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Abstract

Every finite group G acts on some non-orientable unbordered surfaces. The minimal
topological genus of those surfaces is called the symmetric crosscap number of G. It is
known that 3 is not the symmetric crosscap number of any group but it remains unknown
whether there are other such values, called gaps.

In this paper we obtain the groups with symmetric crosscap number less than or equal
to 17. Also, we obtain six infinite families with symmetric crosscap number of the form
12k + 3.
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1 Introduction
A Klein surface X is a compact surface endowed with a dianalytic structure [1]. Klein
surfaces may be seen as a generalization of Riemann surfaces including bordered and non-
orientable surfaces. An orientable unbordered Klein surface is a Riemann surface. Given
a Klein surface X of topological genus g with k boundary components the number p =
ηg + k − 1 is called the algebraic genus of X , where η = 2 if X is an orientable surface
and η = 1 otherwise.

In the study of Klein surfaces and their automorphism groups the non-euclidean crys-
tallographic (NEC) groups play an essential role. An NEC group Γ is a discrete subgroup
of G (the full group of isometries of the hyperbolic plane H) with compact quotient H/Γ.
For a Klein surface X with p ≥ 2 there exists an NEC group Γ, such that X = H/Γ, [27].
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A finite groupG of orderN is a subgroup of the automorphism group of a Klein surface
X = H/Γ if and only if there exists an NEC group Λ such that Γ is a normal subgroup of Λ
with index N and G = Λ/Γ. Every finite group G acts as a subgroup of the automorphism
group of some non-orientable surface without boundary, see [7]. The minimum topological
genus of these surfaces is called the symmetric crosscap number of G and it is denoted by
σ̃(G). Such a surface of topological genus g ≥ 3 has at most 84(g − 2) automorphisms.
Hence, for each g there is a finite number of groups acting on surfaces of genus g. The
systematic study of the symmetric crosscap number was begun by May in [23], although
previous results from other authors are also to be noted, see for instance [7, 14, 19].

Four types of inter-related problems arise naturally when dealing with the symmetric
crosscap number σ̃(G).

First of all, to obtain σ̃(G) for any given group G, and for the groups belonging to a
given infinite family.

Second, to obtain σ̃(G) for all groups G with o(G) < n for a given (small) value of n.
Third, for a given value of g, to obtain all groups G such that σ̃(G) = g. Evidently this

question is feasible only for low values of g.
Finally, to determine which values of g are in fact σ̃(G) = g for a group G. The

set of such values is called the symmetric crosscap spectrum and there exists a conjecture
according to which g = 3 is the unique positive integer not belonging to the spectrum.

In this paper we deal with the third question. We will study which groups have symmet-
ric crosscap number less than or equal to 17. First, we will indicate all the results we know
and then we will make a study of each group with symmetric crosscap number g ≤ 17 that
has not been studied in detail. Also, results on the spectrum are given. The contents of this
paper form part of the doctoral thesis of the author, [3].

2 Preliminaries
An NEC group Γ is a discrete subgroup of isometries of the hyperbolic planeH, including
orientation-reversing elements, with compact quotient X = H/Γ. Each NEC group Γ has
associated a signature [22]:

σ(Γ) = (g,±, [m1, . . . ,mr], {(ni,1, . . . , ni,si), i = 1, . . . , k}), (2.1)

where g, k, r,mi, ni,j are integers satisfying g, k, r ≥ 0,mi ≥ 2, ni,j ≥ 2. We will denote
by [−], (−) and {−} the cases when r = 0, si = 0 and k = 0, respectively.

The signature determines a presentation of Γ, see [30], by generators xi (i = 1, . . . , r);
ei (i = 1, . . . , k); ci,j (i = 1, . . . , k; j = 0, . . . , si); ai, bi (i = 1, . . . , g) if σ has sign ‘+’;
and di (i = 1, . . . , g) if σ has sign ‘−’. These generators satisfy the following relations:

xmi
i = 1; c2i,j−1 = c2i,j = (ci,j−1ci,j)

ni,j = 1; e−1
i ci,0eici,si = 1

and ∏r
i=1 xi

∏k
i=1 ei

∏g
i=1(aibia

−1
i b−1

i ) = 1 if σ has sign ‘+’∏r
i=1 xi

∏k
i=1 ei

∏g
i=1 d

2
i = 1 if σ has sign ‘−’

The isometries xi are elliptic, ei, ai, bi are hyperbolic, ci,j are reflections and di are
glide-reflections.
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Every NEC group Γ with signature (2.1) has associated a fundamental region whose
area µ(Γ), called area of the group, is:

µ(Γ) = 2π

(
ηg + k − 2 +

r∑
i=1

(
1− 1

mi

)
+

1

2

k∑
i=1

si∑
j=1

(
1− 1

ni,j

))
, (2.2)

with η = 2 or 1 depending on the sign ‘+’ or ‘−’ in the signature. An NEC group with
signature (2.1) actually exists if and only if the right-hand side of (2.2) is greater than 0.
We denote by |Γ| the expression µ(Γ)/2π and call it the reduced area of Γ.

If Γ is a subgroup of an NEC group Λ of finite index N , then also Γ is an NEC group
and the Riemann-Hurwitz formula holds, |Γ| = N |Λ|.

Let X be a non-orientable Klein surface of topological genus g ≥ 3 without boundary.
Then by [28] there exists an NEC group Γ with signature:

σ(Γ) = (g,−, [−], {−}), (2.3)

such that X = H/Γ.
A group Γ with this signature is called a surface NEC group. If G acts as an automor-

phism group of X = H/Γ, then there exists another NEC group Λ such that G = Λ/Γ.
From the Riemann-Hurwitz relation we have g − 2 = o(G)|Λ|, where o(G) denotes the
order of G. Then

σ̃(G) ≤ g = 2 + o(G)|Λ|,
and so to obtain the symmetric crosscap number of G is equivalent to find a group Λ and
an epimorphism θ : Λ → G, such that Γ = ker θ is a surface NEC group (and so, without
elements with finite order) and G = θ(Λ+), where Λ+ is the subgroup consisting of the
orientation-preserving elements of Λ, see [28], and minimal |Λ|.

