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Abstract. Non-invasive healthcare monitoring systems based on machine learning and wearable sensors hold
the future of smart health. Ubiquitous use of smartphones makes them an excellent choice for designing or
developing cost-effective and portable smart health monitoring systems. A non-invasive blood-glucose estimation
system is proposed that utilizes a smartphone camera for data acquisition and generates an output using a
machine-learning algorithm. The focus of the system is to (1) acquire PPG signals using a smartphone, (2)
classify valid and invalid signals, (3) estimate the blood-glucose levels from the valid signals by applying a
subspace KNN classifier. The system requires no re-calibration or individually dependent calibration. Its overall
training accuracy is 86.2% and the accuracy of the invalid single-period classification is 98.2%.

Keywords: Non-invasive blood-glucose estimation, Smartphone, Photoplethysmography (PPG), Healthcare
based on machine learning, Subspace KNN classifier

NEINVAZIVNA METODA OCENJEVANJA RAVNI KRVNEGA
SLADKORJA S POMOČJO PPG NA PAMETNEM TELEFONU

IN PODPROSTORSKE KNN

Prihodnost zdravstvenih sistemov je v neinvazivnih sis-
temih za spremljanje zdravja na osnovi nosljivih senzor-
jev in strojnega učenja. Vseprisotna uporaba pametnih
telefonov je odlična priložnost za načrtovanje in razvoj
prenosnih in stroškovno učinkovitih pametnih sistemov
za spremljanje zdravja. Predlagamo neinvazivno metodo
ocenjevanja ravni krvnega sladkorja, ki za pridobivanje
podatkov uporablja kamero pametnega telefona in po-
daja rezultate na osnovi strojnega učenja. Poudarek
članka je na: (1) pridobivanju fotopletizmografičnih
(PPG) signalov s pametnim telefonom, (2) razvrščanju
signalov v veljavne in neveljavne, (3) oceno ravni
krvnega sladkorja z uporabo podprostorskega klasifika-
torja KNN. Predlagani sistem ne zahteva ponovne kali-
bracije ali kalibracije v odvisnosti od posameznika.
Njegova skupna natančnost dosega 86,2%, natančnosti
klasifikacije veljavnosti period signalov pa 98,2%.

1 INTRODUCTION

Diabetes is one of the most widely spread chronic
illnesses/diseases caused by imbalance in glucose con-
centration in the body. This instability can lead to serious
problems, e.g. cardiovascular diseases, kidney failure,
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blindness, etc. [1]. It is expected that by 2030, diabetes
will use up to 11.6% of the total expenses made in the
healthcare domain [2]. Hyperglycemia is a condition
in which the glucose level is higher than 180 mg/dl,
whereas hypoglycemia is a condition caused by a very
low glucose level, i.e. lower than 70 mg/dl [3], [4].
There is no cure for diabetes so far but monitoring under
the glucose level regularly helps in keeping diabetes in
control [5], [6], [7]. Self monitoring is one of the most
feasible and helpful/useful solutions to control diabetes.

As explained in our recent work [8], glucose monitor-
ing can be grouped into invasive, minimally invasive and
non-invasive. Conventional glucose monitoring requires
a blood sample by pricking the fingertip of the patient
with a needle/lancet making frequent monitoring incon-
venient, painful, uncomfortable and costly for the users
[9], [10]. Non-invasive glucose monitoring is the focus
of the current and future research since it is pain-free,
risk-free, convenient and comfortable for users [11].
Artificial intelligence and expert systems are being used
in order to make such monitoring systems accurate and
efficient [12], [13].

Photoplethysmographic (PPG) signals are widely used
physiological signals for basic vitals monitoring [14].
Light is illuminated on a certain part of the body. A part
of that light is absorbed by the body and the other part is
reflected back. The amount of the reflected light varies
with the varying amount of blood flowing through that
body part and can be used to acquire the PPG signals
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[15]. Conventionally, the PPG signals are obtained by
using wearable pulse oximeters on different parts of the
human body, e.g. fingertip, ear, wrist, etc. [16].

