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Abstract: Measurements are nowadays permanent attendants of our life. Scientific research, health, medical care and treatment, industrial
development, safety and even global economy depend on accurate measurements and tests, and many of these fields are under the legal
metrology because of their severity. But, how trustworthy are the results of measurements, on which very important and even vital things of our life
depends. The producers of measuring equipment, devices and sensors are going along narrowing the uncertainty intervals by technical means,
and emphasize their reliability also by statistical interpretation of measuring results. When expressing the uncertainty of their products, they use
multiples of standard deviations to increase customers' trustfulness in their products. Are they really achieving such a good statistical confidence
as it is expected by the higher muttiples of standard deviation? The technique of estimating the expanded uncertainty is based on the coverage
factors, by which the standard uncertainty is multiplied. These coverage factors depend on degree of freedom, which is the function of the number
of implied repetitions of measurements, and therefore the reliability of the results is increased. The standard coverage factor is 1.96, and under
certain circumstances, the obtained expanded uncertainty has the 95% statistical probability. The statistical probability of the expanded uncertainty
is calculated due to the coverage factor, presuming the probability distribution is normal or Gaussian. The number of influential quantities which
contribute their parts to the combined uncertainty increases, and they are dealt very ex-actly by sophisticated mathematical models. This attitude
of dealing with the uncertainties is defined and described by some standards and guides. The present paper describes the reverse method of
estimating the expanded uncertainty with the 95% probability. The algorithm of this model is based on the 95% confidence interval of any
distribution of statistically acquired data (the A-type uncertainty) or any given distribution (the B-type uncertainty), and the coverage factor is
determined due to this confidence interval. The coverage factor is determined by the 95% confidence interval of the actual probability distribution.
The expanded uncertainty, which is the product of this coverage factor and the standard uncertainty in this case too, is estimated to have 95%
statistical probability. In general, it is not possible to achieve the 95% confidence interval by using the standard coverage factor 1.96, even if it is
increased due to degree of freedom, which compensates only the lack of the repeated measurements. The addition theorem is established, and
it has the mathematical properties, which are in accordance with the standards and guides. The model is introduced in procedures carried out in
the calibration laboratory.

Razsirjena negotovost - ali krovni faktor 1.96 ali interval s
95% zaupanjem

Kjuéne besede: krovni faktor, koeficient oblike, porazdelitev verjetnosti, interval zaupanja, negotovost.

lzvleéek: Meritve so stalne spremljevalke nasega Zivljenja. Znanstvene raziskave, zdravje, medicinska nega in zdravijenje, industrijski razvoj, varnost
in celo svetovno gospodarstvo so odvisni od zanesljivih meritev in testov. Veliko teh podrodij je vkljucenih v zakonsko meroslovje zaradi svoje posebne
pomembnosti. Kolik$no zaupanje pa imajo rezultati meritev, od katerih so odvisna tako pomembna in celo zivijenjsko vaZzna podrocja nasega zivijenja?
lzdelovalci merilne opreme, naprav in senzorjev napredujejo v smislu zoZevanja intervalov negotovosti s tehniénimi sredstvi ter tudi poudarjajo svojo
zanesljivost s statisti¢no razlago merilnih rezultatov. Kadar izrazajo negotovost svojih merilnih sistemov, uporabljajo veckratnike standardne negoto-
vosti, da poveéajo zaupanje odjemalcev svojih izdelkov. Ali res dosegajo tako dobro statisticno zaupanje kot je pricakovati z vedjimi veckratniki
standardne negotovosti? Tehnika ocenjevanja razsirjene negotovosti temelji na krovnih faktorjih, s katerimi je pomnozena standardna negotovost.
Krovni faktorji so odvisni od stopnje prostosti, ki je funkcija stevila izvedenih ponovitev meritev, s tem pa je povedana zanesljivost rezultatov. Standardni
krovni faktor je 1.96 in pod posebnimi pogoji ima dobljena razsirjena negotovost 95% statisticno zaupanje. Statisticna verjetnost razsirjene negotovo-
sti je izradunana glede na krovni faktor, &e predpostavijamo normalno ali Gaussovo porazdelitev verjetnosti. Stevilo vplivnih velicin, ki prispevajo svoje
deleze h kombinirani negotovosti, se poveduje in le-te so zelo toéno obravnavane z visoko razvitimi matemati¢nimi modeli. Ta pristop obravnavanja
negotovosti je definiran in opisan v nekaterih standardih in vodilih. Pricujoci ¢lanek opisuje obratno metodo ocenjevanja razsirjene negotovosti s 95%
zaupanjem. Algoritem tega modela temelji na intervalu s 95% zaupanjem katerekoli porazdelitve statisti¢no pridoblienih podatkov (A-tip negotovosti)
ali katerekoli dane porazdelitve (B-tip negotovosti), pri Cemer je krovni faktor dolocen glede na ta interval zaupanja. Krovni faktor je dologen z
intervalom 95% zaupanja dejanske porazdelitve verjetnosti. Razsirjena negotovost, ki je tudi v tem primeru zmnozek tega krovnega faktorja in
standardne negotovosti, ima po oceni 95% statisticno zaupanje. V splodnem ni mogoce dosedi interval s 95% zaupanjem s standardim krovnim
faktorjem 1.96, tudi e je povecan v odvisnosti od stopnje prostosti, ki vrauna v razsirjeno negotovost le pomanjkanje Stevila ponovijenih meritev.
Operacija sestevanja je dolo¢ena tako, da ima matemati¢ne zakonitosti v skladu s standardi in vodili. Model je uporablien v postopkih, izvajanih v
kalibracijskem laboratoriju.
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1. Introduction

