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Abstract

A 3-connected quadrangulation of a closed surface is said to be K′3-irreducible if no
face- or cube-contraction preserves simplicity and 3-connectedness. In this paper, we prove
that a K′3-irreducible quadrangulation of a closed surface except the sphere and the projec-
tive plane is either (i) irreducible or (ii) obtained from an irreducible quadrangulation H
by applying 4-cycle additions to F0 ⊆ F (H) where F (H) stands for the set of faces of H .
We also determine K′3-irreducible quadrangulations of the sphere and the projective plane.
These results imply new generating theorems of 3-connected quadrangulations of closed
surfaces.
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1 Introduction
In this paper, we only consider simple graphs which have no loops and no multiple edges.
We denote the vertex set and the edge set of a graph G by V (G) and E(G), respectively.
We say that S ⊂ V (G) is a cut of G if G − S is disconnected. In particular, S is called a
k-cut if S is a cut with |S| = k. A cycle C of G is said to be separating if V (C) is a cut.
Similarly, a simple closed curve γ on a closed surface F 2 is said to be separating if F 2−γ
is disconnected.

A quadrangulation G of a closed surface F 2 is a simple graph cellularily embedded on
the surface so that each face is quadrilateral; thus, a 2-path on the sphere is not a quadran-
gulation. We denote the set of faces of G by F (G) throughout the paper. For quadrangu-
lations we consider applying three reductions, called a face-contraction, a 4-cycle removal
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Figure 1: Reductions for quadrangulations.

and a cube-contraction, as shown in Figure 1. (Precise definitions of these reductions will
be given in the next section.) The corresponding inverse operations are called a vertex-
splitting, a 4-cycle addition and a cube-splitting, respectively. In particular, the operations
of a face-contraction and a 4-cycle removal were first introduced by Batagelj [1]

Irreducible quadrangulations, such that no face-contraction is applicable without mak-
ing a loop or multiple edges, on a fixed closed surface with low genus were obtained in
earlier papers. In [9], it was proven that a 4-cycle is the unique irreducible quadrangulation
of the sphere, and that there exist precisely two irreducible quadrangulations of the projec-
tive plane shown in Figure 2, where Q1

P and Q2
P are the unique quadrangular embeddings

of K4 and K3,4 on the projective plane, respectively. The irreducible quadrangulations of
the torus and the Klein bottle have also been determined in [6, 5]. In [8], it was proven
that for any closed surface F 2 there exist only finitely many irreducible quadrangulations
of F 2, up to homeomorphism.

A 3-connected quadrangulation G of a closed surface F 2 is said to be K3-irreducible if
any of a face-contraction and a 4-cycle removal breaks simplicity or 3-connectedness of G.
The following theorem is the starting point of the study of 3-connected quadrangulations.
(The definitions of a pseudo double wheel, a Möbius wheel and a double cube are given in
the next section.)

Theorem 1.1 (Brinkmann et al.[2]). Any K3-irreducible quadrangulation of the sphere is
isomorphic to a pseudo double wheel.

Observe that a 3-connected quadrangulation of the sphere corresponds to a 4-regular
3-connected graph on the same surface by taking its dual. Broersma et al. [3] considered
the same problem of the dual version with weaker conditions than those of Brinkmann. For
the projective plane, Nakamoto proved the following.

Theorem 1.2 (Nakamoto[7]). Any K3-irreducible quadrangulation of the projective plane
is isomorphic to either a Möbius wheel or Q2

P .

Furthermore, the results in [4] imply the following.
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Theorem 1.3 (Nagashima et al.[4]). Let G be a quadrangulation of a closed surface other
than the sphere and the projective plane. Then G is K3-irreducible if and only if G is
irreducible.

Q2
PQ1

P

1

Figure 2: Irreducible quadrangulations on the projective plane.