Wearable sensors with the support of smartphones can
be used to track the basic vitals. They acquire the data
from the body and smartphones process the data [17],
[18]. Instead of using these two components separately,
we combine them by using a smartphone camera for
data acquisition. The smartphone camera with its LED
on captures a video of the fingertip that is used to extract
the PPG signals.

As mentioned earlier, machine learning is being ex-
tensively used in the healthcare domain for analyzing
clinical data, estimating basic human vitals and manag-
ing diseases, etc. [19], [20]. In our system, the blood-
glucose levels are estimated by using a machine-learning
algorithm for the PPG signals acquired by using a
smartphone camera. To the best of our knowledge, the
existing works do not make use of machine-learning
approaches to classify the valid and invalid PPG signals,
while in our work we first separate the invalid data from
the valid signals and them classify valid signals into
two blood-glucose groups. To acquire the PPG signals,
the existing systems utilize a certain hardware, e.g. a
finger clip and laser light, whereas our system uses only
smartphone needing no individually-based calibration.
With this very convenient and non-invasive system, a
user can learn if his/her blood-glucose level does not
fall into a normal group. Then he/she can further get
on exact value using an invasive method. Our system
monitor on improved accuracy with the smallest possible
number of features. Its main contributions on:

• Designed and developed cost-effective non-invasive
blood-glucose estimation system is of a high accu-
racy and robustness.

• The used machine-learning classification algo-
rithms differentiate between the valid and invalid
PPG signals.

• The used machine-learning classification algo-
rithms classify the valid signals into two blood-
glucose groups.

• The system effectiveness is proven by comprehen-
sive and solid experimental validation.

The rest of the paper is organized as follows. Section
2 describes the proposed system. The results obtained
using the proposed system are explained in section 3.
Section 4 provides a discussion. Section 5 concludes
the paper.

2 DESCRIPTION OF THE PROPOSED
SYSTEM

To estimate the blood-glucose groups non-invasively, the
system uses smartphone PPG signals combined with

Table 1. Blood-glucose groups
Groups Blood Glucose

Ranges (mg/dl)
G1 70-100
G2 101-130

Figure 1. Flowchart of the proposed system.

machine-learning algorithms, such as Bagged Trees,
RUS Boosted Trees, Subspace KNN and Decision Trees.
A flowchart of the proposed system is shown in Fig.
1. The blood-glucose scale level from 70-130 mg/dl is
divided into two groups shown in Table 1. The system
classifies the PPG data from the smartphone into three
groups, i.e. a group of invalid data (G0) and two groups
of valid data (G1 and G2).

2.1 Signal Acquisition
A smartphone camera with a frame rate of 28 fps

(sampling rate 28 Hz) is used to record a 30-40 seconds
long video of the left hand index finger. During the
recording phase, the fingertip covers both the flash
and the camera. The reflection-mode PPG signals are
acquired from the recorded videos (Fig. 3) [21]. At
the same time, the glucose levels from a standard
glucometer are recorded for labeling (two groups). The
video is then transferred to a computer for processing in
MATLAB. Red, green and blue channels are extracted
from individual frames of the video. The threshold is set
using Eq. 1 of our previous work where we designed a
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Figure 2. Raw smartphone PPG signal.

PPG-based algorithm for the heart rate estimation [21].
The pixels having an intensity greater than the defined
threshold are summed up normally for each frame using
Eq. 2 [21]. The PPG signal is obtained by plotting the
calculated sum of each frame.

14 volunteering subjects were asked to keep their
hands steady while video-recording and about 850 sam-
ples were collected for each subject. The age of the
subjects from 20-33 years and the glucose level range
of them was from 70-130 mg/dl. This glucose level
range was selected after a thorough experimentation
using a PPG signal acquisition lab-built device. A device
showed the best classification results were obtained for
the glucose level range from 70-130 mg/dl.

