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Dynamic Value at Risk Estimation for
BELEX15

Emilija Nikoli¢-boric' and Dragarboric?

Abstract

This paper uses RiskMetrics, GARCH and IGARCH models toutate daily
VaR for Belgrade Stock Exchange index BELEX15 returns baseithe normal and
Studentt innovation distribution. In the case of GARCH and IGARCH ratsivVaR
values are obtained applying Extreme Value Theory on thedataized residuals.
The Kupiec’s LR statistics was used to test the accuracyskfimeasurement mod-
els. The main conclusions are: (1) when modelling valugsétit is very important
to have a good model for volatility of stock returns; (2) bstationary and integrated
GARCH models outperform RiskMetrics in estimating VaR;&Bhough long mem-
ory volatility is present in the BELEX15 index, IGARCH modealannot outperform
GARCH type models in VaR evaluations for this index.

1 Introduction

Value at Risk (VaR) is a commonly used statistic for meagupiotential risk of economic
losses in financial markets (Jorion, 1997; Duffie and Pan71B®wd, 2002; Giot and
Laurent, 2003). Using VaR financial institutions can catelthe minimum amount that
is expected to lose with a small probabilityover a given time horizon k, usually 1-day
or 10 days. Typical values far are 0.1, 0.05 and 0.01. Empirical VaR calculations
involve the estimation of lower-order quantiles, for exden®%, 5% or 1% of the return
distribution. From a statistical viewpoint, the VaR is nathelse but a given percentile of
the profit and loss (RL) distribution over a fixed horizon. While VaR concept ise&s
understand, its measurement is a very challenging statigiroblem. Risk analysis can
be done in two stages. First, we can express profit-and+hoesms of returns and then
statistically model the returns and estimate the VaR ofrnstby computing appropriate
guantile.

The main problem is related to the estimation of distributivat adequately describes
the returnsPori¢ and Nikolicbori€, 2010). It is well known that the probability disttib
tion of stock returns is fat tailed, which means that extr@mee movements occur much
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more often than predicted by a Gaussian model (Fama, 1968)empirical finding that
series of returns often exhibit volatility clustering had ko the development of a variety
of univariate time series methods for volatility forecagti

The simplest approach to volatility forecasting is to estiethe variance as a simple
moving average of past squared shocks. The popular GARCis$ olamodels (Boller-
slev, 1986) rely on the assumption that the shape of the tondi distribution of returns
is fixed over time. The most recent approach to volatility elody and forecasting is a
concept named realized volatility (McAleer and Medeird@¥)&). Models of the volatility
allow considering conditional distributions of returnscadculating VaR (Angelidis et al.,
2004; So and Yu, 200@oric and Nikolicbori¢, 2006). Besides the heavy-tailed issue,
asymmetry distribution is also often observed in finandiaktseries. This property is
very important in risk analysis where the long and shortomsinvestments over a given
time period relied heavily on the lower and upper tails behas. Barndorff-Nielsen
(1997) implemented skewed distributions that allowed uppel lower tails to have dis-
similar behaviours. Also, recent empirical studies foumat many financial return series
may exhibit long memory (Christensen and Nielsen, 2007).

In a VaR context, precise prediction of the probability ofetreme movement in a
value is essential for risk management. As extreme movesrartrelated to the tails
of the distribution of the underlying data generating pescenstead of forcing a single
distribution for the entire sample, it is possible to inugste only the tails of the return
distributions. One such approach to estimating value Rtisishe extreme value theory
(EVT) which provides some assistance in improving the tradal VaR models (Em-
brechts et al., 1997; Gencay and Selcuk, 2004).

In recent years there has been a lot of research on VaR estimedtdifferent return
series (Giot and Laurent, 2003; Sarma et al., 2003; Huand-em@004; Kuester et al.,
2006), but research papers dealing with VaR calculatioherfinancial markets EU new
member states are very rargikovi¢ (2007a) applied VaR methodology and historical
simulation on the Croatian stock market indexes in an efforneasure Value-at-Risk.
He also Zikovi¢, 2007) analysed VaR models for ten national index@ovenia - SBI20,
Poland - WIG20, Czech Republic - PX50, Slovakia - SKSM, HugpgaBUX, Estonia -
TALSE, Lithuania - VILSE, Latvia - RIGSE, Cyprus - CYSMGENMalta - MALTEX
and concluded that use of common VaR models to forecast Va8 isuitable for transi-
tion economies. Also, there is a study on forecasting Mdlatf the Macedonian Stock
Exchange indexes (Kovacic, 2008).

As Serbia is expected to join the European Union, the styliaets of its stock market
could be of interest to potential domestic and foreign itmess The goal of the analysis
in this paper was to obtain stylized facts of Belgrade stoahange series and com-
pare its stochastic behavior with known behavior of stoathexge series of developed
economies. The stylized facts are base for choosing thederies models that can be
used for estimating volatility and computing VaR as a measfirisk. The relative perfor-
mance of several alternative VaR models on Belgrade Stockd&hge index BELEX15
was investigated by means of Kupiec likelihood ratio test.

