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Symbolic Covariance Matrix for Interval-valued
Variables and its Application to Principal
Component Analysis: a Case Study

Katarina Ko§melj! Jennifer Le-Rademacher? and Lynne Billard?

Abstract

In the last two decades, principal component analysis (PCA) was extended to
interval-valued data; several adaptations of the classical approach are known from
the literature. Our approach is based on the symbolic covariance matrix C'ov for the
interval-valued variables proposed by Billard (2008). Its crucial advantage, when
compared to other approaches, is that it fully utilizes all the information in the data.
The symbolic covariance matrix can be decomposed into a within part CovW and
a between part CovB. We propose a further insight into the PCA results: the pro-
portion of variance explained due to the within information and the proportion of
variance explained due to the between information can be calculated. Additionally,
we suggest PCA on CovB and CovW to be done to obtain deeper insights into the
data under study.

In the case study presented, the information gain when performing PCA on the
intervals instead of the interval midpoints (conditionally the means) is about 45%. It
turns out that, for these data, the uniformity assumption over intervals does not hold
and so analysis of the data represented by histogram-valued variables is suggested.

1 Introduction

1.1 Principal component analysis for classical data

Principal component analysis (PCA) was first described by Pearson (1901) as an ana-
logue of the principal axes theorem in mechanics; it was later independently developed
and named by Harold Hotelling in the 1930s. It is a very popular exploratory tool in
classical multivariate data (see e.g., Chatfield and Collins, 1980; Johnson and Wichern,
2002). Its major objective is to reduce the dimension of the variable space: the origi-
nal p random variables X = (X, X5, ..., X,) are transformed into s random variables
Y = (Y1,Y3,...,Y;), called Principal Components, where s < p, and the Y variables
are uncorrelated. This transformation is defined in such a way that the first principal
component (PC}) accounts for as much of the variability, i.e., variance, in the data as
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possible, and each succeeding component in turn has the highest variance possible, under
the constraint that it be orthogonal to (i.e., uncorrelated with) the preceding components.

The solution of the problem described above is given by the eigenvalues and eigen-
vectors of the covariance matrix of X, Xs, ..., X,,. Principal components are linear com-
binations of the original variables, defined by the eigenvectors of this covariance matrix.
From the basic linear algebra it follows: there are p eigenvalues ordered: Ay > Ay > ... >
Ap > 0; eigenvalues of the covariance matrix are the variances of the principal compo-
nents. The eigenvalues add up to the sum of the diagonal elements, i.e., to the trace of the
covariance matrix. This means that the sum of the variances of the principal components
is equal to the sum of the variances of the original variables. The i-th principal component
accounts for \;/ Z§=1 A; of the total variance in the original data. When the decision on
the reduced dimension s is taken, we calculate the proportion of variance accounted for
by the first s principal components, > 7 A;/ >0 ;.

As the covariance on standardized variables equals the correlation, therefore, in this
case, eigenvalues and eigenvectors of the correlation matrix are used. It is recommended
to perform PCA on standardized variables when the original variables are measured on
scales with different ranges.

1.2 Principal component analysis for symbolic data

In the second part of the 20" century, the need to analyze massive datasets emerged.
Symbolic data analysis started as a response to that demand; see Bock and Diday (2000),
Billard and Diday (2003, 2006), among others. Symbolic analytical methods are often
generalizations of their classical approach counterparts. A symbolic method should give
the same results as its classical counterpart when applied to classical data (Billard, 2011,
Le-Rademacher and Billard, 2012).

In the last two decades, PCA was adapted for symbolic data, first in the context of
interval-valued data. A number of approaches were proposed. Le-Rademacher and Bil-
lard (2012) give a short overview of its historical development; let us review them briefly.
Cazes et al. (1997) proposed the first adaptations of PCA known as the centers method
and the vertices method, see also Douzal-Chouakria et al. (2011); Zuccolotto (2007)
applied the vertices method to a dataset on job satisfaction; Lauro and Palumbo (2000)
introduced a Boolean matrix to account for the interdependency of the vertices, Palumbo
and Lauro (2003) and Lauro et al. (2008) proposed the midpoint-radii method treating in-
terval midpoints and interval midranges as two separate variables; Gioia and Lauro (2006)
proposed a PCA version based on an interval algebra approach.

Le-Rademacher and Billard (2012) describe these approaches in detail and discuss
their characteristics in the context of symbolic data analysis: namely, these approaches
fail in different ways to utilize the entire information included in the interval-valued data.

These deficiencies can be avoided when the symbolic covariance matrix C'ov is used.
Its calculation in the interval setting was first presented in Billard (2008). The crucial
advantage of this symbolic covariance matrix is that it fully utilizes all the information in
the data; also it is shown that the symbolic covariance matrix can be decomposed into a
within part CovWW and a between part C'ov B. Two papers on this topic (Le-Rademacher
and Billard, 2012 and Billard and Le-Rademacher, 2012) also provide a new approach
to constructing the observations in PC space allowing for a better visualization of the
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results. Le-Rademacher and Billard (2013a) propose an approach to construct histogram
values from the principal components of interval-valued observations. Le-Rademacher
(2008) and and Le-Rademacher and Billard (2013b) extend these ideas to histogram-
valued observations. In a different direction, Giordani and Kiers (2006) consider fuzzy
data, which is a different domain from symbolic data and so is outside the purview of
the present work. Likewise, a different domain is the PCA of time series data of Irpino
(2006).

1.3 Objective of this study

We want to compare PCA results obtained on different data types. To enable the compar-
ison of the results, the data were aggregated from the same dataset. For each observation
and each variable, we aggregated the data in two different ways:

e the mean value;

e the [min, max] interval which is based on the minimal and maximal value under
observation.

The main objective of this study is to find out what is the information gain when analyzing
the [min, max]| interval instead of the mean value.

In the next section, some well known characteristics of interval-valued data are sum-
marized. Covariance in the interval setting will be illustrated and compared to the covari-
ance in the classical setting. For PCA on interval-valued variables, a simple measure of
the information gain will be introduced and additional PCA analyses will be suggested.
These approaches allow for a deeper insight into the dataset under study.

The third section presents a simple case study. It consists of seven meteorological
stations in Slovenia, they are described by seven variables, the data are from the 40 year-
period 1971-2010. The results of different PCA analyses will be presented and compared.
To facilitate the comparison of the results, the dataset is very small, however, the stations
are chosen according to subject-matter knowledge. The last section gives some conclu-
sions and suggestions for further work.

2 Interval-valued variables

Let us first note that an interval-valued random variable is just a standard random variable
but its values are intervals. Let X = (X7, X, ..., X,,) be a p-dimensional random variable
taking values in ?P. Let X be an interval-valued random variable, its data exist for a
random sample of size n and is in the form X;; = [a;;,b;;], a;j < by;, i =1,...,n. In
the case a;; = b;;, for any © = 1,2,...,n, X;; has a classical value. Each observation
described by a p-dimensional interval-valued variable can be visualized as a hypercube in
RP.
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2.1 Mean and variance

The mean and the variance for an interval-valued variable are based on the assumption
that the distribution of the values within each interval is uniform. They were first defined
by Bertrand and Goupil (2000). The sample variance of X is:

n
2

> (af; + agby +b3) — X5, (2.1)

i=1

gz !

i~ 3,

where the sample mean X is the average of the interval midpoints

_ 1 <&
X;=o > (ai +by). (2.2)
=1

Billard (2008) showed that (2.1) can be rewritten as

: Zn:[(%‘ — X5)? + (a5 — X;) (biy — X;) + (biy — X;)7], (2.3)

i=1

g2

i~ 3,
and proved that the Total Sum of Squares SST can be decomposed into a within part
SSW and a between part SSB :

nSj2 = 88T; = SSW; + SSB;. 2.4)

The Within Sum of Squares SSW measures the internal variation and can be ex-
pressed as follows:

1 “ ai-+bi- ai-+bi- ai'+bi' CLZ'“Fbi'
SSW; = 3;[(%— S 2)? + (ay — )by — =) + by — 5
_ zn:(bz‘j—aij)Q
: 12 '
=1
(2.5)

Thus, as expected, SSW is based on an implicit assumption that the distribution of values
within each observed interval is uniform, X;; ~ U(a;;, b;;), @ = 1,2, ...,n. Other distri-
butions are also relevant; e.g., Billard (2008) presents the formulae for SSW and SST
when observations within each interval follow a triangular distribution.

The Between Sum of Squares S'S B describes the between variation, i.e., the variation
of the interval midpoints:

- ;5 + bz —
SSB; = Z(JTJ - X,)? (2.6)
=1

and is independent of the distribution within the intervals.

)’]
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2.2 Covariance

Let X;, and X, be two interval-valued random variables with pairwise observations:
X;, = laij,, bi;,) and X, = [a;j,, bij,] on a random sample of size n. The following
holds: a;; < b;j, for j = 71,72, and ¢ = 1,2,...,n. Total Sum of Products SPT is
decomposed into two components, the Sum of Products Within, SPW, and the Sum of

Products Between, S P B; it is connected to the covariance Cov:

nC’ovjle = SPlejz = SPWﬁjz + SPleJ’Q' (2.7

The Sum of Products Within SPW and Sum of Products Between SPB are related
to CovWW and Couv B, respectively, which are expressed as follows:

CovW,,;, = njuz _ gz (bijy ajlié J2 ajz)7 (2.8)
i=1
SSBl 1 - ai‘1+bi‘1 — Q;j —|‘bz —
CovB,,,, = 50ne _ Lyt gy thi g o)
i=1

It may be interesting to notice that the entries of the C'ovI¥ matrix are always positive,
their magnitudes depend on the ranges, R;; = b;; — a;j, 7 = ji1, j2; the greater the ranges
of the two variables the greater is the entry of C'ovWW. It should be pointed out that C'ov IV
is not a true covariance matrix on the ranges; the terms for the true covariance matrix on
the ranges would be (R;;, — Rj,)(R;j;, — Rj,). However, the CovW matrix incorporates
information on the size of the rectangles.

The entries of C'ovB are classical covariances (divided by n not by n — 1) on the
interval midpoints. When, instead of the intervals [a, b], PCA is performed on the interval
midpoints: [(a + b)/2, (a + b)/2], CovW is zero and Cov = CovB; in this case, the
symbolic PCA results are the same as for a classical PCA on the interval midpoints.

Billard (2008) showed that the covariance between two interval-valued variables X,

and X, can be calculated directly, using the following expression:

1 © — — - -
6?2[2 (ai, — Xj )@, — Xj) + (i, — Xj,)(big, — Xj,)

i=1

Covjljz =
+ (bijl - le)(ai]é - sz) +2 (bijl - le)(bijé - yjz)] (210)

Two special cases are easily checked: a) covariance of two identical variables equals
its variance; b) covariance of two classical variables equals the well known classical co-
variance.

Figure 1 gives some insight into the calculation of the covariance in the classical and
interval setting. Covariance in the classical setting is based on the position of the points,
in the interval setting it is based on the rectangles: the location of the midpoints de-
termines the between part, the size of the rectangles determines the within part, which
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Figure 1: Calculation of the covariance in the classical setting (upper part) is based on the
position of the points; in the interval setting (lower part) it is based on the rectangles:
position of the midpoints and size of the rectangles determine its value.
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is always positive. Covariance is calculated on the number of clear days (D.Clear) and
the number of cloudy days (D.Cloud) for seven meteorological stations (for details, see
next section). Figure 1 (upper part) illustrates the classical covariance, the position of
the points suggests that the covariance is negative, the same would be expected from the
subject-matter knowledge; the obtained value is Cov(D.Cloud, D.Clear) = —212.0.
However, the covariance in the interval setting is positive, Cov(D.Cloud, D.Clear) =
+202.2. This is due to a large within interval component CovW (D.Cloud, D.Clear) =
411.7, the between component is the same as classical covariance on the midpoints,
CovB(D.Cloud, D.Clear) = —212.0; see Figure 1 (lower part).

2.3 Principal component analysis in the context of interval-valued
data

A crucial advantage of the symbolic covariance matrix C'ov is that it fully utilizes all the
information in the data. It can be decomposed into a within part CovW/ and a between
part CovB. This decomposition allows for a deeper insight into the PCA results from
the traces of these matrices. Since the trace of a matrix is a linear operator, the following
holds:

tr(Cov) = tr(CovW) + tr(CovB). (2.11)

Hence, we can assess the proportion of variance explained due to the within infor-
mation and the proportion of variance explained due to the between information. The
information gain when performing PCA on the intervals instead of the interval midpoints
(conditionally the means) is due to the within information.

Additional PCA analysis can be done on C'ovB, these results are equivalent to the
classical PCA results on the interval midpoints. A PCA analysis can also be performed
on C'ovW; the interpretation of these results may enlighten some of the aspects of the
within information.

3 A case study

We consider yearly data from the period 1971-2010 in Slovenia, data were collected by
Slovenian Environment Agency (http://meteo.arso.gov.si/met/sl/archive/), and are shown
in the Appendix. The following variables are taken into account: number of cold days
(D.Cold), number of warm days (D.Warm), number of days with storms (D.Storm), num-
ber of days with precipitations (D.Prec), number of days with snow cover (D.SnCov),
number of clear days (D.Clear), and number of cloudy days (D.Cloud). According to me-
teorological definitions, for a cold day the minimal daily air temperature is below 0 °C,
for a warm day the maximal daily temperature is above 25 °C; a clear day has under 20%
of cloudiness, a cloudy day has over 80%. Hence, D.Cold and D.Warm are based on the
same variable, i.e., air temperature, the same holds for D.Clear and D.Cloud which are
based on cloudiness.

For illustrative simplicity, only seven meteorological stations are chosen for this case
study. They are: Bilje (Bilje), Cmomelj (Crnom), Ljubljana (Ljubl), Maribor (Marib),
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Figure 2: Geographical position of seven meteorological stations under study: Bilje (Bilje),
Cmomelj (Crnom), Ljubljana (Ljubl), Maribor (Marib), Murska Sobota (MurSo),
Portoroz-airport (Porto), and Ratece (Ratec); elevation (in meters) is pinned to each station.

Murska Sobota (MurSo), Portoroz-airport (Porto), and Ratece (Ratec). Their location is
shown in Figure 2. Portoroz-airport is situated at sea level (elevation 2 m), RatecCe is
in the Alps (elevation 864 m), the other stations have elevation from 55 m to 299 m.
The dataset is slightly incomplete: data for Portoroz-airport started in 1975, for Bilje,
Crnomelj, Maribor and Murska Sobota data for some years are inconsistently missing.
As already stated, we want to compare PCA results obtained on different data types
which were aggregated from the same dataset. For each station and each variable, we
aggregated the data in two different ways: the mean value and the [min, maz| interval
which is based on the minimal and maximal values in the period under observation.

3.1 PCA on the Means

In Table 1, the classical covariance matrix calculated on the means is presented; the
sum of variances (3891.8) is given below the matrix. Dominant variances are as fol-
lows: Var(D.SnCov) = 1449.4, Var(D.Cold) = 1284.6; dominant covariances are:
Cov(D.SnCov, D.Cold) = 1232.5 (positive), Cov(D.SnCov, D.Warm) = —679.3
and Cov(D.Warm, D.Cold) = —558.2 (negative).