2.2 Signal Preprocessing
The reflection-mode PPG signals are extracted from

the recorded videos for each subject using the system
involved in Section 3.1. The acquired raw signals are
inverted because of the reflection mode shown in Figs.
2 and 3, respectively. The PPG signals are prone to the
noise and motion artifacts, so the inverted signals are de-
noised using a Butterworth filter to remove the frequency
components higher than 12 Hz as shown in Fig. 4.

After de-noising, the baseline wander is removed to
bring the signal back to its normal base (x-axis). A
resulted signal is shown in Fig. 5. A signal is then
segmented into single periods, i.e. one complete PPG
cycle using on iterative sliding-window (ISW) algorithm
proposed in our paper [22].

2.3 Feature Extraction
The time-domain waveform (PPG) and its first deriva-

tive (VPG) and second derivative (APG) are utilized
for feature extraction. 439 single periods obtained with
segmentation are in section IIIB labeled as G0, invalid,
or G1-G2, valid as described in Table I. The valid and
invalid single-period examples are shown in Figs. 6

Figure 3. Inverted smartphone PPG signal.

Figure 4. Filtered smartphone PPG signal.

Figure 5. PPG signal after baseline wander removal.

and 7, respectively. 26 features are then extracted from
the time-domain waveform shape of each period, 11
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Table 2. Extracted features from the smartphone PPG signals
Feature Definition
width period The time taken for one period
highest peak value The maximum amplitude of the signal
time highest peak The value of the time when the amplitude is maximum
peaks first seg The number of the peaks from the start to the peak
dis peak The amplitude of the diastolic peak
time distolicpeak The value of the time when the diastolic peak occurs
notch The amplitude of the notch
time notch The value of the time when the notch occurs
range values The range of the amplitude values in a single period
slope rise The rising rate of the single period from the start to the peak
slope fall The falling rate of the single period from the peak to the end
timediff start peak The total time taken from the start to the peak
timediff peak notch The total time taken from the peak to the notch
timediff notch distolicpeak The total time taken from the notch to the diastolic peak
timediff distolicpeak end The total time taken from the diastolic peak to the end
mean value single The mean amplitude value of the single period
number values The length of the single period
Standard deviation The standard deviation of the amplitudes
mean start max The mean amplitude from the start to the peak
mean max notch The mean amplitude from the peak to the notch
mean notch distolicpeak The mean amplitude from the notch to the diastolic peak
mean distolicpeak end The mean amplitude from the diastolic peak to the end
meanslope sp The mean slope from the start to the peak
meanslope pn The mean slope from the peak to the notch
meanslope nd The mean slope from the notch to the diastolic peak
meanslope de The mean slope from the diastolic peak to the end
max deriv1 The maximum amplitude of the first derivative
time max deriv1 The value of the time when the amplitude of the first derivative is maximum
lowpeak deriv1 The amplitude of the second highest peak of the first derivative
lowpeak deriv1 time The value of the time when the second highest peak of the first derivative occurs
diff d1peaks value The difference in the amplitude of a maximum and second highest peak of the first

derivative
diff d1peaks time The time taken from the maximum to the second highest peak of the first derivative
valley1 derv1 value The amplitude of the first valley of the first derivative
valley2 derv1 value The amplitude of the second valley of the first derivative
valley1 derv1 time The value of the time when the first valley of the first derivative occurs
valley2 derv1 time The value of the time when second valley of the first derivative occurs
diff valleytime derv1 The time taken from the first to the second valley of the first derivative
max deriv2 The maximum amplitude of the second derivative
time max deriv2 The value of the time when the amplitude of the second derivative is maximum
lowpeak deriv2 The amplitude of the second highest peak of the second derivative
lowpeak deriv2 time The value of the time when the second highest peak of the second derivative occurs
diff d2peaks value The difference in amplitude of maximum and the second highest peak of the second

derivative
diff d2peaks time The time taken from maximum to the second highest peak of the second derivative
valley1 derv2 value The amplitude of the first valley of the second derivative
valley2 derv2 value The amplitude of the second valley of the second derivative
valley1 derv2 time The value of the time when the first valley of the second derivative occurs
valley2 derv2 time The value of the time when the second valley of the second derivative occurs
diff valleytime derv2 The time taken from the first to the second valley of the second derivative
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Figure 6. Valid smartphone single period.