The paper is organized as follows. Section 2 describes tsie bancept of VaR and
presents various models for VaR. In 2.1 dynamic EWMA modedgpaesented, while in
2.2 GARCH type models and POT model for extreme values aréowd. Evaluating
VaR model adequacy is given in Section 3. Section 4 presempirieal results obtained
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by applying described models to stock index BELEX15. Someckaing remarks are
given in Section 5.

2 VaR models

Let P, be the price of a financial asset on day k-day VaR of a long position on day
is defined by
P (P, — Py < VaR(t,k,a)) = «a, (2.2)

wherea € (0,0.5). Similarly, ak day VaR of a short position is defined by
P (P, — P,y > VaR(t, k,a)) = . (2.2)

Holder of the long position suffers a loss whéan P, = P, — P,_;,, < 0, while a holder

of a short position loses whely, P, > 0. Given a distribution of the continuously com-
pounded returtog(P;) — log(P,_x), VaR can be determined and expressed in terms of a
percentile of the return distribution (Dowd, 2002)glfis theath percentile of the return,
then VaR of a long position can be written as

VaR(t, k,a) = (et — 1)P_y. (2.3)

From (2.3) it can be seen that good VaR estimates can be mddvith accurate forecasts
of the percentileg,,. So, in further we consider only VaR for return series.
We define the 1-day logarithmic return (in further text juetrn) on day as

re = log(F) — log(F-1) (2.4)

and denote the information up to timéy F;. That s, for a time series of returng VaR
is such that
P(’f’t < VaR, ‘ ft—l) = Q. (25)

From this, itis clear that finding a VaR essentially is the sa® finding d00a% condi-
tional quantile. For convention, the sign is changed toédwegative number in the VaR.
Formally, it is possible to model process for the stock retuy as follows

Ty =y t €y € =0y, e = M(-Ft—l | ‘9)7 Utz = Uz(ft—l | 9)7 (2-6)

where F;_; is the information set available at tinte- 1, and whereu, ando are func-
tions known up to a finite-dimensional vector of parametdunesd. In this modele, is
the innovationg; is unobservable volatility ang, is a martingale difference sequence
satisfying

E(m | Fi1,0) =0, V(g | Feor,0) = 1. (2.7)

As a consequence, we have
E('f’t | ft_l,ﬁ) = ¢, V('f’t ‘ ft_l,ﬁ) = O'tz, €t ‘ ft—l ~ D(0,0’?), (28)

whereD(0, o?) represents a conditional distribution with zero mean anihnaes?.
If the return can be modeled by a parametric distributiorkR \éan be derived from
the distributional parameters. Unconditional parametiadels sefu; = p ando, =
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o, thereby assuming that the returns are i.i.d. (independentically distributed) with
density given by

o =210 (222). 29)

g

with f, being density function of the distribution of and f being density function of
the standardized distribution of.

RiskMetrics (Risk Metrics, 1996) is the most simple, bull sihe of the most used
models to compute VaR and is considered in 2.1. Most of the Mafhodologies are
GARCH type models. In 2.2 GARCH and IGARCH models are appiegether with
POT method of extreme value theory (EVT). Both conditionaimal and conditional
t-error distributions are considered.

2.1 Dynamic VaR using EWMA

Since the risk management group at J.P. Morgan developeRigtkdletrics model for
measuring VaR in 1994, RiskMetrics has become a benchmarknéasuring market
risk. The RiskMetrics model (Risk Metrics, 1996) assumegraachic EWMA model for
the variance,

of = Xop  + (1= N\)(r; — p)*. (2.10)

To initialize the recursive variance equations, the samalt&nce is used

~ 1 .
ol = —= > (ri—n)’, (2.11)
i=1

where, following RiskMetrics, we set the smoothing paranatto 0.94. The model
(2.10) can be written as an exponentially weighted moviregyaye (EWMA) of the past
squared innovations or returns,

Ut2 = (1 - )‘><T§—1 + )‘7’?—2 + )‘27}2—3 + - ) (2.12)

The smaller the smoothing parameter, the greater the wisigitten to recent return data.

Model with normal conditional distribution
If we assume that the conditional distribution of returnsasmal with mean zero,
Ty =€, €| Fio1~ N(Ovatz)v (2.13)

then the 1-day VaR on dayis reduced tq1 — %) P,_; or approximately—o;z,P;_1,
wherez, is the100ath percentile ofN (0, 1). The dynamic VaR for return, at timet for
long trading positions is given by

VaRl"™ = i + 2,6, = i+ &~ ()7, (2.14)
and for short trading positions it is equal to

VaR{"™" = i + 2105, = [i — &} ()3 (2.15)
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Model with ¢ conditional distribution

If we assume that the conditional distribution of returnStisdent with mean zero, then
the 1-day VaR for long trading positions is calculated as

VaRl™™ = [i + sto, 6, = i+ T, ()5,

(2.16)

v

and for short trading positions it is equal to

-2
VaR:o = fi + sty_a06) = i — T ()60 | —2, (2.17)
1%

with st,, being the left quantile a&% and 7" being the distribution function for the
standardized Student distribution with estimated numbdegrees of freedom. For the
same distributiorst; _, ,, is the right quantile atv% and the equalityt,, = —sti_.,
holds.

