
*Corr. Author’s Address: Department of Civil and Industrial Engineering, Largo Lazzarino 56122, Pisa, Italy, gaia.volandri@ing.unipi.it 363

Strojniški vestnik - Journal of Mechanical Engineering 60(2014)5, 363-372 Received for review: 2013-12-13
© 2014 Journal of Mechanical Engineering. All rights reserved.  Received revised form: 2014-02-14
DOI:10.5545/sv-jme.2014.1837 Special Issue, Original Scientific Paper Accepted for publication: 2014-04-01

0  INTRODUCTION

The work described in this paper is part of a broader 
research activity on the development of a model of 
the human hearing perception, a kind of “virtual 
ear”. It deals with the analysis and simulation of the 
vibratory behavior of the auditory apparatus in the 
conventionally considered audible frequency range, 
20 Hz to 20 kHz. In particular, the present study 
is focused on the auditory canal (AC) including 
the tympanic membrane (TM) that represents a 
fundamental portion of the “normal acoustic path” 
formed by the outer, middle and inner ear. 

In the last decades, many bioengineering 
methods have been applied to simulate the dynamic 
behavior of some parts of the ear, both distributed or 
lumped parameter methods, such as those based on 
electromechanical analogy or multi-body dynamics. 
However, for the simulation at low frequencies (<10 
kHz) of sound propagation in the AC and for the 
mechanical-acoustic transmission through the TM, the 
finite element method (FEM) is the most frequently 
used approach [1] to [7].

The first finite element (FE) models of the TM 
appeared in the ‘70s [1]; since then, the FEM has 
been widely employed to model the ear structures 
due to its remarkable capability for analyzing 
complex geometries and the mechanical properties 
of anisotropic and inhomogeneous materials. Models 
including also, at least, the middle ear were developed 
by Kelly et al. [2], by Koike et al. [3], by Gan et al. [4] 
to [6] and Lee an Chen [7]. In the last years, hybrid 
FE and multi-body models of the TM and middle ear 
were also proposed by the present authors [8] and [9].

For simulating wave propagation with a standard 
FE model, i.e. with polynomial element shape 
functions, the mesh should respect the “rule of thumb”, 
commonly accepted for many wave problems, that 
there should be at least 10 nodes per wavelength λ 
[10]. For sound transmission in air, λ ranges from 15.6 
mm (20 kHz) to 15.6 m (20 Hz), approximately. This 
means that at high frequencies, conventional FEM 
modeling can have a high computational cost, as it 
requires a very dense discretization of the domain. 

Except for some attempts to apply domain 
decomposition with parallel processing, alternative 
methods or generalizations of conventional FEM 
[11] have been proposed in the literature for low 
wavelength acoustic problems. These methods have 
high accuracy and a minor need of mesh refinement 
with respect to standard FEM. Among these methods 
there are the spectral methods, as the spectral element 
method (SEM) or spectral finite elements (SFE), 
based on the fast Fourier transform (FFT) [12] or on 
orthogonal polynomials [13], and the wave element 
methods (WEM), as the ultra-weak variational 
formulation method (UWVF) [14], the partition of 
unity method (PU(FE)M) [15] and the generalized 
finite element method (GFEM) [16] and [17]. 

In this paper a conventional FEM analysis, carried 
out on an approximated model of the system formed 
by the AC and the TM, is compared with the results 
of an alternative method: the GFEM was selected 
as suitable for further extension of modeling and 
simulation of three-dimensional sound propagation 
problems to higher frequencies or higher dimensions 
of problem domain. This method was implemented 
in a commercial code (Wolfram Mathematica®) 
and applied preliminarily to simplified geometries 
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that approximate the anatomy of the outer ear for a 
comparison with standard FEM in ANSYS®.

1  OVERVIEW OF COMPARED FE METHODS

The present investigation is focused on different FE 
formulations compared in terms both of accuracy 
and computational time. In this section, the theory of 
the adopted standard and generalized formulations is 
reported in brief.

