
ELEKTROTEHNIŠKI VESTNIK 88(3): 121-128, 2021

IZVIRNI ZNANSTVENI ČLANEK

Improving throughput and due date performance of IT DevOps

teams

Tomaž Aljaž

Fakulteta za industrijski inženiring, Šegova ulica 112, 8000 Novo mesto, Slovenija
E-pošta: tomaz.aljaz@fini.unm.si

Abstract. Companies view Information Technology (IT) as a competitive advantage of the future. In recent years,

IT departments have proven to have a significant impact on the business process improvement and better customer

service, enabling organizations to become more competitive in the global marketplace. To meet these demands,

many IT organizations are now transforming their software development and information technology operations to

a combined team, called DevOps. However, with only organizational changes and no changes in how the IT

DevOps teams manage their tasks, this is not easy to achieve, especially when there is a tension to keep all resources

busy and overload them with a task by maintaining a high work-in-progress. As a result, organizations operating in

this mode typically experience a significant degradation in their performance.

The paper presents a simulation-based performance assessment that significantly improves the performance of task

execution by DevOps teams. An approach is presented to determine how to load and allocate resources and an

appropriate allocation of additional (reserve) resources to improve performance. The simulations show a possibility

of a 135 percent improvement in the Throughput (the number of completed tasks), work-in-progress reduced to the

level of one percent of the completed tasks and the time needed to complete tasks is over 17 times shorter.

Keywords: DevOps, Resource management, Discrete Event Simulation, Constraint Management

Izboljšanje pretočnosti in rokov izvedbe IT DevOps timov

Podjetja na informacijsko tehnologijo gledajo kot na

konkurenčno prednost prihodnosti. V zadnjih letih se je

izkazalo, da imajo IT-oddelki pomemben vpliv na izboljšanje

poslovnih procesov in zadovoljstvo strank ter omogočajo

organizacijam konkurirati na svetovnem trgu. Da bi

organizacije sledile tem smernicam, zdaj svoje IT-oddelke

preoblikujejo v t. i. DevOps time, kjer sta v enem timu združena

tako razvoj kakor tudi vzdrževanje programske opreme. Poleg

organizacijskih sprememb je treba spremeniti še način vodenja

in odobravanja novih nalog, še zlasti v organizacijah, kjer je

tradicionalno glavno merilo zasedenost zaposlenih, in ne

učinkovitost celotnega tima.

V članku je predstavljen postopek, s katerim lahko bistveno

izboljšamo učinkovitost izvajanja nalog DevOps timov. To smo

dosegli z upravljanjem količine odobrenega dela, razporeditve

zaposlenih in vključitve dodatnih zaposlenih (specialistov) pri

nalogah, kjer so se pojavile težave pri izvedbi. Predlagano

rešitev smo preizkusili s pomočjo simulacijskega orodja

ExtendSim. Simulacije kažejo, da so glede na tradicionalni

pristop mogoči približno 135-odstotno izboljšanje pretočnosti

(število dokončanih nalog), zmanjšanje nedokončanih nalog na

približno 1 odstotek dokončanih nalog in čas, potreben za

dokončanje nalog, zmanjšan za faktor 17.

Ključne besede: DevOps, upravljanje virov, diskretne

simulacije, upravljanje omejitev

1 INTRODUCTION

The use of modern software development methods in

organizations is becoming more and more prevalent to

remain competitive today and in the future in the global

market. In order to address their efforts, organizations are

introducing agile and lean software development

techniques to increase the pace of their software

development process and to improve the quality of their

software [1]. They use the approach called DevOps [2],

that merges the traditional Software development and IT

operations to deliver applications and services at a high

frequency rate and maintain the quality of deliverables

[3].

A the key elements of the DevOps are processes, tools

and resources, especially human resources [4]. The

processes and tools relate to automating and streamlining

the software development and infrastructure

management processes, working in very frequent but

small software updates. These updates are usually more

incremental in their nature than the usual updates

performed under traditional release practices.

Nevertheless, even software defects can be addressed

much faster as changes are smaller.

