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Abstract

In this paper, we classify some reflexible edge-transitive orientable embeddings of com-
plete bipartite graphs. As a by-product, we classify groups Γ such that (i) Γ = XY for
some cyclic groups X = 〈x〉 and Y = 〈y〉 with X ∩ Y = {1Γ} and (ii) there exists an
automorphism of Γ which sends x and y to x−1 and y−1, respectively.
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1 Preliminaries
A map is a 2-cell embedding of a graphG in a compact, connected surface. A map is called
orientable or nonorientable according to whether the supporting surface is orientable or
nonorientable. In this paper, we only consider orientable maps.

For a simple connected graph G, an arc of G is an ordered pair (u, v) of adjacent
vertices in G. The set of all arcs in G is denoted by D(G). An orientable mapM can be
described by a pair (G;R), where G is the underlying graph ofM and R is a permutation
of the arc set D(G) whose orbits coincide with the sets of arcs emanating from the same
vertex. The permutation R is called the rotation of the mapM.

For given two maps M1 = (G1;R1) and M2 = (G2;R2), a map isomorphism
φ : M1 →M2 is a graph isomorphism φ : G1 → G2 such that φR1(u, v) = R2φ(u, v) for
any arc (u, v) in G1. Furthermore ifM1 =M2 =M, φ is called a map automorphism of
M. The set of all map automorphisms ofM denoted by Aut(M) is a group under the com-
position operation, and it is called the automorphism group ofM. For a mapM = (G;R),
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the group Aut(M) acts semi-regularly on the arc set D(G), so |Aut(M)| ≤ 2|E(G)|. If
this bound is attained, then Aut(M) acts regularly on the arc set, and the map is called a
regular map or a regular embedding. The mapM is said to be vertex-transitive or edge-
transitive if Aut(M) acts transitively on V (G) or E(G), respectively. For an orientable
embeddingM of a bipartite graphG, if the set of partite set preserving map automorphisms
acts transitively on E(G) then we callM an edge-transitive map or an edge-transitive em-
bedding satisfying the Property (P) in this paper. For a map M = (G;R), if M and
M−1 = (G;R−1) are isomorphic,M is called reflexible.

Classifying highly symmetric embeddings of graphs in a given class is an interesting
problem in topological graph theory. In recent years, there has been particular interest in the
regular embeddings of complete bipartite graphs Kn,n by several authors [1, 2, 4, 5, 6, 7,
8, 10]. The reflexible regular embeddings and self-Petrie dual regular embeddings of Kn,n

have been classified by the authors [7]. Recently, G. Jones has completed the classification
of regular embeddings of Kn,n [5] and the authors have classified nonorientable regular
embeddings of Kn,n [8]. In [3], Graver and Watkins classified edge-transitive maps on
closed surfaces into fourteen types. In this paper, we classify reflexible edge-transitive
embeddings of Km,n satisfying the Property (P) which correspond to types 1 or 2 among
14 types. The following theorem is the main result in this paper.

Theorem 1.1. For any integers

m = 2apa11 · · · p
a`
` p

a`+1

`+1 · · · p
a`+f

`+f and

n = 2bpb11 · · · p
b`
` q

a`+1

`+1 · · · q
b`+g

`+g (prime decompositions)

with gcd(m,n) = 2cpc11 · · · p
c`
` and a ≤ b, the number (up to isomorphism) of reflexible

edge-transitive embeddings of Km,n satisfying the Property (P) is 1 if both m and n are
odd; 2f (1 + pc11 ) · · · (1 + pc`` ) if exactly one of m and n is even, namely, only n is even;
A(a, b)2f+g+`(1 + pc11 ) · · · (1 + pc`` ) if both m and n are even, where

A(a, b) =



1 if (a, b) = (1, 1),

2 if (a, b) = (1, 2),

4 if (a, b) = (2, 2) or (1, k) with k ≥ 3,

10 if (a, b) = (2, 3),

12 if (a, b) = (2, k) with k ≥ 4,

28 if (a, b) = (3, 3),

40 if (a, b) = (3, 4),

36 if (a, b) = (3, k) with k ≥ 5,

20(1 + 2a−2) if a = b ≥ 4,

20 + 18 · 2a−2 if b− 1 = a ≥ 4,

20 + 16 · 2a−2 if b− 2 ≥ a ≥ 4.

Our paper is organized as follows. In the next section, we consider some relations be-
tween edge-transitive embeddings of Km,n satisfying the Property (P) and products of two
cyclic groups. In Section 3, we classify reflexible edge-transitive embeddings of Km,n sat-
isfying the Property (P) when at least one of m and n is odd. In Section 4, for even integers
m and n, the classification of reflexible edge-transitive embeddings of Km,n satisfying the
Property (P) is given. In the final section, we classify groups Γ satisfying the conditions:
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(i) Γ = XY for some cyclic groups X = 〈x〉 and Y = 〈y〉 with X ∩ Y = {1Γ} and

(ii) there exists an automorphism of Γ which sends x and y to x−1 and y−1.

2 (m,n)-bicyclic triples in Aut(Km,n)

Regular embeddings of the complete bipartite graphs Kn,n are related to groups Γ with
two generators satisfying some conditions [4]. Using this relation, G. Jones classify regu-
lar embeddings of Kn,n [5]. Similarly, we aim to find a relation between edge-transitive
embeddings of Km,n satisfying the Property (P) and groups with two generators satisfying
some conditions in this section.

In [4], G. Jones et al. showed that any finite group Γ is isomorphic to Aut(M) for some
regular embeddingM ofKn,n if and only if Γ has cyclic subgroupsX = 〈x〉 and Y = 〈y〉
of order n such that:

(i) Γ = XY

(ii) X ∩ Y = {1Γ} and

(iii) there is an automorphism α of Γ transposing x and y.

They call the triple (Γ, x, y) satisfying these conditions the n-isobicyclic triple. In this re-
lation, x and y correspond to rotations ofM around two fixed adjacent vertices u and v,
respectively. The automorphism α corresponds to the half-turn reversing the edge uv. For
two n-isobicyclic triples (Γ1, x1, y1) and (Γ2, x2, y2), two corresponding regular embed-
dings M1 and M2 are isomorphic if and only if there exists a group isomorphism from
Γ1 to Γ2 given by x1 7→ x2 and y1 7→ y2. Using this, one can show that the regular em-
beddingM induced by n-isobicyclic triple (Γ, x, y) is reflexible if and only if there exists
an automorphism β of Γ which sends x and y to x−1 and y−1, respectively. (For more
information, the reader is referred to [4].)

Note that one can define an embedding of Kn,n by using the first and second con-
ditions of n-isobicyclic triple, and the induced map is edge-transitive map satisfying the
Property (P) even though the third condition of n-isobicyclic triple is not satisfied. Con-
versely, any edge transitive embedding of Kn,n satisfying the Property (P) is isomorphic
to some induced map by such a triple (Γ, x, y). One can show that for different positive in-
tegers m and n, an edge-transitive embedding of Km,n satisfying the Property (P) can also
be represented by a similar triple. For a group Γ containing cyclic subgroups X = 〈x〉 of
order n and Y = 〈y〉 of order m, the triple (Γ, x, y) is called (m,n)-bicyclic if it satisfies:

(i) Γ = XY and

(ii) X ∩ Y = {1Γ}.

For any (m,n)-bicyclic triple (Γ, x, y), one can define an embedding of Km,n by a similar
way to define an embedding of Kn,n using n-isobicyclic triple. We denote this embedding
by M(Γ, x, y). One can see that M(Γ, x, y) is an edge-transitive embedding of Km,n

satisfying the Property (P). Furthermore the following result holds.

Lemma 2.1 ([9]). Let m,n be two positive integers (not necessarily distinct).

(1) Any edge-transitive embeddingM ofKm,n satisfying the Property (P) is isomorphic
toM(Γ, x, y) for some (m,n)-bicyclic triple (Γ, x, y).
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(2) For two (m,n)-bicyclic triples (Γ1, x1, y1) and (Γ2, x2, y2), two edge-transitive em-
beddingsM(Γ1, x1, y1) andM(Γ2, x2, y2) are isomorphic if and only if there exists
a group isomorphism from Γ1 to Γ2 given by x1 7→ x2 and y1 7→ y2.

For any (m,n)-bicyclic triple (Γ, x, y), there exists a subgroup H of the automorphism
group Aut(Km,n) such that:

(i) H is isomorphic to Γ and

(ii) x and y in Γ correspond to elements in H which cyclically permute vertices in the
partite sets of size n and m, respectively.

Hence it suffices to deal with such (m,n)-bicyclic triples in Aut(Km,n) to classify edge-
transitive embeddings of Km,n satisfying the Property (P).