1.1  Theoretical Background of the Finite Element Methods

As it is well-known, the basic idea of the FEM is 
to divide the continuous domain of a problem in a 
discrete set of elementary subdomains (elements) 
where the field function (e.g. displacement) can be 
approximated by means of simple basis functions 
[11]. Such basis functions are typically continuous, 
with piecewise continuous derivatives, and moreover 
can be easily integrated. In order to guarantee the 
global continuity of the displacement field, adjacent 
elements should have same values along their 
boundaries, thus the basis functions also support an 
interpolatory solution. 

Accordingly, the displacement u at a point x 
within an element e can be written as:

 u x N x ce
k k

e

k
( ) ( ) ,=∑  (1)

where Nk(x) are the basis functions and ck
e  the 

interpolating coefficients.
Differences between the FE methods selected 

for comparison can be attributed mainly to the basis 
functions adopted in element formulations. The 
peculiar characteristics of standard FEM, though well 
known, are here reported to ease the comparison with 
the other method.

1.1.1 Standard Finite Element Method

In standard FEM, interpolating coefficients are 
the element nodal displacements ak

e  (k is the node 
numbers), so that Eq. (1) becomes:

 u x N x ae
k k

e

k
( ) ( )=∑ , (2)

and the shape functions are typically low (first 
or second) order polynomials. A more compact 
expression can be obtained introducing the matrix 
form of the basis functions N(x):

 u x N x ae et t( , ) ( ) ( )= , (3)

which introduces also the generalization to time-
dependent problems. 

It can be worth noting that in case of iso-
parametric elements the same basis functions are used 
for mapping the elements from a reference domain 
into the physical domain.

Accordingly, the element mass and stiffness 
matrices are obtained from the following integrals on 
the element domain Ωe:

 M N N K B DBe T

e

e T

e

= =∫ ∫ρ
Ω Ω

Ω Ωd d, ,  (4)

where ρ is the material density and B = SN, S 
being a differential operator for calculating strain  
(εe = Sue = SNae = Bae), and D an elasticity matrix 
[11]. FE codes calculate such integrals numerically, 
i.e.

 f x f x( ) ( ) ,dΩ
Ωe

h
h

hw∫ ∑=  (5)

in particular by means of Gaussian quadrature [11], 
which for polynomials gives the exact solution. 

Various procedures exist for the refinement of 
finite element solutions: the local approximation can 
be improved by polynomials of increasingly higher 
degree (p version), or, having fixed the polynomial 
degree p (typically p ≤ 2), by decreasing the mesh size 
h (h version) or increasing the mesh size h and the 
degree p of polynomials (hp-version) [11]. 

1.1.2  Generalized Finite Element Method

The generalized finite element method, GFEM, is a 
combination of the standard FEM and the partition 
of unity method (PU(FE)M), aimed at introducing 
additional terms in the approximating function which 
enhance the global behaviour of the solution, also 
reflecting the known information about the boundary 
value problem [16]. Thus the standard polynomial FE 
solution is enriched with special functions u x( )  (or 
handbook functions) usually non-polynomials, that 
means:
 u x N x a u x( , ) ( ) ( ) ( ).t t= +   (6)

However such special functions must respect the 
global regularity constraints, and thus are obtained 
by some specific (solution or problem-dependent) 
enrichment or handbook function hf(x), multiplied by 
the partition of unity (PU) NPU(x), i.e.
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 u x N x a N x hf(x)a( , ) ( ) ( ) ( ) ( ),*t t t= + PU
 (7)

where a* are nodal unknown parameters that adjust 
the enrichment. Since this concept is at the basis of the 
extended method, it is worth reminding that a partition 
of unity in a domain Ω is a set of functions ψi(x) such 
that:

 ψ ii x x( ) = ∀ ∈∑ 1, .Ω  (8)

Consequently any function f(x) can be reproduced 
by its product with the functions ψi(x).

Frequently, but not necessarily, the NPU functions 
correspond to the standard FE shape functions N, 
often linear or bilinear, with a “hat” shape, defined 
on patches (much wider than elements) and zero 
everywhere else. A 2D representation of patches and 
elements is shown in Fig. 1. The generalization to the 
3D tetrahedral case is direct. 

Fig. 1.  Elements and patches

The local approximability is increased due to the 
handbook functions, while maintaining the existing 
infrastructures of the FE codes. In fact, the essential 
boundary conditions can be imposed in GFEM exactly 
as in standard FEM.