A DevOps teams take a full responsibility for their

applications and services to meet the customer needs,

Received 24 February 2021

Accepted 5 April 2021

122

 ALJAŽ

managing their tasks is essential. Traditionally,

companies try to heavily load their (DevOps) teams, so

that all their resources are always busy, especially the key

ones. The assumption behind this is that even if a team

(system) is heavily loaded, resources will find a way to

get their tasks done. Such approach usually results in a

flow of software deliverables degradation, quality

decrease and minimization of the system (DevOps team)

efficiency. On the other hand, having too little tasks, a

team will starve (key) resources and consequently will

also reduce the flow of tasks through the system.

However, one of the most important factors of any

successful team is meeting the requirements of the

customer and increasing the Business Value of their

activities. The Business Value can be measured with the

productivity gain, product quality, customer satisfaction

and various profit and market-oriented measures [5].

Unfortunately, this cannot be achieve if the (key)

resources are overloaded with tasks. Therefore, a solution

is needed to manage the DevOps team tasks and the

resources allocate that will increase the predictability and

stability of deliverables and the flow of the task

development through it.

Ideally, a task schedule would be prepared in advance

to assign just enough tasks to resources that need to work

on by taking into account their availability, skills and

competences. However, in a highly dynamic

environment of the software development that we are

currently living in, with demand fluctuation, customer

behavior, high degree of task duration variability and

technology uncertainty, this kind of scheduling is

unrealistic. Moreover, an unexpected completion delay

of a task can delay on one or more scheduled tasks, likely

to result in a domino effect on the remaining tasks.

A traditional approach [6] to these issues is to estimate

the workload and to set due-dates for the individual tasks

or groups of tasks (e.g. new software release), based on

the customer needs or priority. Defining the due dates on

the tasks requires that several tasks need to start in

parallel. If a task execution involves also a high degree

of uncertainty, its estimation is usually inflated in order

to meet due dates. To satisfy the last minute customer

required changes, priorities of the task execution are

changed on a regular basis, sometimes several times

within a working day. Morover, the task due dates have

also another side effect. A DevOps team will do whatever

is takes to complete a task even at a lower quality or

functional achievement. This results in a high degree of

the DevOps team multitasking, the scheduled work is

delayed and the performance and quality of DevOps team

is reduced.

Instead of managing every resource in detail, the focus

of the methodology presented in the paper reduced on

only few (key) DevOps team resources. This ensures a

high utilization rate of the (key) resources, while

simultaneously leaving some amount of the excess

capacity with the other resources without jeopardizing

the task(s) due dates. The focus of the second part of the

study is on reducing the impact of the high-variability

tasks on the performance of the system by ensuring

additional (expert) resources. They will not be employed

on the most heavily used resources, but only when the

existing resources have a trouble in completing their task

and requiring help to complete it in time. The paper

contributes to the research and practice of DevOps by (i)

giving a comprehensive overview and methodology for

releasing additional tasks in a DevOps process, (ii)

methodology to reduce the impact of high-variability

tasks on the system performance, and (iii) by validating

the findings by a developed discrete-event simulation

model built with ExtendSim.

In Section 2, a brief review is given of the literature

our study is based on. Our observation is that there is a

lack of analysis of the resource loading mechanisms in

the DevOps area in the academic literature. To fill the

gap, the traditional approach to managing the resource

load is compered by the DevOps team. The problem

definition is given in Section 3 and the research

methodology in Section 4. In Section 5 are presented the

results and the findings are summarized and discussed.

Section 6 drows conclusions and gives implications for

further research and practice.