For any positive integer m, denote the set {0, 1, . . . ,m− 1} by [m]. Let

V = {0, 1, . . . , (m− 1)} ∪ {0′, 1′, . . . , (n− 1)′} = [m] ∪ [n]′

be the vertex set of Km,n as partite sets, and let

D = {(i, j′), (j′, i) : 0 ≤ i ≤ m− 1 and 0 ≤ j ≤ n− 1}

be the arc set, where (i, j′) is the arc emanating from i to j′ and (j′, i) denotes its inverse.
We denote the symmetric group on [m] and [n]′ by S and S′, respectively. Let S0 and S′0
be their stabilizers of 0 and 0′, respectively. Note that Aut(Km,n) is isomorphic to S × S′
when m 6= n; S o Z2 when m = n. We identify integers 0, 1, 2, . . . with their residue
classes modulo m or n according to the context.

Let (Γ, x, y) be an (m,n)-bicyclic triple such that Γ is a subgroup of Aut(Km,n). Now
there exists an automorphism φ ∈ Aut(Km,n) such that

xφ = φ−1xφ = α(0′ 1′ · · · (n− 1)′) and yφ = φ−1yφ = β(0 1 · · · m− 1),

where α ∈ S0 and β ∈ S′0. For any α ∈ S0 and β ∈ S′0, let

xα = α(0′ 1′ · · · (n− 1)′) and yβ = β(0 1 · · · m− 1).

From now on, we only consider triples (〈xα, yβ〉, xα, yβ) as candidates of (m,n)-bicyclic
triples.

Lemma 2.2 ([9]). For any α ∈ S0 and β ∈ S′0,

1. the group 〈xα, yβ〉 acts transitively on the edge set of Km,n and

2. the triple (〈xα, yβ〉 , xα, yβ) is (m,n)-bicyclic if and only if | 〈xα, yβ〉 | = mn.

By Lemma 2.2, we need to characterize α ∈ S0 and β ∈ S′0 satisfying | 〈xα, yβ〉 | =
mn to classify edge-transitive embeddings of Km,n satisfying the Property (P). To do this,
we denote

ETm,n = {(α, β) : α ∈ S0, β ∈ S′0 and | 〈xα, yβ〉 | = mn}.

Note that for any (α, β) ∈ ETm,n, (〈xα, yβ〉 , xα, yβ) is an (m,n)-bicyclic triple and
henceM(〈xα, yβ〉 , xα, yβ) is an edge-transitive embedding of Km,n satisfying the Prop-
erty (P). Conversely for any edge-transitive embedding M of Km,n satisfying the Prop-
erty (P), there exists (α, β) ∈ ETm,n such thatM is isomorphic toM(〈xα, yβ〉 , xα, yβ).
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Remark 2.3.

(1) For any (α, β) ∈ ETm,n,

〈xα, yβ〉 = {xiαy
j
β | i ∈ [n], j ∈ [m]} = {yjβx

i
α | i ∈ [n], j ∈ [m]}.

Hence in many cases, if α satisfies some properties then β also satisfies the same
properties and vice versa.

(2) Note that for different positive integers m and n and for an orientable embeddingM
ofKm,n, any automorphism ofM is partite set preserving. Letm = n be odd and let
M be an orientable edge-transitive embedding of Kn,n. If a subgroup Γ of Aut(M)
acts regularly on the edge set then |Γ| = m2 is odd and hence there exists no partite
set reversing element in Γ. Hence for odd n, every edge-transitive embedding of
Kn,n is an edge-transitive embedding of Kn,n satisfying the Property (P). On the
other hand, for even n, we do not know whether the above statement is true or not.

The next lemma shows that for different (α1, β1), (α2, β2) ∈ ETm,n, two induced
edge-transitive embeddings are non-isomorphic.

Lemma 2.4 ([9]). For any (α1, β1), (α2, β2) ∈ ETm,n, the induced edge-transitive em-
beddings M(〈xα1 , yβ1〉 , xα1 , yβ1) and M(〈xα2 , yβ2〉 , xα2 , yβ2) are isomorphic if and
only if (α1, β1) = (α2, β2).

By Lemma 2.4, distinct pairs in ETm,n give non-isomorphic edge-transitive embed-
dings of Km,n and the number of edge-transitive embeddings of Km,n satisfying the Prop-
erty (P) equals to the cardinality |ETm,n |. But for distinct pairs (α1, β1), (α2, β2) ∈
ETm,n, two groups 〈xα1 , yβ1〉 and 〈xα2 , yβ2〉 may possibly be isomorphic. We do not
know a necessary and sufficient condition for 〈xα1 , yβ1〉 ' 〈xα2 , yβ2〉. So we propose the
following problem.

Problem 2.5. For any positive integers m and n and for any (α1, β1), (α2, β2) ∈ ETm,n,
find a necessary and sufficient condition for 〈xα1

, yβ1
〉 ' 〈xα2

, yβ2
〉.

From now on, we aim to characterize the set ETm,n. Note that for any (α, β) ∈ ETm,n,
the stabilizers 〈xα, yβ〉0 and 〈xα, yβ〉0′ are cyclic groups 〈xα〉 of order n and 〈yβ〉 of order
m, respectively.

Lemma 2.6. For any (α, β) ∈ ETm,n, 〈α〉 and 〈β〉 are cyclic groups of order
|{αi(1) : i ∈ [n]}| and |{βi(1′) : i ∈ [m]}|, the lengths of the orbit containing 1 and
1′, respectively. Furthermore they are divisors of n and m, respectively.

Proof. Let d1 = |{αi(1) : i ∈ [n]}| and d2 = |{βi(1′) : i ∈ [m]}|. Now d1 and d2 are
divisors of the orders |〈xα〉| = n and |〈yβ〉| = m, respectively. Note that

αd1(1) = 1 and y−1
β xd1α yβ(0) = 0,

which implies that, as a conjugate of xd1α , y−1
β xd1α yβ belongs to the vertex stabilizer

〈xα, yβ〉0 = 〈xα〉. Since d1 is a divisor of n, y−1
β xd1α yβ = xrd1α for some r ∈ [n] such

that gcd(r, nd1 ) = 1, where gcd(r, nd1 ) is the greatest common divisor of r and n
d1

. Now,
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suppose to the contrary that |〈α〉| 6= d1. Then there exists k ∈ [m] such that αd1(k) 6= k.
Let q be the largest element in [m] such that αd1(q) 6= q. On the other hand,

αrd1(q) = xrd1α (q) = y−1
β xd1α yβ(q) = y−1

β xd1α (q + 1) = y−1
β (q + 1) = q,

contradictory to αrd1(q) 6= q. Therefore |〈α〉| = d1. Similarly, one can show that
|〈β〉| = d2.

For any (α, β) ∈ ETm,n, it follows from Lemma 2.6 that the length of each cycle in α
(β, resp.) is a divisor of the length d1 (d2, resp.) of the cycle containing 1 (1′, resp.).

From now on we denote i′, [n]′ and β(i′) simply by i, [n] and β(i) for any i′ ∈ [n]′,
respectively. The following lemma is related to a characterization of the set ETm,n.

Lemma 2.7 ([9]). Let α ∈ S0 and β ∈ S′0. Then (α, β) ∈ ETm,n if and only if for each
i ∈ [n], there exist a(i) ∈ [n] and b(i) ∈ [m] such that αi(k) = αa(i)(k + b(i))− 1 for all
k ∈ [m] and β(t + i) = βb(i)(t) + a(i) for all t ∈ [n]. In this case, we have a(i) = β(i)
and b(i) = −α−i(−1).

Note that the equations in Lemma 2.7 is equivalent to yβxiα = x
a(i)
α y

b(i)
β . The next

lemma gives a characterization of (α, β) ∈ ETm,n whose induced edge-transitive embed-
ding contains a partite set preserving reflection.

Lemma 2.8 ([9]). For any (α, β) ∈ ETm,n, M(〈xα, yβ〉 , xα, yβ) contains a partite set
preserving reflection if and only if α−1(−k) = −α(k) for any k ∈ [m] and β−1(−t) =
−β(t) for any t ∈ [n].

For our convenience, we denote

RETm,n = {(α, β) ∈ ETm,n : α−1(−k) = −α(k) for any k ∈ [m] and

β−1(−t) = −β(t) for any t ∈ [n]}.

We call an edge-transitive embedding of Km,n satisfying the Property (P) which also con-
tains a partite set preserving reflection a reflexible edge-transitive embedding of Km,n sat-
isfying the Property (P). By Lemmas 2.4 and 2.8, the number (up to isomorphism) of
reflexible edge-transitive embeddings of Km,n satisfying the Property (P) equals to the
cardinality |RETm,n |. Note that if α ∈ S and β ∈ S′ are the identity permutations,
then (α, β) belongs to RETm,n by Lemma 2.8. So for any two positive integers m and
n, there exists at least one reflexible edge-transitive embeddings of Km,n satisfying the
Property (P).

By Lemma 2.8, for any (α, β) ∈ RETm,n and for any j ∈ [m] and i ∈ [n]

α−i(−j) = α−i+1(−α(j)) = α−i+2(−α2(j)) = · · · = α−1(−αi−1(j)) = −αi(j)

and similarly β−j(−i) = −βj(i).