In [17], GFEM is applied to the solution of the 
problem of Helmholtz with the evaluation of special 
plane wave and wave band functions and functions of 
Vekua as handbook functions and the conclusion is 
that the use of plane wave functions involves a lower 
computational burden without substantial variations in 
the asymptotic accuracy, compared to more complex 
functions.

In the 2D case the plane waves can be expressed 
as shown in [17]. For 3D problems, as in the 
simulation of the fluid domain corresponding to the 
auditory canal, an extension is required and the plane 
waves can be expressed as a direct generalization of 
the 2D case, detailed in [18]:

 W ej
i ik x l m y l m z l( ) ( sin cos sin sin cos ) ,= + +θ φ θ φ θ  (9)

with θ π
l l

p
l p= =and 1 2, ,..., , and similarly

φ
π

m m
q

m q= =
2 1 2, , ,..., ,

 
and employed as 

handbook functions hf(x) in Eq. (7).
Such a direct generalization of the 2D case 

provides a distribution of directions which are 
concentrated around the poles of an imaginary sphere. 
As stated in [18], it is impossible to obtain an equally 
spaced distribution of directions. However, the choice 
of the logic of distribution of directions represents an 
important issue since a different logic of selection of 
propagation directions, based on a priori knowledge 
about the solution, can allow reducing the number of 
directions required to obtain a given level of accuracy. 

A main issue in the implementation of GFEM is 
the possible linear (or almost linear) relation between 
the added handbook functions and the standard basis 
FE ones with consequent ill-conditioning problems 
[16]. As reported by many authors, an increasing 
number of wave directions involves a higher result 
accuracy with the drawback of introducing ill-
conditioned system matrices and requiring dedicated 
integration techniques. Thus, it is often necessary to 
introduce some checks in the implementation on the 
condition number of the matrices and, if needed, to 
update the direction number assigned to each node.

1.2  Fluid-Structure Interaction Formulation

The coupling between partial domains of the whole 
model represents a significant aspect of modeling 
that includes the debated issue of the fluid structure 
interaction (FSI) formulation. The fluid structure 
interaction at the domain interface implies that the 
acoustic pressure exerts a load on the structure and 
that the structural motion produces an effective load 
on the fluid. The introduction, in the system dynamics 
governing equations, of a coupling matrix accounting 
for the effective surface area and the normal to the 
interface area, represents a possible FSI formulation 
[19].

In the present study, the FSI coupling formulation 
described in [20] was adopted at the interface 
between fluid and structural domains. Such a 
formulation involves the building of an asymmetric 
element matrix for the interface elements (typically 
fluid elements), which have the pressure and three 
translational DoFs. For the interface fluid element, 
the structural mass, damping and stiffness matrices, as 
well as the fluid mass, damping and stiffness matrices, 
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assume the typical FE form. Mass (MFS) and stiffness 
(KFS) coupling matrices are defined according to the 
following equations:

 M A K AFS FS= = −ρ0
T , ,  (10)

where ρ0 is the fluid density, and the coupling matrix 
A is obtained by the following integration on the 
interface surface S:

 A N Nn= ′∫ T

S

TdS ,  (11)

where N and N′ represent the fluid and structural 
shape function matrices, respectively, and the normal 
to the interface is indicated with n. 

2  OUTER EAR MODELS

2.1  Anatomy

The auditory canal belongs to the outer portion of 
the ear, the tympanic membrane is instead generally 
included in what is called the middle ear, being at the 
interface of the outer and middle ear (Fig. 2).

Fig. 2.  Schematic drawing of the human ear

The AC conveys the vibratory waves propagating 
in air to the middle ear. The morphology of the 
AC, though often approximated with a cylindrical 
geometry, typically presents two curves [21]; this 
shape (referred to as “S”) not only facilitates the 
channeling of the wave but introduces variations 
(typically amplifications) at some resonance 
frequencies. Although inter-subject biological 
differences exist, there is a general agreement on the 
value of adult AC length of 25 to 32 mm. The cross-
sectional area ranges from 65.45 to 75.53 mm2 at the 
TM to 90.13 to 96.16 mm2 at the canal entrance [4] 
and [7]. 

