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Abstract

In this paper, we classify some reflexible edge-transitive orientable embeddings of com-
plete bipartite graphs. As a by-product, we classify groups I' such that i) I' = XY for
some cyclic groups X = (z) and Y = (y) with X N Y = {1Ir} and (ii) there exists an
automorphism of I' which sends x and y to 2% and !, respectively.
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1 Preliminaries

A map is a 2-cell embedding of a graph G in a compact, connected surface. A map is called
orientable or nonorientable according to whether the supporting surface is orientable or
nonorientable. In this paper, we only consider orientable maps.

For a simple connected graph G, an arc of G is an ordered pair (u,v) of adjacent
vertices in G. The set of all arcs in G is denoted by D(G). An orientable map M can be
described by a pair (G; R), where G is the underlying graph of M and R is a permutation
of the arc set D(G) whose orbits coincide with the sets of arcs emanating from the same
vertex. The permutation R is called the rotation of the map M.

For given two maps M; = (Gi1;R1) and My = (Ga; Rs), a map isomorphism
¢: M1 — Ma is a graph isomorphism ¢: G7 — G2 such that ¢ Ry (u, v) = Rod(u,v) for
any arc (u,v) in Gp. Furthermore if M; = My = M, ¢ is called a map automorphism of
M. The set of all map automorphisms of M denoted by Aut(,M) is a group under the com-
position operation, and it is called the automorphism group of M. For amap M = (G; R),
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the group Aut(M) acts semi-regularly on the arc set D(G), so | Aut(M)| < 2|E(G)|. If
this bound is attained, then Aut(M) acts regularly on the arc set, and the map is called a
regular map or a regular embedding. The map M is said to be vertex-transitive or edge-
transitive if Aut(M) acts transitively on V(G) or E(G), respectively. For an orientable
embedding M of a bipartite graph G, if the set of partite set preserving map automorphisms
acts transitively on E(G) then we call M an edge-transitive map or an edge-transitive em-
bedding satisfying the Property (P) in this paper. For a map M = (G;R), if M and
M~! = (G; R™1) are isomorphic, M is called reflexible.

Classifying highly symmetric embeddings of graphs in a given class is an interesting
problem in topological graph theory. In recent years, there has been particular interest in the
regular embeddings of complete bipartite graphs K, ,, by several authors [1, 2, 4, 5, 6, 7,
8, 10]. The reflexible regular embeddings and self-Petrie dual regular embeddings of K, ,,
have been classified by the authors [7]. Recently, G. Jones has completed the classification
of regular embeddings of K, ,, [5] and the authors have classified nonorientable regular
embeddings of K, ,, [8]. In [3], Graver and Watkins classified edge-transitive maps on
closed surfaces into fourteen types. In this paper, we classify reflexible edge-transitive
embeddings of K, ,, satisfying the Property (P) which correspond to types 1 or 2 among
14 types. The following theorem is the main result in this paper.

Theorem 1.1. For any integers

__9a, a1 ap Ar41 ap4f
m_2 pl ...p[ pZJ’,l ...pZ+f and

n =25 ... pifz qz_fil e qgit;’ (prime decompositions)
with ged(m,n) = 2°pi* - - p,* and a < b, the number (up to isomorphism) of reflexible
edge-transitive embeddings of K, ,, satisfying the Property (P) is 1 if both m and n are
odd; 27 (1 + p*) -+ (1 + py*) if exactly one of m and n is even, namely, only n is even;
A(a,b)27 9+ (1 + pit) -+ - (1 + p§*) if both m and n are even, where

1 if (a,b) = (1,1),
2 if (a,0) = (1,2),
if (a,b) = (2,2) or (1, k) with k > 3,

10 if (a,0) = (2,3),

12 if (a,b) = (2, k) with k > 4,
A(a,b) = < 28 if (a,b) = (3,3),

40 lf(CL,b) = (3?4)5

36 if (a,b) = (3, k) withk > 5,

20(14+2%72)  ifa=1b>4,

20+ 18-2972 jfb—1=a >4,

20+16-2972 jfb—2>a>4.

Our paper is organized as follows. In the next section, we consider some relations be-
tween edge-transitive embeddings of K, ,, satisfying the Property (P) and products of two
cyclic groups. In Section 3, we classify reflexible edge-transitive embeddings of K, ,, sat-
isfying the Property (P) when at least one of m and n is odd. In Section 4, for even integers
m and n, the classification of reflexible edge-transitive embeddings of K, ,, satisfying the
Property (P) is given. In the final section, we classify groups I" satisfying the conditions:
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(i) I' = XY for some cyclic groups X = (z) and Y = (y) with X NY = {1r} and

(i) there exists an automorphism of I' which sends = and y to z—! and y .

2 (m,n)-bicyclic triples in Aut(K,, )

Regular embeddings of the complete bipartite graphs K, ,, are related to groups I' with
two generators satisfying some conditions [4]. Using this relation, G. Jones classify regu-
lar embeddings of K, ,, [5]. Similarly, we aim to find a relation between edge-transitive
embeddings of K, ,, satisfying the Property (P) and groups with two generators satisfying
some conditions in this section.

In [4], G. Jones et al. showed that any finite group I' is isomorphic to Aut(M) for some
regular embedding M of K, ,, if and only if I" has cyclic subgroups X = (z) and Y = (y)
of order n such that:

(i) T = XY
(i) XNY ={Ir}and

(iii) there is an automorphism « of I' transposing = and y.

They call the triple (T", z, y) satisfying these conditions the n-isobicyclic triple. In this re-
lation, « and y correspond to rotations of M around two fixed adjacent vertices u and v,
respectively. The automorphism « corresponds to the half-turn reversing the edge uv. For
two n-isobicyclic triples (I'1, 21,y1) and (I's, z2, y2), two corresponding regular embed-
dings M and M are isomorphic if and only if there exists a group isomorphism from
T'y to I'y given by 21 — x5 and y; +— yo. Using this, one can show that the regular em-
bedding M induced by n-isobicyclic triple (I, x, y) is reflexible if and only if there exists
an automorphism /3 of ' which sends = and % to 2! and 3!, respectively. (For more
information, the reader is referred to [4].)

Note that one can define an embedding of K, ,, by using the first and second con-
ditions of n-isobicyclic triple, and the induced map is edge-transitive map satisfying the
Property (P) even though the third condition of n-isobicyclic triple is not satisfied. Con-
versely, any edge transitive embedding of K, ,, satisfying the Property (P) is isomorphic
to some induced map by such a triple (I, z, ). One can show that for different positive in-
tegers m and n, an edge-transitive embedding of K, ,, satisfying the Property (P) can also
be represented by a similar triple. For a group I" containing cyclic subgroups X = (z) of
order n and Y = (y) of order m, the triple (I, x, y) is called (m, n)-bicyclic if it satisfies:

(1) I'= XY and

() XnY ={lr}.
For any (m, n)-bicyclic triple (I", z, y), one can define an embedding of K, ,, by a similar
way to define an embedding of K, ,, using n-isobicyclic triple. We denote this embedding

by M(T,z,y). One can see that M(I',z,y) is an edge-transitive embedding of K, ,,
satisfying the Property (P). Furthermore the following result holds.

Lemma 2.1 ([9]). Let m,n be two positive integers (not necessarily distinct).

(1) Any edge-transitive embedding M of K, », satisfying the Property (P) is isomorphic
to M(T, z,y) for some (m,n)-bicyclic triple (T, z,y).
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(2) Fortwo (m,n)-bicyclic triples (I'1, z1,y1) and (U, x2, y2), two edge-transitive em-
beddings M(T'1, x1,y1) and M(T'a, x2,y2) are isomorphic if and only if there exists
a group isomorphism from I'1 to Ty given by 1 — x2 and y1 — yo.