In this paper, we determine other minimal subsets of 3-connected quadrangulations by
replacing 4-cycle removals with cube-contractions. A 3-connected quadrangulation G is
said to be K′3-irreducible if any of a face-contraction and a cube-contraction breaks the
simplicity or the 3-connectedness of G. The followings are our main results in the paper.
In these statements, F (H) stands for the set of faces of a quadrangulation H .

Theorem 1.4. Let G be a K′3-irreducible quadrangulation of a closed surface F 2 other
than the sphere and the projective plane. Then, G is either (i) irreducible or (ii) obtained
from an irreducible quadrangulation H by applying 4-cycle additions to F0 ⊆ F (H).

Theorem 1.5. Let G be a K′3-irreducible quadrangulation of the sphere. Then, G is either
(i) a pseudo double wheel or (ii) a double cube.

Theorem 1.6. Let G be a K′3-irreducible quadrangulation of the projective plane. Then,
G is (i) a Möbius wheel, (ii) Q2

P or (iii) obtained from Q1
P (resp. Q2

P ) by applying 4-cycle
additions to F0 ⊆ F (Q1

P ) (resp. F0 ⊆ F (Q2
P )).

Corollary 1.7. For any closed surface F 2, there exist only finitely many quadrangulations
which are K′3-irreducible but are not K3-irreducible, up to homeomorphism.

This paper is organized as follows. In the next section, we define the reductions used
in this paper and introduce typical 3-connected quadrangulations on the sphere and the
projective plane called a pseudo double wheel and a Möbius wheel, respectively. In Section
3, we develop some theoretical tools and prove Theorem 1.4. The last section is devoted to
prove the planar case and the projective-planar case individually, using some figures.

2 Reductions and typical quadrangulations
Let G be a quadrangulation of a closed surface F 2 and let f be a face of G bounded by
a cycle v0v1v2v3. (We also use the notation like f = v0v1v2v3 in this paper.) The face-
contraction of f at {v0, v2} in G consists of identification of v0 and v2, and replacement of
the resulting multiple edges {v0v1, v2v1} and {v0v3, v2v3} with two single edges, respec-
tively. In the resulting graph, let [v0v2] denote the vertex arisen by the identification of v0
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and v2 (see the left-hand side of Figure 1). Similarly, we define the face-contraction of f
at {v1, v3}. The inverse operation of a face-contraction is called a vertex-splitting. We say
that f is contractible at {v0, v2} in G, if the graph obtained from the face-contraction of f
at {v0, v2} is simple. Assume in addition that G is 3-connected. A face f of G is said to be
3-contractible at {v0, v2} if f is contractible at {v0, v2} and the graph obtained from the
face-contraction is still 3-connected.

Let f = v0v1v2v3 be a face of a quadrangulation G of F 2. A 4-cycle addition to f
consists of inserting a 4-cycle C = u0u1u2u3 inside f in G and joining vi and ui for
i = 0, 1, 2, 3. The inverse operation of a 4-cycle addition is called a 4-cycle removal (of
C), as shown in the center of Figure 1. We call the subgraph Q isomorphic to a cube with
eight vertices ui, vi for i = 0, 1, 2, 3 an attached cube. For an attached cube Q, we call
the above 4-cycle C an inner 4-cycle of Q. In addition, we denote ∂Q = v0v1v2v3. Let
G be a 3-connected quadrangulation of a closed surface having an attached cube Q. We
say that an inner 4-cycle C of Q (or easily an attached cube Q) is removable if the graph
obtained from G by applying 4-cycle removal C preserves the 3-connectedness. (Observe
that a 4-cycle removable never destroy simplicity of G.)

As mentioned in the introduction, there exist some results of 3-connected quadrangu-
lations (or quadrangulations with minimum degree 3) on surfaces. In those results, the
4-cycle removal is necessary by the following reason: Let G̃ be the graph obtained from
a 3-connected quadrangulation G of a closed surface by applying 4-cycle additions to all
faces of G. Clearly G̃ is 3-connected, but we cannot apply any face-contraction to G̃ with-
out creating a vertex of degree 2.