The understanding of the peculiarities of the AC 
that most influence the transmission of the signal and 
its coupling to the middle ear are important in the 
design of prostheses and in reconstructive surgery.

The TM, located at the end side of the ear canal, 
forms an angle of about 140° with the upper and lower 
walls of the channel; such an orientation gives a useful 
area of about 85 mm2, greater than the orthogonal 
cross-section of the AC. 

The TM has a typical conical shape with an 
opening angle of 132 to 137° and a height of the cone 
of about 1.42 to 2 mm. The elliptical base of the cone 
has a vertical axis length ranging from 8.5 to 10 mm 
and a horizontal axis length ranging from 8 to 9 mm, 
with the apex (named umbo and assumed as reference 
point) facing the medial side [22]. 

The thickness of the TM is a critical parameter for 
modeling, since to date accurate detailed experimental 
measurements of the thickness distribution are not 
available and since it presents a high inter-subject 
variability in terms of absolute values. Although 
there is a general agreement in estimating a non-
uniform thickness of the membrane, in modeling an 
approximated single  thickness value, ranging from 30 
to 150 µm (with an average value of 74 µm) for the 
human TM is usually adopted [4], [7] and [22]. 

The tissue of the TM is made of a multilayer 
structure with fibers oriented mainly in the radial 
and circumferential directions. Two main regions are 
usually distinguished a “Pars Tensa” (PT) and a “Pars 
Flaccida” (PF), having different size and mechanical 
properties.

The TM is connected on the medial side to 
the ossicular chain, while it is anchored along its 
circumference to the wall of the tympanic cavity by 
means of a fibro-cartilaginous ring (annular ligament).

2.2  Simplified Models of the Auditory Canal and Tympanic 
Membrane

2.2.1  Geometry and Material Properties of the AC

Two simplified models of the auditory canal were 
used that approximate the anatomy of an ear canal. 
A 22 mm long cylindrical and a pseudo-anatomical 
geometries (shown in Fig. 3) of a human auditory 
canal were adopted and imported into ANSYS® 
environment for the FEM analysis. The pseudo-
anatomical geometry (including an air portion in the 
auricle) was extracted, through a semi-automatic 
segmentation algorithm, from computed tomography 
data provided by the Department of Otolaryngology II 
of Cisanello Hospital in Pisa. Size and morphology of 
the AC reconstructed geometry were in the literature 
range for adult healthy subjects (length of about 28 
mm, average diameter of about 9 mm) [4].
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As regards the material properties, for the fluid 
contained in the AC the air medium was assumed 
as a compressible, inviscid fluid with uniform mean 
pressure and density; a 1.225 kg/m3 density value and 
a 340 m/s speed of sound value were, thus, adopted. 
The damping was not considered in this evaluation 
study.

The AC bony wall was simulated with clamped 
boundary conditions and a distributed uniform 
harmonic sound pressure load of 90 dB SPL 
(corresponding to 0.632 Pa) was applied at the inlet of 
the AC while the outlet was not constrained.

2.2.2  Mesh Definition for the AC Model

Tetrahedral elements were employed for the 
cylindrical and the pseudo-anatomical models (Fig. 
3), as it is typically adopted for complex biological 
geometries. 

The size of the elements was set by means of a 
convergence criterion based on the value of the first 
natural frequencies up to 20 kHz; the percent relative 
error vs. the logarithm of number of DoFs was 
estimated (variation less than 1%) [11].

a) 

b) 
Fig. 3.  a) Cylindrical and b) anatomical geometries and mesh of a 

human auditory canal

2.2.3  Tympanic Membrane Model

The TM was included in the model with the aim of 
accounting for the fluid-structure interaction. 

Although the TM has a peculiar shape (See 
Section 2.1), a flat circular geometry was adopted 
with the aim of facilitating the definition of the 
fluid-structure interface. A 0.074 mm thickness was 
adopted, deduced from [4].

An isotropic material model with Young’s 
modulus of 20 MPa was considered [1]. The Poisson’s 
ratio was set equal to 0.3; density was assumed equal 
to 1.2×103 kg/m3. 

Triangular shell elements with three nodes were 
used for the TM, when included. 

