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Within constituent-quark models the resonance character of hadron excitations is

usually ignored. They rather come out as stable bound states and their bound-

state wave function is then used to calculate partial decay widths perturbatively
by assuming a particular model for the elementary decay vertex. The fact that

the predicted strong decay widths are notoriously too small [1,2] is an indica-

tion that a physical hadron resonance is not just a simple bound state of valence
(anti)quarks, but it should contain also (anti)quark-meson components.

A good starting point to take such components into account is the chiral

constituent quark model (χQCM) [3]. The effective degrees of freedom of the
χQCM, that are assumed to emerge from chiral symmetry breaking of QCD,

are constituent (anti)quarks and Goldstone bosons which couple directly to the
(anti)quarks. In order to take relativity fully into account we work within point-

form quantum mechanics [4], which is characterized by the property that the

components of the four momentum operator P̂µ are the only generators of the
Poincaré group which contain interaction terms. A convenient method to add

interactions to P̂µfree such that the Poincaré algebra is satisfied is the Bakamijan-
Thomas construction [5]. The point-form version of the Bakamjian-Thomas con-

struction amounts to factorize the free 4-momentum operator into a free mass

operator M̂free and a free 4-velocity operator Vµfree and to add a Lorentz-scalar in-
teraction term M̂int that should also commute with V̂µfree to M̂free. The interacting

4-momentum operator then has the structure

P̂µ = P̂
µ
free + P̂

µ
int = (M̂free + M̂int) V̂

µ
free , (1)

and one only needs to study an eigenvalue problem for the mass operator. A very

useful basis, which is tailored to this kind of construction, is formed by velocity
states [6]. These are usual momentum states in the center-of-momentum of the

whole system which are then boosted to the overall four-velocity vµ. In this basis
the usual addition rules of nonrelativistic quantum mechanics can be applied to

spin and angular momentum.

In order to allow for the decay of hadron excitations into a lower lying state
and a Goldstone boson we formulate the eigenvalue problem for the mass op-

erator as a 2-channel problem. A general mass eigenstate is then a direct sum of
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a valence (anti)quark component and a valence (antiquark) + Goldstone-boson

component. The latter can be eliminated by means of a Feshbach reduction and

one ends up with a mass-eigenvalue equation for the valence (anti)quark compo-
nent. In case of a meson, e.g., this equation takes on the form:


M̂qq̄ + K̂†(M̂qq̄π −m)−1K̂︸ ︷︷ ︸

V̂opt(m)


 |ψqq̄〉 = m|ψqq̄〉 . (2)

The channel mass operator M̂qq̄ is assumed to contain already an instantaneous

confinement and the optical potential Vopt(m) describes all four possibilities for
the (dynamical) exchange of a Goldstone boson between anti(quark) and (anti)-

quark, in particular also reabsorption of the Goldstone boson by the emitting
(anti)quark. Herewe have taken the π as a representative for the Goldstone bosons.

The vertex operator K̂ is derived from an appropriate field theoretical interaction

Lagrangian density [7].
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Fig. 1. Graphical representation of the optical potential, Vnn
′

opt (m) that enters the mass

eigenvalue equation (3) on the hadronic level.

In a velocity state representation Eq. (2) becomes an integral equation. In

order to make it better amenable to a numerical treatment we expand |ψqq̄〉 in
terms of (velocity) eigenstates |v, α〉 of M̂qq̄, i.e. the pure confinement problem.

α collectively denotes the internal quantum numbers that specify these states.

For reasons which will become clear immediately, we call |v, α〉 a “bare” meson
state, whereas |ψqq̄〉 is (the q-q̄ component of) a “physical” meson state. This

expansion leads to an infinite set of coupled algebraic equations for the expansion
coefficients Aα:

∑

α′

(
mαδαα′ + Vαα

′

opt (m)
)
Aα′ = mAα . (3)