For any (m, n)-bicyclic triple (T, x, y), there exists a subgroup H of the automorphism
group Aut(K,, ) such that:
(i) H is isomorphic to I" and
(i) x and y in T" correspond to elements in H which cyclically permute vertices in the
partite sets of size n and m, respectively.

Hence it suffices to deal with such (m, n)-bicyclic triples in Aut(F,, ) to classify edge-
transitive embeddings of K, ,, satisfying the Property (P).
For any positive integer m, denote the set {0,1,...,m — 1} by [m]. Let

V={0,1,....0m—=1)}u{0,1,....,(n—1)} = [m]U[n]
be the vertex set of K, ,, as partite sets, and let
D={(,7),¢",i):0<i<m-—-1land0<j<n-—1}

be the arc set, where (4, j') is the arc emanating from ¢ to j’ and (j', 7) denotes its inverse.
We denote the symmetric group on [m] and [n]’ by S and S’, respectively. Let Sp and S,
be their stabilizers of 0 and 0, respectively. Note that Aut (K, ,,) is isomorphic to S x S’
when m # n; S 1 Zs when m = n. We identify integers 0,1, 2, ... with their residue
classes modulo m or n according to the context.

Let (T, z, y) be an (m, n)-bicyclic triple such that I" is a subgroup of Aut(K,, ,). Now
there exists an automorphism ¢ € Aut(K,, ) such that

?=¢plazp=a01 - (n—1)) and y®=¢ lyp=pH01 - m—1),
where o € Sy and 8 € S)). For any o € Sp and 5 € S, let
To=a(0'1 -+~ (n—1)") and yg=p01---m—1).

From now on, we only consider triples ((zq, y3), T, y3) as candidates of (m, n)-bicyclic
triples.

Lemma 2.2 ([9]). Forany o € Sy and 3 € S,

1. the group (x4, yg) acts transitively on the edge set of K, , and
2. the triple ((zo,Yp) , T, Ys) is (m,n)-bicyclic if and only if | (xq, yg) | = mn.

By Lemma 2.2, we need to characterize o« € Sy and 8 € S, satisfying | (zq,ys) | =
mn to classify edge-transitive embeddings of K, , satisfying the Property (P). To do this,
we denote

ETm:n = {(a,ﬂ) HIORS SO7 6 € S(l) and | <$a7y5> | — mn}

Note that for any («, 8) € ET, ., ((a,Ys) , Ta,yg) is an (m, n)-bicyclic triple and
hence M({zq,ys) , Za,yp) is an edge-transitive embedding of K, ,, satisfying the Prop-
erty (P). Conversely for any edge-transitive embedding M of K, ,, satisfying the Prop-
erty (P), there exists (a, 3) € ET,, ,, such that M is isomorphic to M({z4,Y3) , Za,Ys)-
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Remark 2.3.

(1) Forany (o, 3) € ET, 0,

(waryp) = {zbyf | i € [n], j € [m]} = {yhal, | i € [n], j € [m]}.

Hence in many cases, if « satisfies some properties then 3 also satisfies the same
properties and vice versa.

(2) Note that for different positive integers m and n and for an orientable embedding M
of K, ,,, any automorphism of M is partite set preserving. Let m = n be odd and let
M be an orientable edge-transitive embedding of K,, ,,. If a subgroup I' of Aut(M)
acts regularly on the edge set then |I'| = m? is odd and hence there exists no partite
set reversing element in I'. Hence for odd n, every edge-transitive embedding of
K, n is an edge-transitive embedding of K, ,, satisfying the Property (P). On the
other hand, for even n, we do not know whether the above statement is true or not.

The next lemma shows that for different (a1, 81), (o2, f2) € ET,, 5, two induced
edge-transitive embeddings are non-isomorphic.

Lemma 2.4 ([9]). For any (a1, 1), (a2, B2) € ET,, ., the induced edge-transitive em-
beddings M({Za,,Ys,) > TaysYp,) and M((Tay,Yps) s Tas, Ys,) are isomorphic if and
only if (a1, B1) = (az, Ba).

By Lemma 2.4, distinct pairs in ET),, ,, give non-isomorphic edge-transitive embed-
dings of K, ,, and the number of edge-transitive embeddings of K, ,, satisfying the Prop-
erty (P) equals to the cardinality | ET,, ,, |. But for distinct pairs (a1, 51), (a2, B2) €
ET,, n, two groups (Zq,,ys,) and (zq,,ys,) may possibly be isomorphic. We do not
know a necessary and sufficient condition for (zq,,¥s,) ~ (Tay,Ys,). SO We propose the
following problem.

Problem 2.5. For any positive integers m and n and for any (a1, 1), (a2, 52) € ET,, 4,
find a necessary and sufficient condition for (za,,¥s,) =~ (Ta,, Ys,)-

From now on, we aim to characterize the set ET,, ,,. Note that for any (o, 5) € ET,;, 1,
the stabilizers (z,ys), and (x4, ygs),, are cyclic groups (z) of order n and (yz) of order
m, respectively.

Lemma 2.6. For any (a,B) € ET.,,, (a) and (B) are cyclic groups of order
{a*(1) : i € [n]}| and |{B*(1") : i € [m]}|, the lengths of the orbit containing 1 and
1/, respectively. Furthermore they are divisors of n and m, respectively.

Proof. Letd; = |{a’(1) : i € [n]}| and dy = [{B%(1’) : i € [m]}|. Now d; and d are
divisors of the orders |(z,)| = n and |(ys)| = m, respectively. Note that

a®(1)=1 and yﬁ_lxilyg(o) =0,

which implies that, as a conjugate of xd1, yﬁ_lxil yp belongs to the vertex stabilizer

(Ta,yp)o = (Ta). Since dy is a divisor of n, y5'zhys = z™ for some r € [n] such

that ged(r, 7-) = 1, where ged(r, 7-) is the greatest common divisor of r and 7-. Now,
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suppose to the contrary that [(a)| # d;. Then there exists k € [m] such that a (k) # k.
Let ¢ be the largest element in [m] such that a? (q) # g. On the other hand,

o™ (q) =2l (q) = y5 2l ys(e) = vz 'al g+ 1) =y5' (¢ +1) =g,

contradictory to a"%(q) # q. Therefore |(a)| = d;. Similarly, one can show that

[(B)] = da. O

For any (o, 8) € ET,, ,, it follows from Lemma 2.6 that the length of each cycle in «
(83, resp.) is a divisor of the length d; (da, resp.) of the cycle containing 1 (1/, resp.).

From now on we denote ', [n]" and (i) simply by 4, [n] and §(¢) for any i’ € [n]’,
respectively. The following lemma is related to a characterization of the set ET,,, ,,.

Lemma 2.7 ([9]). Let o € Sp and B € S|,. Then («a, 5) € ET,, ,, if and only if for each
i € [n], there exist a(i) € [n] and b(i) € [m] such that o (k) = a®® (k + b(i)) — 1 for all
k € [m] and B(t + i) = B*D(t) + a(i) for all t € [n]. In this case, we have a(i) = (i)
and b(i) = —a~¢(-1).

Note that the equations in Lemma 2.7 is equivalent to ygz?, = J;Z(i)yg@). The next
lemma gives a characterization of (o, 8) € ET,, , whose induced edge-transitive embed-
ding contains a partite set preserving reflection.

Lemma 2.8 ([9]). For any (o, 8) € ET,, 5, M((Ta,Y8) ;s Ta,ys) contains a partite set
preserving reflection if and only if a=1(—k) = —a(k) for any k € [m] and 371 (—t) =
—B(t) for any t € [n).