2 LITERATURE REVIEW

The DevOps teams are involved in product

development, projects, small development and solving

software defects and other operational tasks. There is a

relatively little work devoted to resource loading systems

in DevOps environments and managing the impact of

high-variability tasks on the system performance. There

is a considerable research work in the field of resource

scheduling with constrained resources in the project

management area. [7], [8], [9] focus on the resource-

constrained project-scheduling problem (RCPSP). The

RCPSP research efforts on focus on exact or heuristic

algorithms for constructing a schedule and the majority

of these papers assume a complete information and a

static, deterministic problem setting. This assumption

reduces the RCPCP applicability in the today’s

environment, where uncertainty of the software

development tasks is high. In [10] and [11] the project

performance improvements when the number of projects

in the system is controlled are evaluated. [12] deals with

the resources used multiple times in a single project, or

are shared between projects, where any unexpected delay

in a single task can cause a significant domino effects,

delaying one or more projects. With the complicated and

interrelated schedules that exist in a project environment,

an attempt to tightly schedule projects does not produce

satisfactory result in general. In [13][15] the concept of a

Constant Work-In-Process (CONWIP) in a multi-project

IMPROVING THROUGHPUT AND DUE DATE PERFORMANCE OF IT DEVOPS TEAMS 123

environment is simulated. Two control mechanisms are

described, i.e. the constant number of projects in process

(CONPIP) and the constant time of projects in process

(CONTIP). The CONPIP mechanism restricts the

number of projects and the CONTIP mechanism limits

the total processing time off the projects that are active in

the system. A potential drawback of the CONWIP

protocol, including CONTIP and CONPIP, is researched

in [14][14], suggesting that when the bottleneck is in the

upstream direction, the focus should be on WIP leading

to the bottleneck and not so much to the work required

after the bottleneck resource. This is similar to the Drum-

Buffer-Rope (DBR) methodology [15], [16], [17] used

widely in manufacturing. In our study, it is used as a

scheduling mechanism.

In a number of papers, the DBR systems are simulated

to estimate their parameters, such as the time buffer and

some others compare the DBR’ effectiveness with the

systems such as Lean or CONWIP. The application of the

Theory of constraints [18] should not be limited only to

the production environment. In [19] the DBR scheduling

is applied to any type of the organization and service-

oriented or manufacturing at the same degree of success.

In manufacturing, DBR is used to schedule the

machinery and in services, DBR can be used to schedule

resources within an organization and appointments for

customers, or to predict lead‐times for customers [16].

The paper offers a simple methodology for managing

tasks and resources by DevOps teams and a discrete-

event simulation model developed to evaluate the

research using ExtendSim.

3 PROBLEM DEFINITION

The study is based on an example given in [19][18]. A

Microsoft IT XIT Sustained Engineering team maintains

several applications for an internal use worldwide. The

team completes small change requests and solves

software defects taking less than 120 hours of work and

involving mainly the software development and testing.

The work backlog exceedes its capacity five times and is

growing every month. The lead-time to complete a

development request is typically 5 months. The due-date

of the performance is almost zero. The customers are

unhappy.

The task of the simulation is to get answer on the

following questions:

• What are the average task execution times (flow

time) for the traditional task management (to be used

as a baseline)?

• What is the impact of the policy to do workload

estimations for each task on the overall resource

availability?

• What is the impact of the resource allocation on the

same process on the overall task completion times?

• What is the impact of the management of the

workload of a few of the key resources on the same

process on the overall task completion times?

• Which methodology gives the best results in terms

of the average task completion time, standard

deviation for the task completion time, and lowest

number of active tasks / inventory (Work In progress

– WIP)?

4 SIMULATION SET-UP

Following the example from [19], a DevOps team

receives development requests from different customer

groups, responsible to prioritize the requests from their

group. The average number of the demand is one per day.

As shown in Figure 1, each request is sent to a DevOps

team for a Rough Order of Magnitude (ROM) as the most

important task. The Service Level Agreement with a

customer defines that each ROMs estimate needs to be

completed within 48 hours. When a request arrives, a

developer and a tester assess the content of the request

and provide a workload estimate. The customer assesses

the cost of a request against its value and prioritizes it

against other requests in the backlog. Estimates are

therefore essential to facilitate both budgeting and

prioritization.

Unfortunately, the team completes only 50 percent of

the development requests. The other 50 percent are dealth

in the projects as they are too big to be done by the

DevOps team, too expensive and with no return on the

investment, too slow to implement, or, the application is

retired before the request is completed.

