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Dynamic Value at Risk Estimation for
BELEX15

Emilija Nikoli ć--Dorić1and Dragan-Dorić2

Abstract

This paper uses RiskMetrics, GARCH and IGARCH models to calculate daily
VaR for Belgrade Stock Exchange index BELEX15 returns basedon the normal and
Studentt innovation distribution. In the case of GARCH and IGARCH models VaR
values are obtained applying Extreme Value Theory on the standardized residuals.
The Kupiec’s LR statistics was used to test the accuracy of risk measurement mod-
els. The main conclusions are: (1) when modelling value-at-risk it is very important
to have a good model for volatility of stock returns; (2) bothstationary and integrated
GARCH models outperform RiskMetrics in estimating VaR; (3)although long mem-
ory volatility is present in the BELEX15 index, IGARCH models cannot outperform
GARCH type models in VaR evaluations for this index.

1 Introduction

Value at Risk (VaR) is a commonly used statistic for measuring potential risk of economic
losses in financial markets (Jorion, 1997; Duffie and Pan, 1997; Dowd, 2002; Giot and
Laurent, 2003). Using VaR financial institutions can calculate the minimum amount that
is expected to lose with a small probabilityα over a given time horizon k, usually 1-day
or 10 days. Typical values forα are 0.1, 0.05 and 0.01. Empirical VaR calculations
involve the estimation of lower-order quantiles, for example 10%, 5% or 1% of the return
distribution. From a statistical viewpoint, the VaR is nothing else but a given percentile of
the profit and loss (P&L) distribution over a fixed horizon. While VaR concept is easy to
understand, its measurement is a very challenging statistical problem. Risk analysis can
be done in two stages. First, we can express profit-and-loss in terms of returns and then
statistically model the returns and estimate the VaR of returns by computing appropriate
quantile.

The main problem is related to the estimation of distribution that adequately describes
the returns (-Dorić and Nikolić--Dorić, 2010). It is well known that the probability distribu-
tion of stock returns is fat tailed, which means that extremeprice movements occur much
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more often than predicted by a Gaussian model (Fama, 1965). The empirical finding that
series of returns often exhibit volatility clustering has led to the development of a variety
of univariate time series methods for volatility forecasting.

The simplest approach to volatility forecasting is to estimate the variance as a simple
moving average of past squared shocks. The popular GARCH class of models (Boller-
slev, 1986) rely on the assumption that the shape of the conditional distribution of returns
is fixed over time. The most recent approach to volatility modeling and forecasting is a
concept named realized volatility (McAleer and Medeiros, 2008). Models of the volatility
allow considering conditional distributions of returns incalculating VaR (Angelidis et al.,
2004; So and Yu, 2006;-Dorić and Nikolić--Dorić, 2006). Besides the heavy-tailed issue,
asymmetry distribution is also often observed in financial time series. This property is
very important in risk analysis where the long and short position investments over a given
time period relied heavily on the lower and upper tails behaviours. Barndorff-Nielsen
(1997) implemented skewed distributions that allowed upper and lower tails to have dis-
similar behaviours. Also, recent empirical studies found that many financial return series
may exhibit long memory (Christensen and Nielsen, 2007).

In a VaR context, precise prediction of the probability of anextreme movement in a
value is essential for risk management. As extreme movements are related to the tails
of the distribution of the underlying data generating process, instead of forcing a single
distribution for the entire sample, it is possible to investigate only the tails of the return
distributions. One such approach to estimating value at risk is the extreme value theory
(EVT) which provides some assistance in improving the traditional VaR models (Em-
brechts et al., 1997; Gençay and Selçuk, 2004).

In recent years there has been a lot of research on VaR estimation of different return
series (Giot and Laurent, 2003; Sarma et al., 2003; Huang andLin, 2004; Kuester et al.,
2006), but research papers dealing with VaR calculation in the financial markets EU new
member states are very rare.Žiković (2007a) applied VaR methodology and historical
simulation on the Croatian stock market indexes in an effortto measure Value-at-Risk.
He also (̌Ziković, 2007) analysed VaR models for ten national indexes: Slovenia - SBI20,
Poland - WIG20, Czech Republic - PX50, Slovakia - SKSM, Hungary - BUX, Estonia -
TALSE, Lithuania - VILSE, Latvia - RIGSE, Cyprus - CYSMGENL,Malta - MALTEX
and concluded that use of common VaR models to forecast VaR isnot suitable for transi-
tion economies. Also, there is a study on forecasting volatility of the Macedonian Stock
Exchange indexes (Kovačić, 2008).