The expanded uncertainty is calculated according to the
standard EA-4/02 /1/ as the multiplication of the standard
coverage factor 1.96 with the standard uncertainty when
the degree of freedom is approaching to infinite value. This
standard also points out the necessity to determine the con-
fidence interval of the 95% coverage probability and to cal-
culate expanded uncertainty due to this interval. That
means, that the probability of the measurement readings
being inside the confidence interval is 95% and the proba-
bility of being outside the confidence interval is 5%. The
coverage factor 1.96 and the 95% confidence interval co-
incide only with the normal (Gaussian) probability distribu-
tion. It is the same with very often used combination of the
coverage factor 2 and the 95.45% confidence interval. In
the cases of multiple standard deviations, when the proba-
bility of the measuring results being inside the confidence
interval is very close to unit, it is more convenient to talk
about the probability of the measuring results being outside
the confidence interval. Some producers of measuring
devices state the expanded uncertainty on the basis of 3,
4, 5 and 6 times of the standard uncertainty and associated
this expanded uncertainty with the probability of the meas-
urement readings being outside the confidence interval as
2.7%0, 63 ppm, 0.57 ppm and 2 ppb respectively. But this
is valid only with the normal distribution. To see the prob-
lem, we must be aware of dealing with several kinds of dis-
tributions not only with the normal distribution. Namely, the
distributions of the B-type uncertainties are mostly not nor-
mal, forinstance the temperature drift, the time drift and the
resolution have the rectangular distribution. Sometimes also
the A-type uncertainties do not match with the normal distri-
bution as they are resuilt of reguiated quantities, or are af-
fected by the resolution of measuring device. In the latter
case the probability distribution consists of two Dirac func-
tions, one at the lower measurement reading and the other
at the upper measurement reading regarding the resolu-
tion. If the distribution is unknown the coverage factor is
calculated from Chebyshev's inequality /2/ and is 4.472
for the 95% confidence interval or the 5% probability of
being outside that interval. From this point of view, regard-
less of the shape of the distribution, the 4 times of the stand-
ard uncertainty does not mean the 63 ppm probability of
measurement readings being outside the confidence inter-
val, but a lot more, and consequently it means a much lower
probability of being inside the confidence interval. The un-
certainty, the extended or the standard one, does not stand
by itself, but contributes its portion to a combined uncer-
tainty. The probability distribution, which corresponds to
the combined uncertainty, is the convolution of the contrib-
uting probability distributions. The convolution of two rec-
tangular distributions gives the trapezoidal distribution, or in
some cases the triangular distribution, and the next rectan-
gular distribution convoluted to the trapezoidal or to the tri-
angular distribution results in the distribution with the square
dependent tails, and the further rectangular distributions
lead to the distribution with the polynomial dependent tails.
By further convolutions, the resulted distribution tends to-
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ward the normal distribution. Nevertheless there are some
not “well-behaved probability distributions” as quoted by
the standard /1/ to cause the coverage probability of less
than 95% by using standard coverage factor. Hence we are
to deal with so defined polynomial D(delta)-shaped distribu-
tions because these distributions very closely describe the
cases with the large probability around the mean values of
measured quantity with some excessive, but still reliable
values. The tails of such distributions are fatter than the tails
of the normal distribution and the coverage factor must be
greater than 1.96 to achieve the 95% confidence interval.
The main distributions dealt in this paper are shown in
Tab. 1.