In Table 2, the PCA results are given. The first two principal components explain
about 92% of total variance, the first three around 97%. The loads for the first three prin-
cipal components are also presented; we shall interpret the first two principal components
only. For the first principal component (PC) D.Cold and D.SnCov are dominant, for the
second principal component (PC5) D.Clear and D.Cloud show up. We can deduce that
P(} is positively correlated with low air temperature and PC', with the surplus of cloudy
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Table 1: Covariance matrix calculated on the means. The sum of the variances (in the table
in bold) is given below the matrix.

D.Cold | D.Warm | D.Storm | D.Prec | D.SnCov | D.Clear | D.Cloud
D.Cold 1284.6 -558.2 -182.0 | 308.1 12325 | -262.3 204.8
D.Warm | -558.2 356.7 45.1 -96.1 -679.3 70.1 -28.3
D.Storm | -182.0 45.1 473 | -29.3 -1094 514 -29.5
D.Prec 308.1 -96.1 -29.3 | 2129 337.8 | -148.6 195.5
D.SnCov | 1232.5 -679.3 -109.4 | 337.8 1449.4 | -216.3 177.6
D.Clear -262.3 70.1 514 | -148.6 -216.3 296.8 -212.0
D.Cloud 204.8 -28.3 -29.5 | 1955 177.6 | -212.0 244.1

Sum of variances = 3891.8

Table 2: PCA on the means, results for the first three principal components: cumulative
percentage of variance explained, principal component loads (dominant loads are in bold).

PCy PCy | PCs
Cum.% of var. exp. 79.2 92.2 96.7
D.Cold 0.625 | 0.014 | 0.661
D.Warm -0.307 | 0.274 | 0.192
D.Storm -0.071 | -0.057 | -0.391
D.Prec 0.172 | 0.385 | -0.322
D.SnCov 0.670 | -0.218 | -0.473
D.Clear -0.138 | -0.598 | -0.090
D.Cloud 0.113 | 0.607 | -0.193

over clear days.

Figure 3 presents the seven stations in the space of PC; by PC5. There is a positive
trend with low air temperature along PC': Portoroz-airport reveals few days with low
air temperature and snow cover, RateCe the opposite. This is consistent with the fact that
Portoroz-airport is located near the Adriatic sea, RatecCe is located in the Alps. There is a
positive trend in the surplus of cloudy over clear days along PC5; here, Portoroz-airport
has the lowest surplus (it has more clear than cloudy days), Ljubljana and Crnomelj have
the highest (here, there are more cloudy than clear days).

3.2 Symbolic PCA on interval-valued variables
3.2.1 Symbolic covariance matrix and its decomposition

The symbolic covariance matrix C'ov for the intervals is given in Table 3; also shown is
the decomposition into C'ovB and CovW. The term CovB is identical to the classical
covariance matrix on the interval midpoints. Values of C'ovWW reflect the internal vari-
ability and are all positive. Consequently, the terms in C'ov are always larger than the
corresponding terms in C'ov B; thus, there are fewer negative terms in C'ov than in C'ov B.
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Figure 3: PCA on the means: presentation of seven stations in two-dimensional space of
PC4 by PCy; 92.2% of total variance is explained. PC reflects positive impact of low air
temperature, PCY reflects positive impact of surplus of cloudy over clear days.

The sum of symbolic variances is 5754.2, the between component explains 3170 (55.1%),
and the remaining 2563.2 (44.9%) is due to the within component. In this case, we can
conclude that the gain in information, when we analyze the intervals instead of the inter-
val midpoints, is large, it is nearly 45%. Let us find out the corresponding impact on the
PCA results.

3.2.2 PCA on symbolic covariance matrix

Table 4 shows the PCA results based on the symbolic covariance matrix. The first two
principal components explain 86.4% of variance, the first three 95.1%. For P(', the loads
for D.Cold and D.SnCov are dominant, for PC5 the dominant loads are D.Warm and
D.Clear (positive), for PC3 D.Clear (negative). Hence, the PC is positively correlated
with low air temperature, as in the PCA on the means; however, other results are different:
P, is positively correlated with D.Warm and D. Clear, PC}; is negatively correlated with
D.Clear.

Visualisation of these PCA results in two-dimensional space is based on the approach
presented in Le-Rademacher and Billard (2012). For each station, a 7-dimensional poly-
tope is obtained. Figure 4 (upper plot) presents the projection of these polytopes onto the
PCy by PC, plane. Considerable overlapping is presented. The plot shows that the vari-
ability in PC (D.Cold and D.SnCov) is dominant, for Ratece it is the greatest; however,
variability in PCy (D.Warm and D.Clear) is comparable for all stations. Only two pairs of
stations do not overlap: Portoroz-airport and RateCe, Bilje and Ratece. The polytopes for
two extreme stations, PortoroZ-airport and Ratece, are presented on Figure 4 (lower plot).
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Table 3: Covariance matrix C'ov for interval-valued variables, variances are in bold; it is
decomposed into CovB and C'ovW (below). The respective sum of variances is presented
below the corresponding matrix.

Cov D.Cold | D.Warm | D.Storm | D.Prec | D.SnCov | D.Clear | D.Cloud
D.Cold 1363.7 -74.1 30.8 | 5374 1313.6 105.0 630.2
D.Warm -74.1 720.3 2244 | 262.1 -53.4 399.3 407.2
D.Storm 30.8 224 .4 153.9 146.1 127.6 265.9 1914
D.Prec 5374 262.1 146.1 | 443.2 615.6 163.6 557.6
D.SnCov | 1313.6 -53.4 127.6 | 615.6 1595.7 187.5 750.6
D.Clear 105.0 399.3 2659 | 163.6 187.5 724.6 202.2
D.Cloud 630.2 407.2 1914 | 557.6 750.6 202.2 752.9
Sum of variances = 5754.2
CovB D.Cold | D.Warm | D.Storm | D.Prec | D.SnCov | D.Clear | D.Cloud
D.Cold 1056.0 -435.8 -1449 | 258.0 941.1 | -233.8 251.5
D.Warm | -435.8 286.8 19.2 | -67.0 -482.5 8.8 -39.2
D.Storm | -144.9 19.2 463 | -18.4 -68.8 60.1 -24.8
D.Prec 258.0 -67.0 -18.4 | 183.1 282.0 | -148.7 209.8
D.SnCov | 941.1 -482.5 -68.8 | 282.0 997.7 | -196.6 270.7
D.Clear -233.8 8.8 60.1 | -148.7 -196.6 322.3 -209.5
D.Cloud 251.5 -39.2 -24.8 | 209.8 270.7 | -209.5 278.9
Sum of between variances = 3171.0
CovW D.Cold | D.Warm | D.Storm | D.Prec | D.SnCov | D.Clear | D.Cloud
D.Cold 307.7 361.7 175.8 | 279.4 372.5 338.8 378.7
D.Warm 361.7 433.5 205.2 | 329.1 429.2 390.5 446.5
D.Storm 175.8 205.2 107.6 | 164.5 196.3 205.9 216.1
D.Prec 279.4 329.1 1645 | 260.2 333.6 312.2 347.8
D.SnCov | 3725 429.2 196.3 | 333.6 598.0 384.1 479.9
D.Clear 338.8 390.5 2059 | 3122 384.1 402.2 411.7
D.Cloud 378.7 446.5 216.1 | 3478 479.9 411.7 474.1

Sum of within variances = 2583.2
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Table 4: PCA on the intervals, results for the first three principal components: cumulative
percentage of variance explained, principal component loads (dominant loads are in bold).

PCy PCy | PCj
Cum.% of var. exp. | 62.0 86.4 95.1
D.Cold 0.569 | -0.277 | -0.102
D.Warm 0.081 | 0.663 | 0.279
D.Storm 0.079 | 0.261 | -0.119
D.Prec 0.309 | 0.172 | 0.271
D.SnCov 0.636 | -0.220 | -0.180
D.Clear 0.127 | 0.512 | -0.767
D.Cloud 0.384 | 0.275 | 0.452

From these plots, it is observed that the internal variability for Ratece is greater than it is
for Portoroz-airport.

3.2.3 PCA on CovB and CovWW

We proceed with PCA on CouvB, this is identical to the classical PCA on the interval
midpoints, the results are in Table 5 (left) and are plotted in Figure 5 (upper plot); they
are consistent with the PCA results on the means.

Since CovW depicts the within interval information, PCA on CovW allows an insight
into the variability within the interval variables, see Table 5 (right) and Figure 5 (lower
plot). In this case, the PC explains 93.2%, the PC’ explains additional 5.4%. The loads
for PC for all variables have similar magnitude, while for PC5 the dominant load is
D.SnCov; accordingly, PC is positively related to all the variables, PCj5 is positively
related to D.SnCov. The scores are calculated using the midpoints. The stations are
located along the diagonal, from Portoroz-airport at the lower end to Ratece at the upper
end, revealing the increase of interval variability from the lower to the upper end. This
result is consistent with the fact that PortoroZ-airport has tighter intervals, Ratece has
larger intervals.

3.2.4 Programs used

Algorithms for deriving the PCA results on the symbolic covariance matrix along with the
corresponding polytops are available at Le-Rademacher and Billard (2012, Supplemen-
tary material - online version). Their R script (R Core Team, 2013) was upgraded with
PCA on C'ovWW and C'ovB and adapted for our case-study.

3.3 Other PCA approaches for interval-valued variables

Other PCA approaches on interval data are described in the literature. As stated before,
Le-Rademacher and Billard (2012) give a detailed insight into these methods. We shall
limit ourselves to only some of them.
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Table 5: PCA on the CovB (left), PCA on CovW (right); results for the first three principal
components: cumulative percentage of variance explained, principal component loads
(dominant loads are in bold).

PCy PCy | PCs | PCy PCy | PCs
Cum.% of var. exp. 75.9 91.5 96.8 | 93.2 98.6 99.7
D.Cold 0.642 | -0.118 | 0.508 | 0.355 | -0.126 | 0.118
D.Warm -0.286 | 0.376 | 0.175 || 0.416 | -0.189 | 0.603
D.Thund -0.068 | -0.050 | -0.423 || 0.203 | -0.221 | -0.194
D.Prec 0.193 | 0.349 | -0.348 | 0.324 | -0.172 | 0.049
D.SnCov 0.630 | -0.161 | -0.363 | 0.454 | 0.847 | -0.207
D.Clear -0.168 | -0.627 | -0.380 || 0.390 | -0.391 | -0.700
D.Cloud 0.198 | 0.549 | -0.368 | 0.443 | -0.018 | 0.221

3.3.1 Centers method

The centers method transforms the interval-valued matrix into a classical matrix of the
interval midpoints. The results of this method are given as a part of the PCA approach
on symbolic covariance matrix: see CovB in Table 3, PCA results in Table 5 (left) and
Figure 5 (upper plot). As already stated, in this approach the internal interval variance is
completely ignored.

3.3.2 Vertices method

In this approach, the vertices of the hyper-rectangles (instead of the interval midpoints)
are considered as the data-input. In our case, seven variables were taken into account;
therefore, there are 27 = 128 vertices. Thus, the dimension of the input matrix is n = 128,
p = 7, classical PCA is performed on this matrix.

Here, we do not present the covariance matrix. The sum of variances equals 10932.8,
which is approximately twice the value in the symbolic context (5754.2). Table 6 presents
the PCA results for the first three principal components. In this case, PC explains only
34.8% of the total variance; the first two principal components 51.3% and the first three
64.7%. For PCY, D.Cold and D.SnCov are dominant; PC5 is positively correlated with
D.Cloud and negatively with D.Clear (as in the PCA on the means or midpoints); for PC5
D.Warm and D.SnCov show up, surprisingly, both loads are positive.

We can summarize, that this approach is simple, it always works, but it fails to use all
the variation in the data. The results reflect that the data matrix is artificially inflated; the
vertices are treated as independent observations, this assumption is not sustainable. Our
results are consistent with Douzal-Chouakria et al. (2011), who showed that the variance
of the vertices in fact includes some but not all of the internal variation.

3.3.3 The midpoint-radii method

The midpoint-radii approach treats a single interval-valued variable as two variables: mid-
points and midranges. A PCA can be performed on either of them. This is similar to the
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Table 6: PCA on the vertices; results for the first three principal components: cumulative
percentage of variance explained, principal component loads (dominant loads are in bold).

PCy PC, PCy
Cum.% of var. exp. 34.8 51.3 64.7
D.Cold 0.525 | 0.037 | -0.460
D.Warm -0.276 | 0.284 | 0.660
D.Thund -0.044 | -0.024 | 0.041
D.Prec 0.151 | 0.181 | -0.012
D.SnCov 0.750 | -0.256 | 0.579
D.Clear -0.149 | -0.514 | 0.111
D.Cloud 0.196 | 0.745 | 0.050

PCA on C'ovB and C'ovW; the only difference is, that C'ovW is an uncentered covariance
matrix on the ranges.

To analyze the midpoint and the range data simultaneously, Palumbo and Lauro (2003)
propose to superimpose the PCs of the midrange onto the PCs on the midpoint and then
rotate the midrange PC axes to maximize the connection between the midpoints and the
midranges. It turns out the choice of rotation operator is subjective; the midpoints and the
midranges are treated as independent (see Lauro et al., 2008). Le-Rademacher and Billard
(2012) showed that the midpoint-radii approach is deficient and not working properly.
Due to these facts, we believe that this approach should be replaced by the PCA on the
symbolic covariance matrix; see the results given in Table 3 above, Table 4 and Figure 4.

4 Conclusions

A crucial advantage of the symbolic covariance matrix C'ov is that it fully utilizes all the
information in the data. It can be decomposed into a within part CovWW and a between
part C'ovB. In the interpretation of the C'ov term, we should recognise that: it is the sum
of the classical covariance on the interval midpoints and a measure of variability (i.e., the
size) of the intervals. Therefore, the sign of Cov B may be negative and the sign of C'ov
positive. Figure 1 illustrates such a case.

However, this decomposition allows for a deeper insight into the interval-valued dataset:
from the traces of these matrices, the proportion of variance explained due to the within
information and the proportion of variance explained due to the between information can
be calculated. The information gain when performing PCA on the intervals instead of the
interval midpoints (conditionally the means) is due to the within information.

We can summarize the PCA approach on Cov as follows: the interpretation of the
PC should be the ”symbolic context”; visualization of the results using the projection
of the polytopes is suitable for lower dimensions of p and n, for higher dimensions the
plot can be unreadable. We suggest that separate PCA’s on both the C'ov B and the C'ov IV
should be done additionally to allow for a deeper understanding of the between and within
information. The analysis of PCA results on C'ov B is straightforward, as in the classical
context on the interval midpoints. However, the PCA results on C'ovIV are interpretable
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Figure 6: Histograms for D.Cold and D.SnCov for Portoroz-airport and Ratece revealing
different types of distribution.

in the context of the size of the rectangles.

