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A B S T R A C T	   A R T I C L E   I N F O	

The	present	study	has	investigated	mathematical	and	simulation	model	inter‐
activity	for	production	system	scheduling.	A	mathematical	model	of	a	Flexible	
Job	 Shop	 Scheduling	Production	optimisation	problem	 (FJSSP)	was	 	 used	 to
evaluate	a	new	evolutionary	computation	method	of	multi‐objective	heuristic	
Kalman	 algorithm	 (MOHKA).	 Ten	 Brandimarte	 and	 five	 Kacem	 benchmarks	
were	applied	 for	evaluation	and	comparison	of	MOHKA	optimisation	results	
with	the	Multi‐Objective	Particle	Swarm	Optimization	algorithm	(MOPSO)	and	
Bare‐Bones	Multi‐Objective	Particle	Swarm	Optimization	algorithm	(BBMOP‐
SO).	 Benchmark	 data	 sets	 were	 divided	 into	 three	 groups,	 regarding	 their	
complexity,	from	low,	middle	to	high	dimensional	optimisation	problems.	The	
optimisation	results	of	MOHKA	show	high	capability	to	solve	complex	multi‐
objective	 optimisation	 problems,	 especially	with	 real	world	 production	 sys‐
tems	data.	A	new	robust	method	is	presented	of	optimisation	data	interactivi‐
ty	 between	 a	mathematical	 optimisation	 algorithm	 and	 a	 simulation	model.	
The	 results	 show	 that	 the	 presented	 method	 can	 overcome	 the	 integrated	
decision	 logic	of	 commercial	 simulation	 software	 and	 transfer	 the	optimisa‐
tion	results	into	the	simulation	model.	Our	interactive	method	can	be	used	in	
a	 variety	 of	 production	 and	 service	 companies	 to	 ensure	 an	 optimised	 and
sustainable	cost‐time	profile.	
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1. Introduction  

In	the	time	of	Industry	4.0	[1],	which	represents	highly	flexible	manufacturing	systems,	proper	
scheduling	of	high‐mix	low‐volume	production	systems	orders	is	crucial	[2].	The	high	degree	of	
complexity	 and	 flexibility	 of	 multi‐objective	 optimisation	 problems	 increases	 the	 problem	 to	
achieve	optimal	scheduling	of	such	production	systems	significantly	[3].	The	use	of	conventional	
methods	 [4]	 and	 their	 obtained	 optimisation	 results	 does	 not	 achieve	 the	 optimally	weighted	
goals	of	production	systems	related	to	appropriate	makespan,	uniformly	high	machinery	utilisa‐
tion,	financially	and	timely	justified	production.	For	many	years,	scientists	have	been	using	evo‐
lutionary	computation	(EC)	methods	[5]	for	the	purpose	of	multi‐objective	production	systems’	
optimisation	[6].	They	have	been	struggling	to	transfer	mathematical	models	of	algorithms	into	
simulation	 environments	 to	 achieve	 optimised	 real	 world	 production	 systems	 indirectly.	 The	
complexity	 of	 transferring	 mathematical	 models	 into	 the	 simulation	 environments	 is	 con‐
strained	by	the	incompatibility	of	programming	environments,	integrated	decision	models	with‐
in	 simulation	 environments,	 and	 problems	 in	 the	 reliability	 of	 optimisation	 results’	 transfers	
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into	the	simulation	environment,	in		a	real	world	production	system.	Relevance	use	and	satisfac‐
tory	optimisation	results	of	EC	methods	in	solving	FJSSP	are	transmitted	via	the	newly	proposed	
algorithms	[7,	8]	to	the	real	world	environment	of	Industry	4.0	production	systems	[9,	10].	The	
complexity	 of	 the	 FJSSP	optimisation	problem	 is	 reflected	 in	 the	multi‐objective	nature	of	 the	
optimisation	problem	[11].	However,	for	the	transfer	and	use	of	new	EC	methods	in	a	real	world	
environment,	 the	extensive	evaluation	of	algorithms	using	benchmark	and	real	production	da‐
tasets	is	crucial.	In	this	case,	the	use	of	simulation	modelling	is	crucial,	both	in	designing	the	ex‐
periment,	and	in	evaluating	the	optimisation	results	[12].	The	main	research	problem	relates	to	
the	compatibility	and	interactivity	between	the	mathematical	model	of	the	EC	method	optimisa‐
tion	 results	and	 the	 simulation	model,	which	enables	 the	evaluation	and	application	of	 the	EC	
method	in	a	real	world	environment	[13].	The	interactivity	between	EC	methods	and	the	simula‐
tion	model	poses	major	challenges	for	researchers,	who	have	not	yet	studied	them	thoroughly.	
In	the	presented	research	work,	a	new	method	is	presented	of	transferring	optimisation	results	
between	a	mathematical	model	of	MOHKA's	EC	method	[14]	and	a	simulation	model	in	a	conven‐
tional	Simio	simulation	environment.	The	presented	method	provides	interactivity	between	the	
EC	optimisation	algorithm	and	the	simulation	model,	while	offering	high	flexibility	of	the	simula‐
tion	model	and	the	integration	of	the	EC	algorithm	optimisation	results	into	the	integrated	deci‐
sion	logic	of	the	simulation	environment	[15].		

