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Abstract

Purpose: In the world of learning 
with medical supervised machine 
approaches, we often face a lack of 
dataset objects suitable for training 
a classifier. Two of the most com-
mon reasons are the lack of funds to 
perform all of the required tests and 
dataset gathering, or simply the con-
dition is too rare to collect a suitable 
number of cases. In this paper we 
present the results of a very rare op-
portunity to test and train classifiers 
on three acute appendicitis datasets 
with almost identical structures, but 
from different sources and of differ-
ent sizes.
Methods: We performed a parallel 
variant of cross–testing of two types 
of classifiers (decision trees [DT] and 
artificial neural networks [ANN]). 
Our variant of cross–testing focuses 
on training the classifiers on one da-

Izvleček

Namen: Na področju učenja z nad-
zorovanimi metodami strojnega učenja 
v medicini se pogosto srečujemo s po-
manjkanjem učnih objektov, primernih 
za učenje klasifikatorjev. Najpogostejša 
vzroka za to sta pomanjkanje sredstev 
za izpeljavo raziskav in splošna redkost 
raziskovanega pojava, ki ne dovoljuje, 
da bi zbrali podatke o zadostnem števi-
lu primerkov.
V tem prispevku predstavljamo rezulta-
te raziskav, učenja klasifikatorjev in te-
stiranj na podatkih, ki izhajajo iz treh 
baz na temo akutnega vnetja slepiča, 
ki imajo zelo podobno strukturo, raz-
lične velikosti in izhajajo iz različnih 
okolij. 
Metode: Odločili smo se za vzpore-
dno izvedbo različice navzkrižnega 
testiranja (cross–testing) dveh vrst 
klasifikatorjev: odločitvenih dreves in 
umetnih nevronskih mrež. Naša razli-
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IntroductIon

In the world of learning with medical supervised ma-
chine approaches, we often face a lack of dataset ob-
jects suitable for training a classifier. Two of the most 
common reasons are the lack of funds to perform all 
of the required tests and dataset gathering, or simply 
the condition is too rare to collect a suitable number 
of cases. An insufficient number of dataset objects is 
manifested in a poor search space coverage, an unbal-
anced number of representatives for each class, or test 
and validation sets that are too small or non–existent. 
The final result is usually a classifier model that does 
not perform as well as it could, or is not thoroughly 
tested in a real world environment. 
In this paper we present the results of a very rare op-
portunity to test and train classifiers on three acute 
appendicitis datasets with almost identical structures, 
but from different sources and of different sizes. We 
performed a parallel variant of cross–testing of two 
types of classifiers (decision trees [DT] and artificial 
neural networks [ANN]). Cross–testing builds on the 
idea of cross–training, which usually refers to a type of 
training in the domain of sports, in which an athlete 
trains for sports different from the discipline he/she 
competes in to improve overall performance. This ap-
proach is often used in athletics, mixed martial arts, 
professional training of rescue services, or even mili-

tary special forces, and has been shown to be very suc-
cessful (1). 
Our variant of cross–testing focuses on training the 
classifiers on one dataset and testing all of the remain-
ing available datasets, including the one derived from 
the same source, as the training set. The latter will 
serve as a reference for comparison of results derived 
from other test sets.
We expect to reveal interesting results of a direct com-
parison of two competent supervised machine learn-
ing approaches, decision trees, and neural networks 
to see if the myth that larger datasets contain more 
knowledge still stands. 
In the following sections we will introduce the two 
approaches, the datasets, and finish with the results 
and conclusions. 

