
Informatica 23 (1999) 239-247 239 

ASVNCHRONOUS MICROPROCESSORS 

Jurij Šile 
Computer Systems Department, Jožef Štefan Institute, Ljubljana, Slovenia 
email: jurij.silc@ijs.si 
AND 
Borut Robič 
Faculty of Computer and Information Science, University of Ljubljana, Slovenia 
email: borut.robic@fri.uni-lj.si 

Keywords: asynchronous logic, asynchronous processor, self-timed processor 

Edited by: Rudi Murn 
Received: April 6, 1999 Revised: May 19, 1999 Accepted: May 25, 1999 

The asynchronous processors attack clock-related timing problems by asynchronous (or self-timed) 
design techniques. Asynchronous processors remove the internal clock. Instead of a single central 
clock that keeps the chip's functional units in step, ali parts of an asynchronous processor (e.g., 
the arithmetic units, the branch units, etc.) work at their own pace, negotiating with each other 
whenever data needs to be passed between them. In this paper, severa/ projects are presented, 
two of these - the Superscalar Asynchronous Low-Power Processor (SCALP) and AMULET - are 
presented in more detail. 

1 Introduction 
Conventional synchronous architectures are based on 
global clocking whereby global synchronization signals 
control the rate at which different elements operate. 
For exainple, aH functional units operate in lockstep 
under the control of a central clock [16]. 

With progress of tirne and improvement of technol-
ogy, clocks get faster, the chips have higher circuit 
density and the -vvires get finer. As a result, it be-
comes increasingly difficult to ensure that ali parts of 
the processor are ticking along in step with each other. 
Even though the electrical clock pulses are travelling 
at a substantial fraction of the speed of light, the de-
lays in getting from one side of a small piece of silicon 
to the other can be enough to throw the chip's oper-
ation out of synchronization. Even if the clock were 
injected optically to avoid the wire delays, the signals 
issued as a result of the clock would stili have to prop-
agate along wires in time for the next clock pulse, and 
a similar problem would remain. For example, the 
1997 National Technology Roadmap for Semiconduc-
tors [23] forecasts that CMOS technology will reach a 
point where the switching delay for a single gate will 
be close to 10 ps while a single chip area will be nearly 
7.5 cm^. It will take 30 clock cycles for the electric sig­
nal to cross such a chip. Moreover, the interchip clock 
skew already represents a major problem. 

The clock-related timing problems have been re-
cently attacked by asynchronous (or self-timed) design 
techniques. These asynchronous processors do away 
with the idea of having a single central clock keeping 

the chip's functional units in step. Instead, each mod­
ule of the processor - for example, the arithmetic units, 
the branch units, etc. - aH work at their own pace, ne­
gotiating with each other whenever data needs to be 
passed between them. The communication protocol 
synchronizes the modules involved in the communica­
tion and allows data to be shared between them. 

Without a global clock, asynchronous systems enjoy 
[19]: 

— Data-dependent cycle time rather than worst čase 
cycle time: The conventionally clocked chip has to 
be slowed down so that the most sluggish function 
does not get left behind. To deal with this prob­
lem one can either use some extra circuitry to try 
to speed up these slow special cases, or alterna-
tively just accept it and slow everything down to 
take account of the lowest common denominator. 
Either way the result is that resources are wasted 
or the chip's speed is determined by an instruction 
that may hardly ever be executed. In the asyn-
chronous approach the chip only becomes more 
sluggish when a tricky operation is encountered. 