As Serbia is expected to join the European Union, the stylized facts of its stock market
could be of interest to potential domestic and foreign investors. The goal of the analysis
in this paper was to obtain stylized facts of Belgrade stock exchange series and com-
pare its stochastic behavior with known behavior of stock exchange series of developed
economies. The stylized facts are base for choosing the timeseries models that can be
used for estimating volatility and computing VaR as a measure of risk. The relative perfor-
mance of several alternative VaR models on Belgrade Stock Exchange index BELEX15
was investigated by means of Kupiec likelihood ratio test.

The paper is organized as follows. Section 2 describes the basic concept of VaR and
presents various models for VaR. In 2.1 dynamic EWMA models are presented, while in
2.2 GARCH type models and POT model for extreme values are combined. Evaluating
VaR model adequacy is given in Section 3. Section 4 presents empirical results obtained
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by applying described models to stock index BELEX15. Some concluding remarks are
given in Section 5.

2 VaR models

Let Pt be the price of a financial asset on dayt. A k-day VaR of a long position on dayt
is defined by

P (Pt − Pt−k ≤ VaR(t, k, α)) = α, (2.1)

whereα ∈ (0, 0.5). Similarly, ak day VaR of a short position is defined by

P (Pt − Pt−k ≥ VaR(t, k, α)) = α. (2.2)

Holder of the long position suffers a loss when∆kPt = Pt − Pt−k < 0, while a holder
of a short position loses when∆kPt > 0. Given a distribution of the continuously com-
pounded returnlog(Pt)− log(Pt−k), VaR can be determined and expressed in terms of a
percentile of the return distribution (Dowd, 2002). Ifqα is theαth percentile of the return,
then VaR of a long position can be written as

VaR(t, k, α) = (eqα − 1)Pt−k. (2.3)

From (2.3) it can be seen that good VaR estimates can be produced with accurate forecasts
of the percentilesqα. So, in further we consider only VaR for return series.

We define the 1-day logarithmic return (in further text just return) on dayt as

rt = log(Pt)− log(Pt−1) (2.4)

and denote the information up to timet byFt. That is, for a time series of returnsrt, VaR
is such that

P (rt < VaRt | Ft−1) = α. (2.5)

From this, it is clear that finding a VaR essentially is the same as finding a100α% condi-
tional quantile. For convention, the sign is changed to avoid negative number in the VaR.
Formally, it is possible to model process for the stock returnsrt as follows

rt = µt + ǫt, ǫt = σtηt, µt = µ(Ft−1 | θ), σ2

t = σ2(Ft−1 | θ), (2.6)

whereFt−1 is the information set available at timet − 1, and whereµ andσ are func-
tions known up to a finite-dimensional vector of parameter valuesθ. In this modelǫt is
the innovation,σt is unobservable volatility andηt is a martingale difference sequence
satisfying

E(ηt | Ft−1, θ) = 0, V (ηt | Ft−1, θ) = 1. (2.7)

As a consequence, we have

E(rt | Ft−1, θ) = µt, V (rt | Ft−1, θ) = σ2

t , ǫt | Ft−1 ∼ D(0, σ2

t ), (2.8)

whereD(0, σ2

t ) represents a conditional distribution with zero mean and varianceσ2

t .
If the return can be modeled by a parametric distribution, VaR can be derived from

the distributional parameters. Unconditional parametricmodels setµt = µ andσt =
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σ, thereby assuming that the returns are i.i.d. (independentidentically distributed) with
density given by

fr(x) =
1

σ
fr∗

(
x− µ

σ

)
, (2.9)

with fr being density function of the distribution ofrt andf ∗

r being density function of
the standardized distribution ofrt.

RiskMetrics (Risk Metrics, 1996) is the most simple, but still one of the most used
models to compute VaR and is considered in 2.1. Most of the VaRmethodologies are
GARCH type models. In 2.2 GARCH and IGARCH models are appliedtogether with
POT method of extreme value theory (EVT). Both conditional normal and conditional
t-error distributions are considered.

2.1 Dynamic VaR using EWMA

Since the risk management group at J.P. Morgan developed theRiskMetrics model for
measuring VaR in 1994, RiskMetrics has become a benchmark for measuring market
risk. The RiskMetrics model (Risk Metrics, 1996) assumes a dynamic EWMA model for
the variance,

σ2

t = λσ2

t−1
+ (1− λ)(rt − µ)2. (2.10)

To initialize the recursive variance equations, the samplevariance is used

σ̂2

1
=

1

n− 1

n∑

i=1

(ri − µ̂)2, (2.11)

where, following RiskMetrics, we set the smoothing parameter λ to 0.94. The model
(2.10) can be written as an exponentially weighted moving average (EWMA) of the past
squared innovations or returns,

σ2

t = (1− λ)(r2t−1
+ λr2t−2

+ λ2r2t−3
+ · · · ). (2.12)

The smaller the smoothing parameter, the greater the weightis given to recent return data.

