THE REVIEW OF SOME DATA FLOW
COMPUTER ARCHITECTURES

UDK 681.32.02

INFORMATICA 1/87

Jurij Silc and Borut Robié

Jozef Stefan Institute

Department of Computer Science and Informatics
Ljubljana

The article reviews some selected data flow computer arhitectures.
All the architectures are designed for VLSI implementation to provide
large throughput, low power consumption, and reduced size and weight.
While some are in the phase pf simulation and VLSI chip floar-plan
contruction the others already exhibit real VLSI implementation.

PREGLED IZBRANIH PODATKOVNO PRETOKOVNIH RABUNALNIEKIH ARHITEKTUR - V
tlanku podajava pregled izbranih podatkovno pretokovnih ratunalniskih

arhitektur.

Nekatere arhitekure so bodisi v fazi simuliranja oziroma

izdelovanja logi¥nih nadrtov za VLSY vezja, druge pa so Ze implementi-

rane v VLSl tehnolagiji.

Introduction

In spite of the conceptual break with
previous computers, the hardware of the fifth
generation computers will be based on VLSI of
semiconductor components. Yet it is to be
expected, that the hardware of each type of the
fifth generation computer will be much more
closely tailored to the application area than
it is the case at present.

For a number of reasons, one of the most
promising architectural models is data flow
architecture. It is flexible and extensible,
it has the potential for very high data thro-
ughputs, and it reflects, at hardware level,
the inherent parallelism of the processing.
Thus, the potential realm of use includes
problee solving & inference machine and intel-
ligent interface machine as it was proposed in
the JIPDEC project for fifth generation compu-
ter systems.

The presence of some real data flow compu-

ters indicates that the state of the art in
data flow computing has already passed initi-
al, purely. academic discussions.

In the article we review some existing data
flov computers from the architectural view
point. The presentation is not intended to be
thorough. Instead, we concentrate on similari-
ties and differences among the selected acchi-
tectures.

Manchester data flow computer

The machine organization of the Manchester
dota flov cosputer C[Gurd-85] is a packet commu-
nication organization with token matching CRo-
bit-841 and 1is shown in Fig.1. The basic
structure is a ring of four wmodules connected
to a host system via an 1/0 switch aodule. The
modules operate independently in a pipelined
tashion with packets transferred at a maximum
rate of 4.37 M packets/second. Packets desti-
ned for the same instruction are paired taget-
her in the eatching wunit. This has 1limited
storage capacity, so that an overflow unit is

required for programs with large data sets.
Paired packets and those destined for unary
instructions, fetch the appropriate instruction
from the instruction store, which contains the
machine-code for Lhe executing program. The
instruction is forwarded together with its
input data to the processing unit, where it is
executed. Output packets are eventually produ-
ced and transmitted back to toward to the
matching wunit to enable subsequent instructi-
ons. The return path passas through the: 1/0
switch module, which connects the system to a
hast processor, and ta the token gqueue, which
is FI1FO buffer for smoothing out an even rates
of generation and consumption of packets.
1o Host (168 Kbyles/second max)
{14 Kiokens/3econe man)

token packets

s

Matching Unit
A y

r R R LR

tokan packets

oKen pa:r

O Swilch
packels

Instruction Store

executable packets

Processing Lnit

loken packets

trom Hos! {168 Kbytes/second max)
(14 Kiokens/second max.}

Fig.1. Manchester dataflow system structure.

The 1/0 switch wmodule
input from the ring and selects the output
route by pertorming a decode of certain marker
bits. It is organized as a simple two-by-two
cosmon bus switch,

The token queue coaprises three pipeline
buffer registers and a circular buffer memory.
The later has a capacity of 32K packets, each
beeing 94-bit wide.

gives priority to

The wmatching wunit is based an a 1.25 MW
pseudoassociative memory with six pipeline re-
gisters in the main ring and two buffers

interfacing with the overflow unit. The memory
is used to store matched packets while awaiting
their partners. 1lts associative operation |is
achieved by accessing a parallel stare using an
appropriate hash function. Recall, that pac-
kets destined for wunary instructions do not
need to eaatch with partners; instead, they pass
straight through the unit. The overflow unit
nhandles packets that cannot be placed in the

parallel hash table becouse they encounter a
full hash entry. Overflow packets are stored
in linked 1lists in the overflow unit, which

contains a microcaoded processor with
data and pointer memories.