— Potential for low power consumption: The con­
ventional processors are becoming increasingly 
power consuming. For example, DEC's Alpha 
and the IBM/Motorola PowerPC 620 emit around 
20 W to 30 W in normal operation. If we were to 
continue to use 5 V supplies, we could expect by 
the end of 1999 a 0.1 micron processor dissipat-
ing 2kW. Reducing the supply to 3 V (or 2 V) 
would only reduce the power dissipation to 660 W 

mailto:jurij.silc@ijs.si
mailto:borut.robic@fri.uni-lj.si


240 Informatica 23 (1999) 239-247 J. Šile et al. 

clock 

' ' 

H J 
Combinational 
Logic 

" 

1 
^J 

Combinational 
Logic 

" 

1 
^ 

Combinational 
Logic 

(a) 

O 

h-1 

' ' , 

H J 

' 

acknovvledge 

request 

go done 

Combinational 
I -ogic 

u 
O 
1-1 

' ' 

M (^ 

>-i 

' 

acknowledge 

request 

go done 

Combinational 
Logic 

O 
O 

" 

o 

hJ 

' 

acknowledge 

request 

go done 

Combinational 
Logic 

(b) 

Figure 1: A simple pipeline (a) synchronous (b) asynchronous 

(or 330 W). One of the reasons is that many of the 
logic gates switch their states simply because they 
are being driven by the clock, and not because 
they are doing any useful work. Removing the 
clock in asynchronous processors also removes the 
unnecessary power consumption as CMOS gates 
only dissipate energy when they are switching. 

— Ease of modular composition, i.e., circuits can be 
assembled as plug-and-play. 

— Optimization of frequent operations while rare op-
erations can spend more tirne. 

— No need for clock alignment at the interfaces. 

— Timing fault-tolerance. 

There are also several shortcomings to the asyn-
chronous approach: 

— clock-based computers are easier to build than 
asynchronous; 

— it is easier to verify a synchronous design due to its 
deterministic operation (by comparison, verifying 
an asynchronous design, with each part working 
at its own pace, is difficult). 

2 Asynchronous Logic 

Virtually ali digital design today is based on a 
synchronous approach whereby each subsystem is a 

clocked finite state machine that changes its states on 
the edges of a regular global clock. Such a system be-
haves in a discrete and deterministic way, provided the 
delays are managed so that the flip-flop setup and hold 
times are met under ali conditions. 

As a contrast, in asynchronous design, there is no 
clock to govern the timing of state changes. Sub-
systems exchange Information at mutuaJly negotiated 
times with no external timing regulation. An asyn-
chronous pipeline, such as micropipelines [18], man-
ages the flow of data according to the state of the 
next and previous pipeline stages. In a synchronous 
pipeline, if a stage is late in completing operation of 
the combinatorial circuit, the entire pipeline delayed 
by an amount of tirne equal to the clock period. For 
an asynchronous pipeline, however, if a stage is late 
by an duration u, the entire pipeline is delayed just 
by u}. Also in contrast to synchronous pipelines, an 
asynchronous pipeline controller only judges the state 
of adjoining stages. Therefore decentralized control is 
possible [19]. 

Figure la shows the structure of a synchronous 
pipeline with latches and combinational logic blocks. 
AH latches are controlled by a single global clock signal 
and operate simultaneously. 

An asynchronous implementation of the pipeline is 
shown in Fig. Ib. The latches and the combinational 
logic block are the same as in the synchronous pipeline. 
The timing, however, is controlled differently. Each 
latch has an associated latch control circuit (LCC) 



ASVNCHRONOUS MICROPROCESSORS Informatica 23 (1999) 239-247 241 

which opens and closes the latch in response to re-
quest signals from the previous stage and acknowledge 
signals from the following stage. There are a few key 
features which describe most current approaches: 

— Delay-insensitive vs speed-independent design: 
Delay-insensitive designs make no assumptions 
about delays within the system. That is, any gate 
or interconnection may take an arbitrary tirne to 
propagate a signal. Speed-independent systems 
are tolerable to variations in gate speeds but as-
sume instantaneous transmissions along wires. 

— Dual-rail encoding vs data bundling communica-
tion protocol: In dual rail encoded data, each 
Boolean is implemented as two wires. This al-
lows the value and the timing Information to be 
communicated for each data bit. Bundled data, 
on the other hand, has one wire for each data bit 
and a separate wire to indicate the timing. 