Model with normal conditional distribution

If we assume that the conditional distribution of returns isnormal with mean zero,

rt = ǫt, ǫt | Ft−1 ∼ N(0, σ2

t ), (2.13)

then the 1-day VaR on dayt is reduced to(1 − eqα)Pt−1 or approximately−σtzαPt−1,
wherezα is the100αth percentile ofN(0, 1). The dynamic VaR for returnrt at timet for
long trading positions is given by

VaRlong
t = µ̂+ zασ̂t = µ̂+ Φ−1(α)σ̂t (2.14)

and for short trading positions it is equal to

VaRshort
t = µ̂+ z1−ασ̂t = µ̂− Φ−1(α)σ̂t. (2.15)
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Model with t conditional distribution

If we assume that the conditional distribution of returns isStudentt with mean zero, then
the 1-day VaR for long trading positions is calculated as

VaRlong
t = µ̂+ stα,ν σ̂t = µ̂+ T−1

ν (α)σ̂t

√
ν − 2

ν
(2.16)

and for short trading positions it is equal to

VaRshort
t = µ̂+ st1−α,ν σ̂t = µ̂− T−1

ν (α)σ̂t

√
ν − 2

ν
, (2.17)

with stα,ν being the left quantile atα% andT being the distribution function for the
standardized Student distribution with estimated number of degrees of freedomν. For the
same distributionst1−α,ν is the right quantile atα% and the equalitystα,ν = −st1−α,ν

holds.

2.2 Dynamic VaR using GARCH type models and EVT

To obtain value-at-risk estimates two-step estimation procedure called conditional EVT
is followed (McNeil and Frey, 2000). First a GARCH-type model is fitted to the return
data by quasi-maximum likelihood. Then, we consider the standardized residuals to be
realizations of a strict white noise process and use extremevalue theory (EVT) to model
the tail of innovations using EVT and estimate the quantilesof innovations. Using ARMA
and GARCH type models forrt it is possible to get the conditional meanµt, conditional
varianceσ2

t and innovation seriesǫt. Then, Extreme Value Theory (EVT) calculations are
applied on the standardized innovations.

ARMA model for µt

Time-varying conditional mean can be captured by ARMA model

µt = a0 +

p∑

i=1

airt−i +

q∑

j=1

bjet−j (2.18)

with t = 1, . . . , T . Family of ARMA models are suitable for modelling covariance-
stationary processes. Zero-mean ARMA(p, q) model is given by

Xt =

p∑

i=1

aiXt−i + εt +

q∑

j=1

bjεt−j , (2.19)

where(εt) is white noise, also known as the process of innovations. Proces(Xt) is an
ARMA process with meanµ if the centered series(Xt − µ) is a zero-mean ARMA pro-
cess. If the innovations are i.i.d., or themselves form a strictly stationary process, then
the ARMA process will also be strictly stationary. ARMA process is causal ifXt has
representation of the form

Xt =

∞∑

i=0

ψiεt−i, (2.20)
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where coefficientsψi are absolutely summable. Every causal ARMA process is covari-
ance stationary (see Proposition 4.9 in McNeil et al., 2005).

GARCH model for σ2

t

By GARCH type models we modelσ2

t . The GARCH(p, q) model for integersp > 0 and
q ≥ 0 is defined as

σ2

t = ω + β(B)σ2

t + α(B)ǫ2t , (2.21)

whereω > 0, α andβ are lag polynomials,

α(B) = α1B + · · ·+ αqB
q, β(B) = β1B + · · ·+ βpB

p,

with αi ≥ 0 for i = 1, . . . , q andβj ≥ 0 for j = 1, . . . , p. The variance equation (2.21) of
the GARCH(p, q) process can be expressed as

σ2

t =
ω

1− β(B)
+

α(B)

1− β(B)
ǫ2t . (2.22)

Note that the RiskMetrics model can be viewed as a special case of GARCH(1,1) model
with µ = ω = 0 andλ = β1 = 1−α1. Also, the variance equation of the GARCH model
can be written in ARMA form forǫ2t ,

(1− α(B)− β(B))ǫ2t = ω + (1− β(B))vt, vt = ǫt − σ2

t , (2.23)

wherevt are martingale differences and usually are interpreted as the innovations to the
conditional variance.

