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Abstract

Let X be a finite vertex-transitive graph of valency d, and let A be the full automor-
phism group of X . Then the arc-type of X is defined in terms of the sizes of the orbits
of the action of the stabiliser Av of a given vertex v on the set of arcs incident with v.
Specifically, the arc-type is the partition of d as the sum n1 +n2 + · · ·+nt+ (m1 +m1) +
(m2 +m2) + · · ·+ (ms +ms), where n1, n2, . . . , nt are the sizes of the self-paired orbits,
and m1,m1,m2,m2, . . . ,ms,ms are the sizes of the non-self-paired orbits, in descending
order.

In a recent paper, it was shown by Conder, Pisanski and Žitnik that with the exception
of the partitions 1 + 1 and (1 + 1) for valency 2, every such partition occurs as the arc-
type of some vertex-transitive graph. In this paper, we extend this to show that in fact
every partition other than 1, 1 + 1 and (1 + 1) occurs as the arc-type of infinitely many
connected finite Cayley graphs with the given valency d. As a consequence, this also shows
that for every d > 2, there are infinitely many finite zero-symmetric graphs (or GRRs) of
valency d.
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1 Introduction
Vertex-transitive graphs hold a significant place in mathematics, and within this, a major
role is played by Cayley graphs, which represent groups in a very natural way. A Cayley
graph can be defined as any graph that admits some group of automorphisms which acts
regularly (sharply-transitively) on the vertices of the graph. Equivalently, a Cayley graph
can be constructed from the regular permutation representation of a group G, with vertices
taken as the elements of G and edges indicating the effect of a subset S ⊆ G (by left
multiplication). The set S ∪ S−1 consists of the elements of G that take the identity vertex
to one of its neighbours.

It often happens that the automorphism group of a connected finite Cayley graph itself
acts regularly on vertices. Any Cayley graph with this property is called a zero-symmetric
graph, or a graphical regular representation of the group G, or briefly, a GRR. But of
course the automorphism group of a Cayley graph X may be much larger than the vertex-
regular subgroup G, and can sometimes even be the full symmetric group on the vertex-set
(when the graph is null or complete). Intermediate cases, with Aut(X) larger than G
but smaller than Sym(G), as well as other kinds of vertex-transitive graphs, fall into a
number of different and interesting classes of graphs, including those that are arc-transitive
(or symmetric), and those that are half-arc-transitive (which are vertex-transitive and edge-
transitive but not arc-transitive).

A means of classifying vertex-transitive graphs was given in a recent paper by Conder,
Pisanski and Žitnik [3], using what is known as the arc-type of the graph. This can be
defined as follows.

Let X be a d-valent vertex-transitive graph, with automorphism group A, let Av be the
stabiliser in A of any vertex v of X , and consider the orbits of Av on the set of arcs (v, w)
with initial vertex v. The Av-orbit of any arc (v, w) can be ‘paired’ with the Av-orbit of
the arc (v, w′) whenever (v, w′) lies in the same orbit of A as the reverse arc (w, v), and if
those two A-obits are the same, then we say the Av-orbit of (v, w) is ‘self-paired’. Then
the arc-type of X is the partition Π of its valency d as the sum

Π = n1 + n2 + · · ·+ nt + (m1 +m1) + (m2 +m2) + · · ·+ (ms +ms) (†)

where n1, n2, . . . , nt are the sizes of the self-paired orbits of Av on arcs with initial vertex
v, and m1,m1,m2,m2, . . . ,ms,ms are the sizes of the non-self-paired orbits, in descend-
ing order. Similarly, the edge-type of X is the partition of d as the sum of the sizes of the
orbits ofAv on edges incident with v, and can be found by simply replacing each bracketed
term (mj +mj) by 2mj , for 1 ≤ j ≤ s.

For example, if X is arc-transitive, then its arc-type is simply d, while if X is half-arc-
transitive, then its valency d is even and its arc-type is (d2 + d

2 ), and X is a GRR if and only
if all the terms ni and mj in its arc-type are 1.

The authors of [3] also answered the natural question of which arc-types occur for
a given valency d. Every vertex-transitive graph of valency 2 is a union of cycles and
is therefore arc-transitive, with arc-type 2. Hence in particular, the partitions 1 + 1 and
(1 + 1) of 2 do not occur as the arc-type of a vertex-transitive graph. It was shown in [3]
that these are the only exceptional cases. Using a construction that takes Cartesian products
of pairwise ‘relatively prime’ vertex-transitive graphs, Conder, Pisanski and Žitnik proved
that in all other cases, every partition of d as given in (†) occurs as the arc-type of some
vertex-transitive graph X of valency d.
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In this paper, we prove a much stronger theorem, namely that every such partition other
than 1, 1 + 1 and (1 + 1) occurs as the arc-type of infinitely many connected finite Cayley
graphs. (This answers a question posed by Joy Morris at the 2015 PhD Summer School
in Discrete Mathematics, in Rogla, Slovenia.) As corollaries, we find that every standard
partition of a positive integer d is realisable as the edge-type of infinitely many connected
finite Cayley graphs of valency d, except for 1 and 1 + 1 (when d ≤ 2), and that for every
d > 2, there are infinitely many finite zero-symmetric graphs of valency d.

To prove our main theorem, we adopt the same approach as taken in [3], but show
there are infinitely many Cayley graphs that can be used in the construction as building
blocks with the required basic type. In particular, we show that the half-arc-transitive
Bouwer graphs B(m, k, n) and the ‘thickened covers’ used in [3] are Cayley graphs, and
we construct some new families of Cayley graphs with various arc-types as well.

We begin by setting notation and giving some further background in Section 2. Then
in Section 3 we briefly summarise what has to be done to prove our main theorem, which
we proceed to do in Section 4. We complete the paper with the consequence for zero-
symmetric graphs in Section 5.

2 Preliminaries and further background
2.1 Notation

All the graphs we consider in this paper are finite, simple, undirected and non-trivial (in the
sense of containing at least one edge). Given a graph X , we denote by V (X), E(X) and
A(X) the set of vertices, the set of edges, and the set of arcs of X , respectively. We denote
an edge with vertices u and v by {u, v}, and an arc from u to v by (u, v).

The automorphism group of X is denoted by Aut(X). Note that the action of Aut(X)
on the vertex-set V (X) also induces an action of Aut(X) on the edge-setE(X) and one on
the arc-set A(X). If the action of Aut(X) is transitive on the vertex-set, edge-set, or arc-
set, then we say thatX is vertex-transitive, edge-transitive or arc-transitive, and sometimes
abbreviate this to ‘VT’, ‘ET’ or ‘AT’, respectively.

