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Abstract
In financial derivatives markets different strategies for reduction of risk can be ap-
plied. This is especially important in times of financial crisis when more regulation 
of trading with risky instruments is needed. In this article the well known technique 
of delta hedging used in derivatives markets is considered. It is shown that for the 
appropriately adjusted delta the average hedging loss and the expected transacti-
on costs can be reduced.
Keywords: financial derivatives, delta hedging, transaction costs

Izvleček
Na trgih z izvedenimi finančnimi instrumenti se lahko uporabijo različne strategije 
za zmanjšanje tveganja. To je posebej pomembno v času finančne krize, ko nasto-
pi potreba po dodatnem nadzoru oz. reguliranju trgovanja s tveganimi instrumen-
ti. V članku je obravnavana dobro znana metoda, imenovana delta hedging, ki se 
dnevno uporablja na trgih izvedenih finančnih instrumentov. Pokazano je, da je mo-
goče s primerno prilagojenim številom delta znižati tako povprečno izgubo kot tudi 
pričakovane transakcijske stroške.
Ključne besede: izvedeni finančni instrumenti, delta hedging, transakcijski stroški 

1 Introduction

The financial crisis with its worldwide impact has called the attention to 
various factors; among others to the tremendous expansion of global financial 
derivatives markets and the lack of proper government regulations. Recently, 
major European countries, U.S., and others have taken some immediate 
measures (like for instance temporarilly banning the short selling), in order 
to regulate the financial markets. However pro and contra arguments for such 
measures already appeared. Whatever the results of such interventions will be, 
the need for more regulation is in general worldwidely recognized. This is also 
true for relatively small but open market economies like Slovenia. One of the 
reasons for a worldwide sensitivity of regulations is due to the huge value of 
these transactions.

In a recent report Bank for International Settlements (BIS) of Basel Swi-
tzerland, reveals that the global notional (nominal) amount outstanding of over 
the counter (OTC) derivatives of June 2010 has reached the astonishing value of 
582,66 trillion U.S. $ . That is 582 660 billions $; see (BIS, 2010). Fortunately 
these amounts provide only a measure of market size and not the true risk.

To be precise the following definitions are given by BIS : 

“Nominal or notional amounts outstanding are defined as the gross nominal 
or notional value of all deals concluded and not yet settled on the reporting date. 
For contracts with variable nominal or notional principal amounts, the basis for 
reporting is the nominal or notional principal amounts at the time of reporting.
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Nominal or notional amounts outstanding provide a 
measure of market size and a reference from which con-
tractual payments are determined in derivatives markets. 
However, such amounts are generally not those truly at risk. 
The amounts at risk in derivatives contracts are a function 
of the price level and/or volatility of the financial reference 
index used in the determination of contract payments, the 
duration and liquidity of contracts, and the creditworthi-
ness of counterparties. They are also a function of whether 
or not an exchange of notional principal takes place 
between counterparties. Gross market values provide a 
more accurate measure of the scale of financial risk transfer 
taking place in derivatives markets.

Gross market values are defined as the sums of the absolute 
values of all open contracts with either positive or negative 
replacement values evaluated at market prices prevailing on 
the reporting date. Thus, the gross positive market value of a 
dealer’s outstanding contracts is the sum of the replacement 
values of all contracts that are in a current gain position to the 
reporter at current market prices (and therefore, if they were 
settled immediately, would represent claims on counterparti-
es). The gross negative market value is the sum of the values 
of all contracts that have a negative value on the reporting 
date (ie those that are in a current loss position and therefore, 
if they were settled immediately, would represent liabilities of 
the dealer to its counterparties). The term “gross” is used to 
indicate that contracts with positive and negative replacement 
values with the same counterparty are not netted. Nor are the 
sums of positive and negative contract”, see (BIS, 2010).

In the last report BIS also states that at the end of June 
2010 the gross market value of the global OTC options 
trading is about 16 540 billions $.