The	manuscript	is	divided	into	the	following	sections.	Section	2	deals	with	the	mathematical	
definition	 of	 a	multi‐objective	FJSSP	optimisation	problem.	 Section	3	presents	 our	own	devel‐
oped	method	of	 the	multi‐objective	EC	method,	 called	MOHKA.	 	Examples	are	given	of	mathe‐
matical	modelling	 and	 experimental	 testing	 on	 five	Kacem	 [16]	 and	 ten	Brandimarte	 [17]	 da‐
tasets.	Analysis	of	the	MOHKA	algorithm	optimisation	results	is	performed	in	comparison	with	
the	two	existing	algorithms	MOPSO	[18]	and	BBMOPSO	[19].	In	this	section	also	the	interactivity	
of	 the	MOHKA	mathematical	modelling	optimisation	results	and	simulation	modelling	 is	given.	
The	new	proposed	block	 structure	of	 an	 interactive	 simulation	model	method	and	 integrating	
optimisation	results	into	a	simulation	model	is	presented,	based	on	the	Kacem	and	Brandimarte	
input	 datasets.	 Graphically	 and	 numerically,	 the	 high	 ability	 is	 confirmed	 of	 interactivity	with	
optimisation	results	and	the	simulation	model.	Section	3	overviews	the	new	interactive	method	
of	using	the	MOHKA	optimisation	results	in	a	simulation	model,	that	allows	direct	use	in	a	real	
world	production	system.	The	high	ability	to	use	the	proposed	method	enables	further	research	
work	on	optimally	implemented	collaborative	work	places	in	flexible	manufacturing	systems.	

2. Problem description  

Production	scheduling	is	defined	as	decision‐making	processes	that	are	used	on	a	daily	basis	in	
many	production	and	service	enterprises	[20].	The	importance	of	the	decisions	taken	is,	conse‐
quently,	reflected	in	the	fields	of	jobs	orders,	production,	transport	and	distribution	of	the	final	
products	[21].	Production	scheduling	is	the	process	of	optimising,	controlling	and	determination	
of	 the	 limited	 production	 system	 resources	 (machines,	 humans,	 finances	 etc.).	 The	 presented	
mathematical	 and	 simulation	 modelling	 method	 is	 based	 on	 solving	 an	 FJSSP	multi‐objective	
optimization	problem.	Given	the	high	degree	of	difficulty,	the	following	Section	presents	a	nota‐
tion	of	abbreviations,	a	general	mathematical	description	of	a	multi‐objective	FJSSP	optimization	
problem,	and	a	mathematical	approach	how	to	solve	it.	

2.1 Notation 

The	notations	presented	by	Graham	et	al.	[22]	will	be	used	in	the	presented	paper.	

݅	 Job	ሺ݅ ൌ 1,… , ݊ሻ	 ݆ Machine	ሺ݆ ൌ 1,… ,݉ሻ	
݇	 Operation	ሺ݇ ൌ 1, … , ௜ܱሻ	 ݄ Resource ሺ݄ ൌ 1,… , 	ሻݏ
݊	 Total	number	of	jobs	 ݉ Total	number	of	machines	
௜ܱ 	 Number	of	operations	of	job	ܬ௜ ݏ Number	of	limited	resources	

,௜݌ ௜௝݌ 	 Processing	time	of	job	ܬ௜	on	machine	ܯ௝	 ,௜௞݌ ௜௞௝݌ Processing	time	of	operation	 ௜ܱ௞ 	on	
௝ܯ 	
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ଵ݂	 Makespan	(time	required	to	complete	all	
jobs)	

ଶ݂ 	

	
Maximum	workload	(workload	of	
the	most	loaded	machine)	

ଷ݂ 	 Total	workload	of	all	machines

2.2 Multi‐objective flexible job shop scheduling problem 

Multi‐objective	FJSSP	is	described	as:	We	have	݊	 jobs	which	can	be	performed	on	݉	machines	
from	a	set	of	machines	ሺ݆ ൌ 1,… ,݉ሻ	suitable	for	carrying	out	the	jobs.	The	choice	of	using	the	
machine	is	made	according	to	the	machine	occupancy	and	the	suitability	of	the	individual	mac‐
hines	to	perform	the	operation.	The	number	of	jobs	݊	and	number	of	machines	݉	are	given.	Each	
job	݅	has	a	specific	sequence	and	number	of	operations	 ௜ܱ .	The	processing	time	of	the	operation	
	FJSSP	multi‐objective	the	For	performed.	is	it	which	on	machine	the	on	depending	vary,	may	௝௞݌
some	limitations	must	be	made:		

 One	machine	can	process	only	one	job	at	a	time.	
 One	job	can	be	processed	only	on	one	machine	ata	time.	
 When	the	operation	starts	it	cannot	be	interrupted	until	the	end	of	the	operation,	after	the	

completion	the	next	operation	can	start.	
 All	the	jobs	and	operations	have	equal	priorities	at	the	time	zero.	
 Each	machine	݉	is	ready	at	time	zero.		
 Given	an	operation	 ௜ܱ௝	and	the	selected	machine	݉,	the	processing	time		݌௜௝	is	fixed.	

	

Eqs.	1,	2,	and	3	describe	three	optimisation	objectives,	as	follows:	

 Makespan	(time	required	to	complete	all	jobs):	

ଵ݂ ൌ ݔܽ݉ ሼܥ௝ | ݆ ൌ 1,… , ݊ሽ	 (1)
	

 Maximum	workload	(workload	of	the	most	loaded	machine):	

ଶ݂ ൌ ,௜௝௞ݔ௜௝௞݌෍෍ݔܽ݉ ݇ ൌ 1,2, … ,݉

௡೔

௝ୀଵ

௡

௜ୀଵ

	 (2)

	

 Total	workload	of	all	machines:	

ଷ݂ ൌ ෍෍෍݌௜௝௞ݔ௜௝௞, ݇ ൌ 1,2, … ,݉

௠

௞ୀଵ

௡೔

௝ୀଵ

௡

௜ୀଵ

	 (3)

	

where	ܥ௝	is	 the	 completition	 time	of	 job	 	,௜ܬ and	ݔ௜௝௞	 is	 a	decision	variable	on	which	 individual	
machine	operation	will	be	processed.	In	Table	1,	we	see	the	FJSSP	benchmark	example,	presen‐
ted	by	Kacem	et	al.	[16].	This	example	has	three	jobs	that	must	be	processed	on	four	machines.	
The	processing	time	of	each	operation	depends	on	the	machine	on	which	the	operation	will	take	
place.		

