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Latent Class Analysis Identification of
Syndromes in Alzheimer's Disease: A Bayesian
Approach

Cathal D. Walsh

Abstract

Latent variable models have been used extensivelythe social
sciences. In this work a latent class analysigsisd to identify syndromes
within Alzheimer's disease. The fitting of the mbde done in a Bayesian
framework, and this is examined in detail here.plarticular, the label
switching problem is identified, and solutions preted. Graphical
summaries of the posterior distribution are incldde

1 Introduction

Latent Class Analysis (LCA) is the use of a discristient variableto model a
situation where there are a number of categonmeaponse variables of interest.
These models have been usedtensively in the social sciences to model
heterogeneity omanifest responses in a multivariate sense. Manyngkes and
guidance on practical fitting strategies may be fbum Hagenaars and
McCutcheon (2002). Examples of the use of LCA ire ttontext ofmedical
diagnosis date back to Young (1983). The methods us this paper draw on
Bayesian strategies for fitting these modelspsaarview of whichcan be found in
Garrett and Zeger (2000).

2 Model

The model for LCA can be described in terms of rfestivariablesx, and latent
categorical variable. In this case, interest is on manifest variabldsciv consist
of a number of binary indicators for each individula¢ing presence or absence of
a particular disease symptom. Dbetbe the response vector of individyataken
from a sample ofl individuals. Thenx; is the presence or absence of symptom
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i0d1,..l. Let 7 be the probability of a positive response on vdaabfor a
person in class z_j=k01,...,K and sk be the probability that a randomly chosen
individual is in clask. The conditional distribution of eacdj is Bernouilli:

f(x 1z = kg )=m" Q-7 Y™ .

Given the clasg=k and thg™ individual, independence vyields:

|
fx 1z = =[] "" Q-7 ).
1=1
With K classes, the mixture becomes,

K
f(x)=>n[]m"Q-m) ™.
k=1

=1

The posterior probability that an individual withsponsex; belongs to clask is;

|
P ” ﬂi.kXij (1-rm, )(1->g )
h(z = Kx) ===

i

Thus, conditioning on the unobservable class, yieddstraightforward finite
mixture of Bernoulli random variables. This classriable is unknown and some
effort is spent on the identification of that faxah individual.

3 Fitting

Fitting the latent class model involves standardhteques used taleal with
missing labels. Thus, for example, in the likelidolmamework the EM algorithm
Dempster et al. (1977) is used.

In a Bayesian context, the missing labels are tceateparameters to be jointly
estimated, and samples from the corresponding postean be obtained using
MCMC.

3.1 EM algorithm

In the maximum likelihood setting the label infortiwan is treated as unknown,
and this is completed before the parameters afienatdd. Since this completion
step is carried out with uncertain estimates of pleameters, it is repeated with
the new estimates in an iterative fashion.
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This is the most common method of fitting these eledand care must be
taken to ensure that local maxima are not reachit is done by using multiple
restarts from different initial conditions.

The algorithm used to obtain point estimates of paeameters then proceeds
as;

1. Choose an initial set of posterior probabilitiei;, = k| x;)
| o

2. Obtain a first approximation tek and 7z,

3. Substitute these estimates into the expression Hfz, = k| x,)to get

improved estimates
g o
4. Return to stage 2 to get new approximations/ygrand 71

This algorithm proceeds quickly, and there is viltyyano computational
overhead involved. In order to examine standardrsrrand goodness of fit
statistics great care must be taken in the cortésparse data. Since the number
of possible response patterns is larde,sparseness is a concern even where data
on many hundreds have been obtained. Solutionseasetiproblems include using
bootstrap samples or lower order marginals for g@sd of fit.

3.2 Bayesian

An alternative method of fitting these models is tee a fully Bayesian
specification. This requires the model for the datagether with priors for the
relevant parameters.

The model is as has been specified in Section 2 fiors can be obtained
from specialists within the area of applicationtékhatively, sensibly vague priors
can be placed on the parameters. For example,iahDat prior with equal weights
on 17 would be considered to be ‘flat’ in the sense welld expect.

When fitting the model using MCMC a sequence ofliss@ions of the
parameters is available at each step, and derivedmaries may usefully be
presented in examination of model fit and interpbdlity. An outline of some
diagnostics which can be of practical use is givesarrett and Zeger (2000).

One of the referees emphasised that analogous chettan be used to explore
the likelihood without using a fully Bayesian modéh an MLE framework,
similar summaries may be constructed. The emphaasis, thowever, is how the
Bayesian fitting proceeds.
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4  Application to Alzheimer's disease

Alzheimer's disease is a degenerative conditionctwhis affecting increasing
numbers in a greying society. Largely due to improvetmen health care and
population based interventions, we have seen impgowutcomes for those
suffering from cardiac conditions and cancers. dmtcast, however, no definitive
cure exists for Alzheimer's Disease.