The GARCH model was proposed by Bollerslev (1986) and it successfully captures
several characteristics of financial time series, such as heavy tailed returns and volatility
clustering. In empirical investigation we estimate VaR anddetermine the density of the
one-day ahead VaR under the GARCH(1,1) dynamics with both Normal and Student-
t disturbances. It is known (Bollerslev, 1986) that the GARCH process is covariance
stationary if and only ifα1 + β1 < 1.

IGARCH model for σ2

t

In some applications of GARCH models, the estimated lag polynomial1−α(B)− β(B)
is found to have a significant unit root. Factoring this polynomial as(1−B)φ(B), where
φ(B) has all the roots outside the unit circle, Engle and Bollerslev (1986) proposed the
following integrated GARCH, or IGARCH(p, q) model

φ(B)(1− B)ǫ2t = ω + (1− β(B))vt, vt = ǫ2t − σ2

t , (2.24)

where
φ(B) = 1− φ1B − · · · − φqB

q.

The variance equation can be rewritten as

σ2

t =
ω

1− β(B)
+

(1−B)(1− φ(B))

1− β(B)
ǫ2t . (2.25)
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Whenµ = 0, the IGARCH(1,1) model reduces to RiskMetrics model withλ = β1.
Therefore, IGARCH(1,1) can be at least as good model as RiskMetrics is. In addition,
parameterβ1 can be estimated from the data. Also, assumingµ = 0 in RiskMetrics may
generate biased VaR estimates. GARCH type models allow estimation of parameterµ.

Estimation of GARCH-type models

For the error termǫt two conditional distributionsD(0, σ2

t ) were considered: (1) normal
distributionN(0, σ2

t ); (2) a standardizedt distribution withν degrees of freedom and
varianceσ2

t . The parameters under GARCH and IGARCH models with normal and t-
distributed errors can be estimated by the maximum likelihood method. Given a time
series of returnsrt over a period of T days, (t = 1, . . . , T ) the maximum likelihood
estimate ofµ under any GARCH-type model is the sample mean

µ̂ =
1

T

T∑

t=1

rt.

With µ = µ̂, in the case of normal errors, the log-likelihood function is

ln = −
1

2
T ln(2π)−

1

2

T∑

t=1

[
lnσ2

t +
ǫ̂2t
σ2

t

]
, (2.26)

whereǫ̂t = rt − µ̂ and whereσt is given in (2.21).
Similarly, the log-likelihood function undert errors is given by

lt = T ln
Γ(ν/2 + 1/2)√
π(ν − 2)Γ(ν/2)

−
1

2

T∑

t=1

[
ln σ2

t + (ν + 1) ln

(
1 +

ǫ̂2t
(ν − 2)σ2

t

)]
, (2.27)

whereσ2

t is given in (2.25). Once the maximum likelihood estimates ofthe model pa-
rameters in GARCH and IGARCH models are obtained, we can forecast the 1-day ahead
varianceσ2

t .

The POT method for residuals

We fit GARCH(1,1) model tort to get the estimates for conditional meanµt, conditional
varianceσ2

t and innovationǫt series. Then, Extreme Value Theory (EVT) calculations are
applied on the estimates of standardised innovationsηt (Embrechts et al., 1997).

Suppose we have a sequence of i.i.d. observationsX1, . . . , Xn from an unknown
distribution function F. We are interested in excess lossesover a high thresholdu. We
define the distribution function of the excesses over the thresholdu by

Fu(x) = P (X − u ≤ x | X > u) =
F (x+ u)− F (u)

1− F (u)
, 0 ≤ x < x0 − u, (2.28)

wherex0 is right endpoint of the distributionF . For modelling distribution ofFu one
can use the generalized Pareto distribution (GPD) which is usually expressed as a two
parameter distribution with distribution function

Gξ,a(x) =

{
1− (1 + ξx/a)−1/ξ if ξ 6= 0

1− exp(−x/a) if ξ = 0.
(2.29)
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This distributional choice is motivated by a theorem which states that, for a certain class
of distributions, the GPD is the limiting distribution for the distribution of the excesses.
Using trial-and-error, a negative threshold is choosen, below which the empirical mean
excess function of the tail distribution of standardised residuals starts increasing (in ab-
solute value) linearly. This is called thresholdu. Let the number of points in the tail
distribution corresponding tou benu. We fit a Generalised Pareto Distribution (GPD) to
the tail. For points in the tail of the distribution it can be noted that

F (x) = (1− P (X ≤ u))Fu(x− u) + P (X ≤ u). (2.30)