— Level vs transition encoding: Level-sensitive cir-
cuits typically represent a logic one by a high volt-
age and a logic zero by a low voltage. In transition 
signaling, only changes in the level of signals are 
taken into account. 

Delay-insensitive circuits with dual-rail communica-
tion and encoding with transition signaling proved to 
be ideal for automatic transformation into a silicon lay-
out, as the delays introduced by the layout compiler 
cannot affect the functionality. The most popular form 
in recent years has been dual-rail encoding with level-
sensitive signaling. Delay insensitivity is achieved at 
the cost of more power dissipation than with transi­
tion signaling. The advantage of this approach over 
transition signaling is that the logic processing ele-
ments can be much simpler. A well-known form of 
delay-insensitive circuit with bundled data communi-
cation and encoding with transition signaling is the 
micropipelined approach, which was proposed in [18] 
and adopted in the AMULET project (see below). 

3 Microprocessors 

A number of asynchronous microprocessors have been 
proposed or built recently. The processors described 
can be divided broadly into two categories: 

— Those that were built using a conservative tim­
ing model, suitable for formal synthesis or veri-
fication, but with a simple architecture. Among 
these are CAP, TITAC, ST-RISC, ARISC, and 
ASPRO-216. 

— Those that were built with a less cautious tim­
ing model using an informal design approach, but 
with a more ambitious architecture. These in-
clude the AMULET processors, NSR, Pred, CPP, 
Hades, ECSTAC, STRiP, and SCALP. 

Table 3 summarizes these characteristics. 
Let us describe the architecture and the asyn-

chronous design of asynchronous superscalar proces­
sors SCALP and AMULET and, only briefly, some 
other projects [7, 22]. 

3.1 Superscalar Asynchronous 
Low-Power Processor 

The first asynchronous superscalar processor was de-
signed in 1996 at the University of Manchester [7]. The 
processor was named SCALP, for Superscalar Asyn-
chronous Low-Power Processor. SCALP's main archi-
tectural innovation is its lack of a global register file 
and its result forwarding network. Most SCALP in­
structions do not specify the source of their operands 
and destination of their results by means of register 
numbers. Instead, the idea of explicit fonvarding was 
introduced whereby each instruction specifies the des­
tination of its result. That destination is the input to 
another functional unit consuming the value. Instruc­
tions do not specify the source of their operands at ali; 
they implicitly use the values provided for them by the 
preceding instructions. 

Figure 2 shows the organization of the SCALP pro­
cessor. SCALP does have a register file; it constitutes 
one of the functional units. It is accessed only by read 
and write instructions which transfer data to and from 
other functional units by means of the explicit forward-
ing mechanism. Sever al instructions are fetched from 
memory at a time. Each instruction has a functional 
unit identifier, which is a small number of easily de-
coded bits that indicate which functional unit will ex-
ecute the instruction. The instructions are statically 
allocated to functional units. If there is more than 
one functional unit capable of executing a particular 
instruction, one must be chosen by the compiler. This 
simplifies the instruction issuer and is essential to the 
explicit forwarding mechanism. The instruction issuer 
is responsible for distributing the instructions to the 
various functional units on the basis of the functional 
unit identifier. Each functional unit has a number of 
input queues: one for instructions and one for each 
of its possible operands. An instruction begins exe-
cution once it and ali of its necessary operands have 
arrived at the functional unit. The functional unit 
sends the result, along with the destination address, 
to the result-routing network. This places the result 
into the appropriate input queue of another functional 
unit. 

There are some similarities between the SCALP ap­
proach and dataflow computing. In particular, it is 
possible to describe SCALP programs by means of 
dataflow graphs. Nevertheless, the flow of control in 
SCALP is determined by a conventional control-flow 
mechanism, not a datafiow mechanism. 



