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Abstract

A 3-connected quadrangulation of a closed surface is said to be K%-irreducible if no
face- or cube-contraction preserves simplicity and 3-connectedness. In this paper, we prove
that a K5-irreducible quadrangulation of a closed surface except the sphere and the projec-
tive plane is either (i) irreducible or (ii) obtained from an irreducible quadrangulation H
by applying 4-cycle additions to Fy C F(H ) where F(H) stands for the set of faces of H.
We also determine KC4-irreducible quadrangulations of the sphere and the projective plane.
These results imply new generating theorems of 3-connected quadrangulations of closed
surfaces.
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1 Introduction

In this paper, we only consider simple graphs which have no loops and no multiple edges.
We denote the vertex set and the edge set of a graph G by V(G) and E(G), respectively.
We say that S C V(G) is a cut of G if G — S is disconnected. In particular, .S is called a
k-cut if S is a cut with |S| = k. A cycle C of G is said to be separating if V(C') is a cut.
Similarly, a simple closed curve  on a closed surface F'2 is said to be separating if F? —
is disconnected.

A quadrangulation G of a closed surface F'? is a simple graph cellularily embedded on
the surface so that each face is quadrilateral; thus, a 2-path on the sphere is not a quadran-
gulation. We denote the set of faces of G by F'(G) throughout the paper. For quadrangu-
lations we consider applying three reductions, called a face-contraction, a 4-cycle removal
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Figure 1: Reductions for quadrangulations.

and a cube-contraction, as shown in Figure 1. (Precise definitions of these reductions will
be given in the next section.) The corresponding inverse operations are called a vertex-
splitting, a 4-cycle addition and a cube-splitting, respectively. In particular, the operations
of a face-contraction and a 4-cycle removal were first introduced by Batagelj [1]

Irreducible quadrangulations, such that no face-contraction is applicable without mak-
ing a loop or multiple edges, on a fixed closed surface with low genus were obtained in
earlier papers. In [9], it was proven that a 4-cycle is the unique irreducible quadrangulation
of the sphere, and that there exist precisely two irreducible quadrangulations of the projec-
tive plane shown in Figure 2, where Q1 and Q% are the unique quadrangular embeddings
of K4 and K3 4 on the projective plane, respectively. The irreducible quadrangulations of
the torus and the Klein bottle have also been determined in [6, 5]. In [8], it was proven
that for any closed surface F? there exist only finitely many irreducible quadrangulations
of F2, up to homeomorphism.

A 3-connected quadrangulation G of a closed surface F? is said to be KCs-irreducible if
any of a face-contraction and a 4-cycle removal breaks simplicity or 3-connectedness of G.
The following theorem is the starting point of the study of 3-connected quadrangulations.
(The definitions of a pseudo double wheel, a Mobius wheel and a double cube are given in
the next section.)

Theorem 1.1 (Brinkmann et al.[2]). Any Ks-irreducible quadrangulation of the sphere is
isomorphic to a pseudo double wheel.

Observe that a 3-connected quadrangulation of the sphere corresponds to a 4-regular
3-connected graph on the same surface by taking its dual. Broersma et al. [3] considered
the same problem of the dual version with weaker conditions than those of Brinkmann. For
the projective plane, Nakamoto proved the following.

Theorem 1.2 (Nakamoto[7]). Any Ks-irreducible quadrangulation of the projective plane
is isomorphic to either a Mébius wheel or Q%.

Furthermore, the results in [4] imply the following.
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Theorem 1.3 (Nagashima et al.[4]). Let G be a quadrangulation of a closed surface other
than the sphere and the projective plane. Then G is Ks-irreducible if and only if G is
irreducible.

Qp Qp

Figure 2: Irreducible quadrangulations on the projective plane.

In this paper, we determine other minimal subsets of 3-connected quadrangulations by
replacing 4-cycle removals with cube-contractions. A 3-connected quadrangulation G is
said to be K%-irreducible if any of a face-contraction and a cube-contraction breaks the
simplicity or the 3-connectedness of G. The followings are our main results in the paper.
In these statements, F'(H ) stands for the set of faces of a quadrangulation H.

Theorem 1.4. Let G be a Kj-irreducible quadrangulation of a closed surface F? other
than the sphere and the projective plane. Then, G is either (i) irreducible or (ii) obtained
from an irreducible quadrangulation H by applying 4-cycle additions to Fy C F(H).

Theorem 1.5. Let G be a Kj-irreducible quadrangulation of the sphere. Then, G is either
(i) a pseudo double wheel or (ii) a double cube.