Fig.	1	shows	the	optimal	solution	to	the	FJSSP	optimisation	problem	presented	in	Table	1.	

	
Fig.	1	Gantt	chart	of	optimal	solution	for	a	FJSSP	optimisation	problem	
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Table	1	FJSSP	benchmark	example	
Oi,	j	 M1	 M2 M3 M4 M5	

J1																										O1,1	
O2,1	
O3,1	

5	 4 2 6 7	
3	 5 7 8 4	
5	 4 3 2 1	

J2																										O1,2	
O2,2	
O3,2	

9	 7 6 7 4	
5	 4 7 8 5	
9	 1 2 2 4	

J3																										O1,3	
O2,3	

4	 7 2 4 8	
5	 5 7 5 7	

From	the	optimisation	problem	defined	above,	the	following	limitations	can	be	described:	

 All	machines	are	available	at	time	t	=	0,	and	any	order	Jj	can	be	started	at	time	t	=	rj.	
 Only	one	operation	at	a	time	can	be	performed	by	a		machine.	It	becomes	available	to	oth‐

er	operations	only	when	the	current	operation	on	the	machine	is	completed.	
 Each	operation	Oi,j	is	the	start	time	ri,j	defined	as	shown	by	Eqs.	4	and	5:	

	

ଵ,௝ݎ ൌ ,௝ݎ ∀ 1	 ൑ ݆ ൑ ݊	in	ݎ௜ାଵ,௝ ൌ ௜,௝ݎ ൅ ,௜,௝ߛ where ௜,௝ߛ ൌ min
௞
ሺ݀௜,௝,௞ሻ	 (4)

	

		∀	1	 ൑ ݅ ൑ ௝݊ െ 1, ∀ 1 ൑ ݆ ൑ ݊	 (5)

2.3 Multi‐objective optimisation 

Multi‐objective	optimisation	is	an	area	that	deals	with	multi‐objective	decision‐making	of	math‐
ematical	 optimisation	problems	 [23].	Optimisation	problems	 involve	more	 than	one	optimisa‐
tion	function,	where	several	variables	of	the	optimisation	problem	need	to	be	optimised.	A	fea‐
ture	of	multi‐objective	optimisation	is	that	there	is	not	only	one	optimal	solution	optimising	the	
optimisation	function	[24],	but,	for	these	functions,	there	are	infinitely	many	Pareto	optimal	so‐
lutions	[25].	Pareto	solutions	are	non‐dominant,	Pareto	optimal	or.	Pareto	effective	[26].	All	Pa‐
reto	optimal	solutions	in	the	Pareto	space	are	considered	equally	appropriate.	The	field	of	Multi‐
objective	optimisation	is	increasingly	present	in	everyday	life.	Multi‐objective	optimisation	can	
be	found	in	all	fields	of	Sciences,	Economics,	Logistics,	and	where	it	is	necessary	to	make	optimal	
decisions	in	the	presence	of	trade‐offs	between	two	or	more	conflicting	goals	[27].	

In	a	mathematical	sense,	a	multi‐objective	problem	can	be	formulated	with	Eq.	6:	
	

min൫ ଵ݂ሺݔሻ, ଶ݂ሺݔሻ, … , ௞݂ሺݔሻ൯; ݔ ∈ ܺ,			 (6)
	

where	the	integer	k	≥	2	represents	the	number	of	optimisation	parameters,	and	X	represents	the	
feasible	 set	 of	 decision	 vectors.	 A	 set	 of	 decision	 vectors	 is	 usually	 represented	 by	 constraint	
functions.	We	define	the	vector‐valued	objective	function	as	shown	in	Eq.	7:	

	

			݂: ܺ → Թ௞, ݂ሺݔሻ ൌ ሺ ଵ݂ሺݔሻ, … , ௞݂ሺݔሻሻ்.			 (7)
	

If	we	want	to	maximise	a	function,	we	can	do	it	by	minimising	its	negative	dependence.	The	ele‐
ment	ݔ∗ ∈ ܺ	presents	a	workable	solution	or	a	workable	decision.	The	vector	ݖ∗ ൌ ݂ሺݔ∗ሻ ∈ Թ௞	is	
called	 the	 function	 vector	 for	 the	 feasible	 solution	 x*.	 In	multi‐objective	 optimisation,	 there	 is	
usually	 no	 viable	 solution	 that	 optimises	 all	 of	 the	 target	 functions	 at	 the	 same	 time.	 Pareto	
optimal	solutions	are	solutions	that	cannot	be	 improved	without	compromising	at	 least	one	of	
the	goals	of	the	remaining	functions.	

Using	the	mathematical	notations	of	Eqs.	8	and	9,	we	can	conclude	that	the	feasible	solution	
ଵݔ ∈ ܺ	Pareto	is	dominated	by	another	solution	ݔଶ ∈ ܺ	in	the	case	where:	

	

௜݂ሺݔଵሻ ൑ ௜݂ሺݔଶሻ for all ݅ ∈ ሼ1, 2, … , ݇ሽ and	 (8)
	

௜݂ሺݔଵሻ ൏ ௜݂ሺݔଶሻ for at least one ݆ ∈ ሼ1, 2, … , ݇ሽ	 (9)

is	a	feasible	solution,	ݔ∗ ∈ ܺ	and	the	associated	output	value	݂ሺݔ∗ሻ	is	Pareto	optimal	if	there	is	
no	other	solution	that	dominates	 it.	The	Pareto	group	of	optimal	solutions	 is	called	the	Pareto	
Front.	The	Pareto	Front	of	multi‐objective	optimisation	problems	is	limited	by	two	vectors:	
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 The	nadir	vector	is	defined	by	Eq.	10:	
	

௜ݖ
௡௔ௗ ൌ sup

௫∈௑
௜݂ሺݔሻ for all ݅ ൌ 1,… , ݇	 (10)

	

 The	ideal	vector	is	defined	by	Eq.	11: 
 

௜ݖ
௜ௗ௘௔௟ ൌ inf

௫∈௑ ௜݂ሺݔሻ for all ݅ ൌ 1,… , ݇	 (11)
 

The	nadir	and	ideal	vector	components	define	the	upper	and	lower	bounds	for	the	optimisa‐
tion	functions	of	Pareto	optimal	solutions	[28].	