The most remarkable feature of this equation is that it is rather a mass-eigenvalue
equation for mesons than for quarks. It describes how a physical meson of mass

m is composed of bare mesons with massesmα. The bare mesons are mixed via

the optical-potential matrix elements Vnn
′

opt (m). Even these matrix elements attain
a rather simple interpretation in terms of hadronic degrees of freedom. They cou-

ple a bare meson state with quantum numbers α′ to another bare meson state
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with quantum numbers α via a Goldstone-boson loop such that any bare meson

state with quantum numbers α′′ (that is allowed by conservation laws) can be ex-

cited in an intermediate step (see Fig. 1). fαα′(|κ|) are (strong) transition form fac-
tors that show up at the (bare) meson Goldstone-boson vertices. The eigenvalue

problem that one ends up with describes thus bare mesons, i.e. eigenstates of
the pure confinement problem, that are mixed and dressed via Goldstone-boson

loops. The only places where the quark substructure enters, are the vertex form

factors. Here it should be emphasized that due to the instantaneous nature of the
confinement potential the dressing happens on the hadron level and not on the

quark level, i.e. emission and absorption of the Goldstone boson by the same con-
stituent must not be interpreted asmass renormalization of the (antiquark)quark.

Equation (3) is a nonlinear eigenvalue equation that cannot be solved with

standard techniques. In order to study it in some more detail we use a simple

toy model in which spin and flavor of the (anti)quark are neglected and a real
scalar particle is taken for the Goldstone boson. We use a harmonic oscillator

confinement in the square of the mass operator. This model has 5 parameters:
the (anti)quark massmq, the Goldstone-boson massmGB, the Goldstone-boson-

quark coupling strength g, the oscillator parameter a and a parameter V0 to shift

the mass spectrum. We have taken a standard value of 0.34 GeV for mq and the
pion mass for mGB. To give our toy model some physical meaning the param-

eters a and V0 have been fixed in such a way that the the experimental masses
of the ω ground state and its first excited state are approximately reproduced.

The Goldstone-boson-quark coupling is varied within the range allowed by the

Goldberger-Treiman relation, i.e. 0.67 . g2/4π . 1.19 [8]. To simplify things fur-
ther only radial excitations of bare mesons have been taken into account. The

mass eigenvalue problem, Eq. (3), can be solved by an iterative procedure. One
first has to restrict the number of bare states, that are taken into account, to a

certain number αmax. The first step is to insert a start value for m into V̂opt(m)

and solve the resulting linear eigenvalue equation. This leads to αmax (possibly
complex) eigenvalues. From these one has to pick out the right one, reinsert it

into V̂opt(m), solve again, etc. Appropriate start values are, e.g., the eigenval-

ues of the pure confinement problem. Note that the optical potential Vαα
′

opt (m)

becomes complex if the mass eigenvalue m is larger than the lowest threshold

mth = m0 + mGB, i.e. the mass of the lightest bare meson plus the Goldstone-
boson mass. As a consequence also the physical mass eigenvaluesmwill become

complex as soon as their real part is larger thanmth and we will get unstable me-
son excitations. The mass of such an excitation can then be identified with Re(m),

its width Γ with 2 Im(m).

The results of a first numerical study with our toy model (with αmax = 2)
are shown in Fig. 2. It can be seen that the Goldstone-boson loop provides an

attractive force and that the decay width exhibits a maximum as a function of

g2/4π. As soon as the real part of the mass eigenvalue of the first excited state
approachesm0+mGB, wherem0 is the harmonic oscillator ground-statemass, the

decay width vanishes. With a Goldstone-boson-quark coupling of g2/4π = 1.19,

which is still compatible with the Goldberger-Treiman relation, the 2 lowest lying
states are found to have masses of about 0.8 and 1.44 GeV, respectively. The first
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Fig. 2. Predictions of our toy model for the meson masses and widths. Shown are the

ground state (green line) and the first excited state (blue line) as functions of the Goldstone-

boson-quark coupling. The red band between the dashed blue lines represents four times

the decay width of the first excited state.

excited state has a width of 0.026 GeV. An increase of αmax changes these values
by only a few percent.The iterative procedure converges already after 5 iterations.

These are promising results in view of the simplicity of our toy model and it

will be interesting to see whether typical decay widths of 0.1 GeV or more can be
achieved within our approach in the more interesting case of baryon resonances

for the full chiral constituent-quark model.
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