As concerns the boundary conditions, the TM 
was fully clamped at the periphery, i.e. the annular 
ligament was not considered, as well as the ossicular 
chain.

2.3  Implemented Methods

The implementation and comparison of the methods 
was carried out in Mathematica® environment on the 
AC approximated geometries. 

Firstly, the GFEM implementation required the 
definition of elements and patches and the setting of 
the wavenumber.

The partition of unity φi, and the shape functions 
Nk were chosen as the linear shape functions for the 
brick element with eight nodes of the standard FEM. 

In this paper special plane wave functions, Wj
i( ) , 

were implemented, whose more general expression is:

 W ej
i i( ) · ,= k r  (12)

where r is the position vector and k the wave vector. 
The unit vectors of the propagation directions of 

the plane-wave functions, in the 3D problems, were 
selected based on a priori knowledge of the solution 
or following the optimized “spherical covering” 
logic, borrowed from another method (e.g. ultra weak 
variational formulation, UWVF) [14]. The optimized 
“spherical covering” logic identifies n points on an 
imaginary sphere, centered in each patch node, so 
that the maximum distance of each node belonging 
to the sphere from the nearest of the n considered 
points is minimized. Such a criterion allows obtaining 
a direction distribution as homogeneous as possible. 
In the present study, n was chosen in the 4 to 124 
range due to requirements of computational cost and 
the same number of directions was assigned to each 
vertex of the patches, although the method requires 
neither an equally spaced distribution of directions nor 
an equal number of DoFs at each node. 

The GFEM method was implemented for the 
simulation of the fluid domain while the FEM method 
was implemented, in Mathematica® as well, for the 
simulation of the structural domain (limited to the 
TM), when included. 

The ANSYS® FLUID30 and SHELL63 (Discrete 
Kirchoff element, DKT) formulations were adopted 
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and implemented for the fluid and structural elements, 
respectively. The ANSYS® FLUID30 element 
formulation was selected as suitable for fluid/structure 
interaction problems and sound wave propagation 
applications. The element has a brick shape with 
eight corner nodes and four DoFs per node: three 
displacements (only at nodes on the interface) and 
pressure. The element adopts linear shape functions 
without extra shape functions, and a standard Gaussian 
quadrature for bricks (2×2×2 points).

For the comparison and validation of the 
generalized method, the standard FEM solution at 
different levels of mesh refinement obtained with the 
commercial code ANSYS®, was used as a reference. 

2.4  Comparison Tests

2.4.1  Modal and Harmonic Analyses on the AC Models 

Numerical free-free or constrained modal and 
harmonic analyses were carried out on the models, 
intending as constrained and free-free conditions when 
sound pressure load is applied or not, respectively, 
at the AC inlet. Pressure distribution in the AC was 
evaluated as main result of the harmonic analysis.

In addition to a check on eigenfrequencies in 
a specific frequency range ([20 Hz to 20 kHz]), the 
modal shape correlation was quantified by the modal 
assurance criterion (MAC) [23]. MAC results are 
usually represented as a square matrix, correlating 
the reference modes (FEM, test, theory etc.) to 
verification modes. It assumes a nearly zero value in 
the presence of incompatible mode shapes, a unitary 
value in case of perfect correlation and intermediate 
values in case of partial correlation.

2.4.2  FSI of Auditory Canal and Tympanic Membrane

Harmonic analyses were also carried out on the 
cylindrical geometry with circular membrane 
accounting for the fluid-structure interaction. The 
cylindrical geometry was preferred since it allows a 
simple definition of interfaces for the fluid-structure 
formulation.

The material properties and the boundary 
conditions of the AC, except for the outlet, were set as 
previously described.

The harmonic analysis on the implemented 
models provides the distribution of pressure and 
normal displacement in the fluid and structural 
domain, respectively (coupled by FSI). 

3  RESULTS

3.1  Comparison of Methods on the AC Model

In order to compare the two finite element 
formulations, free-free and constrained modal 
analyses were performed on the simplified geometries 
(Fig. 3) of the fluid domain. Eigenfrequencies in the 
20 Hz to 20 kHz frequency range (typically the first 
three in the pseudo-anatomical case) were compared 
and mode shapes correlated, using the MAC matrix.