For our convenience, we denote

RET,, . = {(a, B) € ET,,., : @ (k) = —a(k) for any k € [m] and
B~ (—t) = —B(t) forany t € [n]}.

We call an edge-transitive embedding of K, ,, satisfying the Property (P) which also con-
tains a partite set preserving reflection a reflexible edge-transitive embedding of K, ,, sat-
isfying the Property (P). By Lemmas 2.4 and 2.8, the number (up to isomorphism) of
reflexible edge-transitive embeddings of K, ,, satisfying the Property (P) equals to the
cardinality | RET,, ,,|. Note that if « € S and § € S’ are the identity permutations,
then (a, 5) belongs to RET,,, ,, by Lemma 2.8. So for any two positive integers m and
n, there exists at least one reflexible edge-transitive embeddings of K, ,, satisfying the
Property (P).
By Lemma 2.8, for any («, 8) € RET,, ,, and for any j € [m] and i € [n]

a”(=j) =" (=a(j)) = a7 (=a?(j)) = - = a7 (=a"TI(j) = —a'())
and similarly 377 (—i) = —37(3).
Lemma 2.9. For any (o, ) € RET,, ,, and for any j € [m] and i € [n),

yhat, = al Oyg ).
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Proof. Since (zq,ys) = (za)(ys), for any j € [m] and i € [n], there exist a(i, j) € [n]
and b(i, j) € [m] such that y’ﬂxg = gl )yg(w ). By taking their values of k € [m] and
t € [n], we have

(k) +j = a @D (k4 b(i,5)) and BI(t+14) = D (t) + ali, ).

and t = 0 to the equation o’ (k) 4+ j = a*®9)(k 4 b(i,4)) and

Inserting k = —b(1, j)
+ a(i, j), respectively, we have

Pt +i) = B0
bli,J) = —a”i(=j) = a'(j) and a(i,j) = F(0). 0

Lemma 2.10. Let (o, 5) € RET,, ,, and let di = |(a)| and d2 = |(B)|. It holds that
a(k) = —k (mod da) for any k € [m] and B(t) = —t (mod dy) for any t € [n].

j
)

Proof. By Lemma 2.7, for each ¢ € [n], there exist a(i) € [n] and b(i) € [m] such that
(k) = a®D(k + b(i)) — 1 forall k € [m] and B(t +14) = @ (t) + a(i) for all
t € [n]. Furthermore a(i) = 3(i) and b(i) = —a~*(—1) = a’(1). Inserting k = 0 to
the equation o’ (k) = a®® (k + b(3)) — 1, we have b(i) = a4 (1) = a=A@(1). Hence
at(1) = a=B@(1) for any i € [n]. Since the order of « equals to the length of the orbit
containing 1 by Lemma 2.6, 5(i) = —i (mod d;). By symmetry between « and [, it also
holds that «(k) = —k (mod dz) for any k € [m]. O

By Lemmas 2.7 and 2.10, b(i) = —a~%(—1) = (1) = (—1)* (mod dz). Hence for
any (o, 8) € RET,, ,, with di = |{()| and da = |(8)], we have

Blt+4) = 8D (1) + ali) = 8V () + B0) = BV (1) + B)
forall i, ¢ € [n]. By symmetry, it also holds a(k+j) = o= (k) +a(j) forall , k € [m].
Lemma 2.11. Let (o, 8) € RET,, ,, and let di = |(c)| and d2 = |{)|. Now

(1) ifone of dy and ds is 1, say dy = 1, then either do = 1 or (m is even and dy = 2);
(2) if one of di and ds is at least 3, say di > 3, then both m and ds are even;

(3) if m(n, resp.) is even then o (B, resp.) is parity preserving. Furthermore there exists
s,t € [m] such that o(2k) = 2kt, a(2k + 1) = 2kt + 2s + 1 and 2t> = 2;

(4) if both dy and dy are at least 3 then they are divisors of gcd(m, n).

Proof. (1): Letd; = 1 and d2 > 2. By Lemma 2.10, (1) = —1 (mod ds). Since « is
the identity, 1 = —1 (mod ds). By the assumption dy > 2, do = 2. By Lemma 2.6, ds is
a divisor of m, and hence m is even.

(2): Letd; > 3. By lemma 2.10, (k) = —k (mod d;), which implies that the order
dsy of 3 is even. Since d» is a divisor of m, m is also even.

(3): Let m be even. If d; = 1 then « is the identity and hence « is parity preserving. If
d; = 2then a™! = o and

ak)=alk—1+1)=ak—-1)+a(l) =alk—2)+2a(l) =--- = ka(l)

for all k& € [m]. Since o?(1) = a(a(1)) = (a(1))? = 1 and m is even, (1) should be
odd. Hence « is parity preserving. Assume that d; > 3. Then, d2 is even by (2). Since
a(k) = —k (mod ds), « is parity preserving.
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For any 2k € [m],

a(2k) = a2(k—1)) + a(2) = a(2(k — 2)) + 2a(2) = --- = ka(2) and
ak+1)=ak-1)+1) +a2)=-=a(l)+ ka(2).

Let (1) = 2s + 1 and «(2) = 2¢t. Now «a(2k) = ka(2) = 2kt and «(2k + 1) =
ka(2) + a(l) = 2kt + 2s + 1. Note that for any 2k € [m], (1) + a(2k) = a(2k +
1) = a=1(2k) + a(1). Hence a~1(2k) = a(2k), namely, a?(2k) = 2k. So we have
a?(2) = a(2t) =2t = 2.

(4): Let di,dy > 3. Now all of dy,ds, m and n are even by (2). Hence there exist
s,t € [m] such that a(2k) = 2kt, a(2k + 1) = 2kt + 2s + 1 and 2t> = 2 by (3). Since d;
is even and

(1) = 125 +1) =a* (25t + 25+ 1) = --- = 2is(t + 1) + 1,

d; is the smallest positive integer such that ds(t+1) = 0 (mod m) by Lemma 2.6. Hence
d; is a divisor of m and consequently a divisor of gcd(m, n). Similarly ds is a divisor of
ged(m,n). O

3 Atleast one of m and n is odd

In this section, we classify reflexible edge-transitive embeddings of K, ,, satisfying the
Property (P) when at least one of m and n is odd. Note that when at least one of m and n
is odd, any orientable edge-transitive embedding of K, ,, is an edge-transitive embedding
satisfying the Property (P). In [9], the second author counted | RET,,, ,, | when both m and
n are odd as follows.

Theorem 3.1 ([9]). If both m and n are odd then |RET,, ., | = 1, namely, there exists
only one reflexible edge-transitive embedding of K,, ,, satisfying the Property (P) up to
isomorphism.

In the next theorem, we count | RET,, ,, | when exactly one of m and n is odd. By
symmetry, we assume that m is odd.

Theorem 3.2. Let

m=pit oyt p;_f}f (prime factorization)

be odd and , ,
n=2ph .. ~p2" Qe ragyy  (prime factorization)

be even. Let gcd(m,n) = pi* - - - p* withc; > 1 foranyi =1,...,{. Now
|RET,n | =2/ (14 ) - (L+pf"),

namely, there exist 2/ (1+ p{) - - (1 + p{*) reflexible edge-transitive embeddings of K, ,
satisfying the Property (P) up to isomorphism.

Proof. Let (o, 8) € RET,, ,, and let d; = |{«)| and d2 = |()|. Suppose that d; > 3.
Then both ds and m are even by Lemma 2.11(2), which is a contradiction. Hence d; = 1
or 2. Furthermore for any k € [m],

alky=a (k-1 +al)=alk—1)+a(l) = = ka(l).