The groups having symmetric crosscap numbers 1 and 2 have been classified by
T. W. Tucker, [29]. The groups of symmetric crosscap number 1 are Cn, Dn, A4, S4

and A5. We have two families of groups of symmetric crosscap number 2, C2×Cn, n > 2
even, and C2 ×Dn, n even. It is known that there exists no group of symmetric crosscap
number 3, [23]. The groups with symmetric crosscap number 4 and 5 were obtained in [8].

M. D. E. Conder at a conference in Castro-Urdiales in 2010 announced that using com-
puting software, he had obtained the groups of symmetric crosscap number up to 65, in
terms of their “SmallGroupLibrary” description. The result of this research is available in
his webpage, [9]. The list contains the GAP reference of each group, its symmetric crosscap
number and the corresponding NEC group Λ. However, this list gives information neither
on the algebraic structure of the groups nor on the epimorphism θ which determines the
action of the NEC group Λ over the group G. Throughout the paper, we use extensively
this fundamental work by Conder, in order to study which are the concerned groups.

For each group G we have described its algebraic structure, its presentation and the
corresponding epimorphism, but here we will only show the algebraic structure and its
presentation. In the most complicated cases, we will show also the epimorphism. In the
presentations we skip the abelian relations. The full details are to be found in [2] and [3].
For groups of order 32 and 64 we use the notation given by Hall and Senior in [20]. The
algebraic identification allows us to know the subgroups structure of the involved groups,
and this is essential to determine all the groups that act on a surface of a given genus. Along
the article Cn, Dn, DCn and QAn denote, respectively, the cyclic, dihedral, dicyclic and
quasiabelian groups, for more details see [12, 13].
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3 Groups of symmetric crosscap number 6 to 9

In symmetric crosscap number 6 some groups stand out:

1. The group [80, 46]: Coxeter described this group of order 80 in [12], where he named
it as (2, 5, 5; 2) with presentation and algebraic structure as shown in the table.

2. The group [160, 234]: This group contains the previous one of order 80. In [12] it is
denoted as (4, 5 | 2, 4).

Table 1: Groups of symmetric crosscap number 6.

GAP G Relations [+ Generators] Reference

[8, 4] DC2 ' Q a4, a2b2, b−1aba [23]
[16, 3] (4, 4 | 2, 2) a4, b4, (ab)2, (a−1b)2 [15]
[16, 6] QA4 a8, b2, baba3 [15]
[16, 8] L4 a8, b2, baba5 [15]
[16, 13] 〈2, 2, 2〉2 a2, b2, c2, abcacb, abcbac, bcabac [15]
[16, 14] C2 ×C2 ×C2 ×C2 a2, b2, c2, d2 [19]
[32, 27] Γ4a1 a2, b2, c2, d2, e2, cecae, dedbe

[32, 43] Γ6a1 a8, b2, c2, (ab)2, aca3c

[80, 46] (2, 5, 5; 2) a2, b5, (ab)5, (a−1b−1ab)2

[120, 35] C2 ×A5 a2, [+ (1 2 3 4 5), (1 2 3)]
[160, 234] (4, 5 | 2, 4) a4, b5, (ab)2, (a−1b)4

Attending to symmetric crosscap number 7, we must analyze the group [72,15], which
contains the group of order 36 that appears in the table below (see [26]) and so that the
algebraic structure is ((C2 × C2) o C9) o C2. In this case, we are going to give the
epimorphism. This group has a presentation given by generators a, b, c and relations a4 =
b9 = c2 = (ac)2 = (cb)2 = (ab)2 = cb−1ab−1a−2 = 1. An associated NEC group is Λ
with signature (0; +; [−]; {(2, 4, 9)}) and reduced area 5

72 and an epimorphism θ : Λ→ G
is

θ(c1,0) = cb, θ(c1,1) = ac, θ(c1,2) = c, θ(c1,3) = cb.

The image of c1,1c1,2 is the generator a, the image of c1,2c1,3 is the generator b, and
finally, c is the image of the element (c1,1c1,2)2c1,2c1,3(c1,1c1,2)3c1,2c1,3. So we have the
generators as images of orientation-preserving elements, and so that the group acts on a
non-orientable surface.

For symmetric crosscap number 8 we just have to emphasize the group of order 504,
that is PSL(2, 8), whose symmetric crosscap number was firstly studied in detail by Wendy
Hall in [21].

To end this section, we comment some groups with symmetric crosscap number 9,
where we find:

1. The group [42, 1], which we call 〈7, 6, 5〉, according to the Coxeter-Moser notation
in [13]. It contains G21, which is also a group of this symmetric crosscap number,
and so that its algebraic structure is G21 o C2. Its presentation can be expressed in
terms of permutations taking a = (1 2 3 4 5 6 7) and b = (1 5 4 6 2 3).
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Table 2: Groups of symmetric crosscap number 7.

GAP G Relations [+ Generators] Reference

[12, 1] DC3 a6, a3b2, b−1aba [23]
[24, 8] (4, 6 | 2, 2) a4, b6, (ab)2, (a−1b)2 [15]
[36, 3] (C2 × C2) o C9 a2, b2, c9, [a, b], c−1acb, c−1bcba

[72, 15] ((C2 × C2) o C9) o C2 a4, b9, c2, (ac)2, (cb)2, (ab)2,
cb−1ab−1a−2

Table 3: Groups of symmetric crosscap number 8.