It is now known thatFu(x − u) can be estimated byGξ,a(x − u) for u large. We can
also estimateP (X ≤ u) from the data by the empirical distribution functionFn(u). As
Fn(u) = 1− nu/n, for x ≥ u we have tail estimate

F̂ (x) = (1− Fn(u))Gξ,a(x− u) + Fn(u) = 1−
nu

n

(
1 + ξ̂

x− u

â

)
−1/ξ̂

. (2.31)

The POT estimator ofxp is obtained from (2.31) by solving equation̂F (x̂p) = p and
substituting unknown parameters of the GPD by estimatesξ̂ and â. As VaRp = xp, the
VaR for the tail of the standardised residuals is found usingthe expression

VaRη = x̂p = u+
â

ξ̂

((
n

nu

(1− p)

)
−ξ̂

− 1

)
. (2.32)

VaR by conditional EVT

Once the one-step-ahead forecasts of the conditional meanµ̂t and conditional variancêσt
arer computed conditionally on past informationFt and VaRlongη and VaRshortη estimated,
VaR for returns can be calculated. The dynamic VaR for returnrt at timet computed in
t− 1 for long trading positions is given by

VaRlong
t = µ̂t − σ̂tVaR

long
η (2.33)

and for short trading positions it is equal to

VaRshort
t = µ̂t + σ̂tVaR

short
η . (2.34)

3 Evaluating VaR model adequacy

Various methods and tests have been suggested for evaluating VaR model accuracy. Per-
formance of the VaRs for different pre-specified levelα can be evaluated by computing
their failure rate for the price series. Statistical adequacy could be tested based on Ku-
piec likelihood ratio test which examines whether the average number of violations is
statistically equal to the expected rate.
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3.1 Failure rate

The failure rate is widely applied in studying the effectiveness of VaR models. The defi-
nition of failure rate is the proportion of the number of times the observations exceed the
forecasted VaR to the number of all observations. If the failure rate is very close to the
pre-specified VaR level, it could be concluded that the VaR model is specified very well.

3.2 Kupiec likelihood ratio test

For the purpose of testing VaR models more precisely, the Kupiec LR test is adopted to
test the effectiveness of our VaR models. A likelihood ratiotest developed by Kupiec
(1995) will be used to find out whether a VaR model is to be rejected or not. The number
n of VaR violations in a sample of sizeT has a binomial distribution,n ∼ B(T, p). The
failure rate isn/T and, ideally, it should be equal to the left tail probability, p. The null
H0 and alternativeH1 hypotheses are:

H0

n

T
= p, H1 :

n

T
6= p, (3.1)

where

p = P (rt < VaRp | Ft−1) (3.2)

for all t. Then, the appropriate likelihood ratio statistic is

LR = 2
[
log
(
qn(1− q)T−n

)
− log

(
pn(1− p)T−n

)]
, (3.3)

whereq = n/T . This likelihood ratio is asymptoticallyχ2

1
distributed under the null that

p is the true probability the VaR is exceeded. With a certain confidence level we can
construct nonrejection regions that indicate whether a model is to be rejected or not.

Therefore, the risk model is rejected if it generates too many or too few violations.
However, Kupiec test can accept a model which incurs violation clustering but in which
the overall number of violations is close to the desired coverage level. For other ways of
testing VaR models see Christoffersen (1998).

4 Empirical Results

4.1 Data

The data used in the paper are the market index BELEX15 of the Belgrade Stock Ex-
change and are obtained from the BELEX website. BELEX15, leading index of the Bel-
grade Stock Exchange, describes the movement of prices of the most liquid Serbian shares
(includes shares of 15 companies) and is calculated in real time.
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Figure 1: Evolution of BELEX15 daily index (on the left) and daily return (on the right) for
period from 4 October 2005 to 25 December 2009.
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Figure 2: Standard deviation, skewness and kurtosis for BELEX15 up topoint

The sample period covers 1067 trading days from 4 October 2005 to 25 December
2009. The plots of the BELEX15 index and returns are given in Figure 1. In this section,
the returnrt is expressed in percentages, i.e.rt = 100(logPt − logPt−1).