Therefore, the simulation setup consists of a Demand

process and three workplaces, named ROM estimates,

the Development and Testing. The Workplaces are

ordered in a linear sequence. In the Demand process,

there is an unlimited supply of new customer

development requests and the completed requests are

assumed to be all accepted from the end of the testing

workplace. Each workplace has a WIP (Work in Process)

storage, where completed tasks from the previous

workplace are stored. Each workplace has a certain

number of resources and duration. To simulate the task

variability, the time to complete each task is based on the

lognormal distribution [20]. On average the ROM

estimates take four hours of work, involving both the

Developer and Tester, and must be done within 48 hours,

as described above. When there are no free resources for

the ROM estimates, they are taken from the Development

and / or Testing workplace. On average each

development request on average takes 15 days, involving

the Development and Testing resources, named

Developers and Testers. The average execution time for

the Developers is ten days (with a low end three days and

whith a high end 20 days). The average completion time

for Testers is five days (with a low end one day and with

124

 ALJAŽ

a high end ten days).

The simulation process for such case consists of the

following four workplaces (see Figure 1):

• Demand (customer requests) – on average one per

day,

• ROM estimates – average duration is 0.5 day;

involving one Development resource and one

Testing resource;

• Development time – the average duration is ten

days; involving one Development resource;

• Testing time – the average duration is five days,

involving one Testing resource.

Figure 1. Simulation process setup (during a sample simulation

in a simulator).

Simulation Basic rules:

• Each workplace uses a lognormal distribution to

define the task completion time;

• One day of completion is one day, which is eight

hours;

• For each workplace fixed number of resources is

defined;

• Demand process draws the material from an

unlimited supply (on a customer demand);

• The tasks completed in the previous workplace go to

the next workplace;

• When there are more than one task at a resource, they

are serviced using the First-In-First-Attended

(FIFA) service discipline.

• The simulation starts with a zero task before each

workplace (WIP = 0).

• Each simulation is run for 20 interactions, each

interaction is run for 4000 simulation days.

Other simulation assumptions:

• These are simulations run that are modeled as

“machines”, no human-behavior issues are modeled

such as the Student syndrome, Parkinson law,

Multitasking, sick leave, etc., that could produce an

additional delay and impact the overall performance

of the result;

• There are no problems with the resources and

logistics:

o No lead time at the beginning of each task;

o No tasks prioritizations;

o Independent process – no artificial delays;

o All customer requests are available on

demand;

o No technical disruptions;

o Customers accept each completed tasks

immediately.

4.1 Traditional methodology

The simulation setup for the Traditional process is done

in different configurations, initially with three

Developers and three Testers. The methodology starts by

estimating the workload for a task placed on each

resource, namely the Developers and Testers during a

finite period. The methodology takes into account the

available resources and based on the resource availability

and on the change in the number of resources, Developers

and / or Testers, are made for each task.

The simulation serves as a baseline for a comparison with

other approaches, for i.e. Resource loading and Expert

bench methodology.

4.2 Resource loading methodology

To test the Resource loading methodology, a different

policy and resource allocation is simulated. The

simulation setup provides the necessary information to

decide whether to release a new customer request into the

DevOps process. The methodology does not consider an

exact work schedule, nor does it consider a unique timing

situation that could overload even the best-planned

schedule. Rather, it considers the backlog of work for the

workplace.

The methodology provides a capability in a DevOps

process, by which the impacts of new task releases on

system performance can be compared and makes

decisions whether to release new tasks into the system.

Therefore, for each new task ready to be released into the

system, the analysis evaluates the impact of this release

on the resource workload at the key workplace, and

thereby on the system performance, before a release of a

task actually occurs.

The simulation model assumes that all task times are

measured in days and uses a release mechanism that

evaluates, on a daily basis, whether or not to release a

new task into the system. A new task is released into the

system only if the current resource workload for the most

heavily used workplace is at or below a defined threshold

level (two times the number of the available resources of

the most heavily used workplace). In such scenario, the

most heavily used workplace is Development, except in

the scenarios with four Developers and two Testers

(Resource Load 2) where the Testers workplace is the

most heavily used resource.

IMPROVING THROUGHPUT AND DUE DATE PERFORMANCE OF IT DEVOPS TEAMS 125

4.3 Expert Bench methodology

The third simulation investigates the use of an additional

expert resource in a task execution. Additional resources

are added to reduce the impact of high-variability tasks

on the performance of the system rather than adding more

capacity to the most heavily used resources.