3. Results and discussion 

3.1 Multi‐objective heuristic Kalman algorithm (MOHKA) 

In	 order	 to	 solve	 the	 planning	 and	 scheduling	 problem	 of	 FJSSP,	 researchers	 use	 different	
evolutionary	 computation	methods	 for	 solving	 the	multi‐objective	 nature	 of	 the	 problem.	The	
presented	research	work	is	based	on	the	use	of	the	Multi‐Objective	Heuristic	Kalman	Algorithm	
(MOHKA),	which	 is	based	on	 the	mathematical	 formulation	of	 the	Heuristic	Kalman	Algorithm	
(HKA),	whose	operation	and	use	is	presented	in	the	cited	literature	[29].	The	positive	results	of	
the	 algorithm's	 operation	 and	 the	 developed	model	 architecture	make	 it	 possible	 to	 upgrade	
single‐objective	optimisation	to	multi‐objective	optimisation.	MOHKA,	the	same	as	HKA,	first	in	
the	basic	interaction,	evaluates	the	solutions	using	a	Gaussian	distribution	based	on	the	parame‐
ters	given	in	the	variance	and	convergence	matrix.	Based	on	the	definition	of	the	multi‐objective	
Pareto	optimal	solutions,	a	limiting	function	is	determined,	to	ensure	that	the	solutions	obtained	
are	within	the	appropriate	limits.	The	nadir	vector	ݖ௜

௜ௗ௘௔௟	and	the	ideal	vector	ݖ௜
௜ௗ௘௔௟,	are	deter‐

mined	defined	by	Eqs.	10	and	11.	After	the	evaluation	of	the	suitability	of	the	obtained	solutions	
is	completed,	the	solutions	are	written	to	a	non‐dominant	function,	which	is	stored	in	the	data	
set	of	non‐dominant	solutions.	The	evaluation	procedure	follows,	and	the	maximum	number	is	
selected	of	 the	discussed	optimisation	problem	articles	 .	 In	 the	 final	 step,	an	evaluation	of	 the	
obtained	results	is	performed	using	a	random	distribution	function.	The	pseudocode	of	the	algo‐
rithm,	handling	the	constraints,	updating	the	non‐dominated	solution	archive,	choosing	the	best	
samples	 and	pruning	 the	non‐dominated	solution	archive	are	presented	 in	 the	 literature	 [14].	
Fig.	2	presents	a	general	flow	chart	ofa		MOHKA	optimisation	algorithm.	

	

Fig.	2	Flow	chart	of	MOHKA	optimisation	algorithm	

Mathematical	modelling	of	experiments	

To	 test	 the	 performance	 of	 the	MOHKA	 algorithm,	we	 used	 two	 of	 the	most	well	 established	
benchmark	 data	 sets	 for	 multi‐objective	 optimization	 of	 FJSSP.	We	 used	 five	 Kacem	 datasets	
(Kacem	 4×5,	 Kacem	 8×8,	 Kacem	 10×7,	 Kacem	 10×10	 and	 Kacem	 15×10)	 [16]	 and	 ten	
Brandimarte	datasets	(Mk01	to	Mk10)	[17].	We	 	divided	these	benchmark	data	sets	 into	three	
groups,	according	to	the	complexity	of	the	optimisation	problem.	Considering	the	recommenda‐
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tions	in	the	literature	[30],	we	divided	the	datasets	into	low,	middle	and	high	dimensional	opti‐
misation	problems.	The	division	of	benchmark	datasets	according	to	the	complexity	of	the	opti‐
misation	problems	allows	a	more	accurate	evaluation	of	the	obtained	results,	in	order	to	deter‐
mine	 the	 advantages	 and	 limitations	 of	 the	 mathematically	 modelled	 optimisation	 algorithm.	
With	the	MOHKA	algorithm,	we		optimised	three	key	parameters	of	a	flexible	production	system:	
Makespan	(MC),	 total	workload	of	all	machines	(TW)	and	maximum	workload	of	an	 individual	
machine	(MW).	The	obtained	results	of	the	algorithm	were	compared	with	the	optimal	results	of	
the	 FJSSP	 problem	 obtained	 in	 the	 literature	 [31].	 The	 algorithm	 was	 implemented	 in	 the	
MATLAB	R2017b	 software	 environment,	 using	 a	 PC	with	 an	 Intel	 i7	 processor	with	 16	 GB	 of	
working	memory.	

Mathematical	modelling	results	

In	order	to	compare	the	obtained	MOHKA	solutions,	in	addition	to	the	Pareto	optimal	results,	we		
selected	the	two	currently	most	advanced	algorithms	for	solving	FJSSP	optimisation	problems:	
Multi‐Objective	Particle	 Swarm	Optimization	Algorithm	 (MOPSO)	 [18]	 and	 an	 improved	Bare‐
Bones	Multi‐Objective	Particle	 Swarm	Optimization	 (BBMOPSO)	 algorithm	 	 [19].	 According	 to	
the	recommendations	[14],	the	initial	parameters	of	the	MOHKA	algorithm	were	set	to:	N	=	300,	
Nξ	=	10,	α	=	0.3,	Na	=	100,	mr	=	0.1,	and	MaxIter	=	3000.	The	MOPSO	and	BBMOPSO	parameter	
settings	are	the	same	as	those	in	the	literature	[18,	19].		

The	optimisation	 results	presented	 in	Tables	3,	4,	 and	5	 represent	 the	optimal	 solutions	of	
three	 algorithms,	MOHKA,	MOPSO,	 and	 BBMOPSO,	 compared	 to	 the	 Pareto	 optimal	 solutions.	
The	graphical	symbols	of	the	optimisation	algorithms	on	the	graphs	are	presented	in	Table	2.	