J. H. Kwak and Y. S. Kwon: Classification of some reflexible edge-transitive embeddings ... 571

Let a(1) = 7. Now a(k) = 7k and o?(1) = a(r) = r?> =1 (mod m).

Since n is even, 3 is parity preserving and there exists s, t € [n] such that 5(2k) = 2kt,
B(2k + 1) = 2kt + 2s + 1 and 2t> = 2 for any 2k € [n] by Lemma 2.11(3). If 2¢ # 2
then the length of the orbit containing 2 is 2 and hence ds is even. But it can not happen
because m is odd. Hence for any 2k € [n], 8(2k) = 2k, 8(2k + 1) = 2k + 2s + 1 and for
any i € [m],

Bi(1)=p"12s+1)=p"2(25+25+1) =--- = 2is+ 1.

Therefore ds is the smallest positive integer such that 2dss = 0 (mod n), which implies
that dy is a divisor of n, and hence ds is a divisor of ged(m, n) = pi* - - - pj*.

If r =1 (mod pj*) forsome i = 1,2,...,¢, then the fact a(1) = r = —1 (mod ds)
implies that p; can not be a divisor of ds. Hence pfi should divide s, namely, s = 0
(mod p?*). If r = —1 (mod p?’) forsome j =1,2,..., ¢, thens = x-p?j_cj (mod p?’)
for some z with 0 < z < p‘;j — 1 because ds is a divisor of ged(m, n). Therefore, for any
j=1,...,4 the pair (r (mod p;’),s (mod p?’)) is (1,0) or (1,2 -p?jfcj) for some x
with 0 < z §pjj - 1.

Because dy | ged(m,n), we have 2s = 0 (mod 2°) and for any k = 1,2,...,g,
s = 0 (mod quk’“). Since > = 1 (mod m), r = +1 (mod pgfjj) for any j =
1,2,... f.

Con\{ersely for any r € [m] and s € [n] satisfying the conditions

(i) for any j = 1,...,¢, the pair (r (mod pj’)),s (mod p?j)) is (1,0) or

(-1,z -p?"fcj) for some integer x with 0 < x < pjj -1,

(if) 25 =0 (mod 2q,%7 -+~ g;') and
ae+j

(iii) forany j =1,2,... f,r =41 (mod Doy ),

define a(k) = rk for any k € [m] and B(2¢) = 2t, 8(2t + 1) = 2¢ + 2s + 1 for any
2t € [n]. Note that « € Sy and § € Sj. Let d} = |{a)| and dy, = |[(B)]. Now dj = 1 or
2 depending on the value of r and d, is the smallest positive integer satisfying 2d5s = 0
(mod n). Note that df divides gcd(m,n) and r = —1 (mod dj). For any ¢ € [n], let
a(i) = B(i) and b(i) = a*(1) = . For the first case, let i be even. Now a(i) = (i) =i
and b(i) = (1) = 1. For any 2t € [n],

B2t +1i)=2t+1i and

8" (2t) + a(i) = B(2t) + B(i) = 2t + i
and
B2t +1+i)=2t+i+2s+1 and
BYD(2t + 1) + a(i) = B2t +1) + B(i) = 2t + 25 + 1 + 1.
Hence 3(t + i) = @) (t) + a(i) for any ¢ € [n]. For any k € [m],
a'(k) =k and
oD (k4 b(i)) —1 = k.



572 Ars Math. Contemp. 16 (2019) 563-583

Hence o' (k) = a®® (k + b(z)) — 1 for any k € [m).
For the remaining case, let i be odd. Now a(i) = (i) = i + 2s and b(i) = ‘(1) =
r = —1 (mod df). For any 2t € [n],
B(2t+i)=2t+i+2s and
B (2t) + a(i) = B7H2) + B(i) = 2t + i+ 25
and
B2t+1+i)=2t+i+1 and
B2t + 1) +a(i) =B 2t +1)+ () =2t + 1 — 25 +i + 25 = 2k +1i + 1.
Hence 3(t + i) = 8@ (t) + a(i) for any ¢ € [n]. For any k € [m],
a'(k) =rk and
Dk 4+b())—1=alk+r)—1=rk+r>—1=rk.

Hence a'(k) = a®®(k + b(i)) — 1 for any k € [m]. By Lemma 2.7, (a, ) € ET,, ..

Furthermore one can easily check that a~!(—k) = —a(k) for any k& € [m] and
B~Y(—t) = —p(t) for any t € [n]. Hence (a, 3) € RET,, ,, by Lemma 2.8.
Therefore
|IRET),n | =27 (14 pft) -+ (1+p*). O

4 Both m and n are even

In this section, we classify reflexible edge-transitive embeddings of K, ,, satisfying the
Property (P) when both m and n are even, and consequently prove Theorem 1.1. For the
classification, we give the following lemma.

Lemma 4.1. Let m and n be even and let o € Sy and 8 € S|, with d1 = |{(a)| and
da = [{B)|- Now (o, 8) € RET,, ,, if and only if o and (3 are defined by
a(2k) = 2kt;  and
a2k +1) = 2kt) + 251 + 1

forany 2k € [m] and

B(2k) = 2kty  and
B(2k + 1) = 2Kty + 255 + 1
for any 2k € [n] for some quadruple (s1,11; s2,t2) € [F] x [] x [§] x [5] satisfying the
following conditions;
(i) dy | ged(m,n) and da | ged(m,n);
(ii) 2t2 =2 (mod m) and 2t3 = 2 (mod n);

(iii) 2(s1 +1) =0 (mod da), 2(t;1 + 1) =0 (mod da),
2(s2+1) =0 (mod dy), and 2(t2 + 1) =0 (mod dy);
)

(iv) 2(s1 +1)(t1 — 1) =0 (mod m) and 2(s2 + 1)(t2 — 1) =0 (mod n).
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Proof. (<=): Assume that 2¢; = 2, namely, t; = 1. Then «(2k) = 2k and a(2k + 1) =
2k +2s1 + 1 for any 2k € [m). Since for any i € [n], a’(2k+1) = 2k +2is; + 1, dy is the
smallest positive integer such that 2d1s; = 0 (mod m). Now assume that 2¢; # 2. Then
d; should be even because a?(2) = 2t? = 2. Since for any 2i € [n] and for any 2k € [m],
a?(2k + 1) = 2k + 2is1(t; + 1) + 1, dy is the smallest positive even integer such that
d1s1(t1+1) =0 (mod m). Similarly one can show that d5 is the smallest positive integer
such that 2dyso = 0 (mod n) if to = 1; and the smallest positive even integer such that
dQSQ(tQ + 1) =0 (mod n) if to 75 1.

For any i € [n], let a(i) = (i) and b(i) = a’(1). For the first case, let i be even. Then
a(i) = B(i) = ita = —i (mod d;) and b(i) = a’(1) = is1(t; +1) +1 =1 (mod dp).
For any 2k € [n],

6(21{3 + Z) = 2kty + 1ty and

B (2k) + a(i) = B(2k) + B(i) = 2kty + ity
and
B(2k + 1 +14) = 2kty + ity + 255 +1 and
BYD(2k 4 1) + a(i) = B(2k + 1) 4 B(i) = 2kty + 259 + 1 + its.
Hence B(k + i) = B0 (k) + a(i) for any k € [n]. For any 2k € [m],
o'(2k) = 2k and
D2k +b(i) —1=a {2k +isi(t1 +1)+1) =1
=2k+is1(t1+1)—ds1(t1+1)+1)—1=2k

and

Q' (2k +1) =2k +isy(t1 +1) +1, and
D2k +1+4b(1) —1=a""(2k +is;(th +1)+2) —1
=2k+is1(t1+1)+2)—1=2k+is1(t1 +1) + 1.