SupervISed mAchIne leArnIng And  
decISIon Support SyStemS 

Decision support systems (DSS) assist physicians and 
are becoming a very important part of medical deci-
sion–making. DSS are based on different models, and 
the best of the DSS are providing an explanation to-
gether with an accurate, reliable, and quick response. 
Two of the most popular among machine–learning ap-

čica navzkrižnega učenja se posveča učenju klasifikatorja na 
eni bazi in preizkusu in testiranju na vseh preostalih testnih 
množicah, vključno s pripadajočo testno množico iz istega 
vira.Za primerjavo omenjenih treh Acute Abdominal Pain 
(AAP) baz podatkov različnih velikosti in virov smo izbrali 
osemnajst (18) parametrov anamneze in kliničnih preiskav 
ter odločitveni atribut/diagnozo akutno vnetje slepiča. 
Rezultati: Primerjavo rezultatov smo izvedli na osnovi splo-
šne natančnosti, senzitivnosti in specifičnosti klasifikatorja 
ter uravnoteženosti slednjih dveh parametrov.
Zaključek: Dobljeni rezultati so presenetljivo odstopali od 
pričakovanj, saj faktorji, kot sta velikost učne množice in 
teoretična moč pristopa strojnega učenja niso pokazali priča-
kovanega vpliva.

taset and testing all of the remaining available datasets, 
including the one derived from the same source, as the 
training set. To compare the three acute abdominal pain 
databases of different sizes and origins, we selected 18 
parameters from patient medical histories, clinical exami-
nations, and the decision attribute/diagnosis, acute ap-
pendicitis.
Results: The comparison of results was based on overall 
accuracy, sensitivity, specificity, and balance. 
Conclusion: The results we obtained were quite surpris-
ing, and factors such as dataset size and theoretical power 
of the methods did not prove to be as important as first 
expected.
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proaches are DT and ANN. Both DT and ANN have 
been successfully used in many medical decision–mak-
ing applications for years because DT and ANN pro-
cess data in ways that can be validated and interpreted. 
Where DT excels with transparent representation of 
acquired knowledge and rapid algorithms, what made 
one of the most often used symbolic machine learn-
ing approaches (2, 3), ANN persuade us with the su-
perior classification power (4).
Acute appendicitis is a special problem in patients 
with acute abdominal pain (AAP) and presents one 
of the most difficult diagnostic challenges. The early 
and accurate diagnosis of acute appendicitis is still a 
difficult and demanding problem in clinical settings. 
Of major concern in patients with acute appendicitis 
is the perforation rate (up to 20%) and negative ap-
pendectomy rate (up to 30%) (5, 6). An important 
factor in the error rate is poor discrimination between 
acute appendicitis and other diseases that cause acute 
abdominal pain. This error rate is still high, despite 
considerable improvements in history–taking and 
clinical examination, computer–aided decision–sup-
port and special investigative modalities, such as ul-
trasonography.
Different types of automatic knowledge acquisition 
tools, such as DT (7) and ANN (8) have already evalu-
ated databases with cases of acute abdominal pain. 
This clinical problem seems to be well–suited for 
supervised machine learning approaches because a 
standardized terminology has been defined. Agreed 
definitions, criteria, and minimum datasets have been 
promulgated by the World Organization of Gastroen-
terology (9). 

decision trees
DT is a typical representative of a supervised symbolic 
machine learning approach used for the classification 
of objects (10) in which patient data is presented with 
dataset objects represented in a form of attribute–val-
ue vectors. The structure is similar to a flowchart tree 
structure (see a sample DT in Figure 1); each internal 
node (rectangles in Figure 1) is a point of testing for 
an attribute value and based on it the classification 
continues throughout the left branch of the right 
sub–tree. Branches represent outcomes of node tests; 

each leaf node (circles in Figure 1) is a decision on 
the class to which an individual belongs (each leaf is 
class–labelled) (11). 

Decision trees are used for classification in such a way 
that given an object, U, for which the classification 
class is unknown, the attribute values of U are tested 
against the nodes in the tree. The object (U) follows 
a path through the tree to a leaf node that assigns U 
with a class label. The DT is a well–established classifier 
because it allows exploratory knowledge discovery and 
does not require a detailed prior knowledge of the do-
main and setting of parameters. Additionally, DT can 
handle high–dimensional data. A traditional approach 
to the induction of a DT is with the use of the “divide 
and conquer” principle; specifically, if all of the objects 
belong to the same decision class then a tree is a single 
node, otherwise an attribute is selected and the set of 
objects is divided according to the splitting criterion of 
the selected attribute. The procedure starts in the root 
node as being most informative for the classification 
and is sequentially repeated for each of the branches 
going out of the first node. The first algorithm for DT 
induction was introduced by Quinlan in 1986 (12), 
the well–known iterative dichotomiser (ID)3. Quinlan 
also presented C4.5, a benchmark for newer super-
vised learning algorithms (13). Both ID3 and C4.5 use 