In	order	to	demonstrate	their	high	ability	to	solve	low,	middle	and	high	complex	optimisation	
problems,	 the	 following	 results	 are	 presented	 separately.	Numerical	 and	 graphical	 results	 are	
given,	and	comparative	comments,	advantages	and	limitations	of	individual	algorithms’	compar‐
isons	are	described.	Numerical	values	MC,	TW,	MW,	presented	in	Tables	3,	4,	5,	are	average	val‐
ues	of	all	obtained	optimisation	results.	

Table	2	Graphic	symbols	of	the	optimisation	algorithms	
Symbol	 •	 x + ᴏ	
Algorithm	 MOHKA	 MOPSO BBMOPSO Pareto	optimum

	

 Low	dimensional	optimisation	problems	

We	notice	 that,	with	Kacem	benchmark	datasets,	MOHKA	solves	 low‐dimensional	optimisa‐
tion	problems	better.	In	Table	3,	MOHKA	achieves	Pareto	an	optimal	solution	for	the	Kacem	4×5	
dataset,	where	the	MOHKA	solutions	are	located	directly	in	the	centre	of	the	Pareto	optimal	so‐
lutions.	Compared	to	MOPSO	and	BBMOPSO,	the	Mk01	dataset	is	also	solved	better,	where	the	
distance	between	MOHKA	optimisation	solutions	and	Pareto	optimal	solutions	are	shorter	than	
with	the	other	two	algorithms.	With	the	Mk02	dataset,	the	Pareto	optimisation	solutions	are	the	
closest	to	the	results	of	the	BBMOPSO	optimisation	algorithm.	The	comparison	between	MOHKA	
and	MOPSO	shows	slightly	more	optimal	solutions	given	by	the	MOHKA	algorithm.	The	Kacem	
8x8	 dataset	 again	 demonstrates	 the	 equivalence	 of	 optimisation	 results	 between	 the	MOHKA	
and	MOPSO	algorithms.	BBMOPSO	solved	this	test	data	set	with	an	optimally	defined	solution.	
BBMOPSO	near‐optimal	optimization	results	were	also	presented	in	the	Mk03	dataset,	where	its	
solutions	are	on	 the	Pareto	 front	of	optimal	solutions.	With	regard	to	 the	MOHKA	and	MOPSO	
algorithm	solutions,	we	can	claim	a	similar	ability	to	solve	the	given	data	set.	

In	general,	we	find	that	the	MOHKA	algorithm	in	these	low	dimensional	problems	solves	the	
optimization	problems	as	satisfactorily	and	comparatively	as	the	mentioned	comparative	algo‐
rithm.	In	two	cases,	the	Kacem	4×5	and	Mk01,	MOHKA	was	the	most	successful,	in	the	others	it	
was	comparable	to	MOPSO	and	slightly	worse	than	BBMOPSO.	
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Table	3	Optimisation	results	of	low	dimensional	problems	
Kacem	 Brandimarte

	
							(a)	Kacem	4×5	 (b)	Mk01 													(c)	Mk02	

	 MC	 TW	 MW	 	 MC TW MW MC	 TW	 MW
•	 11.5	 32	 9.5	 	 47.1 161.9 38.4 36.8	 157.3	 30
+	 12	 32.3	 8.3	 	 52 153.8 43.3 34.5	 141	 31.5
x	 14.7	 35.7	 9	 	 57 156 48.5 38.3	 158	 30.8

	

	

						(d)	Kacem	8×8	 												(e)	Mk03	
	 MC	 TW	 MW	 	 MC	 TW	 MW	
•	 25	 115.8	 19.2	 	 224.3 979.7 218.7
+	 16	 74	 12.5	 	 273 809.2 254.1
x	 25.6	 101.2	 20	 	 263.6	 973.1	 209.1	

 Middle	dimensional	optimisation	problems	

In	 the	 optimisation	 results	 of	 the	middle	 dimensional	 optimisation	 problems,	 presented	 in	
Table	4,	we	find	that	MOHKA	had	the	largest	deviation	from	the	Pareto	optimal	solutions	for	the	
two	Kacem	datasets	in	the	Pareto	graph	of	solutions	Kacem	10×7	and	Kacem	10×10.	The	graph‐
ical	and	numerical	 results	of	MOPSO	and	BBMOPSO	proved	more	optimal	optimisation	results	
compared	to	MOHKA.	With	the	Kacem	10×7	dataset,	BBMOPSO	achieved	the	Pareto	optimal	so‐
lution	and	MOPSO	came	very	close	to	it.	Similarly,	the	optimisation	algorithms	solved	the	Kacem	
10×10	dataset,	where	 the	 difference	 between	MOHKA	and	MOPSO	was	 smaller,	which	proves	
the	 relevance	 and	 comparability	 of	MOHKA	with	MOPSO.	The	MOHKA	 optimisation	 algorithm	
solved	the	Brandimarte	middle	dimensional	optimisation	problems	better.	We	can	see	that,	for	
the	 two	Mk04	and	Mk05	datasets,	MOHKA	solved	both	data	 sets	most	 satisfactorily,	 since	 the	
MOHKA	algorithm	solutions	are	on	 the	Pareto	 front	of	optimal	solutions.	For	 the	 two	datasets	
listed	above,	BBMOPSO	had	the	most	problems,	presented	on	the	Mk04	dataset,	in	which	solu‐
tions	were	the	furthest	from	the	Pareto	optimal	solutions.	In	the	case	of	the	Mk05	dataset,	MOH‐
KA	was	comparable	to	MOPSO.	The	Mk06	data	set	was	solved	relatively	well	by	the	MOHKA	and	
BBMOPSO	algorithms,	with	MOPSO	farthest	from	the	optimal	solution.	