Hence o' (k) = a®® (k + b(i)) — 1 for any k € [m].

For the remaining case, let ¢ be odd. Now a(i) = 5(i
(mod dy) and b(i) = a®(1) = (i — 1)s1(t1 + 1) + 281
2k € [n],

(Z—l)t2+282+15—1
= -1

) =
+1 (mod ds). For any

ﬂ(Qk + Z) = 2k’t2 + (Z - 1)t2 + 282 +1 and
B (2k) 4 a(i) = BY(2k) + B(i) = 2kt + (i — 1)ty + 255 + 1

and

B2k 41 +1)
B (2k + 1) + ali)

(2k+i+ 1)ty and

Bk 1) + 80)

2kty — 285ty + 1) + (Z — 1)t2 + 259 +1

2k 41+ 1)t2 — 2(82 + 1)(t2 — 1) = (2/€ 41+ 1)t2.

= (
= (
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Hence B(k + i) = %@ (k) + a(i) for any k € [n]. For any 2k € [m],
o'(2k) = 2kt; and
a®D(2k +b(i)) —1=a 2k + (i — 1)s1(t1 +1) + 251 +1) — 1
=2k+ G —1)s1(t1+1)+2s1)t1 — (i +1)s1(t1 + 1) + 251
= 2kt — 2s1(t1 + 1) + 2811 + 251 = 2kt
and
o' (2k + 1) =2kty + (i — 1)s1(t1 +1) +2s; +1 and
a2k +14+b(1) —1=a "2k + (i —1)s1(t1 + 1) + 281 +2) — 1
=Q2k+ (G —Dsi(t1+1)+2s1 +2)t1 — 1
=2kt;1 + (i —1D)s1(t1 +1)+2s1 +1+2(s1 +1)(t1 — 1)
=2kt1 + (i —1)s1(t1 + 1)+ 281 + 1.

Hence o/ (k) = a®®) (k + b(i)) — 1 for any ke [m] By Lemma 2.7, (a, 3) € ET, .
Furthermore one can easily check that a=!(—k) = —a(k) forany k € [m]and 3~ 1(—k) =
—B(k) for any k € [n]. Hence (o, 8) € RET,, ,, by Lemma 2.8.

(=): Since m and n are even, both « and 3 are parity preserving. For any 2k € [m],

a(2k) = a2(k - 1)) + a(2)

=a(2(k—2))+2a(2) = =ka(2) and
a2k +1) = a(2(k — )+1)+o¢()
=a2(k-2)+1)+2a(2) =--- = a(l) + ka(2).
(2

Let a(1) = 2s; + 1 and (2) = 2t; for some s1,¢; € [F]. Then a(2k) = 2kt; and
a(2k+1) = 2kty +2s1 + 1 for any 2k € [m]. Note that for any 2k € [m], a(1) +«(2k) =
a(2k+1) = a~1(2k) + a(1). Hence a~1(2k) = «(2k), namely, o (2k) = 2k. It implies
that a?(2) = «(2t;) = 2t = 2 (mod m). Assume that 2¢; = 2, namely, t; = 1. Then
by Lemma 2.6, the order |{«)| is the smallest positive integer d; such that

a1y =a® 1251 +1)=a®72(2s5; + 251+ 1) =--- =2dy5; + 1 = 1.

Now assume that 2¢; # 2. Then the order |(«/)] is even and it is the smallest positive even
integer d; such that

Oédl(1> = ad1_1(281 + 1) = ad1_2(281t1 + 251 + 1) = ad1_3(251t1 + 4s1 + 1)

= ad1_4(481t1 + 4s1 + 1) == d181(t1 + 1) +1=1.
Hence d; is a divisor of m and consequently a divisor of ged(m,n).

By a similar reason, there exist s3, ¢ € [§] such that 3(2k) = 2kty and B(2k + 1) =
2kty + 2s9 + 1 for any 2k € [n]. Furthermore 2t2 = 2 (mod n) and d is a divisor of
ged(m,n). By Lemma 2.10, a(1) = 281 + 1 = —1 (mod dy), namely, 2(s; +1) =0
(mod ds) and a(2) = 2t = —2 (mod dy), namely, 2(t; + 1) = 0 (mod dz). Similarly
it holds that 2(ss + 1) = 2(t2 + 1) = 0 (mod d;). Note that

2ty = a(2) = a (1) + a(l) = (—2s1t, + 1) + 25, + 1.

Hence 2(s1+1)(t;—1) = 0 (mod m). By a similar reason, it holds that 2(so+1)(to—1) =
0 (mod n). O
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For even m and n, let Q(m, n) be the set of quadruples (s1,%1;52,t2) € [§] X [§] ¥
["] x [§] satisfying the conditions in Lemma 4.1. By Lemma 4.1, the classification of re-

flexible edge-transitive embeddings of K, , satisfying the Property (P) is equivalent to the
classification of Q(m,n), and the number | RET,, ,, | equals to the cardinality |Q(m, n)]|.
In this section, let

=2p1t Pty pzf}f and
n=2°phr .. phe at qefgy (prime decompositions)

and let ged(m,n) = 2°p7* - p;* with ¢; > 1 for any i = 1,...,¢. Without any loss of
generality, assume that a < b, namely, a = c. By Chinese Remainder Theorem, it suffices
to consider quadruples (s1, t1; $2, t2) modulo prime powers dividing m and n, respectively.
So we have the following lemma.

Lemma 4.2. For a quadruple (s1,t1;s2,t2) € [§] x [5] x [B] x [F], (51,15 52,12)
belongs to Q(m, n) if and only if:

(1) fori =1,....4 (51 (mod p),t; (mod pi);sy (mod pl), s (mod pl*)) is one
of(_]-v _1; _]-7 _1)’ (_17 _]-7 Y- p?i_ma 1)’ (.’E : p;'“_Ci, ]-; _13 _1) and (07 17 O» 1);
where z,y =0,1,...,p — 1;

(2) foranyj=1,2,....f, (s1 (mod pZi*;) (mod pgt)) is (0,1) or (=1, ~1);

(3) foranyk =1,2,...,g, (s2 (mod qé ), t2 (mod q/”)) is (0,1) or (—1,-1);

(4) (51 (mod 2%),t; (mod 2%);s9 (mod 2°),ty (mod 2°)) belongs to Q(2%,2°).

Proof. Assume that (s1,t1; s2,t2) belongs to Q(m, n). Thentf = 1 (mod Z)
(mod %).
(1): First let us consider the quadruple modulo p;* and pf fori =1,...,£. Note that

t1 = +1 (mod p$) and ty = £1 (mod p%%).
Ift; = —1 (mod p{*), then s; should be —1 modulo p;* to satisfy

andt3 =1

2(s1+1)(t1 —1) =0 (mod pi*).

By similar reason, if t, = —1 (mod p’*), then s, = —1 (mod p%).

Let (s1,t1) = (—=1,—1) (mod py*). Since d; is the smallest positive even integer
satisfying dys1(t; +1) = 0 (mod m), p; does not divide dy. If t; = —1 (mod p?*) then
s should be —1 modulo p’'. If t, = 1 (mod pl%), then so = y - p2* " (mod p’*) for
somey = 0,1,...,p;" — 1 because dy | gcd(m, n). By a similar reason, one can say that
if (s9,t5) = (—1,—1) (mod p%), then (s1,t,) = (=1, —1) or (x - p»~,1) (mod p}*)
forsome x =0,1,...,p;" — 1.