Figure 1. A sample decision tree.
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the information gain from a single attribute to build 
the DT. The attribute that adds the most information 
about the decision in the training set is selected first, 
then the next most informative of the remaining attri-
butes follows until the leaf node is reached. Anomalies 
(or unbalanced data sets) can result in branches that are 
too complex or appear in multiple nodes (replication) 
in the tree. The solution to this is applying a tree–prun-
ing procedure that shortens the tree, at the same time 
securing good accuracy.

Artificial neural networks
In our research we focused on multi–layer, feed–for-
ward neural networks (sometimes called multi–layer 
perceptrons) and back–propagation learning meth-
ods. This type of neural network is widely used in 
various fields, and usually gives very good results (4). 
The multi–layer architecture of ANN is most often 
used in practical applications. Each layer uses a linear 
combination function. The inputs are fully connected 
to the first hidden layer, each hidden layer is fully con-
nected to the next, and the last hidden layer is fully 
connected to the outputs. 
Neural networks with no hidden layers should perform 
similarly to DTs; both approaches can divide a solution 
space by setting a hyper–plane in hyper–space (e.g., by 
setting a line in a 2–dimensional space to differentiate 
between different decision), (14, 15). Neural networks 
with one hidden layer are capable of limiting a more com-
plex area (any open or closed convex area), where neural 
networks with two hidden layers can limit any area in 
hyper–space. Thus, more hidden layers in ANN result in 
a greater potential for solving complex problems.
Computational power and handling the noise in a 
training dataset are the greatest advantages of ANN; 
however, it takes a lot of time to build and train a 
network and gain insight into the accumulated knowl-
edge, which is one of the important disadvantages 
when using ANN in domains that require knowledge 
representation suitable for manual inspection.

the dAtA SetS

To compare the three databases, we selected the fol-
lowing 18 parameters from history–taking and clini-

cal examinations, which could be identified in all 3 
databases:
• gender,
• age,
• progression of pain,
• duration of pain,
• type of pain,
• severity of pain,
• current location of pain,
• location of pain at the time of onset,
• previous similar complaints,
• previous abdominal surgery involving the ap-

pendix,
• distended abdomen,
• tenderness,
• severity of tenderness,
• movement of the abdominal wall,
• rigidity,
• rectal tenderness,
• rebound tenderness, and
• leukocytes.

All of the remaining parameters from the original da-
tasets had a missing value rate > 10% and were there-
fore excluded from tests. Because we were focusing on 
the problem of separating the acute appendicitis diag-
nosis (class: “appendicitis”) from other diseases that 
cause acute abdominal pain, these other diagnoses 
were labelled into one common class (class: “other dis-
eases”). For a more detailed presentation of the meth-
ods used to collect the datasets and for an in–depth 
description of the parameters used, refer to previous 
publications (16, 17, 18). 

AAp databases
1.  AAP I (n = 1254): This prospective clinical data base 

of AAP was built within the framework of a Concert-
ed Action of the European Community (COMAC–
BME–European Community Concerted Action on 
Objective Medical Decision Making in Patients with 
Acute Abdominal Pain) (16). The data was gathered 
in six surgical departments in Germany. All of the 
patients with acute abdominal pain < 1 week in du-
ration were included in the study. A structured and 
standardized patient history and clinical examina-

Klinična študija / Clinical study
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tion were performed for every patient, and the data 
was gathered using a form based on the original ab-
dominal pain chart of the World Organization of 
Gastroenterology (OMGE). The final diagnosis was 
based on operative findings, special investigations, 
and the course of the disease during the hospital 
stay. In cases of patients with non–specific abdomi-
nal pain, data from readmission and telephone in-
terviews were used. The prevalence of appendicitis 
in this database was 16.8 % (n = 211).