Research into this disease is highly multi-discigiyninvolving psychiatrists,
neuropsychologists, data managers, clinical psychsi®gand statisticians. The
type of data that arise are complex and as idedtiig Kryscio and Schmitt
(2000), more statisticians are needed in this area.

Of particular interest for this work, the clinicaide of which is discussed in
more detail in Moran et al. (2004), is the relaship between Behavioural and
Psychiatric Symptoms of Dementia (BPSD) and the diséiself.

The working research hypothesis is that subclaseessyndromes of the
disease may exist. Further, it is supposed thatetlaes the clinical phenotypes of
the disease which may be related to genetic facpesific to the individual.

By identifying clinical phenotypes, genetic testing imfdividuals may be
sampled in an efficient fashion - ensuring that tthéferent syndromes are
represented by the sample of individuals chosenthi® end, the probability of
class membership will be a useful inferential sumyna

4.1 Data description

The data in this case come from a memory clinic irfd&@nes's Hospital, Dublin.
The Mercer's Institute houses the national memonyiclfor Ireland and is the
primary centre involved in the differential diagn®f Alzheimer's disease. The
sample of individuals to be examined was restri¢tefirst visit patients with mild
disease. This restriction was to ensure clinicahbgeneity of the sample.

An examination of cases dealt with by the cliniceaked 240 first visits for
individuals who were diagnosed as having probabkease according to the
NINCDS-ADRDA criteria McKhann et al. (1984), andCdinical Dementia Rating
(CDR) Berg (1988) of 0.5 or 1.0.

This restriction to mild disease was made in otdeensure that the symptoms
were related to syndrome rather than severity. Thietesgy ensured that a known
source of heterogeneity was eliminated before thedyars began.

The Behave-AD Reisberg et al. (1996) instrument baeln administered to the
primary caregiver and this produces information dre tprevalence of each
symptom.

The Behave-AD produces scores on an ordinal scaledch of the symptoms.
However, since this sample consisted of individualghe mild stages of disease
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the symptoms were each recorded as a binary vari@dhkesymptoms of interest in
this analysis were Hallucinations, Activity Disturlzay Aggression, Agitation,
Diurnal Rhythm Disturbance and Affective disorder.

4.2 Data

Since the pattern of symptoms can be described bwrpivariables, it is
convenient to write the combinations in the form,{f, so for example an
individual exhibiting all symptoms would be denotedl1111, whereas an
individual exhibiting none would be denoted 000000.

Thus, Table 1 summarises the data on all casesdedl

Table 1: Data on prevalence of each symptom pattern.

Pattern n Pattern n| Pattern n
111111 3 011101 14001101 2
111011 1 011011 2001011 1
111001 1 011010 3001010 1
110101 1 011001 9001001 4
110011 2 011000 1001000 2
110001 5 010111 11000111 3
110000 2 010101 24000110 1
101001 1 010100 3000101 9
100101 1 010011 11000100 3
100001 1 010010 2000011 6
100000 1 010001 35000010 1
011111 6 010000 20000001 25
011110 1 001111 3000000 18
5 Analysis

The model was fit in the maximum likelihood framewousing LATCLASS
Bartholomew and Knott (1999) and in the Bayesiamiaork using WinBUGS
1.4. Additional processing was carried out usind.B. R Dev Core Team (2005).
All these packages ran on a 3.2GHz Pentium 4 P@uwdndows XP.

5.1 Label switching

A key issue which arises when sampling from the tjggosterior distribution is
that the label that is sampled for each individisabssigned at each step of the
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sampler. Since the label is a latent marker, tlsegasnent of the particular label is
unique only up to the permutation group. An exampbkes this clear.

A simulation study highlights what occurs. For ttgsnulation, two latent
groups were defined. The prevalence vector was atefy=[0.2,0.8] and the

symptoms within group 1 were given with prevalenge =0.1, 756:=0.6 and in

group 2 with prevalencei,=0.9, 756,=0.3. The total number of individuals was set
at 1000.
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Figure 1: Chain for simulated data showing chains explodifferent label space.

As is good practice, 5 chains were set running fidifferent starting values.
The output of the chain fog is shown in Figure 1. The between chain variapilit

is influenced by the distance of two of the chairmf the lower three. This is a
cause for a concern when considering whether th@inshhave converged in
distribution.

Of course, the issue here is that two of the chhense labelled individuals in
one fashion whereas the other three have labeledhen other direction. By
rearranging the columns of the sampled matrix, thisade clear. In particular,;

and 7, have been switched for the top two chains and rdsilting output is

shown in Figure 2.