242 Informatica 23 (1999) 239-247 J. Šile et al. 

Processor 

CAP 

FAM 

STRiP 

ST-RISC 

NSR 

CFPP 

AMULETI 

TITAC-1 

Pred 

Hades 

ECSTAC 

AMULET2e 

SCALP 

TITAC-2 

AMULET3i 

ARISC 

ASPRO-216 

Design Style 

4-phase, dual-rail 
delay-insensitive 
4-phase, dual-rail 
delay-insensitive 
variable clock 
synchronous 
dual-rail 
delay-insensitive 
2-phase 
bundled data 

2-phase 
bundled data 

2-phase 
bundled data 
2-phase, dual-rail 
quEisi delay-insensitive 
2-phase 
bundled data 

unspecified 

fundamental mode 

4-phase 
bundled data 
4-phase 
bundled data 

2-phase, dual-rail 
scalable delay-insensitive 
4-phase 
bundled data 

4-phase 
bundled data 
4-phase, multi-rail 
quasi delay-insensitive 

ISA 

own 16-bit RISC-like 

own RISC-like 

MIPS-X 

own 

own 16-bit RISC-like 

SPARC 

ARM 

own 8-bit 

based on MC 88100 

own 

own variable length 

ARM 

own 

own 32-bit 

ARM 

MIPS-II, MIPS16 

own 16-bit 

Organization 

fetch-execute pipeline 

pipelined 

pipelined 
forwarding 
fetch-execute pipeline 

pipelined 
no forwarding 
decoupled branch & load/store 
pipelined 
multiple execution stages 
single issue 
result pipeline 
forwarding using counter-flow 
pipelined 
no forwarding 
nonpipelined 

pipelined 
multiple functional units 
single issue 
no forwarding 
decoupled branch &; load/store 
pipelined 
multiple functional units 
multiple issue 
forwarding 
pipelined 
no forwarding 
pipelined , 
forwarding 
pipelined 
multiple functional units 
multiple issue 
explicit forwarding 
pipelined 
multiple functional units 
pipelined 
branch prediction 
out-of-order completion 
unrestricted forwarding 
pipelined 
multiple functional units 
pipelined 
out-of-order completion 

Table 1: Recent asynchronous microprocessors 



ASVNCHRONOUS MICROPROCESSORS Informatica 23 (1999) 239-247 243 

Instruction 
Fetch 

T 
Result Router 

•»TTTT 

H 
Functional Unit 

Instruction and 
Operand 
Queues 

m 

Result 
Queues 

H 
-HTTT 
- •cm 

Functional Unit 

Figure 2: SCALP overall organization 

3.2 AMULET 

At the University of Manchester, several asynchronous 
processors called AMULETI, AMULET2, and AMU-
LET3 were implemented [8, 9, 10, 20]. 

AMULETI was the first asynchronous implementa-
tion of a commercially important instruction set ar-
chitecture (ARM's instruction set architecture version 
3 used in the ARM6 processor) [8], and appeared in 
early 1993 (see Fig. 3). It was designed using a 2-phase 
bundled data design style, with a 5-stage pipehne and 
no result forwarding. An interlocking was used to 
stali instructions at the register read stage until their 
operands had been written by previous instructions. 
After being fetched, a branch instruction had to pass 
through ten pipeline or FIFO stages before the target 
address was sent to memory. This resulted in large 
numbers of prefetched instructions that were discarded 
and a significant number of bubbles. As a result, the 
pipeline throughput was low. AMULETI permitted 
out-of-order completion of load instructions relative 
to other instructions. AMULETI was about 70 % the 
speed of a 20 MHz ARM6 processor, but with faster 
simple operations (e.g., with three times faster multi-
plication). 

In October 1996, the AMULET2 processor was de­
signed [9], based on the ARM instruction set architec­
ture version 4. The processor used a 4-phase bundled 
data design style because this was believed to have 
benefits in terms of speed, size, and power relative 

to AMULETI. The processor had a slightly shorter 
pipeline than AMULETI and employed both forward-
ing and branch prediction. It also incorporated lim-
ited forwarding by employing a last-result register at 
the output of the ALU, and forwarding mechanisms to 
use the result of a load instruction in a following in­
struction. A more sophisticated register-interlocking 
mechanism was used to remove write-after-write haz-
ards. The AMULET2e chip consisted of 454000 tran-
sistors including a 4 kbyte fully associative cache. The 
synchronous equivalent ARM810 used almost twice as 
many transistors, but also an 8kbyte cache. With 
its 40 MIPS, the AMULET2 was 3.2 times faster 
than AMULETI, and with half the performance of 
a 75 MHz ARM810. 