Obviously, vertex-transitive graphs are always regular. Moreover, because a discon-
nected vertex-transitive graph consists of pairwise isomorphic connected components, we
may restrict our attention here to connected graphs. An arc-transitive graph is often also
called symmetric. A graph is called half-arc-transitive if it is vertex-transitive and edge-
transitive, but not arc-transitive. The valency of every half-arc-transitive graph is necessar-
ily even; see [11, p. 59].

Now let G be a group, and let S be a subset of G that is inverse-closed and does not
contain the identity element. Then the Cayley graph Cay(G,S) is the graph with vertex-
set G, and with vertices u and v being adjacent if and only if vu−1 ∈ S (or equivalently,
v = xu for some x ∈ S). Since we require S to be inverse-closed, this Cayley graph
is undirected, and since S does not contain the identity, the graph has no loops. Also
Cay(G,S) is regular, with valency |S|, and is connected if and only if S generates G.
Furthermore, it is easy to see that G acts as a group of automorphisms of Cay(G,S) by
right multiplication, and this action is transitive on vertices, with trivial stabiliser, and hence
sharply-transitive (or regular). In particular, Cay(G,S) is vertex-transitive.

More generally, a graph X is a Cayley graph for the group G if and only if G acts
regularly on V (X) as a group of automorphisms ofX . This is very well known — see [10]
for example.
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2.2 Cartesian products and (relatively) prime graphs

Given a pair of graphs X and Y (which might or might not be distinct), the Cartesian
product X �Y is a graph with vertex set V (X)× V (Y ), such that two vertices (x, y) and
(u, v) are adjacent in X �Y if and only if x = u and y is adjacent with v in Y, or y = v
and x is adjacent with u in X . This definition can be extended to the Cartesian product
X1 � · · ·�Xk of a larger number of graphsX1, . . . , Xk, which are then called the factors.

A graph X is called prime (with respect to the Cartesian product) if it is not isomorphic
to the Cartesian product of a pair of smaller, non-trivial graphs. Every connected graph
can be decomposed as a Cartesian product of prime graphs, in a way that is unique up to
reordering and isomorphism of the factors; see [6, Theorem 4.9] for a proof. Then two
graphs can be said to be relatively prime (with respect to the Cartesian product) if there is
no non-trivial graph that is a factor of both. Note that two prime graphs are relatively prime
unless they are isomorphic.

For the construction in [3] and here, we need a number of other properties of the Carte-
sian product, and some ways in which we can tell if a given graph is prime with respect to
the Cartesian product. We summarise these as follows:

Proposition 2.1.

(a) The Cartesian product operation � is associative and commutative.

(b) A Cartesian product graph is connected if and only if all its factors are connected.

(c) If X1, . . . , Xk are regular graphs with valencies d1, . . . , dk, then their Cartesian
product X1 � · · ·�Xk is also regular, with valency d1 + · · ·+ dk.

(d) The Cartesian product of Cayley graphs is a Cayley graph.

(e) If X1, . . . , Xk are connected graphs that are pairwise relatively prime, then
Aut(X) ∼= Aut(X1)× · · · ×Aut(Xk).

(f) A Cartesian product of connected graphs is vertex-transitive if and only if all its
factors are vertex-transitive.

(g) If X1, . . . , Xk are non-trivial connected vertex-transitive graphs with arc-types
τ1, . . . , τk, and X1, . . . , Xk are pairwise relatively prime, then the arc-type of their
Cartesian product X = X1 � · · ·�Xk is τ1 + · · ·+ τk.

Proof. Parts (a) to (c) are easy, and part (d) follows by induction from the fact that

Cay(G,S)�Cay(H,T ) = Cay(G×H, (S × {1H}) ∪ ({1G} × T )).

Proofs of parts (e) and (f) can be found in [6], and part (g) was proved in [3].

Proposition 2.2. Let X be a Cartesian product of non-trivial connected graphs. Then:

(a) Every edge of X lies in some 4-cycle in X.

(b) All the edges in any cycle of length 3 in X belong to the same factor of X.

(c) If (x, y, z, w) is any 4-cycle in X , then the edges {x, y} and {z, w} belong to the
same factor of X , as do the edges {y, z} and {x,w}.

(d) [The square property] If two edges are incident in X but do not belong to the same
factor ofX , then there exists a unique 4-cycle inX that contains both of these edges,
and this 4-cycle has no diagonals.
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Proof. Part (a) is easy, and others were proved in [7], for example.

Corollary 2.3. Let X be a connected graph. If some edge of X is not contained in any
4-cycle (and in particular, if X has no 4-cycles), then X is prime.

2.3 Thickened covers

Let X be any simple graph, F any subset of the edge-set of X , and m any positive integer.
Then the authors of [3] defined the thickened m-cover of X over F as the graph X(F,m)
that has vertex-set V (X)× Zm, and edges of two types:

(a) an edge from (u, i) to (v, i), for every i ∈ Zm and every {u, v} ∈ E(X) \ F ,

(b) an edge from (u, i) to (v, j), for every (i, j) ∈ Zm × Zm and every {u, v} ∈ F .

One can think of this graph as being obtained from X by replacing each vertex of X by m
vertices, and each edge by the complete bipartite graph Km,m whenever the edge lies in F ,
or by mK2 (a set of m ‘parallel’ edges) whenever the edge does not lie in F .

For example, the thickened 2-cover of the cycle graph C6 over one of its 1-factors is
shown in Figure 1.

Figure 1: A thickened 2-cover of C6 (over a 1-factor).

It was shown in [3] that if X is a vertex-transitive graph, and F is a union of orbits of
Aut(X) on edges of X , then X(F,m) is vertex-transitive for every m ≥ 2. We can take
this further, as follows:

Proposition 2.4. If X = Cay(G,S) is a Cayley graph, and F is an orbit of G on edges of
X , then the thickened cover Y = X(F,m) is a Cayley graph for G× Zm.

Proof. We show that Y is exactly the same as the Cayley graph Cay(G× Zm,W ), where
multiplication in the group G × Zm is given by (g, i)(h, j) = (gh, i + j) for all g, h ∈ G
and i, j ∈ Zm, and W is the union of the two sets

W1 = {(s, 0) : s ∈ S, {1G, s} /∈ F} and W2 = {(t, i) : {1G, t} ∈ F, i ∈ Zm}.