In order to reduce the risk for such highly leveraged 
contracts derivative traders apply different hedging stra-
tegies. The hedging of derivatives is a strategy with the 
intention to reduce (hedge) the risk associated with the price 
movements in the underlying asset by offsetting long and 
short positions. That means that the effect of the price change 
of the asset to the portfolio is balanced by the opposite price 
change of the associated derivative. The delta hedging is the 
most widely used dynamic hedging technique in practice. 
As known, by the delta hedging the relative position in the 
underlying asset (stock) and in the derivative (option) is de-
termined by the partial derivative of the option value with 
respect to the stock price. In practice it is called also the 
delta or the hedge ratio.

As known, in the model of Black, Scholes and Merton, 
in which the delta hedging is a continuous process, the 
hedging is perfect and thus no hedging error appears; see 
e.g. (Black and Scholes, 1973) and (Merton, 1973).

In practice however, where the hedging can be done only 
discretly, that is at finitely many discrete time moments, 
the hedging error is inevitable. The time between succes-
sive rehedgings is noninfinitesimal and finite (for instance 
a day, a week etc), hence the hedging cannot be perfect 

and necessarily the hedging error appears. One possibili-
ty to improve the hedging can be to take very small time 
intervals between rehedgings, which would imply relative-
ly small hedging error. However in practice this would con-
sequently mean very frequent trading and thus very high 
accumulated transactions costs; see e.g. (Leland, 1985). 
Hence the time interval cannot be taken arbitrarily small.

In the subsequent sections we will consider the discrete 
time delta hedging over a reasonable relatively small time 
interval. First we will consider the mean absolute value of 
the heding error and thus the profit and loss of hedging. Let 
us note that some empirical results show that minimization 
of the variance of the error does not necessarily improve the 
delta hedging; see e.g. (Primbs and Yamada, 2006).

We will show that for the appropriately adjusted hedging 
ratio the error and the average loss can be reduced. Sub-
sequently the order of the hedging error will be analyzed. 
In the last section the reduction of transaction costs with 
respect to the adjusted hedge ratio will be considered. An 
example of the European call option will be analyzed.

2 Delta hedging

Let us consider first the process of delta hedging more 
in detail. Let us denote by V=V(t,S) the option value as the 
function of the underlyings price S (e.g. stock) and the time t.

Suppose, that at time t we form a portfolio which 
consists of a long position in the option with value V and a 
short position in N(t) units of stock with price S , so that the 
portfolio value denoted by Π at time t is equal to:

StNV )(−=Π  (1)

With time N(t) changes. In the Black-Scholes conti-
nuous-time model N(t) changes continuously. Moreover, 
it is assumed that the stock price follows the geometric 
Brownian motion and that the replication is perfect. Hence, 
the so called delta changes continuously and it is given by 
equation N(t)=VS(t,S), where V is the solution of the Black-
-Scholes-Merton equation. 

As mentioned, in practice N(t) changes only at discrete 
time moments. 

Assumption: For simplicity of exposition let us assume 
that that the stock price S=S(t) follows the discrete time 
version of the geometric Brownian motion. Hence, over a 
small noninfinitesimal interval of length Dt its change can 
be given by:

 , (2)

where μ is the expected annual drift rate, σ is the vo-
latility of the stock and Z is normally distributed variable 
with mean zero and variance one; in short Z~N(0,1); for the 
details see e.g. (Hull, 2000).

Remark 1: We note that in general it can be shown, that 
the following equation for price change holds: 
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 , (3)

where O(.) is the order of the error; see e.g. (Hull, 2000). 

Portfolio return: Let us consider now more in detail the 
return to the portfolio value between two successive rehed-
gings at time t and time t+Δt. Over the interval [t,t+Δt] the 
return is then equal to

 (4)

as the number of shares N(t) is held fixed during the time 
step Δt. The change ΔV of the option value V(t,S) over the 
time interval of length Δt can be expressed by the Taylor 
series expansion and we get the equality :

 (5)

By equality (2) we have:

 and

 (6)

Thus the change of the portfolio value is equal to:

 (7)

3 Hedging return

If the amount Π is invested in a riskless asset (e.g. bonds) 
with an interest rate r, then over the interval of length Dt the 
return to the riskless investment is equal to:

 (8)

Definition 1: The hedging return or hedging error ΔH 
is defined as the difference between the return ΔΠ to the 
portfolio value and the return ΔB to the bond value. 