Theorem 1.6. Ler G be a Kj-irreducible quadrangulation of the projective plane. Then,
G is (i) a Mobius wheel, (ii) Q% or (iii) obtained from QL (resp. Q%) by applying 4-cycle
additions to Fy C F(QL) (resp. Fy C F(Q%)).

Corollary 1.7. For any closed surface F?, there exist only finitely many quadrangulations
which are KC4-irreducible but are not Ks-irreducible, up to homeomorphism.

This paper is organized as follows. In the next section, we define the reductions used
in this paper and introduce typical 3-connected quadrangulations on the sphere and the
projective plane called a pseudo double wheel and a Mobius wheel, respectively. In Section
3, we develop some theoretical tools and prove Theorem 1.4. The last section is devoted to
prove the planar case and the projective-planar case individually, using some figures.

2 Reductions and typical quadrangulations

Let G be a quadrangulation of a closed surface F'? and let f be a face of G bounded by
a cycle vgv1vv3. (We also use the notation like f = vyviv9v3 in this paper.) The face-
contraction of f at {vo, v2} in G consists of identification of vy and vg, and replacement of
the resulting multiple edges {vgvy, vav; } and {vgvs, vovs } with two single edges, respec-
tively. In the resulting graph, let [vovs] denote the vertex arisen by the identification of vy
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and vy (see the left-hand side of Figure 1). Similarly, we define the face-contraction of f
at {v, v3}. The inverse operation of a face-contraction is called a vertex-splitting. We say
that f is contractible at {vg, v2} in G, if the graph obtained from the face-contraction of f
at {vg, v2} is simple. Assume in addition that G is 3-connected. A face f of G is said to be
3-contractible at {vg,v2} if f is contractible at {vg, v2} and the graph obtained from the
face-contraction is still 3-connected.

Let f = wovivavs be a face of a quadrangulation G of F2. A 4-cycle addition to f
consists of inserting a 4-cycle C' = wugujusug inside f in G and joining v; and wu; for
i = 0,1,2,3. The inverse operation of a 4-cycle addition is called a 4-cycle removal (of
(), as shown in the center of Figure 1. We call the subgraph () isomorphic to a cube with
eight vertices u;, v; for ¢ = 0,1, 2,3 an attached cube. For an attached cube (), we call
the above 4-cycle C' an inner 4-cycle of . In addition, we denote JQ) = vgvivovs. Let
G be a 3-connected quadrangulation of a closed surface having an attached cube ). We
say that an inner 4-cycle C of @ (or easily an attached cube Q) is removable if the graph
obtained from G by applying 4-cycle removal C preserves the 3-connectedness. (Observe
that a 4-cycle removable never destroy simplicity of G.)

As mentioned in the introduction, there exist some results of 3-connected quadrangu-
lations (or quadrangulations with minimum degree 3) on surfaces. In those results, the
4-cycle removal is necessary by the following reason: Let G be the graph obtained from
a 3-connected quadrangulation G of a closed surface by applying 4-cycle additions to all
faces of GG. Clearly G is 3-connected, but we cannot apply any face-contraction to G with-
out creating a vertex of degree 2.

Our third reduction of quadrangulations of closed surfaces is defined as a sequence of
the above two reductions. Assume that a quadrangulation G has an attached cube ) with
an inner 4-cycle C' and with 0Q = vovivavs. A cube-contraction of Q at {vg,vs} in
G consists of a 4-cycle removal of C' followed by a face-contraction at {vg, v2} (see the
right-hand side of Figure 1). The inverse operation of a cube-contraction is called a cube-
splitting. We say that an attached cube Q) is contractible if the graph obtained from G by
applying a cube-contraction of () preserves the simplicity and the 3-connectedness. One
might suspect that if an attached cube () is contractible then () is removable (and the face
that appeared by the removal is contractible). However, this is not true in general since a
4-cycle removal might break the 3-connectedness of the graph.

Figure 3: Wy and W5.

We need to describe two special types of embeddings. Firstly, embed a 2k-cycle C' =
VoUpVU1Uy - . . Vg—1uk—1 (k > 3) into the sphere, put a vertex x on one side and a vertex y on
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the other side and add edges xv; and yu; fors = 0, ..., k—1. The resulting quadrangulation
of the sphere with 2k + 2 vertices is said to be a pseudo double wheel and denoted by Wy
(see the left-hand side of Figure 3). The smallest pseudo double wheel is Wy, which is
isomorphic to a cube, when the graphs are assumed to be 3-connected. The cycle C' of
length 2k is called the rim of Wy;,. We call a quadrangulation of the sphere obtained from
W by a single 4-cycle addition a double cube, which is isomorphic to Cy X P5.