In a (typical) development process, tasks are subject to a

high degree of uncertainty and it is very difficult to

predict how long a task will take, especially in new

subject areas. This variability can occur with any

resource, not just the most heavily used resource.

Therefore, a method is needed to minimize the impact of

occasional task durations that are well above the median,

with a minimum overhead.

An effective solution comes in the form of an Expert

Bench, the resources that are not involved in other tasks

and can work on any task, thus helping any resource that

has a problem in completing a task. Such a situation

exists when a resource has worked on a task at least 2/3

of the mean time [21]. The Expert Bench is used when a

resource working on a task has problems completing it,

otherwise it is idle. When the Expert Bench comes to help

the resource with a problem in completing a task, the

probability of completing a task doubles. The Expert

Bench resource and the resource with problems in

completing a task now work together to complete a task.

After completing a task, the Expert Bench resource is

returned to an idle state and is available to be called by

any other resource.

5 RESULTS AND DISCUSSION

Table 1 summarizes the results of the 4000 simulation

days for the different approaches, considered in our

study.

Table 1. Summary of 4.000 simulation days

On the vertical axis, the following parameters are

displayed for each process, based on 4.000 simulation

days:

• Traditional methodology – initial simulation

scenario with a different DevOp resource allocation:

o Traditional 1: three Developer resources

and three Testing resources;

o Traditional 2: four Developer resources

and two Testing resources;

o Traditional 3: four Developer resources

and three Testing resources;

o Traditional 4: five Developer resources

and three Testing resources;

• Res.loading – adding a Resource loading

methodology into simulation:

o Resource Loading 1: three Developer

resources and three Testing resources;

o Resource Loading 2: four Developer

resources and two Testing resources;

o Resource Loading 3: four Developer

resources and three Testing resources;

o Resource Loading 4: five Developer

resources and three Testing resources;

• Expert Bench. – adding an Expert Bench into a

simulation scenario:

o Expert Bench 1: three Developer

resources, three Testing resources and two

Expert Bench resources;

o Expert Bench 2: four Developer resources,

two Testing resources and two Expert

Bench resources;

o Expert Bench 3: four Developer resources,

three Testing resources and two Expert

Bench resources;

o Expert Bench 4: five Developer resources,

three Testing resources and two Expert

Bench resources.

The initial analysis is made with a more complex

configuration environment including additional

resources and a different resource allocation. However,

increasing the number of resources and a different

resource allocation deviates from a real-life situation and

gives no additional information that would justify the

increased complexity and the scale of the simulation.

On the horizontal axis, the following parameter values

are displayed:

• WIP – WIP after the end of the simulation;

• Tasks – quantity of the completed tasks after

simulation;

• Flow Time – Average Flow time of the task

completion through the DevOps process at the end

of simulation time;

• Standard deviation – standard deviation of Flow time

of task execution through the DevOps process of the

simulation.

5.1 Rough Order of the Magnitude (ROM)

The activity of estimating ROMs is treated as a top

priority for the DevOps team. Therefore, if there is a

request for ROM to execute task, the Developer and

Tester need to stop working on the existing task and

move their activities to do a ROM estimate. Uncompleted

tasks at the Developer or Tester, if any, are returned to

126

 ALJAŽ

the head of the queue and wait to have resources available

to continue with their tasks completion.

With the Traditional 1 scenario, having three Developers

and three Testers on the DevOps team, the impact of a

ROM request is significant. When a request arrives, one

Developer and one Tester take a request (simulating a

real case where a DevOps team checks-out the source

code, maintains the necessary paperwork and associated

operations guide) and assess the impact of the

development request. The duration of the ROM estimate

for both the development and testing is on average half a

day. Performing a ROM estimation activity takes about

one day per a ROM request from their available capacity.

Having in mind that in 2021 there are 261 weekdays

available and the resources have on average some 40

days of leave (vacations, training, sick leave, …) the

ROM estimates reduce Development and Testing

resources by some 40% of their available capacity (see

Table 2).

Table 2. Impact of the ROM estimates on the resource

availability

Table 2 shows a similar calculation for the scenarios with

four Developers and two Testers, four Developers and

three Testers, and five Developers and three Testers.