GAP G Relations [+ Generators] Reference

[24, 5] C4 ×D3 a4, b2, c2, (bc)3 [16]
[24, 10] C3 ×D4 a3, b2, c2, (bc)4 [16]
[48, 38] D3 ×D4 a2, b2, c2, d2, (ab)3, (cd)4 [17]
[56, 11] (C2×C2×C2)oC7 a7, b2, c2, d2, badca−1, caba−1,

daca−1

[504, 156] PSL(2, 8) a2, b3, (ab)7, ([a, b]4b)2 [21]

2. The group [168, 42] is PSL(2, 7). In this case, the presentation given in the table can
be expressed by permutations b = (2 3 4)(5 7 6) and a = (1 2 3)(4 5 6) and relations
a3 = b3 = (ab)4 = (a−1b)4 = 1, see [12]. Two more presentations for this group
are useful:

(a) R4, S4, (RS)2, (R−1S)3

(b) R2, S3, (RS)7, (R−1S−1RS)4

Studying this group, there are actions given by NEC groups with two different sig-
natures:

(i) For an NEC group Λ with signature (0; +; [−]; {(3, 3, 4)}) and reduced area 1
24 ,

we take the presentation given by permutations. So an associated epimorphism
θ : Λ→ G is:

θ(c1,0) = (baba2)2, θ(c1,1) = (a2b)2, θ(c1,2) = (ba2)2, θ(c1,3) = (baba2)2

Consider the image of c1,0c1,1 and the image of c1,1c1,2. Then the image of the
element (c1,0c1,1)2c1,1c1,2c1,0c1,1(c1,1c1,2)2 is (1 5 4 3 6 2 7), a permutation
of order 7. This element, together with the elements of order 3 and order 4,
θ(c1,0c1,1) and θ(c1,2c1,3), generate a group of order 84 at least, but PSL(2, 7)
is simple, so it is the full group. So the group G is generated by images of
orientation-preserving elements and the group acts on a non-orientable surface.

(ii) For an NEC group Λ with signature (0; +; [3]; {(4)}) and reduced area 1
24 , we

use the presentation (b). An associated epimorphism θ : Λ→ G is:

θ(x1) = S, θ(e1) = S2, θ(c1,0) = R, θ(c1,1) = SRS−1
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It is clear that θ is an epimorphism. The element c1,0x1 is orientation-reversing,
its seventh power is also orientation-reversing and the image of (c1,0x1)7 is the
identity element, so the group acts on a non-orientable surface.

3. The group [336, 208] has order 336 = 168 · 2. Then we can guess its algebraic
structure is PSL(2, 7) oC2. We can find a presentation of this group in [10], and an
epimorphism θ does exist. Hence this is the group we are looking for.

Table 4: Groups of symmetric crosscap number 9.

GAP G Relations [+ Generators] Reference

[21, 1] G21 a7, b3, aba3b−1 [15]
[30, 1] C5 ×D3 a5, b2, c2, (bc)3 [16]
[30, 2] C3 ×D5 a3, b2, c2, (bc)5 [16]
[42, 1] 〈7, 6, 5〉 a7, b6, b−1aba2

[60, 8] D3 ×D5 a2, b2, c2, d2, (ab)3, (cd)5 [17]
[168, 42] PSL(2, 7) a3, b3, (ab)4, (a−1b)4

[336, 208] PSL(2, 7) o C2 a3, b8, c2, (ac)2, (cb)2, (ab)2,
cb−1(ab−2)3a−1

4 Groups of symmetric crosscap number 10 to 17

Firstly, we analyze the groups with symmetric crosscap number 10, where we can find 30
different groups, most of them of order 32, 48 and 64. We just emphasize:

1. For the group [48, 29] we use two presentations, the one given in the table (generators
a, b, c and relations a2, b3, c3, (bc)4, (ab)2, (ac)2, [b, c](bc)2) and another one given
by generators R,S and relations R8, S3, (RS)2, R4SR4S−1. For this case, three
signatures of NEC groups are given:

(i) For an NEC group Λ with signature (0; +; [−]; {(2, 2, 3, 3)}) and reduced area
1
6 we take the presentation given in the table and an epimorphism θ : Λ → G
given by

θ(c1,0) = ac, θ(c1,1) = (bc)2, θ(c1,2) = ba, θ(c1,3) = a, θ(c1,4) = ac

The group acts on a non-orientable surface, because the image of the element
c1,2c1,3 is the generator b, the image of the element c1,3c1,4 is the generator
c and the image of the element c1,3c1,1(c1,2c1,4)2 is the generator a, so these
three images generate the group, and they are images of orientation-preserving
elements.

(ii) For an NEC group Λ with signature (0; +; [3]; {(2, 2)}) and reduced area 1
6 we

take the second presentation and so an associated epimorphism is θ : Λ → G
given by

θ(x1) = S, θ(e1) = S−1, θ(c1,0) = RS, θ(c1,1) = R4, θ(c1,2) = SR
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The images of the elements (c1,1c1,0e1)5 and x1 are the generators R and S
respectively and both are orientation-preserving elements, so it is a group acting
on a non-orientable surface.

θ(x1) = RS, θ(x2) = S, θ(e1) = SR−1, θ(c1,0) = R4

The quotient gives a non-orientable surface because the images of the elements
x1x

2
2 and x2 are the generators R and S respectively and both elements are

orientation-preserving.

2. The group [96, 70] can be expressed in terms of permutations, by means of the gen-
erators a = (1 2)(3 4)(5 8)(6 7) and b = (1 5)(2 8 3 6 4 7).

3. We can find the group [96, 193] in [24], called G∗
48, but in the presentation given

there, one relation is missing. We have added it, as can be seen in Table 5.

In symmetric crosscap number 11 we have to stand out two things: One is that the pre-
sentation of group [108, 15] can be expressed in terms of permutations of S18 as
a = (4 7)(5 8)(6 9)(13 16)(14 17)(15 18) and b = (1 17 5 14 2 18 6 15 3 16 4 13)
(7 12 9 11 8 10); and the other is that the group [108, 17] is G3,6,6 in the notation of [12].

For symmetric crosscap number 12 and 13, we have nothing to remark.
In symmetric crosscap number 14 we find several groups of order 48, and the following

groups stand out:

1. The presentation of the group [72, 43] has been deduced from its algebraic structure
(C3 × A4) o C2. We have taken d as the generator of C2 and we have determined
how d acts on the other generators.