Secondly, embed a (2k — 1)-cycle C' = vgvy . .. vag—2 (k > 2) into the projective plane
so that the tubular neighborhood of C' forms a Mobius band. Next, put a vertex x on the
center of the unique face of the embedding and join x to v; for all ¢ so that the resulting
graph is a quadrangulation. The resulting quadrangulation of the projective plane with 2k
vertices is said to be a Mobius wheel and denoted by ng_l (see the right-hand side of
Figure 3).

3 Lemmas to prove Theorem 1.4

The following lemma holds not only for quadrangulations but also for even embeddings of
closed surfaces F'2, that is, for graphs embedded on F'? with each face bounded by a cycle
of even length. Taking a dual of an even embedding and using the odd point theorem, we
can easily obtain this lemma.

Lemma 3.1. An even embedding of a closed surface has no separating closed walk of odd
length.

Let G be a quadrangulation of a closed surface F'? and let f = vyv,v2v3 be a face of G.
Then a pair {v;, v;12} is called a diagonal pair of f in G, where the subscripts are taken
modulo 4. A closed curve v on F? is said to be a diagonal k-curve for G if - passes only
through distinct k faces fo, ..., fr—1 and distinct k vertices xg, ..., z—1 of G such that
for each i, f; and f;;1 share x;, and that for each ¢, {x;_1, z;} forms a diagonal pair of f;
of GG, where the subscripts are taken modulo k.

Lemma 3.2. Let G be a quadrangulation of a closed surface F? with a 2-cut {x,y}. Then
there exists a separating diagonal 2-curve for G only through x and y.

Proof. Observe that every quadrangulation of any closed surface F'2 is 2-connected and ad-
mits no closed curve on F? crossing G' at most once. Thus there exists a surface separating
simple closed curve y on F' crossing only  and y, since {z,y} is a cut of G.

We shall show that «y is a diagonal 2-curve. Suppose that  passes through two faces
f1 and f5 meeting at two vertices x and y. If -y is not a diagonal 2-curve, then x and y are
adjacent on Jf; or Ofs. Since G has no multiple edges between x and y, and since {z, y}
is a 2-cut of GG, we may suppose that = and y are adjacent in J f1, but not in 0 fo. Here we
can take a separating 3-cycle of GG along . This contradicts Lemma 3.1. O

Lemma 3.3. Let G be a 3-connected quadrangulation of a closed surface F?, and let f =
voU1U2v3 be a face of G. If the face-contraction of f at {vg,ve} breaks 3-connectedness
of the graph but preserves simplicity, then G has a separating diagonal 3-curve passing
through vy, vy and another vertex x € V(G) — {vg, v1,v2, v3}.

Proof. Let G’ be the quadrangulation of 2 obtained from G by the face-contraction of f at
{vg, va}. Since G’ has connectivity 2, G’ has a 2-cut. By Lemma 3.2, G’ has a separating
diagonal 2-curve «/ passing through two vertices of the 2-cut. Clearly, one of the two
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vertices must be [vgvz] of G, which is the image of vy and v by the face-contraction of
f. (Otherwise, G would not be 3-connected, a contradiction.) Let x be a vertex of G’ on
~" other than [vgv2]. Note that 2 is not a neighbor of [vgvs] in G’. Now apply the vertex-
splitting of [vgvz] to G to recover G. Then a diagonal 3-curve for G passing through only
vg, U2 and x arises from +’ for G. O

The next lemma plays an important role in a later argument.

Lemma 3.4. Let G be a 3-connected quadrangulation on a closed surface F2. If G has a
separating 4-cycle C = xox1x2x3 and a face f of G such that

(i) one of the diagonal pairs of f is {x;, x;12} for some i, and

(ii) f has a separating diagonal 3-curve =y intersecting C only at x; and x; o trans-
versely,

then there exists a 3-contractible face in G.

Proof. Suppose that G has a separating 4-cycle C' = xgx1x2x3 and a face f bounded by
azxicxs. Since C is separating, G has two subgraphs Gr and G, suchthat GR UG = G
and Ggr N G = C. Suppose that f is contained in G . Furthermore, we assume that G i
contains as few vertices of G as possible.

Since C'is separating, we have f # C. By (ii), f has a separating diagonal 3-curve
~ through z1, 23 and some vertex x. Note that z € V(Gr) — V(C) by the condition (ii)
in the lemma. Now assume that f is not 3-contractible at {a,c}. Observe that -y (or the
3-cut {x1,x,x3}) separates a from c. Further, G does not have both of edges ax and cz
since 0f # C. Therefore, there is no path of G of length at most 2 joining a and ¢ other
than az;c and azzc. Moreover, if {a, ¢} N{zg, z2} = 0, then f has no separating diagonal
3-curve joining a and c. This contradicts our assumption by Lemma 3.3 and so we may
suppose that a = xg and ¢ # xo, and f has a separating diagonal 3-curve, say 7/, through
a (= xp) and c.