5.2 Completed tasks

Every completed task provides benefits to the

stakeholders and thus ensures a Business Value.

Therefore, the more tasks completed, the more benefits

expected.

Figure 2. Quartile chart of the completed tasks at the end of

different simulation scenarios.

Figure 2 displays the area of values for the completed

tasks taking into account the average value for each

interactions. The traditional approach has the lowest

values (from 727 to 1478) compared to the Resource

Load approach (from 829 to 1555) and Expert Bench

approach (from 1106 to 1736). Dispersion of the results

is very similar for all scenarios, except for the Resource

Load 2 and Expert Bench 2 approach where it is higher

due to the unstable conditions of the most heavily used

workplace (all available Testers and Developers are fully

utilized). From the number of the completed tasks, the

Resource Load gives a much better result compared to

the traditional approach (on average around 115 percent),

while the Expert Bench gives the best result (on average

by 135 percent better than the Traditional approach and

on average around 118 percent better than the Resource

Load approach).

5.3 Work In Progress

WIP in a DevOps process refers to a partially completed

task that is waiting to be completed. This means that an

uncompleted task brings no Business Value, but acts as a

buffer. This means that the WIP levels are ideal at low

values, but when they are too low this may cause

starvation of the most heavily used workplace

(resources), thus providing unnecessary delays in the task

completion.

Figure 3. Quartile chart of the WIP results at the end of a

simulation for different simulation scenarios.

Figure 3 displays the area of the WIP values for each

simulation scenario. The WIP levels are the highest using

the Traditional approach of managing tasks (on average

from 521 to 1260) and this process has the highest result

dispersion. The Resource Load (on average from 8 to 15)

and Expert Bench (on average from 9 to 12) scenarios

have a significantly lower and similar size with the lower

result dispersion. Resource Load 2 and Expert Bench 2

scenarios have a higher result dispersion due to unstable

process conditions, described in Chapter 5.2. Results

show that compered to the WIP levels, the Resource Load

and Expert Bench scenarios give a better result

(excluding Resource Load 2 and Expert Bench 2

scenarios), i.e. only 1 percent of a completed tasks.

5.4 Average Flow time

The Flow time, i.e. the time taken to complete a task, is

important for the stakeholder of the DevOps process.

Consequently, lower Flow time results are more

desirable, thus monetizing investment to Business Value.

Moreover, a low standard deviation of a Flow times is

wanted to meet the stakeholders expectation of having

stable and predictable delivery dates.

IMPROVING THROUGHPUT AND DUE DATE PERFORMANCE OF IT DEVOPS TEAMS 127

Figure 4 displays the area of values for the average task

Flow times for different scenarios. These values are the

highest for the Traditional approach scenario (on average

from 443 to 852 days) with the highest dispersion. The

results for the Resource Load scenario (on average from

44 to 57 days) and Expert Bench scenario (on average

from 33 to 43 days), excluding Resource Load 2 scenario

(on average 98 days) and Expert Bench 2 scenario (on

average 60 days) approaches are significantly lower (on

average 17 times) and of low a dispersion (on average 41

times) compared to the Traditional approach.

Figure 4. Quartile chart of an average task Flow time at the end

of a simulation for different simulation scenarios.

The second criteria of the previous parameter is a

standard deviation of the task Flow time. Figure 5 shows

that predicting the task Flow time is the most difficult for

the Traditional approach where the standard deviation is

on average from 426 to 715 with an average of 617. The

standard deviation of the Resource Load approach is

from 22 to 34 with an average of 26, excluding the

Resource Load 2 approach (from 30 to 228, an average

of around 100). The standard deviation of Expert Bench

approach is from 12 to 17, with an average of around 14,

excluding Expert Bench 2 approach (from 27 to 75, an

average of around 41).

Figure 5. Quartile chart of the standard deviation of the task

Flow times at the end of a simulation for different simulation

scenarios.

Combining the two values, the following task Flow times

are estimated, the exeption being the approach with four

Developers and two Testers (i.e., Traditional 2, Resource

Load 2 and Expert Bench 2):

• The average task Flow time of the Traditional

approach is 650 days and on average standard

deviation of 582. So, the development times from 68

to 1232 days are expected (note that the task Flow

time is constantly growing).