The next in the AMULET line, AMULET3, is ex-
pected to be a commercial product in 1999 [10]. It is 
expected that the key feature of this microprocessor 
will be a reorder buffer capable of solving the prob-
lems of result forwarding and exception handling in an 
asynchronous pipeline. This will allow a high degree 
of flexibility in operation, such as out-of-order com­
pletion, whilst avoiding read-after-write hazards (by 
stalling until the relevant value appears) and write-
after-write hazards (averted by the reorder buffer). 

3.3 Caltech Asynchronous Processor 

The Caltech Asynchronous Processor (CAP) [11] was 
built in the late 1980s at California Institute of Tech-



244 Informatica 23 (1999) 239-247 J. Šile et al. 

.a 
1 
C a 

s o 
a a Q 

Instruction Decode 

t 

i 1 

•Eb 
pi 

1 

•a 

a 
o 

U 

W 

• 

o 
CA 

•§ 
•a < 

Figure 3: The AMULETI organization 

nology. The circuit design was delay-insensitive with 
dual-rail encoded communication. The processor fea-
tured a RISC-hke load/store instruction set with 16 
registers. A number of concurrent processes were re-
sponsible for instruction fetch, operand read, ALU op-
erate, etc. The processor was implemented in a 1.6 mi-
cron CMOS process, and operated at 18 MIPS at room 
temperate and 5 V. The circuit continued to function 
at very low supply voltages, with optimum energy per 
operation at around 2 V. It was also tested in liquid ni-
trogen at 77K when its performance reached 30 MIPS. 
More recently, GaAs version of CAP has been imple­
mented [21]. 

3.4 Fully Asynchronous 
Microprocessor 

The 32-bit Pully Asynchronous Microprocessor (FAM) 
[3] developed in the early 1990s at the Korean Institute 
of Science and Technology and the Tokyo Institute 
of Technology, was a dual-rail asynchronous proces­
sor with a RISC-like load/store instruction set. It had 
a 4-stage pipeline but register read, ALU, and register 
write occurred in a single stage eliminating the need 
for any forwarding. FAM, like CAP, is experimental. 

3.5 Self-Timed RISC Processor 

A Self-Timed RISC Processor (STRiP) [5] was built 
at Stanford University. Its instruction set was that of 

the MIPS-X processor. STRiP is included here even 
though it has a global clock signal and could be con-
sidered synchronous. It is unusual in that the speed of 
the global clock is dynamically variable in response to 
the instructions being executed, giving much of the ad-
vantage of an asynchronous system. The performance 
of STRiP was typically twice that of an equivalent syn-
chronous processor. By maintaining global synchrony 
STRiP was able to implement forwarding in the same 
simple way as synchronous processors. For a 2 micron 
technology, the designers reported a 63 MHz effective 
clock frequency and a 62.5 MIPS performance rating. 

3.6 ST-RISC 

ST-RISC [4] was an architecture from the Israel In­
stitute of Technology. It was delay-insensitive with a 
dual-rail datapath. ST-RISC had a 2-stage pipeline 
(fetch and execute) and a 3-address-register-based in­
struction set. 