Take any edge of Y of the first kind, say from (u, i) to (v, i) where {u, v} ∈ E(X) \ F .
Then v = su for some s ∈ S, and it follows that (v, i) = (su, i) = (s, 0)(u, i), with
{1G, s} = {u, su}u−1 = {u, v}u−1 /∈ F . Conversely, if s ∈ S and {1G, s} /∈ F then
{u, su} = {1G, s}u /∈ F , and so (s, 0)(u, i) = (su, i) is adjacent to (u, i), for all u and i.
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Similarly, for any edge of the second kind, from (u, i) to (v, j) with {u, v} ∈ F , we have
v = tu for some t ∈ S and so (v, j) = (t, j−i)(u, i) with {1G, t} = {u, v}u−1 ∈ F , and
conversely, if {1G, t} ∈ F (where t ∈ S), then {u, tu} = {1G, t}u ∈ F , and therefore
(t, j−i)(u, i) = (tu, j) is adjacent to (u, i), for all u, i and j.

Also we need some other information about thickened covers, taken from [3]. The fibre
over a vertex u of X is the set {(u, i) : i ∈ Zm} of vertices of X(F,m), and any element
of this set is said to project onto u. Similarly the fibre over an edge {u, v} of X is the
set {{(u, i), (v, i)} : i ∈ Zm} of edges of X(F,m) when {u, v} ∈ E(X) \ F , or the
set {{(u, i), (v, j)} : i, j ∈ Zm} when {u, v} ∈ F , and any element of this set is said to
project onto {u, v}. The fibre over an arc is defined similarly.

Proposition 2.5. Let X be a vertex-transitive graph, and let F be a union of edge-orbits
of X , with the property that every edge in F joins vertices from two different components
of X \ F . Then for every two arcs (x, y) and (u, v) from the same arc-orbit of X , any two
arcs of X(F,m) that project onto (x, y) and (u, v) respectively lie in the same arc-orbit of
X(F,m), for all m ≥ 2.

Proof. See [3, Theorem 7.6].

2.4 Bouwer graphs

The first known infinite family of half-arc-transitive graphs of arbitrary even valency greater
than 2 was constructed by Bouwer [2] in 1970. These graphs were a sub-family of a wider
class of graphs, which we now denote by B(k,m, n), defined as follows.

Let m and n be any integers such that 2m ≡ 1 mod n, with m ≥ 2 and n ≥ 3, and also
let k be any integer such that k ≥ 2. Then the vertices of B(k,m, n) may be taken as the
k-tuples (a,b) = (a, b2, b3, . . . , bk) with a ∈ Zm and bj ∈ Zn for 2 ≤ j ≤ k, with any
two such vertices being adjacent if and only if they can be written as (a,b) and (a+ 1, c)
where either c = b, or c = (c2, c3, . . . , ck) differs from b = (b2, b3, . . . , bk) in just one
position, say position j, where cj = bj + 2a.

Bouwer himself proved in [2] that every such graph is connected, edge-transitive and
vertex-transitive, with valency 2k. He also proved that the graphs B(k, 6, 9) are half-arc-
transitive, and his theorem was extended recently by Conder and Žitnik [4], who proved that
B(k,m, n) is arc-transitive only when n = 3, or (k, n) = (2, 5), or (k,m, n) = (2, 3, 7) or
(2, 6, 7) or (2, 6, 21). In particular, it follows that B(k,m, n) is half-arc-transitive when-
ever m > 6 and n > 5. Moreover, as shown in [4], if m > 6 and n > 7, then B(k,m, n)
has girth 6, and hence in that case, B(k,m, n) is prime.

These prime graphs gave the infinite family of half-arc-transitive graphs with arc-type
(k+ k), for each k ≥ 2, used in Lemma 8.2 of [3]. We can take this further, by proving the
following (which a referee has also pointed out was proved very recently by Ramos Rivera
and Šparl in [9]):

Proposition 2.6. Every Bouwer graph B(k,m, n) is a Cayley graph.

Proof. First note that n is odd, since 2m ≡ 1 mod n. Now letG be the semi-direct product
Zm n Zk−1n , where a generator of the complement Zm acts by conjugation from the right
on the kernel Zk−1n in the same way as component-wise multiplication by 2. Also let R
be the set of all elements of G of the form (1,b), where b is either the zero vector 0 in
Zk−1n , or one of the elementary basis vectors ej (with all its entries being 0 except for a 1
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in position j). The k elements of R are non-involutions, whose inverses are the elements
of the form (−1,d) where d = 0 or −2−1ei for some i. It follows that the 2k-valent
Cayley graph Cay(G,R ∪ R−1) is isomorphic to the Bouwer graph B(k,m, n), for if
(a,b) = (a, b2, b3, . . . , bk) is any vertex, then (1,0)(a,b) = (a+1,b), and (1, ei)(a,b) =
(a+ 1,b + 2aei) for all i.

3 Main theorem and overview of the proof
As indicated in the Introduction, our main theorem and its first immediate corollary are as
follows:

Theorem 3.1. For any positive integer d, let Π be any partition of d as given in (†). Then
Π occurs as the arc-type of infinitely many connected finite Cayley graphs of valency d,
except when Π is one of the partitions 1, 1 + 1 and (1 + 1) in the cases with d ≤ 2.

Corollary 3.2. With the exception of 1 and 1 + 1 (in the cases with d ≤ 2), every standard
partition of a positive integer d is realisable as the edge-type of infinitely many connected
finite Cayley graphs of valency d.

Corollary 3.2 follows easily from Theorem 3.1. To prove Theorem 3.1, we use much of
the proof of the theorem in [3] showing that every such partition is the arc-type of at least
one vertex-transitive graph of valency d. In that proof, the given partition Π was written
as a sum of ‘basic’ partitions, each having one of a number of forms, and then a VT graph
with arc-type Π was constructed as a Cartesian product of pairwise relatively prime graphs
with arc-types of the associated forms.

This required a good supply of prime vertex-transitive graphs with particular arc-types
as ‘building blocks’, and the following were sufficient.

(a) Arc-type m: infinitely many prime connected VT graphs, for each integer m ≥ 2;

(b) Arc-type (m+m): infinitely many prime connected VT graphs, for each m ≥ 2;

(c) Arc-type m+ 1: infinitely many prime connected VT graphs, for each m ≥ 2;

(d) Arc-type 1 + (1 + 1): at least two prime connected VT graphs;

(e) Arc-type m+ (1 + 1): at least one prime connected VT graph, for each m ≥ 2;

(f) Arc-type 1 + (m+m): at least one prime connected VT graph, for each m ≥ 2;

(g) Arc-type (1 + 1) + (1 + 1): infinitely many prime connected VT graphs;

(h) Arc-type (m+m)+(1+1): at least one prime connected VT graph, for eachm ≥ 2;

(i) Arc-type 1 + 1 + 1: infinitely many prime connected VT graphs;

(j) Arc-type 1 + 1 + (1 + 1): at least one prime connected VT graph;

(k) Arc-type 1 + 1 + 1 + 1: at least one prime connected VT graph;

(l) Arc-type (1 + 1) + (1 + 1) + (1 + 1): at least one prime connected VT graph.