• The average task Flow time of Resource Load is 48

days and the average standard deviation is 28. So,

the expected development times are from 20 to 76

days.

• The average task Flow time of the Expert Bench is

37 days and the average standard deviation is 14. So,

the expected Flow times are from 23 to 51 days.

6 CONCLUSION

Researchers in the resource management and

scheduling are urged by various organizations to find

optimal ways of working. Researches critically evaluate

processes to determine how effective they are in

delivering a maximum value and strive to incorporate

methods that significantly reduce the Flow time, lower

the costs, and improve the quality of their products and

solutions or the services they provide. The study analyzes

and formalizes the results of using an ExtendSim

simulator by changing the resource allocation, reducing

the workload on resources, and providing experts to help

in the software development process called DevOps

when needed.

The simulations show that some simple steps proposed

in the study reduce the task completion time and the

number of uncompleted tasks, and increase the number

of completed tasks. The traditional approach does not

consider the resource availability of the DevOps process.

Specifically, the number of new requests / tasks is greater

than a DevOps process can handle, resulting in a high

number of incompleted tasks (Work in Progres) and by

far the longest and most unpredictable task completion

time (flow time). Moreover, the ROM process takes 40+

percent of the available resource capacity. Managing the

load on the most heavily used resources as well as

invoking expert resources (when needed) shows a stable

and relatively low number of incompleted tasks, but a

higher number of finished tasks and a shorter task

completion time compared to the traditional approach.

Moreover, the simulations show that the resource

allocation (i.e., the number of the Developers versus the

Testers) significantly effects the effectiveness of the

overall DevOps process.

With no new resources and no changes to the way a

DevOps team performs the software development tasks,

such as the design, coding, and testing, the task

completion time is over 13 times shorter, the work in

progress is over 104 times reduced and the increase in the

number of the completed tasks is on the level of 110

percent. This is achieved by managing the utilization of

the most heavily used resources, thus providing the

means to manage the entire DevOps process. Also, this

128

 ALJAŽ

releases new tasks in a DevOps process at a rate

acceptable by the resources. By adding resources in

strategic places and experts to help when needed, the time

to complete a tasks is now reduced by over 17 times, the

amount of the work in progress is reduced by over 98

times and the number of completed tasks is increased at

least by 135 percent. To sum up, increasing the number

of resources improves the Business Value of the activities

done by a DevOps team at a certain cost, of course, which

is left to be decided upon by the organization itself.

The first important conclusion of the study is that

controlling the number of incompleted tasks in the

DevOps process (Work In Progress) is more important

than a continuous flow of new tasks (i.e., the

development request) as it significantly reduces the task

Flow time through a lower number of uncompleted tasks

(WIP). The second important conclusion is that

introducing expert resources to help when needed offers

a better result in the overall DevOps process for allowing

an easy resource management and simultaneously

leaving room for improvement by introducting the

Critical’s Chain Project Management Fever Chart to

prioritize tasks that are already in a system. Finally,

eliminating the ROM estimation process with a policy

change ensures a considerable and immediate

improvement, freeing 40+ percent of the resource

availability.

LITERATURE

[1] F. M. A. Erich, C. Amrit, M. Daneva. (2017). A qualitative study
of DevOps usage in practice”. Volume29, Issue6 Special Issue:

Recent Advances in Agile Software Product Development

[2] Lianping Chen. (2018). Microservices: Architecting for
Continuous Delivery and DevOps". in IEEE International

Conference on Software Architecture. Seattle, USA: IEEE

[3] Bass L, Weber I, Zhu L. (2015). DevOps: A Software Architect’s

Perspective". Addison-Wesley Professional

[4] Jha, Pratibha & Khan, Rizwan. (2018). A Review Paper on
DevOps: Beginning and More To Know. International Journal of

Computer Applications.

