
THE REVIEVV OF SOME DATA FLOW
COMPUTER ARCHITECTURES

INFORMATICA 1/87

UDK 681.32.02

Jurij šile and Borut Robič
Jožef Štefan Institute

Department of Computer Science and Informatics
Ljubljana

The article reviews same selected data flow camputer arhitectures.
Ali the architectures are designed far VLSI implementation to provide
large throughput, law power consunptloni and reduced size and weight.
Uhile some are in the phase of sloulation and VLSI chip floor-plan
contruction the others already ekhibit real VLSI implementation.

PREGLED IZBRANIH PODATKOVNO PRETOKOVNIH RAČUNALNIŠKIH ARHITEKTUR - V
eianku podajava pregled izbranih podatkovna pretokovnih računalniških
arhitektur. Nekatere arhitekurs so bodisi v fazi simuliranja oziroma
izdelovanja logifinih natirtov za VLSI vezja, druga' pa so ie implementi­
rane v VLSI tehnologiji.

Inbroduction

In spite of the conceptual break uith
previous coaputers, the harduare of the fifth
generation computers will be based on VLSI of
seaiconductor cooponents. Vet it is to be
expected, that the hardware of each type of the
fifth generation camputer will be much more
closely tailured to the application area than
it is the čase at present.

For a nuober of reasons, one of the most
promising architectural models is data flow
architecture. It is (lexlble and ektensible,
it has the potential for very high data thro-
ughputs, and it reflects, at harduare level,
the inherent parallelism of the processing.
Thus, the potential realm of use includes
problem solving i inference machine and intel-
ligent interface machine as it was proposed in
the JIPOEC project for fifth generation Compu­
ter systems.

The presence of some real data flow compu-
ters indicates that the state of the art in
data flow conputing has already passed initi-
al, purely.academic discussions.

In the article ue review some evisting data
llow computers from the architectural view
point. The presentation is not intended to be
thorough. Instead, we concentrate on similari-
ties and differences among the selected airchi-
tectures.

HanchBster data (low coaputar
The machine org

data llou ooaputar
nication organizati
bie-86D and is s
structure is a ring
to a host system vi
modules operate ind
iashion with pack
rate of 4.37 M pack
ned for the same i
her in the aatching
storage capacity,

anization o
Ceurd-85] i
on with tok
houn in F
of four
a an I/O BW
ependently
ets transfe
ets/second.
nstruction
unit. T
so that an

f the Hanchastar
s a packet commu-
en roatching CHo-
ig.1 . The basic
odules connected
itch module. The
in a pipelined

r red at a maxiiiiuiii
Paokets desti-

are paired toget-
his has limited
overtlov unit is

required for programs with large data sets.
Paired packets and those destined for unary
instructions, fetch the appropriate instruction
from the instruction stara, which contains the
nachine-code for the executing program. The
instruction is forwarded togethec with its
input data to the prooassing unit, where it is
executed. Output packets are eventually produ-
ced and transnit.ted back to toward to the
matching unit to enable subsequent instructi­
ons. The return path passas through the' I/O
switch module, which connects the 5ysteiii to a
host proosssor, and to the token queue, which
is FIFO buffer for smoothing out an even rates
of generation and consumption of packets.

10 Host (168 Kbvtes/second maM)
(14 Klokefis/second niax.)

token packcis

MalChing Unil

l /OS*ilch
lohen pâ r

packets

InsifuctlOr StOfO

executable pacitets

PfOcoss"tgL'i

Ifom tHost (168 KbytM/socond max)

(14 Ktol^ens/second tna«)

Fig.1. Manchester dataflow system structure.

62

The I/O switoh oiodule gives prlority to
input froffl the ring and selects the output
route by perlorming a deoode of certain marker
bits. It is organized as a simple two-by-tuo
cooaon bus swltch.

The token queue comprises three plpellne
bufier registers and a circular buffer memory.
The later has a capaclty of 32K packets, each
beeing 96-bit wide.