Now to extend this to a proof of our theorem, we need infinitely many connected finite
Cayley graphs of each of the basic forms listed in cases (a) to (l) above.

Such infinite families were provided explicitly for cases (g) and (i) in Lemmas 8.6 and
8.8 of [3]. Also in cases (d), (e) and (g), a single vertex-transitive graph was produced for
eachm in Lemmas 8.4, 8.5 and 8.7 of [3], as a thickened cover of a particular Cayley graph
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over an edge-orbit. These are Cayley graphs, by Proposition 2.4, but we have to produce
infinitely many of them, for each m ≥ 2.

Hence it remains for us to find infinitely many connected finite Cayley graphs in the
cases (a)–(f), (h), and (j)–(l) above. We do that in the next section. Specifically, we con-
struct new families of Cayley graphs for cases (a), (d) and (j)–(l), we use the Bouwer graphs
for case (b), we show that the thickened covers used in [3] for case (c) are Cayley graphs,
and we show that thickened covers of the graphs in cases (d) and (g) provide infinitely
many Cayley graphs for cases (e), (f) and (h).

4 Proof of main theorem
As noted earlier, all we need to do to prove Theorem 3.1 is show that there exist infinitely
many prime connected finite Cayley graphs with each of the arc-types in the cases listed in
the previous section, and then the rest follows by the same argument as in [3, Section 9].
We do this case-by-case below. For completeness, we give a brief description of the Cayley
graphs in the cases that do not require any further analysis, and we give more detailed
arguments for the rest.

Case (a): Arc-type m, for all m ≥ 2.
For m = 2, we can take the family of all cycle graphs Cn with n ≥ 5. These graphs

have arc-type 2, and since they contain no 4-cycles, by part (a) of Proposition 2.2 they are
all prime (with respect to the Cartesian product).

For m ≥ 3, we construct an infinite family of arc-transitive prime connected finite
Cayley graphs of valency m using the same groups as for this case in [3, Lemma 8.1].

We know by Macbeath’s theorem [8] that for every prime p > m, the simple group
G = PSL(2, p) is generated by elements x and y such that x2 = ym = (xy)m+4 = 1.
Now take S to be the set {x, y−1xy, y−2xy2, . . . , y−(m−1)xym−1} of all conjugates of x
by powers of y, and let X = Cay(G,S).

The elements of S are distinct involutions (since G has trivial centre), and so X has
valency |S| = m. Moreover, the subgroup generated by S is normal in 〈x, y〉 = G, be-
cause x ∈ S and conjugation by y permutes the elements of S among themselves. Hence S
generates G, and therefore X is connected. But also conjugation by y induces an automor-
phism of X that fixes the identity vertex and cyclically permutes its m neighbours among
themselves, and so X is arc-transitive. Hence X has arc-type m.

Finally, X is prime, for if it were the Cartesian product of two relatively prime graphs
Y and Z, then its arc-type m would be the sum of the arc-types of Y and Z, and if it
were the kth Cartesian power of some prime graph Y , then we would find that |V (Y )|k =
|V (X)| = |G| = |PSL(2, p)| = p(p2 − 1)/2, which can occur only if k = 1.

Case (b): Arc-type (m+m), for all m ≥ 2.
If n and r are any integers such that 2r ≡ 1 mod n, with n > 7 and r > 6, then by

Lemma 8.2 of [3], the Bouwer graph B(m, r, n) is a prime half-arc-transitive graph with
arc-type (m+m), for every m ≥ 2. Also by Proposition 2.6 above, this graph is a Cayley
graph. Hence in particular, the Bouwer graph B(m, r, n) is a prime Cayley graph with
arc-type (m+m), whenever m ≥ 2, r > 6 and n > 7.

Case (c): Arc-type m+ 1, for all m ≥ 2.
By Theorem 7.5 of [3], for every integer m ≥ 2 and every integer n ≥ 3, the thickened

m-cover of the n-cycle C2n over one of its 1-factors is a prime VT graph with arc-type
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m+ 1 (that is, with two self-paired arc orbits of lengths m and 1). This thickened cover is
also a Cayley graph, as we show below.

Let a and b be canonical generators for the dihedral group Dmn of order 2mn, sat-
isfying amn = b2 = (ab)2 = 1, and define Ymn = Cay(Dmn, S) where S is the set
{b, ban, ba2n, . . . , ba(m−1)n, ba}, consisting of m+1 involutions. Now let η be the natural
epimorphism from Dmn to Dn

∼= Dmn/Cm with kernel 〈an〉 ∼= Cm, and let S and x be
the images of S and any x ∈ Dmn under η. Then η induces a graph homomorphism from
Ymn to Cay(Dn, S) = Cay(Dn, {b, ba}), which is clearly a cycle of length |Dn| = 2n.

Moreover, the pre-image of an edge of the form {x, bx} is a complete bipartite subgraph
of order 2m with m2 edges {xz, bxw} for z, w ∈ 〈an〉 ∼= Cm, while the pre-image of an
edge of the form {x, bax} is a subgraph of order 2m with m parallel edges {xz, baz} for
z ∈ 〈an〉 ∼= Cm.

Hence Ymn is isomorphic to the m-thickened cover of C2n used in Theorem 7.5 of [3],
and so is a prime Cayley graph with arc-type m+ 1, for all m ≥ 2 and all n ≥ 3.

Case (d): Arc-type 1 + (1 + 1).
Let p be any prime such that p ≡ 1 mod 4, with p > 5, and let k be any integer such that

k2 ≡ −1 mod p. Now take G to be the semi-direct product Cp ok C4, which is generated
by elements a and b such that ap = b4 = 1 and b−1ab = ak. Note that conjugation by b2

inverts a, while bab−1 = a−k.
Now let X = Cay(G, {b, b−1, ab2}). This graph is 3-valent, since ab2 is an involution,

and connected, since 〈b, ab2〉 = G. It is also non-bipartite, because if it were bipartite, then
its parts would be preserved by the only subgroup of index 2 in G, namely the subgroup
generated by a and b2, but that cannot happen since there is an edge from 1 to ab2. We will
show that X is prime and has arc-type 1 + (1 + 1), for all p and k.