[5] Guido Schryen (2013) Revisiting IS business value research: what

we already know, what we still need to know, and how we can get

there, European Journal of Information Systems, 22:2, 139-169

[6] Spalek, Seweryn. (2016). Traditional vs. Modern Project

Management Methods. Theory and Practice. Smart and Efficient

Economy: Preparation for the Future Innovative Economy, 21st

International Scientific Conference

[7] Ballestín, F. and Leus, R. (2009). Resource‐Constrained Project

Scheduling for Timely Project Completion with Stochastic

Activity Durations. Production and Operations Management, 18:

459-474.

[8] Creemers, S. (2015). Minimizing the expected makespan of a

project with stochastic activity durations under resource

constraints. J Sched 18, 263–273

[9] Amer Fahmy, Tarek M. Hassan, Hesham Bassioni. (2014).
Improving RCPSP solutions quality with Stacking Justification –

Application with particle swarm optimization, Expert Systems with

Applications, Volume 41, Issue 13 , Pages 5870-5881, ISSN 0957-

4174

[10] Anavi-Isakow, S., & Golany, B. (2003). Managing multi-project

environments through constant work-in-process. International

Journal of Project Management, 21(1)

[11] Bendavid, I., Golany, B. (2011). Predetermined intervals for start

times of activities in the stochastic project scheduling problem.

Ann Oper Res 186, 429–442

[12] Pritsker, AAB, Waiters, LJ, Wolfe, PM. (1969). Multiproject
scheduling with limited resources: a zero-one programming

approach. Manag. Sci. 16(1), 93–108

[13] Hübl A. (2018). Conwip. In: Stochastic Modelling in Production

Planning. Springer Gabler, Wiesbaden.

[14] Nasim Nahavandi. (2009). CWIPL II, a mechanism for improving
throughput and lead time in unbalanced flow line, International

Journal of Production Research, 47:11, 2921-2941

[15] Bhardwaj, & Gupta. (2010). Drum-Buffer-Rope: The Technique to

Plan and Control the Production Using Theory of Constraints.
World Academy of Science, Engineering and Technology, Article

19, page 103

[16] Tomaž Aljaž. (2014). Out of chaos in 12 months - improving lead

time of sprint projects in software development implementing

Drum Buffer Rope Solution, ERK

[17] Zupancic, D., Buchmeister, B., & Aljaz, T. (2017). Reducing the

Time of Task Execution with Existing Resources – Comparison of

Approaches. International Journal of Simulation Modelling, 16,

484-496.

[18] Moos. (2007). Improving Service Quality with the Theory of

Constraints. Journal of Academy of Business and Economics, 4(3)

1-15

[19] D. J. Anderson, D. Dumitriu. (2005). From Worst to Best in 9
Months: Implementing a Drum-Buffer-Rope Solution in

Microsoft’s IT Department, TOC ICO World Conference

November 2005

[20] Trietsch, D., L. Mazmanyan, L. Gevorgyan, and K. R. Baker.
(2012). Modeling activity times by the Parkinson distribution with

a lognormal core: theory and validation, European Journal of

Operational Research, v 216, pp. 386-396.

[21] Oswald, A., Muller, W. (eds.). (2017). Management 4.0 –

Handbook for Agile Practices. Books on Demand, Norderstedt

Tomaž Aljaž is having over 22 years of professional

experience in the area of Information & Telecommunication.

He is employed in Spar Slovenija where is managing IT

projects with a particular focus on improving performance of

the project team, establishing and maintaining an optimal use

of resources and reducing the operational risks. He is also a

faculty member of the Faculty of Industrial Engineering Novo

mesto, Slovenia. His past experiences are related to the R&D

environment where he worked as a Resource, Project, Product

and Solution manager. He has published several papers on the

information technology and telecommunication area, resource

management, project management and process improvements

using Theory of the Constraints methodology. He is a holder of

a Ph.D. degree in Electrical Engineering received from the

Faculty of Electro Engineering and Computer Science of

Maribor and has completed courses in Constraint Management

at the Washington State University, USA. For over 11 years he

has been teaching at a graduate and postgraduate level the

topics related to performance improvement of organizations,

project management, information technology and

telecommunication. In 2018 and 2019 he was granted a

Certified Scrum Master (CSM) and Certified Scrum Product

Owner (CSPO) certificate and in 2014 a Jonah certificate, by

the Theory Of Constraints International Certification

Organization (TOCICO).