2.  AAP II (n = 2286): This prospective database was 
built during the German MEDWIS project A70 
“Expert system for acute abdominal pain” 17). The 
data was derived from 14 centres in Germany. All 
of the patients with acute abdominal pain < 1 week 
in duration were included in the study. We used 
enhanced versions of the forms presented in the 
AAP I for data collection 16). The final diagnosis 
was based on the diagnosis at discharge. The preva-
lence of appendicitis in this database was 22.7 % (n 
= 519). This dataset contained special (more com-
plicated) cases, thus patients were referred from 
general hospitals to university hospitals.

3.  AAP III (n = 4020): This prospective database was 
built during a Concerted Action funded by the Eu-
ropean Commission during the COPERNICUS 
programme no.: 555, “Information Technology for 
the Quality Assurance in Acute Abdominal Pain.” 
Data was collected in the 16 centres from cen-
tral and eastern Europe. The data were collected 
in the same way as AAP II. Medical terminology 
was translated into 10 different languages, so that 
the participating centres could be provided with 
national versions of the software 18). The final 
diagnosis was based on the diagnosis at discharge. 
The prevalence of appendicitis in this database was 
40.5% (n = 1628).

In all three databases, we additionally filtered out the 
cases for which > 90% of parameters were not known. 
As a result of this step, the number of cases in AAP 
I was reduced by 3 objects (from 1254 to 1251), the 
number of cases in AAP II was reduced by 7 cases 
(from 2286 to 2279), and the number of cases in AAP 
III remained the same. 

To perform cross–testing, we prepared different vari-
ants of training and test sets to gain insight into the 
classifier’s performance.

training and test sets
We decided not to use the training objects with > 10 
missing values and tried to increase the quality of pro-
duced classifiers. We labelled the datasets which con-
tained objects with < 10 missing values as the cleaned 
data sets.
During our previous tests we determined that the per-
centage of appendicitis cases in all three data sets was 
substantially < 50%. To improve the power to avoid 
bias of classifiers, we reduced the number of objects 
in the sets by removing the objects classified as ‘other 
diagnosis’ that had the greatest number of missing val-
ues, hereafter referred to as reduced datasets.
For each dataset, we built two training sets. For the 
first training set (labelled as Training set 50:50 in 
Tables 1–6) we used approximately two–thirds of the 
cleaned data set. The remaining one–third of the 
dataset was saved for testing purposes as the test set. 
Then, we reduced the two–third training set, so that it 
contained approximately the same number of appen-
dicitis cases and cases marked as “other diagnosis.”
The second training set was the reduced data set 
(marked as Full set 50:50 in Tables 1–6) and was com-
prised of the original data set with an approximate 
ratio of 1:2 of objects classified as appendicitis cases 
and the other half was classified as “other diagnosis.”
The number of training objects in Training sets 50:50 
was 274 for AAP I (137 classified as appendicitis 
and137 classified as other diagnosis), 763 for AAP II 
(363 classified as appendicitis and 400 classified as 
other diagnosis), and 2186 for AAP III (1086 classified 
as appendicitis and 1100 classified as other diagnosis). 
The number of training objects in Full sets 50:50 was 
422 for AAP I (211 classified as appendicitis and 211 
classified as other diagnosis), 1119 for AAP II (519 
classified as appendicitis and 600 classified as other 
diagnosis), and 3330 for AAP III (1628 classified as 
appendicitis and 1702 classified as other diagnosis). 
The test sets were generated similar to the training 
sets. The difference was that we did not have the ap-
proximate 1:1 ratio of appendicitis cases and other 
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diagnosis in the test set, which made the testing con-
ditions even more realistic. 
The first test set for each dataset (marked as Test set 
in Tables 1–6) was the remaining one–third of the 
cleaned dataset. The second test set was the same, 
which was actually a cleaned dataset (marked as Full 
set in Tables 1–6). 
The number of test objects in ‘test sets’ was 414 for 
AAP I (74 classified as appendicitis and 340 classified 
as other diagnosis), 731 for AAP II (156 classified as 
appendicitis and 575 classified as other diagnosis), 
and 1340 for AAP III (542 classified as appendicitis 
and 798 classified as other diagnosis). 
The number of test objects in ‘full sets’ was 1251 for 
AAP I (211 classified as appendicitis and 1040 classi-
fied as other diagnosis), 2279 for AAP II (519 classified 
as appendicitis and 1760 classified as other diagnosis), 
and 4020 for AAP III (1628 classified as appendicitis 
and 2329 classified as other diagnosis). 