2.2 Dynamic VaR using GARCH type models and EVT

To obtain value-at-risk estimates two-step estimatiorc@dore called conditional EVT
is followed (McNeil and Frey, 2000). First a GARCH-type mbdgefitted to the return
data by quasi-maximum likelihood. Then, we consider thaddedized residuals to be
realizations of a strict white noise process and use extraiue theory (EVT) to model
the tail of innovations using EVT and estimate the quantfesnovations. Using ARMA
and GARCH type models fa; it is possible to get the conditional meap conditional
variances? and innovation series. Then, Extreme Value Theory (EVT) calculations are
applied on the standardized innovations.

ARMA model for

Time-varying conditional mean can be captured by ARMA model

p q
MUt = Qg -+ Z ;T + Z bjet_j (218)
i=1 j=1
with ¢ = 1,...,7. Family of ARMA models are suitable for modelling covarianc

stationary processes. Zero-mean ARMA{() model is given by

P

q
Xt = Z aiXt_i + &+ Z bjEt—ja (219)

=1 Jj=1

where(e;) is white noise, also known as the process of innovationsce3foX;) is an
ARMA process with mean if the centered seriesX; — p) is a zero-mean ARMA pro-
cess. If the innovations are i.i.d., or themselves form igthtrstationary process, then
the ARMA process will also be strictly stationary. ARMA pess is causal iX; has
representation of the form

X = Z Vi€—i, (2-20)
i=0
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where coefficientg); are absolutely summable. Every causal ARMA process is eovar
ance stationary (see Proposition 4.9 in McNeil et al., 2005)

GARCH model for o2

By GARCH type models we modef. The GARCHp, ¢) model for integerg > 0 and
q > 0is defined as
0 = w+ B(B)o? + a(B)e, (2.21)

wherew > 0, « andg are lag polynomials,
a(B)=ayB+---+a,B? p[(B)=p/hB+ -+ p,B?,

witho; > 0fori=1,...,¢gandg; > 0for j = 1,...,p. The variance equation (2.21) of
the GARCHY, ¢) process can be expressed as

) w a(B)
o = + €. 2.22
P 1-8(B) 1-8(B)" (2.22)
Note that the RiskMetrics model can be viewed as a special@@a@SARCH(1,1) model

with 4 = w = 0 and\ = 3, = 1 — «;. Also, the variance equation of the GARCH model
can be written in ARMA form fok?,

(1-a(B) = B(B))ef =w+ (1= B(B)ve, v =e—0f, (2.23)

wherev, are martingale differences and usually are interpreteti@snovations to the
conditional variance.

The GARCH model was proposed by Bollerslev (1986) and it essfully captures
several characteristics of financial time series, such agyh&iled returns and volatility
clustering. In empirical investigation we estimate VaR determine the density of the
one-day ahead VaR under the GARCH(1,1) dynamics with botimidband Student-
t disturbances. It is known (Bollerslev, 1986) that the GAR@rocess is covariance
stationary if and only itv; + 3, < 1.

IGARCH model for o?

In some applications of GARCH models, the estimated lagrmotyial1 — «(B) — 5(B)

is found to have a significant unit root. Factoring this palymal as(1 — B)¢(B), where
¢(B) has all the roots outside the unit circle, Engle and Boler¢lL986) proposed the
following integrated GARCH, or IGARCHY ¢) model

#(B)(1 - B)g =w+ (1= B(B))v, v =¢ —o0p, (2.24)

where
$(B)=1-¢: B~ — ¢,B.
The variance equation can be rewritten as

e (1-B-sB),
Tiopm T i-am) (229

2
Oy
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Whenp = 0, the IGARCH(1,1) model reduces to RiskMetrics model with= £;.
Therefore, IGARCH(1,1) can be at least as good model as Ragkdg is. In addition,
parametep; can be estimated from the data. Also, assuming 0 in RiskMetrics may
generate biased VaR estimates. GARCH type models allomastin of paramete.

Estimation of GARCH-type models

For the error terms, two conditional distributiond (0, o2) were considered: (1) normal
distribution N (0, 02); (2) a standardized distribution with v degrees of freedom and
variances?. The parameters under GARCH and IGARCH models with norméltan

distributed errors can be estimated by the maximum likelihmethod. Given a time
series of returng; over a period of T days,t(= 1,...,T) the maximum likelihood

estimate ofx under any GARCH-type model is the sample mean

1 T
ﬁ = ? Z Tt.
t=1
With . = 1, in the case of normal errors, the log-likelihood functien i
1 1 < G
== — = Ino? + -4 :
ln = —5Tn(2m) — ; [nat + 03} : (2.26)
wheree; = r; — 1 and wherer; is givenin (2.21).
Similarly, the log-likelihood function undererrors is given by
T(v/2+1/2) 1 < [ , ( G )}
l;, =TIn - = Ino; +(v+1)In|14+——= ||, (2.27
: Jaw —2)T(v/2) 2 ; T (v —2)o? (2.21)
whereos? is given in (2.25). Once the maximum likelihood estimateshef model pa-
rameters in GARCH and IGARCH models are obtained, we carcé&stehe 1-day ahead
variances?.