2. The same argument has been applied to the group [96, 89], where its algebraic struc-
ture (D2 × D6) o C2 determine its presentation. In this case, e is the generator to
add. The presentation is given by generators a, b, c, d, e and relations a2, b2, c2, d2,
e2, (ab)2, (cd)6, eabea, ecdec. Let Λ be an associated NEC group with signature
(0; +; [−]; {(2, 2, 2, 4)}) and reduced area 1

8 , so an epimorphism is θ : Λ→ G given
by

θ(c1,0) = e, θ(c1,1) = b, θ(c1,2) = a, θ(c1,3) = c, θ(c1,4) = e

The elements c1,0, c1,2, c1,3, c1,1 and (c1,4c1,3)2 have as images the generators
e, a, c, b, d respectively and generate the group. On the other hand the element
(c1,0c1,2)2c1,1 has as image the identity element and it is orientation-reversing. Thus,
the group acts on a non-orientable surface.

3. The same happens for [96, 115] and its algebraic structure is (C2×D12)oC2, where
d is the generator of C2 and so that we have to determine its relations with the other
generators.

In symmetric crosscap number 15, we just note that the group [1092, 25] was obtained
in [21] by Wendy Hall, who proved that PSL(2, 13) is a group of 84(g−2) automorphisms
of a surface of genus g, and so g = 15.

Nothing stands out in symmetric crosscap number 16. But in symmetric crosscap num-
ber 17 we have again the same situation that in symmetric crosscap number 14. For the
group [72, 23] we have deduced the presentation from its algebraic structure (C6×D3)oC2,
taking d as the generator of C2 and obtaining its action on the other generators.
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Table 5: Groups of symmetric crosscap number 10.

GAP G Relations [+ Generators] Ref.

[16, 2] C4 × C4 a4, b4 [19]
[16, 4] C4 o C4 a4, b4, b−1aba [15]
[16, 9] DC4 a8, a4b2, b−1aba [23]
[16, 10] C4 × C2 × C2 a4, b2, c2 [19]
[24, 3] 〈2, 3, 3〉 a3, abab−1a−1b−1 [15]
[32, 5] Γ2j1 a2, b8, c2, bcb−1ac

[32, 6] Γ7a1 a2, b2, c2, d4, bdbad−1, cdcbad−1

[32, 7] Γ7a2 a8, b2, c2, aba3b, aca−1bc

[32, 9] Γ3a1 a2, b8, c2, bcbac

[32, 11] Γ3e a4, b4, c2, bcba−1c

[32, 17] Γ2k a16, b2, aba7b

[32, 19] Γ8a2 a16, b2, aba9b

[32, 28] Γ4b1 a2, b2, c4, d2, bdbad, (cd)2

[32, 34] Γ4a2 a4, b4, c2, (ac)2, (bc)2

[32, 42] Γ3b a8, b2, c2, (ac)2, bcba4c

[32, 46] C2 × C2 ×D4 ' Γ2a1 a2, b2, c2, d2, (ab)2, (cd)4 [17]
[32, 49] Γ5a1 a4, b2a2, c2a2, d2a2, abab−1, cdcd−1

[48, 29] GL(2, 3) a2, b3, c3, (bc)4, (ab)2, (ac)2, [b, c](bc)2

[48, 31] C4 ×A4 a4, [+ (1 4)(3 2), (1 2 3)] [18]
[48, 33] SL(2, 3) o C2 a2, b3, c3, (bc)4, abac, [b, c]2(bc)2

[48, 50] (C2×C2×C2×C2)oC3 a2, b3, c3, (cb)2, (ab−1)3,
c−1b−1abca, cbab−1c−1a

[64, 128] Γ15a1 a2, b2, c2, e2, f2, d2f, [a, b]fd−1,
[a, c]e, [a, d]f, [b, d]f

[64, 134] Γ26a1 a2, b2, c2, e2, f2, d2f, [a, b]fd−1,
[a, c]e, [a, d]f, [b, d]f, [b, e]f, [c, d]f

[64, 138] Γ25a1 a2, b2, c2, d2, e2, f2, [a, b]d, [a, c]e,
[b, e]f, [c, d]f

[64, 190] Γ19a1 a2, b2, c2, f2, d2fe−1, e2f,
[a, b]e−1d−1, [a, c]f, [a, d]fe−1,

[a, e]f, [b, d]fe−1, [b, e]f

[96, 70] ((C2 × C2 × C2 × C2) a2, b6, (bab−1a)2, (b−2a)3

o C3) o C2

[96, 187] (C2 × S4) o C2 a4, b12, c2, (ab)2, (cb)2, (ac)2,
cb−1ab−1a−2

[96, 193] GL(2, 3) o C2 a2, b8, c3, (bc)2, (ac)2, (ab)2, b4cb4c−1

[96, 227] ((C2 × C2 × C2 × C2) a2, b3, c2, d2, e2, f2, (ba)2, cada,
o C3) o C2 cbdb−1, daca, dbdcb−1, eafa,

ebfeb−1, faea, fbeb−1

[192, 955] (((C2 × C2 × C2 × C2) a4, b6, c2, (ab)2, (cb)2, (ac)2, (ab−1)4,

o C3) o C2) o C2 cb−1ab2a−1b3a−1
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Table 6: Groups of symmetric crosscap number 11.

GAP G Relations [+ Generators] Ref.

[18, 5] C6 × C3 a6, b3 [19]
[27, 3] (3, 3 | 3, 3) a3, b3, (ba)3, (b−1a)3 [15]
[36, 13] C2 × ((C3 × C3) o C2) a2, b3, c3, d2, (ba)2, (ca)2

[54, 5] (2, 3, 6; 3) a3, b6, (ab)2, (ba−1b)3

[54, 8] ((C3 × C3) o C3) o C2 a2, b3, c2, (b−1a)2, (ca)3,
(b−1c)2(bc)2, (ab−1c)2bac

[108, 15] ((C3 × C3) o C3) o C4 a2, (b−2a)3, b−1ab4ab−3,
b−1abab−2abab−1a

[108, 17] G3,6,6 a2, b2, c2, (ab)2, (ac)3, (bc)6, (abc)6

[216, 87] (((C3 × C3) o C3) a4, b6, c2, (ab)2, (cb)2, (ac)2,

o C4) o C2 c(b−1a)3a

Table 7: Groups of symmetric crosscap number 12.