3.7 Nonsynchronous RISC 

The Nonsynchronous RISC (NSR) processor [1] was 
built using FPGA technology at the University of Utah 
in 1993. It was implemented using a 2-phase bundled 
data protocol. NSR was a pipelined processor with 
pipeline stages separated by FIFO queues. The idea 
of the FIFO queues is that they decouple the pipeline 
stages so that an instruction that spends a long time in 



ASVNCHRONOUS MICROPROCESSORS Informatica 23 (1999) 239-247 245 

one stage need not hold up any following instructions. 
The disadvantage of this approach is that the latency 
of the queues themselves is significant and, because 
of the dependencies within a processor pipeline, the 
increase in overall latency is detrimental. NSR used 
a locking mechanism to stali instructions that need 
operands produced by previous instructions. There 
was no forwarding mechanism. NSR had a 16-bit dat-
apath and 16-bit instructions. The instructions in-
cluded three 4-bit register specifiers and a 4-bit op-
code. Some aspects of its instruction set were spe-
cialized for the asynchronous implementation: branch, 
load, and store instructions made the FIFOs that in-
terconnected the functional units visible to the pro-
grammer. Conditional branch instructions were de-
coupled from the ALU that executed comparison in­
structions by a Boolean FIFO. Computed branch in­
structions also used a FIFO to store computed branch 
addresses. Load instructions had two parts. One in­
struction specifies a load address. A subsequent in­
struction used the load result by reading from a special 
register r l . There could be an arbitrary separation be-
tween the two instructions, and it was possible to have 
several load operations outstanding at one time. Store 
instructions worked similarly by writing the store data 
t o r l . 

3.8 Counterflow Pipeline Processor 

The Counterfiow Pipeline Processor (CFPP) [17], de-
veloped in 1994 at Sun Microsystems, was based on ex-
tensions of the techniques proposed in [18]. The CFPP 
executed SPARC instructions. Its novel contribution 
was the result forwarding in an asynchronous pipeline. 
CFPP had two pipelines. In one pipeline, instructions 
flowed upwards; in the other results flowed downwards. 
As instructions flowed upwards they watched out for 
results of previous instructions that they had to use as 
operands flowing downwards. If they spotted any such 
operands, they captured them; otherwise, they eventu-
ally received a value that flowed down from the register 
file which was at the top of the pipelines. When an 
instruction obtained ali of its operands it continued to 
flow upwards until it found a pipeline stage where it 
could compute the result. Once computed, the result 
was injected into the result pipeline for use by any fol-
lowing dependent instructions and was also carried for-
ward in the instruction pipeline to be written into the 
register file. The counterflow pipeline neatly solved the 
problem of result forwarding. This particular CFPP 
was not fabricated. 

3.9 T I T A C 

TITAC-1 [13] was a simple 8-bit asynchronous pro­
cessor built at the Tokyo Institute of Technology. It 
was based on the quasi delay-insensitive (QDI) tim-

ing model (where additional assumptions are intro-
duced into the delay-insensitive model) and so had to 
use dual-rail encoding communication. This resulted 
in about twice as many gates in the datapath com-
pared to an equivalent synchronous datapath. Archi-
tecturally, TITAC-1 was very straightforward with no 
pipelining and a simple accumulator-based instruction 
set. 

In 1997, a 32-bit asynchronous microprocessor 
TITAC-2 [19] was built whose instruction set archi-
tecture was based on the MIPS R2000. It ušes a scal-
able delay-insensitive (SDI) model, which unlike the 
QDI model, assumes that the relative delay ratio be-
tween any two components is bounded. SDI circuits 
can run faster than equivalent QDI ones. The mea-
sured performance of TITAC-2 was 52.3 MIPS using 
the Dhrystone benchmark. 

3.10 Fred 

Fred [15] is a development of NSR and also built at the 
University of Utah. Like NSR, Fred is implemented us­
ing 2-phase data bundling. It is modeled using VHDL. 
Pred extends the NSR to have a 32-bit datapath and 
32-bit instructions, based on the Motorola 88100 in­
struction set. Fred has multiple functional units. In­
structions from the functional units can complete out 
of order. However, the instruction issuer can only is-
sue one instruction at a time, and the register file is 
only able to provide operands for one instruction at 
a time. This allows for a relatively straightforward 
instruction issue and a precise exception mechanism, 
but limits the attainable level of parallelism. There is 
no forwarding mechanism; instructions are stalled at 
the instruction issuer until their operands have been 
written to the register file. There is no out-of-order 
issue. Like the NSR, Fred ušes programmer-visible 
FIFO queues to implement decoupled load/store and 
branch instructions. This arrangement has the pos-
sibility of deadlock if the program tries to read from 
an empty queue or write to a full one. Fred chooses 
to detect this condition at the instruction issuer and 
generate an exception. 