Let (s1,t1) = (0,1) (mod pj*). By the condition (iii) in Lemma 4.1, p; does not
divide do. Note that if to = 1 then ds is the smallest positive integer satisfying 2dsso = 0
(mod n), and if ¢t # 1 then dy is the smallest positive even integer such that
dasa(ta + 1) = 0 (mod n). Hence s, = 0 or t; = —1 modulo pl?, which implies
that (s2,t2) = (0,1) or (=1, 1) (mod p%?).

Lett; =1 (mod pj’) and s; # 0 (mod p;*). One can see that p; divides dy. By the
condition (iii) in Lemma 4.1, t, = —1 (mod pY) and s, = —1 (mod p%).
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Therefore

(s1 (mod p{*),tr (mod pf*);so (mod pj),to (mod p}’)) =
(_17_1;_17_1)7(_17_1;y'p?iicia1)7(‘%"])?7;767;’1;_17_1)Or(Oal;Oal)a

where z,y =0,1,...,p;" — 1.

(2): Forany j = 1,2,...,f, t; = +1 (mod pZiJ}j). If £, = 1 (mod p?f;-j) then

s1 = 0 (mod pz_@.j) because py4; does not divide dy. If t; = —1 (mod pz_@.j) then
s1=—1 (mod pz_’:;.j) to satisfy 2(s1 + 1)(¢1 — 1) =0 (mod p‘l}i?)

(3): By the similar reason with (2), for any ¥ = 1,2,...,g, (s2 (mod qgfk"')7

to (mod ¢,5")) is (0,1) or (~1, —1).
(4): If a quadruple (s1,%1;52,t2) € [§] x [§] x [F] x [%] satisfies all conditions in
Lemma 4.1, then it also satisfies these conditions modulo 2% and 2°. Hence

(s1 (mod 2%),t; (mod 2%);s, (mod 2°),t, (mod 2°)) € Q(2%,2°).

By Chinese Remainder Theorem, one can show that if (1), (2), (3) and (4) hold, then
(s1,t1;82,t2) € Q(m,n). O

Corollary 4.3. The number of reflexible edge-transitive embeddings of K., ,, satisfying the
Property (P) up to isomorphism is 2/794(1 + pf) -+ (1 4 pg*)|Q(2¢,2%)).

Proof. By Lemma 4.2, the number of reflexible edge-transitive embeddings of K, ,, sat-
isfying the Property (P) up to isomorphism is
(2+2p7) -+ (24 2pf)2727)1Q(2", 2%)| =
2T (L pT) - (L i) ] Q(2%,2%)]. O
By Lemma 4.2, it suffices to classify Q(2%,2%) to classify reflexible edge-transitive
embeddings of K, ,, satisfying the Property (P). Let P(2) = {(0,1)} and for a 2-power
2% (a > 1),let P(2%) be the set of all pairs (s, t) € [277 1] x[227!] satisfying the conditions:
(i) 2t2 =2 (mod 2%) and
@) 2(s+1)(t—1) =0 (mod 2%).
Forany (s,t) € P(2%)\{(0, 1)}, let d(s,t) be the smallest positive even number d such that
ds(t+1) = 0 (mod 2%) and let (s, t) be the largest number 27 with 27 < 2 satisfying

2(s+1) =0 (mod 27) and 2(t + 1) = 0 (mod 27). Let d(0,1) = 1 and e(0,1) = 2.
Now we have the following lemma.

Lemma 4.4. For 2-powers 2% (a > 1) and 2° (b > 1), a quadruple (s1,t1; S2,12) belongs
to Q(2%,2%) if and only if (s1,t1; 52, t2) satisfies the conditions

(@) (s1,t1) € P(27) and (s2,t2) € P(2),
(b) d(s1,t1) < e(sa,ta) and d(sa,t2) < e(s1,t1).
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Proof. The conditions (i) and (ii) in the definition of P(2%) correspond to the conditions
(i1) and (iv) in Lemma 4.1.

Suppose that d(s1,t1) < e(s2,t2) and d(s2,t2) < e(s1,t1). Since d(s1,t1) < 2°
and e(sy,ta) < 2%, d(sy,t;) divides ged(2%,2%), the minimum of 2% and 2°. Similarly
d(s2,t2) also divides ged (2%, 2%). Furthermore it holds that

2(51+1)=0 (mod d(s2,t2)),

2(t1 + 1) =0 (mod d(827t2)),

2(s2+1)=0 (mod d(s1,t1)) and

Z(tg + 1) =0 (mod d(Sl,tl))
Therefore the conditions (i) and (iii) in Lemma 4.1 hold, and hence (s1, t1; $2, t2) belongs
to Q(29,2%).

Let (s1,t1; s2,12) belong to Q(2%,2). Now the condition (iii) in Lemma 4.1 is equiv-

alent to the condition d(s1,t1) < e(s2,t2) and d(sa,t2) < e(s1,t1). O

By Lemma 4.4, the calculation of d(s,t) and e(s, t) for each (s,t) € P(2%) is help-
ful to calculate |Q(2%,2%)|. The following lemma gives full list of (s,t) € P(2%) and
corresponding d(s, t) and e(s, t).

Lemma 4.5. For a 2-power 2% (a > 1), the set {(s,t,d(s,t),e(s,t)) : (s,t) € P(2%)} is
the following:

{(0,1,1,2),(1,1,2,4)}, ifa=2
{(0,1,1,2),(1,1,4,4),(2,1,2,2),(3,1,4,4),(1,3,2,4), (3,3,2,8)}, ifa=3
{(0,1,1,2), (2972 = 1,2972 — 1,4,207 1) (2071 — 71,2972 — 1,4, 2071),

(2072 — 1,207t —1,2,2071) (2071 — 1,201 —1,2,29)}

U{(z,1,20714), (2,2072 41,2071 4) 12 =1,3,...,2971 — 1}
u{(2%,1,207712):i=1,...,a—2, y=1,3,...,297"1 1} ifa> 4.

Proof. Let (s,t) € P(2%).

For a = 2, t should be 1 and both s = 0 and s = 1 satisfy the conditions for (s,t) €
P(2%). Hence (s,t,d(s,t),e(s,t)) = (0,1,1,2) or (1,1,2,4). Leta = 3. Then ¢t = 1 and
t=3.Ift=1,thens = ¢ forsome: = 0,1,2,3. If t = 3, then s = 1 or s = 3. In any
possible pair (s, t), one can easily calculate d(s,t) and e(s, t).

Now assume that @ > 4. Thent = 1,272 — 1,292 + 1 or2%~! — 1. Fort = 1, any
number 0,1,2,...,29"1 — 1 is possible for s to satisfy the condition (ii) in the definition
of P(2%). Note that if (s,t) = (0, 1), then (d(0,1),e(0,1)) = (1,2). One can easily show
that if (s,t) = (z,1) for any z = 1,3,...,2971 — 1 then (d(s,t),e(s,t)) = (2°71,4).
If (s,t) = (2'y,1) forany i = 1,...,a — 2 and forany y = 1,3,...,297i~1 — 1, then
(d(s,t),e(s,t)) = (207171 2).

Fort = 2%72 — 1, both s = 2°72 — 1 and s = 29! — 1 satisfy the conditions for
(s,t) € P(2%). If (s,t) = (2972 — 1,292 — 1) or (2271 —1,2%72 — 1) then we have
(d(s,t),e(s,t)) = (4,2971).