The aatching unit is based on a 1,2S MU
pseudoassociative oieoory uith six pipeline re-
gistere in the nain ring and two buffere
interfacing with the overflo« unit, The roemory
is used to store oatched packets while auaiting
their partners. Its associative operation is
achieved by accessing a parallel store using an
appropriate hash function. Recall, that pac­
kets destined for unary instructions do not
need to oatoh uith partners; instead, they pass
straight through the unit. The overflo« unit
handles packets that cannot be placed in the
parallel hash table becouse they encounter a
(ull hash entry. Overflow packets are stored
in linked lists in the ovarflou unit, uhich
contains a oicrocoded processor together uiith
data and pointer nemories.

The instruction store coraprises two pipeli­
ne buffar registers, a segment lookup table,
and a random-access instruction store to hold
the program, The segment field of the inconing
packet is used to. access the instruction froo
the store. The instruction is 70 bits uide,
The instruction is conblned uith a destination
fiald and the data iield of the inconing packet
and Is sent to the perocassing unit as a
'tA6-bit eiiecutable instruction packet,

The processing unit comprises five pipeli-
ned buffer registers, a special purpose prepro-
cessor, and a parallel array of up to 20
hoaogeneous oicrocoded funotion units uith lo-
cal buffer registers and cominon buses for input
and output, A soall nuober of instructions are
executed in the preprocessor but the iiiaJorlty
ara passed into one of the funotion units vla
the distributlon bus. Each funotion unit con­
tains a oicrocoded bit-slice processor with
input and output buffering, 51 internal regi­
sters, and 4 KU of uritable nicrocode inemory.
Instructions are enecued independently in their
allotted funotion unit, and the output is
oerged onto the arbitration bus and thence out
of the processing unit touard the I/O suitch.

In the nanohester archltacture a haruare
nashing schene is used to simulate the associa­
tive neaory uhich turns out to be Isss exBpen-
cive, Unfortunately, this scheme does not
produce very good results in terns of uaiting
tiso. In order to reduce the uaiting tirne, a
•ultiple aatching units scheoe is incorporated
in the EIHAN - EXtended MANchester data flou
coaputer CPatnaik-863,

NIT data flou ooaputor

The HIT data ilav ooaputar bases on a
static concept of data flou architecture CDen-
nis-B03 in uhich the instructions of machine
leval prograo are loaded into specific iiiermory
location in the nachine before conputation
begins, and only one instance of an instruction
is active at a tine.

Instructions are held in the local niesories
of the proovsalng alaaant PE, Each instruction
includes an ooeration code, spaces for operand
values, and destination fields that spacify
uhere resuls should be sent. Each PE is
equlpped to recognise uhich of the instructions
it holds havs been enabled for execution by
arrival of needed operand values, If an ena­
bled instruction calls for a scalar arithoetic
operation, the instruction, including its ope-
rands, is sent to a functlonal unit FU capable
of perforaing that operation. The array •a*ory
units AH are provided to hold arrays of data

PC

1
A__ _

..r n. s
o

0

PE

1

Hr
T A ^

^

fu

AM

0

o

o

AM

FU

1
A v

V

^

D(5ni«LincN
ROUTNC

fit ruMIomtUMt

Fig.2o The HIT data flou computer.

making up the data base of coiaputation, and are
accessible through the seaorv routing network.
Instruction eKecution in FU or AM ylelds result
packets each of uhich consiets of a data value
and 8 destination field that specifies the
targat instruction for the result packet. The
result packets are sent to PEs that hold the
target instruction through the distributlon
routing natuork. Other instructions, such as
those calling (or duplicata data values, for
boolean operations, and for simple tests, are
performed uithin the PE.

The current status of the HIT data flou
projeot ie that hardueire for the above conputer
architecture is under development. For this
sake, a data flou engineering model C0ennis-S33
consisting of eight processing units coupled by
a paket coaouniation nstuork built of tuo-by-t-
uo routers is designed for aoulating the de-
scribed architecture.

Data llou coaputar SIGHA-l

8ieHA-1 is a data flou oultiprocessor sy-

steo for soisntific conputations CShifflada-86].
The configuration o(the 5ysteci is depicted in
Fig.3. Four processing elenents PE and four
structure eleoents SE are connected by local
netuork and oalled a group. Sroups are connec­
ted by global nstuork. The purpose of using
hiorarchlcal netuork is to executQ prograns
afficiently by utillzlng prinoiples of locali-
ty.