In the case study presented, the information gain when performing PCA on the inter-
vals instead of the interval midpoints (conditionally the means) is about 45%. For the PCA
results on Coov, it may be difficult to grasp the meaning of the PC5; however, the PCA
results obtained on C'ov B and C'ovWW are consistent with the subject-matter knowledge.

There is an important assumption hidden in this analysis: the distribution of the val-
ues along each [min, max] interval should be uniform. This is often not the case, in
particular when data for meteorological variables over a longer period are under study;
for illustration, see some histograms of the raw data used herein in Figure 6. It is obvious
that the uniformity assumption does not hold. Therefore, it may be interesting to analyze
the histogram-valued variables and compare the results with the results obtained on the
interval-valued variables.
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A Appendix

The data used are yearly data from the period 1971-2010 for seven stations in Slovenia.
The following variables are taken into account: number of cold days (D.Cold), number of
warm days (D.Warm), number of days with storms (D.Storm), number of days with pre-
cipitations (D.Prec), number of days with snow cover (D.SnCov), number of clear days
(D.Clear), and number of cloudy days (D.Cloud). For each station, min and max values
are given for each variable under study.

D.Cold D.Warm D.Storm D.Prec D.SnCov D.Clear D.Cloud
Station || min | max || min | max || min | max || min | max || min | max || min | max || min | max
Bilje 38 96 67 | 125 9 63 97 | 160 0 12 10| 114 67 | 133
Crnom 65| 120 48 | 118 23 59 || 128 | 185 6 88 27 99 || 106 | 177
Ljubl 52| 112 38 | 109 30 63| 119 | 186 2| 110 12 59 89 | 181
Marib 56 | 123 37| 110 23 52 | 110 | 162 3 92 16 83 81 | 159
MurSo 77 | 131 33| 109 18 47 || 107 | 154 0 85 29 77 79 | 155
Porto 1 67 34| 125 37 71 88 | 143 0 13 68 | 128 56 | 124
Ratec 117 | 181 6 67 22 52 || 123 | 170 43 | 171 31| 103 79 | 153
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Abstract

In reliability theory, one of the main problems is estimating parameter R =
P{X < Y}. In this paper we shall present UMVUEs for R in different cases i.e. for
different distributions of X and Y. Some of them are already existing and some are
original.

1 Introduction

In reliability theory the main parameter is the reliability of a system, and its estimation
is one of the main goals. The system fails if the applied stress X is greater than strength
Y, so R is a measure of system performance. In most cases this parameter is given as
R = P{X < Y}, although for some discrete cases the expression R = P{X < Y} is
also considered.

The problem was first introduced by Birnbaum (1956). Since then numerous papers
have been published. Most of results are presented in (Kotz et al., 2003). The vast ma-
jority of papers presuppose independence of stress and strength variables, as well as that
they come from the same family of, in most cases continuous, distributions. There exists
a wide range of applications in engineering, military, medicine and psychology.

The unbiasedness of an estimator is a desired property especially when dealing with
relatively small sample sizes, where we cannot count on asymptotic unbiasedness. Since
in many cases most popular estimators are biased, it is often important to find the unique
minimum variance unbiased estimator (UMVUE).

1.1 UMVUE of R

Let X = (Xj,...,X,,)and Y = (Y1,...,Y,,) be the samples from the distributions
of random variables X and Y. Then, using the following theorem we can construct
UMVUEs.

Theorem 1 If V(X,Y) is any unbiased estimator of parameter 6 and T is a complete
sufficient statistic for 0, then E(V (X, Y)|T) is the UMVUE of 6.

1Faculty of Mathematics, University of Belgrade, Studenski trg 16, Belgrade, Serbia; email addresses:
marcone @matf.bg.ac.rs, mjovanovic@matf.bg.ac.rs, bojana@matf.bg.ac.rs
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This theorem is the combination of Rao-Blackwell and Lehmann-Scheffé theorems.
Their proofs could be found in (Hogg et al., 2005).

However, in continuous case, the use of this theorem might not be technically conve-
nient. Therefore, the following theorems were proposed to help deriving the UMVUEs
(Kotz et al., 2003).

Theorem 2 Let 6y € © be an arbitrary value of 0 and let T be a complete sufficient
statistic for 0. Denote by gg,(t) and go,(t| X1 = 1, ..., X = 2, Y1 = Y1, .., Y = Ui)
the pdf of T' and the conditional pdf of T for given X; = x;,Y; = y;, j = 1,...,k,
respectively. Then the UMV UE of joint pdf fo(x1, ..., Tk, Y1, ..., Yx) is of the form

f(xb vy Ly Y1,y "'7yk) =
k

L1 foo (s 5)

j=1

go,(t| X1 =21, ... Xy =2, Y1 = v1, ., Vi = Uk)
g9o(t)

Theorem 3 The UMVUE of R is
= [ [ e <fe sy,

where fis given in theorem 2 for k = 1.

2 Existing results

In this section we present a brief summary of existing results obtained for UMV UEs of R
for some distributions.

e Exponential distribution
Let X and Y be independent exponentially distributed random variables with den-
sities
fx(z;a) = ™ >0,

fY<y76) = 66_By7 Y Z 07
where « and /3 are unknown positive parameters. The complete sufficient statistics
ni n
foraand fare Tx = Y X;and Ty = ) Y.
=1

J j=1

The UMVUE of R was derived by Tong (1974; 1977), and it is given by

n1—2 4 i+1
S () et () i T < T

~ = T(ni—i—1)T(na4i+1) \ Tx
7 n T b'e .
S (~1)i i)t (@) : if Ty > Ty.
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e Normal distribution

Let X and Y be normally distributed independent random variables with densities
1 _(amny)?
fx (@5, 01) = e " ,zeR,
270}
1 _ (y*lt22>2
fy (Y5 pa, 02) = e 2 y€eR,
\/ 2103

where 111, 02, 112 and 02 are unknown parameters. The complete sufficient statistics
for (1, 0%, po, 03) are (X, 5%,Y, 5%).

The UMVUE of R was derived by Downtown (1973) and it is given by

~ 1 ny—2 1 ny—2\]" gyt oy n2=t
R—{B(27 5 >B<2, 5 )} /(l—u) 7 (1 —2%)"2 dudv,
Q

where B(a, b) is the beta function and

SX(TLl - ].) + Sy(TLQ - 1)

Q:{(u7v)€[—171}x[—1,1]|—u N v N

e Gamma distribution

Let X and Y be independent gamma distributed random variables with densities

xorl _ =z

[x(z;0q,00) = We o, x>0,
as—1 oy

fy(y;az,00) = We 2,y >0,

where «; and as are known integer values and o, and o, are unknown positive
ni

parameters. The complete sufficient statistics for oy and o are Tx = > X, and
j=1

Ty =Y.
j=1
The UMVUE of R was derived by Constantine et al. (1986), and it is given by

(n2—1)062_1 B(ai+as+k (Tll_l)al)
1— E B(a1,(n1—1)a1)B(az,(n2—1)az)

k=0
na—T)ag—1y (=D* (15 \**HF -
X((2 ]32 )W(ﬁ) , if Ty <Tx
(”1‘%“1_1 Blaz+a1+ky(na—1)as)
= B(az,(n2—1)az)B(a1,(n1—1)ay)

« ((nlfl)alfl)(—il)k <Ty>al+k7 if Ty > TX-

k ar+k \ Tx

)
|

\
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e Gompertz distribution

Let X and Y be independent Gompertz distributed random variables with densities
oy =MEFTH
fx(zse, A1) = Aee™ < ,x >0,
i)

fr(yye,Xo) = Xe¥e™ Ly >0,

where c is a known positive value and A; and Ay are unknown positive parameters. The
complete sufficient statisitcs for A\; and A9 are

ni n
1

_ cX; _ 1 cY;
WX—EZ(e .—1),WY_EZ(6 i —1).

j=1 j=1
The UMVUE of R was derived by Saracoglu et al. (2009) and it is given by

no—1 k
T'(n1)'(n w .
R = k1:0
ny—

k
n1)l'(n W- .
E{)(—gkr(m Jltn) (WJ) i Wy > Wy

Generalized Pareto distribution

Let X and Y be independent random variables from generalized Pareto distribution with
densities
Ix(z;00, ) =g M1+ )\:r)_(o‘1+1), x>0,

Fr(ysan, X) = as(1+ Ay)~ 2Dy > 0,

where A\ is known positive value and «; and «p are unknown positive

parameters. The complete sufficient statistics for parameters «; and «g are
ni n

Tx = Z In(1+ Xj) and Ty = Z In(1+ )/J)
7=1 7=1

The UMVUE of R was derived by Rezaei et al. (2010), and it is given by

n2—1
I'(n1)l'(n .
-5 (1) i) (%) . ifTy < Ty
ny—1

T'(n1)I'(n T3 .
kg_jo (—1)kr(m( i)rgnik) (%) if Tx > Ty.

=)
I

Poisson distribution

Let X and Y be independent Poisson distributed random variables with mass functions

—Al)\:r
PX=zn}="" =01,
X!
e—/\gy
P{Y:yv)‘Q}: 2,@/:071,---,

where A1 and Ao are unknown posmve parameters. The complete sufficient statistics for \;

and \g are T'x = ZX and Ty = ZY
Jj=1 Jj=
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The UMVUE of R was derived by Belyaev and Lumelskii (1988) and it is given by

min{TX ,TY — 1}

pe Y (M) [y (e

=0 " y=0 Y ny

e Negative binomial distribution

Let X and Y be indepent random variables from negative binomial distributions with mass
functions

-1
P{X_x;mlﬂpl}_<m1+xx )p‘/f(l_pl)m17 x:()?l?""

mo+y—1
P{Y:y’mQ’pZ}:( : yy >pg(1_p2)m27 y:()v]-aa

where m; and mg are known integer values and p; and p, are unknown probabilities. The
ni na

complete sufficient statistics for p; and pp are Tx = Y Xjand Ty = > Yj.
j=1 J=1

The UMVUE of R was derived by Ivshin and Lumelskii (1995) and it is given by

min{Tx,Ty—1} Ty m1+z 1) (TX—:zz+m1(n1—1)—1) (m2+y71) (TY*er;nQ(n?*l)*l)
~ T ' -
R = Z Z mini1+Tx—1 - s m2n2+Tyijl .
Yy= =z+1 ( TX ) ( Ty )

3 New results

In this section we shall derive the UMVUE of R for some new distributions. The first
model is where stress and strength both have Weibull distribution with known but different
shape parameter and unknown rate parameters. As a special case we present the model
where stress has exponential and strength has Rayleigh distribution. An example with
real data for Weibull model is presented. In the second model, both stress and strength
have logarithmic distribution with unknown parameters.

3.1 Weibull model
Let X and Y be independent random variables from Weibull distribution with densities

g
fx(z;a1,00) = ajolz® te” (@) 0 >,

Iy (y; a2, 02) = ap05?y™?™ Lo~ (o20)%2 , y=>0.

The Weibull distribution is one of the most used distribution in modeling life data.
Many researchers have studied the reliability of Weibull model. Most of them did not
consider unbiased estimators (e.g. Kundu and Gupta, 2006), and recently the case with
common known shape parameter « has been studied in (Amiri et al., 2013).

We consider the case where shape parameters «; and ap are known positive values,
while rate parameters oy and o5 are unknown positive parameters.
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n1
The complete sufficient statistics for parameters oy and oy are Tx = > X" and
j=1

T2
Ty = >, Y. Since X' and Y'** have exponential distributions with rate parameters
J=1
ot and 052, both statistics have gamma distribution, i.e. T'x has I'(ny, 0, **) and Ty has
k
['(ng, 05 *?). Similarly, for £ < min(ny,ns), Tx — ZIX;“ has I'(n; — k,07 ") and
]:

k
Ty — > Y has I'(ng — k,0,"*). Using this and transformation of random variables

Jj=1
n1
(Xpyoos Xpy D0 XF1) 1o (X, .., Xi, Tix) we get, for oy =1,
j=k+1
k
(b= o f :
i1 —(tx—, x . o
g(tx| Xy =21, .., X = a3) = F](nl _— e =ty > Z:L’jl}-
7=1
Using theorem 2, we get that
k
k (tx — leyl)mfkflr(nl) k
y k a1—1 J= a1
T1, .0, Tp) = Q1 ' H{tx > xit}
f( 1 k) 1jH1 7 tr)?—lr<n1_k.) {X ]Zl 7 }

For k = 1 we obtain that

(tX _ 1,041 )n172

Fl@) = eam = Dam =

I{tX 2 .%al}.

Analogously we get that

as—1 (tY B ya2)n272

f(y) = aa(na — 1)y (ty)= 1

I{ty > y*}.

R
Denote M = min{ty',,? }. Using the independence of samples and the theorem 3,

we obtain

B o= [ [ <o

1

M ty?
-1 -1 a1—1 ty — ™ ny—2
_ /Oél(nl )(n2 nl_)lan_l( X X ) dl‘ / O[anz_l(ty _ya2>n2—2dy
tX 7fY
0 x
M

-1 a1 —1
_ / 061(77/1 )‘T (tX o xoq)nle(tY . xag)nzfldx.

711—1 n2—1
2eX tY
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Now applying the binomial formula we obtain that the UMVUE of R is

azS

1 1

(=)™ (ni—1) (n1—2\ (na—1\ Tx * ‘o el ag
ai(r+1)+azs ( r )( s ) Ty lfTX SCTY

N T%;U o N (3.1)
Z%(vﬂ )(n2 )Y‘ ’ lfT;;l >T;2.

= = a1(r+1)+ass r s T;:fl

n1—2 n2—1

r=0 s=

=)
I

3.1.1 Exponential-Rayleigh model
As a special case of Weibull model we have a model where X has exponential and Y has

Rayleigh distribution with densities

fx(zya) =ae™ @ x>0,

fyr(y B) = 28%ye PV, y > 0,
where « and 3 are unknown positive parameters. The complete sufficient statistics for «
and 3 are Tx = ZX and Ty = ZY2

The UMVUE Of Ris
ni—2na—1 (=D (n1—1) n1—2\ (na—1\ / T% \s T < \/T
ﬁ -0 ZO W( T )( s )(T7) ’ 1 X > Y
B nPret (e ni—1) (n1— ng— .
T SRR () () (B T > VT

3.1.2 Numerical example

Here we present an example with real data. We wanted to compare daily wind speeds in
Rotterdam and Eindhoven. We obtained two samples of 30 randomly chosen daily wind
speeds (in 0.1 m/s) from the period of April Ist 2010 to April 1st 2014 taken from the
website of Royal Netherlands Meteorological Institute. The first sample is from Rotter-
dam and the second one is from Eindhoven:

Rotterdam (X): 48, 15, 27, 18, 40, 26, 84, 19, 35, 32, 55, 29, 45, 51, 47, 66, 38, 13,
39, 28, 50, 36, 15, 74, 53, 85, 18, 58, 18, 48.