The instruction store comprises two pipeli-
ne buffer registers, a segment lookup table,
and a random-access instruction store to hold
the program. The segment field of the incoming
packet is used to. access the instruction from
the store. The instruction is 70 bits wide.
The instruction is combined with a destination
field and the data field of the incoaing packet
and is sent to the perocessing unit as a
1646-bit executable instruction packet.

The processing unit comprises five
ned buffer registers,

together

pipeli-
a special purpose prapro-
cessor, and a parallel array of up to 20
hoaogeneous microcoded function units with lo-
cal buffer registers and common buses for input
and output. A small nuaber of instructiaons are
executed in the preprocessor but the amajority
are passed into one of the function units via
the distribution bus. Each function unit con-
tains a aicrocoded bit-slice processor with
input and output buffering, 51 internal regi-
sters, and & KW of writable microcode memory.
Instructions are execued independently in their
allotted function wunit, and the output Iis
serged onto the arbitration bus and thence out
of the processing unit toward the 1/0 switch.
In the Manchester architecture a harware
nashing scheme is used to simulate the associa-
tive gmemory which turns out to be less exepen-
cive. Unfortunately, this scheme does not
produce very good results in terms of waiting
time. 1In order to reduce the waiting time, a
sultiple wamatching units scheme is incorporated
in the EXHAN - EXtended MANchester data {low
computer CPatnaik-861.

MIT data flov coaputer

The MIT data {low computer bases on a

static concept of data flow architecture L[Den-
nis-803 in which the instructions of wmachine
level prograam are loaded into specific meramory

location in the wmachine before computation

begins, and only one instance-of an instruction

is active at a time.
Instructions are held in the local memories
of the processing e¢lesent PE. Each instruction

{ncludes an ooeration code, spaces for opecrand
values, and destination fields that specify
where resuls should be sent. Each PE s

equipped to recognise which of the instructions
it holds have been @anabled for execution by
arrival of needed operand values. If an ena-
bled instruction calls for a scalar aritheetic
operation, the instruction, including its ope-
rands, is sent to a functional unit FU capable
of performing that operation. The array aesory
units AM are provided to hold arrays of data

62

cesuit
on

operotion signet
pTNats pothle
PE Fu o)
o AM °
MERICAY ° e
° [ROITNG L4
DAY ° MENWORX
L aAM °
k PE Fu r-o‘
A
PE Procosanq Elomont
FU Funtianot Ut
At Amoy tlemory
Fig.2., The ®IT data flaw coaputer.
making up the data base of computation, and are
accessible through the sesory routing network.

Instruction execution in FU or AM yields result
packets each of which consists of a data value

and & destination field that specifies the
target instruction for the result packet, The
result packets are sent to PEs that hold the
target instruction through the disteibution

routing netwvork. Other instructions, such as

those calling for duplicate data values, for
boolean operations, and for simple tests, are
perforned within the PE.

The current status of the MIT data flow

project is that hardware tor the above computer
acchitecture i{s under development. For this
sake, a data flow engineering model [Dennis-831
consisting of eight processing units coupled by
a paket communiation network built of two-by-t-

wo rauters is designed for emulating the de-
scribed architecture.
Data flov cosputer SIGMA-1
816MA-1 is a data flow multiprocessor sy~

steas for scientific coamputations [Shimada-841.
The contiguration of the systeam is depicted in
Fig.3. fFaour processing elements PE and four
structure elements SE are connected by local
network and called a group. Groups are connec-
ted by global network, The purpose of using

hierarchical network 1is to execute programs

:tticlently by utilizing principles of 1locali-
Y.
PE SE PE SE PE SE PE SE

I N N N

LOCAL NETWORK LOCAL NETWORK

~ —

GLOBAL NETWORK

Fig.3. Global configuration of the SIGHA-4.
The processing elemsnt consists of five
unite, with the unite organized as a two-stage

pipeline as shown in Fig.4. PE executes all
instructions except those that manipulate
structure wmeamory. The buffer unit (8 KW of 40
bits) is an interface between the network and
the PE. The length of the incoming packet is
88 bits., It is divided into two parts (taop