Fig.3o Global configuratlon of the SIGHA-l,

The procassing slammnb consists of five
units, uith the units organized as a tuo-stage
plpellne as shoun in Fig.4. PE enecutes ali
Instructions except those that sianipulate
struoture Beaory. The buffar unit (B KU of AO
bits) is an Interface betueen the netuork and
the PE. The length of the incoaing packet is
88 bits. It is divided into tuo parts (top

63

48-bit and bottom *0-bit) and passes through'
the network as aonsecutive parts. The most
signifficant 8 blts are a network address, next
40 bits are tag, and the remalning 40 bits are
data type and value. Hhen there is no gaiting
packet in the buffer iiieinQry and the nent units
are not dealing with an other packet^ the
incooing packet bypasses this unit and proceeds
to the subsequent units. The (stoh unit is 16
KM, 40-bit-wide program memory. The link num-
ber carried by an incotning packet is used to
access the address o(an Instruotlon to be
letched. The operation field of the fetched
instruction /indicates an operation code and is
sent to the Bxecution unit. The destination
field of the fetched instruction gives addree-
ses of destination instructions Cwaiting for
the result) and is sent to the destination'
unit. The matching flags from the destination
field are sent to the matching unit. The
•atohlng unit is a 16KH, 80-bit-wide associati-
ve fflemory to find a partner packet of an
incooiing packet. The matching-flag indicates
whether the operation is unary or binary. When
it is a unary, the incoraing data packet is
bypassed to the execution unit. If the in­
struction is binary operation the incoming
packet is stored in the associative memory if
it is a first arrived packet of the two
operands. Otheruisei the matching unit succe-
eds to find a partner packet in the matching
aemory and sends both data of packet pair to
the executlon unit. The •Ksoutlon unit con-
sists of an ALU, a shift unit and a floatlng
point arithffletio unit. The word length is 32
bits. It receives an operation code from the
fetch unit and data from matching unit. The
destination unit nakes output packets by combi-
ning the destination addresses and results from
the execution unit.

JL
PBTCH
OIIT

KATCailS
DiriT

DESTimiOl
UIIT

"^V

PIRST
STACe

eiECtmoii
DIIT

SECOID
STAGB

used for the module at each stage of the global
netuork.

Judging from the performanpe of 1.35 MIPS
of the pratotype harduare for the benchoark
prograns, the performance of the next version
of a processor with CMOS LSI technology should
be about 1.? MIPS.

|iP07281-baaed data flow architaotura

The pPD7281 is the first VLSI device on
Silicon using data flou architecture CNEC-8S:].
ThB pPD72ai image pipeline processor is desi-
gned to be used as a peripheral processor with
a mini- or aicrocomputer serving as the host.
Fig.S shows a general system configuration
exafflple of uhich four pP07281s are used connec-
ted to the neaory in a ring shape with the
entlre ring interfacing with the host computer
Via a standard bus.

For the above architecture, NEC is develo-
ping a support chip HAGIC, nefflory Access and
General bus Interface Chlp. It handlee aH
packet flow between the pP07281s, the image
ffleaory, and the host processor.

/ \

I 8 I

I V I
I I
I 8 I
I I
I T I

I
I
• •
• •
I I

I I
I IHA6E I
I HENORV I
I I
•_—+•_—4.

II
•I -f-i • • — •

i I
H A 6 I C I

I I
I I
I I
I B I

I U • !•
HOST
CPU

ir

8 I •-
I
I
I

\ /

No. 4
PPD7281

II

No. 3
|iPD72ai

II

No. 2
PPD72S1

II

No. 1
)iPD72ai

II
—+1

Fi4.4. Structure of the processing element. Fig.S.)iPD7281-based data flcv architecture.