GAP G Relations [+ Generators] Reference

[20, 1] DC5 a10, a5b2, b−1aba [23]
[40, 5] C4 ×D5 a4, b2, c2, (bc)5 [16]
[40, 8] (C10 × C2) o C2 a10, b2, (aba)2, (a−1b)2(ab)2

[40, 10] C5 ×D4 a5, b2, c2, (bc)4 [16]
[40, 12] C2 × 〈5, 4, 2〉 a5, b4, bab−1a3

[80, 39] D5 ×D4 a2, b2, c2, d2, (ab)5, (cd)4 [17]
[240, 189] C2 × S5 a2, [+ (1 2 3 4 5), (1 2)]

Table 8: Groups of symmetric crosscap number 13.

GAP G Relations [+ Generators] Reference

[42, 3] C7 × S3 a7, [+ (1 2 3), (1 2)] [16]
[42, 4] C3 ×D7 a3, b2, c2, (bc)7 [16]
[52, 3] C13 o C4 a4, b13, baba−1

[60, 9] C5 ×A4 a5, [+ (1 2 3), (1 4)(2 3)] [18]
[84, 8] D3 ×D7 a2, b2, c2, d2, (ab)3, (cd)7 [17]
[120, 38] (C5×A4)oC2 a4, b15, c2, (ab)2, (cb)2, (ac)2,

cb−1ab−1a2
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Table 9: Groups of symmetric crosscap number 14.

GAP G Relations [+ Generators] Ref.

[16, 12] C2 ×Q a4, a2b2, c2, b−1aba [23]
[24, 4] C2 ×DC3 a3, b4, c2, bab−1a [18]
[24, 7] DC6 a12, a6b2, b−1aba [23]
[24, 15] C6 × C2 × C2 a6, b2, c2 [19]
[32, 48] Γ2b a4, b2, c2, d2, bcba2c

[36, 11] C3 ×A4 a3, [+ (1 2)(3 4), (1 2 3)] [18]
[36, 12] C6 ×D3 a6, b2, c2, (bc)3 [16]
[48, 6] C24 o C2 a24, b2, baba13

[48, 14] (C12 × C2) o C2 a3, b4, c4, (bc)2, (b−1c)2, c−1aca

[48, 21] C3 × (4, 4 | 2, 2) a3, b4, c4, (bc)2, (b−1c)2

[48, 24] C3 ×QA4 a8, b2, c3, baba3

[48, 37] (C12 × C2) o C2 a3, b2, c2, d2, dcbcdb, dcbdbc, bdcdbc,
(ba)2, (da)2

[48, 43] C2 × ((C6 ×C2)oC2) a4, b6, c2, (ab)2, (a−1b)2

[48, 49] C2 × C2 ×A4 a2, b2, [+ (1 2)(3 4), (1 2 3)]
[48, 51] D2 ×D6 a2, b2, c2, d2, (ab)2, (cd)6 [17]
[72, 42] C3 × S4 a3, [+ (1 2), (1 2 3 4)]
[72, 43] (C3 ×A4) o C2 a3, b2, c3, d2, (da)2, (dc)2,

[+ b = (1 2)(3 4), c = (1 2 3)]
[72, 44] A4 × S3 [+ (1 2)(3 4), (1 2 3), (5 6 7), (5 6)]
[72, 46] D3 ×D6 a2, b2, c2, d2, (ab)3, (cd)6 [17]
[96, 89] (D2 ×D6) o C2 a2, b2, c2, d2, e2, (ab)2, (cd)6, eabea,

ecdec

[96, 115] (C2 ×D12) o C2 a2, b2, c2, d2, (bc)12, dcbdc

[96, 226] C2 × C2 × S4 a2, b2, [+ (1 2 3 4), (1 2)]
[144, 183] S3 × S4 [+ (1 2 3), (1 2), (4 5 6 7), (4 5)]
[180, 19] A5 × C3 a3, [+ (1 3 2 4 5), (2 4 3), (2 4)(1 3)]
[360, 121] A5 ×D3 a3, b10, c2, (ab)2, (cb)2, (ac)2,

b−2ab3a−1b−4a−1c

Table 10: Groups of symmetric crosscap number 15.

GAP G Relations [+ Generators] Ref.

[24, 1] 〈−2, 2, 3〉 a8, b8, (a3b)3, a2b6, a2(b−1a−1)3, b2(b−1a−1)3 [15]
[39, 1] C13 o C3 a3, b13, bab10a−1

[48, 15] (C3 ×D4) o C2 a2, b8, c3, (ab)2, (ac)2, b−1cbc

[78, 1] (C13 o C3) o C2 a2, b3, c13, (ca)2, cbc10b−1

[1092, 25] PSL(2, 13) a3, b7, c2, (ab)2, (cb)2, (ac)2, b−1(ab−2)6a−1c [21]
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Table 11: Groups of symmetric crosscap number 16.

GAP G Relations [+ Generators] Reference

[28, 1] DC7 a14, a7b2, b−1aba [23]
[56, 4] C4 ×D7 a4, b2, c2, (bc)7 [16]
[56, 7] (C14 × C2) o C2 a2, b14, (bab)2, (b−1a)2(ba)2

[56, 9] C7 ×D4 a7, b2, c2, (bc)4 [16]
[72, 16] C2×((C2×C2)oC9) a9, b2, c2, d2, bacba−1, caba−1

[112, 31] D7 ×D4 a2, b2, c2, d2, (ab)7, (cd)4 [17]
[144, 109] (C2 × ((C2 × C2) a4, b18, c2, (ab)2, (cb)2, (ac)2,

o C9)) o C2 cb−1ab−1a−2

Table 12: Groups of symmetric crosscap number 17.