The POT method for residuals

We fit GARCH(1,1) model ta;, to get the estimates for conditional mean conditional
variances? and innovation;, series. Then, Extreme Value Theory (EVT) calculations are
applied on the estimates of standardised innovatip(Embrechts et al., 1997).

Suppose we have a sequence of i.i.d. observations. ., X,, from an unknown
distribution function F. We are interested in excess losses a high threshold. We
define the distribution function of the excesses over thestiwldu by

F(x+u)— F(u)
1—F(u)
wherez, is right endpoint of the distributio’. For modelling distribution off}, one

can use the generalized Pareto distribution (GPD) whiclsiglly expressed as a two
parameter distribution with distribution function

1=+ &xfa)THE i EA£D
Ceal®) = {1 —exp(—x/a) if £ =0.

Fz)=P(X—u<z|X >u)= 0<z<zy—u, (2.28)

(2.29)
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This distributional choice is motivated by a theorem whitdtes that, for a certain class
of distributions, the GPD is the limiting distribution fdne distribution of the excesses.
Using trial-and-error, a negative threshold is choosetgvb&vhich the empirical mean
excess function of the tail distribution of standardiseslideals starts increasing (in ab-
solute value) linearly. This is called threshald Let the number of points in the tall
distribution corresponding to ben,. We fit a Generalised Pareto Distribution (GPD) to
the tail. For points in the tail of the distribution it can beted that

F(z)=(1-P(X <u))F,(zr —u)+ P(X <u). (2.30)
It is now known thatF,(x — u) can be estimated bg¢ ,(z — ) for u large. We can

also estimate’?(X < w) from the data by the empirical distribution functiéf(u). As
F,(u) =1—mn,/n, forz > u we have tail estimate

_ n oy "V
F(a) = (1 = Fo(w)Geale — w) + Fyfu) = 1 - = <1 o - “) . (2.31)

The POT estimator of, is obtained from (2.31) by solving equatid?‘(fp) = pand

substituting unknown parameters of the GPD by estimaiasda. As VaR, = z,, the
VaR for the tail of the standardised residuals is found usegexpression

- £
Vaanfp=u+%<<ﬁ(1—p)) —1). (2.32)

VaR by conditional EVT

Once the one-step-ahead forecasts of the conditional pyesmd conditional variance;
arer computed conditionally on past informatidpand VaFQf"g and Valﬁ’w’“t estimated,
VaR for returns can be calculated. The dynamic VaR for retyat time¢ computed in
t — 1 for long trading positions is given by

VaRy™ = [i, — 5,VaR.™" (2.33)
and for short trading positions it is equal to

VaR;"" = [i, + 5, VaR;""". (2.34)

3 Evaluating VaR model adequacy

Various methods and tests have been suggested for evaglatiy model accuracy. Per-
formance of the VaRs for different pre-specified lemetan be evaluated by computing
their failure rate for the price series. Statistical adeguzould be tested based on Ku-
piec likelihood ratio test which examines whether the ageraumber of violations is
statistically equal to the expected rate.
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3.1 Failure rate

The failure rate is widely applied in studying the effectiess of VaR models. The defi-
nition of failure rate is the proportion of the number of tisrtbe observations exceed the
forecasted VaR to the number of all observations. If thaifaikate is very close to the
pre-specified VaR level, it could be concluded that the VaRlehts specified very well.

3.2 Kupiec likelihood ratio test

For the purpose of testing VaR models more precisely, thad€upR test is adopted to
test the effectiveness of our VaR models. A likelihood raést developed by Kupiec
(21995) will be used to find out whether a VaR model is to be teor not. The number
n of VaR violations in a sample of siZE has a binomial distributiom ~ B(T',p). The
failure rate isn/T" and, ideally, it should be equal to the left tail probabijlity The null
H, and alternativé?; hypotheses are:

n n
Hy f:]% Hy f#]% (3-1)

where
P = P(’f’t < VaRp ‘ ft—l) (32)

for all t. Then, the appropriate likelihood ratio statistic is

LR =2[log (¢"(1—q)" ") —log (p"(1 —p)" )], (3.3)

whereq = n/T. This likelihood ratio is asymptotically? distributed under the null that
p is the true probability the VaR is exceeded. With a certainfidence level we can
construct nonrejection regions that indicate whether aghisdo be rejected or not.

Therefore, the risk model is rejected if it generates tooyramntoo few violations.
However, Kupiec test can accept a model which incurs viamtatiustering but in which
the overall number of violations is close to the desired cage level. For other ways of
testing VaR models see Christoffersen (1998).