Eindhoven (Y): 44, 25, 43, 35, 20, 59, 25, 38, 26, 15, 37, 16, 35, 17, 34, 27, 40, 37,
33,17, 51, 50, 33, 52, 25, 21, 34, 39, 23, 60.

It is well known that wind speed follows Weibull distribution. To check this we used
Kolmogorov-Smirnov test. Since this test requires that the parameters may not be esti-
mated from the testing sample, we estimated them beforehand using some other larger
samples from the same populations. We got that X follows Weibull distribution with
shape parameter o = 2.8 and rate parameter o = 1/47 (Kolmogorov-Smirnov test statis-
tics is 0.157 and the p-value is greater than 0.1), while Y follows Weibull distribution
with shape parameter « = 2.6 and rate parameter o = 1/41 (Kolmogorov-Smirnov test
statistics is 0.158 and the p-value is greater than 0.1).

Finally, using (3.1) we estimated the probability that the daily wind speed is lower in
Rotterdam than in Eindhoven to be 7 = 0.32.
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3.2 Logarithmic distribution

Let X and Y be independent random variables from logarithmic distribution with mass
functions

1 p*
P{X = x;p} = Lor=1.2
{ b} In(1—p) z’ TS
1 q¢¥

where p and ¢ are unknown probabilities.

The logarithmic distribution has application in biology and ecology. It is often used
for modeling data linked to the number of species.

The complete sufficient statistics for p and g are Ty = > X; and Ty = > Y.

j=1 =1

The sum of n independent random variables with logarithmic distributions with the same
parameter p has Stirling distribution of the first kind SDF K (n, p) (Johnson et al., 2005),
so Tx has SDF K (ny,p) and Ty has SDF K (ns, q) with the following mass functions

ny!ls(z,ny)|p”
A= (1 - p))"
no!|s(y, n2)lg"
y'(=In(1 —q))"
where s(x,n) is Stirling number of the first kind.
An unbiased estimator for R is [{X; < Y;}. Since

P{Tx = x;ny,p} = ., x=n,n +1,..,

P{Ty =y;na2,q} =

, Yy=mno,na+1,..,

P{X, <Y1, Tx =tx,Ty =ty}
P{Tx =tx, Ty =ty}

E(I{Xl < }/1}|TX = tX,Ty = ty) =

M ty—mo2+1
> 2 P{Xl—I}P{Yl—y}P{ZXk—tX_x}P{ZY—tY_y}
=1 y=z+1
P{Tx = tX}P{Ty — 1y}
M ty—mo+1

tX'tY'| (tx —x,n — 1)||s(ty —y,n2 — 1)|

PP mina(tx — )ty — y)leyls(tx, m)lls(ty, n2)|’

=1 y=z+1

where M = min{tx —n; +1,ty —ny}, using theorem 1 we get that the UMVUE of R is
. “‘i“{TX‘"zlELTY‘”}TYi“ T!Ty[s(Tx — x,my — 1)||s(Ty — y, 05 — 1)|
mine(Tx — 2)(Ty — y)leyls(Tx,m)|[s(Ty, n2)|

r=1 y=z+1

4 Conclusion

In this paper we considered the unbiased estimation of the probability P{X < Y} when
X and Y are two independent random variables. Some known results of UMV UEs for I?
for some distributions were listed. Two new cases were presented, namely Weibull model
with known but different shape parameters and unknown rate parameters and Logarithmic
model with unknown parameters. An example using real data was provided.
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Testing Two Theories for Generating Signed
Networks Using Real Data

Patrick Doreiahand Andrej Mrvat

Abstract

Multiple social processes generate social netwotkustures.
We use relaxed structural balance, a generalizabioolassic structural
balance, to facilitate a direct comparative testwd social psychological
theories regarding network generation. One is stimat balance theory. The
other concerns differential popularity. These the®rpredict distinctive
signed blockmodels. We use two well known empirieahporal signed data
sets presenting an opportunity for comparing the tleories in terms of
their predictions about blockmodel representatiofshese networks. The
results provide strong support for differential ptarity, differential
disliking, and mutual disliking within a subset attors. While there is
evidence that structural balance was also operdtisgems the lesser process
for the data used in these tests. We also exarhieeimequal distributions of
receiving positive and negative ties. Both tenézome more unequal over
time. Suggestions for future research are provided.

1 [Introduction

Both social psychologists and social network artalglevelop theories intended to
help understand social processes in small socialpgg. To the extent that the
former focus more on node-level (actor) charactesswhile the latter are more
attentive to the network structure as a whole,dhisra tension between micro-level
and macro-level phenomena (Robins and Kashima, )2008r focus here is on
under standing processes that generate network structures. We provide comparative
tests of two theories based on a simple assumps8onial processes, if operative
in small groups, leave traces of recognizable pasteof network ties. This
comparative test is fosigned networks. Our primary goal is disentangling the
results from the operation of processes specifietihm theories of social processes
in groups. One is structural balance theory He{d®®6, 1958) The other concerns

1 Faculty of Social Sciences, University of Ljublmpnand Department of Sociology,
University of Pittsburgh, 2602 WWPH, Pittsburgh 15260; pitpat@pitt.edu

2 Faculty of Social Sciences, University of Ljubl@rKardeljeva pl. 5, 1000 Ljubljana, Slovenia;
Andrej.Mrvar@fdv.uni-lj.si
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differential popularity, a process described bydF@nd Elsmore (1984) under
which some group members receive more positive thes others. The detailed
predictions of the two theories differ.

As Taylor (1970) notes, Heider was credited witke timitial statement of
structural balance theory. While we focus attentiom the Heider variant of
consistency theories, Newcomb (1961), Festingeb7)1,90sgood and Tannenbaum
(1955) and others (see Abelseanal., 1968) also formulated alternative consistency
theories. We use Heider’'s approach because Catvaigd Harary's (1956) formal
generalization of his theory laid formal foundasofor analyzing signed social
networks.

Feld and Elsmore (1984) drew a critical responsemfrHallinan (1984)
regarding rival processes accounting for the unlkedisributions in the receipt of
signed ties in a group. Both papers considered theories about group processes
by using distributions of particular triples of gieamong trios of actors in the
network of actors in the group.

Rather than use distributions of triple types, examine theoverall structure
of a network using blocks located in signed blockiels. Briefly, a blockmodel of a
network is a simultaneous partition of both theoastand their social ties. The
clusters of actors are called positidnglsing blockmodels delineating network
structure provides an direct description of a nekiooverall structure.

The rest of this paper is organized as follows.t®ac2 outlines substantive
issues and Section 3 describes our data and metBedsion 4 presents our results
and we conclude with a summary and discussion oti&e 5.

2 Theories about processes that generate network
structures

2.1 Structural balancetheory

The intuitions of Heider's (1946) structural balankeory, formalized by Cartwright
and Harary (1956), led to a sustained researchrtefffodiscerning the structure of
signed networks (Doreiaet al., 2005: Chapter 10). Key in this development was a
remarkable ‘structure theorem’ couplimgjcro-processes (of actors forming and/or
dropping signed ties) and the resultmgcro-structure of the group. Signed ties are
either positive (e.g. liking, loving, supportingy aegative (e.g. disliking, hating,
opposing). For three actors, denotedhy and g, in a signed network, thpoq
triple is made up of the tiep©q), (Q=>0) and (p>0). The sign of every triple is the

3 A formal statement can be found in Doreéiral. (2005). Ferligoj et al. (2011) contains a rigorous

informal statement about positional analysis imm®bf positions and roles.
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product of its signed relations. pog-triple is balanced if its sign is positive and
imbalanced if the sign is negativeThere are four possible balanced triples and
four imbalanced triples. A signed network is balkaahdf all of its pog-triples are
balanced. Cartwright and Harary’s main theoremtestathe vertices of a balanced
network can be partitioned into two positions whaitk of the positive ties are
within positions and all of the negative ties aretvbeen members of different
positions. This result links the micro-processesiefformation and change within
triads to a statement about the overall group sumecfor balanced networks.
Davis (1967) noted human groups often have moren ttveo mutually hostile
subgroups. He generalized Cartwright and Harargsult by reconsidering one
part of Heider’'s foundational statement: if all tgfe ties in apog-triple were
negative, the triple was imbalanced. Davis defirtbts all-negative triple as
balanced. His result was: a ‘clusterable’ netwdrés twoor more positions where
all the positive ties were within clusters and @ilthe negative ties were between
actors in different positions. This also links nogorocesses to the macro-structure
of a group. A signed network ksbalanced if it has the above partition structure.
For k=2 it is Cartwright and Harary’'s structure theorem.rHo> 2 it is the
generalization.

Blockmodeling (see Breigest al., 1975; Doreiaret al., 2005) has techniques
for partitioning network data into positions (coimiag actors) and blocks (of ties
between positions). Thi®cation of an actor is the set of ties to and from all othe
actors in the group. These locations of actorscimetered to form the positions.
For n actors, then locations are partitioned intopositions withk is much smaller
thann. A large network is reduced to a smaller imagerirawith k positions and
k* blocks representing the essential network structDareian and Mrvar (1996)
noticed the theorems of Cartwright and Harary (9)9&86d Davis (1967) can be
viewed as leading to statements of specific blocttei®. A positive block is one
having only positive ties and null ties whilenegative block has only negative ties
and null ties. From the structure theorems, iR-laalanced network, the signed
blockmodel has positive blocks on the main diagqiap left to bottom right) and
negative blocks off the main diagonal. If, for exalen k=4 and structural balance
is the only process operating, then the blockmauadplied by structural balance is
simple to describe. The block pattern for four piosis is:

This is expressed in folk aphorisms: “a frierfdadfriend is a friend”, “a friend of an enemy is
an enemy”, “an enemy of a friend is an enemy” and €nemy of an enemy is a friend”. These
have simple cognitive structures. As Mower Whit®{2) notes, simple cognitive structures are
more likely than complex structures to exhibit bwda. Also, “it is now recognized that if
sentiment is restricted to the two values of pesitand negative, balance is a simple implication
of ordinary deductive logic (Montoya and Insko, 30@94)".
> To prove this theorem, Davis used the conceptaafemiwalk, an alternating sequence of
vertices and arcs where the direction of the ascsrelevant. For pairs of actors between whom
there exist one or more semiwalks, the sign foheafcthese semiwalks is the product of the signs
of the arcs in the semiwalk. These signs are pesitr negative. He defined a network as
‘clusterable’ if it had no semiwalks with a singiegative arc.
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Positive Negative Negative Negative
Negative Positive Negative Negative
Negative Negative Positive Negative

Negative Negative Negative Positive

We refer to these as ideal blocks by location, dails blockmodel the
Structural Balance blockmodel, and label it the ‘SB Model'.

Regardless of the number of positions, every blonttet predicted by
structural balance has this generic (ideal) SB Moftem. The number of
positions,k, has to be determined as a part of fitting blocleis. Empirically, it
is unreasonable to expect a perfect correspondeetweeen an ideal structure and
an empirical structure. If structural balance ipmgpriate we would anticipate the
SB Model but with some inconsistencies comparethéoideal structure.

Doreian and Mrvar (1996) took the form of the ideatl blockmodels implied
by structural balance and proposed a itp@aming approach  for
establishing empirical blockmodel structure(s)sajned networks closest to the
ideal form implied by the structural theorems. Whemnpirical blockmodels do not
fit exactly there are some inconsistencies betwthenempirical blockmodel and
the ideal counterpart. These will take the formsofme negative ties in positive
blocks and some positive ties in negative blockfie former are termed negative
inconsistencies, the latter are positive inconsisites. For a binary network (where
the ties are +1 or -1), the total number of positimconsistencies is denoted By
and the total number of negative inconsisterfcigs /. A general measure of how
poorly a blockmodel fits the data is given 8y = a/+ (1 -a) Zwheré 0 <o < 1.
With a = 0.5, the two types of inconsistencies are weidhgqually, a convention
we use here. In essendg, is the line index of imbalance proposed by Haretry
al. (1965: 348-350).C; is a criterion function and the relocation clugtigr
algorithm used by Doreian and Mrvar seeks optimaitipon(s) minimizing this
criterion functiofi. Structural balance implies an SB Model.

2.2 Differential popularity
In the main, social scientists collecting sociontettata focused on unsigned data

with only positive ties. Undoubtedly, such data aasier to collect. Also, one
rationale for making comparisons of the distribati@f triples in unsigned

® If a network has weighted ties then P and Npeesively, are thesums of positive and negative

inconsistencies.

For a=1, positive inconsistencies are ignored and negaiticonsistencies are ignored fax0.
Neither extreme weighting is useful whiesth positive and negative ties exist.
8 Itis alocal optimization method so finding taptimal partition(s) is not guaranteed. Brusto
al. (2011) established this algorithm has, thus fdentified all of the optimal partitions for
signed networks up to 40 actors.
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networks, as used by Feld and Elsmore (1984) anddiynan (1984), is based on
arguments of Davis and Leinhardt (1972) whesgned graphs are
‘converted’ to unsigned counterparts. Rather tf@us on signed ties (positive,
null, and negative), attention was focused on miugMg, null (N) and asymmetric
(A) ties. Identifying clusters of positively conrted actors, such as those among
the positions of signed networks, was treated adeexe of a tendency towards
clustering. Comparisons were then made of the ibistions of the 16 possible
triples involving M, A, and N ties. However, as mgiunsigned data handicaps any
examination of balance theoretic ideas about signetiworks, these efforts
labored under a serious constraint: negative tiesevexcluded Feld and Elsmore
(1984) focused primarily on transitivity. Ifp0) and 0—>q) are present in an
unsigned network then, under transitivity, the>(q) tie will be present also.
Empirically, there is a tendency towards transttivin most unsigned networks
with transitivity has regarded as a fundamentalwoek process (Holland and
Leinhardt, 1972; Wasserman and Faust, 1994: 243-2&®nfirmation came with
there being more transitive triples in a networlrtlwould be expected by chance.
One key feature of Feld and Elsmore's argumé that some of the
evidence for transitivity might be due to the ogtéon of a process of differential
popularity®. They provided some evidence in the form of disitions of pog-
triples to support this claim. However, they wearaful tonot state differential
popularity dominated transitivity. They suggestéd could be a plausible
generating process, one also creating some traitgitiin neutral terminology,
transitivity and differential popularity are oftemnfounded in empirical networks.
When only one of them is considered, some of thgpetut for it asthe generating
process will be spurious.

The idea of differential popularity extends strafghwardly to signed
networks: some actors may be more popular and seive more positive ties
regardless of the presence of mutually hostile solpgs. If some members of a
group are universally popular, then wikh4, the group structure, as a blockmodel,
would be as follows if there were just two processestructural balance and
differential popularity — operating. An ideal blaokdel would look like:

Positive Negative Negative Negative
Positive Positive Negative Negative
Positive Negative Positive Negative

Positive Negative Negative Positive

°  We do not dispute the value of the highly pratiikes work on triadic censuses for unsigned

networks and their extension to exponential randpaph models. But when structural balance is
involved, we contend that both positive and negatiesmust be included.