Hence it is equal to:

 (9)

Suppose now that the price of the option V is given by 
the Black-Scholes formula and so V(t,S) it is the solution of 
the Black-Scholes-Merton partial differential equation:

 (10)

Moreover suppose that the number of shares N(t) held 
short over the rebalancing interval of length D t is given by:

 , where    (11)

Then the hedging error in equation (9) can be simplifi-
ed by using equalities (2), (10) and (11). Consequently the 
error is equal to :

 (12)

where . Then the following result can be readily 
obtained:

Proposition2: If V(t,S) is the solution of the Black-Scho-
les-Merton equation (10) and if the number of shares N(t) 
held short over the rebalancing interval of length Δ t is 
equal to:

  where  , (13)

then the mean  is equal zero to the order O(Δt2) 
and the variance of the hedging error is of order O(Δt2).

Proof The proof follows from (12) , since by assumpti-
on Z is normally distributed variable Z~N(0,1). Note that in 
general it holds:

 and  for n=1,2,3,…

Hence by using equalities E(Z)=E(Z3)=0 and E(Z2)=1 
the conclusion can be readily verified.

We omit the details.

Many authors have considered the mean-variance 
analysis of the hedging error and the problem of reducing 
the variance; see e.g. (Boyle and Emanuel, 1980), (Primbs 
and Yamada, 2006). However some empirical results show 
that minimization of the mean squared hedging error 
(MSHE) does not necessarily improve the delta hedging. For 
example see (Primbs and Yamada, 2006), who compared in 
their computational simulations the usual delta hedging and 
the mean square optimal hedging of a European call option. 

4 Profit and loss

We will consider now the mean absolute hedging error 
more in detail. Note that different to the mean squared error 
the mean absolute hedging error can be given a sensible 
economic interpretation: As shown above the mean value 
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 of the hedging error is zero to the order . 
This means that to the order  the average profit P of 
hedging over the interval of length Δt is equal to the average 
loss L of hedging. Thus, the mean absolute value of the 
hedging error (MAHE) is equal to:

 (14)

Hence by reducing the mean absolute hedging error 
(MAHE) the average profit and average loss can be reduced.

Note that by variing the number of shares N(t) different 
values of the MAHE can be obtained.

Let us rewrite the hedging error in the following way: 
First, by taking the partial derivative of the BSM equation 
(10) with respect to S, we get the equality:

 (15)

Inserting (15) into (12) we get:

 (16)

For simplicity of exposition let us write ΔH more 
concisely:

 (17)

where:

 (18)

Example-European call option: Let us consider next 
an example of the European call option. 

Note that by the Black-Scholes-Merton formula we 
have; see e.g. (Hull, 2000):

 ,

  (19)

where

,

 (20)

Example 1: Let us illustrate this with an examples of the 
option near expiry date: Let V be the value of the European 
call option and suppose that σ=0.2, Δt=0.01, T=0.03, 
μ=r=0.04 and S=1.15E, where E is the exercise price and T 
time to expiry. In that case we have

 . (21)

Moreover we find that p=0.04, q=–0.027, so that the 
hedging error (17) is equal to:

 (22)

Suppose that Φ(α) is defined by (22). Then the following 
values of the mean absolute error  can be 
obtained:

F(1.0)=1.46γ     F(0.45)=1.20γ

F(0.8)=1.32γ     F(0.4)=1.21γ

F(0.6)=1.22γ     F(0.2)=1.40γ

F(0.5)=1.20γ     F(0.0)=1.65γ (23)

Remark 2: By the table (23) it follows: when α=1 the mean 
absolute hedging error to the order  is 22% higher 
than the error when α=0.5. In that case the lower error can 
be obtained and the average loss can be reduced, when the 
associated delta is equal to . 

Example 2: Suppose next that option is even closer 
to the expiry date, for instance: σ=0.2, Δt=0.01, T=0.02, 
μ=r=0.04 and S=1.15E, where E is the exercise price and T 

time to expiry. In that case we have: , So that the 
hedging error (17) is equal to:

 (24)
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Suppose that Φ(α) is defined by (22). Then the following 
values of the mean absolute error  can be 
obtained:

F(1.0)=1.97γ     F(0.45)=1.54γ

F(0.8)=1.72γ     F(0.4)=1.56γ

F(0.6)=1.56γ     F(0.2)=1.85γ

F(0.5)=1.53γ     F(0.0)=2.24γ (25)

Remark 3: Note that when a=1 the mean absolute 
hedging error is 29% higher than the error when a=0.5. 
In that case the lower error and the lower average loss 
can be obtained, when the associated delta is equal to 

. Moreover a useful approxi-
mation  can be applied.