3.11 Hades 

Hades [6] is a proposed superscalar asynchronous pro­
cessor from the University of Hertfordshire. It is in 
many ways similar to a conventional synchronous su­
perscalar processor; it has a global register file, for-
warding, and a complex (though in-order) instruction 
issue. Its forwarding mechanism ušes a scoreboard to 
keep track of which result is available and from where. 

3.12 ECSTAC 

ECSTAC [12] is an asynchronous microprocessor de-
signed at the University of Adelaide. ECSTAC is im-



246 Informatica 23 (1999) 239-247 J. Šile et al. 

plemented using fundamental mode control circuits. It 
is deeply pipelined with a complex variable-length in-
struction format. It has 8-bit registers and ALU. The 
variable-length instructions and the mismatch between 
the address size and the datapath width made the de­
sign more complex and slower. There is no forwarding 
mechanism within the datapath, and a register inter-
locking scheme is used to stali instructions until their 
operands are available. 

3.13 ARISC 
A joint project between the Technical University of 
Denmark and LSI Logic Denmark resulted in ARISC 
[2], which is an asyncronous re-implementation of 
the LSI Logic's TinyRISC TR4101 embedded mi­
croprocessor. Four-phase bundled data protocol is 
used throughout the entire design in combination 
with a normally opaque latch controUer. Ali logic 
is implemented using static logic standard cells. In 
0.35 micron CMOS technology ARISC performance is 
74 MIPS (with power efficiency 635MIPS/W), while 
the performance of the 83 MHz TR4101 is 48 MIPS 
(539MIPS/W). 

3.14 ASPRO-216 
ASPRO [14] is a CMOS standard-cell QDI micropro­
cessor which is being developed at the ENST Bre-
tagne and CNET Grenoble. It is based on a simple 
RISC architecture with 16 general purpose registers. 
ASPRO-216 is a scalar processor, which extensively 
ušes an overlapping pipelined execution scheme involv-
ing asynchronous units. The processor issues instruc­
tions in order and may complete their execution out 
of order. In 0.25 micron technology the expected peak 
performance is 200 MIPS with 0.5 W power dissipa-
tion. 

4 Conclusions 
Power consumption in VLSI chips may be a signif-
icant issue for two reasons. First, to optimize bat-
tery life, portable equipment such as lap-top com-
puters and mobile telephones demand low power con­
sumption. Second, high performance processors now 
dissipate enough power to make chip cooling a prob­
lem in an office environment. Thus, it has been pre-
dicted that asynchronous techniques will find their 
way into certain niches, in particular, embedded ap-
plications where the work required is extremely burst-
intensive or where power-saving requirements make 
the approach attractive. Clocked chips with some 
asynchronous parts may also be expected. The asyn-
chronous processor paradigm has the potential to solve 
the clocking problems in large processor chips. As a 

result, several universities and microprocessor manu-
facturers are actively investigating new asynchronous 
processor architectures. 

References 
[1] E. Brunvand: The NSR processor. Proč. 26th An-

nual Haivaii International Conference on System 
Sciences, (1993), pp. 428-435. 

[2] K.T. Christensen et al.: The design an asyn-
chronous TinyRJSC TR4101 microprocessor core. 
Proč. 4th International Spmposium on Advanced 
Research in Astjnchronous Circuits and Systems, 
(1998). 

[3] K.-R. Cho, K. Okura, K. Asada: Design of a 
32-bit fully asynchronous microprocessor (FAM). 
Proč. 35th Midiuest Symposium on Circuits and 
Systems, (1992). 