1 For example, givep—>0 and oq as positive ties, ip=>q exists then it can be viewed as
being consistent with transitivity. It is consistexiso with structural balance in a positive triple
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Note the column of positive blocks on the left bistideal blockmodel. Except
for the top block,all of the positive blocks in the first column are inststent
with structural balance (and are bolded for thissan). We call this ideal
blockmodel aStructural Balance with Differential Popularity blockmodel and
label it the SB_DP Model. If some additional actars popular but not universally
popular, an ideal blockmodel would look like:

Positive Negative Negative Negative
Positive Positive Negative Negative
Positive Positive Positive Negative

Positive Positive Negative Positive

The additional bolded blocks (in the second coluwinblocks) are also
inconsistent with structural balance but consistesith differential popularity.
This blockmodel is a variant of the SB_DP Model.efd may be less extreme
configurations where only some blocks in the leihti column are positive. There
could be other subgroups receiving positive tiesnfrmembers of other positions.
These can be accommodated. For now, we focus onS&eDP Model in our
comparative tests.

Discriminating between these two theories can beedim a direct fashion. If
structural balance operates, then the SB Model pgrapriate. Further, if
differential popularity is not operative, the SB td would fit the data and not
the SB_DP Model. But if the SB_DP Model is idergdi empirically, greater
credibility is given to differential popularity. Eh partitioning algorithm of
Doreian and Mrvar (1996) is useless for this corapise test: a SB Model is the
only fitted blockmodel. However, thinking in terno$ relaxing structural balance
(Doreian and Mrvar, 2009) led to the creation of a@gorithm appropriate for
distinguishing these two models.

2.3 Relaxed structural balance

In responding to Feld and Elsmore (1984), Hallifd®84) argued at least five
substantive processes could generate transitimiynisigned networks: differential
expansiveness; reciprocity; differential popularitglustering and cognitive
(structural) balance. Although we do not focus mansitivity and consider signed
networks, we accept the point of analyses of nekwdata requiring recognition,
and consideration, of multiple processes. Incorpogathem for signed networks,
when considering balance theoretic ideas, requar@generalization of structural
balance. Reciprocal positive ties can be accomneabla@sily to the extent that
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they occur among within actors in the same positiBnot, if there is positive
reciprocity between pairs of actors in differentspimns, this creates problems for
structural balance: positive inconsistencies cantie to C:. If this involves
multiple pairs in two positions there will be cosponding positive blocks above
and below the main diagonal. If there is recipramatof negative ties between
actors in different positions this will be consistewith structural balance.
However, we need to considsubsets of actors who, as individuals, are mutually
hostile towards each other. Their presence alsdradicts structural balance
because this implies a negative diagonal blbdk we add mutual dislike at the
actor level for a set of actors — a “nest of vigersthe colorful terminology of
Hummertet al. (1990) — to differential popularity and structubmlance then we
would expect a structure approximating the follogvisilockmodel:

Positive Negative Negative Negative
Positive Positive Negative Negative
Positive Negative Positive Negative

Positive Negative NegativeNegative

Locating the diagonal negative block on the bottdght of the blockmodel
appears arbitrary. But if there is a differentiabpplarity process then it is
reasonable to anticipate differential disliking iligs negative ties are concentrated
actors other than popular actBrsThis is represented by a column of off-diagonal
negative blocks on the right of this blockmodel.rtRer, if those that are more
disliked also tend to dislike each other this ireplia diagonal negative block. To
capture this, we locate (and bold) a diagonal riggablock at the bottom right
hand side while recognizing that there could bearbian one such block and they
could appear anywhere on the diagonal. The colurhrofbdiagonal negative
blocks on the right is consistent withoth structural balance and differential
dislike. The negative diagonal block is inconsistenth structural balance. We
call this a Structural Balance with Differential Popularity and Mutual Dislike
blockmodel and denote it as an SB_DP_MD Model.

To deal with these and other potential complicadienncluding mediation -
Doreian and Mrvar (2009) proposed ‘relaxed strugtimalance’ as a more general
model for signed networks. Having only positivedks and negative blocks was
retained. However, they were allowed to appe@aywhere in a blockmodel.
Relaxed structural balance is a formal generalaatf the structural balance. The
criterion function, C;, as described above and the relocation algoritherew
retained for fitting relaxed structural balance ralsdto network data. All that

11
12

This pattern is present in Figure 2 and thisnppted the notion of diagonal negative blocks.
One mechanism is disliked attributes of some &ctake time to be recognized more widely in
a group.
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changed under relaxed structural balance is themp@ locations of the signed
blocks. Relaxed structural balance permits theestent of another set of ideal
blockmodels.

In partial summary, the first two primary substaethypotheses are stated in a
comparative form.

Hypothesis 1 If differential popularity operates for positivees, there will be
a column of positive blocks for the more populatoas and this tendency will
increase through tim& If structural balance dominates differential ptgity then
there will be no positive off-diagonal blocks in @lumn corresponding to
universally popular actors. Nor would there be pwsi off-diagonal blocks for
other popular actors.

Hypothesis 2 If differential dislike is operative, there will ba column of
negative blocks for the more disliked actors and tandency will increase though
time. In particular, there will be at least oneghaal negative block. If structural
balance dominates then there will be no diagonghtiee blocks.

Heider's theory is essentially dynamic with actos$riving to reduce
inconsistencies. This is expressed as a tendenaartts balance over time.
Indeed, data for examining Heider’'s theomyust be temporal. However, all
Heider’s imbalanced triples can be balanced indtways. Alas, Heider was silent
on how balance is achieved. It requires complexpt@mal processes in human
groups (Hummon and Doreian, 2003). If differehppapularity and differential
dislike accumulate over time, this suggests:

Hypothesis 3 Increasing tendencies of differential popularitydadgifferential
dislike will create greater inequality on the rgueof both positive and negative
ties over time.

The idea of moving towards certain structural forstems from Heider's
notion of tendencies towards balance being extendedlaxed structural balance.
The concentration of both positive and negative {jdypothesis 3) could be the
result of two social mechanisms. One is an indialdlevel process where
attributes making people popular (liked) or unp@pu(disliked) are recognized
more over time. The other is found in the idea citioes achieving consistency of
views of people as driven by balance. Of coursés thaves open the issue of
which of these processes are operative or the exiterwhich they are both
operative. The data at our disposal do not permiteaploration of this issue.
Even so, relaxed structural balance incorporateditiahal processes beyond
structural balance.

The tests that we propose are facilitated by usiregsame criterion function
for all fitted models. Relaxed structural balance models have structuaitdnce as
a special case. If structural balance dominateso#iker processes then the SB

13 We allow less extreme versions with some actoosenpopular but not universally popular as

shown in the one variant of the SB_DP Model. Pwesitralued actor attributes may also take time
to be perceived widely.
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Model will be identified implying structural balaeds the generating process. But
if both structural balance and differential popithaare operating without mutual
dislike then a variant of the SB_DP Model will thie signed data better. And if
there is also mutual dislike in subgroups, the SB_BD Model will fit. If any of
the more general models within relaxed structuralabce fit, there is evidence
against structural balance being the sole, or elxenmain, generating process.
Classic structural balance and relaxed structuaddrice partitions are rivals to be
evaluated comparatively. They can be compared dirosheir blockmodel
signatures.

3 Data and methods

Brusco et al. (2011), based on Leik and Meeker $)9&rgue it is more fruitful to

have substance, data, and model (with the methbdwmglies) form a coherent
whole. We achieve this here within the rubric ofdmee theoretic ideas. The SB
Model and relaxed structural balance (RSB) nodecan be evaluated
comparatively. Group trajectories towards balantdhey exist, need not imply
strictly monotonic change in the level of imbalanBet there will be some overall
movement in this direction over time. Given thispncal claim of Heider, it is

necessary to examine signed structures over timeguslockmodel structures.
Given substance drove the hypotheses and the metbédrelaxed structural

balance are fully consistent with this, the coheeerof Leik and Meeker’'s

substance-method-data triple is preserved.

Alas, there are few signed networks over enougte tpoints to test Heider's
theory. We know of only two such data sets. One is Newcomb’s (1961) data as
recorded by Nordlie (1957). The other comes froorm@son’s (1968) study of
trainee monks in a monastery. Neither data setdisali Newcomb collected
network data from 17 students in a pseudo-fratermit partial exchange for room
and board, thespreviously unacquainted students provided sociometric data for 15
time points over a semester. The strength of Newxsnstudy is the network
formation process started from an initial statenofnetwork ties. The recorded data
were in the form of ranks with each actor rankitigpé the other actors in terms of
liking. Doreianet al. (1996) recoded these recorded ranked sociomgéscinto a
signed form. With this recoding, they establishestiprocity, transitivity and
structural balance had different time scales. Tdy four ranks were converted to
+1 and the bottom three ranks were recoded to k. femaining ties were recoded
as zerd. We use their (four positive ties and three negaties) coding scheme
here. Of course, as noted by Hallinan (1984) drgwon the arguments of Holland

% Their reasons for this coding and the formal roésh for establishing it are found in their

article. With regard to structural balance, othecading options in terms of the number of
positive and negative ties were tried without lewgdio substantively different results.
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and Leinhardt (1973), there are problems with fixdaice designs. However, as
we want our results to be comparable with priorlgses of the Newcomb data
we used this coding.

Doreian et al. (1996) computed the imbalance over time for theoded
Newcomb data and showed a general decline over. ¥xtigle this decline was not
strictly monotonic, there was enough support foidges empirical hypothests
However, if the relaxed structural balance model isetter model, one that allows
for multiple processes, then imbalance for axed structural balance will
decline over time. More importantly, imbalance whk lower at each time point
than for structural balance. To examine Hypoth&sisve use Theil's (1967: 92)
entropy index, as a measure of inequality, for ndog positive and negative ties
at each time point.

The criterion functiorC; can be viewed as merely descriptive and lackintstes
of its utility for partitions established when ugint. To address this, we use
guadratic assignment regression, QAP, as formulhie®ekker et al. (2007) and
implemented in Borgatti et al. (2002), to make istatal assessments of
established signed blockmodels. The ideal blockn®dpecify (by locations) the
presence of positive and negative blocks. Giverestablished blockmodel (with
inconsistencies), we can define the ‘fitted’ bloakhel that corresponds to the
empirical blockmodel. In the following panel we shoon the left, a hypothetical
pair of positive and negative blocks with some ¢mal) inconsistencies. The
corresponding pair ofredictions’ implied by the blocks in an ideal blanodet®
are on the right.

A positive block (with inconsistencies) The corresding fitted positive block

0-1 1100 -1 0 01110010
1101 -1 01 -1 11011011
00110011 00110011
10001101 10001101
10 -1 0000 -1 10100001

5 we emphasize the term ‘enough support’. In a fellgp study using the Newcomb data,
Doreian and Krackhardt (2001) showed that the ieo@k oftwo of the imbalanced triples
increased over time while the number of two of the balanced triples declined over time.

16 Borgatti and Everett (1999) propose using Pedesonorrelations in a similar fashion but with
a crucial difference. Their ideal blocks are eitltemplete or null. The latter are unproblematic
but we differ here by ‘predicting’ only the impliedalue of a tie when there is an empirical tie in
the data.
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A negative block (with inconsistencies) The corasging fitted negative block

-1 0 1-1000-1 -1 0-1-1 00 0-1
1-1000-1-1 1 -1-10 0 0-1-1-1
-1 0-1 0 00-1-1 -1 0-10 00-1-1
0 0-1 1 1-1-10 0 0-1-1-1-1-10
-1 0 1 00-100 -1 0-1 00-100

An empirical network with blocks and the fitted bkomodel can be compared
by using QAP to assess the fit. QAP is used to jgara’ two whole matrix arrays
to examine the extent to which they are the sameoasistent with each other. In
these analyses, the fitted blockmodel is used tdipgt the empirical data. If the
correlations between the two are significant, titeed blockmodel passes a test in
terms of empirical adequacy. However, if the fipor, the blockmodel fails. It is
possible also to compare the fitted blockmodel withrandom partition as a
secondary way of assessing the adequacy of it¥Vé.did this using the Adjusted
Rand Index (ARI) and evaluative criteria put fotip Steinley (2004). He argues
ARI values above 0.9 indicate an excellent corresiemce in the composition of a
pair of partitions; values above 0.8 suggest anepiable correspondence and
values below 0.8 are unacceptable.

Another potential problem with blockmodeling is ding multiple optimal
partitions for a given value &4 If all have the same block structure, and attanti
is focused solely on the block structure, this @& a huge problem. But, if there
are multiple ‘best’ partitions, having differentdok structures, this is a serious
problem. A third potential problem is the presemdenull blocks: they must be
identified. For structural equivalence, only twabk types are possible: complete
blocks and null blocks. Differential penalties cla@m imposed on the two types of
inconsistencies (ones in null blocks and null tiescomplete blocks). Doreian et
al. (2004), for partitioning two-mode data, imposetieavy penalty on the former
inconsistency to ensure null blocks appeared dg fulll blocks”.

For the Newcomb data, there are null blocks. Spewif a null block helps
eliminate multiple equally well fitting partitionander relaxed balance. We used
the algorithm of Doreian and Mrvar (2009) as impé&ted in pajek (Batagelj and
Mrvar, 1998) for each time point in an inductivesiigon with one null block
specified. Having identified the ‘best’ partitiotrsctures fork=4 inductively, we
then, for each time point, pre-specified its deéitezl block structure in a deductive

1 They used pre-specification but here only thespnce of a null block was allowed.
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fashion (with many repetitions) to make sure thesye no additional partitions
with the identified partition structut®

When comparing relaxed structural balance withcttrial balance we thought
differential popularity would be important and, paps, dominate structural
balance. The comparisons had to be fair. A cruddference exists in the
behavior of C; as the number of clusters (increases fot structural balance
and relaxed structural balance. For the forntee curve of the criterion
function, C;, when plotted again#t, has a U-shape with a guaranteed minimum
value (Doreian et al., 2005: Theorem 10.6). In cast, for relaxed structural
balance,C; decreases monotonically with (Doreian and Mrvar, 2009: Theorem
4). We chose&=4 primarily because the ‘best’ structural balamesults were for
this value ofk. Increasing the value ok beyond 4 has two implications: i)
values of C; increase for structural balance while they deseefor relaxed
structural balance. This creates a bias favorimglaltiter for higher values & For
a fair comparative test we used the same valule fof relaxed structural balance
and structural balance. If anything, this favoreédistural balance. At most time
points, the optimal partition for structural balanaccurs folkk=4 in the Newcomb
data. For the Sampson data, itks3 at all three time points. We then compared
the fitted models with each otHer

4 Empirical results

4.1 Using the Newcomb data

Figure 1 shows the criterion function values k=4 over time for structural and
relaxed balance. Both trajectories decrease ovefdle values of the criterion
function for relaxed balance are always lower thanstructural balance, implying
the RSB model fits the data better than the SB rhdffaile this has little surprise
value, it emphasizes limitations to structural lb@ka For each time point, we
computed the ARI for pairs of partitions obtainewm the two models. They
ranged from 0.073 to 0.689. For each time poing, plrtitions obtained from the
two approaches are not the same. Most often, theyat even close.