The modal frequencies obtained in the free-free 
and constrained modal analysis with FEM and GFEM 
in the cylindrical and pseudo-anatomical geometries 
are reported and compared in Table 1. 

Table 1.  First three modal frequencies; the results are shown 
for a), b) cylindrical geometries; and for c), d) pseudo-anatomical 
geometries;a), c) for the free-free modal analysis; b), d) for the 
constrained modal analysis

f [Hz] 1° 2° 3°

a) FEM
GFEM
error [%]

7724
6648

14

15489
13880

10

23257
24097
-3.6

b) FEM
GFEM
error [%]

3864
3670

5

11601
11269

2.8

19367
19832
-2.4

c) FEM
GFEM
error [%]

6616
5587

15

12022
11960

0.5

15258
13345
12.5

d) FEM
GFEM
error [%]

3961
3330

16

11103
11229
-1.1

17119
17677
-3.2

It is worth noting that the modal frequencies 
obtained with the pseudo-anatomical geometry are 
in agreement as order of magnitude with the three 
resonance frequencies in the audible range (3176, 
9528 and 15880 Hz) inherent to the external auditory 
canal, depending on its morphology and length, 
reported in [24]. Moreover, in the literature the first 
natural frequency inherent to the auditory canal is 
often identified in the 3 to 4 kHz range [2] and [24] 
confirming the estimated value. Finally, the results 
obtained by the two numerical approaches appear to 
differ majorly at low frequency where standard FEM 
is considered reliable and convenient while they 
are comparable at higher frequencies where GFEM 
should become more advantageous.

The comparison of the mode shapes was carried 
out in Mathematica® environment by importing the 
results obtained in the different software environments 
for the proposed methodologies. Fig. 4 shows, for 
the cylindrical (a, b) and for the pseudo-anatomical 
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geometry (c, d), for the free-free (a, c) and constrained 
(b, d) modal analysis respectively, the matrix 
representations of the modal shape correlation of the 
two methods, for an equal number of nodes.

The maximum/minimum values on the 
MAC matrix diagonal as well as the out of diagonal 
maximum values are shown in Fig. 4 for the four 
above mentioned cases.

a)                              b)

c)                              d)

Fig. 4.  Modal shape correlation by MAC; the results are shown for 
the a), b) cylindrical and c), d) pseudo-anatomical geometries, for 

the free-free a), c) and constrained b), d) modal analysis

All cases show consistency in the first three 
natural frequencies obtained by the various 
methodologies, less in the mode shapes. 

As an example of the harmonic analysis results, 
the pressure distribution at 10 kHz in the pseudo-
anatomical model of the AC is shown in Fig. 5. 

The GFEM results obtained with a coarse element 
mesh (144 nodes, 288 DoFs) are compared with the  
ANSYS® FEM results at equal and refined (3216 
nodes, 3216 DoFs) mesh. The TM side is indicated 
in the figures. The GFEM and FEM harmonic results, 
in the audible frequency range agree within tight 
tolerances. 

The GFEM is more expensive from the 
computational point of view, since GFEM presents 
the difficulty of calculation in the complex field 
and entails problems of ill-conditioning and linear 
dependence in the phase of construction of the 
element matrices, for which it often requires heavy 
integration techniques. However, with respect to 
alternative methods of the literature, GFEM presents 

the advantage of keeping the standard FEM mesh, 
even with tetrahedral elements, with nodes belonging 
to the element boundary. 

a) 

b) 

c) 
Fig. 5.  Harmonic analysis results at 10 kHz: pressure distribution 
in the pseudo-anatomical geometry with a) GFEM (coarse mesh) 

and b) coarse mesh, and c) FEM refined mesh

In conclusion, FEM is more suitable for outer ear 
simulations in the 20 Hz to 20 kHz frequency range. 
Moreover it is available in commercial codes. 

However, further investigations elucidate that the 
GFEM can be more suitable for other applications 
involving higher frequencies (e.g. a 22 mm long 
cylindrical model at 100 kHz) or higher characteristic 
dimensions of the problem (e.g. a scaled/homothetic 
22 cm long cylindrical model, at 10 kHz). The results 
of these further simulations are shown in Figs. 6 
and 7, respectively, for different mesh density. The 
longitudinal section of the cylinder, instead of the 
cylindrical surface, is plotted in Figs. 6a and 7a.