Lett = 2972 4 1. Then any number s = 1,3, ...,2% ! — 1 satisfies the condition (ii)
in the definition of P(2%). For any (s,t) = (2,2472 + 1) withz = 1,3,...,2971 — 1, we
have (d(s,t),e(s,t)) = (2271, 4).
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For the final case, lett = 2271 —1. Thens = 2472 —1or2¢ 1 1. If (s, ) = (22721,
20=1 1) then we have (d(s,t),e(s,t)) = (2,207 1);if (s,¢) = (2471 — 1,271 — 1) then
(d(s,t),e(s,t)) = (2,2%). O

Theorem 4.6. For any 2-powers 2% and 2° with a < b, the number |Q(2%,2°)| of reflexible
edge-transitive embeddings of Ky, , satisfying the Property (P) up to isomorphism is the
following:

if (a,b) = (1,1),

2 if(a7b) = (1,2),

4 if (a,b) = (2,2) or (1,k) with k > 3,

10 if (a,b) = (2,3),

12 if (a,b) = (2, k) with k > 4,
02,2 = { 28 i (a,b) = (3,3),

40 if (a,b) = (3,4),

36 if (a,b) = (3,k) withk > 5,

20(1+2%72)  ifa=10b>4,

204182072 ifb—1=a> 4,

204162072 ifb—2>a> 4.

Proof. By Lemma 4.4, it suffices to find all (s1, t1; s2, t2) satisfying the conditions

(@) (s1,t1) € P(2%) and (sq,12) € P(2%),
(b) d(Sl,ﬁl) S 6(82,t2) and d(SQ,tQ) S e(sl,tl).

By Lemma 4.5, one can get all the lists of (s1, t1; s2, t2) satisfying the conditions as Table 1.
O

Proof of Theorem 1.1. For odd m and n, the number | RET,,, ,, | of reflexible edge-transiti-
ve embeddings of K, ,, up to isomorphism is 1 by Theorem 3.1. When exactly one of m
and n is odd, then the number | RET,,, ,, | is counted in Theorem 3.2.

Assume that both m and n are even. Let

__9a, a1, a ag, Ae+1 ag+ f
m =2 p11p22~-'p/p4+1 Py and

__ob b b by Qp+1 bz+ . ..
n=2"p'py’ P}y -4y, (prime decompositions)

and let gcd(m,n) = 2°p7'ps? ---py* with ¢; > 1 for any ¢ = 1,...,¢. Without any
loss of generality, assume that a < b, namely, a = c¢. By Corollary 4.3, the number
|IRET,, n | = |Q(m,n)|is

2IHIT L 4 pf) - (L4 p)|Q(2%,2°)).

Theorem 4.6 completes the proof. O
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Table 1: All lists of Q(2%,2%).

(a,b) Q(24,2%)

(1,1) (0,1;0,1)

(1,2) (0,1;0,1), (0,1;1,1)

(1,>3) | (0,1;0,1),(0,1;2°72,1), (0,1; 2072 — 1,2b=1 — 1),
(0, 12b L1, b1

(272) (07 1;0, 1)’ (Oa 1;1, 1)’ (17 1;0, 1)’ (1a 11, 1)

(2,3) (0,1;0,1), (0,1;2,1), (0,1; 1, 3), (0, 1;3,3), (1,1;0, 1), (1,1; 1, 1),
(1,1;2,1), (1,1;3,1), (1,1; 1, 3), (1,1;3, 3)

(2,>4) | (0,1;0,1),(0,1;2°72,1), (0,1; 2072 — 1,2b=1 — 1),
(0,1;20-1 — 1,251 — 1), (1,1;0,1), (1,1;2°73,1), (1,1;2°721)
(1,1;3-2073,1), (1,1; 2072 — 1,202 — 1), (1, 1;2b—1 —1,2b72 1),
(1,1;2072 — 1,201 — 1), (1,1;207 1 — 11,2071 — 1)

(3,3) (0or2,1;0,1), (0or2,1;2,1), (0 or2,1;1,3), (0or 2,1; 3, 3),
(1or3,1;1,1), (Lor3,1;3,1), (1or3,1;1,3), (1 or 3,1; 3, 3),
(lor3,3;0,1),(1or3,3;1,1),(1or3,3;2,1),(1or3,3;3,1),
(lor3,3;1,3),(1or3,3;3,3)

(3,4) (0or2,1;0,1), (0or2,1;4,1), (0or2,1;3,7), (0 or 2,1;7,7),
(lor3,1;3,3),(1or3,1;7,3), (lor3,1;3,7), (1 or3,1;7,7);
(1,3;2,1), 2 =0,2,4,6; (3,3;59,t2), (s9,t2) € 79(24)

(3,>5) | (0or2,1;0,1), (0 or2,1;2°72 1);
(Oor2, ;2,271 —1),2 =22 —1or2°-! —1;
(lor3,1;z,y), z,y =22 —1or2°~! —1;
(1,3;3-2°7231),i=0,1,2,3;
(1,3;2,9), z,y =2""2 —1lor2-! — 1,
(3,3;i-207%41),i=0,1,...,7,
(3,3;z,y), z,y =22 —1lor2b71 —1
(>4,>a) | (0or2°72 1;2,y),

(z,y) = (0, )(2b 21), (2072~ 12b1—1)0r(2 —1,2071 1),
(2z,1;20 2 — 1,207t — 1), (22,15 2071 — 1,207 — 1),
r=1,2...,2072 — 1 (z #2°73);

(x,10r2972 + 15y, 2),

r=1,3...,21 —1,y,2=2"2-1or2°t —1;

(2072 —1or207 1 —1,2972 —1or2°7! — 1;2,%),

iy =202 —1or20-! —1;

(2072 — 1,207t —1;4-2b791),i=0,1,...,2°71 — 1;

Only when a = b:

(20721 or207 11,2072 1;2,10r 2°7241),2 = 1,3,...,2b 1 —1;
Only when a = b:

(2072 — 1,207 — ;2,272 + 1), 2 =1,3,..., 2"t — 1;

Only whena =borb=a+ 1:

(20t — 1,207t — 1;2,1), 2 =0,1,...,2""1 — 1;

Only whena =borb=a+ 1:

(2071 — 1,207 — ;2,202 4 1), 2 =1,3,...,2"71 — 1;

Only when b > a + 2:

(2071 — 1,207t —1;4.2b7971 1), i =0,1,...,29 — 1
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5 Classification of some groups

In this section, we aim to consider a presentation of the group (z,,ys) for any (o, 8) €
RET,, . And we give some sufficient conditions and necessary conditions for (z,,yg, )
and (zq,,Yys,) to be isomorphic for any (a1, 1), (a2, f2) € RET,, . For any positive
integers m and n, a group I' such that

(i) T = XY for some cyclic groups X = (z) of order n and Y = (y) of order m with
XNY ={lr}and

(i) there exists an automorphism of I' which sends x and y to z~* and y !

, respectively,
is isomorphic to (x4, yg) for some («, ) € RET,, ,,. For our convenience, call a group
I" satisfying the conditions (i) and (ii) in the above sentence a reflexible product of two
cyclic groups of order m and n. Now to classify reflexible products of two cyclic groups
of order m and n, it suffices to consider (x,yg), where (o, ) € RET,, ,,. Note that for
any integers 4, j and for any («, 5) € RET,, ,,
yhal, = afl (j)y;‘j @,

For example, ys7, = xg(l)yg(l) and yga? = xg(Q)yaz(l).

For odd integers m and n, since RET,,,, = {(id,id)}, there is a unique reflexible
product of two cyclic groups of order m and n up to isomorphism, namely, an abelian
group Zy, X Zy,.