B n fitting blockmodels to signed networks whereallnblocks are specified, the criterion

function C; = aN + (1 —a)? was modified by including a term for the null blothat ensured that
the null block would be as large as possible. ($mall blocks were penalized relative to larger
null blocks so larger null blocks were identified.)

¥ For Sampson data we consider atsd for relaxed structural balance
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Number of Inconsistencies for Two Blockmodels

30

25

20

Count of Inconsistencies
15

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time Point

—=e— Balance —@— Relaxed balance

Figure 1: Inconsistency counts for the Structural Balanae e Relaxed Structural Balance
models: Newcomb data.

There are additional issues in fitting blockmodé&tsnetwork data meriting
attention. The first concerns the predictive vabhfethe fitted blockmodels. We
computed the correlation, for the 15 time pointbel@d §{ through {s, between
these QAP correlations and the value of the coteriunction, ¢. The value of
this correlation is -0.959 (p < .0001) indicating &ery close correspondence
between the two set of values. Table 1 providesntimeerical values and the QAP
correlations for both relaxed structural balance atructural balance. The QAP
correlations in Table 1, using a permutation temtf as a close proxy for a
permutation test for the criterion function. Thesalues® for the QAP correlations
are all less than 0.001. The values for stmadtubalance have a similar
temporal pattern but the correlation between @®P correlations and the
criterion function is slightly less. Even so, thewer QAP correlations for
structural balance suggest poorer predictivdopmances consistent with the
values of the criterion function for the two rivalodels.

2 Most correlations are ‘significant’ which may ba inherent feature of QAP. However, our use of

QAP is driven primarily by a need to compare thsutis from using relaxed structural balance and
structural balance. It is unlikely that a bias todg significance affects the comparative results
differently. Also there are non-significant QAP iestes in the results we report.
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Table 1: QAP correlations and criterion function values:péncal and fitted
blockmodels: Newcomb data.
T RSBQAP RSB CriterionFunction SB QAP SB CriterionFunction
Correlations* Values () Correlations* Values(Cy)

{1 0.67¢ 9.5 0.49¢ 15.t

1, 0.74( 8.C 0.502 15.C

13 0.77¢ 6.5 0.58¢ 12.5

[ 0.752 8.C 0.598 12.5

15 0.810 6.0 0.579 13.0

g 0.75¢ 5.C 0.511 11.C

t7 0.911 3.C 0.63¢ 11.C

tg 0.881 3.5 0.61¢ 11.5

19 0.865 4.0 0.633 11.0

{10 0.86( 4.5 0.617 11.t

11 0.899 3.0 0.674 10.0

12 0.89¢ 3.C 0.66¢ 10.C

t13 0.881 3.5 0.671 10.C

14 0.93: 2.0 0.6&7 9.5

15 0.91¢ 2.5 0.66¢ 10.C

RSB Relaxed Structural Balance; SB Structural Bedan
* All p-values < 0.001. The correlation between Qédtrelations and €is -0.959 for RSB and -
0.858 for SB.

Table 2 presents the results of using QAP regresscomparing the predictive
values of RSB and SB. Reading from the right, ipegrs both the fitted SB and
the fitted RSB blockmodels have some predictiveugalFurther, the predictive
value for each, roughly, increases through timeweher, when the fitted SB
blockmodel is included as a predictor with the€ittRSB blockmodel it seldom
increases the predictive value of the QAP regressiOf course, when two
predictors are correlated there is no unique partitof the variance explained
between them. However, we note the following addhisil items in Table 2: i) the
estimated intercept is near zero for eaahetipoint; ii) theunstandardized
coefficients are such that the coefficienter RSB are always larger
than the corresponding coefficients for 8Hii) over time, the unstandardized
coefficient for SB declines while the unstandardio®efficients for RSB increase;
and iv) at each time point, the standardized cogffit for RSB is larger than the
standardized coefficient for SB indicating it a® ttmore potent predictor. In short,
the fitted RSB blockmodel has superior predictivalue than the fitted SB
blockmodel.

% The two fitted blockmodels have the same densitythere is not an issue of different
scales inflating one coefficient relative to théet.
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Table 2: QAP Regressions comparing Relaxed Structural Rad@amd Structuraalance:

Newcomb data.

T. | Variable  Unstandardized Standardized p-value R? R? R?
Coefficient Coefficient (for RSB) (for SB)

t, | Intercept 0.051 0.000 - 0.47 0.46 0.25
SB 0.134 0.133 0.0140
RSB 0.596 0.598 0.0005

t, | Intercept 0.015 0.000 - 0.58 0.55 0.25
SB 0.201 0.202 0.0005
RSB 0.651 0.646  0.0005

t; | Intercept 0.013 0.000 - 0.64 0.61 0.35
SB 0.208 0.209 0.0005
RSB 0.662 0.659 0.0005

t, | Intercept 0.042 0.000 - 0.62 0.57 0.36
SB 0.285 0.284  0.0005
RSB 0.610 0.604 0.0005

ts | Intercept 0.041 0.000 - 0.66 0.66 0.34
SB 0.089 0.089 0.0265
RSB 0.753 0.752  0.0005

tg | Intercept 0.010 0.000 - 0.57 0.57 0.26
SB 0.085 0.085 0.0365
RSB 0.704 0.702 0.0005

t; | Intercept -0.008 0.000 - 0.83 0.83 0.40
SB 0.076 0.077 0.0100
RSB 0.868 0.861  0.0005

tg | Intercept 0.004 0.000 - 0.78 0.78 0.38
SB 0.051 0.051 0.0880
RSB 0.848 0.847  0.0005

tg | Intercept -0.020 0.000 - 0.77 0.75 0.40
SB 0.172 0.173 0.0005
RSB 0.767 0.761  0.0005

tio| INtercept 0.028 0.000 - 0.75 0.74 0.38
SB 0.108 0.108 0.0040
RSB 0.792 0.791 0.0005

ty, | Intercept 0.021 0.000 - 0.81 0.81 0.45
SB 0.022 0.022 0.2289
RSB 0.881 0.883 0.0005

ty, | Intercept -0.026 0.000 - 0.81 0.81 0.45
SB -0.069 -0.069 0.0475
RSB 0.957 0.952 0.0005

t,5| Intercept  0.006 0.000 - 0.78 0.78 0.45
SB 0.071 0.071 0.0440
RSB 0.831 0.830 0.0005

t14 | Intercept -0.004 0.000 - 0.87 0.87 0.47
SB 0.084 0.085 0.0060
RSB 0.876 0.874  0.0005

t15 | Intercept -0.000 0.000 - 0.84 0.84 0.45
SB 0.020 0.020 0.1964

RSB 0.902 0.901

0.0005
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The blockmodels for each time point are in Tablen 3hree panels. The first
row in each box gives the specific time point. Tezond row shows whether the
partition reported was unique. A unique partitiam 13 of the 15 time points was
returned. For one time pointg)tthere are two partitions. In each case, the block
structure is the same and the partitions differydnt a ‘floater’ moving between a
pair of cluster&. For t,, there were multiple partitions but one stands*olthe
third row gives the value of the criterion functiéor a = 0.5 (the inconsistency
count is double the criterion function values rdpdrin Figure 1). The final row in
each cell gives the block structure where P, N @ndienote, respectively, positive,
negative and null blocks.

Table 3: Signed block structures over 15 time points: Nawicalata*.

t1 t2 t s ta ts
Unique Unique Unique Unique Unigye
X(P)=9.5 X(P)=8.0 X(P)=6.5 X(P)=8.0 X(P)=6.0
PPNN PNPN PNPN POPN PNPN
PONN PPNN PPNN PPNP PPNN
PNPN PNNP PNNP PNPN PPNN
PNNP NPPO NPPO PPNN PNON
te t 7 t s to t 10
Unique Unique Two uUnique Unidue
X(P)=5 X(P)=3.0 X(P)=3.5 X(P)=4.0 X(P)=4.5
PPON POPN PPPN PPPN PNPN
PNPN PPNN PNPN PPNN OPPN
PPPN PPPN PPON PNON PPNN
PPNN PPNN PPNN PPPN PNNN
t1 t 2 t 13 t 14 t 15
Unique Unique** Un|que Unique Unique
X(P)=3.0 X(P)=3.0 X(P)=3.5 X(P)=2.0 X(P)=2.5
PPPN PPNN PPNN PPNN PPPN
PPON PPNN POPN PNNN PPON
PNPN PNOP PPNN PONN PNPN
PPNN PNPN PNNN PNPN PNNN

*P denotes a positive block, N denotes a negatieekband O denotes a null block.
** See footnote 15 for an explanation of this.

%2 Tne value of the ARI measure is 0.845 which igha acceptable range specified by Steinley

(2004).

B For t,, it was necessary to specify two null blocks teéa unique solution. One of the identified
null blocks contained a negative tie. We treate@hi¢ third block in the first row) as a negativedk.
While there were multiple partitions using one sfied null block, one is shown in Table 1.

Specifying a second null block suggests a way afosing a partition from the multiple equally well
fitting partitions.
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We examined the delineated signed blockmodel ah ¢awce point. We note
that, especially towards the end of the process,cdmposition of the positions in
terms of membership is quite stable. There are mneembf positions remaining
firmly in place while a few do move between posgiisan transitions. We note also
that the sizes of positions do not change abrutlgach transition. Illustrating
the different partitions for structural balance aredaxed structural balance we
show their unique partitions afstfor k=4 in Figure 2. We chose this time point
because it is near the end of the network evoluéind the criterion functions are
lowest at 14 for both models: each structure is closest toidesal structure. The
black squares represent positive ties with negaties represented by grey
diamonds. The SB partition is in the top panel. R&B partition is in the bottom
panel. The number of inconsistencies for structusalance is 19 while the
corresponding number is 4 for relaxed balance. fgeson for the sharp drop in
the number of inconsistencies is clear. Structbalhnce struggles with the large
number of off-diagonal positive ties. Also, the usitural balance partition is
unsatisfactory because it returns a partition vatte large cluster, one pair, and
two singletons. It misses the mutually hostile guup completely because
negative blocks cannot appear on the maimgatial. The RSB partition
returns an optimal partition with clusters of sie3, 3 and 2. Many of the positive
off-diagonal blocks are part of a coherent struetunstead of contributing
inconsistencies under structural balance. In stibe,SB_DP_MD model fits these
(t14) data far better than the SB model.

It is apparent from Table 3 thatone of the fitted RSB blockmodels
conform to the SB Model. From Figure 1, the SB Mothes less well than a
relaxed structural balance model, consistent wiéisutts shown in Table 2.
Structural balance cannot be viewed as the solergéing process for these data.
It may not be the dominant process. We next inttrdre results in Table 3.

Differential popularity and Hypothesis 1 are coreseld first. The top left
block is positive for all time points, a result sastent withboth structural balance
and differential popularity. The column of positibéocks in the left hand column
is present for 12 of the 15 time points, includithg last 5 leading to the final
evolved structure. Forptand g, a negative off-diagonal block appears in this
column. Even so, there are still two positive of&gbnal blocks. There is one null
block with two positive blocks in the first columatt to. This pattern provides
overwhelming support for the presence of differahpopularity (Hypothesis 1)
and overwhelming support for Feld and Elsmorg984) arguments for it as
a generative process. Hypothesis 1 is resolvefvor of the SB_DP model. A
column of positive blocks appears early and is @nésor most time points. This
feature is stable with decreasing inconsistencies.
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Figure 2: Structural Balance and Relaxed Balance partitairgs4 (Newcomb data).

Next, we consider Hypothesis 2. For differentiakldie, including mutual
dislike, the column of negative blocks on the ridginst appears atst It was not
there at the outset and emerged over time. It pedithrough all subsequent time
points. The bottom right (diagonal) negatibdock reveals a subgroup with
mutual dislike. This also contradicts structuraldmee. However, negative off-
diagonal blocks in this column are consistent watructural balanceand
differential dislike. Features of the SB_DP_MD Mobdee evident at multiple time
points. Hypothesis 2 is resolved in favor of the_ ®®_ MD model. There is
evidence of differential popularity emerging earlieith a shorter time scale than
differential dislike.

The signs of the blocks in the middle two columasdach of the fitted signed
blockmodels have been treated as having seconadaeyest. Yet, for structural
balance theory, additional positive blocks off thein diagonal and negative
blocks on it provides further contradictory eviden&or eight time points there is
one negative block on the main diagonal and forthere are two such negative
blocks. There is strong evidence for differentialpplarity - in both a universal
and less universal sense — as well as mutual @islikhin a set of actors. These
features are disentangled from balance @m®E® because they leave
observable traces inconsistent with that theoryntstent with Hallinan's (1984)
observation, structural features suggest the omeratf multiple processes. Some
cannot be completely distinguished by looking splati blocks. However, there is
some further evidence in favor of differential dkgl.

The ideas of differential popularity and differaaitidislike imply that both
positive and negative ties are concentrated on saoaters but not on others. A
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natural way of considering this is by examiningdnality in the receipt of these
ties. Our third hypothesis claims that this inedyalill increase over time. Figure
3 shows the values of the Theil entropy index auee?. Very similar results hold
when the coefficient of variation (standard dewafimean) or the Gini coefficient
is used. The inequality for receiving negative tirsreases over the first 7 time
points, shows some oscillation for the next thraaet points, followed by a
downwards drift, and then some more oscillatimith increasing values. The
over-time movement of inequality for the receiptpafsitive ties is quite different.
It is flat over the first four time points, incresss from § through %, drops, and
then oscillates while increasing. The inequalitythe receipt of negative ties is
always much higher than for the receipt of positittes after 1. The third
hypothesis is strongly supported for received niegaties while, at best, it is
supported for the receipt of positive ties fromthrough ¥+ and only weakly
supported after;t The greater concentration of negative ties ov@etsuggests
that differential dislike generates more of thewoh of negative blocks than
structural balance.

Inequality of Receiving Positive and Negative Ties

Theil Inequality Index
6
1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
time point

—=e—— Theil Index: positive ties —&—— Theil index: negative ties

Figure 3: Inequalities in receiving positive and negatiwstiNewcomb data.

% The results in Figure 3 are not due to havingositive ties and 3 negative ties from each

actor. The trajectory of the Theil index, when gsonly 3 positive ties, is close to the trajectory
of the index for 4 positive ties.
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4.2 Using the Sampson Data

Sampson’s (1968) data has three time points (ldbalethe literature as ;] T3
andT, Sampson collected data for an earlier time pt(ifit). He collected signed
data on four relations: affect, esteem, influenaed sanction. Each took an
apparent metric form with three ranked positive dhtke ranked negative ties.
The sanction relation is problematic because somede monks refused to
provide data (or claimed they sanctioned no-oneyelan (2008) argued for using
a multi-indicator approach for multiple relationd/e do this here. We summed
the binarized affect, esteem and influence relations. The valsigded relation is
the number of ties with a specific sign betweenrgaf actors. From prior analyses
(Sampson, 1968; Breiger et al., 1975; Doreian anga¥] 1996), we know there
are k=3 clusters of monks. Figure 4 shows three trajectorfier the criterion
function. Two are for SB and RSB fé&r3. We compare these first. The trajectory
of the criterion function for relaxed structural [dace for k=4 has additional
interest value regarding differential popularity.