GAP G Relations [+ Generators] Ref.

[25, 2] C5 × C5 a5, b5 [14]
[27, 2] C9 × C3 a9, b3 [14]
[27, 4] C9 o C3 a3, b9, bab5a−1 [15]
[36, 6] C3 ×DC3 a12, b3, baba−1 [18]
[50, 3] C5 ×D5 a5, b2, c2, (bc)5 [16]
[50, 4] (C5 × C5) o C2 a2, b5, c5, (ba)2, (ca)2

[54, 3] C3 ×D9 a3, b2, c2, (bc)9 [16]
[54, 4] C9 ×D3 a9, b2, c2, (bc)3 [16]
[54, 6] (C9 o C3) o C2 a2, b9, c3, (ba)2, cb7c−1b−1

[54, 7] (C9 × C3) o C2 a2, b3, c9, (ba)2, (ca)2

[68, 3] C17 o C4 a4, b17, bab4a−1

[72, 23] (C6 ×D3) o C2 a6, b2, c2, d2, (bc)3, bdcbd, dada3

[72, 39] (C3 × C3) o C8 a8, b3, c3, baca−1, cab−1a−1

[100, 12] (C5 × C5) o C4 a4, b5, c5, bab3a−1, cac3a−1

[100, 13] D5 ×D5 a2, b2, c2, d2, (ab)5, (cd)5 [17]
[108, 16] D3 ×D9 a2, b2, c2, d2, (ab)3, (cd)9 [17]
[200, 43] (D5 ×D5) oC2 a4, b10, c2, (ab)2, (cb)2, (ac)2, [ab, ba],

cb−1(ab−3)2a−2

[360, 118] A6 [+ (1 4 2 3 5), (3 5 4), (1 2 4 3)(5 6)]
[720, 764] A6 o C2 a3, b8, c2, (ab)2, (cb)2, (ac)2,

cb−1ab3ab−2a−1ba−1b−3a−1
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5 Groups with symmetric crosscap number 12k + 3

Firstly, the strong symmetric genus is the minimum genus of any Riemann surface on which
G acts, preserving orientation. For this parameter, there is a group of every strong sym-
metric genus, [25]. The symmetric genus is the smallest non-negative integer g such that
the group G acts faithfully on a closed orientable surface of genus g (not necessarily pre-
serving orientation). For this parameter, the spectrum includes every non-negative integer
g 6≡ 8 or 14 (mod 18), and moreover, if a gap occurs at some g ≡ 8 or 14 (mod 18), then
the prime-power factorization of g − 1 includes some factor pe ≡ 5 (mod 6), [11].

In the study of the spectrum of the symmetric crosscap number, the groups with sym-
metric crosscap number of the form 12k + 3 are very interesting. It is known that for all
n 6= 12k + 3, there is a finite group with symmetric crosscap number n, see [6]. Con-
versely, for some values n = 12k + 3, it is not known whether there exists a group with
symmetric crosscap number n. So that, we can enunciate some theorems whereby we find
infinite families of groups whose symmetric crosscap number is of the type 12k + 3.

The symmetric crosscap numbers obtained in Theorems 5.1 to 5.5, although of 12k+ 3
form, were already obtained for other groups, as we can see in the proofs. In the case of
Theorem 5.6, also these numbers n were already covered, since the group C7(12k+7) oC3,
in the terms of the statement, has symmetric crosscap number 84k + 51, see [6]. But they
are important because they give more examples of groups of this type of n, helping us to
see how these groups act.

Theorem 5.1. Let n = 12k + 3 be such that n − 2 has all its prime factors congruent to
1 (mod 3). Then

C12k+1 o C3 and (C12k+1 o C3) o C2

have symmetric crosscap number n.

Proof. Firstly we have that C12k+1 o C3 has a presentation given by generators a, b such
that a3 = b12k+1 = (ab)3 = 1. Now let Λ be an NEC group with signature (1;−; [3, 3];
{−}), whose reduced area is 1

3 . We can define an epimorphism θ : Λ→ G given by

θ(x1) = a−1, θ(x2) = ab, θ(d1) = b6k

We have that the images of x1 and x1x2 are the generators a−1 and b respectively, and
both are preserving-orientation elements, then we have that it is a group that acts on a non-
orientable surface. Besides, the NEC group area is minimal ([6]), and so the symmetric
crosscap number of C12k+1 o C3 is n.

Now we have (C12k+1 o C3) o C2 that has a presentation given by generators a, b, c
and relations a3 = b12k+1 = c2 = (ab)3 = 1, ca = ac and bc = cb−1. Now let Λ be an
NEC group with signature (0; +; [2, 3]; {(−)}), whose reduced area is 1

6 . Therefore, if we
define an epimorphism from this NEC group, (C12k+1 o C3) o C2 will have symmetric
crosscap number less or equal to n. We can define an epimorphism θ : Λ→ G given by

θ(x1) = cb, θ(x2) = b−1a−1, θ(e1) = ac, θ(c1,0) = c

We have that the element c1,0, the element e1c1,0 and the element c1,0x1 have as images
the generators c, a and b respectively. Besides the element (e1c1,0)3 has as image the
identity element and it is orientation-reversing, so we have just proved that the group acts on
a non-orientable surface. Because of this epimorphism we can say that (C12k+1oC3)oC2
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has symmetric crosscap number at most n. But since it contains C12k+1 o C3, that has
symmetric crosscap number n, σ̃((C12k+1 o C3) o C2) = n.

Theorem 5.2. Let n = 12k + 3 be such that n− 2 = m2 is a square. Then:

(i) (3, 3 | 3,m) has symmetric crosscap number n.

(ii) There are two groups with algebraic structure (3, 3 | 3,m)oC2, namely (2, 3, 2m; 3)
and (2, 3, 6;m), that have symmetric crosscap number n.