The atruotur« aleaent comprises 64KU,
35-bit-wide memory te store arrav data and a
control unit to nanage free «emory uords and
uaiting queue8. When an array is deolared in a
program, a contiguous area corresponding to the
array size is allooated in the structure memo-
ry. Once the uord is allooated, the used bit
of each uord in the area is turned on, Each
word has two other special bita. The presence
bit aeans that data has already been vritten in
the word. The waiting bit indicates that at
least one read request packet exists in the
uaiting queue. Hhen data is written in the
word the data is sent to the instructions
indicated by the walting packets.

A 10 by 10 crossbar is adopted for a looal
natuork. This is realized by bit slice ohip.
The global nctvork is organlzed as a nultistage
netuork CHavrie-863. The same orossbar chip is

The pPb72ai uses an internal circular pipe­
line and the powerful instruction set Ceilc-86tl
to allow high end immage processing. A data
flow architecture allows the processor to maxi-
Bize efficiency in a variety of multiprocessing
applications. As shoun in the block diagram in
Fig.6, the nPD7281 is formed by ten functional
blocksi the Input oontrollcr IC, the link table
LT, tha funotion tabl« FT, the address genera­
tor and flow oontraller A6&FC, the data acvir/
DH, the queue G, the processing unit PU, the
output fueue 08, the output controller OC, and
the refreeh eontroller RC.

Before any processing occurs, the host
processor down-loads the object code into the
LT and FT by using specially fornated input
packets. The contents of the LT and FT are
closely related to a data flou graph. The arcs
represent the entries in the LT uhlle the nodes
represent the entries in the FT.

64

Fig.6. Block diagram of tha pPD72B1,

prooaaaing aleaants (PEs). The PEs are allowed
to be functianally nonldentical in order to
capitalize the eKisting high speed architectu-
res for fixed signal processing algorithas.
Frequently usad operations inay be executed in
dedicated PEs having the appropriate hardware
structure. The I/O functions take plače in
speoial PEs called I/O processors. This is
oonvenient in signal processing applications,
beoouse signal sources and sinks lend to inlro-
duca specialized requirenents.

The control section schedules instruotions
lor the PEs using fiiced-format messages. Re-
oall, that initially ali the informatlon about
tha data flou graph of the application program
resides in the local menories of the PEs. Each
result packet carries the neccessary part of
this information to the control section where
it is temporarily stored in the activity store
until the destination operation may be schedu-
led for the execution. The eKecution is per-
foraed by sending an operation packet to one of
the PEs.

The aotlvlty atora contains the activlty
tenplates of those operations which ^-.Ave reoei-
ved at least one of the operands, Di:t, whi.ch are
not Echeduled for the eKecution. Conceptually,
tha activity store contains a representation of
tha active part of the data flow graph.

The contains of the result packet are used
by the updata unit for locating the activity
teaplate (of the destination operation). It
also contains the the address of a block in the

When a data packet enters the pPD7281, it
fetches fro« the LT the address of the instruc-
tion in FT, uaiting for the incoming data.
After the destination instruotion has been
fetched, the ASFC unit deteraines whether the
instruotion is unary or binary. If it is
unary, the operation packet, consisting of the
instruotion and the data is oomposed and sent
Via 9 to the PU. If it it binary, the ASFC
Stores the inooaing data to the 011 if it is the
first arrived operand for the instruotion.
Otheruise, it fetohes tha flrst operand from
the on and sends it together uith the incoming
packet and the instruotion to PU via a. The
result packet froa PU can either be sent out of
the pPD7281 <via LT, O, 09, and OC) or can be
used for further execution of the program graph
in the same processor.

The applications of the pPD7281-based data
flow architecture include digital image resto-
ration, data oonpression, and enhancement, pat-
tern recognition, radar and sonar processing,
FFTs, digital filtaring, speech processing, and
nueeric proessing.