Our third reduction of quadrangulations of closed surfaces is defined as a sequence of
the above two reductions. Assume that a quadrangulation G has an attached cube Q with
an inner 4-cycle C and with ∂Q = v0v1v2v3. A cube-contraction of Q at {v0, v2} in
G consists of a 4-cycle removal of C followed by a face-contraction at {v0, v2} (see the
right-hand side of Figure 1). The inverse operation of a cube-contraction is called a cube-
splitting. We say that an attached cube Q is contractible if the graph obtained from G by
applying a cube-contraction of Q preserves the simplicity and the 3-connectedness. One
might suspect that if an attached cube Q is contractible then Q is removable (and the face
that appeared by the removal is contractible). However, this is not true in general since a
4-cycle removal might break the 3-connectedness of the graph.
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Figure 3: W8 and W̃5.

We need to describe two special types of embeddings. Firstly, embed a 2k-cycle C =
v0u0v1u1 . . . vk−1uk−1 (k ≥ 3) into the sphere, put a vertex x on one side and a vertex y on
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the other side and add edges xvi and yui for i = 0, . . . , k−1. The resulting quadrangulation
of the sphere with 2k+2 vertices is said to be a pseudo double wheel and denoted by W2k

(see the left-hand side of Figure 3). The smallest pseudo double wheel is W6, which is
isomorphic to a cube, when the graphs are assumed to be 3-connected. The cycle C of
length 2k is called the rim of W2k. We call a quadrangulation of the sphere obtained from
W6 by a single 4-cycle addition a double cube, which is isomorphic to C4 × P2.

Secondly, embed a (2k−1)-cycle C = v0v1 . . . v2k−2 (k ≥ 2) into the projective plane
so that the tubular neighborhood of C forms a Möbius band. Next, put a vertex x on the
center of the unique face of the embedding and join x to vi for all i so that the resulting
graph is a quadrangulation. The resulting quadrangulation of the projective plane with 2k
vertices is said to be a Möbius wheel and denoted by W̃2k−1 (see the right-hand side of
Figure 3).

3 Lemmas to prove Theorem 1.4
The following lemma holds not only for quadrangulations but also for even embeddings of
closed surfaces F 2, that is, for graphs embedded on F 2 with each face bounded by a cycle
of even length. Taking a dual of an even embedding and using the odd point theorem, we
can easily obtain this lemma.

Lemma 3.1. An even embedding of a closed surface has no separating closed walk of odd
length.

LetG be a quadrangulation of a closed surface F 2 and let f = v0v1v2v3 be a face ofG.
Then a pair {vi, vi+2} is called a diagonal pair of f in G, where the subscripts are taken
modulo 4. A closed curve γ on F 2 is said to be a diagonal k-curve for G if γ passes only
through distinct k faces f0, . . . , fk−1 and distinct k vertices x0, . . . , xk−1 of G such that
for each i, fi and fi+1 share xi, and that for each i, {xi−1, xi} forms a diagonal pair of fi
of G, where the subscripts are taken modulo k.

Lemma 3.2. Let G be a quadrangulation of a closed surface F 2 with a 2-cut {x, y}. Then
there exists a separating diagonal 2-curve for G only through x and y.

Proof. Observe that every quadrangulation of any closed surface F 2 is 2-connected and ad-
mits no closed curve on F 2 crossing G at most once. Thus there exists a surface separating
simple closed curve γ on F 2 crossing only x and y, since {x, y} is a cut of G.

We shall show that γ is a diagonal 2-curve. Suppose that γ passes through two faces
f1 and f2 meeting at two vertices x and y. If γ is not a diagonal 2-curve, then x and y are
adjacent on ∂f1 or ∂f2. Since G has no multiple edges between x and y, and since {x, y}
is a 2-cut of G, we may suppose that x and y are adjacent in ∂f1, but not in ∂f2. Here we
can take a separating 3-cycle of G along γ. This contradicts Lemma 3.1.