Taking into consideration Tab. 1 we established that all these
probability distributions are involved in nearly every meas-
urement. Namely, there are several sources of uncertain-
ties with the rectangular probability distributions, and when
combined the resulted probability is either trapezoidal, tri-
angular. The rectangular, trapezoidal and triangular proba-
bility are discussed in the standard EA-4/02 /1/ and fur-
ther on U-shaped distribution is dealt in NIS3003 /3/ used
with sinus wave measuring signal, but the other distribu-
tions and further convolutions of these distributions are rarely
described in literature. There is an algorithm of combining
the normal distributions and the rectangular distributions
only, described in the literature /4/. The symmetrical im-
pulse measuring signal is very common in measuring sys-
tems, for instance the measurement of the contact resist-
ance, the temperature measurement of the resistance tem-
perature sensors with the DC current and several measure-
ments where the influence of hysteresis is being avoided.
This measuring signal gives the symmetrical Dirac shaped
distribution. The reason why we chose the polynomial A-
shaped distribution is to show that there exist the probability
distribution with the coverage factor greater than 1.96 to
achieve the 95% confidence interval, and that such distri-
butions are very commonly involved in uncertainty calcula-
tions although we do, or do not, admit it.

DiISTRIBUTION DISTRIBUTION NAME SOURCE

SHAPE

congentrated values around average
with some excessive values

polynomial A-shaped
distribution

normal or Gaussian random errors

distribution

convolution of two equal rectangular
distributions

triangular distribution

convolution of two rectangular
distributions

trapezoidati distribution

time and temepreture drift, resolution
(B-type)

rectanguiar distribution

U-shaped distribution sine wave measuring signal

symmetrical impuls maesuring
signal, resolution affect (A-type)

. J symmetrical Dirac shaped
1 1 distribution

Tab. 1: Various distributions and their sources.
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2. The contributing distributions

The measured signal is continuous function depended on
one independent variable, such as time or a counter. Its
range has the supremum and the infimum, which are the
bounds of the domain of definition of the corresponding
distribution. The upper and the lower bounds are finite val-
ues. Amplitude is defined as the maximum of the absolute
values of the difference between the non-weighted mean
value of the measured signal throughout its whole definition
interval and the lower and the upper bounds respectively.
This kind of distributions is represented by the following
equation:

—-A

Tp(X)-dXZTp(X)dXZI (1),

where the amplitude A is the minimal value that corresponds
this equation.

We are looking for the coverage factor K of any distribution,
applied to the standard deviation, which gives the 95% con-
fidence interval as follows:

+12-0‘
[p(x)-dx =095 @),
ko

at the infinite degree of freedom.

There are upper limits of this coverage factor as follows:

- any, even unknown distribution corresponds to Cheby-
shev'sinequality /2/, therefore:

o 1 =
1-P ’
P=0.95
- any, even unknown distribution with the finite upper
and lower bounds corresponds to Eq. (1), therefore
according to Egs (1) and (2), the upper limit of the
coverage factoris:

4
c

K< (4);
where the equality is present only, when the cover factor K,
of the 100% confidence level is considered.

The coverage factor of each known distribution is calculat-
ed by using the Eg. (2). The results of the calculation for the
dealt distributions are presented in Fig. 1 as the function
(2), which is calculated for the 95% probability level. The
upper limits are also shown in this figure: the maximum of
the function (2) for the 95% probability level of an unknown
distribution due to Chebyshev's inequality and the function
(1) forthe 100% probability level. The functions (1) and (2)
in Fig. 1 make the boundary of the area of the probability
levels from 95% up to 100%. There is also the position of
Gaussian distribution marked in Fig. 1.

Fig. 1:  The cover factors of several distributions and
statistical confidence of the acquired data
interval.

Legend:
1...the cover factors of the 100% confidence level,
2...the cover factors of the 95% confidence level,

3... the statistically determined cover factors of the 95%
confidence level using the presented model.