We	concluded	that	MOHKA	performs	best	in	the	middle	dimensional	optimisation	algorithms	
in	the	Brandimarte	datasets,	where	it	dominates	the	solutions	of	the	other	two	algorithms.	The	
Kacem	datasets	were	the	furthest	from	the	optimal	solutions,	compared	to	BBMOPSO	and	MOPSO.	
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Table	4	Optimisation	results	of	middle	dimensional	problems	
Kacem	 Brandimarte

	
													(f)	Kacem	10×7	 (g)	Mk04 								(h)	Mk05	

	 MC	 TW	 MW	 	 MC TW MW MC	 TW	 MW
•	 16.6	 87.4	 15.3	 	 85.9 343.4 74.9 189.5	 679.3	 181.5
+	 12	 60.5	 11.5	 	 118.1 342.4 100.5 201.5	 676.3	 189.9
x	 13.5	 66	 12.5	 	 93.3 350.1 70.8 213.5	 681.9	 189.5

	

		

													(i)	Kacem	10×10	 									 								(j)	Mk06

	 MC	 TW	 MW	 	 MC TW MW
•	 16.6	 88.4	 13	 	 104.5 444.9 61.7
+	 8.7	 42.7	 7	 	 123.6 357.1 84.8
x	 14.6	 63	 9.8	 	 123.6 446.8 72.9

 High	dimensional	optimisation	problems	

MOHKA	optimisation	algorithm	problems	in	solving	middle	dimensional	Kacem	optimisation	
problems	continued	with	high	dimensional	optimisation	problems,	in	Table	5,	which	can	be	at‐
tributed	to	the	construction	of	Kacem	datasets,	that	are	highly	susceptible	to	dropping	optimisa‐
tion	 algorithms	 to	 local	minima,	 to	which	MOHKA	 is	 highly	 exposed	 by	 the	 KA	mathematical	
structure	 [14].	 Due	 to	 the	 hybridisation	 and	mathematical	 structure	 of	 the	 algorithm,	 Kacem	
15×10	was	best	solved	by	BBMOPSO.	We	see	that	all	three	algorithms	were	at	a	relatively	short	
distance	 from	 the	 Pareto	 optimal	 solution.	 Unlike	 Kacem	 datasets,	 MOHKA	 excelled	 at	
Brandimarte	 datasets,	which	 is	more	 important	 for	 solving	 FJSSP	 optimisation	 problems.	 The	
structure	of	the	Brandimarte	datasets	represents	real	world	dataset	input	of	an		FJSSP	produc‐
tion	system.	In	our	case,	where	we	wanted	to	solve	the	real	world	problems	of	scheduling	manu‐
factured	 systems	 and	 establish	 communication	 between	 the	 optimisation	 algorithm	 and	 the	
simulation	model,	this	is	crucial	[32].	The	success	of	solving	Brandimarte	datasets	is	paramount	
in	solving	FJSSP.	We	see	that	MOHKA	solved	Brandimarte	high	dimensional	optimisation	prob‐
lems	Mk08	 and	Mk09	 perfectly	 for	 data	 sets	 Mk09,	 and	 especially	 Mk08,	 where	 we	 see	 that	
MOHKA	generated	an	optimal	 solution	with	a	high	degree	of	 solution	delivery	reproducibility.	
Such	results	demonstrate	the	robustness	and	high	ability	to	solve	the	FJSSP	optimisation	problem.	

From	presented	solutions,	we	 find	 that	MOHKA	optimisation	 results	are	 comparable	 to	 the	
results	of	MOPSO	and	BBMOPSO	algorithms,	especially	in	Brandimarte	datasets,	where	MOHKA	
was	 the	most	 suitable	 algorithm	 for	 solving	 both	medium	 and	 high	 dimensional	 optimisation	
problems.	MOHKA	also	demonstrated	 its	 competitiveness	 in	 low	dimensional	Kacem	datasets.	
More	 limitations	 and	 deviations	 from	 optimal	 solutions	 can	 be	 detected	 in	medium	 and	 high	
dimensional	Kacem	datasets.	
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Table	5	Optimisation	results	of	high	dimensional	problems	
Kacem	 Brandimarte

	
											(l)	Kacem	15×10	 										(m)	Mk07 						(n)	Mk08	

	 MC	 TW	 MW	 	 MC TW MW MC	 TW	 MW
•	 24.8	 171	 21.3	 	 178.2 689.9 169.8 550.1	 2506.5	 547.5
+	 16	 91.5	 14	 	 189.3 666.2 167.3 597.4	 2504	 551.9
x	 23.4	 135.3	 19	 	 207 693.7 174.7 599.3	 2523.5	 545.1

	

								(o)	Mk09 		(p)	Mk10	
	 	 MC TW MW MC TW	 MW

•	 350.5 2450.9 306.5 358.1	 2074.5	 226.8
+	 534.9 2224.2 383.7 464.2	 1888.9	 298.8
x	 536.1 2448.2 361.2 429	 2110.3	 258.9

3.2 Simulation modelling 

In	the	time	of	the	Industry	4.0,	development	of	simulation	tools	to	optimise	production	has	be‐
come	increasingly	more	important.	Using	advanced	simulation	methods,	we	can	make	manufac‐
turing	systems	more	efficient,	financially	viable	and	more	competitive	in	the	global	market	[33].	
There	are	many	optimisation	problems	in	production	systems	that	can	be	solved	by	the	proper	
use	of	 simulation	 tools	 [34].	 In	 our	 case,	we	wanted	 to	 establish	 interactivity	between	 the	EC	
optimisation	 method	 and	 the	 flexible	 simulation	 model.	 The	 interactive	 architecture	 enables	
communication	 between	 the	 optimisation	 algorithm	 and	 the	 production	 system	 simulation	
model.	Fig.	3	presents	 the	proposed	block	architecture	of	a	 simulation	model	 that	enables	 the	
interactivity	of	MOHKA	optimisation	algorithm	results,	a	simulation	model	and	a	real	world	pro‐
duction	system.	