reSultS

The results in this section were produced using the fol-
lowing two supervised machine approaches: DT, imple-
mented in the MtDeciT2.1Gen environment (19); and 
ANN, implemented in the Weka environment (20). 
For each AAP dataset, we therefore created a separate 
table to collect the results of the cross–testing.

For each AAP data set, we built two types of DTs and 
ANNs (one for each version of the training set), and test-
ed each of the classifiers on each possible test set, except 
the full set (for classifiers built on a training set) and the 
full and testing sets (for classifiers built on a reduced data 
set). The basis for the latter was that training sets con-
tained a few objects that were in the test sets and which 
would diminish the objectivity of the results. 
Each part of Tables 1–6 contains cells with data spe-
cific to each ML approach (see cell maps in Figure 2), 
as follows: 
• number of nodes in the DT, settings for the DT 

(pre–pruning percentage, type of discretization 
technique; see (19) for an in–depth explanation), 
overall accuracy, sensitivity to appendicitis, and 
specificity; and

• number of nodes in the ANN, learning time in 
seconds, overall accuracy, sensitivity to appendici-
tis, and specificity.

Figure 2. Cell maps for testing results: left for decision 
trees, right for neural networks.

Size of the 
decision tree

Settings for the 
decision tree

Overall accuracy

Sensitivity to 
Appendicitis Specificity

  
Number of 

nodes Learning time

Overall accuracy

Sensitivity to 
Appendicitis Specificity

In Table 1 the best results of the DTs built on the AAP 
I data set are shown and tested on each possible data 
set, except for the full AAP I set. It is noteworthy that 
the best accuracy was not achieved for the AAP I test 
set, but for the AAP III test and full sets.

Similar results can be observed with the ANN ap-
proach in Table 2. The overall accuracy is a bit lower 
than shown in Table 1, with the largest difference 
(8.01%) in tests using the AAP III full set. The balance 
between sensitivity and specificity was also a lower for 
ANN–generated classifiers.
In Table 3 the best results of the DTs built on the AAP 
II data set are shown. Using the training set, the best 
results on the AAP II test set were obtained. Some-
what unexpectedly, the best results for the DT built 
with the full AAP II set were achieved using the AAP 
I test and the full sets. In spite of that, no DTs built 
on AAP II could be described as clinically useful be-
cause in the majority of cases the best accuracy slightly 
exceeded 50%. 
The overall accuracy of ANN (Table 4) was lower than 
with the DT shown in Table 3. The biggest difference 
in overall accuracy between Tables 3 and 4 was on the 
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AAP I full set tests as it grew to 23.5% in favour of DT.
The results of testing DTs, built on the AAP III train-
ing and full sets (Table 5), indicate that the AAP III 
data set is capable of providing more knowledge as the 
AAP II data set (Table 3). The highest accuracy of the 
DT built on the AAP III training and full sets (Table 
3) matched the highest accuracy of the tree built on 
the AAP I training and full sets. But taking into ac-
count the average accuracy of the AAP I (Table 1) still 
gave slightly better results.
An overall comparison of the two approaches shows 
that the ANN displayed the lowest average accuracy 
and absolute difference in accuracy toward the DT re-

sults. The balance between sensitivity and specificity 
was also a bit lower for ANN, thus showing more bias 
toward one of the possible decisions.

A comparison of classification results using different 
data sets exposes the best average accuracy achieved 
by the DT, built on the small reduced data set AAP I 
(marked as 'Full set 50:50' in Table 1), followed closely 
by the DT built on the large AAP III data set (Table 
5), and ANN built on the large AAP III data set (Table 
6); considering the data set background, the sizes, and 
theoretical power of machine–learning approaches a 
surprising outcome. 