Lemma 3.3. Let G be a 3-connected quadrangulation of a closed surface F 2, and let f =
v0v1v2v3 be a face of G. If the face-contraction of f at {v0, v2} breaks 3-connectedness
of the graph but preserves simplicity, then G has a separating diagonal 3-curve passing
through v0, v2 and another vertex x ∈ V (G)− {v0, v1, v2, v3}.

Proof. LetG′ be the quadrangulation of F 2 obtained fromG by the face-contraction of f at
{v0, v2}. Since G′ has connectivity 2, G′ has a 2-cut. By Lemma 3.2, G′ has a separating
diagonal 2-curve γ′ passing through two vertices of the 2-cut. Clearly, one of the two
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vertices must be [v0v2] of G′, which is the image of v0 and v2 by the face-contraction of
f . (Otherwise, G would not be 3-connected, a contradiction.) Let x be a vertex of G′ on
γ′ other than [v0v2]. Note that x is not a neighbor of [v0v2] in G′. Now apply the vertex-
splitting of [v0v2] to G′ to recover G. Then a diagonal 3-curve for G passing through only
v0, v2 and x arises from γ′ for G′.

The next lemma plays an important role in a later argument.

Lemma 3.4. Let G be a 3-connected quadrangulation on a closed surface F 2. If G has a
separating 4-cycle C = x0x1x2x3 and a face f of G such that

(i) one of the diagonal pairs of f is {xi, xi+2} for some i, and

(ii) f has a separating diagonal 3-curve γ intersecting C only at xi and xi+2 trans-
versely,

then there exists a 3-contractible face in G.

Proof. Suppose that G has a separating 4-cycle C = x0x1x2x3 and a face f bounded by
ax1cx3. Since C is separating, G has two subgraphs GR and GL such that GR ∪GL = G
and GR ∩GL = C. Suppose that f is contained in GR. Furthermore, we assume that GR

contains as few vertices of G as possible.
Since C is separating, we have ∂f 6= C. By (ii), f has a separating diagonal 3-curve

γ through x1, x3 and some vertex x. Note that x ∈ V (GL) − V (C) by the condition (ii)
in the lemma. Now assume that f is not 3-contractible at {a, c}. Observe that γ (or the
3-cut {x1, x, x3}) separates a from c. Further, G does not have both of edges ax and cx
since ∂f 6= C. Therefore, there is no path of G of length at most 2 joining a and c other
than ax1c and ax3c. Moreover, if {a, c}∩{x0, x2} = ∅, then f has no separating diagonal
3-curve joining a and c. This contradicts our assumption by Lemma 3.3 and so we may
suppose that a = x0 and c 6= x2, and f has a separating diagonal 3-curve, say γ′, through
a (= x0) and c.

Since γ′ separates x1 and x3 and since x2 is a common neighbors of x1 and x3, γ′

must pass through x2, and hence we can find a face f ′ of GR one of whose diagonal pair
is {c, x2}. Let C ′ be the 4-cycle x1x2x3c of G. Since deg(c) ≥ 3, we have ∂f ′ 6= C ′,
and hence C ′ is a separating 4-cycle in GR such that C ′ 6= C. Moreover, γ′ and C ′ cross
transversely at x2 and c. Therefore, C ′ and f ′ are a 4-cycle and a face which satisfy the
assumption of the lemma, and moreover, C ′ can cut a strictly smaller graph than GR from
G. Therefore, this contradicts the choice of C.

Lemma 3.5. Let G be a 3-connected quadrangulation of a closed surface F 2. If G is
K3-irreducible then G is K′3-irreducible.

Proof. Let G be a 3-connected quadrangulation of a closed surface. Assume that G is not
K′3-irreducible. Then, G has either a 3-contractible face or a contractible cube. If G has
a 3-contractible face, then G is not K3-irreducible. Therefore, we suppose that G has no
3-contractible face but has a contractible cube Q with an inner 4-cycle C in the following
argument.