4 Empirical Results

4.1 Data

The data used in the paper are the market index BELEX15 of #igr&de Stock Ex-
change and are obtained from the BELEX website. BELEX15lifgpindex of the Bel-
grade Stock Exchange, describes the movement of prices afdist liquid Serbian shares
(includes shares of 15 companies) and is calculated inireal t
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Figure 1: Evolution of BELEX15 daily index (on the left) and daily retu(on the right) for
period from 4 October 2005 to 25 December 2009.
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Figure 2: Standard deviation, skewness and kurtosis for BELEX15 ygmiot

The sample period covers 1067 trading days from 4 Octobeb 280@5 December
2009. The plots of the BELEX15 index and returns are givenguife 1. In this section,
the returnr, is expressed in percentages, r.e= 100(log P, — log P,_1).

Results of Augmented Dickey-Fuller test with exogenousstamt, linear trend and
autocorrelated terms of order selected by Schwarz infoomatiterion, applied on series
of daily index, confirm the presence of a unit root (ADFE 1461, p = 0.9194). Null
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hypothesis of presence of unit roots for returns is reje@&r-=—22.0975, p = 0.0000).
Visual inspection of returns shows that the variances changr time around some level,
with large (small) changes tending to be followed by largedl) changes of either sign
(volatility tends to cluster). Periods of high volatilityae be distinguished from low
volatility periods. In order to check if moments of order taafour are finite, up to
date samples are used to calculate standard deviationnsksvand kurtosis (Figure 2).
It is evident that after approximately 800 observationséhseample moments became
stable, which supports conclusion about finithess of cpmeding population values.

Descriptive statistics

Summary statistics of returns are given in Table 1. The nesaries exhibit a positive
skewness (0.1752) and high excess kurtosis (11.3420gatidg that the returns are not
normally distributed. These findings are consistent withigbf the normal QQ plot, box-
plot, histogram and empirical density function (Figure B)so, from the Q-Q plot and
box plot it is obvious that outliers and extreme values cdatsils.

Table 1: Descriptive Statistics of BELEX 15 index returns.

mean median | min max variance| skewness kurtosis
BELEX 15 || -0.0433| -0.0326| -10.8614| 12.1576| 3.3144 | 0.1752 11.3420

Normal Q—-Q Plot Box plot
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Figure 3: Emirical distribution for BELEX15 returns.



90 Emilija Nikoli¢-Pori¢ and Dragamori¢

Table 2: Statistical tests for distribution of returns.

Tests Test statistcs p-values
Jarque-Bera test 3099.259| 0.0000
Doornik i Hansen test for independent observations 282.9798| 0.0000
Doornik i Hansen for weakly dependent observatipns 105.3553| 0.0000
D’Agostino test of skewness 1.5389| 0.1238
D’Agostino omnibus test 183.2526| 0.0000
Anderson-Darling test 21.7437| 0.0000
Cramer-von Mises test 3.8743| 0.0000
Lilliefors test 0.0934| 0.0000
Shapiro-Wilk test 0.8975| 0.0000
Cabilio-Masaro test of symmetry 0.3135| 0.7539
Mira test 0.3131] 0.7542
MGG test 0.3818| 0.7026

The significant deviation from normality is confirmed by megaf statistical tests
that are based on the fact that skewness and excess kunedista equal to zero for
normal distribution (Jarque-Bera test, D’Agostino ommsibest, Doornik i Hansen test).
The same conclusion is for the tests based on density fursc{ddnderson-Darling test,
Lilliefors test) or properties of ranked series (Shapirdktest). Several applied tests
of symmetry (D’Agostino test of skewness, Cabilio-Masast tof symmetry, Mira test,
MGG test) are consistent in conclusion that asymmetry afrnstis not statistically sig-
nificant (Table 2).

Stylized facts

Due to a large body of empirical evidence, stock returns serees display stylized facts
such as volatility clustering, high kurtosis, low startengd slow decaying autocorrelation
function of squared returns, asymmetric reaction on 'gant 'bad news’ and many
others.

Sample Autocorrelation Function (ACF)
T T T

14

2r 081

10r
0.6

0.4

Sample Autocorrelation

0.2

|l | 11 11

I 0.2 i i i
100 200 300 400 500 600 700 800 900 1000 0 5 10 15 20

Lag

Figure 4: Absolute returns and their autocorrelation function.
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Figure 5. Square returns and their autocorrelation function.

To observe conditional volatility in BELEX indexes abs@uir squared returns are
used. In Figure 4 and Figure 5 absolute and squared retwgrshawn with their autocor-
relation functions. These plots show variation in condisibvolatility. Thus, the use of
GARCH-type models for the conditional variance is justifiédso, slow decay of auto-
correlation in absolute and squared returns is evident treautocorrelation plots. This
may be interpreted as a sign of long-range dependence aiaxi

4.2 Dynamic VaR using EWMA

The dynamic VaR values using EWMA and Normal distributiosuasption for long
position and two values af are given in Figure 6. Figure 7 gives a comparison of a
Normal andt conditional VaR fora = 0.05. The parameter = 3.01 of ¢ distribution is
estimated by fitting distribution to returns using maximum likelihood method.
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Figure 6: EWMA Normal VaR fora. = 0.1 (dotted line) andv = 0.05.