Proof. Firstly we have that the group (3, 3 | 3,m) of order 3m2 has a presentation given
by generators a, b and relations a3 = b3 = (ab)3 = (a−1b)m = 1. From [15], we know
that this group has symmetric crosscap number m2 + 2.

Now we have two groups with algebraic structure (3, 3 | 3,m) o C2:

(i) The first one, that is the group (2, 3, 2m; 3) in the notation of [12], of order 6m2,
has a presentation given by generators a, b, c and relations a3 = b3 = c2 = (ab)3 =
(a−1b)m = 1, ca = a2c and cb = b2c. Take an NEC group Λ with signature
(0; +; [2]; {(3, 3)}), that has reduced area 1

6 . We define an epimorphism θ : Λ → G
given by

θ(x1) = c, θ(e1) = c, θ(c1,0) = ac, θ(c1,1) = cb, θ(c1,2) = a−1c

We have that θ(x1) = c, θ(c1,0x1) = a and θ(x1c1,1) = b, and the element (e1c1,0)3

has as image the identity element and it is orientation-reversing. Thereby we have
proved that the group acts on a non-orientable surface. Thereupon we have that this
group has symmetric crosscap number at mostm2 +2, but as it contains (3, 3 | 3,m)
that has that symmetric crosscap number n, then we have proved that σ̃((2, 3, 2m;
3)) = n.

(ii) The second one, that is the group (2, 3, 6;m) in the notation of [12], also with order
6m2, has a presentation given by generators a, b, c and relations a3 = b3 = c2 =
(ab)3 = (a−1b)m = 1, ac = ca and bc = cb−1. For an NEC group Λ with signature
(0; +; [2, 3]; {(−)}) and reduced area 1

6 , we define an epimorphism θ : Λ→ G given
by

θ(x1) = cb, θ(x2) = b−1a−1, θ(e1) = ac, θ(c1,0) = c

We have that the element c1,0, the element e1c1,0 and the element c1,0x1 have as
images the generators c, a and b respectively. Besides, the element (e1c1,0)3 has as
image the identity element and it is orientation-reversing, so that we have proved that
the group acts on a non-orientable surface. So this group has symmetric crosscap
number at most m2 + 2, but as it contains (3, 3 | 3,m), that has that symmetric
crosscap number, we have proved that σ̃((2, 3, 6;m)) = n.

Theorem 5.3. Let n = 12k + 3 be such that n − 2 = m2 is a square. The symmetric
crosscap number of the group G3,6,2m ≈ ((3, 3 | 3,m) o C2) o C2 is n.

Proof. The group G3,6,2m of order 12m2 has a presentation given by generators a, b,X, c
and relations a3 = b3 = X2 = c2 = (ab)3 = (a−1b)m = 1, aX = Xa−1, bX =
Xb−1, ac = ca−1 and cb = bc. For an NEC group Λ with signature (0; +; [−];
{(2, 2, 2, 3)}) we define an epimorphism θ : Λ→ G, given by

θ(c1,0) = aX, θ(c1.1) = Xc, θ(c1,2) = c, θ(c1,3) = Xb, θ(c1,4) = aX
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We have that the element c1,2 has as image the generator c, the element c1,1c1,2 has
as image the generator X , the element c1,1c1,2c1,3 has as image the generator b, and the
element c1,4c1,1c1,2 has as image the generator a. Moreover, the element (c1,0c1,1c1,2)3

has as image the identity element and it is orientation-reversing, so that we have proved
that the group acts on a non-orientable surface. The reduced area of the associated NEC
group is 1

12 , then we have proved that this group has symmetric crosscap number at most
m2 + 2, but as it contains (2, 3, 2m; 3) (see [12]), that has the same symmetric crosscap
number, then our group has symmetric crosscap number n.

Theorem 5.4. Let n be such that n = 48k + 39. The symmetric crosscap number of
DC3 × C6k+5 and (DC3 × C6k+5) o C2 is n.

Proof. We have a presentation of the group (DC3 × C6k+5) o C2, given by generators
a, b,X, Y and relations a4 = b3 = X6k+5 = Y 2 = 1, ba = ab2, aY = Y a3, XY =
Y X−1, Y b = b2Y and the rest commute. Let Λ be an NEC group with signature (0; +; [−];

{(2, 2, 3, 4(6k+5))}), which has reduced area 8(6k+5)−3
24(6k+5) . So if we can define the adequate

epimorphism, we will have that this group has symmetric crosscap number at most 48k +
39, but as it contains DC3 × C6k+5 that has the same symmetric crosscap number (see
[18]), we will be done. Then we take an epimorphism θ : Λ→ G given by

θ(c1,0) = Y Xa, θ(c1,1) = a2, θ(c1,2) = a2Y, θ(c1,3) = Y ba2, θ(c1,4) = Y Xa

We have that the element c1,1c1,2 has as image the generator Y , the element c1,1c1,2c1,3c1,1
has as image the generator b. We differentiate between two cases according to the value
of k:

(a) If k is even, then we have that the element (c1,3c1,4)3(6k+5)+1 has as image the
generator X and the element c1,1c1,2c1,3c1,1c1,3c1,4(c1,3c1,4)(6k+5)−1 has as image
the generator a.

(b) If k is odd, then we have that the element (c1,3c1,4)(6k+5)+1 has as image the gener-
ator X and the element c1,1c1,2c1,3c1,1c1,3c1,4(c1,3c1,4)3(6k+5)−1 has as image the
generator a.

So in both cases, we have generated the group with images of elements that preserve
the orientation, and thus we have proved that it acts on a non-orientable surface.

Theorem 5.5. Let n = 24k + 15. The symmetric crosscap number of C3 o C12k+8 and
(C3 o C12k+8) o C2 is n.