The arbitrary nature of the labels for latent miesiand the difficulties caused
for Bayesian inference is well known, and is diseasgor example, in Richardson
and Green (1997). However, there are a number raftegies to deal with this
problem some of which are discussed here.
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Figure 2: Transformed chains showing impact of label change.

The solution proposed in Richardson and Green (L89% place a constraint
on the parameter space. This could bgyspace, in/rspace or some combination

of them. For illustration, the behaviour of the gder in 77 space is shown in
Figure 3. It is clear from this that the chains argloring parts of the joint space
which is divided by the line of symmetry. An arbitrargdering of the parameters,
either through the prior or post-hoc will break shsymmetry and force
identifiability.

It is noted here that the fact that the chains dbeaxplore the whole space (in
the case of the simulated data) means that they rm#nhave (technically)
converged. Indeed, this fact is described for nmatonodels in Celeux et al. (2000)
where the authors suggest that “almost the entioétgamplers used for mixture
models has not converged.”

Of course, in order for the results to be usablbatwis required is samples
from the posterior, modulo the permutation groumeGtrategy is the truncation
along symmetries as suggested by placing constraintghe parameters. An
alternative is to ‘gather’ posterior samples togetlas described by Stephens
(2000). Here the author suggests that a loss fanctian be used to ‘suck’ the
samples in the joint posterior together. Using itheas presented, an appropriate
loss function for this model is represented by adpid of Dirichlet and Betas.
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Figure 3: Transformed chains forr showing impact of label change.

Thus the algorithm for this situation is;

I .K
1. Calculated loss is based oflog(l) of Di(/7|a)|_| Be(rz, 16, ).

ik=1
2. Estimatea and @from the initial set of samples.
3. Run through sampled values permuting labels to mize the loss.
4. If changes of labels have occurred return to thetst

Offline, this algorithm has taken minutes with wp4 classes, but of the order
of an hour for 5 and many hours for 6 classes fg0Q0 samples. The expense
comes from the fact that the permutation group greery quickly.

In practice, the algorithm will not change the néswcompared to the simple
constraints for the situation given in our simuthexample. This is largely due to
the fact that there is a large amount of inform@atio the data in this case. Thus
the joint posterior is well defined and label switeg within chains is unlikely.

However, for the case of the Alzheimer's data aon#ed, a difference is
observable. Due to the smaller amount of datajrif@mation in the likelihood is
less, and thus the joint posterior is flatter. Thermits the sampler to commute
across permutations of labels within a single chdimdeed, a similar problem
would occur with more information if the modes wealeser - a feature of larger
number of classes.

The Figure 4 shows the case of the sampler/filar the 3 class model.
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Figure 4: Chain for/ showing switching.

5.2 Parameter constraints solution

Initially, constraints are placed on thg; 7:<7.<ns and the chains are post-

processed with this constraint. The result of tlisto (somewhat artificially)
separate out the chains. The picture in Figure Besahis fact clear.
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Figure 5: Chain for/7 showing constrained solution.
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While the imposition of this constraint may seemsble (there has to be a
smallest class,) it is unreasonable to suggest ttinat will work in distribution.
The impact is to truncate the joint posterior, whimay have a strange effect on
the marginal distributions.

An alternative is to use the loss function approdachgroup samples for
parameters

5.3 Loss function processing

The strategy of post processing using the loss fanctdescribed was
implemented. This was a substantial computationaklvead when compared with
the constraint solution.

However, the advantage of the strategy is that timetfon jointly considers all
parameters, and does not abruptly truncate any gatteojoint distribution. The
output is shown in Figure 6.

0.4 0.6 0.8 1.0
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0 1000 2000 3000 4000 5000

[terative Loss

Figure 6: Chain for/showing loss switched solution.

6 Results

The results of the analysis are shown in the fornpaht estimates and standard
errors. The maximum likelihood solution for the Bass model is shown for

comparison purposes. In the case of the Bayesialysasagraphical summaries of
the marginal posteriors are provided. Where stathaédarors are given in tabular
format for the Bayesian summaries, these are thedatad deviation of the sampled
values of the parameters.
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Table 2: Summaries for 3 class model. EM algorithm.

class O class 1 class 2

Hallucination | 0.09 (0.03) | 0.01 (0.02) | 0.77 (0.24
Activity 0.57 (0.05) | 0.79 (0.07) | 0.98 (0.05
Aggression 0.13 (0.04) | 0.37 (0.08) | 0.98 (0.06
Agitation 0.11 (0.06) | 0.82 (0.16)] 0.73 (0.21)
Diurnal 0.16 (0.04) | 0.33 (0.08) | 0.97 (0.08
Affective 0.63 (0.07) | 0.96 (0.05) 0.99 (0.058)

n 0.58 (0.10) | 0.39 (0.10)] 0.03 (0.02)

It is noticeable in the summaries that the standardrs, particularly in the
case of the small class, are smaller than one negpect in Table 2. This is for
reasons already discussed. On the other hand, thesBa estimates in Table 3
give more realistic values.