92 Emilija Nikoli¢-Pori¢ and Dragamori¢

15
10 b

5r i

m-uwwxw"wm’ww M“ WW

_10 [ -

o

-15 I I I I I I I I I I
100 200 300 400 500 600 700 800 900 1000

Figure 7: EWMA VAR Normal (dotted line) and for o = 0.05.

Table 3: Mean dynamic VaRs using EWMA, violations and failure rates.

Dynamic VaR
a | 10% | 5% | 2% | 1% | 05% | 01%
Mean Value at risk
EWMA-N | -2.099 | -2.686 | -3.347 | -3.788 | -4.192 | -5.024
EWMA-t | -1.555| -2.224| -3.277 | -4.266 | -5.480| -9.560

Violations
EWMA-N 83 44 25 18 13 9
EWMA-t 145 72 28 13 8 1

Failure rates
EWMA-N | 0.0778| 0.0412| 0.0234| 0.0168| 0.0121| 0.0084
EWMA-t | 0.1360| 0.0675| 0.0262| 0.0121| 0.0075| 0.0009

Table 4: Kupiec test for EWMA models.

Dynamic VaR
10% 5% 2%
LR p LR p LR p
EWMA-N | 6.2355 | 0.0125| 1.8114| 0.1783| 0.6144 | 0.4331
EWMA-¢ | 13.9765| 0.0001| 6.2525| 0.0124| 1.9461 | 0.1630

1% 0.5% 0.1%
LR p LR p LR p
EWMA-N | 4.2306 | 0.0397| 7.8971| 0.0049| 22.5909| 2.0e-6
EWMA-t | 0.4849 | 0.4862| 1.1641| 0.2806| 0.0041 | 0.9484
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The mean values of dynamic 1-day VaRs, the number of VaR tiwola for entire
sample and corresponding failure rates for differeate reported in Table 3. Far> 2%
failure rates obtained with assumption of normality aresefoto«, while for o < 2%
closer toa are failures of the model that assuntedistribution. Results of Kupiec test
support this conclusion (Table 4). Risk model EWMA-N is auteel fora = 5% and
a = 2%, while EWMA-t is accepted forv < 2%.

4.3 Dynamic VaR using GARCH type models and EVT

We fit GARCH(1,1) model to; to get the conditional meaf, conditional variance?
and innovatiorg; series. Then we apply Extreme Value Theory (EVT) calcutetion the
standardised innovationg.

ARMA - GARCH type models fitting

A common empirical finding is that the sum of GARCH coefficeat+ [ is close to
1 implying persistent volatility. In this case the impactpast information on future
volatility forecasts decays very slowly.

Persistence in variance may be overstated because of tsterece of deterministic
structural shifts in the model. In order to alleviate effe€tsudden changes and time
shifts on estimates of GARCH parameters, returns are stdizeéd with up to point mean
and standard deviation.

Estimates of ARMA-GARCH parameters, its standard dewvntiand corresponding
t values are obtained by an Ox Package for GARCH models (LaarehPeters, 2002)
and presented in the Table 5. In the same table are presar@ugter estimates of GPD
distribution fitted to tail distribution of standardized de residuals. The other approach
was to model returns by means of ARMA+IGARCH model and theBRD distribution
as in the previous case (Table 6).

Table 5: Parameter estimates of ARMA+GARCH with Normal and Studenbvations.

ARMA + GARCH
Normal distribution t distribution
Coefficient St. error t-valug Coefficient St. error t-valug
C(m) -0.0516  0.02589 -1.993F -0.0674  0.02340 -2.8833
AR(1) 0.5461 0.0739 7.3870 0.5687 0.0704  8.0709
MA(1) -0.2232 0.0945 -2.360f -0.2577 0.0873 -2.9496
C(V) 0.1931 0.0332 5.8150 0.1757 0.0443 3.9582

ARCH(1) 0.3516 0.0374 9.3996 0.3733 0.0642 5.8134
GARCH(1)| 0.5631 0.0369 15.2281 0.5713 0.0538 10.604
v — — — 5.7290 1.0972  5.22146
GPD shape| 0.1278 - - 0.1777 - -
GPD scale | 0.5254 - - 0.4923 - -

N
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Table 6: Parameter estimates of ARMA+IGARCH with Normal and Studenbvations.