As one can see, the results of Fig. 6a are 
comparable to those of Fig. 6c which represents the 
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FEM reference solution, obtained with a considerably 
higher number of degrees of freedom. Then, if Fig. 
6a is compared with Fig. 6b, obtained with an equal 
number of degrees of freedom, the differences and the 
enhancement are evident. The same observations hold 
for Fig. 7.

The use of the implemented generalized element 
formulations can be convenient, especially as 
frequency increases (and therefore the wave number) 
because it allows to achieve, with a coarse mesh 
(which does not satisfy the rule of thumb of ten nodes 
per wavelength conventionally accepted for standard 
FEM), an accuracy comparable to that obtained with a 
fine mesh in standard FEM formulations.

These first indications suggest that the integration 
of these advanced techniques in a FE model of the ear 
could be useful if, for example, the whole head were 
included or if the ultra-sound field were investigated.

3.2  Comparison of Methods on the FSI Problem

Concerning the simulation of the fluid- structure 
problem by the combination of techniques GFEM and 
FEM for the fluid and structural domains, respectively, 
the distributions of pressure inside the AC and TM 
displacement at 200 Hz are compared with the results 
obtained with standard FEM in ANSYS® with a 
coarse and refined mesh, in Figs. 8 and 9, respectively.

As highlighted in the previous section, the 
results indicate that GFEM and FEM results, in the 
investigated frequency range, are in agreement within 
acceptable tolerances. 

4  CONCLUSIONS

In this work some modeling aspects of the human ear 
canal and tympanic membrane were examined also 

a) 

b) 

c) 
Fig. 6.  Harmonic analysis in a cylindrical model (22 mm long) 
at 100 kHz with: a) GFEM (longitudinal section) and (b, c) FEM 
varying the mesh density: a) 137 nodes and 166 DoFs, b) 137 

nodes and DoFs, c) 28487 nodes and DoFs

a) 

b) 

c) 
Fig. 7.  Harmonic analysis in a cylindrical model (scaled 22 cm 

long cylinder) at 10 kHz with: a) GFEM (longitudinal section) and 
b), c) FEM varying the mesh density: a) 137 nodes and 166 DoFs, 

b) 137 nodes and DoFs, c) 28487 nodes and DoFs
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considering the fluid-structural coupling that occurs 
between these two components of the acoustic path. 
Standard and generalized finite element models were 
implemented, tested and compared.

GFEM and FEM modal and harmonic results 
in the 20 Hz to 20 kHz range agree within tight 
tolerances in all tested cases. Thus, FEM appears 
more suitable for simulations in the audible frequency 
range, assuming the typical ear size of a human being, 
due to its relatively limited computational burden and 
the availability of commercial codes.

However, these preliminary results show also 
that the generalized finite element formulation can be 
convenient in short-wave acoustic problems with the 
aim of simulating the auditory apparatus including the 
whole head or investigating the ultra-sound field, i.e. 
when the wave length is shorter than the characteristic 
dimension of the problem.

The analysis results concerning the natural 
frequencies of the auditory canal are consistent with 
some published studies [2] and [24] which identify 
three modal frequencies in the audible range with the 
first modal one included in the 3 to 4 kHz range.

As future developments, the implementation and 
integration of this method in a commercial code can 
be planned. The application of GFEM to a complete 
ear model including bone conduction in the head can 
be considered. Moreover GFEM can be proposed for 
convenient application to other fields (e.g. ultrasounds 
in medicine).
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Fig. 8.  Harmonic analysis results at 200 Hz in the FSI problem: 
pressure distribution in the auditory canal with: a) GFEM (coarse 
mesh, longitudinal section) and b) FEM (coarse mesh), c) FEM 

(refined mesh

a) 

b) 

c) 
Fig. 9.  Harmonic analysis results at 200 Hz in the FSI problem: 

normal displacement distribution in the tympanic membrane with: 
a) GFEM and b), FEM (coarse mesh), c) FEM (refined mesh)
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