48-bit and bottom 40-bit) and passes through’
the netwark as consecutive parts. The nmost
signifficant 8 bits are a network address, next
40 bits are tag, and the remaining 40 bits are
data type and value. When there is no waiting
packet in the buffer memory and the next units
are not dealing with an other packet; the
incoming packet bypasses this unit and proceeds
to the subsequent units. The fetch unit is 146
KW, 40-bit-wide program memory. The link num-
ber carried by an incoming packet is used to
access the address of an instruction to be
fatched. The operation {field of the fetched
instruction indicates an operation code and is
sent to the execution unit. The destination
field of the fetched instruction gives addres-
ses of destination instructions (waiting for
the result) and is sent to the
unit. The matching flags from the destination
field are sent to the matching wunit. The
satohing unit is a 16KW, 80-bit-wide associati-
ve memory to find a partner packet of an
incoming packet. The matching-flag indicates
whether the operation is unary or binary. When
it is a wunary, the incaoming data packet is
bypassed to the execution wunit. If the in-
struction is binary operation the incoming
packet is stored in the assoclative memory if
it is a {first arrived packet of the two
operands. Otherwise, the matching unit succe-
eds to ‘find a partner packet in the matoching
aemory and sends both data of packet pair to
the execution wunit. The execution unit con-
sists of an ALU, a shift unit and a . floating

point arithaetic unit. The word length is 32
bits. It receives an operation code fram the
fetech unit and dats from matohing unit. The

destination wunit makes autput packets by combi-
ning the destination addresses and results from
the execution unit.

BUPFER
T
r._-—I_W PIRST
'STAGE
PETCR WATCHING
T] it
T
SECOND
DESTINATION EXECOTION | cy\ip
it (i) 13

L__T_—J

Fig.4. Structure of the processing element.

The structure elesent comprises S4KH,
35-bit-wide memory to store array data and a
control unit to manage {ree mesory wvords and
vaiting queues. When an array is declared in a
program, a contiguous area corresponding to the
size is allocated in the structure memo-

array
ry. Once the word is allocated, the wused bit
af each word in the area is turned on. Each
vord has two other special bits. The presence

bit means that data has already been written in

the word. The walting bit indicates that at
least one read request packet exists in the
vaiting queve. When data {is written in the
vord the data is sent to the instructions

indicated by the waiting packets.

A 10 by 10 crossbar is adopted for & local
nestvork. This is realized by bit slice chip.
The global network is organized as a multistage
netvork CMavrit-8461. The same orossbar chip is

destination

63

used for the module at each stage of the global
netuack.

Judging froa the performance af 1.35 MIPS
of the prototype hardware for the benchmark
programs, the performance of the next version
of a processor with CMOS LSI technology should
be about 1.9 MIPS. ’ '

uPD7281-based data flov architecture

The pPD7281 is the first VLSl device on
silicon wusing data f{low arghitecture CNEC-8%5],
The pPD7281 image pipeline processor is desi-
gned - to be used as a peripheral processor with
a mini- or microcomputer serving as the host.
Fig.S5 shows a general system configuration
evample of vhich four puPD7281s are used connec-—
ted to the memory in a ring shape with the
entire ring interfacing with the host computer
via a standard bus.

For the above architecture, NEC is develo-
ping a support chip MAGIC, Memory Access and
6eneral bus Interface Chip. It handles all
packet flow between the uPD7281s, the image
memory, and the host processor.