Lemma 2.9. For any (α, β) ∈ RETm,n and for any j ∈ [m] and i ∈ [n],

yjβx
i
α = xβ

j(i)
α y

αi(j)
β .
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Proof. Since 〈xα, yβ〉 = 〈xα〉〈yβ〉, for any j ∈ [m] and i ∈ [n], there exist a(i, j) ∈ [n]

and b(i, j) ∈ [m] such that yjβx
i
α = x

a(i,j)
α y

b(i,j)
β . By taking their values of k ∈ [m] and

t ∈ [n], we have

αi(k) + j = αa(i,j)(k + b(i, j)) and βj(t+ i) = βb(i,j)(t) + a(i, j).

Inserting k = −b(i, j) and t = 0 to the equation αi(k) + j = αa(i,j)(k + b(i, j)) and
βj(t+ i) = βb(i,j)(t) + a(i, j), respectively, we have

b(i, j) = −α−i(−j) = αi(j) and a(i, j) = βj(i).

Lemma 2.10. Let (α, β) ∈ RETm,n and let d1 = |〈α〉| and d2 = |〈β〉|. It holds that
α(k) ≡ −k (mod d2) for any k ∈ [m] and β(t) ≡ −t (mod d1) for any t ∈ [n].

Proof. By Lemma 2.7, for each i ∈ [n], there exist a(i) ∈ [n] and b(i) ∈ [m] such that
αi(k) = αa(i)(k + b(i)) − 1 for all k ∈ [m] and β(t + i) = βb(i)(t) + a(i) for all
t ∈ [n]. Furthermore a(i) = β(i) and b(i) = −α−i(−1) = αi(1). Inserting k = 0 to
the equation αi(k) = αa(i)(k + b(i))− 1, we have b(i) = α−a(i)(1) = α−β(i)(1). Hence
αi(1) = α−β(i)(1) for any i ∈ [n]. Since the order of α equals to the length of the orbit
containing 1 by Lemma 2.6, β(i) ≡ −i (mod d1). By symmetry between α and β, it also
holds that α(k) ≡ −k (mod d2) for any k ∈ [m].

By Lemmas 2.7 and 2.10, b(i) = −α−i(−1) = αi(1) ≡ (−1)i (mod d2). Hence for
any (α, β) ∈ RETm,n with d1 = |〈α〉| and d2 = |〈β〉|, we have

β(t+ i) = βb(i)(t) + a(i) = βα
i(1)(t) + β(i) = β(−1)i(t) + β(i)

for all i, t ∈ [n]. By symmetry, it also holds α(k+j) = α(−1)j (k)+α(j) for all j, k ∈ [m].

Lemma 2.11. Let (α, β) ∈ RETm,n and let d1 = |〈α〉| and d2 = |〈β〉|. Now

(1) if one of d1 and d2 is 1, say d1 = 1, then either d2 = 1 or (m is even and d2 = 2);

(2) if one of d1 and d2 is at least 3, say d1 ≥ 3, then both m and d2 are even;

(3) if m(n, resp.) is even then α (β, resp.) is parity preserving. Furthermore there exists
s, t ∈ [m] such that α(2k) = 2kt, α(2k + 1) = 2kt+ 2s+ 1 and 2t2 = 2;

(4) if both d1 and d2 are at least 3 then they are divisors of gcd(m,n).

Proof. (1): Let d1 = 1 and d2 ≥ 2. By Lemma 2.10, α(1) ≡ −1 (mod d2). Since α is
the identity, 1 ≡ −1 (mod d2). By the assumption d2 ≥ 2, d2 = 2. By Lemma 2.6, d2 is
a divisor of m, and hence m is even.

(2): Let d1 ≥ 3. By lemma 2.10, β(k) ≡ −k (mod d1), which implies that the order
d2 of β is even. Since d2 is a divisor of m, m is also even.

(3): Let m be even. If d1 = 1 then α is the identity and hence α is parity preserving. If
d1 = 2 then α−1 = α and

α(k) = α(k − 1 + 1) = α(k − 1) + α(1) = α(k − 2) + 2α(1) = · · · = kα(1)

for all k ∈ [m]. Since α2(1) = α(α(1)) = (α(1))2 = 1 and m is even, α(1) should be
odd. Hence α is parity preserving. Assume that d1 ≥ 3. Then, d2 is even by (2). Since
α(k) ≡ −k (mod d2), α is parity preserving.
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For any 2k ∈ [m],

α(2k) = α(2(k − 1)) + α(2) = α(2(k − 2)) + 2α(2) = · · · = kα(2) and
α(2k + 1) = α(2(k − 1) + 1) + α(2) = · · · = α(1) + kα(2).

Let α(1) = 2s + 1 and α(2) = 2t. Now α(2k) = kα(2) = 2kt and α(2k + 1) =
kα(2) + α(1) = 2kt + 2s + 1. Note that for any 2k ∈ [m], α(1) + α(2k) = α(2k +
1) = α−1(2k) + α(1). Hence α−1(2k) = α(2k), namely, α2(2k) = 2k. So we have
α2(2) = α(2t) = 2t2 = 2.

(4): Let d1, d2 ≥ 3. Now all of d1, d2,m and n are even by (2). Hence there exist
s, t ∈ [m] such that α(2k) = 2kt, α(2k+ 1) = 2kt+ 2s+ 1 and 2t2 = 2 by (3). Since d1

is even and

α2i(1) = α2i−1(2s+ 1) = α2i−2(2st+ 2s+ 1) = · · · = 2is(t+ 1) + 1,

d1 is the smallest positive integer such that d1s(t+1) ≡ 0 (mod m) by Lemma 2.6. Hence
d1 is a divisor of m and consequently a divisor of gcd(m,n). Similarly d2 is a divisor of
gcd(m,n).

3 At least one of m and n is odd
In this section, we classify reflexible edge-transitive embeddings of Km,n satisfying the
Property (P) when at least one of m and n is odd. Note that when at least one of m and n
is odd, any orientable edge-transitive embedding of Km,n is an edge-transitive embedding
satisfying the Property (P). In [9], the second author counted |RETm,n | when both m and
n are odd as follows.

Theorem 3.1 ([9]). If both m and n are odd then |RETm,n | = 1, namely, there exists
only one reflexible edge-transitive embedding of Km,n satisfying the Property (P) up to
isomorphism.

In the next theorem, we count |RETm,n | when exactly one of m and n is odd. By
symmetry, we assume that m is odd.

Theorem 3.2. Let

m = pa11 · · · p
a`
` p

a`+1

`+1 · · · p
a`+f

`+f (prime factorization)

be odd and
n = 2bpb11 · · · p

b`
` q

b`+1

`+1 · · · q
b`+g

`+g (prime factorization)

be even. Let gcd(m,n) = pc11 · · · p
c`
` with ci ≥ 1 for any i = 1, . . . , `. Now

|RETm,n | = 2f (1 + pc11 ) · · · (1 + pc`` ),

namely, there exist 2f (1 + pc11 ) · · · (1 + pc`` ) reflexible edge-transitive embeddings of Km,n

satisfying the Property (P) up to isomorphism.

Proof. Let (α, β) ∈ RETm,n and let d1 = |〈α〉| and d2 = |〈β〉|. Suppose that d1 ≥ 3.
Then both d2 and m are even by Lemma 2.11(2), which is a contradiction. Hence d1 = 1
or 2. Furthermore for any k ∈ [m],

α(k) = α−1(k − 1) + α(1) = α(k − 1) + α(1) = · · · = kα(1).
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Let α(1) = r. Now α(k) = rk and α2(1) = α(r) = r2 ≡ 1 (mod m).
Since n is even, β is parity preserving and there exists s, t ∈ [n] such that β(2k) = 2kt,

β(2k + 1) = 2kt + 2s + 1 and 2t2 = 2 for any 2k ∈ [n] by Lemma 2.11(3). If 2t 6= 2
then the length of the orbit containing 2 is 2 and hence d2 is even. But it can not happen
because m is odd. Hence for any 2k ∈ [n], β(2k) = 2k, β(2k + 1) = 2k + 2s+ 1 and for
any i ∈ [m],

βi(1) = βi−1(2s+ 1) = βi−2(2s+ 2s+ 1) = · · · = 2is+ 1.

Therefore d2 is the smallest positive integer such that 2d2s ≡ 0 (mod n), which implies
that d2 is a divisor of n, and hence d2 is a divisor of gcd(m,n) = pc11 · · · p

c`
` .

If r ≡ 1 (mod paii ) for some i = 1, 2, . . . , `, then the fact α(1) = r ≡ −1 (mod d2)

implies that pi can not be a divisor of d2. Hence pbii should divide s, namely, s ≡ 0

(mod pbii ). If r ≡ −1 (mod p
aj
j ) for some j = 1, 2, . . . , `, then s ≡ x ·pbj−cjj (mod p

bj
j )

for some x with 0 ≤ x ≤ p
cj
j − 1 because d2 is a divisor of gcd(m,n). Therefore, for any

j = 1, . . . , `, the pair (r (mod p
aj
j ), s (mod p

bj
j )) is (1, 0) or (−1, x · pbj−cjj ) for some x

with 0 ≤ x ≤ pcjj − 1.
Because d2 | gcd(m,n), we have 2s ≡ 0 (mod 2b) and for any k = 1, 2, . . . , g,

s ≡ 0 (mod q
b`+k

`+k ). Since r2 ≡ 1 (mod m), r ≡ ±1 (mod p
a`+j

`+j ) for any j =
1, 2, . . . f .