Proof. We have a presentation of the group (C3oC12k+8)oC2, given by generators a, b, c
and relations a3 = b8+12k = c2 = 1, ab = ba−1, ca = a−1c, cb = b−1c. Let Λ be an NEC
group with signature (0; +; [−]; {(2, 2, 3, 12k+ 8)}), which has reduced area 13+24k

6(12k+8) . So
if we have an epimorphism, we will have that this group has symmetric crosscap number
at most 24k + 15, but as it contains C3 o C12k+8 that has the same symmetric crosscap
number (see [6]), we will be done. Then we take an epimorphism θ : Λ→ G given by

θ(c1,0) = cb, θ(c1,1) = b4+6k, θ(c1,2) = ac, θ(c1,3) = c, θ(c1,4) = cb

We have that the element c1,3c1,4 has as image the generator b, the element c1,2c1,3 has
as image the generator a and the element c1,0c1,1(c1,3c1,4)3+6k has as image the generator
c. So we have generated the group with images of elements that preserve the orientation,
and thus we have proved that it acts on a non-orientable surface.
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Theorem 5.6. Let n = 84k + 51 be such that 12k + 7 has all its prime factors congruent
to 1 (mod 3). Then the symmetric crosscap number of C4 × (C12k+7 o C3) is n.

Proof. Firstly we have to indicate, that within the conditions in the statement, there exist
groups with order 36k + 21 with algebraic structure C12k+7 o C3 and with a presentation
given by generators a, b and relations a3 = b12k+7 = (ab)3 = 1. We call c a generator
of C4.

Let Λ be an NEC group with signature (0; +; [3, 12]; {(−)}) and reduced area 7
12 , and

define an associated epimorphism θ : Λ→ G given by:

θ(x1) = ba, θ(x2) = a−1c, θ(e1) = c−1b−1, θ(c1,0) = c2

The element x92 has as image the generator c, the element x82 has as image the generator
a, and the element x1x42 has as image the generator b. So we have generated the group with
images of orientation-preserving elements and so that it acts on a non-orientable surface.
Therefore the symmetric crosscap number of the group will be at most n.

On the other hand, the group C12k+7oC3 can be generated by two elements of order 3
and this condition cannot be lowered. Similarly, an element of order 4 is needed to generate
the group C4. Hence the area of Λ is minimal, because one element of order a multiple of 4
and two elements of order a multiple of an odd number are necessary. Thus, the symmetric
crosscap number of our group is n.

So that, we need to study some low k to try to find some clues in order to get new
numbers in the spectrum. In the previous section we have studied symmetric crosscap
number 15, and in this section we study 12k + 3 for k = 2, 3, 4, 5. For each symmetric
crosscap number we give the complete list of all groups with that symmetric crosscap
number. For that, we have used the Conder’s list and the previous theorems to know the
algebraic structure and the presentation of some of the groups. It is important to note that
all groups G with σ̃(G) = 15, 27, 39, 51 are provided by the results in the current section.

Table 13: Groups of symmetric crosscap number 27.

GAP G Relations [+ Generators] Reference

[40, 3] C5 o C8 a8, b5, bab3a−1 [3]
[75, 2] (3, 3 | 3, 5) a3, b3, (ab)3, (a−1b)5 [15]
[150, 5] (2, 3, 10; 3) a3, b3, c2, (ab)3, (a−1b)5, (ca)2, (cb)2 Theorem 5.2
[150, 6] (2, 3, 6; 5) a3, b3, c2, (ab)3, (a−1b)5, (cb)2 Theorem 5.2
[300, 25] G3,6,10 a3, b3, c2, d2, (ab)3, (a−1b)5, (ca)2, (cb)2, Theorem 5.3

(ad)2

From the group [40, 3], with symmetric crosscap number 27, and from the group [96, 1],
with symmetric crosscap number 63, other families have been obtained that cover all num-
bers of the form 24k+ 15 and 60k+ 27, see [6]. So that, it is totally necessary to know the
algebraic structure of the groups we have been studying. Another feature of this study is
to obtain the groups which are the full automorphism group of a surface of a given genus.
This was already done for g ≤ 5 in [8], for g = 6 in [4] and for g = 7 in [5].
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Table 14: Groups of symmetric crosscap number 39.

GAP G Relations [+ Generators] Reference

[60, 1] DC3 × C5 a4, b3, c5, baba−1 [18]
[111, 1] C37 o C3 a3, b37, bab27a−1 Theorem 5.1
[120, 12] (DC3×C5)oC2 a4, b3, c5, d2, baba−1, (ad)2, (cd)2, (db)2 Theorem 5.4
[222, 1] (C37 oC3)oC2 a3, b37, c2, bab27a−1, (bc)2 Theorem 5.1

Table 15: Groups of symmetric crosscap number 51.

GAP G Relations [+ Generators] Reference

[84, 2] C4 × (C7 o C3) a3, b7, c4, bab5a−1 Theorem 5.6
[147, 1] C49 o C3 a3, b49, bab31a−1 Theorem 5.1
[147, 5] (3, 3 | 3, 7) a3, b3, (ab)3, (a−1b)7 [15]
[294, 1] (C49oC3)oC2 a3, b49, c2, bab31a−1, (ac)2 Theorem 5.1
[294, 7] (2, 3, 14; 3) a3, b3, c2, (ab)3, (a−1b)7, (ca)2, (cb)2 Theorem 5.2
[294, 14] (2, 3, 6; 7) a3, b3, c2, (ab)3, (a−1b)7, (cb)2 Theorem 5.2
[588, 35] G3,6,14 a3, b3, c2, d2, (ab)3, (a−1b)7, (ca)2, Theorem 5.3

(cb)2, (ad)2

Table 16: Groups of symmetric crosscap number 63.

GAP G Relations [+ Generators] Reference

[96, 1] C3 o C32 a3, b32, abab−1 Theorem 5.5
[183, 1] C61 o C3 a3, b61, bab48a−1 Theorem 5.1
[192, 78] (C3oC32)oC2 a3, b32, c2, abab−1, (ca)2, (cb)2 Theorem 5.5
[366, 1] (C61oC3)oC2 a61, b3, c2, aba48b−1, bcb−1c, (ac)2 Theorem 5.1
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