There is no problem to determine the coverage factor of the
probability distribution defined by the probability density p(X)
described by the analytic function, by the tabled values or by
the geometrical definition. But, detemining the coverage fac-
tor out of statistically acquired data, we have to astablished a
model, which solution gives results within the mentioned
area with the probability levels from 95% up to 100%. The
solution given by the presented model is one of many possi-
ble solutions, and it is shown in Fig. 1 as the function (3).

3. The kurtosis and Modelling the
coverage factor

The kurtosis is the parameter of the descriptive statistics,
which gives information about the probability distributions
of acquired data that are created by our measurements. Itis
the classical measure of nongaussianity, and it expresses
the similarity to the normal or Gaussian distribution. The
distribution shape is quantified by it, but the mapping of the
set of the shapes to the set of their numerical values is sur-
jection. There is no rule to get the distribution shape out of
the kurtosis. From the kurtosis, it can be concluded only
that:

- a certain distribution is peaked around its mean and
have the fat tails (could be the polynomial A-shaped
distributions in this paper) - leptokurtic distributions;

- it is flat (could be the rectangular distribution) or even
concave (could be the U-shaped distribution) with the
thin tails or without them - platykurtic distributions;

- itcould be very similar to the normal distribution - mes-
okurtic distributions.

The kurtosis is the fourth standardized moment k4 about
the mean, and is defined as the quotient of the fourth mo-
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ment m4 about the mean and the fourth power of the stand-
ard deviation cand it is:

m
k=4
4 G 4 (5).

When the probability distribution is the analytic function with
the finite bounds of its domain, the fourth moment about the
mean or, as it is also named, the fourth central moment is:

my = T(X—X)“- p(x)-dx = T(X—X)“- p(x)-dx

(6),

and when it is acquired through non-weighted data, it is:

n

1 _
m4:;-Z(X,.—X)4 )

i=1

The standard deviation is respectively to Eqs (6) and (7) as
follows:

G = \/T(X—)_()z-p(X)dX = \/T(X—X’)2~ p(X)-dx

-0

8,

| 2 _
0=\/;'Z(X,~~X)2 ().
i=1

The kurtosis of the normal distribution is kag = 3, the kur-
toses of leptokurtic distributions are greater than 3 and of
platykurtic are less than 3. The kurtoses of mesokurtic dis-
tributions are about 3.

Some earlier methods of determining the coverage factor of
the 95% confidence interval by processing the measured
signal were developed for the purpose of the calibration
laboratory /5/, /6/. The first one a little bit underestimates
the coverage factors of leptokurtic and overestimates the
ones of platykurtic distributions, but the second method
overestimates the coverage factor of all distributions.

The basis of the present modelling of the coverage factor of
the 95% confidence interval is the kurtosis, because it is
the statistical parameter that quantifies the shape of the an-
alysed probability distribution. The coverage factor is basi-
cally the square root of the ratio between the kurtosis kg4 of
the analyzed distribution and the kurtosis kag of the normal
distribution, corrected by the empirical coefficient x and
muiltiplied with the coverage factor of the normal distribu-
tion at the infinite degree of freedom:

A ’k A
Kbasic:K(V)’V:m'K' ;4_:196](\/_?: (10),
4g

where the empirical coefficient is:
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k=l e Fa LTIy
3 3.0
(11).
k=11 < k—;:;‘n(;[t;él

The empirical coefficient is necessary to correct the basic
coverage factors of mesokurtic distributions with the finite
bounds of their domain. This is not the case with the normal
distribution, because it has the infinite domain. The range
of any dealt measured signal has finite bounds, and so does
the domain of the corresponding probability distribution,
even it is nearly normal. Hence, the “normal” distribution
with the finite bounds at (2.8x o) has the kurtosis of 2.5 and
the rounded value of the empirical coefficient is 1.1 to ob-
tain the standard coverage factor. Therefore the empirical
coefficient is unit 1 only with the normal distribution over
the infinite domain. This coefficient has two values due to
comparison of two kinds of distributions: the set of distribu-
tions with the finite bounds of their domain and the one with
the infinite bounds of its domain - the normal distribution.
Using this coefficient, we get the standard coverage factor
of 1.96 for normal distribution over the finite and over the
infinite its domain. In some later software, we introduced in
the calibration laboratory, the ratio of the actual kurtosis

against the normal kurtosis of 2.6 (: ﬂ) instead against
3 is used, and empirical coefficient is unit 1 in this case.
However the latter case affects only the B-type uncertainty
associated with the normal distribution.