ARMA + IGARCH
Normal distribution t distribution

Coefficient St. error t-value Coefficient St. error t-value
C(M) 0.0494 0.0510 0.9687 -0.0086 0.0497 -0.1728
AR(1) 0.5409 0.0746 7.246(0 0.59081 0.0821  7.1960
MA(1) -0.2145 0.0866 -2.4770 -0.2686 0.0969 -2.7700
C(V) 0.1448 0.0327 4.418(0 0.1393 0.0434 3.2110
ARCH(1) 0.4075 0.0447 9.1140 0.3934 0.0599 6.5590
GARCH(1)| 0.5925 - - 0.6065 - -
v - - - 5.7666 0.9356 6.1630
GPD shape| 0.2376 - — 0.2719 - —
GPD scale 0.4675 - - 0.4570 - -

VaR estimation results

Dynamic VaRs for returns assuming long trading positiontavavalues of are shown
in Figure 8.
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Figure 8: Dynamic VaR for BELEX15 daily returns where= 0.1 (on the left) and
« = 0.001 (on the right).

Table 7: Mean VaR estimates.

GARCH type models with POT
a 10% 5% 2% 1% 0.5%  0.1%
GARCH-N | -1.898 -2.342 -3.001 -3.571 -4.200 -5.989
GARCH+ | -1.937 -2.372 -3.044 -3.640 -4.323 -6.3[L7
IGARCH-N | -1.918 -2.361 -3.072 -3.725 -4.497 -6.8//4
IGARCH-t | -1.917 -2.358 -3.078 -3.750 -4.557 -7.106
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Table 8: VaR failure rates.

GARCH type models with POT
a 10% 5% 2% 1% 0.5%  0.1%
GARCH-N | 0.0891 0.0516 0.0215 0.0103 0.0065 0.0018
GARCH-+ | 0.0873 0.0507 0.0215 0.0103 0.0065 0.0018
IGARCH-N | 0.0928 0.0506 0.0206 0.0112 0.0065 0.0009
IGARCH-t | 0.0947 0.0497 0.0215 0.0112 0.0065 0.0009

VaR mean values of dynamic VaR for all chosen valuea d&fased on four applied
GARCH type models with POT are presented in Table 7. Table@&sghe sample failure
rates for differentn. The discrepancy between the failure rates aisddepends ony,
so none of applied models is of superior performance. Theesamclusion holds if the
number of violations of VaR values is considered. Accordm#upiec test (Table 9) all
applied models are acceptable.

Table 9: Kupiec test for GARCH type models with POT.

GARCH type models with POT

10% 5% 2%
LR p LR p LR p
GARCH-N | 1.4504| 0.2284| 0.0599| 0.8066| 0.1349| 0.7133
GARCH¢ | 1.9777| 0.1596| 0.0110| 0.9162| 0.1349| 0.7133
IGARCH N | 0.6152| 0.4328| 0.0096| 0.9217| 0.0219| 0.8823
IGARCH ¢ | 0.3320| 0.5644| 0.0017| 0.9663| 0.1317| 0.7166
1% 0.5% 0.1%
LR p LR p LR p
GARCH-N | 0.0114| 0.9146| 0.4816| 0.4876| 0.6515| 0.4195
GARCH¢ | 0.0114| 0.9146| 0.4816| 0.4876| 0.6515| 0.4195
IGARCH N | 0.1635| 0.6859| 0.4784| 0.4891| 0.0041| 0.9484
IGARCH ¢ | 0.1635| 0.6859| 0.4784| 0.4891| 0.0041| 0.9484

5 Concluding remarks

The purpose of this paper has been to make a comparativedttigypredictive ability of

VaR estimates for BELEX15 index for various estimation taghes. First, the data are
analysed in order to get an idea of the stylized facts of stoakket returns. Throughout
the analysis, a holding period of one day was used. Sevelaé\&-Risk models were
presented and empirically evaluated. ARMA(1,1) model wseduto remove the autore-
gression from the data. Various values for the left tail ptabty level were considered,
ranging from the very conservative level of 0.01 percenhwléss cautious 10 percent.

Evaluation of applied methods was done by means of backefstr the whole sam-
ple. It was not possible to perform out of sample analysisabse of the lack of data.
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Based on the analysis in this paper, the following conchsmmould be made.

1. In the case of BELEX15 index asymmetric behaviour was rsaiovered, although
it is typical for many stock return indexes. Autocorrelatifunction of absolute
and squared returns exhibits very slow decay that is anatidic of variance long
memory.

2. Return distribution is characterized by high frequenityadues close to zero which
is the result of smaller stocks trading volume compared débveloped markets.

3. The dynamic VaR model using EWMA assuming the normal ithistion of inno-
vations is accepted far = 0, 05 anda = 0.02, while with ¢ distribution is accepted
for a < 0.02.

4. The most important characteristic of BELEX15 index resuior modelling Value-
at-Risk is volatility clustering. Modelling the volatijitwith GARCH type models,
combined with POT method for residuals, reduces the avéraBe

5. IGARCH models cannot outperform GARCH type models in YfaR evaluations,
so it seems that long memory volatility is not crucial in Vagtimation.

6. VaR models obtained using heavy tailed and asymmetrigliitions, especially
those based on EV approach, should be more capable of capthe true level of
risk since they focus on the tail regions of the return dsition.