Since ~' separates 1 and x3 and since x2 is a common neighbors of x1 and z3, v/
must pass through o, and hence we can find a face f’ of Gg one of whose diagonal pair
is {¢,z2}. Let C’ be the 4-cycle zyxzox3¢ of G. Since deg(c) > 3, we have df’ # C’,
and hence C' is a separating 4-cycle in G g such that C’ # C'. Moreover, " and C” cross
transversely at o and c. Therefore, C’ and f’ are a 4-cycle and a face which satisfy the
assumption of the lemma, and moreover, C’ can cut a strictly smaller graph than G g from
. Therefore, this contradicts the choice of C. O

Lemma 3.5. Let G be a 3-connected quadrangulation of a closed surface F?. If G is
Ks-irreducible then G is Kk-irreducible.

Proof. Let G be a 3-connected quadrangulation of a closed surface. Assume that G is not
ICg-irreducible. Then, G has either a 3-contractible face or a contractible cube. If G has
a 3-contractible face, then G is not Ks-irreducible. Therefore, we suppose that G has no
3-contractible face but has a contractible cube () with an inner 4-cycle C' in the following
argument.

Now, we apply a 4-cycle removal of C' to GG and let G’ be the resulting quadrangulation.
Let f/ = OQ be the new face of G’ into which C was inserted. If G’ is 3-connected, G is
not KCs-irreducible by the definition, and we are done. Therefore, we assume that G’ is not
3-connected. By Lemma 3.2, there is a diagonal 2-curve ~y passing through f’ and another
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face f”'; otherwise, G would have a 2-cut, contrary to our assumption. Note that f is also
aface in G. Now 9Q and f”' satisfy the conditions of Lemma 3.4, and hence there exists a
3-contractible face in G. However, this contradicts the above assumption. Thus, the lemma
follows. ]

In the following argument, we denote the set of Kz-irreducible (resp. Kj-irreducible)
quadrangulations of a closed surface F'2 by K3Z(F?) (resp. K4Z(F?)).

Lemma 3.6. Let G be a 3-connected quadrangulation of F2. If G € K4Z(F?)\ K3Z(F?),
then G has an attached cube Q) such that the graph obtained from G by applying a 4-cycle
removal of Q is in K5T(F?).

Proof. Let G be in K4Z(F?)\ K3Z(F?). By the definition, G has an attached cube @) with
an inner 4-cycle C' which is removable, but is not contractible. We apply a 4-cycle removal
of C' and let G~ be the resulting quadrangulation. We denote the new face of G~ by f,
where f~ = 0Q.

First, we confirm that G~ is 3-connected. Otherwise, G~ has a 2-cut and has a separat-
ing diagonal 2-curve  on 2 by Lemma 3.2. If v does not pass through f~ then v would
also be a diagonal 2-curve in G, a contradiction. Let fj be the other face passed by ~. Here,
fo and 9Q in G satisfy the conditions in Lemma 3.4 and there exists a 3-contractible face,
contrary to G being K4-irreducible.

By way of contradiction, assume that G~ is not in K4Z(F?). That is, G~ has either
(a) a 3-contractible face or (b) a contractible cube. First, we assume (a) and let f be a
3-contractible face in G~. If f~ = f, the attached cube ) in G would be contractible,
contrary to G being K5-irreducible. Thus, suppose f~ # f. In this case, let G’ be the
resulting 3-connected quadrangulation after applying a face-contraction of f in G~. Since
any 4-cycle addition doesn’t break the 3-connectedness of a quadrangulation, the graph
obtained from G’ by a 4-cycle addition to f~ is clearly 3-connected. This means that f is
also 3-contractible in (G, a contradiction.