First, note that the arcs (1, b), (1, b−1) and (1, ab2) can each be extended to a path of
length 2 in two ways, namely to (1, b, b2), (1, b, ab3), (1, b−1, b2), (1, b−1, ab),
(1, ab2, a−kb3) and (1, ab2, akb). It follows that the edge {1, ab2} lies in no 4-cycle, and
in particular, that X is prime. Moreover, the edges {1, b} and {1, b−1} lie in a single
4-cycle up to reversal, namely (1, b, b2, b−1), and so {1, ab2} lies in a different edge orbit
from {1, b} and {1, b−1}. On the other hand, the edges {1, b} and {1, b−1} lie in the same
orbit of Aut(X), since right multiplication by b−1 takes the former to the latter. Hence the
edge-type of X is 2 + 1, and the arc-type of X must be 1 + (1 + 1) or 2 + 1.

Next, we consider the stabiliser A1 in A = Aut(X) of the identity vertex 1. By the
above observations, A1 fixes the vertex ab2, as well as b2 (the only other common neigh-
bour of b and b−1) and a−1 (the vertex opposite ab2 in the 4-cycle (ab2, a−kb−1, a−1, akb)
containing ab2). By induction and connectedness, A1 fixes every vertex in the orbit of the
subgroup H of G generated by a and b2. The latter subgroup has index 2 in G, with coset
representatives 1 and b, and if β is any element of A1 that also fixes the vertex b, then by
vertex-transitivity, β fixes every vertex in the orbit of the coset bH , and hence fixes every
vertex, so β is trivial. It follows that |A1| ≤ 2, and furthermore, since A = GA1 (with
G∩A1 = {1}), we find that G has index 1 or 2 in A. Hence in particular, G is normal in A
(a fact which also follows from a theorem by Zhou and Feng [12, Theorem 2.3] on 3-valent
Cayley graphs of order 4p, for p prime).

Now suppose that A1 is non-trivial. Then there exists an automorphism θ ∈ A1 such
that A = 〈G, θ〉, and moreover, θ has order 2 and must swap the neighbours b and b−1 of
1, and fix ab2. Hence conjugation of G by θ fixes ab2 and swaps b with b−1 (as elements
of G). It follows that θ fixes b2 and hence also fixes (ab2)b2 = a, but then ak = (ak)θ =
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(b−1ab)θ = bab−1 = a−k, and so ak has order 2, contradiction.
Thus A1 is trivial, and Aut(X) = A = G, so X is a GRR, with arc-type 1 + (1 + 1).

Case (e): Arc-type m+ (1 + 1), for all m ≥ 2.
For any prime p ≡ 1 mod 4 with p > 5, and any square root k of −1 mod p, let X

be the Cayley graph for Cp ok C4 produced in case (d) above. This graph has two edge-
orbits, one of length 4p containing the edge {1, b}, and the other of length 2p containing
the edge {1, ab2}, where a and b are generators for G = Cp ok C4 satisfying the relations
ap = b4 = 1 and b−1ab = ak.

Now let Ym = X(F,m) be the thickenedm-cover ofX over F , where F is the smaller
of the two edge-orbits ofX . Then Ym is regular of valencym+2, and is a Cayley graph, by
Proposition 2.4, so all we have to do is show that Ym is prime and has arc-typem+(1+1).
We do this in much the same way as was done for the single example (for each m) in [3,
Lemma 8.4].

First, we note thatX \F is a union of quadrangles (unordered 4-cycles), and every edge
of F joins vertices from different quadrangles. Hence by Proposition 2.5, we find that all
edges in a fibre over an edge in E(X) \ F lie in the same edge-orbit of Ym, and all edges
in a fibre over an edge in F lie in the same edge-orbit. In particular, all edges of the form
{(1, 0), (ab2, i)} for i ∈ Zm lie in the same edge-orbit of Ym. Also multiplication by (b, 0)
puts {(1, 0), (b−1, 0)} in the same edge-orbit as {(1, 0), (b, 0)}.

On the other hand, up to reversal the edge {(1, 0), (b, 0)} lies in just one 4-cycle,
namely ((1, 0), (b, 0), (b2, 0), (b−1, 0)), while the edge {(1, 0), (ab2, 0)} lies in (m − 1)2

distinct 4-cycles, namely ((1, 0), (ab2, 0), (1, j), (ab2, `)) for j, ` ∈ Zm \ {0}. Hence
if m > 2 then {(1, 0), (b, 0)} cannot lie in the same orbit as {(1, 0), (ab2, 0)}. Simi-
larly, when m = 2, up to reversal the edge {(1, 0), (b, 0)} lies in precisely four 6-cycles,
namely ((1, 0), (b, 0), (ab−1, j), (b, 1), (1, 1), (ab2, `)) for j, ` ∈ {0, 1}, while the edge
{(1, 0), (ab2, 0)} lies in eight 6-cycles, viz. ((1, 0), (ab2, 0), (1, 1), (bε, 1), (ab−ε, j),
(bε, 0)) and ((1, 0), (ab2, 0), (aεkbε, 0), (a1−εkb−ε, j), (aεkbε, 1), (ab2, 1)) for ε = ±1 and
j ∈ {0, 1}, and again we find that the edge {(1, 0), (b, 0)} cannot lie in the same orbit as
the edge {(1, 0), (ab2, 0)}.

Hence the edge-type of Ym is m+ 2, and its arc-type is m+ 2 or m+ (1 + 1).
Next, consider the stabiliser A(1,0) in A = Aut(Ym) of the vertex (1, 0). We know

that A(1,0) preserves the set of m neighbours of (1, 0) of the form (ab2, i) for i ∈ Zm,
and as a consequence, A(1,0) must preserve the set of all paths of length 2 of the form
((1, 0), (ab2, i), y). For any such i, the third vertex y is either (a−kb−1, i), or (akb, i), or
(1, j) for some j ∈ Zm \ {0}. Moreover, if y = (a−kb−1, i) or (akb, i), then there is just
one path of length 2 from (1, 0) to y, while if y = (1, j) for some j, then there are m
distinct paths of length 2 from (1, 0) to y. Hence A(1,0) must preserve the set of all vertices
(1, j) with j ∈ Zm \ {0}, and so A(1,0) preserves the fibre over (1, 0).

By vertex-transitivity, the same thing holds for every vertex, and so Aut(Ym) permutes
the fibres over vertices of X . Hence every automorphism of Ym can be projected to an
automorphism of X . In particular, since X has arc-type 1 + (1 + 1), no automorphism can
take the arc ((1, 0), (b, 0)) to the arc ((1, 0), (b−1, 0)), and thus Ym has arc-typem+(1+1).