7. Besides Kupiec's LR test which is based on frequency ddres, the accuracy of
VaR model should be evaluated by more sensitive test thasumesithe frequancy,
size and independance of losses.

Acknowledgment

The first author is supported in part by the Ministry of Edimatand Science of the
Republic of Serbia (grant no. 43007).

References

[1] Angelidis, T., Benos, A., and Degiannakis, S. (2004)eTUse of GARCH models
in VaR estimationSatistical Methodology, 1(2), 105-128.

[2] Barndorff-Nielsen, O.E. (1997): Normal inverse Gaassdistributions and the
modelling of stock returnsScandinavian Journal of Statistics, 24, 1-13.

[3] Bollerslev, T. (1986): Generalized autoregressiveditonal heteroskedasticity.
Journal of Econometrics, 31, 307327.

[4] Christensen, B. J. and Nielsen, M. O. (2007): The efféttiog memory in volatility
on stock market fluctuationBeview of Economics and Statistics, 89, 684-700.



Dynamic Value at Risk Estimation for BELEX15 97

[5] Christoffersen, P. (1998): Evaluating interval forstsal nter national Economic Re-
view, 39, 841-862.

[6] Poric, D. and Nikolicbori€, E. (2006): Risk analysis using GARCH modea-
tistical Review, LV, 36-47 (in Serbian).

[7] Bori€, D. and Nikolicboric, E. (2010): Return distribution and value at riski-est
mation for BELEX15. Accepted for publication MJJOR.

[8] Dowd, K. (2002):Measuring Market Risk. John Wiley& Sons Ltd., New York.

[9] Duffie, D. and Pan, J. (1997): An overview of value at ri$ke Journal of Deriva-
tives, 4, 7-49.

[10] Embrechts, P., Kluppelberg, C., and Mikosch, T. (199F%)Jodelling Extremal
Events. Springer, Berlin.

[11] Engle, F. and Bollerslev, T. (1986): Modelling the pstance of conditional vari-
ancesEconometric Reviews, 5, 1-50.

[12] Fama, E. (1965): The behaviour of stock pricsirnal of Bussines, 47, 244-280.

[13] Gencay, R. and Selcuk, F. (2004).. Extreme valuehand Value-at-Risk: Relative
performance in emerging marketsternational Journal of Forecasting, 20, 287-
303.

[14] Giot, P. and Laurent, S. (2003): Value-at-Risk for laargd short trading positions.
Journal of Applied Econometrics, 18, 641-664.

[15] Huang, Y.C and Lin, B-J. (2004): Value-at-Risk anadyfir Taiwan stock index fu-
tures: Fat tails and conditional asymmetries in return uations.Review of Quan-
titative Finance and Accounting, 22, 79-95.

[16] Jorion, P. (1997)Value at Risk: The New Benchmark for Controlling Market Risk.
McGraw-Hill.

[17] Kovacic, Z. (2008): Forecasting volatility: evides from the Macedonian stock
exchangelnternational Research Journal of Finance and Economics, 18, 182-212.

[18] Kuester, K., Mittnik, S. and Paolella, M.S. (2006): Walat-Risk prediction: A
comparison of alternative strategidsurnal of Financial Econometrics, 4, 53-89.

[19] Kupiec, P. H. (1995): Techniques for verifying the a@my of risk measurement
models.Journal of Derivatives, 2, 73—-84.

[20] Laurent, S. and Peters, J. P. (2002): G@RCH 2.2: An Okauge for estimating
and forecasting various ARCH modelsurnal of Economic Surveys, 16, 447-485.

[21] McAleer, M. and Medeiros, M. C. (2008): Realized vdiagi A review. Economet-
ric Reviews, 27, 10-45.



98 Emilija Nikoli¢-Pori¢ and Dragamori¢

[22] McNelil, A. J., Frey, R. and P. Embrechts (2008antitative Risk Management -
Concepts, Techniques and Tools, Princeton University Press, Princeton.

[23] McNail, A. and Frey, R. (2000): Estimation of tail-réda risk measures for het-
eroscedastic financial times series: An extreme value apfrdournal of Empiri-
cal Finance, 7, 271-300.

[24] RiskMetrics Group, (1996)RiskMetrics - Technical Document, Morgan J.P.

[25] Sarma, M., Thomas, S., and Shah, A. (2003): Selectiova&f modelsJournal of
Forecasting, 22, 337-358.

[26] So, M.K.P. and Yu, P.L.H. (2006): Empirical analysis@ARCH models in value
at risk estimationJournal of International Markets, Institutions and Money, 16,
180-197.

[27] Zivkovi€, S. (2007):Measuring market risk in EU new member states. Paper pre-
sented at the 13th Dubrovnik Economic Conference, Dubkp@rioatia.

[28] Zivkovi¢, S. (2007): Testing popular VaR models in EU newmnber and candidate
statesThe Proceedings of Rijeka Faculty of Economics, 25, 325-346.