/I \ + +
/ \ [+)
! \ [[N]
1 I LI] L O
]] [| [} I
8 ! [| I No. 4 |
]) [} 1 pPD72811
181 r——————p (I 1 '
! 1 ! o [L et 2
[A | 1 IMAGE 1 [| [}]
] 1)V REMORY) (| L
181]] [| I . |
1 i L ammiet s St 4 1 Il No. 31
171 (K} [} 1 pPD72341
1 | + + + 4=y]]
1E t |} L
] ‘ot HAGIC 1 i
I8 te—s : | L A A 3
1 1 [} | ! !
1 1 + + -t 1 No. 21
1 [} [] 1 uPOT2841
1 i A ettt 4 11 1 !
] 1 1 1 [| [e
! +=e=es HOST | [| (R
1 U +===+ CPU | 11 Lt 2 S e
| 1 1 | [| 1]
181 P ——— [| ! Mo. 1)
[}] [] | pPD72811
1 ' (I]) 1
1 1 11 L e
\ / [] n
\ / [+]
N/ + - +

Fig.5. pPD7281-based data flow architecture.

The pPD7281 uses an internal circular pipe-
line and the poverful instruction set L8ilc-851
to allow high end immage processing. A data
flow architecture allows the processor to maxi-
mize efficlency in a variety af multiprocessing
applications. As shown in the block diagram in
Fig.4, the uPD7281 is formed by ten functional
blocka: the input controller IC, the link table
LY, the funotion table FT, the address genera-
tor and flow controller AGAFC, the data esesory

DM, the gueus @&, the processing unit PU, the
output queue 08, the output controller 0C, and
the refresh controller RC.

Befare any pracessing occurs, the host
processor down-loads the object code into the
LT and FT by using specially formated input
packets. The contents of the LT and FT are
closely related to a data flow graph. The arcs

represant the entries in the LT while the nodes
represent the entries in the FT.

rs Z . v
[1c 2 oc |s
< F 2
e
oa
RC P 2
PU | ® =
‘vl
! '
75
LT ’T
aagsrc [} |,
b %
< p
‘/r37 7 "
e s> om
R AN
FT 54
Fig.4. Block diagram of the puPD7281,
When a data packet enters the puPD7281, it

fetches from the LT the address of the instruc-
tion in FT, waiting for the incoming data.
After the destination instruction has teen
fetched, the AGFC unit determines whether the
instruction i unary or binary, It it is
unary, the operation packet, consisting of the
instruction and the data is composed and sent
via @ to the PU. 1f it is binary, the AGFC
stores the incoming data to the DM if it is the

first arrived operand for the instruction.
Othervige, it fetches the (first operand f{rom
the DM and sends it together with the incoming

packet and the instruction to PU via @. The
result packet from PU can either be sent out of
the uPD7281 (via LT, @, 0Q, and OC) ar can be
used for further execution of the program graph
in the same processor.

The applications of the pPD7281-based data
flow architecture include digital image resto-
ration, data compression, and enhancement, pat-
tern recognition, vadar and sonar processing,
FFTs, digital filtering, speech processing, and
nuaeric proessing.

DFSP - a data flov signal processor architectu-
re .

A block diagraam of the DFS8P architecture
CHartimo-84) is shown in Fig.7. A bank of
processing eleaents constitutes the exscution
unit, wvhich performss the actual digital signal
processing computations and 1/0 operations.
Other parts of the architecture faorm a ocontrol
section, vhich 1is essentially a data flow
instruction execution pipeline. In oarther to
increase communication bandwidth, data trans-
fers are separated physically froe execution
control wusing & double bus architecture. Si-
gnal data is transferred via the shaded buses
of the figure., The unshaded buses are used for
operation and results packets, which do not
contain operand and-result values, cespective-
ly.

A host computer is required to load the
application programs of the DFSP. Programs are
coded as separate high level operations, which
are copied into the 1local aesmories of the

64

Jcall, that initially all the information

processing elements (PEs). The PEs
to be functionally nonidentical
capitalize the existing high speed architectu-
res for {fixed signal processing algarithas,
Frequently used operations may be executed in
dedicated PEs having the appropriate hardware
structure. The I/0 functions take place in
special PEs called I1/0 processors. This is
oconvenient in signal processing applications,
becouse signal sources and sinks tend to intro-
duce specialized requirements.