DFSP - a dat« flow signal prooessar arohltectu-
r«

A block dlagraa of the DFSP arohitacture
CHartiao-S&] is shown in Fig.7. A bank cf
processing elesents constitutes tha •xaoution
unit, uhich parforas tha aotual digital signal
processing coaputation* and I/O operations.
Other parts of the architaotura fora a oontrol
••otion, which is essentially a data flovi
instruotion execution pipeline. In orther to
inorease conmunication bandwidth, data trans-
fers are separated physically froa executlon
control using a double bus architecture. Si­
gnal data is transfarred via tha shaded buses
of the figure, The unshaded buses are used for
operation and results packets, whioh do not
contain operand andrecult values, respective-

A host conputer is requlred to load the
application prograas of the DFSP. Programs are
ooded as saparata high lavel operations, which
are copied into the looal •••ories of the

11
ACTIVITV
STOHAGE

Fig.7. Block diagram of the DFSP architecture.

data storag«, where the value of the operand
has been stored. If the operand is the first
one, the update unit creates a new activity
teaplate and stores the result packet into it.
Otheruise, the result packet is stored in the
located activity template. Finally, it puts a
transfer coamand into the result queue.

After the rasult tranafar unit detects the
coaaand from the queue it transfers the updated
activity teaplate. Each activity template con­
tains a TRIGCER field whose value indicates the
nuaber of the arrived operands. The result

65

transfer unit decrenents the TRIGSER field of
the destination teoplate and checks for the
resulting value. If TRIGGER equals zero the
teaplate address iE put into the queue, sihce
the operation is exectable.

After the tetoh unit gets a teaplate ad­
dress (rom the queue, sends the operation
packet to an Idle PE, and puts a data transfer
coaaand into the data queue.

Finally, the data transfer unit initiates
the transfer of the operand data block fron the
data store to the PE.

The perforaance of the DFSP architecture
was evaluated on a deteroinistic discrete event
slaulator. The update unit has been the major
bottleneck in the simulated control section.
However, considerabl/ uniforn utilization of
the (four) processors has generally been achle-
ved. Also, a VLSI iaplementation of ths con­
trol section is under develcpuient.

DESTINATION
MEMORV

lOM)

MOUTIftt
KAM CHirS

PIANE COLUMN ROW

t 1 1
COMMUNICATIONS CMIP
• PACKET ROUTING

ANO FAULT TOLERANCE
COMUVISII

W)OCESSINC CHIP
• OPERANO FETCH
• DATA FI.OW SEOUENCING
• MSTRUCnON EKECirriON
• tENOOUTMSUlTS
pnocii visii

TEMPLATE
MEMORV

ITMI

MULTIPU
RAMCMPS

HDFH - Huges data flou •ultiprocacsor
The HDFN is a proposed high performance,

foult tolerant, high level language prograoina-
bls processor targeted for enbedded signal and
data processing applications CGaudlot-85]. The
HDFPI consists ' of one to hundreds identical
procasming alMants PEs connected by global
packet-swltching netuork. This netwark is a
three-diaensional bused-cube network as shaun
in Fig.8. Packet transmlssion proceeds via a
store-and-foruard protocol, uhich allows any PE
to transfer data to any other PE.

y^

Fi«.a.

1X1X1CONFICURATION

Ths HDFn Gubic bus interoonnatlon nat-
work.

Fig.9. Tha structure of the PE.

to another allways take the sane path. This
prinoipla, oalled single path routing, is requ-
Ired to preserve tha order of packets in
tlne-ordered data groups such as strings. Each
PE consists of four partsi ooaaunioation ohip
con, proiMssliio ohip PROČ, dastinatlon Basor/
DH, and t«aplat« Ma«ory TH. Tha Con receives
packets troa the routing netuork and either
forwards thea onto other PEs or sends thea to
Its attached PROČ. Uhen the PROČ receives a
packet, it datarnlnates uhether the packet has
enabled a teaplate to fire. If so, the tenpla­
te opcode and the operands stored in the TK are
fatched, coobined with the incooing packet,
uhich enabled the teaplate to fire, and sent to
ALU. Sioultaneously, the destination addresses
to uhich the result should be sent are fetched.
The ALU perforos the operation and the results
are aatched uith their destination address to
fora packets. The packets are sent either back
to the saoe PE or out into the routing netuork.
If the teaplate is not ready to fire, the
arriving paoket is storad in the TM. Since a
teaplate result aay naad to be sent to nultiple
destinations, there is additional destination
overflou storage in the DH to acconodate lists
of destinations. for a' node.