Table 1. Results of the comparison of the AAP I DT on different test sets

TEST SETS

SMALL (AAP I) MEDIUM (AAP II) LARGE (AAP III)

Test Set Test Set Full Set Test Set Full Set

Sm
al

l T
ra

in
in

g 
Se

t  
 (

AA
P 

I)

T
ra

in
in

g 
Se

t–
50

:5
0

69 Nodes 25%DC40–2 69 Nodes 25%DC40–2 69 Nodes 25%DC40–2 69 Nodes 25%DC40–2 69 Nodes 25%DC40–2

73.67% 56.77% 54.76% 75.52% 75.67%

74.32% 73.53% 42.95% 60.52% 39.11% 59.38% 65.87% 82.08% 64.99% 82.94%

Fu
ll 

Se
t 5

0:
50 23 Nodes

30%DC40–
2

23 Nodes
30%DC40–

2
23 Nodes

30%DC40–
2

23 Nodes
30%DC40–

2

55.81% 52.87% 82.31% 81.99%

49.36% 57.57% 42.77% 55.85% 82.29% 82.33% 81.88% 82.07%

Table 2. Results of the comparison of the AAP I ANN on different test sets

TEST SETS

SMALL (AAP I) MEDIUM (AAP II) LARGE (AAP III)

Test Set Test Set Full Set Test Set Full Set

Sm
al

l T
ra

in
in

g 
Se

t  
 (

AA
P 

I)

T
ra

in
in

g 
Se

t–
50

:5
0

54 20.4s 54 20.44s 54 20.53s 54 20.47s 54 20.74s

67.39% 54.17% 53.75% 71.42% 71.69%

30.57% 89.88% 20.66% 78.17% 21.21% 76.15% 65.03% 75.59% 65.16% 76.08%

Fu
ll 

Se
t 5

0:
50 54 32.05s 54 31.73s 54 31.31s 54 31.03s

52.80% 52.70% 73.43% 73.98%

22.12% 79.34% 22.24% 76.81% 66.85% 78.05% 67.28% 78.81%
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dIScuSSIon And concluSIonS

By knowing the background and methods used to 
collect the presented datasets, we did not expect the 
classifiers built on a medium data set from AAP 
II to perform so poorly. Somewhat poorer results 
were achieved with the AAP II test set using the DT 
and ANN that were built on the training sets of the 
AAP II data set. 
The only reasonable explanation is that the AAP 
II dataset contains a large number of special cases 
which affected the applied machine learning ap-
proaches and cannot exploit the training objects as 

expected. The overall accuracy of the remaining com-
parisons between the AAP I and AAP III datasets was 
so high that some of those classifiers are of practical 
use to clinicians. 
The accuracy we achieved during our experiments 
with DT and ANN was substantially higher than the 
accuracy as previously reported on approaches, such 
as neural networks (21) or case–based reasoning (22). 
The results presented herein show that cross–testing 
paid off, even in putting to test all combinations of 
training/testing sets. Based on the literature and the 
former research in other clinical domains, we had ex-
pected a better performance from the ANN results in 

Table 3. Results of the comparison of the AAP II DT on different test sets

TEST SETS

SMALL (AAP I) MEDIUM (AAP II) LARGE (AAP III)

Test Set Full Set Test Set Test Set Full Set

M
ed

iu
m

 T
ra

in
in

g 
Se

t  
 (

AA
P 

II
)

T
ra

in
in

g 
Se

t–
50

:5
0

464 Nodes 30%Q 464 Nodes 30%Q 47 Nodes 40%DC40–2 464 Nodes 30%Q 464 Nodes 30%Q

42.75% 43.73% 52.39% 46.79% 43.73%

43.24% 42.65% 38.86% 44.71% 51.28% 52.70% 39.30% 51.88% 36.12% 48.91%

Fu
ll 

Se
t 5

0:
50 162 Nodes 40%DC40–2 162 Nodes 40%DC40–2 162 Nodes 40%DC40–2 162 Nodes 40%DC40–2

