and 100%. The latter represents the extreme case of overlap-
ping: all elements of smaller subpopulations are contained in the biggest subgroup
(see Figures 2 and 3).

Also in this case we used both estimators, but only with a reference to the
subpopulation with a relative size 0.001. Moreover, social network dimensions were
distributed as exp(1/160) and we extracted a sample of 2.000 elements (n).
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Table 1: Relative bias in non-overlapped homogeneous subpopulations. Values are

expressed × 100.

actual network Scale-up ML

p0 size 5 25 100 5 25 100

0,10 c1 9,25 8,62 7,84
c2 6,06 6,43 5,89 -0,04 -0,02 -0,35

0,20 c1 11,40 10,01 9,96
c2 7,51 7,39 6,41 -0,02 0,08 0,08

1,00 c1 10,42 9,63 9,71
c2 7,38 6,88 6,77 -0,05 -0,04 -0,03

10,00 c1 10,46 9,55 9,80
c2 7,36 6,79 7,05 -0,02 0,00 0,00

Table 2: Standard error in non-overlapped homogeneous subpopulations. Values are

expressed × 100.

actual network Scale-up ML

p0 size 5 25 100 5 25 100

0,10 c1 0,05 0,05 0,05
c2 0,05 0,05 0,05 0,01 0,01 0,01

0,20 c1 0,07 0,07 0,07
c2 0,07 0,07 0,07 0,01 0,01 0,01

1,00 c1 0,17 0,16 0,16
c2 0,16 0,16 0,16 0,02 0,02 0,02

10,00 c1 0,50 0,49 0,43
c2 0,49 0,49 0,49 0,06 0,06 0,06

4 Results

4.1 Non-overlapped simulations

The relative bias (Table 1) varies from 11.40% to 6.41% with the scale-up estimator
and from -0.05% to 0.08% with the ML estimator, which is known to be unbiased,
slightly smaller in case of network sizes with the mean 160 (2-3%) as compared to
those with a mean of 105. Both with the scale-up method and the ML estimator (Ta-
ble 2), increasing the size leads to increased standard errors of the estimates, passing
from 0.0005 to 0.005 with the scale-up estimator and from 0.0001 to 0.0006 with the
ML estimator. On the contrary, increasing the number of used subpopulations does
not affect the standard errors, which remain constant.

In case of non-homogeneous subgroups (Table 3), when the degree of coverage
of the total subpopulations sizes increases, the relative bias become smaller. In-
deed, raising the total size of the subpopulations from 20.000 to 30.200 subjects, we
observe that the relative bias becomes about one half with the scale-up estimator
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Table 3: Bias and standard error in non-overlapped and non-homogeneous

subpopulations. Values are expressed × 100.

total Scale-up ML

size p̂0 rel. bias s.d. p̂0 rel. bias s.e.

20.000 0,11 8,53 0,05 0,10 0,10 0,01
30.200 0,10 4,38 0,05 0,10 -0,03 0,01

Table 4: Relative bias and standard error in overlapped subpopulations. Values are

expressed × 100.

overlap. Scale-up ML

rate p̂0 rel. bias s.e. p̂0 rel. bias s.e.

0 0,10 1,00 0,05 0,10 -0,03 0,01
25 0,11 9,27 0,05 0,10 -0,28 0,01
50 0,12 22,56 0,06 0,10 -0,24 0,01
75 0,15 52,97 0,06 0,10 0,12 0,01

100 0,31 213,81 0,09 0,10 -0,04 0,01

and about one third with the ML estimator. Comparing the results with 25 non-
homogeneous subgroups (leading to a total size of the subpopulations of 20.000)
with those obtained with homogenous subpopulations, the relative bias is higher in
the non homogeneous case. Indeed, considering the non homogeneous case and the
homogenous one, the relative bias is about 8.53% and 6.43% respectively for the
scale-up estimator and about 0.10% and 0.02% for the ML estimator.