Finally, we show that Ym is prime. To do this, consider any decomposition of Y into
Cartesian factors, which are connected and vertex-transitive, by Proposition 2.1. The edge
{(1, 0), (b, 0)} does not lie in a 4-cycle with any of them edges of the form {(1, 0), (ab2, i)}
for i ∈ Zm, and so by part (d) of Proposition 2.2, all of those m edges must lie in
the same factor of Ym as {(1, 0), (b, 0)}, say Z. The same argument holds for the edge
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{(1, 0), (b−1, 0)}, and so this edge must lie in Z as well. Hence Z contains all m+2 edges
incident with the vertex (1, 0). By vertex-transitivity and connectedness, all edges of Ym
lie in Z, so Z = Ym, and therefore Ym is prime.

Case (f): Arc-type 1 + (m+m), for all m ≥ 2.
This case is similar to the previous one, except that we let Ym = X(F,m) be the

thickenedm-cover ofX where this time F is the larger of the two edge-orbits ofX . Again,
Ym is a Cayley graph, by Proposition 2.4, but of valency 2m + 1, and all we have to do is
show that Ym is prime and has arc-type 1 + (m+m).

The neighbours of the vertex (1, 0) are the 2m vertices of the form (b, i) or (b−1, i)
where i ∈ Zm, plus the single vertex (ab2, 0). It is easy to see that every edge of the form
{(1, 0), (b±1, i)} lies in many different 4-cycles, while the edge {(1, 0), (ab2, 0)} lies in no
4-cycles at all. In particular, this shows that Ym is prime, and that the vertex (ab2, 0) is
fixed by the stabiliser A(1,0) of (1, 0) in A = Aut(Ym). Moreover, X \ F is a union of
non-incident edges, and so by Proposition 2.5, all arcs of the form ((1, 0), (b, i)) lie in the
same arc-orbit of Ym, and the same holds for all arcs of the form ((1, 0), (b−1, i)). Hence
the arc-type of Ym is either 2m+ 1 or 1 + (m+m).

To prove that the arc-type is 1 + (m + m), again we consider the local effect of the
stabiliser A(1,0) on vertices at short distance from the vertex (1, 0).

We know that A(1,0) preserves the set of 2m neighbours of (1, 0) of the form (b±1, i)
for i ∈ Zm, and fixes the neighbour (ab2, 0). In particular, A(1,0) must preserve the set of
all paths of length 2 of the form ((1, 0), (b±1, i), y). This time the third vertex y is either
(ab3, i), or (ab, i), or (1, `) or (b2, `) for some ` ∈ Zm, and in the first two cases, there is
just one such path of length 2 from (1, 0) to y, while if y = (1, `) or (b2, `) for some `, then
there are 2m such paths. Also each vertex v of the form (1, `) or (b2, `) lies at distance 3
from the vertex (ab2, 0) fixed by A(1,0), via the 2m paths (v, (bε, j), (1, 0), (ab2, 0)) with
ε = ±1 and j ∈ Zm. Moreover, if v is one of the vertices of the form (1, `), then there are
2m additional paths, namely ((1, `), (ab2, `), (aεkbε, j), (ab2, 0)) for ε = ±1 and j ∈ Zm,
but there are no such additional paths from a vertex of the form (b2, `).

It follows that no element of A(1,0) can take a vertex of the form (1, `) to one of the
form (ab3, i) or (ab, i) or (b2, `′), and therefore A(1,0) preserves the fibre over (1, 0).

By vertex-transitivity, the same thing holds for every vertex, and hence as before, ev-
ery automorphism of Ym can be projected to an automorphism of X . In particular, since
X has arc-type 1 + (1 + 1), no automorphism can take the arc ((1, 0), (b, 0)) to the arc
((1, 0), (b−1, 0)), and thus Ym has arc-type 1 + (m+m).

Case (g): Arc-type (1 + 1) + (1 + 1).
By Lemma 8.6 of [3], if p is any prime number with p ≡ 1 mod 6, if k is a prim-

itive 6th root of 1 mod p, and G is the semi-direct product Cp ok C6, generated by
two elements a and b of orders p and 6 such that b−1ab = ak, then the Cayley graph
Cay(G, {b, b−1, ab2, (ab2)−1}) is prime and has arc-type (1 + 1) + (1 + 1). In fact, the
edges {1, ab2} and {1, (ab2)−1} lie in 3-cycles, but the edges {1, b} and {1, b−1} do not.

Case (h): Arc-type (m+m) + (1 + 1), for all m ≥ 2.
For any prime p ≡ 1 mod 6, and any primitive 6th root k of 1 mod p, let X be the

Cayley graph produced in case (g) above. This graph has arc-type (1 + 1) + (1 + 1), and
its two edge-orbits both have length 4p, with representatives {1, b} and {1, ab2}, where a
and b are generators for G = Cp ok C6 satisfying ap = b6 = 1 and b−1ab = ak.
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Now let Ym = X(m,F ) be the thickened m-cover of X over F , where F is the edge-
orbit containing {1, b}, or equivalently, the set of edges that lie in no 3-cycle. This graph is
regular, with valency 2m + 2, and by Proposition 2.4 is a Cayley graph, so all we have to
do is show it is prime and has arc-type (m+m) + (1 + 1). We do this in the same way as
was done for the single example (for each m) in [3, Lemma 8.7].

First, X \ F is a union of triangles (unordered 3-cycles), and every edge of F joins
vertices from different triangles, and it follows that every automorphism of Ym induces a
permutation of the fibres over the edges in E(X) \ F , and also a permutation of the fibres
over the edges in F . On the other hand, Proposition 2.5 tells us that all edges in a fibre over
an edge in E(X) \ F lie in the same edge-orbit, and all edges in a fibre over an edge in F
lie in the same edge-orbit. Hence the edge-type of Ym is 2m+ 2.

Next, from vertex (u, i) in Ym there are precisely 2m paths from (u, i) to any other
vertex (u, `) in the fibre over (u, i), namely those of the form ((u, i), (bu, j), (u, `)) and
((u, i), (b−1u, j), (u, `)) for each j ∈ Zm, while on the other hand, there are only one, two
or m paths from (u, i) to any other vertex v at distance 2 from (u, i). Hence the stabiliser
in Aut(Ym) of the vertex (u, i) preserves the fibre over the vertex u, and it follows that
Aut(Ym) permutes the fibres over the vertices of X .