The control section schedules
the

are allowed
in order to

insteuctions
PEs using fixed-format messages. Re-
about
data flow graph of the application program

for

the

resides in the local memories of the PEs., Each
regult packet carries the neccessary part of
this information to the control section where

it ig temporarily stored in the activity store
until the destination operation may be schedu-
led for the execution. The execution is per-
formed by sending an operation packet to one of
the PEs.

The activity store contains the activity
templates of those operations whick have recei-
ved at least one of the operands, but which are
not scheduled for the execution. Conceptually,
the activity store contains a representation of
the active part aof the data flow graph.

The contains af the result packet are wused
by the wupdate unit for locating the activity
template (of the destination operation). It
also contains the the address of a block in the

10

1

BANK OF
PROCESSING
ELEMENTS
N
UPDATE FETCH
UNIT - umT
RESULY DAlA
TRANSFER TRANSI (R
uniy
QATA 5
STORAGE z
\L //
ACTIVITY
STORAGE

Fig.7. Block diagram of the DFSP architecture.

data storage, where the value

of the operand
has been stored.

1t the operand is the first
one, the update unit creates a new activity
template and stores the result packet into it.
Otherwise, the result packet is stored in the
located activity template. Finally, it puts a
transfer command into the result queue.

After the result transfer unit detects the
command f{rom the queue it transfers the updated
activity template. Each activity template con-
tains a TRIGGER field whose value indicates the
nuaber of the arrived operands. The result

unit decrements the TRIGGER field of

and checks for the
TRIGGER equals zecro the
queue, since

transfer
the destination template
resulting value. 1f
template address is put into the
the operation is exectable.

Atter the fetch unit gets a template ad-
dress from the queue, sends the operation
packet to an idle PE, and puts a data transfer
cosamand into the data queue.

Finally, the data transfer unit initiates
the transfer of the operand data block from the
data store to the PE. .

The perforsance of the DFSP architecture
vas evaluated on a deterainistic discrete event
sisulator. The update unit has been the major
bottleneck in the simulated control section.
However, considerably wuniform wutilization of
the (four) processors has generally been achie-
ved. Also, a VLSI isplementaticn of the con-
trol section is under development.

HDFN - Huges data flow sultiprocessor

The HDFN is a proposed high performance,
foult tolerant, high level language progcamma-
ble processor targeted for embedded signal and
data processing applications (Gaudiot-851. The
HDFM consists of one to hundreds identical
processing elements PEs connected by global
packet-switching network. This network is a
three-dimensional bused-cube network as shawn
in Fig.8. Packet transaission proceeds via a
store-and-forward protocol, which allows any PE
to transfer data to any other PE.

o -
= el
"'/I/ — .

IXIXI CONFIGURATION

work.

Fig.8. The HDFM cubic bus interconnetion net-

Each PE can execute the instruction set and
perform the data flow sequencing and -addres-
sing.’ Each PE has its own local memory for
both . program and data storage. There is no
global memory. The program, which consists of
data flow graph nodes, is allocated top the
local memories of the PEs at compile tinme.
When nodes are implesmented in an architecture
they are called templates. A template consists
of an opcode, slaots for operands and destinati-
on pointers; vhich indicate the nodes to which
the results of the operation should be sent.
Each PE has a unique 9 bit address
ding to its position in the ocube (plane,
caluan, row). This allows up to 8 PEs per bus
for a saximua configuration of 512 PEs.
each PE are aultiple templates, each of
has unique teeplate address.
data flov model, the results of one template
are sent to another in the form of packets.
Each packet consists of a type field, a desti-
nation - address, and data. The destination
address indicates the PE address and the tea-
plate address of the template to which the data
ig to be sent. Packets travelling from one PE

which
To impleaent the

correspon-

Within-

65

PLANE COLUMN ROW

!

COMMUNICATIONS CHIP
¢ PACKET ROUTING
AND FAULT TOLERANCE

COM (+ L.SIi

!