Results of Augmented Dickey-Fuller test with exogenous constant, linear trend and
autocorrelated terms of order selected by Schwarz information criterion, applied on series
of daily index, confirm the presence of a unit root (ADF=−1, 1461, p = 0.9194). Null
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hypothesis of presence of unit roots for returns is rejected(ADF=−22.0975, p = 0.0000).
Visual inspection of returns shows that the variances change over time around some level,
with large (small) changes tending to be followed by large (small) changes of either sign
(volatility tends to cluster). Periods of high volatility can be distinguished from low
volatility periods. In order to check if moments of order twoto four are finite, up to
date samples are used to calculate standard deviation, skewness and kurtosis (Figure 2).
It is evident that after approximately 800 observations these sample moments became
stable, which supports conclusion about finitness of corresponding population values.

Descriptive statistics

Summary statistics of returns are given in Table 1. The return series exhibit a positive
skewness (0.1752) and high excess kurtosis (11.3420), indicating that the returns are not
normally distributed. These findings are consistent with plots of the normal QQ plot, box-
plot, histogram and empirical density function (Figure 3).Also, from the Q-Q plot and
box plot it is obvious that outliers and extreme values causefat tails.

Table 1: Descriptive Statistics of BELEX 15 index returns.

mean median min max variance skewness kurtosis
BELEX 15 -0.0433 -0.0326 -10.8614 12.1576 3.3144 0.1752 11.3420
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Figure 3: Emirical distribution for BELEX15 returns.
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Table 2: Statistical tests for distribution of returns.

Tests Test statistcs p-values
Jarque-Bera test 3099.259 0.0000
Doornik i Hansen test for independent observations 282.9798 0.0000
Doornik i Hansen for weakly dependent observations 105.3553 0.0000
D’Agostino test of skewness 1.5389 0.1238
D’Agostino omnibus test 183.2526 0.0000
Anderson-Darling test 21.7437 0.0000
Cramer-von Mises test 3.8743 0.0000
Lilliefors test 0.0934 0.0000
Shapiro-Wilk test 0.8975 0.0000
Cabilio-Masaro test of symmetry 0.3135 0.7539
Mira test 0.3131 0.7542
MGG test 0.3818 0.7026

The significant deviation from normality is confirmed by means of statistical tests
that are based on the fact that skewness and excess kurtosis are both equal to zero for
normal distribution (Jarque-Bera test, D’Agostino omnibus test, Doornik i Hansen test).
The same conclusion is for the tests based on density functions (Anderson-Darling test,
Lilliefors test) or properties of ranked series (Shapiro-Wilk test). Several applied tests
of symmetry (D’Agostino test of skewness, Cabilio-Masaro test of symmetry, Mira test,
MGG test) are consistent in conclusion that asymmetry of returns is not statistically sig-
nificant (Table 2).

Stylized facts

Due to a large body of empirical evidence, stock returns timeseries display stylized facts
such as volatility clustering, high kurtosis, low startingand slow decaying autocorrelation
function of squared returns, asymmetric reaction on ’good’and ’bad news’ and many
others.
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Figure 4: Absolute returns and their autocorrelation function.
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Figure 5: Square returns and their autocorrelation function.

To observe conditional volatility in BELEX indexes absolute or squared returns are
used. In Figure 4 and Figure 5 absolute and squared returns are shown with their autocor-
relation functions. These plots show variation in conditional volatility. Thus, the use of
GARCH-type models for the conditional variance is justified. Also, slow decay of auto-
correlation in absolute and squared returns is evident fromthe autocorrelation plots. This
may be interpreted as a sign of long-range dependence of variance.

4.2 Dynamic VaR using EWMA

The dynamic VaR values using EWMA and Normal distribution assumption for long
position and two values ofα are given in Figure 6. Figure 7 gives a comparison of a
Normal andt conditional VaR forα = 0.05. The parameterν = 3.01 of t distribution is
estimated by fittingt distribution to returns using maximum likelihood method.

100 200 300 400 500 600 700 800 900 1000
−15

−10

−5

0

5

10

15

Figure 6: EWMA Normal VaR forα = 0.1 (dotted line) andα = 0.05.
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Figure 7: EWMA VAR Normal (dotted line) andt for α = 0.05.

Table 3: Mean dynamic VaRs using EWMA, violations and failure rates.

Dynamic VaR
α 10% 5% 2% 1% 0.5% 0.1%

Mean Value at risk
EWMA-N -2.099 -2.686 -3.347 -3.788 -4.192 -5.024
EWMA-t -1.555 -2.224 -3.277 -4.266 -5.480 -9.560

Violations
EWMA-N 83 44 25 18 13 9
EWMA-t 145 72 28 13 8 1

Failure rates
EWMA-N 0.0778 0.0412 0.0234 0.0168 0.0121 0.0084
EWMA-t 0.1360 0.0675 0.0262 0.0121 0.0075 0.0009

Table 4: Kupiec test for EWMA models.