68.84% 69.30% 56.79% 55.47%

54.05% 72.06% 44.08% 74.42% 32.84% 73.06% 31.27% 71.95%

Table 4. Results of the comparison of the AAP II ANN on different test sets

TEST SETS

SMALL (AAP I) MEDIUM (AAP II) LARGE (AAP III)

Test Set Full Set Test Set Test Set Full Set

M
ed

iu
m

 T
ra

in
in

g 
Se

t  
 (

AA
P 

II
)

T
ra

in
in

g 
Se

t–
50

:5
0

54 56.38s 54 56.2s 54 56.29s 54 56.39s 54 56.34s

39.86% 39.89% 46.24% 45.37% 43.66%

17.71% 81.82% 16.7281% 82.88% 23.84% 82.73% 35.61% 54.85% 34.07% 53.14%

Fu
ll 

Se
t 5

0:
50 54 82.73s 54 82.28s 54 82.62s 54 82.81s

46.14% 45.80% 54.85% 55.12%

15.67% 79.70% 16.21% 82.32% 44.63% 62.82% 44.76% 62.56%



ACTA MEDICO–BIOTECHNICA
2012; 5 (2): 23–32

31

Klinična študija / Clinical study

terms of overall accuracy, sensitivity, and specificity. 
As shown in Tables 1–6, this was not the case.
Gathering data from different types of sources can 
substantially influence the performance of classifiers, 
even though the methods for data gathering were al-
most the same. We have also shown that larger train-
ing sets do not necessary guarantee a higher accuracy 
in comparison to smaller training sets. The results 
might still be improved, i.e., the quality of the extract-
ed knowledge through sampling the training objects 
(cross–training) from all three training sets simultane-
ously. Nevertheless, of a positive impact for the clini-
cal use is the fact that even a smaller dataset could 

provide valid, meaningful knowledge. The research 
presented herein has suggested that the following vari-
ables had contributed to the correct classification, as 
follows: tenderness (location); rectal tenderness; dura-
tion of pain; type of pain; and leucocytes.
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Table 5. Results of the comparison of the AAP III DT on different test sets

TEST SETS

SMALL (AAP I) MEDIUM (AAP II) LARGE (AAP III)

Test Set Full Set Test Set Full Set Test Set

La
rg

e 
 T

ra
in

in
g 

Se
t  

(A
AP

 II
I)

T
ra

in
in

g 
Se

t–
50

:5
0 48 Nodes 40%DC40–2 48 Nodes 40%DC40–2 48 Nodes 40%DC40–2 48 Nodes 40%DC40–2 48 Nodes 40%DC40–2

64.73% 63.39% 53.21% 50.59% 83.81%

86.49% 60.0% 88.63% 58.27% 52.56% 53.39% 45.86% 51.99% 89.48% 79.95%

Fu
ll 

Se
t 5

0:
50

43 Nodes 40%DC40–2 43 Nodes 40%DC40–2 43 Nodes 40%DC40–2 43 Nodes 40%DC40–2

66.67% 65.87% 54.17% 51.73%

86.49% 62.35% 88.15% 61.35% 51.92% 54.78% 45.09% 53.69%

Table 6. Results of the comparison of the AAP III ANN on different test sets

TEST SETS

SMALL (AAP I) MEDIUM (AAP II) LARGE (AAP III)

Test Set Full Set Test Set Full Set Test Set

La
rg

e 
 T

ra
in

in
g 

Se
t  

(A
AP

 II
I)

T
ra

in
in

g 
Se

t–
50

:5
0 54 162.56s 54 161.9s 54 161.24s 54 161.44s 54 161.59s

59.66% 59.31% 49.79% 48.05% 81.87%

27.75% 92.20% 26.35% 92.75% 21.0958% 78.42% 20.60% 75.09% 72.55% 90.99%

Fu
ll 

Se
t 5

0:
50 54 244.75s 54 244.78s 54 244.89s 54 244.52s

63.77% 63.07% 55.27% 54.71%

30.41% 93.18% 28.40% 93.13 21.40% 78.70% 20.59% 75.84%
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