Now, we apply a 4-cycle removal ofC toG and letG′ be the resulting quadrangulation.
Let f ′ = ∂Q be the new face of G′ into which C was inserted. If G′ is 3-connected, G is
not K3-irreducible by the definition, and we are done. Therefore, we assume that G′ is not
3-connected. By Lemma 3.2, there is a diagonal 2-curve γ passing through f ′ and another
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face f ′′; otherwise, G would have a 2-cut, contrary to our assumption. Note that f ′′ is also
a face in G. Now ∂Q and f ′′ satisfy the conditions of Lemma 3.4, and hence there exists a
3-contractible face in G. However, this contradicts the above assumption. Thus, the lemma
follows.

In the following argument, we denote the set of K3-irreducible (resp. K′3-irreducible)
quadrangulations of a closed surface F 2 by K3I(F 2) (resp. K′3I(F 2)).

Lemma 3.6. LetG be a 3-connected quadrangulation of F 2. IfG ∈ K′3I(F 2)\K3I(F 2),
then G has an attached cube Q such that the graph obtained from G by applying a 4-cycle
removal of Q is in K′3I(F 2).

Proof. Let G be in K′3I(F 2)\K3I(F 2). By the definition, G has an attached cube Q with
an inner 4-cycle C which is removable, but is not contractible. We apply a 4-cycle removal
of C and let G− be the resulting quadrangulation. We denote the new face of G− by f−,
where f− = ∂Q.

First, we confirm thatG− is 3-connected. Otherwise, G− has a 2-cut and has a separat-
ing diagonal 2-curve γ on F 2 by Lemma 3.2. If γ does not pass through f− then γ would
also be a diagonal 2-curve inG, a contradiction. Let f0 be the other face passed by γ. Here,
f0 and ∂Q in G satisfy the conditions in Lemma 3.4 and there exists a 3-contractible face,
contrary to G being K′3-irreducible.

By way of contradiction, assume that G− is not in K′3I(F 2). That is, G− has either
(a) a 3-contractible face or (b) a contractible cube. First, we assume (a) and let f be a
3-contractible face in G−. If f− = f , the attached cube Q in G would be contractible,
contrary to G being K′3-irreducible. Thus, suppose f− 6= f . In this case, let G′ be the
resulting 3-connected quadrangulation after applying a face-contraction of f in G−. Since
any 4-cycle addition doesn’t break the 3-connectedness of a quadrangulation, the graph
obtained from G′ by a 4-cycle addition to f− is clearly 3-connected. This means that f is
also 3-contractible in G, a contradiction.

Next, suppose (b) and let Q′ be such a contractible cube with ∂Q′ = v0v1v2v3. If Q′

does not contain f− as one of its five faces, Q′ is also contractible in G and G would not
be K′3-irreducible by the similar argument as above. Thus, we assume that Q′ contains
f−. Let C = u0u1u2u3 denotes the inner 4-cycle of Q′ where uivi ∈ E(Q′) for i =
0, 1, 2, 3. We consider the following two cases up to symmetry; (b-1) f− = C and (b-
2) f− = v0u0u1v1. At first, suppose (b-1). Here, we apply a face-contraction of f1 =
v0u0u1v1 at {u0, v1} to G. If the above face-contraction breaks the 3-connectedness of G,
there exists a face f2 = v1xv3y in the outside of Q′ by Lemma 3.3; note that it clearly
preserves the simplicity of the graph since v1 6= v3. Now, a separating diagonal 3-curve
passing through {v1, u0, v3} satisfies the conditions of Lemma 3.4 and hence G is not K′3-
irreducible, contrary to our assumption. In fact, an analogous proof is valid for (b-2) if we
try to apply a face contraction at {v1, u2} to G. Therefore the lemma follows.

Lemma 3.7. Let G be a 3-connected quadrangulation of a closed surface F 2. If G ∈
K′3I(F 2) \ K3I(F 2), then G can be obtained from H ∈ K3I(F 2) by applying 4-cycle
additions to F0 ⊆ F (H).