Conversely for any r ∈ [m] and s ∈ [n] satisfying the conditions

(i) for any j = 1, . . . , `, the pair (r (mod p
aj
j )), s (mod p

bj
j )) is (1, 0) or

(−1, x · pbj−cjj ) for some integer x with 0 ≤ x ≤ pcjj − 1,

(ii) 2s ≡ 0 (mod 2bq
b`+1

`+1 · · · q
b`+g

`+g ) and

(iii) for any j = 1, 2, . . . f , r ≡ ±1 (mod p
a`+j

`+j ),

define α(k) = rk for any k ∈ [m] and β(2t) = 2t, β(2t + 1) = 2t + 2s + 1 for any
2t ∈ [n]. Note that α ∈ S0 and β ∈ S′0. Let d′1 = |〈α〉| and d′2 = |〈β〉|. Now d′1 = 1 or
2 depending on the value of r and d′2 is the smallest positive integer satisfying 2d′2s ≡ 0
(mod n). Note that d′2 divides gcd(m,n) and r ≡ −1 (mod d′2). For any i ∈ [n], let
a(i) = β(i) and b(i) = αi(1) = ri. For the first case, let i be even. Now a(i) = β(i) = i
and b(i) = αi(1) = 1. For any 2t ∈ [n],

β(2t+ i) = 2t+ i and

βb(i)(2t) + a(i) = β(2t) + β(i) = 2t+ i

and

β(2t+ 1 + i) = 2t+ i+ 2s+ 1 and

βb(i)(2t+ 1) + a(i) = β(2t+ 1) + β(i) = 2t+ 2s+ 1 + i.

Hence β(t+ i) = βb(i)(t) + a(i) for any t ∈ [n]. For any k ∈ [m],

αi(k) = k and

αa(i)(k + b(i))− 1 = k.
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Hence αi(k) = αa(i)(k + b(x))− 1 for any k ∈ [m].
For the remaining case, let i be odd. Now a(i) = β(i) = i + 2s and b(i) = αi(1) =

r ≡ −1 (mod d′2). For any 2t ∈ [n],

β(2t+ i) = 2t+ i+ 2s and

βb(i)(2t) + a(i) = β−1(2t) + β(i) = 2t+ i+ 2s

and

β(2t+ 1 + i) = 2t+ i+ 1 and

βb(i)(2t+ 1) + a(i) = β−1(2t+ 1) + β(i) = 2t+ 1− 2s+ i+ 2s = 2k + i+ 1.

Hence β(t+ i) = βb(i)(t) + a(i) for any t ∈ [n]. For any k ∈ [m],

αi(k) = rk and

αa(i)(k + b(i))− 1 = α(k + r)− 1 = rk + r2 − 1 = rk.

Hence αi(k) = αa(i)(k + b(i)) − 1 for any k ∈ [m]. By Lemma 2.7, (α, β) ∈ ETm,n.
Furthermore one can easily check that α−1(−k) = −α(k) for any k ∈ [m] and
β−1(−t) = −β(t) for any t ∈ [n]. Hence (α, β) ∈ RETm,n by Lemma 2.8.

Therefore
|RETm,n | = 2f (1 + pc11 ) · · · (1 + pc`` ).

4 Both m and n are even
In this section, we classify reflexible edge-transitive embeddings of Km,n satisfying the
Property (P) when both m and n are even, and consequently prove Theorem 1.1. For the
classification, we give the following lemma.

Lemma 4.1. Let m and n be even and let α ∈ S0 and β ∈ S′0 with d1 = |〈α〉| and
d2 = |〈β〉|. Now (α, β) ∈ RETm,n if and only if α and β are defined by

α(2k) = 2kt1 and

α(2k + 1) = 2kt1 + 2s1 + 1

for any 2k ∈ [m] and

β(2k) = 2kt2 and

β(2k + 1) = 2kt2 + 2s2 + 1

for any 2k ∈ [n] for some quadruple (s1, t1; s2, t2) ∈ [m2 ]× [m2 ]× [n2 ]× [n2 ] satisfying the
following conditions;

(i) d1 | gcd(m,n) and d2 | gcd(m,n);

(ii) 2t21 ≡ 2 (mod m) and 2t22 ≡ 2 (mod n);

(iii) 2(s1 + 1) ≡ 0 (mod d2), 2(t1 + 1) ≡ 0 (mod d2),
2(s2 + 1) ≡ 0 (mod d1), and 2(t2 + 1) ≡ 0 (mod d1);

(iv) 2(s1 + 1)(t1 − 1) ≡ 0 (mod m) and 2(s2 + 1)(t2 − 1) ≡ 0 (mod n).
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Proof. (⇐): Assume that 2t1 = 2, namely, t1 = 1. Then α(2k) = 2k and α(2k + 1) =
2k+2s1 +1 for any 2k ∈ [m]. Since for any i ∈ [n], αi(2k+1) = 2k+2is1 +1, d1 is the
smallest positive integer such that 2d1s1 ≡ 0 (mod m). Now assume that 2t1 6= 2. Then
d1 should be even because α2(2) = 2t21 = 2. Since for any 2i ∈ [n] and for any 2k ∈ [m],
α2i(2k + 1) = 2k + 2is1(t1 + 1) + 1, d1 is the smallest positive even integer such that
d1s1(t1 +1) ≡ 0 (mod m). Similarly one can show that d2 is the smallest positive integer
such that 2d2s2 ≡ 0 (mod n) if t2 = 1; and the smallest positive even integer such that
d2s2(t2 + 1) ≡ 0 (mod n) if t2 6= 1.

For any i ∈ [n], let a(i) = β(i) and b(i) = αi(1). For the first case, let i be even. Then
a(i) = β(i) = it2 ≡ −i (mod d1) and b(i) = αi(1) = is1(t1 + 1) + 1 ≡ 1 (mod d2).
For any 2k ∈ [n],

β(2k + i) = 2kt2 + it2 and

βb(i)(2k) + a(i) = β(2k) + β(i) = 2kt2 + it2

and

β(2k + 1 + i) = 2kt2 + it2 + 2s2 + 1 and

βb(i)(2k + 1) + a(i) = β(2k + 1) + β(i) = 2kt2 + 2s2 + 1 + it2.

Hence β(k + i) = βb(i)(k) + a(i) for any k ∈ [n]. For any 2k ∈ [m],

αi(2k) = 2k and

αa(i)(2k + b(i))− 1 = α−i(2k + is1(t1 + 1) + 1)− 1

= (2k + is1(t1 + 1)− is1(t1 + 1) + 1)− 1 = 2k

and

αi(2k + 1) = 2k + is1(t1 + 1) + 1, and

αa(i)(2k + 1 + b(i))− 1 = α−i(2k + is1(t1 + 1) + 2)− 1

= (2k + is1(t1 + 1) + 2)− 1 = 2k + is1(t1 + 1) + 1.

Hence αi(k) = αa(i)(k + b(i))− 1 for any k ∈ [m].
For the remaining case, let i be odd. Now a(i) = β(i) = (i − 1)t2 + 2s2 + 1 ≡ −i

(mod d1) and b(i) = αi(1) = (i − 1)s1(t1 + 1) + 2s1 + 1 ≡ −1 (mod d2). For any
2k ∈ [n],

β(2k + i) = 2kt2 + (i− 1)t2 + 2s2 + 1 and

βb(i)(2k) + a(i) = β−1(2k) + β(i) = 2kt2 + (i− 1)t2 + 2s2 + 1

and

β(2k + 1 + i) = (2k + i+ 1)t2 and

βb(i)(2k + 1) + a(i) = β−1(2k + 1) + β(i)

= (2kt2 − 2s2t2 + 1) + (i− 1)t2 + 2s2 + 1

= (2k + i+ 1)t2 − 2(s2 + 1)(t2 − 1) = (2k + i+ 1)t2.
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Hence β(k + i) = βb(i)(k) + a(i) for any k ∈ [n]. For any 2k ∈ [m],

αi(2k) = 2kt1 and

αa(i)(2k + b(i))− 1 = α−i(2k + (i− 1)s1(t1 + 1) + 2s1 + 1)− 1

= (2k + (i− 1)s1(t1 + 1) + 2s1)t1 − (i+ 1)s1(t1 + 1) + 2s1

= 2kt1 − 2s1(t1 + 1) + 2s1t1 + 2s1 = 2kt1

and

αi(2k + 1) = 2kt1 + (i− 1)s1(t1 + 1) + 2s1 + 1 and

αa(i)(2k + 1 + b(i))− 1 = α−i(2k + (i− 1)s1(t1 + 1) + 2s1 + 2)− 1

= (2k + (i− 1)s1(t1 + 1) + 2s1 + 2)t1 − 1

= 2kt1 + (i− 1)s1(t1 + 1) + 2s1 + 1 + 2(s1 + 1)(t1 − 1)

= 2kt1 + (i− 1)s1(t1 + 1) + 2s1 + 1.