4.2 Overlapped subpopulation

With the network scale-up method, as shown in Table 4, the relative bias increases
from about 1.00% with no overlapping rate of 0 up to 213.81% with an overlapping
rate among subpopulations of 100%. Also the standard errors increase when the
degree of overlapping increases. On the contrary, with the ML estimator, estimates
are substantially unbiased for any degree of overlapping and standard errors are
almost constant at the 0.0001 level.

5 Discussion

The first goal of our analysis was to identify the optimal number of subpopulations of
the known size to employ in planning investigations based on the scale-up method
or the ML estimator. Killworth (Killworth, 1998a; Killworth, 1998b) suggested,
based on a heuristic reasoning on a concrete data set, that the ”optimal” number
of subpopulations is about 20, obtaining in this way substantially unbiased results.
Our simulations show that the scale-up method, whatever number of subgroups
is used, leads to biased estimates. On the contrary, the results for the maximum
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likelihood estimator, are clearly indicating that the estimates are unbiased for any
number of subpopulation considered. This makes the Killworth’s suggestions too
conservative for the latter estimator, where the biggest issue seems to be the sizes
of the subpopulations. Our results indicate a marked loss in efficiency of the ML
estimator as the size of the subpopulations tends to increase. Also the bias in the
scale-up estimator seems to depend on the size of the social network considered,
reducing markedly in presence of bigger social networks. However, this result is of
little usefulness in planning the research, since it is not under direct control of the
researcher, who usually doesn’t know the network of the people being interviewed a
priori.

The second goal was to analyze the behavior of both estimators with homo-
geneous or non-homogeneous subpopulations. From our results there is a slight
evidence that it would be preferable to have homogeneous subpopulations, both
for reducing the bias and to increase efficiency. Although under control of the re-
searcher, this parameter is often very difficult to obtain in concrete situations, when
the amount of data available on the sizes of the subpopulations are not a great
number.

The third goal was to see if the statistical behavior of the estimators improved
increasing the subpopulation total size, i.e.: the degree of coverage of the target
population T . Our simulations show that increasing the total size of known sub-
populations leads to an increased bias in both estimators, markedly for the scale-up
method and only slightly for the ML estimator. Published results indicate that
as the coverage increases, the standard errors of the social network size estimates
(Equation 2.8, (Killworth, 1998a)) lower down. This is not the outcome of our sim-
ulations, where the standard error of target subpopulation size does not seem to
decrease: this is most probably due to the specific setting of our simulations, where
the standard error of ĉi is negligible in the estimate of e0.

The fourth goal was aimed at understanding the behavior of both estimators
in case of using subpopulations with some degree of overlapping. In this case, the
scale-up estimator is showing a marked bias, increasing impressively as the degree
of overlapping increases. On the contrary, the ML estimator leads to substantially
unbiased estimates, with an efficiency independent from the degree of overlapping.

The impact of our findings is of some direct interest in epidemiological and
social research. Based on the above considerations, all the estimates of HIV and
AIDS populations (Killworth, 1998a) based on the network scale-up method are
most probably biased upward, with a magnitude which depends on the degree of
overlapping in subpopulations, which cannot be excluded in the cited researches.
These results confirm Killworth’s (Killworth, 1998b) findings, which, based on a
reanalysis of the previous data, showed a marked difference in the estimates obtained
with the ML estimator.

The results of our work are however far from being conclusive. First, we did not
investigate how the precision of estimate of c affects the estimate of e, which could
be of direct interest in field work, also because of the possible errors in estimating
the social network. From a statistical point of view, the two step estimate, which
requires the estimate of c to be plugged in the formulas for estimating e is clearly
unsatisfactory. More research is needed to get a joint estimate and joint standard
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errors for both quantities. Finally, but not of less importance, unbiasedness is surely
not by itself an assurance of the correctness of the final estimates. Other factors,
such for instance transmission, barrier and estimation effects are a potential greater
source of bias, which is difficult to be evaluated and is specific for each problem
studied.
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