Figure 7. Invalid smartphone single period.

features from its first derivative and 11 from its second
derivative as shown in Table 2. The first 19 values of the
time-domain PPG signal are used as additional features
making the total number of features 67. The feature
values for each single period are then acquired to make a
feature-matrix having 439 rows, each representing a sin-
gle period, and columns representing different features,
labels and the number of the subject. In Figures 2-7, the
amplitude on the vertical axis represents the sum of the
pixels having the intensity greater than the threshold.

2.4 Classification (training and testing datasets)

The feature-matrix for the dataset (439 single periods)
is randomly divided into a training (217 single periods)
and testing (221 single periods) dataset randomly. Due
to the small number of the volunteering subjects, the
439 single periods are considered as 439 unique signals
out of which 217 single periods are used to train
the classification models (Bagged Trees, RUS Boosted
Trees, Decision Trees and Subspace KNN) and the
remaining 221 single periods are used for validating

the classification accuracy. The labels assigned to the
training dataset for the invalid (G0) and valid (G1
and G2) are classification (0, 1 and 2), respectively.
The classification used are Bagged Trees, RUS Boosted
Trees, Decision Trees and Subspace KNN. A five-fold
cross-validation of a single period is performed.

3 RESULTS

The dataset selected for this experiment is kept between
the glucose level from 70-130 mg/dl. The PPG signals
acquired from different subjects are segmented into
single periods each considered as a unique signal. Four
different classifiers are used, i.e. the Subspace KNN,
RUS boosted trees, Bagged trees and Decision trees. The
accuracy is over 80% for the G0, G1 and G2 classifica-
tion made with the Subspace KNN classifier at a high
86.2% which is marginally higher than with the Bagged
trees, whereas for on invalid single-period classification,
the Subspace KNN classifier out-performes all the other
classifiers with an accuracy of 98.2% which is only
about a percentage point higher than with the Bagged
trees with 96.7%. The lowest accuracy is observed
with the Decision trees. A comparison between different
classifiers is presented in Table 3.

In the group-based classification (G1 and G2) using
the Subspace KNN classifier, three out of fourteen sub-
jects (numbered 9, 13 and 14) are classified incorrectly
as shown in Table 4. Our detailed experimental results
for the G1 and G2 group classification are presented in
Table 4.

Table 3. Comparison between different classifiers
Classifier Overall

accuracy
Invalid sample
classification

Subspace KNN 86.2% 98.2%
RUS Boosted Trees 85% 90.2%
Bagged Trees 86% 96.7%
Decision Trees 80.1% 83.6%

Table 4. Results for the G1 and G2 classification
No. Actual

group
Estimated
group

1. G1 G1
2. G2 G2
3. G1 G1
4. G1 G1
5. G2 G2
6. G2 G2
7. G2 G2
8. G1 G1
9. G2 G1
10. G1 G1
11. G2 G2
12. G2 G2
13. G2 G1
14. G1 G2
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4 DISCUSSION

To the best of our knowledge, the existing works do not
differentiate between the valid and invalid PPG blood-
glucose signals. Using our system, the invalid data (G0)
are separated from the valid signals and then classified
as valid signals of the G1 or G2 group. A brief summary
of the existing works on the topic is as follows:

In [18], a blood-glucose and blood-pressure estima-
tion system is proposed utilizing the effect of physio-
logical variations, such as blood viscosity, vessel com-
pliance, heart rate and breathing rate, etc., on the PPG
signal waveform. PPG signal is acquired using a finger
clip. It is de-noised to remove motion artifacts and
then the features are extracted to be fed to different
classifiers, e.g. neural networks (NN), linear regression,
random forest and SVM. The random forest outperforms
the other machine-learning techniques. Using the Clarke
Grid Analysis (CGA), 87.7% points are found to fall into
region A.