Hence αi(k) = αa(i)(k + b(i)) − 1 for any k ∈ [m]. By Lemma 2.7, (α, β) ∈ ETm,n.
Furthermore one can easily check that α−1(−k) = −α(k) for any k ∈ [m] and β−1(−k) =
−β(k) for any k ∈ [n]. Hence (α, β) ∈ RETm,n by Lemma 2.8.

(⇒): Since m and n are even, both α and β are parity preserving. For any 2k ∈ [m],

α(2k) = α(2(k − 1)) + α(2)

= α(2(k − 2)) + 2α(2) = · · · = kα(2) and
α(2k + 1) = α(2(k − 1) + 1) + α(2)

= α(2(k − 2) + 1) + 2α(2) = · · · = α(1) + kα(2).

Let α(1) = 2s1 + 1 and α(2) = 2t1 for some s1, t1 ∈ [m2 ]. Then α(2k) = 2kt1 and
α(2k+1) = 2kt1 +2s1 +1 for any 2k ∈ [m]. Note that for any 2k ∈ [m], α(1)+α(2k) =
α(2k+ 1) = α−1(2k) +α(1). Hence α−1(2k) = α(2k), namely, α2(2k) = 2k. It implies
that α2(2) = α(2t1) = 2t21 ≡ 2 (mod m). Assume that 2t1 = 2, namely, t1 = 1. Then
by Lemma 2.6, the order |〈α〉| is the smallest positive integer d1 such that

αd1(1) = αd1−1(2s1 + 1) = αd1−2(2s1 + 2s1 + 1) = · · · = 2d1s1 + 1 ≡ 1.

Now assume that 2t1 6= 2. Then the order |〈α〉| is even and it is the smallest positive even
integer d1 such that

αd1(1) = αd1−1(2s1 + 1) = αd1−2(2s1t1 + 2s1 + 1) = αd1−3(2s1t1 + 4s1 + 1)

= αd1−4(4s1t1 + 4s1 + 1) = · · · = d1s1(t1 + 1) + 1 ≡ 1.

Hence d1 is a divisor of m and consequently a divisor of gcd(m,n).
By a similar reason, there exist s2, t2 ∈ [n2 ] such that β(2k) = 2kt2 and β(2k + 1) =

2kt2 + 2s2 + 1 for any 2k ∈ [n]. Furthermore 2t22 ≡ 2 (mod n) and d2 is a divisor of
gcd(m,n). By Lemma 2.10, α(1) = 2s1 + 1 ≡ −1 (mod d2), namely, 2(s1 + 1) ≡ 0
(mod d2) and α(2) = 2t1 ≡ −2 (mod d2), namely, 2(t1 + 1) ≡ 0 (mod d2). Similarly
it holds that 2(s2 + 1) ≡ 2(t2 + 1) ≡ 0 (mod d1). Note that

2t1 = α(2) = α−1(1) + α(1) = (−2s1t1 + 1) + 2s1 + 1.

Hence 2(s1+1)(t1−1) ≡ 0 (mod m). By a similar reason, it holds that 2(s2+1)(t2−1) ≡
0 (mod n).
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For even m and n, let Q(m,n) be the set of quadruples (s1, t1; s2, t2) ∈ [n2 ] × [n2 ] ×
[m2 ]× [m2 ] satisfying the conditions in Lemma 4.1. By Lemma 4.1, the classification of re-
flexible edge-transitive embeddings ofKm,n satisfying the Property (P) is equivalent to the
classification of Q(m,n), and the number |RETm,n | equals to the cardinality |Q(m,n)|.

In this section, let

m = 2apa11 · · · p
a`
` p

a`+1

`+1 · · · p
a`+f

`+f and

n = 2bpb11 · · · p
b`
` q

a`+1

`+1 · · · q
b`+g

`+g (prime decompositions)

and let gcd(m,n) = 2cpc11 · · · p
c`
` with ci ≥ 1 for any i = 1, . . . , `. Without any loss of

generality, assume that a ≤ b, namely, a = c. By Chinese Remainder Theorem, it suffices
to consider quadruples (s1, t1; s2, t2) modulo prime powers dividingm and n, respectively.
So we have the following lemma.

Lemma 4.2. For a quadruple (s1, t1; s2, t2) ∈ [n2 ] × [n2 ] × [m2 ] × [m2 ], (s1, t1; s2, t2)
belongs to Q(m,n) if and only if:

(1) for i = 1, . . . , `, (s1 (mod paii ), t1 (mod paii ); s2 (mod pbii ), t2 (mod pbii )) is one
of (−1,−1;−1,−1), (−1,−1; y · pbi−cii , 1), (x · pai−cii , 1;−1,−1) and (0, 1; 0, 1),
where x, y = 0, 1, . . . , pcii − 1;

(2) for any j = 1, 2, . . . , f , (s1 (mod p
a`+j

`+j ), t1 (mod p
a`+j

`+j )) is (0, 1) or (−1,−1);

(3) for any k = 1, 2, . . . , g, (s2 (mod q
b`+k

`+k ), t2 (mod q
b`+k

`+k )) is (0, 1) or (−1,−1);

(4) (s1 (mod 2a), t1 (mod 2a); s2 (mod 2b), t2 (mod 2b)) belongs to Q(2a, 2b).

Proof. Assume that (s1, t1; s2, t2) belongs toQ(m,n). Then t21 ≡ 1 (mod m
2 ) and t22 ≡ 1

(mod n
2 ).

(1): First let us consider the quadruple modulo paii and pbii for i = 1, . . . , `. Note that
t1 ≡ ±1 (mod paii ) and t2 ≡ ±1 (mod pbii ).

If t1 ≡ −1 (mod paii ), then s1 should be −1 modulo paii to satisfy

2(s1 + 1)(t1 − 1) ≡ 0 (mod paii ).

By similar reason, if t2 ≡ −1 (mod pbii ), then s2 ≡ −1 (mod pbii ).
Let (s1, t1) ≡ (−1,−1) (mod paii ). Since d1 is the smallest positive even integer

satisfying d1s1(t1 + 1) ≡ 0 (mod m), pi does not divide d1. If t2 ≡ −1 (mod pbii ) then
s2 should be −1 modulo pbii . If t2 ≡ 1 (mod pbii ), then s2 ≡ y · pbi−cii (mod pbii ) for
some y = 0, 1, . . . , pcii − 1 because d2 | gcd(m,n). By a similar reason, one can say that
if (s2, t2) ≡ (−1,−1) (mod pbii ), then (s1, t1) ≡ (−1,−1) or (x · pai−cii , 1) (mod paii )
for some x = 0, 1, . . . , pcii − 1.

Let (s1, t1) ≡ (0, 1) (mod paii ). By the condition (iii) in Lemma 4.1, pi does not
divide d2. Note that if t2 = 1 then d2 is the smallest positive integer satisfying 2d2s2 ≡ 0
(mod n), and if t2 6= 1 then d2 is the smallest positive even integer such that
d2s2(t2 + 1) ≡ 0 (mod n). Hence s2 = 0 or t2 = −1 modulo pbii , which implies
that (s2, t2) ≡ (0, 1) or (−1,−1) (mod pbii ).

Let t1 ≡ 1 (mod paii ) and s1 6= 0 (mod paii ). One can see that pi divides d1. By the
condition (iii) in Lemma 4.1, t2 ≡ −1 (mod pbii ) and s2 ≡ −1 (mod pbii ).
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Therefore

(s1 (mod paii ), t1 (mod paii ); s2 (mod pbii ), t2 (mod pbii )) =

(−1,−1;−1,−1), (−1,−1; y · pbi−cii , 1), (x · pai−cii , 1;−1,−1) or (0, 1; 0, 1),

where x, y = 0, 1, . . . , pcii − 1.
(2): For any j = 1, 2, . . . , f , t1 ≡ ±1 (mod p

a`+j

`+j ). If t1 ≡ 1 (mod p
a`+j

`+j ) then
s1 ≡ 0 (mod p

a`+j

`+j ) because p`+j does not divide d1. If t1 ≡ −1 (mod p
a`+j

`+j ) then
s1 ≡ −1 (mod p

a`+j

`+j ) to satisfy 2(s1 + 1)(t1 − 1) ≡ 0 (mod p
a`+j

`+j ).

(3): By the similar reason with (2), for any k = 1, 2, . . . , g, (s2 (mod q
b`+k

`+k ),

t2 (mod q
b`+k

`+k )) is (0, 1) or (−1,−1).
(4): If a quadruple (s1, t1; s2, t2) ∈ [n2 ] × [n2 ] × [m2 ] × [m2 ] satisfies all conditions in

Lemma 4.1, then it also satisfies these conditions modulo 2a and 2b. Hence

(s1 (mod 2a), t1 (mod 2a); s2 (mod 2b), t2 (mod 2b)) ∈ Q(2a, 2b).