The	interactive	architectural	model	consists	of	the	following	phases:	

 In	the	first	phase,	we	assign	the	input	data	of	a	real	production	system	or	benchmark	data	
sets.	The	inputs	of	a	real	production	system	must	be	credible	and	verifiable.	

 In	the	second	phase,	the	implementation	of	the	sequence	order	optimisation	is	performed	
according	 to	 the	 available	machines	with	 the	MOHKA	 optimisation	 algorithm.	 The	 algo‐
rithm	is	implemented	according	to	the	structure	described	in	Section	three.	

 The	 third	phase	 transmits	 the	MOHKA	optimisation	results	 to	 the	simulation	model	of	a	
real	production	system,	named	the	analysed	system.	Additional	optimisation	parameters	
are	assigned	related	to	costs,	dimensions	and	setup	time.	At	this	stage,	we	propose	the	in‐
troduction	 of	 a	 new	 approach	 for	 determining	 the	 order	 of	 operations	 on	 an	 individual	
machine,	which	does	not	depend	on	the	integrated	simulation	environment	decision	logic.	
The	approach	is	presented	as	follows.	
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 The	next	phase	is	the	implementation	of	simulation	experiments	that	allow	the	calculation	
of	the	average	multiple	iterations’	values	of	the	simulation	model,	and	the	introduction	of	
simulation	scenarios,	in	order	to	determine	the	limitations,	changes	and	proposals	for	op‐
timisation	of	the	production	system.	

 In	 the	 simulation	 analysis	 phase,	 we	 evaluate	 the	 numerical	 results,	 and	 compare	 the	
graphical	matching	of	order	sequences	solutions	using	MOHKA	and	the	simulation	model.	
Approval	of	the	orders’	sequences	is	confirmed	or	denied.	The	importance	of	data	match‐
ing	ensures	the	credibility	of	numerical	and	simulation	results.	

 The	evaluated	numerical	and	simulation	results	are	transferred	to	a	real	production	sys‐
tem,	whereby	a	change	(optimisation)	of	the	production	system	is	enabled,	based	on	an	in‐
teractive	loop.	

	

The	simulation	model	was	built	in	the	software	environment	Simio	[35],	which	is	a	unique	soft‐
ware	environment	for	modelling	flexible	manufacturing	or	service	processes	[36].	Simio	is	based	
on	the	use	of	intelligent	objects,	and	supports	both	process	and	object	oriented	modelling.	It	is	
used	 for	 discrete	 and	 continuous	 systems.	 Using	 the	MOHKA	 algorithm,	we	 	 solved	 the	 FJSSP	
optimization	problem,	so	we	decided	to	upgrade	our	existing	optimisation	results	with	a	suitable	
simulation	model.	The	following	is	a	new	decision	logic	method	that	combines	the	possibilities	of	
testing	datasets	and	optimising	real	world	production	systems.	The	obtained	numerical	values	of	
the	optimisation	algorithm,	which	are	given	in	Table	6,	were	transferred	into	the	Simio	software	
environment,	where	the	real	production	system	shown	in	Fig.	4	was	modelled.	

The	main	advantage	of	using	simulation	environments,	such	as	Simio,	is	the	ability	to	transfer	
data	between	the	optimisation	algorithm,	simulation	model	and	real	world	production	system.	
With	the	appropriate	data	transfer	method,	we	can	extend	the	testing	and	optimisation	of	pro‐
duction	 system	 parameters,	 in	 order	 to	 extend	 the	 numerical	 model	 in	 an	 optimisation‐
programming	environment	that	optimises	different	orders.	The	simulation	model	was	designed	
as	a	flexible	modular	model	built	in	two	parts.	The	first	part	of	the	simulation	model	is	a	MOHKA	
optimisation	algorithm	that	allocates	work	orders	optimally	to	available	machines.	In	this	case,	
MOHKA	optimises	three	key	parameters:	Makespan,	maximum	workload	and	total	workload	of	
all	machines.	The	end	result	of	 the	MOHKA	optimisation	algorithm	is	 the	optimal	allocation	of	
individual	work	order	operations	to	the	available	machines.	In	this	case,	the	order	machine	exe‐
cution	 sequence,	 their	 start	 time,	 finish	 time,	 and	machine	 sequence	 are	obtained.	The	output	
results	of	the	MOHKA	optimisation	algorithm	are	shown	in	Table	6.	

	

	
Fig.	3	Block	diagram	of	interactive	simulation	model		
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Fig.	4	Simulation	model	in	Simio	

Table	6	Optimisation	results	of	MOHKA	algorithm	transferred	to	simulation	model	
Order	 Operation	 Machine	 Start	time Finish	time Machine	sequence
J1	 O1,1	 M1	 0 1 1	

O1,2	 M1	 1 5 2	
O1,3	 M10	 5 8 2	

J2	 O2,1	 M10	 0 4 1	
O2,2	 M7	 4 5 1	
O2,3	 M6	 5 8 2	

J3	 O3,1	 M8	 0 3 1	
O3,2	 M5	 3 5 1	
O3,3	 M8	 5 7 2	

J4	 O4,1	 M9	 0 1 1	
O4,2	 M6	 1 5 1	
O4,3	 M4	 5 6 1	

J5	 O5,1	 M3	 0 4 1	
O5,2	 M3	 4 7 2	
O5,3	 M4	 7 8 2	

The	results	of	the	optimisation	algorithm	shown	in	Table	6	are	transferred	automatically	to	
the	 Simio	 software	 environment	 via	 the	 communication	 interface	MATLAB,	 Excel,	 Simio	 [37].	
The	transmission	of	optimisation	results	allows	further	evaluation	of	the	results	using	a	simula‐
tion	model	of	 a	 real	world	production	 system.	The	MOHKA	algorithm	allocated	orders’	opera‐
tions	optimally	to	individual	machines,	and	transferred	these	data	to	the	Simio	simulation	envi‐
ronment.	When	 performing	 simulation	 experiments	 in	 a	 simulation	 environment,	 a	 limitation	
occurs	in	the	decision	logic	of	the	simulation	environment.	Simio's	simulation	environment	has	
an	integrated	decision	logic	for	order	sequencing,	which,	in	a	lot	of	cases,	makes	it	impossible	to	
follow	the	order	sequence	given	as	 the	solution	of	 the	EC	optimisation	algorithms.	 In	order	 to	
eliminate	 the	 integrated	 decision	 logic	 of	 the	 simulation	 environment,	 we	 introduced	 a	 new	
functional	 dependency	 that	 defines	 the	 sequence	 of	 execution	 of	 individual	 orders	 on	 the	 as‐
signed	machine.		