Siaulation results desonstrate high-perfor-
•ance operation uith high-.level language pro-
graoaabllity. For exaaple, the results of the
deterainistic siaulation of tha aachine shou
that a 64 proaessing eleaent aachine nay provi-
da real throughput of 6«̂ HIP6.

Each PE can execute the instruction set and
perfora the data flou sequencing and addres-
sing. ' Each PE has its oun local mBaory for
both prograa and data storage. There is no
global aeaory. The program, uhich consists of
data flou graph nodes, is allocated to the
local aeaories of the PEs at coapile tioe.
Uhen nodes are implenented in an architecture
they ara called teaplates. A teoplate consists
of an opcode, slcts for operands and destinati­
on pointers, uhich indicate the nodes to uhich
the results of the operation should be sent,
Each PE has a unique 9 bit address oorrespon-
ding to its position in the oube (plane,
coluan, rou). This allous up to 8 PEs per bus
for a aaxiaua configuration of 512 PEs. Hithin
each PE ara aultiple teaplates, each of uhich
has unique teaplate address. To iopleoent the
data flou nodel, the results of one teaplate
ara sent to another in the fora of packets.
Each paoket consists of a type field, a desti­
nation ' address, and data. The destination
address indioates the PE address and the tea­
plate address of the teaplate to uhich the data
is to be sent. Packets travelling froa one PE

PlH-0 - the datallov-based parallel inferenoe
•aohln«

The research and developaent of the paral-
lel inferenca nachine includes the data flou
aeohanisa to rapldly executa inference operati-
ons. The data flou eodal has also siailarity
to the logio prograoaing languages. E^ecution
of logio prograoB is parforaad in a goal driven
aanner) a olause in tha prograa is initiated
uhen a goal is given and returns the results to
the goal. The logio pr.ograas are ccopiled into
data flou graphs CBic-S43. PIH-D is an exaaple
arhiteoture to support parallel version KUl of
the kernal language for ICOT's fifth generation
ooBputers Clto-863.

PIM-O is, siailarly to S16HA-1, constructed
froa oultiple proaasslng eleaents PEs and
struotur« eecorles SHs interoonnected by a
netucrk.

Each PE has saveral stagas. The packets
transferred betueen these stages include result
packets and exeoutabla instruction packets. A
result paoket consists of three fields: identi-
fier, destination and the data. The identifier

66

to/froo Hetwork

1 Token Bua
^

Fig.10.

Instruotlon Bua

FQO: Pack«t Qu«ue Unlt
lOJ; Inatruetlon Control Unlt
APO: Atoole Processing Onlt
Configuration of the processing ele-

nent.

specifies the Invoked procedure instance to
which the result packet belongs. The destina-
tion specifies the destination instruction ad-
dress of the result paoket. It also specifies
Mhether the destined instruction receives a
single operand or two operanda. The data field
contains the operand data to be sent to the
instructuion. Fig,10 depicts the configuration
of each PE. Paokat ^uaue unit PSU is a FIFO
queue oeiiiory to store the result packsts froin
the token bus. Instruotlon oontrol unit ICU
receives the result paokets (roai PSU and checks
if the destination instructions are enecutable
or not. An Instruction is executable if it
receives a single operand, or i(the partner
operand is already in the operand aaaorv in the
ICU vhen it receives two operands. In the
later čase, the ICU searches in its operand
aeaory whether the partner operand exists or
not. If it does, the partner is removed from
the aeiaoryt otherwise, the result packet is
stored in the operand nemory. This searchlng
is perforaed associatively by hardvare hash
using the identlfier and the destination ad-
dress as the key field. If the instruction is
axecutable, the ICU fetches the instruction
code in its instruotlon aaaory and construots
an exeoutable instruction paoket and sends the
packet to the next stage, one of atoalo proces­
sing unita APUs Via the inatruotion bus. Ths
APU interprets the instruction packets and
eends result packets to the PSU in its PE or
other PEs, or sends structure aocess conand
packets to SHs via the token bus. The BMs are
responslble for the structure acoess conmands,
perform structure aanipulatlon operations, and
return results to tha destination specified by
the conaands.