By Chinese Remainder Theorem, one can show that if (1), (2), (3) and (4) hold, then
(s1, t1; s2, t2) ∈ Q(m,n).

Corollary 4.3. The number of reflexible edge-transitive embeddings ofKm,n satisfying the
Property (P) up to isomorphism is 2f+g+`(1 + pc11 ) · · · (1 + pc`` )|Q(2a, 2b)|.

Proof. By Lemma 4.2, the number of reflexible edge-transitive embeddings of Km,n sat-
isfying the Property (P) up to isomorphism is

(2 + 2pc11 ) · · · (2 + 2pc`` )2f2g|Q(2a, 2b)| =
2f+g+`(1 + pc11 ) · · · (1 + pc`` )|Q(2a, 2b)|.

By Lemma 4.2, it suffices to classify Q(2a, 2b) to classify reflexible edge-transitive
embeddings of Km,n satisfying the Property (P). Let P(2) = {(0, 1)} and for a 2-power
2a (a > 1), letP(2a) be the set of all pairs (s, t) ∈ [2a−1]×[2a−1] satisfying the conditions:

(i) 2t2 ≡ 2 (mod 2a) and

(ii) 2(s+ 1)(t− 1) ≡ 0 (mod 2a).

For any (s, t) ∈ P(2a)\{(0, 1)}, let d(s, t) be the smallest positive even number d such that
ds(t + 1) ≡ 0 (mod 2a) and let e(s, t) be the largest number 2j with 2j ≤ 2a satisfying
2(s + 1) ≡ 0 (mod 2j) and 2(t + 1) ≡ 0 (mod 2j). Let d(0, 1) = 1 and e(0, 1) = 2.
Now we have the following lemma.

Lemma 4.4. For 2-powers 2a (a ≥ 1) and 2b (b ≥ 1), a quadruple (s1, t1; s2, t2) belongs
to Q(2a, 2b) if and only if (s1, t1; s2, t2) satisfies the conditions

(a) (s1, t1) ∈ P(2a) and (s2, t2) ∈ P(2b),

(b) d(s1, t1) ≤ e(s2, t2) and d(s2, t2) ≤ e(s1, t1).
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Proof. The conditions (i) and (ii) in the definition of P(2a) correspond to the conditions
(ii) and (iv) in Lemma 4.1.

Suppose that d(s1, t1) ≤ e(s2, t2) and d(s2, t2) ≤ e(s1, t1). Since d(s1, t1) ≤ 2a

and e(s2, t2) ≤ 2b, d(s1, t1) divides gcd(2a, 2b), the minimum of 2a and 2b. Similarly
d(s2, t2) also divides gcd(2a, 2b). Furthermore it holds that

2(s1 + 1) ≡ 0 (mod d(s2, t2)),

2(t1 + 1) ≡ 0 (mod d(s2, t2)),

2(s2 + 1) ≡ 0 (mod d(s1, t1)) and
2(t2 + 1) ≡ 0 (mod d(s1, t1)).

Therefore the conditions (i) and (iii) in Lemma 4.1 hold, and hence (s1, t1; s2, t2) belongs
to Q(2a, 2b).

Let (s1, t1; s2, t2) belong to Q(2a, 2b). Now the condition (iii) in Lemma 4.1 is equiv-
alent to the condition d(s1, t1) ≤ e(s2, t2) and d(s2, t2) ≤ e(s1, t1).

By Lemma 4.4, the calculation of d(s, t) and e(s, t) for each (s, t) ∈ P(2a) is help-
ful to calculate |Q(2a, 2b)|. The following lemma gives full list of (s, t) ∈ P(2a) and
corresponding d(s, t) and e(s, t).

Lemma 4.5. For a 2-power 2a (a > 1), the set {(s, t, d(s, t), e(s, t)) : (s, t) ∈ P(2a)} is
the following:

{(0, 1, 1, 2), (1, 1, 2, 4)}, if a = 2

{(0, 1, 1, 2), (1, 1, 4, 4), (2, 1, 2, 2), (3, 1, 4, 4), (1, 3, 2, 4), (3, 3, 2, 8)}, if a = 3

{(0, 1, 1, 2), (2a−2 − 1, 2a−2 − 1, 4, 2a−1), (2a−1 − 1, 2a−2 − 1, 4, 2a−1),

(2a−2 − 1, 2a−1 − 1, 2, 2a−1), (2a−1 − 1, 2a−1 − 1, 2, 2a)}
∪ {(x, 1, 2a−1, 4), (x, 2a−2 + 1, 2a−1, 4) : x = 1, 3, . . . , 2a−1 − 1}
∪ {(2iy, 1, 2a−i−1, 2) : i = 1, . . . , a− 2, y = 1, 3, . . . , 2a−i−1 − 1} if a ≥ 4.

Proof. Let (s, t) ∈ P(2a).
For a = 2, t should be 1 and both s = 0 and s = 1 satisfy the conditions for (s, t) ∈

P(2a). Hence (s, t, d(s, t), e(s, t)) = (0, 1, 1, 2) or (1, 1, 2, 4). Let a = 3. Then t = 1 and
t = 3. If t = 1, then s = i for some i = 0, 1, 2, 3. If t = 3, then s = 1 or s = 3. In any
possible pair (s, t), one can easily calculate d(s, t) and e(s, t).

Now assume that a ≥ 4. Then t = 1, 2a−2 − 1, 2a−2 + 1 or 2a−1 − 1. For t = 1, any
number 0, 1, 2, . . . , 2a−1 − 1 is possible for s to satisfy the condition (ii) in the definition
of P(2a). Note that if (s, t) = (0, 1), then (d(0, 1), e(0, 1)) = (1, 2). One can easily show
that if (s, t) = (x, 1) for any x = 1, 3, . . . , 2a−1 − 1 then (d(s, t), e(s, t)) = (2a−1, 4).
If (s, t) = (2iy, 1) for any i = 1, . . . , a − 2 and for any y = 1, 3, . . . , 2a−i−1 − 1, then
(d(s, t), e(s, t)) = (2a−i−1, 2).

For t = 2a−2 − 1, both s = 2a−2 − 1 and s = 2a−1 − 1 satisfy the conditions for
(s, t) ∈ P(2a). If (s, t) = (2a−2 − 1, 2a−2 − 1) or (2a−1 − 1, 2a−2 − 1) then we have
(d(s, t), e(s, t)) = (4, 2a−1).

Let t = 2a−2 + 1. Then any number s = 1, 3, . . . , 2a−1 − 1 satisfies the condition (ii)
in the definition of P(2a). For any (s, t) = (x, 2a−2 + 1) with x = 1, 3, . . . , 2a−1 − 1, we
have (d(s, t), e(s, t)) = (2a−1, 4).
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For the final case, let t = 2a−1−1. Then s = 2a−2−1 or 2a−1−1. If (s, t) = (2a−2−1,
2a−1− 1) then we have (d(s, t), e(s, t)) = (2, 2a−1); if (s, t) = (2a−1− 1, 2a−1− 1) then
(d(s, t), e(s, t)) = (2, 2a).

Theorem 4.6. For any 2-powers 2a and 2b with a ≤ b, the number |Q(2a, 2b)| of reflexible
edge-transitive embeddings of Km,n satisfying the Property (P) up to isomorphism is the
following:

|Q(2a, 2b)| =



1 if (a, b) = (1, 1),

2 if (a, b) = (1, 2),

4 if (a, b) = (2, 2) or (1, k) with k ≥ 3,

10 if (a, b) = (2, 3),

12 if (a, b) = (2, k) with k ≥ 4,

28 if (a, b) = (3, 3),

40 if (a, b) = (3, 4),

36 if (a, b) = (3, k) with k ≥ 5,

20(1 + 2a−2) if a = b ≥ 4,

20 + 18 · 2a−2 if b− 1 = a ≥ 4,

20 + 16 · 2a−2 if b− 2 ≥ a ≥ 4.

Proof. By Lemma 4.4, it suffices to find all (s1, t1; s2, t2) satisfying the conditions

(a) (s1, t1) ∈ P(2a) and (s2, t2) ∈ P(2b),

(b) d(s1, t1) ≤ e(s2, t2) and d(s2, t2) ≤ e(s1, t1).

By Lemma 4.5, one can get all the lists of (s1, t1; s2, t2) satisfying the conditions as Table 1.

Proof of Theorem 1.1. For oddm and n, the number |RETm,n | of reflexible edge-transiti-
ve embeddings of Km,n up to isomorphism is 1 by Theorem 3.1. When exactly one of m
and n is odd, then the number |RETm,n | is counted in Theorem 3.2.

Assume that both m and n are even. Let

m = 2apa11 pa22 · · · p
a`
` p

a`+1

`+1 · · · p
a`+f

`+f and

n = 2bpb11 p
b2
2 · · · p

b`
` q

a`+1

`+1 · · · q
b`+g

`+g (prime decompositions)

and let gcd(m,n) = 2cpc11 p
c2
2 · · · p

c`
` with ci ≥ 1 for any i = 1, . . . , `. Without any

loss of generality, assume that a ≤ b, namely, a = c. By Corollary 4.3, the number
|RETm,n | = |Q(m,n)| is

2f+g+`(1 + pc11 ) · · · (1 + pc`` )|Q(2a, 2b)|.