Dynamic VaR
10% 5% 2%

LR p LR p LR p
EWMA-N 6.2355 0.0125 1.8114 0.1783 0.6144 0.4331
EWMA-t 13.9765 0.0001 6.2525 0.0124 1.9461 0.1630

1% 0.5% 0.1%
LR p LR p LR p

EWMA-N 4.2306 0.0397 7.8971 0.0049 22.5909 2.0e-6
EWMA-t 0.4849 0.4862 1.1641 0.2806 0.0041 0.9484
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The mean values of dynamic 1-day VaRs, the number of VaR violations for entire
sample and corresponding failure rates for differentα are reported in Table 3. Forα ≥ 2%
failure rates obtained with assumption of normality are closer toα, while for α < 2%
closer toα are failures of the model that assumest distribution. Results of Kupiec test
support this conclusion (Table 4). Risk model EWMA-N is accepted forα = 5% and
α = 2%, while EWMA-t is accepted forα < 2%.

4.3 Dynamic VaR using GARCH type models and EVT

We fit GARCH(1,1) model tort to get the conditional mean̂µt, conditional variancêσ2

t

and innovation̂ǫt series. Then we apply Extreme Value Theory (EVT) calculations on the
standardised innovationŝηt.

ARMA - GARCH type models fitting

A common empirical finding is that the sum of GARCH coefficients α + β is close to
1 implying persistent volatility. In this case the impact ofpast information on future
volatility forecasts decays very slowly.

Persistence in variance may be overstated because of the existence of deterministic
structural shifts in the model. In order to alleviate effectof sudden changes and time
shifts on estimates of GARCH parameters, returns are standardized with up to point mean
and standard deviation.

Estimates of ARMA-GARCH parameters, its standard deviations and corresponding
t values are obtained by an Ox Package for GARCH models (Laurent and Peters, 2002)
and presented in the Table 5. In the same table are presented parameter estimates of GPD
distribution fitted to tail distribution of standardized model residuals. The other approach
was to model returns by means of ARMA+IGARCH model and then fitGPD distribution
as in the previous case (Table 6).

Table 5: Parameter estimates of ARMA+GARCH with Normal and Student innovations.

ARMA + GARCH
Normal distribution t distribution

Coefficient St. error t-value Coefficient St. error t-value
C(M) -0.0516 0.02589 -1.9937 -0.0674 0.02340 -2.8833
AR(1) 0.5461 0.0739 7.3870 0.5687 0.0704 8.0708
MA(1) -0.2232 0.0945 -2.3607 -0.2577 0.0873 -2.9496
C(V) 0.1931 0.0332 5.8150 0.1757 0.0443 3.9582
ARCH(1) 0.3516 0.0374 9.3996 0.3733 0.0642 5.8134
GARCH(1) 0.5631 0.0369 15.2281 0.5713 0.0538 10.6042
ν – – – 5.7290 1.0972 5.2216
GPD shape 0.1278 – – 0.1777 – –
GPD scale 0.5254 – – 0.4923 – –
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Table 6: Parameter estimates of ARMA+IGARCH with Normal and Studentinnovations.

ARMA + IGARCH
Normal distribution t distribution

Coefficient St. error t-value Coefficient St. error t-value
C(M) 0.0494 0.0510 0.9687 -0.0086 0.0497 -0.1728
AR(1) 0.5409 0.0746 7.2460 0.59081 0.0821 7.1960
MA(1) -0.2145 0.0866 -2.4770 -0.2686 0.0969 -2.7700
C(V) 0.1448 0.0327 4.4180 0.1393 0.0434 3.2110
ARCH(1) 0.4075 0.0447 9.1140 0.3934 0.0599 6.5590
GARCH(1) 0.5925 – – 0.6065 – –
ν – – – 5.7666 0.9356 6.1630
GPD shape 0.2376 – – 0.2719 – –
GPD scale 0.4675 – – 0.4570 – –

VaR estimation results

Dynamic VaRs for returns assuming long trading position andtwo values ofα are shown
in Figure 8.
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Figure 8: Dynamic VaR for BELEX15 daily returns whereα = 0.1 (on the left) and
α = 0.001 (on the right).

Table 7: Mean VaR estimates.

GARCH type models with POT
α 10% 5% 2% 1% 0.5% 0.1%

GARCH-N -1.898 -2.342 -3.001 -3.571 -4.200 -5.939
GARCH-t -1.937 -2.372 -3.044 -3.640 -4.323 -6.317
IGARCH-N -1.918 -2.361 -3.072 -3.725 -4.497 -6.874
IGARCH-t -1.917 -2.358 -3.078 -3.750 -4.557 -7.106
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Table 8: VaR failure rates.