In addition, graphical summaries, such as Figufer7s and Figure 8 for the
1. These are easy to present to clinicians and theyget a feeling for the
substantial uncertainty that exists about the esBmaf the parameters in the
small classes.

Table 3: Summaries for 3 class model. Bayesian Analysis.

class O class 1 class 2
Hallucination 0.07 (0.03) 0.08 (0.04) 0.22 (0.24)
Activity 0.53 (0.06) 0.79 (0.07) 0.70 (0.26)
Aggression 0.09 (0.05) 0.36 (0.08) 0.55 (0.33)
Agitation 0.13 (0.06) 0.62 (0.11) 0.41 (0.30)
Diurnal 0.11 (0.05) 0.36 (0.07) 0.55 (0.30)
Affective 0.58 (0.08) 0.95 (0.04) 0.70 (0.28)
7 0.50 (0.06) 0.43 (0.05) 0.05 (0.05)

In addition to the summary of results presented hether graphical tools
outlined in Garrett (2000) have been used. In dagidn the number of classes, a
posterior predictive frequency check, Figure 9, wesed. This compares the
observed number of individuals in a class with pusterior predicted number in
each class. The observed number is marked as aaticqa plot, with the posterior
median and interquartile range shown by solid andediolines respectively.
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Figure 7: Marginal posterior estimates fay.
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Figure 8: Marginal posterior estimates for.
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Figure 9: PFC for increasing numbers of classes. Annotatghsy the pattern of
symptoms and number of individuals in that group.
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Figure 10: Probability of class membership.

In addition we summarise the probability of classmership given a
particular pattern of the manifest symptoms. Thisraadily obtained from the
posterior samples.

Models with different numbers of classes have b&#ad and the resulting
posterior probability of membership has been caledan each case. These are
presented in stacked fashion for different numbérclasses. The pattern of
symptoms is shown along the x-axis ordered by theb®rmof individuals in each
class. Thus the estimated model is most heavilyneggd by patterns to the left.
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The bars show the probability of membership of eaass, and the height of
each bar thus adds to one (so no scale on theédefl side is required.)
This graphical summary is shown in Figure 10.

7 Discussion

From a clinical perspective, the latent groupingelude a low symptom
prevalence group, a higher symptom prevalence gang a group that includes
those exhibiting hallucinations. The evidence indiar of the 3 class model is that
there is a slightly better fit between observed pretlicted. A 2 class model is not
clinically interesting, because it shows only a hayid low symptom group. The
movement beyond 3 classes is not justified by an awgment in fit.

This work consists of a deeper examination of tlethndology we used during
the exploratory phase of Moran et al. (2004). ThegeBéan analysis comes at a
substantial computational cost and is hard to fysti this instance. Indeed, this
was a point made by the referees in this case. Hewdhe work emphasizes a
number of important general lessons.

The joint posterior for sparse tables is moderafiy over large regions. In
this situation, asymptotic results have to be useith vgreat care. This is
highlighted by for example Formann (2003).

When fitting a Bayesian mixture model, the problemlabel switching can
occur. Indeed, from a technical perspective ifoed not occur then the samplers
have not explored the full posterior. This is amonighlighted by Celeux et al.
(2000) among others.

Resolving the difficulties caused by switching withthains can be done by
imposing ordering constraints on the parameterse @ay of thinking of these
constraints is as the imposition of a prior strueton a model. This strategy is a
popular one and has been implemented for mixtuse$ob example Richardson
and Green (1997). This method essentially breaks syrametry of the joint
posterior distributions, but may result in artificeummaries for situations where
a substantial posterior mass lies on the line ofragtny.

An alternative method of removing the impact of ®hing is to specify a loss
function which ensures that the summaries are ‘Wehaved’ (as defined by the
loss.) This idea follows the logic of Stephens (@P@Who examines mixtures of
Normals. One such loss function was implemente@.her

As a method of solving the switching problem, tleed function approach is
expensive, but we posit is more realistic in highmensional spaces than
constraints unless the latter are chosen with grasd.

One of the referees pointed out that there may lsantes where the
additional overhead may be worthwhile. For exampife,there are known
constraints on the parameters, or where there istaatial prior information, a
Bayesian method of fitting may be considered.
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8 Conclusions

The fitting of latent mixture models is now commdeqqe, as may be seen in work
such as Hagenaars and McCutcheon (2002). The au#yaof software tools to
do the necessary calculations means that it is ggutiek and easy to fit such
models. Routine diagnostics are produced and acp#t model may be chosen.

This work demonstrates how these models are fitngthin a Bayesian
paradigm, the problems that may be encountered,gares explicit guidance on
their solution.
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