DESTINATION
MEMORY PROCESSING CHIP E:m
(DM} * OPERAND FETCH (™)
© DATA FLOW SEQUENCING
* INSTRUCTION EXECUTION
ULTIRE © SEND OUT RESULTS
MULTIPLE
RAM CHIPS PROC (T VL) RAM CHIPS
Fi9g.9. The structure of the PE.
to another allways take the same path. This
principle, called single path routing, is requ-
ired to preserve the order of packets in
time-ordered data groups such as strings. Each

PE consists of four parts: comsunication chip
CoM, prooessi chip PROC, destination aeesary
DM, and tesplate assory TM. The COM receives

packets from the routing network and either
forwards thes onto other PEs ocr sends thea to
its attached PROC. When the PROC receives a
packet, it determinates whether the packet has
enabled a template to fire. If so, the templa-
te opcode and the operands stored in the TM are
fetched, combined with the incaming packet,
which enabled the template to fire, and sent to
ALU. Simultaneously, the destination addresses
to which the result should be sent are fetched.
The ALU perfores the operation and the results
are wmatched with thelir destination address to
form packets. The packets are sent either back
to the same PE or out into the routing network.
It the template is not ‘ready to {ice, the
arriving packet is stored in the TM. Since a
template result may need to be sent to wmultiple
destinations, there 1is additional destination
overflow storage in the DM to accomodate lists
of destinations for a' node.

Simulation results demonstrate high-pecfor-
mance operation with high-level language pro-
grammability. . For exasaple, the results of the
deterainistic simulation of the machine show
that a 44 processing element aachine may provi-
de real throughput of &4 MIPS,

PIN-D ~ the dataflov-based parallel 1n!nrodoq
aachine

The research and development of the paral-
lel inference machine includes the data flow
mechanism to rapidly axecute inference operati-
ons. The data flow model has also similarity
to the logic programming languages. Execution
of logic programs is parformed in a goal driven
mannerj a clause in the program is initiated
when a goal is given and returns the results to
the goal. The logic prograss are compiled into
data flov graphe [Bic-843. PIN-D is an exasple
arhitecture to support parallel version KU1 of
the kernal language for 1C0T’s fifth generstion
coeputers Clto-841.

PIN-D is, similarly to SIGMA-1, constructed
froa - aultiple proocessing elesents PEs and
structure aesories 5SMs interconnected by a
netwvork.

Each PE has several stages. The packets
transferred betveen these stages include result
packets and executable instruction packets. A
result packet consists of three fields: identi-
fier, destination and the data. The identifier

to/from letwork

r Token Bus
(1 >
~r A\ il
nu
o AR Ay
b{e] 4
B! Ry

Instruction Bus

RQU: Packet Queue Unit
IQJ: Instruction Control Unit
APU: Atomic Processing Unit

Fig.10. <Configuration of the processing ele-
ment.

specifies the invaked "pracedure instance tao
which the result packet belongs. The destina-
tion specifies the destination instruction ad-
dress of the result packet. 1t also specifies
vhether the destined instruction receives a
single operand or two operands. The data field
contains the operand data to be sent to the
instructuion. Fig.10 depicts the configuration
of each PE. Packet queue unit POU is a FIFO
queue aemory to store the result packets from
the token bus. Instruction contrel wunit ICU
receives the result paockets from PQU and checks
if the destination instructions are executable
or not. An instruction is executable if {t
receives a single operand, or if the pactner
operand is already in the operand aemory in the
ICU when it receives twoc operands. In the
later case, the 1ICU searches in its operand
sesory whether the partner operand exists or
nat., I1f it does, the partner is removed from
the memoryi othervise, the result packet Iis
stored in the operand memory. This searching
is performed assoclatively by hardware hash
using the identifier and the destination ad-
dress as the key field. If the instruction |is
erxecutable, the ICU fetches the instruction
code in its instruction mesory and constructs
an executable instruction packet and sends the
packet to the next stage, one of atoaic proces-
sing units APUs via the instruotion bus. The
APU interprets the instruction packets and
sends result packets to the PQU in its PE or
other PEs, or sends structure access comand
packets to 8Ms via the token bus. The 8Ms are
cesponsible for the structure access commands,
perform structure manipulation operations, and
return results to the destination specified by
the commands.