Theorem 4.6 completes the proof.
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Table 1: All lists of Q(2a, 2b).
(a, b) Q(2a, 2b)

(1, 1) (0, 1; 0, 1)

(1, 2) (0, 1; 0, 1), (0, 1; 1, 1)

(1,≥ 3) (0, 1; 0, 1), (0, 1; 2b−2, 1), (0, 1; 2b−2 − 1, 2b−1 − 1),
(0, 1; 2b−1 − 1, 2b−1 − 1)

(2, 2) (0, 1; 0, 1), (0, 1; 1, 1), (1, 1; 0, 1), (1, 1; 1, 1)

(2, 3) (0, 1; 0, 1), (0, 1; 2, 1), (0, 1; 1, 3), (0, 1; 3, 3), (1, 1; 0, 1), (1, 1; 1, 1),
(1, 1; 2, 1), (1, 1; 3, 1), (1, 1; 1, 3), (1, 1; 3, 3)

(2,≥ 4) (0, 1; 0, 1), (0, 1; 2b−2, 1), (0, 1; 2b−2 − 1, 2b−1 − 1),
(0, 1; 2b−1 − 1, 2b−1 − 1), (1, 1; 0, 1), (1, 1; 2b−3, 1), (1, 1; 2b−2, 1),
(1, 1; 3 · 2b−3, 1), (1, 1; 2b−2 − 1, 2b−2 − 1), (1, 1; 2b−1 − 1, 2b−2 − 1),
(1, 1; 2b−2 − 1, 2b−1 − 1), (1, 1; 2b−1 − 1, 2b−1 − 1)

(3, 3) (0 or 2, 1; 0, 1), (0 or 2, 1; 2, 1), (0 or 2, 1; 1, 3), (0 or 2, 1; 3, 3),
(1 or 3, 1; 1, 1), (1 or 3, 1; 3, 1), (1 or 3, 1; 1, 3), (1 or 3, 1; 3, 3),
(1 or 3, 3; 0, 1), (1 or 3, 3; 1, 1), (1 or 3, 3; 2, 1), (1 or 3, 3; 3, 1),
(1 or 3, 3; 1, 3), (1 or 3, 3; 3, 3)

(3, 4) (0 or 2, 1; 0, 1), (0 or 2, 1; 4, 1), (0 or 2, 1; 3, 7), (0 or 2, 1; 7, 7),
(1 or 3, 1; 3, 3), (1 or 3, 1; 7, 3), (1 or 3, 1; 3, 7), (1 or 3, 1; 7, 7);
(1, 3;x, 1), x = 0, 2, 4, 6; (3, 3; s2, t2), (s2, t2) ∈ P(24)

(3,≥ 5) (0 or 2, 1; 0, 1), (0 or 2, 1; 2b−2, 1);
(0 or 2, 1;x, 2b−1 − 1), x = 2b−2 − 1 or 2b−1 − 1;
(1 or 3, 1;x, y), x, y = 2b−2 − 1 or 2b−1 − 1;
(1, 3; i · 2b−3, 1), i = 0, 1, 2, 3;
(1, 3;x, y), x, y = 2b−2 − 1 or 2b−1 − 1;
(3, 3; i · 2b−4, 1), i = 0, 1, . . . , 7;
(3, 3;x, y), x, y = 2b−2 − 1 or 2b−1 − 1

(≥ 4,≥ a) (0 or 2a−2, 1;x, y),
(x, y) = (0, 1), (2b−2, 1), (2b−2− 1, 2b−1− 1) or (2b−1− 1, 2b−1− 1);
(2x, 1; 2b−2 − 1, 2b−1 − 1), (2x, 1; 2b−1 − 1, 2b−1 − 1),
x = 1, 2, . . . , 2a−2 − 1 (x 6= 2a−3);
(x, 1 or 2a−2 + 1; y, z),
x = 1, 3, . . . , 2a−1 − 1, y, z = 2b−2 − 1 or 2b−1 − 1;
(2a−2 − 1 or 2a−1 − 1, 2a−2 − 1 or 2a−1 − 1;x, y),
x, y = 2b−2 − 1 or 2b−1 − 1;
(2a−2 − 1, 2a−1 − 1; i · 2b−a, 1), i = 0, 1, . . . , 2a−1 − 1;
Only when a = b:
(2a−2−1 or 2a−1−1, 2a−2−1;x, 1 or 2b−2+1), x = 1, 3, . . . , 2b−1−1;
Only when a = b:
(2a−2 − 1, 2a−1 − 1;x, 2b−2 + 1), x = 1, 3, . . . , 2b−1 − 1;
Only when a = b or b = a+ 1:
(2a−1 − 1, 2a−1 − 1;x, 1), x = 0, 1, . . . , 2b−1 − 1;
Only when a = b or b = a+ 1:
(2a−1 − 1, 2a−1 − 1;x, 2b−2 + 1), x = 1, 3, . . . , 2b−1 − 1;
Only when b ≥ a+ 2:
(2a−1 − 1, 2a−1 − 1; i · 2b−a−1, 1), i = 0, 1, . . . , 2a − 1
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5 Classification of some groups
In this section, we aim to consider a presentation of the group 〈xα, yβ〉 for any (α, β) ∈
RETm,n. And we give some sufficient conditions and necessary conditions for 〈xα1 , yβ1〉
and 〈xα2

, yβ2
〉 to be isomorphic for any (α1, β1), (α2, β2) ∈ RETm,n. For any positive

integers m and n, a group Γ such that

(i) Γ = XY for some cyclic groups X = 〈x〉 of order n and Y = 〈y〉 of order m with
X ∩ Y = {1Γ} and

(ii) there exists an automorphism of Γ which sends x and y to x−1 and y−1, respectively,

is isomorphic to 〈xα, yβ〉 for some (α, β) ∈ RETm,n. For our convenience, call a group
Γ satisfying the conditions (i) and (ii) in the above sentence a reflexible product of two
cyclic groups of order m and n. Now to classify reflexible products of two cyclic groups
of order m and n, it suffices to consider 〈xα, yβ〉, where (α, β) ∈ RETm,n. Note that for
any integers i, j and for any (α, β) ∈ RETm,n,

yiβx
j
α = xβ

i(j)
α y

αj(i)
β .

For example, yβxα = x
β(1)
α y

α(1)
β and yβx2

α = x
β(2)
α y

α2(1)
β .

For odd integers m and n, since RETm,n = {(id, id)}, there is a unique reflexible
product of two cyclic groups of order m and n up to isomorphism, namely, an abelian
group Zm × Zn.

Let
m = pa11 pa22 · · · p

a`
` p

a`+1

`+1 · · · p
a`+f

`+f (prime factorization)

be odd and
n = 2bpb11 p

b2
2 · · · p

b`
` q

b`+1

`+1 · · · q
b`+g

`+g (prime factorization)

be even. Let gcd(m,n) = pc11 p
c2
2 · · · p

c`
` with ci ≥ 1 for any i = 1, . . . , `. Now

|RETm,n | = 2f (1 + pc11 ) · · · (1 + pc`` ) by Theorem 3.2. Note that for any (α, β) ∈
RETm,n and for any integer k, α(k) = rk, β(2k) = 2k, β(2k+1) = 2k+1+2s for some
integers r ∈ [m] and s ∈ [n] satisfying r2 ≡ 1 (mod m), 2s ≡ 0 (mod 2bq

b`+1

`+1 · · · q
b`+g

`+g )

and for any j = 1, 2, . . . , `, s ≡ 0 (mod p
bj
j ) if r ≡ 1 (mod p

aj
j ); s ≡ z · pbj−cjj

(mod p
bj
j ) for some integer z with 0 ≤ z ≤ p

cj
j − 1 if r ≡ −1 (mod p

aj
j ). Let us denote

such α and β by αr and βs. Considering commuting rule

yiβx
j
α = xβ

i(j)
α y

αj(i)
β ,

one can check that the centralizer of 〈xαr
, yβs
〉 is

{x2i
αr
yjβs

: i ∈
[n

2

]
, j(r − 1) ≡ 0 (mod m)} = 〈x2

αr
, ykβs
〉,

where k is the smallest positive integer j satisfying j(r − 1) ≡ 0 (mod m). This implies
that for any (αr1 , βs1), (αr2 , βs2) ∈ RETm,n, if two groups 〈xαr1

, yβs1
〉 and 〈xαr2

, yβs2
〉

are isomorphic, then r1 = r2. Note that

yβs
xαr

= xβs(1)
αr

y
αr(1)
βs

= x2s+1
αr

yrβs
and

yβs
x2
αr

= xβs(2)
αr

y
α2

r(1)
βs

= x2
αr
yβs

.
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In fact, the above two equations determine the whole commuting rules. For any u ∈ [m]
and v ∈ [n], if v is even, then yuβs

xvαr
= xvαr

yuβs
, and if v is odd, then

yuβs
xvαr

= xv−1
αr

yuβs
xαr

= xv−1
αr

yu−1
βs

x2s+1
αr

yrβs

= xv−1+2s
αr

yu−1
βs

xαr
yrβs

= xv−1+2s
αr

yu−2
βs

x2s+1
αr

y2r
βs

= xv−1+4s
αr

yu−2
βs

xαr
y2r
βs

= · · · = xv+2us
αr

yurβs
.