Number of Inconsistencies: Sampson Data
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30
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1

——e—— Balance k=3 ——— Relaxed Balance k=3
—=s—— Relaxed Balance k=4

Figure 4: Inconsistency counts for the Structural Balana thie Relaxed Structural Balance
models: Sampson data.

% The T, data were for a different set of monks. Some e@nthdeparted before,TThose who

remained were joined by a group on new trainee matkm,.

% This was done because summing the ranks seerb¢epmatic with regard to measurement. The
value of Cronbach’s: for the three time points considered here are ®.(M3), 0.777 (&) and O.
849 (T,), suggesting these three network relations arg eensistent from a measurement point
of view. Also, the comparisons of random partitimfshe Sampson data into the same number of
positions with the relaxed balance theoretic pentis, that value of the ARI ranges between -0.06
through -0.02 over the partitions reported in Table
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Both trajectories fork=3 decline over time. The values of the criterion
function for RSB are smaller than for SB. Howeviltis evidence is modest: the
declines for the RSB are small. For the last tineenp the two values of the
criterion function are close. The value of the enion function for the RSB model
for k=4 declines from the first time point to the second hses slightly at the
third time point’. The values of the QAP correlations fkx3 are: 0.708 (3);
0.687 (&) and 0.737 (1). And for k=4 they are: 0.760 (); 0.871 (&) and 0.816
(T4). For all these QAP correlations p<0.001 confirgnihe descriptive values for
the criterion function(Cs, are noteworthy.

Table 4: Signed block structures over 3 time points: Sampiata*.

Structural balance (k=3)

T2 T3 T4
Unique Unique Unique
X(P)=23 X(P)=20 X(P)=16
PNN PNN PNN
NPN NPN NPN
NNP NNP NNP

Relaxed balance (k=3)

T, T3 Ty

Unigue Unique Unique
X(P)= 17 X(P)=15.5 | X(P)=14.5
PNN PNN PNN

PPN PPN PPN

NNP NNP NNP

Relaxed balance (k=4)

T, T3 Ty
Unique Unique Unique
X(P)= 13 X(P) =8.5 X(P) =10
PNNN PNPN PPNP
PPNN PPNN PPNN
PNPP PNPP PPPN
NNPP NNPP PNNP

*P denotes a positive block, N denotes a negatleely O denotes a null block

% One problem with Sampson’s data is the small nurolbeime points. Also, the data collection, in

contrast to Newcomb’s data, did not start from b metwork.



52 Patrick Doreian and Andrej Mrvar

Table 4 presents the corresponding signed blockisotty the three time
points. Fork=3, there are no large differences between the twoknmdels. The
blockmodel for structural balance must be the SBdeio For RSB, the same
blockmodel existed at each time point with just alifference from the SB model:
for all time points, one positive off-diagonal blois in the first column of blocks.
In terms of Hypothesis 1, only a modest versiorttaf SB_DP is present at each
time point. Even so, it provided slightly bettertsti Table 5 reports QAP
regressions for the Sampson data. The top panealecoa thek=3 partitions. The
RSB effect dominates SB only for,Tconsistent with the larger difference in the
values of the criterion function at this time poimt Table 3. In terms of
Hypothesis 2, there is no for a SB_DP_MD model gitiee absence of a negative
diagonal block. The off-diagonal negative blockse aconsistent with both
structural balance and differential dislike.

Table5: QAP Regressions comparing Relaxed Structural Ral@amd Structural Balance:
Sampson data.

A: Three positions (k=3)

T | Variable Unstandardized Standardized p-value R2 R? R?2
Coefficient Coefficient (RSB) (SB)
T, | Intercept 0.111 0.000 - 0.67 0.67 0.53
SB 0.040 0.039 0.2324
RSB 0.782 0.782 0.0005
T, | Intercept 0.107 0.000 - 0.67 0.66 0.53
SB 0.174 0.173 0.0075
RSB 0.672 0.672 0.0005
T, | Intercept 0.057 0.000 - 0.77 0.73 0.68
SB 0.356 0.355 0.0005
RSB 0.556 0.556 0.0005

RSB Relaxed Structural Balance; SB Structural Bagan

B: Four positions (k=4) RSB only

Time Variable Unstandardized Standardized p-value R2
Coefficient Coefficient

T, Intercept  0.031 0.000 - 0.74
RSB 0.858 0.859 0.0005

T3 Intercept -0.001 0.000 - 0.79
RSB 0.889 0.889 0.0005

T, Intercept -0.045 0.000 - 0.81
RSB 0.903 0.902 0.0005

The lowest panel of Table 4 displays the blockmosieucture for relaxed
balance withk=4. The evidence in these blockmodels is strongeraf SB_DP
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model fitting the Sampson data because of the prsef more off-diagonal

positive blocks. At the last time pointy,Tthere is a full column of positive blocks
in the RSB blockmodel as well as other off-diagompalsitive blocks. While

structural balance works well for the Sampson data k=3, for k=4 there is

stronger evidence in favor of the SB_DP model. Tloeresponding results for
prediction using only the RSB fitted blockmodel fitre k=4 are provided in the
lower panel of Table 5. This fitted blockmodel igpatent predictor of the signed
relation for all three time points.

Figure 5 shows the structural balance partitionshef Sampson data for each
time point. They are consistent with prior analységgh three clusters of actors:
The Young Turks (John Bosco, Gregory, Mark, Winfridugh, Boniface and
Albert); the Loyal Opposition (Peter, Bonaventuierthold, Ambrose, Victor,
Romauld, Louis and Amand), and the Outcasts (B&3ihs and Simplicius) were
identified by Sampson (1968). There are some muohfferences with Ambrose
being in the Young Turk cluster at T3 and Amandjog the Outcastéat T,.
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Figure5: Structural Balance Partitions for the Sampson dagach time point.

Figure 6 shows the relaxed balance model as fitie@ach time point witlk =
4. For T, the Loyal Opposition has been split into two ¢éus. Four of their
members (Bonaventure, Berthold, Ambrose and Romusdthd mainly positive
ties to members of the Young Turks, a feature otetun the structural balance
partition. Consistent with structural balance, tlseynd positive ties to others in the
Loyal Opposition and negative ties to those in @gtcasts. The two partitions at
T3 differ only in the location of Albert, again withositive blocks off the main
diagonal. At T, Bonaventure and Ambrose form a single clusteceirngng
positive ties from members of the other three dustThey also have reciprocated

% Doreian and Mrvar (1996) had Amand with the Qusts at all three time points.
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positive ties. This column of positive blocks suppo the Sampson data
conforming to the SB_DP model aji.T
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Figure 6: Relaxed Balance Blockmodels for the Sampson dia¢ach time pointl(= 4).

Figure 7 shows plots of inequality in the receiptpositive and negative ties.
Consistent with the Newcomb data results, inequalit the receipt of negative
ties increases across all time points. The patferrninequality in the receipt of
positive ties differs. From JIto Ts, it drops slightly before a sharp increase
between F and T,. The highest value for each index is atpfoviding support for
Hypothesis 3 for the receipt of negative ties bultygartial support for the receipt
of positive ties.
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Inequality in receiving positive and negative ties
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Figure 7: Inequalities in receiving positive and negatiestiSampson data.

5 Summary and discussion

As multiple processes generate social relations rgmbuman actors, it is
problematic to commit to examiningnly one process. The relevant processes
include structural balance, differential populayithifferential dislike, and mutual
hostility within subgroups larger than dyads. When processes operate they leave
traces as structural features of networks. Oumgiteto disentangle the results of
these processes focused on the structure of thveonletas represented by locations
of positive and negative block types in blockmodél¢e used the generalized
blockmodel of relaxed structural balance (Doreiamd aMrvar, 2009) to fit
blockmodels to signed networks. We found strongpsup for the operation of
differential popularity in a column of off-diagongositive blocks with the
Newcomb data. Some actors in were universally paoplcontrary to structural
balance. Evidence was found also of subgroups ofually hostile actors with
persistent negative blocks on the main diagonaltloé image matrix, also
contradictory of structural balance.

The persistent presence of a column of off-diagonabative blocks is
consistent with both structural balance and diffieiiad dislike. By considering the
increased concentration of negative blocks overetiom a subset of actors, we
infer that differential dislike contributes moreath structural balance even though
the results of these processes could not be disglg#d completely. The results
were less clear for the Sampson data where thetstal balance model fared less
badly than in the Newcomb data. There was some stogdence for a weaker
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form of a model with differential popularity. Ongt the last time point, in a model
with four positions, was differential popularity meoevident.

As a summary, in Newcomb’s data, relaxed structuralance partitions
provide strong support for the operation of difigial capturing structural
features at odds with structural balance. The iased concentration of negative
ties on some actors suggests differential dislikeeither a more potent process
than structural balance or is an unrecognized comapb of it. The evidence for
such outcomes was not as clear with Sampson’s atathere was support for the
hypothesis regarding inequalities in receiving riegaties.

There are some caveats concerning our results bedae data we used are not
ideal. The recoding of Newcomb’s data, used by theefore us imposes the
equivalent of a fixed choice design and is, at mastly an approximation of
satisfactory temporal signed network data. Sampalso adopted a fixed choice
design for the data he collected. Neither Newcomids Sampson’s data have
systematic information regarding actor attribut€Bis imposes another limitation.
Increasing concentration of receiving both positarel negative ties could rest on
clearer perceptions of actor attributes and theusaedation of network processes.
Without information on actor attributes and theaguition of this information by
actors when forming and breaking signed ties thege processes cannot be
disentangled. Some implications of these limitasi@ame clear.

First, better over time network data for signeddamsigned) networksn
small groups are needed. Second, as networks @ndsam-evolve, we need actor
attribute data and (changing) actor perceptiongadh other. Third, an adequate
theory of network change requires reconsidering ddes (1946) distinction
between signed social relations and unit formatietations to incorporate both
when studying actor and network co-evolufiorUsing only structural (network)
data is not enough. Even so, we have shown thawarkt processes can be
disentangled to some extent by delineating thectiral traces that their operation
leaves behind. This allowed for some comparativsting of theories about
generating structures.

Such an approach can be made more fruitful by ewhingd signed
blockmodeling in a richer substantive frameworkhwihore complete data. Here,
we have written about tie formation without beirtteative to the micro-processes
involved for pairs of actors. Montoya and Insko @8) analyze reciprocity in
terms of affective, cognitive, and behavioelements. Wojciszket al. (2009)
examine different mechanisms generating like-desliend respect-disrespect
relations. However these mechanisms operate, th#dybe constrained to some
extent by the macro structure of the group withiniehh they operate. It suggests
also that a more general account will emerge froomizining these different
approaches.

29 White (1979) notes empirical evaluations of bakanheory differ according to whethpog-

triples orpox-triples (with unit formation ties) are used.
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Another item meriting attention comes from the éifnces between the two
sites where Newcomb and Sampson collected theia.d@he students in the
pseudo-fraternity of Newcomb had potential relasicand contacts outside their
residential hall. In contrast, the trainee monkseMargely cut off from the outside
world. Such differences could make a differencahi@ macro network structures
formed (Doreian and Conti, 2012). In terms of sabse, theories of how
relational tie formation is dependent on the cohtexhin which relations are
formed are needed for a better account efpitocesses of network formation
and the resulting network structures.

Another very promising approach to social netwoake exponential random
graph models (ergms). It would seem useful to exihyi couple the micro-process
generation of network structure represented in uke of dynamic exponential
random graph models with the kind of block modelaagproach used here. We
think that coupling the ergm approach to block modgis an step. The simplest
way of doing this is to incorporate block structiras a covariate. Doreian and
Conti (2012) provide an example where both estithagegm parameters and a
blockmodel covariate were significant. A much deegpproach is to develop an
ergm and a blockmodel simultaneously.

We provide a different take on two classical dattssby using signed
blockmodeling to comparatively assess two theorab®ut the generation of
structure. However, we are mindful that these da&tts are unique and imply some
problems with regard to generalization, especidblylarger networks. Balance
theoretic ideas were formed in the study of smaliworks but it is reasonable to
anticipate their extension to larger signed netwonihere overall network density
tends to be lower. This raises the issue of whetlegrsity could affect the use of
relaxed structural balance and structural balaW¢e.think this would not affect
our methods, especially if fixed choice designsareided. However, this remains
an empirical issue. In terms of formal analysis,eAband Ludwig (2009) have
launched a program of research based on simulatiogies of balance processes
in larger signed networks Their simulated netwoaks very dense and, while they
are useful for studying the operation of balancecpsses, it is not clear that there
is a direct extension to empirical signed networks.

If areas of differential density exist in large ségl networks, then the
empirical study of large ‘patchy’ signed networksutd benefit from the kinds of
community detection methods developed by Traag Bngggeman (2009) for
signed networks. We provide a methodological congoar of this algorithm with
RSB in the Appendix A. For the Newcomb data, theutes are mixed but point to
the RSB approach as more useful. The criterion tions implied by the two
algorithms are different and it may be useful inufe work to try and combine
them in some fashion. Having diagonal blocks widgnse positive lines seems
important provided that this does not destroy tloek structures identified here.
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Appendix A

Another approach to partitioning networks existd¢hivi the community detection
literature. Community detection and blockmodelimge two methods for
partitioning social networks developed separately Wwith obvious parallels. In
order to compare them, the algorithm of Traag amdgBeman (2009), devised
specifically for signed networks, is best placedttus. It has been implemented in
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pajek (Batagelj and Mrvar, 1998). The algorithmbiased on an adaptation of
modularity (Newman, 2006; Leicht and Newman, 20685 maximizes positive
and minimizes negative lines within diagonal bloakkile it minimizes positive

and maximizes negative lines in off-diagonal blacks using this approach, we
obtained higher values of the modularity index partitions having a high density
of positive and low density of negative lines irsidusters and a high density of
negative and low density of positive lines betweérsters.

We note that partitioning signed networks usingaxeld structural balance
(RSB) is driven by substance concerning the dynaroicrelations in small groups
while community detection is driven more by the etwstion that communities
have denser positive ties and sparser (or evennegptive ties within them
compared to the ties to the rest of the networks luseful for partitioning large
networks. It is reasonable to compare them.