[4] I. David, R. Ginosar, M. Yoeli: Self-timed ar­
chitecture of a reduced instruction set computer. 
Proč. IFIP Working Conference on Asynchronous 
Design Methodologies, (1993). 

[5] M.E. Dean: Strip: A self-timed RISC processor. 
Technical Report CSL-TR-92-543, Stanford Uni-
versity, 1992. 

[6] C.J. Elston et al.: Hades - Towards the design 
of an asynchronous superscalar processor. Proč. 
2nd IVorking Conference on Asynchronous De­
sign Methodologies, (1995), pp. 200-209. 

[7] P.B. Endecot: SCALP: A superscalar asyn-
chronous low-power processor. Ph.D. Thesis, Uni-
versity of Manchester, 1996. 

[8] S.B. Furber et al.: A micropipelined ARM. Proč. 
FIP TC10/WG 10.5 International Conference on 
Very Large Scale Integration, (September, 1993), 
pp. 5.4.1-5.4.10. 

[9] S.B. Furber et al.: AMULET2e. Proč. EM-
SYS'96 - OMI 6th Annual Conference, (Septem­
ber, 1996). 

[10] S.B. Purber, J.D. Garside, D.A. Gilbert: 
AMULET3: A high-performance self-timed ARM 
microprocessor. Proč. IEEE International Con­
ference on Computer Design, (October 1998). 

[11] A. J. Martin et al.: The design of an asynchronous 
microprocessor. Proč. Decennial Caltech Confer­
ence on VLSI, (1989), pp. 351-373. 

[12] S.V. Morton, S.S. Appleton, M.J. Liebelt: EC-
STAC: A fast asynchronous microprocessor. Proč. 
2nd IVorking Conference on Asynchronous De­
sign Methodologies, (1995), pp. 180-189. 



ASYNCHRONOUS MICROPROCESSORS Informatica 23 (1999) 239-247 247 

[13] T. Nanya et al.: TITAC: Design of a quasy-delay-
insensitive microprocessor. IEEE Design and Test 
of Comp., ll(2):50-63, 1994. 

[14] M. Renaudin, P. Vivet, F. Robin: ASPO-216: 
A standard-cell Q.D.I. 16-bit RISC asynchronous 
microprocessor. Proč. 4th International Sympo-
sium on Advanced Research in Asynchronous Cir-
cuits and Systems, (1998). 

[15] W.F. Richardson, E. Brunvand: Pred: An ar-
chitecture for a self-timed decoupled computer. 
Technical Report UUCS-95-008, University of 
Utah, 1995. 

[16] J. Sile, B. Robič, T. Ungerer: Processor Architec-
ture - From Dataflow to Superscalar and Beyond. 
Springer-Verlag, Berlin, 1999. 

[17] R.F. Sproull, LE. Sutherland, C.E. Mol-
nar: Counterflow pipeline processor architecture. 
IEEE Design and Test of Comp., 11(3), 1994. 

[18] LE. Sutherland: MicropipeHnes. Comm. ACM 
32(6):720-738, 1989. 

[19] A. Takaiiiura et al.: TITAC-2: An asyncronous 
32-bit microprocessor based on scalable-delay-
insensitive model. Proč. IEEE International Con-
ference on Computer Design, (October 1997), pp. 
288-294. 

[20] G. Theodoropoulos, J.V. Wood: Building paral-
lel distributed models for asynchronous computer 
architecture. Proč. World Transputer Congress, 
(September 1994), pp. 285-301. 

[21] J.A. Tierno et al.: A 100-MIPS GaAs asyn-
chronous microprocessor. IEEE Design and Test 
of Comp., ll(2):43-49, 1994. 

[22] T. Werner, V. Akella: Asynchronous processor 
survey. Computer, 30(11):67-71, 1997. 

[23] The National Technology Roadmap for Semicon-
ductors. SEMATECH Inc., Austin, TX, 1997. 