Actual implementation of the experimental
machine is currently beeing developed. The
@achine includes 8 PEs, 7 SMs, and one host
computer used to monitor or debug the systen.
The APUs and 8Ms are implesmented as micropro-
gras control units using bit-slice amicroproces-
sors or special hardware to recagnize the data
tag. The ICUs are also microprogram controlled
R0 iaplement hashing hardware. A sgoftware
simulator for OR-paraliel and Concurrent Prolog
vas developed. Performance evaluation results
froa the software sinulator Bhow that about one
million head unifications per second can be
achieved by exploiting parallelisa.

Conclusions

Since about 1970 there has been a growing
and videspread research interest in data flaw
cosputer architecture. This interest has cul-
minated in many designs for data-driven campu-
ter systems, several of which have been or are
in the process of being implemented in hardwa-
re.

The major long-term interest in dataflow
techniques will be in the construction and
performance of wmultiprocessor systems. It isg
particulary important to know how dataflow
systems should be designed tfar implementation
in VLS1, and to be certain that effictive
software techniques are avaiable for utilizing
the hardwvare.

References

[Bic-841 L.Bic, A data-driven model for paral-
lel interpretation of 1logic programs, Proc.
Int’}l Cont. Fifth Gen. Comp. Systems, 107
(1984) 517-523,

CDennis-801 J.B.Dennis, Data flow supercompu-
ters, Computer 13 (11) (1980) 48-S&4.

[Dennis-831 J.B.Dennis, W.Y.-P.Lim, and W.B.Ac-
kerman, The M1T data {low engineering model,
int R.E.A.Mason, Ed. Information Processing
83, (Elsevier Science Publishers B.V., North-
Holland, 1983) 553-560.

CGaudiot~85] J.-L.Gaudiot, R.W.Vedder, G.K.Tuc~
ker, D.Finn, and MN.L.Campbell, A distributed
VL81 architecture for efficient signal and data
processing, 1EEE Trans. Comp. 34 (12) (1985)
1072-1087.

C6urd-851 J.R.Gurd, C.C.Kirkham, and l.Watson,
The Manchester prototype dataflow computer,
Comm. ACM 28 (1) (1985) 34-52,

CHartimo-861 1.Hartimo, K.Kronldf, 0.Simula,
and J.Skyttd, DFSP: A data tlow signal proces-
sor, IEEE Trans. Comp. 35 (1) (1984) 23-33,

CIlto-846] N.Ito, M.Kishi, E.Kuno, and K.Rokusa-
wa, The dataflow-based parallel inference mac-
hine to support two basic languages in KL4, in:
J.V.Woods, Ed. Fifth Generation Computer Arc-
hiteotures, (Elsevier Science Publishers B.V.,
North-Holland, 1984) 423-145,

CNEC-85]1 NEC Electronics, Image pipeline pro-
cessor uPD72810, Product Description (4985).

CMavri&-861 S.Mavril, 8.MihoviloviB, and P.Kol-
bezen, The interconnection network in a multi-
processor systea, Informatica 410 (4) (1988)
44~50 (in Slovene).

CPatnaik-863 L.M.Patnalk, R.Govindarajan, and
N.8.Ramadoss, Design and performance evaluation
of EXMAN: an EXtended MANchester data flow
cosputer, lEEE Trans. Comp. 35 (3> (19842
229-244.

CRobid-84] B.Robi# and J.Bilc, Classification
of new generation computer architectures, 1In-
formatica 10 (4) (1984) 18-32 (in Slovene).

(8himada-861 T.Shimada, K.Hiraki, K.Nishida,
and S.8ekiguchi, Evaluation of prototype data
flov processor of the SIGMA-1 for scientific
computation, Proc. 13th Int‘l Symp. Comp .
Arch., lEEE (1986) 224-234.

C8ilc-841 J.#ilc and B.Robi#, Data flow archi-
tecture based processor, Informatica 410 (&)
(1984) 74-80 (in Slovene),