Let

m = pitps? - pgtpht p?jfff (prime factorization)

be odd and

b b . -
n=2phph ... pl,?’f o4y -4,y (prime factorization)

be even. Let ged(m,n) = pi'p5?---py* with ¢; > 1 for any i = 1,...,4. Now
|RET,,n | = 2/(1 + pf*) - (1 + pj*) by Theorem 3.2. Note that for any (o, ) €
RET,, , and for any integer k, a(k) = rk, 8(2k) = 2k, 5(2k+1) = 2k + 1+ 2s for some

integers 7 € [m] and s € [n] satisfying 7> = 1 (mod m), 2s = 0 (mod 2bq2f11 e qu;)
and for any j = 1,2,...,4, 5 = 0 (modpzj) if r = 1 (mod pj’); s = z-p?j_cj
(mod p?j ) for some integer z with 0 < z < pi/ — 1if r = —1 (mod pj’). Let us denote

such « and 3 by . and 3. Considering commuting rule
el = 22 Oy O,

one can check that the centralizer of (z,,.,yg,) is

n

2

where k is the smallest positive integer j satisfying j(r — 1) = 0 (mod m). This implies
that for any (av,, Bs, ), (Qry s Bs,) € RET s if two groups (7, , ys,, ) and (za,,, Ys., )
are isomorphic, then r; = r,. Note that

(a2 yh, wic [ ] j(r=1)=0 (mod m)} = (22 ,yf ),

yﬁs xar = zgi(l)yg:(l) = Ii&j‘+1ygs and

2 Bs (2)ygf(1)

— .2
y,@s .1'01," - xoz,« - Iaryﬂs'
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In fact, the above two equations determine the whole commuting rules. For any u € [m]
and v € [n), if v is even, then Y5, %o, = Ta,Ys.. and if v is odd, then

v1u12s+1

u v u—1,u —

yﬁsxar Ia7 yﬁsx O‘T yBs yB“
o v— 1+2s u—1 _ v 1+25 u—2 25+1 2r
= Lo Ys, Ta,Yp, = Ys. Y5,
U 1+45 u—2 _ .v+2us ur
= Ta Vs, ‘Ta, Y = =gt .

For any v € [n] with ged(v, n) =1,

BS('U) Oc (1) ZJTrZS r v(2v_1s+1)yg

yB§ (17 = x yﬁs = xa

r s

because v is odd, where v~ ! is an integer satisfying vo=! =1 (mod n). For any s1, 5 €
[5] with ged(s1,n) = ged(sa,n), one can choose v € [n] satisfying that ged(v,n) = 1
andv~!s; = 5o (mod n). Therefore for any (c,, Bs, ), (U, Bsy) € RETyy p, if 71 =12
and ged(s1,n) = ged(sz,n) then (x4, ,ygp,, ) is isomorphic to (%, ,ys,, ). This means
that the number of non-isomorphic reflexible product of two cyclic groups of order m and
n is at most 27 (2+¢;) - - - (2+ ¢¢). So any reflexible product of two cyclic groups of order
m and n is isomorphic to

(ry|a" =y™ =1, yz =2y, yz® = z°y)

for some r € [m]and s € [n] satisfying7? = 1 (mod m),2s =0 (mod queiﬁl "'qﬁﬁyg)
and for anyj = 4, s = 0 (mod p?-j) if r = 1 (mod pjﬂ), = p?j*CjJrz

(mod p] 7) for some integer z = 0,1,...,¢; if r = =1 (mod pj?).

Conversely, assume that for some (a,.l,ﬁsl), (Qtry; Bsy) € RETy, ps (a:arl,yﬂﬁ) is
isomorphic to (za,,,Ygs,,) Let ¥: (Ta, ,yp,,) = (%a,,,Ys,,) be an isomorphism such
that (7, ) = Za,, and Y(yg ) = yp.,-

For the remaining case, let

a a
=29p'ps* Dy ey pe-f}f and
n = 2°phiphe .. p/q?ﬁl qefgy (prime decompositions)

with ged(m, n) =2°p7* ps? - - py*, where 1 < a < bandc¢; > 1foranyi =1,...,¢. For
any (o, 8) € RET,, ,, and for any integer k,
a(2k) = 2kt
(2]€ + ].) = thl + 281 + 1,
B(2 ) = 2kty and
for some (s1,t1;82,t2) € Q(m, n). Let o and § be such permutations. Note that

g(l)yg(l) _ xi52+1 231+1’

Ypla = T yﬁ
21 2s1 (t1+1)+1
ygl‘i = xg@)yg @ _ xi‘tzyﬁsl( 1+1) ,
y2:c 52(1) a(2) _ x252(t2+1)+1y§t1 and
2P’ @)y a2(2> 2,2

y x = T,Y5-
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In fact, the above four equations determine the whole commuting rules as follows. For any
i € [m]and j € [n],

21,25 __ ,.25,.2%
yB zozj 71,0(]2![3

ygixijJrl _ mijygima _ x(zyjy;(i—l)ziSQ(terl)Jrly;tl
_ xinSz(t2+1)y§(i—1)xayztl L xij+2i32(t2+1)+1yéit1

yéi-{—lzij _ yﬁzijyzi _ xiby;sl(t1+1)+1x§(j71)y[23i
_ xit2yﬁmi(j,1)yzi+2sl(t1+1) L xijt2y2i+2js1(t1+l)+l
A A LY y%ixisﬁlyéslﬂxij — xiszygimayﬁxiijm

2 2 1)+1, 2it 2ty 2js1(ti+1)+1\ 2
o’ ($a252(t2+ "+ ygl 1)($a]t23/ﬁJ51( 1 )ZU@SI

2jt2+21',82(t2+1)+232+1y2it1+2j51(t1+1)+251+1
«@ B .

=z

=x
So any reflexible product of two cyclic groups of order m and n is isomorphic to
2satly 2514 g 2 22251 (L +D)+1

yr- =x "y
252(t2+1)+1y2t1

(yylz"=y" =1, yzr =2z
Va=a v = )
for some (s1,t1; 82,t2) € Q(m,n). In summary, we have the following theorem.

Theorem 5.1. For any positive integers m and n, let I be a group such that " = XY for
some cyclic groups X = (x) of order n andY = (y) of order m with X N'Y = {1p} and
there exists an automorphism of T which sends x and y to = and y~!, respectively.

(1) If both m and n are odd, T is isomorphic to the abelian group Z.,, X Zu,.
(2) Let

_ a ag4 apt f . . .
m=pit PP “Pey'f  (prime factorization)
be odd and let
be Dot betg

b b . ..
n=2py'-p, Qi " dotg (prime factorization)

be even with gcd(m,n) = pi* - - - p;*, where ¢; > 1 foranyi =1,...,L. ThenT is
isomorphic to

or some r € {m| and s € || satisfying
2

r2=1 (mod m), 25s=0 (mod 2qui+11 T qug‘q)v
and forany j =1,2,... 4, s =0 (mod p?j) if
r=1 (mod p?j), 5= p?j_cﬁz (mod p?j)

for some z=0,1,...,¢c;ifr =—1 (mod p?j).
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(3) Let
— 20p1 Bl Al f d
m=2"py Py Py Poyy an
Qg1 betg

n= prlfl .- ~p2£ Qo1 oty (prime factorization)

with ged(m,n) = 2°p7* ps? - - - py*, where1 < a < bandc; > 1foranyi=1,..., L
Now T is isomorphic to
(@y | 2" =y™ =1, yz = a®2F 1y ya? = 522y

ny — x252 (t2+1)+1

281(t1+1)+1
)

y2t17 y2x2 _ x2y2>

for some (s1,t1; 52,t2) € Q(m,n).

For any positive integers m and n and for any («, 8), (¢, 8') € RET,, ,,, we do not
know a necessary and sufficient condition for (x,ys) =~ (zas,ys). So we propose the
following problem.

Problem 5.2. For any positive integers m and n and for any (o, 8), (¢, 8’) € RET,, »,
find a necessary and sufficient condition for (x, yg) ~ (z«’, ys’). Consequently calculate
the number of reflexible products of two cyclic groups of order m and n up to isomorphism.
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