In	Table	6,	the	row	Machine	sequence	works	by	assigning	the	MOHKA	optimisation	numerical	
results	of	the	order	sequence	and	the	matching	numerical	results	in	Table	6	to	the	row	Machine	
sequence	 that	defines	 the	 sequence	 of	 operations	 according	 to	 the	MOHKA	optimisation	 solu‐
tion.	Example:	According	to	the	MOHKA	solution	(Fig.	5,	top	chart),	the	O1,1	operation	is	first	per‐
formed	 on	 the	M1	machine,	 followed	 by	 the	 operation	O1,2.	 The	 first	 operation	O1,1	 to	 be	 per‐
formed	on	machine	M1	is	assigned	to	this	operation	consecutive	number	one,	which	determines	
the	sequence	of	execution	on	the	machine.	A	sequence	number	two	is	assigned	to	operation	O1,2,	
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by	the	above	method.	The	presented	approach	defines	values	for	the	entire	sequence	of	the	Ka‐
cem	5×10	dataset.	The	solutions	of	the	approach	are	shown	in	Table	6.	The	smaller	the	assigned	
value	of	 the	 variable	Machine	 sequence	 is,	 the	 sooner	 it	will	be	 executed	on	 the	assigned	ma‐
chine.	The	presented	method	enables	robust,	smooth	data	transfer	between	the	software	envi‐
ronments	of	the	optimisation	algorithm	and	the	simulation	model.	With	the	presented	approach,	
we	bypassed	the	decision	logic	of	the	simulation	environment,	and	we	could	use	our	own	opti‐
misation	algorithm	to	determine	the	optimum	orders’	sequence.	Fig.	5	shows	the	Gantt	charts’	
solutions	 of	 the	 optimisation	 algorithm	 (top	 chart)	 and	 simulation	 model	 (lower	 chart).	 The	
Gantt	charts	are	the	same,	which	proved	the	high	capability	of	the	presented	method	to	integrate	
the	EC	method	decision	logic	into	the	existing	simulation	environment.	

The	presented	approach	emphasises	the	advantage	of	a	modular	adaptive	design	that	allows	
the	simulation	model	 to	be	adapted	 to	a	wide	range	of	multi‐objective	optimisation	problems.	
The	simulation	model	can	be	adjusted,	upgraded	or	replaced	as	needed	by	any	part	of	the	two‐
part	 structure.	 Replacing	 or	 upgrading	 individual	 parts	 of	 the	 presented	 approach	makes	 the	
presented	method	sustainable.	

	

	
Fig.	5	Gantt	chart	of	the	optimisation	algorithm	(top	chart)	and	simulation	model	results	(lower	chart)	

4. Conclusion 

The	presented	research	work	links	our	own	developed	EC	method	of	the	MOHKA	algorithm	with	
the	 interactive	simulation	model.	The	 transfer	of	optimisation	results	 to	a	 simulation	environ‐
ment	can,	in	many	cases,	represent	limitations	in	the	use	of	its	own	decision	logic.The	presented	
research	results	have	answered	the	main	research	question	related	to	the	limitation	regarding	
interactivity	 of	 mathematical	 and	 simulation	 modelling.	 The	 research	 problem	 of	 a	 multi‐
objective	FJSSP	optimisation	problem	scheduling	was	identified	initially.	Identifying	an	NP‐hard	
optimisation	 problem	 requires	 the	 use	 of	 advanced	 EC	methods.	 The	 proposed	MOHKA	 algo‐
rithm	shows	an	example	of	solving	the	test	Kacem	[16]	and	Brandimarte	[17]	benchmarks.	Fif‐
teen	datasets	were	divided	into	three	difficulty	groups.	According	to	the	proposal	of	researchers	
[25],	the	division	of	optimisation	problems	into	three	levels	of	difficulty	enables	a	detailed	eval‐
uation	of	the	optimisation	results.	Optimisation	results	are	evaluated	numerically	and	graphical‐
ly,	 and	 a	 comparative	 analysis	 was	 performed	 between	MOHKA,	 MOPSO	 and	 BBMOPSO.	 The	
advantages	and	limitations	of	the	individual	optimisation	results	were	defined	[14],	which	show	
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the characteristics of the individual algorithm with respect to the corresponding mathematical 
structure. Based on the satisfactory optimisation results, the presented MOHKA method is suita-
ble for optimisation results’ interactivity between the mathematical and simulation models. The 
interactive method shown gives the advantage of transferring optimisation results via a simula-
tion model to a real environment. The importance of transferring the MOHKA algorithm optimi-
sation results to a real world environment demonstrates the high degree of the proposed meth-
od’s applicability in complex manufacturing systems supported by the Industry 4.0 concept. The 
graphical results demonstrate the reliability and robustness of the proposed approach, which 
will be expanded further by modelling and devaluing the flexibility parameter and its depend-
ence on the production cost-time profile. An adequate time justified profile is key in ensuring 
sustainable production systems. 

The proposed interactive method represents an advanced, flexible and effective link between 
mathematical and simulation modelling. The open architectural model allows the extension and 
application of the method to various optimisation problems for both service and production 
systems. Further research in the field of Mathematical and Simulation Modelling of flexibility 
parameters in high-mix low-volume production systems will present the optimum production 
systems’ scheduling importance. 
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