Thus every automorphism of Ym can be projected to an automorphism of X , and the
arc-type of Ym is (m+m) + (1 + 1), as required.

Finally, we show that Ym is prime. If Ym were the Cartesian product of two relatively
prime graphs, then one of them would have arc-type (1 + 1), which is impossible. On the
other hand, if Ym were a proper Cartesian power of some prime graph Z, say Ym = Zr

with r ≥ 2, then by part (b) of Proposition 2.2, all edges in a 3-cycle of Ym would lie in
the same factor of Ym, so Z would contain a 3-cycle, but in that case a vertex of Ym = Zr

would lie in at least two triangles, contradiction. Thus Ym is prime.

Case (i): Arc-type 1 + 1 + 1.
By Lemma 8.8 of [3], if n is any odd integer greater than 11, and G is the dihedral

group Dn, generated by two elements x and y satisfying x2 = yn = 1 and xyx = y−1,
then Cay(G, {x, xy, xy3}) is prime and has arc-type 1 + 1 + 1.

Case (j): Arc-type 1 + 1 + (1 + 1).
This is similar to case (d). Let p be any prime such that p ≡ 1 mod 4, with p > 5, let k

be any integer such that k2 ≡ −1 mod p, and let G be the semi-direct product Cp ok C4,
generated by two elements a and b such that ap = b4 = 1 and b−1ab = ak. Now take
S = {b, b−1, ab2, a2b2}, which consists of an inverse pair of elements of order 4 and two
involutions (as conjugation by b2 inverts a), and let X = Cay(G, {b, b−1, ab2, a2b2}).

Then X is 4-valent and connected, since 〈b, ab2〉 = G, and is also non-bipartite, just as
in case (d). We will show that X is prime and has arc-type 1 + 1 + (1 + 1).

First, by considering the vertices at distance 2 from the identity we see that up to re-
versal, the edges {1, b} and {1, b−1} lie in a single 4-cycle, namely (1, b, b2, b−1), while
each of the edges {1, ab2} and {1, a2b2} lies in no 4-cycle. In particular, it follows from
the latter observation that X is prime.

Also as before, the edges {1, b} and {1, b−1} lie in the same edge-orbit. On the
other hand, the edges {1, ab2} and {1, a2b2} lie in different edge orbits, because up to
reversal the edge {1, ab2} lies in four 5-cycles, namely those of the form (1, ab2, u, v, w)
with (u, v, w) = (a, b2, b), (a, b2, b−1), (akb, a−1, a2b2) and (a−kb−1, a−1, a2b2), while
the edge {1, a2b2} lies in only two 5-cycles, namely those of the form (1, a2b2, u, v, w)
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with (u, v, w) = (a−1, akb, ab2) and (a−1, a−kb−1, ab2). Hence the edge-type of X is
2 + 1 + 1.

This also implies that every automorphism of X preserves the set T = {x, a2b2x}
of all edges corresponding to left multiplication by the element a2b2 ∈ S, and hence
induces an automorphism of the subgraph obtained by removing those edges, namely
Cay(G,S \ T ) = Cay(G, {b, b−1, ab2}). By case (d), however, the latter subgraph is
a GRR, with automorphism group G, and so every such automorphism is given by right
multiplication by some element of G. It follows that G = Aut(X), and hence X is also a
GRR, and has arc-type 1 + 1 + (1 + 1).

Case (k): Arc-type 1 + 1 + 1 + 1.
For any integer n > 15, let G be the dihedral group Dn, generated by elements a and b

such that an = b2 = (ab)2 = 1, and take S = {b, ba, ba2, ba5}. Then since S consists of
four involutions and G is generated by b and ba, the graph X = Cay(G,S) is 4-valent and
connected. We show that X is prime and has arc-type 1 + 1 + 1 + 1.

First, the paths of length 2 in X starting at the identity vertex 1 are (1, b, aj) for j ∈
{−1,−2,−5}, and (1, ba, aj) for j ∈ {1,−1,−4}, and (1, ba2, aj) for j ∈ {2, 1,−3},
and (1, ba5, aj) for j ∈ {5, 4, 3}. By considering the final vertex of each of these, we
see that the vertex 1 lies in only two 4-cycles up to reversal, namely (1, b, a−1, ba) and
(1, ba, a, ba2). Hence the edges {1, b} and {1, ba2} lie in just one 4-cycle, while {1, ba}
lies in two 4-cycles, and {1, ba5} lies in no 4-cycles at all. In particular, X is prime, and
also X has edge-type 1 + 1 + 1 + 1 or 2 + 1 + 1, with each of {1, ba} and {1, ba5} lying
in different orbits from each other and from {1, b} and {1, ba2}.

Next, multiplying by b, we find that ba5b = a−5 plays the same role for the vertex b
as ba5 does for the vertex 1, namely that {b, a−5} is the only edge incident with b that lies
in no 4-cycle. Now consider the cycles of length 6 containing one of the paths (ba5, 1, b),
(a−5, b, 1) and (ba5, 1, ba2). An easy calculation shows there are precisely three 6-cycles
of the form (ba5, 1, b, u, v, w), namely with (u, v, w) = (a−1, ba4, a3), (a−1, ba4, a4)
and (a−1, ba3, a3), and similarly, there are three 6-cycles of the form (a−5, b, 1, u, v, w),
namely with (u, v, w) = (ba, a−4, ba−3), (ba, a−4, ba−4) and (ba2, a−3, ba−3), but there
are seven 6-cycles of the form (ba5, 1, ba2, u, v, w), namely with (u, v, w) = (a, ba3, a3),
(a, ba6, a4), (a, ba6, a5), (a2, ba3, a3), (a2, ba4, a3), (a2, ba4, a4) and (a2, ba7, a5).

In fact, up to reversal the edge {1, b} lies in 16 different 6-cycles altogether, while the
edge {1, ba2} lies in 20 different 6-cycles, but this takes more work to verify.

Both calculations show that the edge {1, ba2} cannot lie in the same orbit as {1, b}
under Aut(X), and it follows that X has edge-type and arc-type 1 + 1 + 1 + 1.

Case (l): Arc-type (1 + 1) + (1 + 1) + (1 + 1).
This is somewhat similar to case (g). Let p be any prime with p ≡ 1 mod 6, but this

time where p > 7, let k be a primitive 6th root of 1 mod p, with k3 ≡ −1 mod p, and
let G be the semi-direct product Cp ok C6, generated by two elements a and b of orders p
and 6 such that b−1ab = ak. Now take S = {b, ab2, a2b2, b−1, a−k2b4, a−2k2b4}, which
consists of the elements b, ab2 and a2b2 and their inverses, and let X = Cay(G,S). Then
clearly X is 6-valent and connected. We will show that X is prime, and has arc-type
(1 + 1) + (1 + 1) + (1 + 1), for all p.