5 Transaction costs

The option valuation problem with transaction costs 
has been considered extensively in the literature. In many 
papers on option valuation with transaction costs the di-
screte-time trading is considered by the continuous-time 
framework of the Black-Scholes-Merton partial differen-
tial equation (BSM-pde); see e.g. (Leland, 1985), (Boyle 
and Vorst, 1992). It is known that transaction costs can be 
included into the Black-Scholes-Merton equation by consi-
dering the appropriately adjusted volatility; see e.g. (Leland, 
1985), (Mastinsek, 2006).

When the hedging is in discrete time, then over the time 
interval (t, t+Δt) the number of shares N is kept constant 
while at the time point t+Δt the number of shares is readju-
sted to the new value N’. Over that period of time the value 
S of the underlying changes to S+DS.

The proportional transaction costs depend on the diffe-
rence |N’-N| which is usually approximated by the gamma 
term, in general the largest term of the associated Taylor 
series expansion. In the case when other partial derivati-
ves of delta are not small compared to the gamma, higher 
order approximations can be considered. Next we will give 
the details:

Number of shares: Suppose that the number of shares 
N’ at the point t+Δt is approximately equal to the Black-
-Scholes delta . If N is given by 

, then the proportional transaction costs at 
rehedging t+Δt are equal to:

 , (26)

where k represent the round trip transaction costs 
measured as a fraction of the volume of transactions; for the 
details see e.g. (Leland, 1985).

When other partial derivatives of the delta are not small 
compared to the gamma, then the following higher order 
approximation can be considered:

 (27)

If S=S(t) follows the geometric Brownian motion, then 
over the small noninfinitesimal interval of length Δt the first 
order approximation of ΔN is usually given by the gamma 
term:

 , (28)

see e.g. (Leland, 1985).

Let us consider the discrete time adjusted hedge as that 
given in the previous section:

 (29)

In this case the proportional transaction costs are equal 
to: 

 (30)

where . It can be shown that for different values 
of a lower expected transaction costs can be obtained. Let 
us illustrate this with an examples of the European call 
option considered in Example 2:

Example 3: Let V be the value of the European call 
option . Then by (19) we have:

 (31)

σ=0.2, Δt=0.01, T=0.02, μ=r=0.04 and S=1.15E. In that 
case we have

 (32)

By using the equality (15) the transaction costs (30) can 
be written as:

 (33)
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Let us denote:

 (34)

Hence by (32) and (34) we have:

 (35)

Suppose that Φ'(α) is defined by (22). Then the following 
values of the mean absolute value  can be 
obtained:

G(1.0)=3.66γ'     G(0.45)=3.27γ'

G(0.8)=3.45γ'     G(0.4)=3.27γ'

G(0.6)=3.32γ'     G(0.2)=3.35γ'

G(0.5)=3.28γ'     G(0.0)=3.62γ' (36)

Remark 4: The results show that the expected pro-
portional transaction costs for the usual delta (α=1.0) are 
approximately 12% higher than the costs when α=0,4 
and λ=0.6. Hence, when the associated delta is equal to 

, the lower expected transac-
tion costs can be obtained.

6 Conclusions

In financial derivatives markets the problem of risk 
reduction and proper regulation is one of the main issues 
especially in times of crisis. Among different strategi-
es proposed, the delta hedging is one that is widely used 
in practice. In this article the problems of discrete time 
delta hedging of derivatives and associated transactions 

costs were considered. By an appropriately adjusted delta, 
dependent on the frequency of trading lower mean absolute 
hedging error can be obtained. In that case it can be proved 
that the order of the mean and the variance of the hedging 
return error can be preserved. Moreover, the average loss 
can be reduced and lower expected transaction costs can 
be obtained. 
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