Proof. Assume that G ∈ K′3I(F 2) \ K3I(F 2). By the previous lemma, there exists a
sequence of K′3-irreducible quadrangulations G = G0, G1, . . . , Gk such that Gi+1 is ob-
tained from Gi by a single 4-cycle removal of Ci, where Gk ∈ K3I(F 2). (Since the
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number of vertices of G is finite, Gk ∈ K3I(F 2).) Let Qi denote an attached cube in Gi

with an inner 4-cycle Ci.
For a contradiction, we assume that there exists l ∈ {0, . . . , k − 2} such that Gl is

obtained from Gl+1 by a 4-cycle addition which is put on a face not of F (Gk); this l
should be maximal. This implies that Cl is put on a face of Ql+1 as one of its five faces.
Then the same argument as the proof of Lemma 3.6 holds and hence Gl would not be K′3-
irreducible, contrary to our assumption. Thus for each i ∈ {0, . . . , k − 1}, Gi is obtained
from Gi+1 by a 4-cycle addition which is put on a face of F (Gk).

Proof of Theorem 1.4. By Lemma 3.5, we have K3I(F 2) ⊆ K′3I(F 2). Furthermore, by
Theorem 1.3 and Lemma 3.7, we obtain (i) and (ii) in the statement. Thus, we have got a
conclusion. �

4 Spherical and projective-planar cases
In this section, we discuss the spherical case and the projective-planar case.
Proof of Theorem 1.5. Let G be a K′3-irreducible quadrangulation of the sphere. We have
K3I(S2) ⊆ K′3I(S2) by Lemma 3.5, where S2 stands for the sphere.

If G is K3-irreducible, then G is isomorphic to a pseudo double wheel by Theorem 1.1.
If G is in K′3I(S2) \ K3I(S2), G can be obtained from a pseudo double wheel W2k

(k ≥ 3) by some 4-cycle additions to faces of W2k by Lemma 3.7. However if k ≥ 4,
G has a 3-contractible face (or a contractible cube), as shown in the first operation in
Figure 4. (For example, the entire Figure 4 presents a sequence of a face-contraction and
a cube-contraction which deforms W8 with an attached cube Q into W6, preserving the
3-connectedness.)

W8 with Q W6

1

Figure 4: W8 with an attached cube Q deformed into W6.

Therefore, we only consider the case of k = 3 in the following argument. Assume
that G is obtained from W6 by at least two 4-cycle additions to faces of W6. Similarly
to the above argument, G would have a 3-contractible face (or a contractible cube) , as
in Figure 5, contrary to G being K′3-irreducible; note that it suffices to discuss these two
cases, up to symmetry. Therefore, we conclude that G is obtained from W6 by exactly
one 4-cycle addition. This is nothing but a double cube; observe that a double cube has no
3-contractible face and no contractible cube. �

To conclude with, we prove the projective-planar case.
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1

Figure 5: W6 with two attached cubes can be reduced.

Proof of Theorem 1.6. In this case, we use Möbius wheels W̃k(k ≥ 3) and Q2
P as base

graphs by Theorem 1.2.
First we consider the former case. Similarly to the previous proof (and see Figure 6),

we consider only a Möbius wheel W̃3 as a base to which we apply some 4-cycle additions.
However, W̃3 (= Q1

P ) is isomorphic to the complete graph with four vertices, and hence it
is irreducible. This fact implies that every G obtained from W̃3 by applying at most three
4-cycle additions is K′3-irreducible since any face-contraction and any cube-contraction to
G destroys the simplicity of the graph, or results in a vertex of degree 2. From this case,
we obtain exactly three quadrangulations in K′3I(P 2) \ K3I(P 2), up to homeomorphism,
where P 2 stands for the projective plane.

W̃5 with Q W̃3

1

Figure 6: W̃5 with an attached cube Q deformed into W̃3.

Similarly, as the latter case, we obtain the other ten quadrangulations in K′3I(P 2) \
K3I(P 2) from Q2

P ; consider all the way to put attached cubes into faces of Q2
P , up to

symmetry. As a result, we have |K′3I(P 2) \ K3I(P 2)| = 13 in total. �
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