First we note that {1, s} and {1, s}s−1 = {1, s−1} lie in the same edge orbit of X , for
each s ∈ S. Hence X has at most three distinct edge orbits.

Next, up to reversal the edge {1, b} lies in just two 4-cycles, namely (1, b, ab3, a−k
2

b4)
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and (1, b, a2b3, a−2k
2

b4), and multiplying by b−1 gives the two 4-cycles containing the
edge {1, b−1} as (1, b−1, a−k

2

b3, ab2) and (1, b−1, a−k
2

b3, a2b2). Each of the other four
edges incident with the vertex 1 is contained in only one 4-cycle (up to reversal), namely
one of the four just listed for {1, b} and {1, b−1}. Hence the orbit of the edges {1, b±1}
under Aut(X) is different from the orbit(s) of {1, s±1} for s = ab2 and s = a2b2.

Also the edge {1, ab2} lies in five 5-cycles, viz. those of the form (1, ab2, u, v, w) with
(u, v, w) = (akb, ak−1, a2b2), (akb, a−kb−1, a−k

2

b4), (a−k
2

b3, ab, b−1), (a−k+1, b2, b),
and (a−k

2

b4, ab3, b), while the edge {1, a2b2} lies in only four 5-cycles, namely those of
the form (1, a2b2, u, v, w) with (u, v, w) = (ak−1, akb, ab2), (a2kb, a−2kb−1, a−2k

2

b4),
(a−2k

2

b3, a2b, b−1) and (a−2k
2

b4, a2b3, b). Hence the orbit of the edges {1, (ab2)±1} is
different from the orbit of {1, (a2b2)±1}, and so the edge-type of X is 2 + 2 + 2.

But furthermore, if there exists an automorphism ofX that fixes the vertex 1 and swaps
b with b−1, then that automorphism must swap the two 4-cycles (1, b, ab3, a−k

2

b4) and
(1, b, a2b3, a−2k

2

b4) with the two 4-cycles (1, b−1, a−k
2

b3, ab2) and (1, b−1, a−k
2

b3, a2b2),
and hence must swap ab2 with a−k

2

b4 = (ab2)−1 and swap a2b2 with a−2k
2

b4 = (a2b2)−1.
Similarly, if if there exists an automorphism that fixes 1 and swaps ab2 with a−k

2

b4, then it
must swap the 4-cycle (1, b−1, a−k

2

b3, ab2) with the 4-cycle (1, b, ab3, a−k
2

b4), and hence
must swap b with b−1, and the same holds for a2b2 and a−2k

2

b4.
It follows that any automorphism that fixes the vertex 1 must either fix all its six neigh-

bours, or induce the triple transposition (b, b−1)(ab2, a−k
2

b4)(a2b2, a−2k
2

b4) on them. By
vertex-transitivity, the analogous thing happens at every vertex, and an easy argument then
shows that the stabiliser A1 in A = Aut(X) of the vertex 1 acts faithfully on its neigh-
bourhood, and therefore |A1| = 1 or 2.

Now suppose that |A1| = 2. Then |A| = |GA1| = 2|G|, and so G is normal in
A. Hence if θ is any non-trivial element of A1, then θ normalises G, and so induces an
automorphism of G = 〈a, b〉. Moreover, as θ fixes the vertex 1 and acts non-trivially on
its neighbourhood, we find that θ swaps b with b−1, and ab2 with a−k

2

b4 = (ab2)−1. In
turn, this implies that θ swaps a = (ab2)b−2 with a−k

2

b4b2 = a−k
2

, but then we find that
ak = (ak)θ = (b−1ab)θ = ba−k

2

b−1 = a−k, and so ak has order 2, contradiction.
Thus A1 is trivial, and Aut(X) = G, so X has arc-type (1 + 1) + (1 + 1) + (1 + 1).
Finally, X cannot be the Cartesian product of two smaller graphs that are relatively

prime, since those would have to be connected and vertex-transitive, and one of them would
have arc-type (1 + 1), which is impossible. Also X cannot be a Cartesian power of some
smaller VT graph, since its order 6p is not a non-trivial power of any integer. Hence X is
prime, as required.

Accordingly, we have infinitely many connected finite Cayley graphs with each of the
basic arc-types, and this completes the proof of Theorem 3.1 and Corollary 3.2.

For the benefit of the reader (and for possible future reference), we summarise some of
the details of the basic arc-types used here, in Table 1.

5 A consequence for zero-symmetric graphs
Another consequence of Theorem 3.1 is the following:

Corollary 5.1. For every integer d > 2, there exist infinitely many finite zero-symmetric
graphs (or GRRs) of valency d.
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Table 1: Summary of some Cayley graphs with the basic arc-types.

Arc-type Cayley graphs

m Cycle graphs Cn (n ≥ 5) for m = 2, and Cayley graphs
for PSL(2, p) via m conjugate involutions for m ≥ 3

(m+m) Bouwer graphs B(m, r, n) with n > 7 and r > 6

m+1 Thickened m-cover of C2n over a 1-factor
1+(1+1) 3-valent Cayley graph for Cp ok C4 (for prime p)
m+(1+1) Thickened cover of Cayley graph for Cp ok C4

1+(m+m) Thickened cover of Cayley graph for Cp ok C4

(1+1)+(1+1) 4-valent Cayley graph for Cp ok C6 (for prime p)
(m+m)+(1+1) Thickened cover of Cayley graph for Cp ok C6

1+1+1 3-valent Cayley graph for dihedral groups Dn

1+1+(1+1) 4-valent Cayley graph for Cp ok C4 (for prime p)
1+1+1+1 4-valent Cayley graph for dihedral groups Dn

(1+1)+(1+1)+(1+1) 6-valent Cayley graph for Cp ok C6 (for prime p)

This is not at all surprising, but appears to be new, in the sense that we cannot find the
statement or something similar in the literature on GRRs or zero-symmetric graphs. It is
shown in [5, Theorem 3.10.4] that there exists a GRR of valency d for the symmetric group
Sd+1 whenever the latter group can be generated by an ‘asymmetric’ set of d transpositions.
The latter happens for all d > 5, but gives only finitely many GRRs with given valency d.
On the other hand, it is clear that larger sets of involutory generators for dihedral or sym-
metric or other groups will give GRRs, even if this does not appear to have been explicitly
proved elsewhere.
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