GARCH type models with POT
α 10% 5% 2% 1% 0.5% 0.1%

GARCH-N 0.0891 0.0516 0.0215 0.0103 0.0065 0.0018
GARCH-t 0.0873 0.0507 0.0215 0.0103 0.0065 0.0018
IGARCH-N 0.0928 0.0506 0.0206 0.0112 0.0065 0.0009
IGARCH-t 0.0947 0.0497 0.0215 0.0112 0.0065 0.0009

VaR mean values of dynamic VaR for all chosen values ofα based on four applied
GARCH type models with POT are presented in Table 7. Table 8 gives the sample failure
rates for differentα. The discrepancy between the failure rates andα’s depends onα,
so none of applied models is of superior performance. The same conclusion holds if the
number of violations of VaR values is considered. Accordingto Kupiec test (Table 9) all
applied models are acceptable.

Table 9: Kupiec test for GARCH type models with POT.

GARCH type models with POT
10% 5% 2%

LR p LR p LR p
GARCH-N 1.4504 0.2284 0.0599 0.8066 0.1349 0.7133
GARCH t 1.9777 0.1596 0.0110 0.9162 0.1349 0.7133
IGARCH N 0.6152 0.4328 0.0096 0.9217 0.0219 0.8823
IGARCH t 0.3320 0.5644 0.0017 0.9663 0.1317 0.7166

1% 0.5% 0.1%
LR p LR p LR p

GARCH-N 0.0114 0.9146 0.4816 0.4876 0.6515 0.4195
GARCH t 0.0114 0.9146 0.4816 0.4876 0.6515 0.4195
IGARCH N 0.1635 0.6859 0.4784 0.4891 0.0041 0.9484
IGARCH t 0.1635 0.6859 0.4784 0.4891 0.0041 0.9484

5 Concluding remarks

The purpose of this paper has been to make a comparative studyof the predictive ability of
VaR estimates for BELEX15 index for various estimation techniques. First, the data are
analysed in order to get an idea of the stylized facts of stockmarket returns. Throughout
the analysis, a holding period of one day was used. Several Value-at-Risk models were
presented and empirically evaluated. ARMA(1,1) model was used to remove the autore-
gression from the data. Various values for the left tail probability level were considered,
ranging from the very conservative level of 0.01 percent to the less cautious 10 percent.

Evaluation of applied methods was done by means of back-testing for the whole sam-
ple. It was not possible to perform out of sample analysis because of the lack of data.
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Based on the analysis in this paper, the following conclusions could be made.

1. In the case of BELEX15 index asymmetric behaviour was not discovered, although
it is typical for many stock return indexes. Autocorrelation function of absolute
and squared returns exhibits very slow decay that is an indication of variance long
memory.

2. Return distribution is characterized by high frequency of values close to zero which
is the result of smaller stocks trading volume compared withdeveloped markets.

3. The dynamic VaR model using EWMA assuming the normal distribution of inno-
vations is accepted forα = 0, 05 andα = 0.02, while with t distribution is accepted
for α < 0.02.

4. The most important characteristic of BELEX15 index returns for modelling Value-
at-Risk is volatility clustering. Modelling the volatility with GARCH type models,
combined with POT method for residuals, reduces the averageVaR.

5. IGARCH models cannot outperform GARCH type models in thisVaR evaluations,
so it seems that long memory volatility is not crucial in VaR estimation.

6. VaR models obtained using heavy tailed and asymmetric distributions, especially
those based on EV approach, should be more capable of capturing the true level of
risk since they focus on the tail regions of the return distribution.

7. Besides Kupiec’s LR test which is based on frequency of failures, the accuracy of
VaR model should be evaluated by more sensitive test that measures the frequancy,
size and independance of losses.
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[13] Gençay, R. and Selçuk, F. (2004):. Extreme value theory and Value-at-Risk: Relative
performance in emerging markets.International Journal of Forecasting, 20, 287-
303.

[14] Giot, P. and Laurent, S. (2003): Value-at-Risk for longand short trading positions.
Journal of Applied Econometrics, 18, 641-664.

[15] Huang, Y.C and Lin, B-J. (2004): Value-at-Risk analysis for Taiwan stock index fu-
tures: Fat tails and conditional asymmetries in return innovations.Review of Quan-
titative Finance and Accounting, 22, 79-95.

[16] Jorion, P. (1997):Value at Risk: The New Benchmark for Controlling Market Risk.
McGraw-Hill.
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