For any v ∈ [n] with gcd(v, n) = 1,

yβsx
v
αr

= xβs(v)
αr

y
αv

r(1)
βs

= xv+2s
αr

yrβs
= xv(2v−1s+1)

αr
yrβs

because v is odd, where v−1 is an integer satisfying vv−1 ≡ 1 (mod n). For any s1, s2 ∈
[n2 ] with gcd(s1, n) = gcd(s2, n), one can choose v ∈ [n] satisfying that gcd(v, n) = 1
and v−1s1 ≡ s2 (mod n). Therefore for any (αr1 , βs1), (αr2 , βs2) ∈ RETm,n, if r1 = r2

and gcd(s1, n) = gcd(s2, n) then 〈xαr1
, yβs1

〉 is isomorphic to 〈xαr2
, yβs2

〉. This means
that the number of non-isomorphic reflexible product of two cyclic groups of order m and
n is at most 2f (2 + c1) · · · (2 + c`). So any reflexible product of two cyclic groups of order
m and n is isomorphic to

〈x, y | xn = ym = 1, yx = x2s+1yr, yx2 = x2y〉

for some r ∈ [m] and s ∈ [n] satisfying r2 ≡ 1 (mod m), 2s ≡ 0 (mod 2bq
b`+1

`+1 · · · q
b`+g

`+g )

and for any j = 1, 2, . . . , `, s ≡ 0 (mod p
bj
j ) if r ≡ 1 (mod p

aj
j ); s ≡ p

bj−cj+z
j

(mod p
bj
j ) for some integer z = 0, 1, . . . , cj if r ≡ −1 (mod p

aj
j ).

Conversely, assume that for some (αr1 , βs1), (αr2 , βs2) ∈ RETm,n, 〈xαr1
, yβs1

〉 is
isomorphic to 〈xαr2

, yβs2
〉. Let ψ : 〈xαr1

, yβs1
〉 → 〈xαr2

, yβs2
〉 be an isomorphism such

that ψ(xuαr1
) = xαr2

and ψ(yvβs1
) = yβs2

.
For the remaining case, let

m = 2apa11 pa22 · · · p
a`
` p

a`+1

`+1 · · · p
a`+f

`+f and

n = 2bpb11 p
b2
2 · · · p

b`
` q

a`+1

`+1 · · · q
b`+g

`+g (prime decompositions)

with gcd(m,n) = 2cpc11 p
c2
2 · · · p

c`
` , where 1 ≤ a ≤ b and ci ≥ 1 for any i = 1, . . . , `. For

any (α, β) ∈ RETm,n and for any integer k,

α(2k) = 2kt1,

α(2k + 1) = 2kt1 + 2s1 + 1,

β(2k) = 2kt2 and
β(2k + 1) = 2kt2 + 2s2 + 1

for some (s1, t1; s2, t2) ∈ Q(m,n). Let α and β be such permutations. Note that

yβxα = xβ(1)
α y

α(1)
β = x2s2+1

α y2s1+1
β ,

yβx
2
α = xβ(2)

α y
α2(1)
β = x2t2

α y
2s1(t1+1)+1
β ,

y2
βxα = xβ

2(1)
α y

α(2)
β = x2s2(t2+1)+1

α y2t1
β and

y2
βx

2
α = xβ

2(2)
α y

α2(2)
β = x2

αy
2
β .
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In fact, the above four equations determine the whole commuting rules as follows. For any
i ∈ [m] and j ∈ [n],

y2i
β x

2j
α = x2j

α y
2i
β

y2i
β x

2j+1
α = x2j

α y
2i
β xα = x2j

α y
2(i−1)
β x2s2(t2+1)+1

α y2t1
β

= x2j+2s2(t2+1)
α y

2(i−1)
β xαy

2t1
β = · · · = x2j+2is2(t2+1)+1

α y2it1
β

y2i+1
β x2j

α = yβx
2j
α y

2i
β = x2t2

α y
2s1(t1+1)+1
β x2(j−1)

α y2i
β

= x2t2
α yβx

2(j−1)
α y

2i+2s1(t1+1)
β = · · · = x2jt2

α y
2i+2js1(t1+1)+1
β

y2i+1
β x2j+1

α = y2i
β yβxαx

2j
α = y2i

β x
2s2+1
α y2s1+1

β x2j
α = x2s2

α y2i
β xαyβx

2j
α y

2s1
β

= x2s2
α (x2is2(t2+1)+1

α y2it1
β )(x2jt2

α y
2js1(t1+1)+1
β )y2s1

β

= x2jt2+2is2(t2+1)+2s2+1
α y

2it1+2js1(t1+1)+2s1+1
β .

So any reflexible product of two cyclic groups of order m and n is isomorphic to

〈x, y | xn = ym = 1, yx = x2s2+1y2s1+1, yx2 = x2t2y2s1(t1+1)+1,

y2x = x2s2(t2+1)+1y2t1 , y2x2 = x2y2〉

for some (s1, t1; s2, t2) ∈ Q(m,n). In summary, we have the following theorem.

Theorem 5.1. For any positive integers m and n, let Γ be a group such that Γ = XY for
some cyclic groups X = 〈x〉 of order n and Y = 〈y〉 of order m with X ∩ Y = {1Γ} and
there exists an automorphism of Γ which sends x and y to x−1 and y−1, respectively.

(1) If both m and n are odd, Γ is isomorphic to the abelian group Zm × Zn.

(2) Let
m = pa11 · · · p

a`
` p

a`+1

`+1 · · · p
a`+f

`+f (prime factorization)

be odd and let

n = 2bpb11 · · · p
b`
` q

b`+1

`+1 · · · q
b`+g

`+g (prime factorization)

be even with gcd(m,n) = pc11 · · · p
c`
` , where ci ≥ 1 for any i = 1, . . . , `. Then Γ is

isomorphic to

〈x, y | xn = ym = 1, yx = x2s+1yr, yx2 = x2y〉

for some r ∈ [m] and s ∈ [n2 ] satisfying

r2 ≡ 1 (mod m), 2s ≡ 0 (mod 2bq
b`+1

`+1 · · · q
b`+g

`+g ),

and for any j = 1, 2, . . . , `, s ≡ 0 (mod p
bj
j ) if

r ≡ 1 (mod p
aj
j ), s ≡ pbj−cj+z

j (mod p
bj
j )

for some z = 0, 1, . . . , cj if r ≡ −1 (mod p
aj
j ).
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(3) Let

m = 2apa11 · · · p
a`
` p

a`+1

`+1 · · · p
a`+f

`+f and

n = 2bpb11 · · · p
b`
` q

a`+1

`+1 · · · q
b`+g

`+g (prime factorization)

with gcd(m,n) = 2cpc11 p
c2
2 · · · p

c`
` , where 1 ≤ a ≤ b and ci ≥ 1 for any i = 1, . . . , `.

Now Γ is isomorphic to

〈x, y | xn = ym = 1, yx = x2s2+1y2s1+1, yx2 = x2t2y2s1(t1+1)+1,

y2x = x2s2(t2+1)+1y2t1 , y2x2 = x2y2〉

for some (s1, t1; s2, t2) ∈ Q(m,n).

For any positive integers m and n and for any (α, β), (α′, β′) ∈ RETm,n, we do not
know a necessary and sufficient condition for 〈xα, yβ〉 ' 〈xα′ , yβ′〉. So we propose the
following problem.

Problem 5.2. For any positive integers m and n and for any (α, β), (α′, β′) ∈ RETm,n,
find a necessary and sufficient condition for 〈xα, yβ〉 ' 〈xα′ , yβ′〉. Consequently calculate
the number of reflexible products of two cyclic groups of orderm and n up to isomorphism.
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[6] G. A. Jones, R. Nedela and M. Škoviera, Regular embeddings of Kn,n where n is an odd prime
power, European J. Combin. 28 (2007), 1863–1875, doi:10.1016/j.ejc.2005.07.021.

[7] J. H. Kwak and Y. S. Kwon, Regular orientable embeddings of complete bipartite graphs, J.
Graph Theory 50 (2005), 105–122, doi:10.1002/jgt.20097.

[8] J. H. Kwak and Y. S. Kwon, Classification of nonorientable regular embeddings of complete
bipartite graphs, J. Comb. Theory Ser. B 101 (2011), 191–205, doi:10.1016/j.jctb.2011.03.003.

[9] Y. S. Kwon, Classification of reflexible edge-transitive embeddings of Km,n for odd m,n,
East Asian Math. J. 25 (2009), 533–541, https://ynmath.jams.or.kr/jams/
download/KCI_FI001404071.pdf.
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