In [2], the PPG signals acquired by a finger clip
are used to estimate the blood-glucose levels based on
the difference in the optical densities. The acquired
signals are converted to electric signals, filtered for
noise removal using a series of filters to get the PPG
signals. The PPG signals are then filtered using an
adaptive neural-network filter to remove motion artifacts
and the glucose levels are predicted using artificial
neural networks for Field Programmable Gate Arrays
(FPGA). The data is collected from 50 subjects for three
different wavelengths. The model is trained and tested
using a MATLAB toolbox for neural networks and the
estimation accuracy is 95.38%.

In [23], the data is acquired by capturing the laser
light transmitted by a fingertip with a smartphone cam-
era. An application is developed to extract the intensity
of the RGB pixels from every frame. The glucose level
is determined by using the blue and green component
intensities in the modified Beer-Lambert law and the
glucose level measured by a smartphone is linearly
proportional to the actual glucose level. The experi-
mental results are calculated using MATLAB for both
the glucose solution and blood. The glucose levels are
examined 15 and 45 minutes after drinking cola.

The existing systems use a specific hardware, e.g. a
finger clip and laser light, to acquire the PPG signals,
whereas our system uses only a smartphone to acquire
the PPG signals with no need for an individually-based
calibration, making this solution very convenient and
cost-effective for users. With this non-invasive method, a
user can check if his/her blood-glucose value falls into
a normal group or not. Then he/she can get the exact
value using an invasive method. The proposed system
yields an improved accuracy with the smallest possible
number of features.

Our study shows that the PPG signals contain on

adequate information regarding the blood-glucose level.
As observed in [23], changes in the blood-glucose level
affect the PPG signals. The results show that after sugar
intake, the PPG signals change.

In our previous study [21], the PPG signals acquired
from a smartphone camera are utilized to calculate the
heartrate of an individual. In the current study, the
same procedure is used to acquire the PPG signals from
different subjects to classify them into two subnormal
blood glucose-groups, G1 and G2.

Machine-learning algorithms distinguish between the
valid and invalid PPG signals with an absolute accuracy.
The valid signals are classified into two blood-glucose
subnormal groups using machine-learning algorithms
with a considerably high accuracy.

Each of the four machine-learning algorithms, i.e. the
Subspace KNN, RUS boosted trees, Bagged trees and
Decision trees, provide an acceptable classification result
which shows that the PPG signals can indicate the blood-
glucose level.

5 CONCLUSION & FUTURE WORK

The PPG signals are acquired using only a smartphone
camera. The blood-glucose level is estimated by denois-
ing and removing the baseline wander, and segmenting
the acquired PPG signals into single periods. 67 features
are then extracted from the shape of a single period,
its first and second derivative signals. The two blood-
glucose groups are G1 (70-100 mg/dl) and G2 (101-130
mg/dl). G0 is a group of invalid single periods. The
accuracy of the invalid single-period classification and
the overall classification result are 98.2% and 86.2%,
respectively. Using a smartphone makes the system cost-
effective, portable and easy to use.

This work is still at its preliminary stage with only two
blood-glucose groups classified and a limited number of
subjects. Our future goal is to utilize a larger dataset
with a wider range of the age and a higher blood-
glucose level. The blood-glucose groups will be reduced
and eventually a model will be designed for a specific
blood-glucose value estimation. The accuracy for other
groups will be improved with the smallest possible error,
processing time and energy. With on accuracy note ap-
plicable for clinical medicine, a smartphone application
with the developed enabling transmission of the data
to a computer, storing the results for future reference,
alerting/warning, and monitoring spoken instructions
and results.
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