Next, suppose (b) and let Q' be such a contractible cube with Q" = vovivavs. If Q'
does not contain f~ as one of its five faces, @’ is also contractible in G and G would not
be Kj-irreducible by the similar argument as above. Thus, we assume that @)’ contains
f~. Let C = upujugug denotes the inner 4-cycle of Q' where u;v; € E(Q') for i =
0,1,2,3. We consider the following two cases up to symmetry; (b-1) f~ = C and (b-
2) f~ = wouguivy. At first, suppose (b-1). Here, we apply a face-contraction of f; =
voupu1v1 at {ug,v1} to G. If the above face-contraction breaks the 3-connectedness of G,
there exists a face fo = vizwvsy in the outside of Q' by Lemma 3.3; note that it clearly
preserves the simplicity of the graph since v; # vs. Now, a separating diagonal 3-curve
passing through {v1, ug, v3} satisfies the conditions of Lemma 3.4 and hence G is not K-
irreducible, contrary to our assumption. In fact, an analogous proof is valid for (b-2) if we
try to apply a face contraction at {v1, u2} to G. Therefore the lemma follows. 0

Lemma 3.7. Let G be a 3-connected quadrangulation of a closed surface F2. If G €
KLZ(F?) \ K3Z(F?), then G can be obtained from H € K3Z(F?) by applying 4-cycle
additions 1o Fy C F(H).

Proof. Assume that G € K4Z(F?) \ K3Z(F?). By the previous lemma, there exists a
sequence of KC5-irreducible quadrangulations G = Gy, Gy, . .., Gy, such that G;41 is ob-
tained from G; by a single 4-cycle removal of C;, where G, € K3Z(F?). (Since the
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number of vertices of G is finite, G € K3Z(F?).) Let Q; denote an attached cube in G;
with an inner 4-cycle C;.

For a contradiction, we assume that there exists [ € {0,...,k — 2} such that G; is
obtained from G;;1 by a 4-cycle addition which is put on a face not of F(Gy); this {
should be maximal. This implies that C; is put on a face of ;1 as one of its five faces.
Then the same argument as the proof of Lemma 3.6 holds and hence G; would not be K}-
irreducible, contrary to our assumption. Thus for each ¢ € {0,...,k — 1}, G; is obtained
from G, 41 by a 4-cycle addition which is put on a face of F'(Gy,). O

Proof of Theorem 1.4. By Lemma 3.5, we have K3Z(F?) C K4Z(F?). Furthermore, by
Theorem 1.3 and Lemma 3.7, we obtain (i) and (ii) in the statement. Thus, we have got a
conclusion. Il

4 Spherical and projective-planar cases

In this section, we discuss the spherical case and the projective-planar case.
Proof of Theorem 1.5. Let G be a Kj-irreducible quadrangulation of the sphere. We have
K3Z(S?) C K5Z(S?) by Lemma 3.5, where S? stands for the sphere.

If G is KCs-irreducible, then G is isomorphic to a pseudo double wheel by Theorem 1.1.
If G is in K4Z(S?) \ K3Z(S?), G can be obtained from a pseudo double wheel Way
(k > 3) by some 4-cycle additions to faces of Wy by Lemma 3.7. However if k& > 4,
G has a 3-contractible face (or a contractible cube), as shown in the first operation in
Figure 4. (For example, the entire Figure 4 presents a sequence of a face-contraction and
a cube-contraction which deforms Wy with an attached cube () into W, preserving the
3-connectedness.)

W with Q W

Figure 4: Wg with an attached cube () deformed into W.

Therefore, we only consider the case of £k = 3 in the following argument. Assume
that G is obtained from Wy by at least two 4-cycle additions to faces of Wy. Similarly
to the above argument, G would have a 3-contractible face (or a contractible cube) , as
in Figure 5, contrary to G being Kj-irreducible; note that it suffices to discuss these two
cases, up to symmetry. Therefore, we conclude that G is obtained from Wy by exactly
one 4-cycle addition. This is nothing but a double cube; observe that a double cube has no
3-contractible face and no contractible cube. U

To conclude with, we prove the projective-planar case.
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Figure 5: Wy with two attached cubes can be reduced.

Proof of Theorem 1.6. In this case, we use Mobius wheels Wk(k > 3) and Q% as base
graphs by Theorem 1.2.

First we consider the former case. Similarly to the previous proof (and see Figure 6),
we consider only a Mobius wheel W5 as a base to which we apply some 4-cycle additions.
However, W (= Q%) is isomorphic to the complete graph with four vertices, and hence it
is irreducible. This fact implies that every G obtained from Wi by applying at most three
4-cycle additions is Kj-irreducible since any face-contraction and any cube-contraction to
G destroys the simplicity of the graph, or results in a vertex of degree 2. From this case,
we obtain exactly three quadrangulations in K4Z(P?) \ K3Z(P?), up to homeomorphism,
where P? stands for the projective plane.

Ws5 with Q Wi

Figure 6: W5 with an attached cube @ deformed into Ws.

Similarly, as the latter case, we obtain the other ten quadrangulations in K5Z(P?) \
K3Z(P?) from Q%; consider all the way to put attached cubes into faces of Q%, up to
symmetry. As a result, we have |K5Z(P?) \ K3Z(P?)| = 13 in total. O
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