Actual inpleaentation of the experifflental
oachine is currently beeing dsveloped. The
aachine includes fi PEs, 7 SHs, and one host
ooaputer used to aonitor or debug the s;̂ stein.
The APUs and Sds are Inplemented as micropro-
graa control units using bit-slice oioroproces-
eors or special harduare to reoognlze the data
tag. The ICUs are also microprograo controlled
to iapleaent hashlng harduare. A software
siaulator for OR-parallel and Concurrent Prolog
was developed. Perfornance evaluatlon results
froa the softwara sinulator lshow that about one
aillion head unifloations per seoond can be
achieved by eiiploiting parallelis«.

Sinos about
and uldespread res
ooeputer architec
ninated in nany de
ter systems, seve
in the process of
re.

The major lo
techniques uiti b
perfornance of
partlculary inpor
systeffis should b
in VLSI, and to
software techniqu
the hardware.

Conclusions
1970 there has been a groving
earch interest In data flcu
ture. This interest has oul-
signs for data-driven coapu-
ral of which have been or are
being implemented in hardva-
ng-terffl interest in dataflou
e in the construction ar.č
ultiprocessor systeiiis. It is
tant to knou how dataflow
e designed for implementation
be oertain that elfiotive
es are avaiable for utilizing

Referenoes
CBic-8A3 l..Bic, A data-driven model for paral-
lel interpretation of logio programs, Proo.
Int'1 Conf. Fifth Sen. Comp. Svstems, ICOT
(1984) 517-523.
CDBnnis-603 J.B.Dennis, Data flow supercompu-
ters, Computer 13 (11) (1980) A8-S6.
CDennis-83] J.B.Dennis, W.Y.-P.Lim, and W.B.Ac-
kerman, The MIT data flow engineerlng model,
Ini R.E.A.Mason, Ed. Information Processing
83, (Elsevier Science Puhlishers B.V., North-
Holland, 1983) 553-560.

C6audiot-8S] J.-L.Gaudiot, R.M.Vedder, G.K.Tuc-
kar, D.Finn, and M.L.Campbell, A distrtbuted
VLSI architecture for efficient signal and data
processing, IEEE Trans. Comp. 34 (12) (1985)
1072-1087.
C6urd-853 J.R.Surd, C.C.Kirkham, and I.Hatson,
The Hanchester prototype dataflou computer,
Coaa. ACH 28 (1) (1985) 34-52.
CHartimo-863 I.Hartimo, K.Kronl5f, O.Simula,
and J.Skytta, DFSPi A data tlo« signal proces-
sor, IEEE Trans. Comp. 35 (1) (1986) 23-33.
CIto-86] N.Ito, M.Kishi, E.Kuno, and K.Rokusa-
ua, The dataflow-based parallel Inference mac-
hine to support two basic languages in KL1, in;
J.V.Uoods, Ed. Fifth Generation Computer Arc-
hiteotures, (Elsevier Science Publishers B.V.,
North-Holland, 1986) 123-145.

CMEC-853 NEC Electronics, Inage pipeline pro-
oessor MP072810, Product Description (1985).
CMavrie-863 S.MavriB, B.hihovilovie, and P.Kol-
bezen, The interconneotion netvork in a »ulti­
processor syste>, Informatlca 10 (4) (1986)
44-50 (in Slovene).
CPatnaik-S63 L.n.Patnaik, R.GovindaraJan, and
N.SiRanadoss, Design and perforaance evaluation
of EXnANi an EXtended MANchester data flow
ooeputer, IEEE Trans. Comp. 3S (3) (1986)
229-244.

CRabie-863 B.Robiti and J.Sile, Classif ication
of new generation computer architectures, In-
formatioa 10 (4) (1986) 18-32 (in Slovene).
C8hiaada-863 T.Shlmada, K.Hiraki, K.Nishida,
and S.Sekiguohi, Evaluation of prototype data
flo« processor of the SIGMA-I for sclentiflc
computation, Proč. 13th Int'1 Syfflp. Comp.
Aroh., IEEE (1986) 226-234.
Ceilc-863 J.eilc and B.Robifi, Data flow archi­
tecture based processor, Informatica 10 (4)
(1986) 74-80 (in Slovene).