Considering the upper limits of the coverage factor due to
Egs (3) and (4) the coverage factor of the probability distri-
bution with the finite bounds of its domain actually is:

R:K(v).minK-k—“, 4 ,l@—zK(v)-c
371966 " 1.96

(12),

and the shape coefficient of the probability distribution is:

| m, 4 20
C=min x- T , (13).
3.0 1.96-¢ 1.96

This coverage factor at the infinite degree of freedom is
graphically shown as the function (3) in Fig. 1. Its values are
in the lower range of the area indicating the confidence
interval of 95% up to 100%, which is very good. The advan-

tage of this coverage factor K is, that it consists of two mul-
tiplicands: the first one - K(v) is dependant on degree of
freedom, as it is generally known as the coverage factor,
and the other - C depends on the shape of the probability
distribution, mainly on the kurtosis and we named it as the
shape coefficient.
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4. The convolution and the addition
algorithm

When combining several probability distributions in uncer-
tainty calculations the resulted probability distribution is the
convolution of all participant distributions. The convolution
of two probability distributions is:

P ()=, (1) p, ()= [ p, & - X) p, &) dn

—o

(14).

The each distribution contributes the amplitude, the stand-
ard deviation and the fourth moment about the mean to the
resulted amplitude Ag, the resulted standard deviation sy,
and the resulted fourth moment myx, as follows for the N
convoluted distributions:

pE(X):pl(X)®pZ(X)®"'®pi(X)®"'®pN(X)

(15),
N

A=) 4, (16),
i=1
N

G:=Y0, (17),

N oy
Mys = Zmzﬁ +6- Z[Gi ’ ch ] (18).
i=1 i=1

j=i+l

Using Egs (5) and (13) to (18), the resulted shape coeffi-
cient is obtained:

N N—-1 N
\/ZCf o/ +2'Z[Ki o} ZKj -cf]
i=1

i J=i+l

-
N
2
ZGI
i=l

H

Cs = min

where the empirical coefficient k; is:

K, =1 &= C =1
(20).
K, =1.1 & C, #1

The addition of the shape coefficients is commutative and
associative and the resulted shape coefficient is a member

of the same set of values as the participant shape coeffi-
cients in the evaluating process, which all are the neces-
sary mathematical conditions for the applied methods of
determining the combined uncertainties as it is prescribed
by the standard /7/ as universality, internal consistency
and transferability.

5. conclusions

The presented method of evaluating the expanded uncer-
tainty of the measurand on the basis of the 95% confidence
interval has the following features:

- itis universal /7/, because this algorithm is applicable
to all kinds of measurements, to the A and B-type of the
uncertainty evaluation and to alf type of input data dis-
tribution;

- it is internally consistent /7/, which mathematically
means being commutative and associative, so that
combined uncertainty is independent of grouping and
decomposing the contributing components;

- itistransferable /7/, which mathematically means that
the resulted shape coefficient and the participant shape
coefficients are the members of the same set of values
or are fitting the same function, so the one result can
be directly used as a component in evaluating the un-
certainty of another measuring process;

- the expanded uncertainty is obtained by multiplying
the standard deviation or the combined uncertainty,
which is appropriate, by the coverage factor /1/ and
the shape coefficient, so that the expanded uncertain-
ty is estimated to have the 95% confidence level:

Ul
U

4

=KVv)-C-o
:K(Veff)'CE U,

P=95%
(21),

P=95%

therefore the intervals +U or + U, about the measuring result
are the 95% confidence interval;

- the convolution of many normal distributions gives nor-
mal distribution and so does the resulted shape coeffi-
cient; further on, the convolution of great number of
whatever distributions leads to mesokurtic distribution
and even to normal distribution and so also does the
resulted shape coefficient, hence the central limit the-
orem is met by this method /1/;

- the expanded uncertainty depends on its effective
degrees of freedom - Eq. (21) so that the proper relia-
bility is achieved /1/;

- the expanded uncertainty estimated by this method -
Eg. (21) takes into account the effective degree of free-
dom of the output estimates and the non-normality or
non-gaussianity of the probability distributions and so
far meets regulations /1/ about the 95% confidence
interval.
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