This comparison is purely methodological and takies following form: i)
produce the best partitions using the Traag andy@man algorithm; ii) establish
the corresponding RSB partitions (with the sameueal of k); iii) create the
implied fitted matrix arrays for both; iv) estabilifiow well they predict the actual
data; and v) compare the two partitions in relationeach other. The results are
shown in Table A.1: the first column lists time pts; the second column has the
number of positions (clusters) obtained by the camity detection (CD)
algorithm and used also for the corresponding R&Bifons; the third column
has the variance explained by the community detactartitions; the fourth
column has the variance explained by the RSB panst and the final column has
a direct comparison of the pairs of fitted partitso The comparison is made solely
in terms of the number of clusters determined CO dafers to these values kf
The result is straightforward: at each time pohg variance explained by the RSB
approach is larger than the variance explaineddmwrounity detection. However,
for four time points the differences are trivialynall and a reasonable conclusion
is that the two partitions perform equally wellpredicting the empirical relational
arrays for these time points. Thereafter, in costirahe differences are more
substantial and sometimes the differences are laige note that the correlations
between the two fitted arrays are particularly hight, and t. The variation of R
across the time points has more to do with the mamdd clusters: other things
equal, using more positions leads to explaining envariance in the array of
signed ties. Given that there are only 17 data fgpiaven using 5 or 6 positions
seems excessive. Usirig= 4 for all time points, as done in the paper,nsee
preferable both in terms of substance and for umfoomparisons.

For the primary substantive concerns consideree,hi#e results of using the
signed community detection approach are mixed.fiertime points (4, t3, t4, ts,
and to) there is no column of positive blocks. Howeveary the remaining times
points, there is as least one column of positiveck$. This provides support for
the SB_DP Model. Using this community detection caithm permits a
comparative test precluded by classical structln@bnce. For all time points,
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there are no diagonal negative blocks in the blonttels obtained by the
community detection approach: The presence of shbldtks is missed and
precluded the delineation (and examination) of $82 DP_MD Model. We return
to Leik and Meeker’s point: coherence between srxst, method, and data is
important. The substantively driven RSB approack ttds coherence while the
community detection approach used here does not.

Table A.1: Comparing the predictive value of two partitions.

Time k | R R? R?
Point (CD) (RSB) (CD_RSB)
ty 3| 0.27 0.33 0.22
to 3| 0.32 0.35 0.28
ta 3| 0.35 0.41 0.50
ty 3| 0.42 0.46 0.86
ts 3| 0.30 0.53 0.34
te 5| 0.38 0.57 0.53
t; 6 | 0.81 0.93 0.87
tg 5| 0.51 0.90 0.48
to 4| 0.28 0.75 0.30
t1o 4| 0.29 0.74 0.30
t1g 5| 0.66 0.90 0.64
t1 5 | 0.66 0.90 0.69
t13 4 | 0.64 0.78 0.64
t1g 5| 0.75 0.90 0.72
t1s 4| 0.42 0.84 0.40

CD - Community detection, RSB - Relaxed StruatiBalance

Appendix B

All of the data analyses were done using three r@amg. The temporal plots in
Figures 1, 3 and 4 were drawn using STATA. Thergtof blockmodels was done
using Pajek (Batagelj and Mrvar, 1998) using preesfjed models. The

commands for this are explained in the Pajek mantiaé QAP regressions were
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done by using UCINET (Borgatét al., 2002). The Pajek files for doing this were
imported into UCINET. Again, using QAP is documenti@& the manual for this
suite of programs.
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A Comparison of Methods for the Estimation
of Weibull Distribution Parameters

Felix Noyanim Nwobiand Chukwudi Anderson Ugomma

Abstract

In this paper we study the different methods fstireation of the
parameters of the Weibull distribution. These met@re compared in
terms of their fits using the mean square error @Y18nd the Kolmogorov-
Smirnov (KS) criteria to select the best methodo@uress-of-fit tests show
that the Weibull distribution is a good fit to tlsguared returns series of
weekly stock prices of Cornerstone Insurance PLEsuURs show that the
mean rank (MR) is the best method among the methodbe graphical
and analytical procedures. Numerical simulationdsts carried out show
that the maximum likelihood estimation method (MLE)gnificantly
outperformed other methods.

1 Introduction

The Weibull Distribution has been widely studiedcs its introduction in 1951
by Professor Wallodi Weibull (Weibull, 1951). Thesteidies range from parameter
estimation; see for example, Mann et al. (1974h)n3on et al. (1994) and Al-
Fawzan (2000) to diverse applications in reliapikihgineering especially in Tang
(2004) and lifetime analysis in Lawless (1982, 200Bhe popularity of the
distribution is attributable to the fact that itopides a useful description for many
different kinds of data, especially in emergingasreuch as wind speed and finance
(stock prices and actuarial data) in addition te iraditional engineering
applications.
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2 Department of Statistics, Imo State University, @wd60222, Nigeria. Email:
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Engineers and statisticians relied mainly on prdigbplots, referred to as
graphical procedure, to analyze life data priottite advent of desktop computers
and reliability analysis software became availab&e discuss the three methods;
the mean rank (MR), the median rank (MDR) and tlyenreetric cumulative
distribution function (SCDF) in Section 2. Also fBection 2 we review three
methods in the objective analytical procedure; ieximum likelihood estimation
(MLE), the method of moments (MOM) and the leastaags method (LSM). These
methods are compared in Section 3, using the mgaars error (MSE) and the
maximum likelihood (LLH) criteria.

2 Methodsfor parameter estimation

Let §,S,--»R be a random sample of siZ¢ from a population. Define

r,=In (S[/S_l), ED(—OO,OO) as returns of the stock prices (sa{/§ : $>q. Let
x; = r2 € R* be hereinafter referred to as the squared returns.

2.1 TheWeibull distribution

The general form of a three-parameter Weibull pbdltg density function (pdf)

is given by
-1 )
f (x) =£[ﬂJ exp{—(%) } , xp= 0 B> C (2.1)

a a

where; x, is the data vector at tinte B is the shape parametam,is the scale

parameter that indicates the spread of the distobwf sampled data and is the
location parameter. The Weibull probability denditjmction satisfies the following
properties:

a) If 0<pB<1 fisdecreasingwithf(x) - 0 asx - 0

b) If =1, f is decreasing withf (x) -~ lasx - O

c) If B>1, fat first increases and then decreases, with a marim

value at the modec=a (1-Y8)"" .

d) Forall #>0,f(X) -~ 0asx - o

The cumulative distribution function (cdf) of the &lull distribution is

mathematically given as:
F(x)=1- exp{—(%}} . 2.2)
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In case ofv =0, the pdf in (2.1) reduces to (2.3)

f(x)= (gj[%]ﬁ_lexp{_%f}’ Xz 0 f> 0 2:3)

0, otherwise
with a corresponding cdf as

F(x)={" eXp{_(gjﬁ}, x> 0 2.4)

0, otherwise

Cheng and Chen (1988) observed that the distributiterpolates between the
exponential distributior{ 3 =1) and Raleigh distributiofj3 = 2). The mean and variance

of the Weibull distribution are E(X)=al (1+YB) and
V(X) :az[r(1+ 2/B)-T?(1+ JZ,B)] respectively, wherd (n) is a gamma function

evaluated an.

2.2 Estimation procedures

2.2.1 Graphical procedure

If both sides of the cdf in (2.4) are transformegdii(1/ (1- X)), we get

so that

In[ln(rl()g)ﬂzﬁlnxi ~BIna. 2.5)

Here, x actually represents the order statistgs< X, <...< X)-
If we let Y =In [In(]/(l— F(x)))} X =Inx and c=-BIna, then (2.5) represents a

simple linear regression function corresponding to
Y=FX+cC (2.6)

The unbiased estimate af, the scale parameter, is calculated as

5= exp{—(%ﬂ @)
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wherec is the intercept of the linear regression (2.6).
Thus, we perform the estimation af and S using the following methods of

estimation in Table 1.
Table 1. Methods of estimation by graphical procedure

Method F(x)
Mean Rank i/(n+1)
Median Rank (i-0.3)/(n+0.9
Symmetric CDF (i-0.5)/n

We plotY;, which is a function of(x ), versusX,(=In(x)) , using the following

procedure:

a) Rank the datgx} in ascending order of magnitude;
b) EstimateF (x )of thei th rank order; and
c) PlotY,versusX;.

This plot produces a straight line from which weacixb,é anda (see (2.6) and (2.7)).

2.2.2 Analytical procedure

Maximum Likelihood Estimation (MLE)
The method of maximum likelihood estimation is anocaonly used procedure for
estimating parameters, see, e.g., Cohen (1965)Harter and Moore (1965). Let

X, %,...,% be a random sample of siredrawn from a population with probability
density functionf (x,A) where A =(B,a)is an unknown vector of parameters, so that

the likelihood function is defined by

n

L=Nmm:”f@4) (2.8)

The maximum likelihood of A=(B,a), maximizes L or equivalently, the

logarithm of L when

dinL
0/

=0, (2.9)
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see, for example, Mood et al (1974). Consider thabll pdf given in equation (2.3),
its likelihood function is given as:

ctonxisa)=fl()5] o (2]
_ [gj (gjﬁ ; NG exp{— :1 (gjp} . (2.10)

Taking the natural logarithm of both sides yields

InL = nln(ﬁj (8- 1)Z>g in(a?*)- ;%)E (2.11)

and differentiating (2.11) partially w.r, 8 and @ in turn and equating to zero, we

obtain the estimating equations as follows

%InL——+Zlnxt——Z>g/’ln>g 0 (2.12)
and
0 n 1
—InL=——+=> x*=0. 2.13
aan a+a2;)(‘ (2.13)

From (2.13) we obtain an estimator af as

_—Z X7 (2.14)

N=

and on substitution of (2.14) in (2.12) we obtain

B
Zlnxt Z‘lx‘ Inx =0 (2.15)

,3 N Z —1Xt

which may be solved to obtain the estimatefbiusing Newton-Raphson method or
any other numerical procedure because (2.15) doekave a closed form solution.
When ,@’mle is obtained, the value af follows from (2.14).

Method of Moments (MOM)

The second procedure we consider here is the MOMIwis also commonly
used in parameter estimation. Let x,,...,x represent a set of data for which we
seek an unbiased estimator for therkoment. Such an estimator is generally given

by
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DEES IS (2.16)

where i is the estimate ok™ moment. For the Weibull distribution given in

(2.3), thek™ moment is given by

(LY r[1ak
,uk—(akj r(1+ﬂj (2.17)

where " is as defined in subsection 2.1. From (2.17), w&e find the ' and 2
moments about zero as follows

A o~ 1 % 1
m=u=— M 1+— 2.18

. (1Y 2) 1Y
= [P +6 _(Ej {r(uzj r(1+ﬁ]] (2.19)

When we divide the square afi by m,, we get an expression which is a function

-V (2.20)
g +/,1 r(1+2J
B

and

of only 5,

where g=E(X)= 2= B X)-( H X))’ and letting z= A8 (2.19) is

S|
M:
-

(S

easily transformed in order to estimatf so that the scale parameter

a.... can be estimated with the following relation

- N 1
Qrom=H F(1+j . (2.21)
/ B
The Least Squares Method (LSM)

The Least Squares method is commonly applied igineering and
mathematics problems that are often not thoughasofin estimation problem. We

assume that there is a linear relationship betweenvariables. Assume a dataset

that constitute a paifx, ¥;) = (%, %1).( %, ¥») ,--.{ % , ;) were obtained and plotted.

The least squares principle minimizes the vertdiatance between the data points
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and the straight line fitted to the data, the Bgghg line to this data is the straight
line: y, =a+ Bx such that

Q(xa.8)=>(%-a-px%)

t=1
To obtain the estimators af andf we differentiate Q w.r.tr andf. Equating

to zero subsequently yields the following systenegtiations:

R _ o3 (y —a-px)

ae - 22 (v-a-px) (2.22)
and

a_Q:— Y -a - 2 =

o5~ 2 (Vma = Bx) % =0 (2.23)
Expanding and solving equations (2.21) and (2.22ukaneously, we have

B= DRI (2.24)
DRESIIR

and

c=y-f4%; ézexy{—%j (2.25)

where & and are the unbiased estimators @fandS respectively.

3 Method assessment and selection

3.1 Comparison of estimation methods

The Mean Squared Error (MSE) criterion is gi\mn
1&g - 2
MSE==3"| F(x)~ F(¥)] (3.1)

ng
where If()g) is obtained by substituting the estimates @fandf (for each
method) in (2.4) whileF(x)=i/n is the empirical distribution function. The

method with the minimum mean squared er(MSE,; ) becomes the best method
for the estimation of Weibull parameters amongdaedidate methods.
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3.2 Goodness-of-fit tests

Goodness-of-fit test procedures are intended ttectlethe existence of a
significant difference between the observed (eroglyifrequency of occurrence of an
item and the theoretical (hypothesized) patterroafurrence of that item. Here, we
assume that the Weibull distribution is a goodtditthe given dataset; otherwise, this
assumption is nullified if, for this test, the comt@d statistic is greater or equal to a
defined critical value.

Kolmogorov—Smirnov test

The Kolmogorov-Smirnov test is used to decide isample comes from a
population with specific distribution. It is basegon a comparison between the
empirical distribution function (ECDF) and the thetical one defined as

F(x):j:f(y,é?)dy where f (x,8) is the pdf of the Weibull distribution. Givem
ordered data pointsX;, X,,...,X,, the ECDF is defined a$ (X;)= N(i)/n where

N (i) is the number of points less th§ (X are ordered from smallest to highest value).

The test statistic used is
D, =SuplF (x) - F (). (3.2)

The statisticD,, converges to zero almost surelyras. .

4 Implementation

4.1 Data

The data used for this study is the weekly stmiges N = 100 weeks) collected
from Cornerstone Insurance Company PLC, a pubdibillty company listed in the
Nigerian Stock Exchange (Appendix I). The squaretiirns,r? earlier defined in
Section 2 are a measure of volatility in the stpeices and are multiplied by 100
without loss of generality. In Figure 1 we presangraphic relationship between the
weekly stock prices and its squared returns. Wiparthe estimation of the parameters
using theR software for the graphical and analytical proceduwith 106° as the
dataset and is now of lengthn. R is a language and environment for statistical
computing and graphics (from tie Foundation for Statistical Computing (2013)) ran
on the Platform: i386-w64-mingw32/i386 (32-bit).



Methods for Estimation of Weibull Distribution Panaters 73
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Figure 1. Plot showing relationship between Weekly Stoclkc®siand its Squared
Returns*100

4.2 Simulation study

We carry out a numerical simulation study in ortteinvestigate the behavior of
the shape and scale parameters of the Weibullwison. In the simulation experiment
we set the Weibull distribution on the random ualea X with shape parameter

£ =0.54 with the aim of mimicking the squared retur([]sOOrz). For the Weibull

distribution on X , generate independently and identically distridutendom sample
(%, %,....%,) of sizen (= 25, 50, 75, 100, 125, 150, 175, 200). Comphéerbean of

this sample and replicate this process N timestain a series. For each series of size
n, estimate f anda using the methods described in Section 2, the M8#& the

Kolmogorov-Smirnov  (KS)  statistic. This sequence i®f the form

X} y=mear(x,..x) .med ,.%) ,..mdag ), N=1000C times; and s

accomplished in R for Windows 2013 by the replicate function:
replicate(N , mea(i rweibylh , shape 0)5)4

We remark here that the least squares method (LiSBlated to the graphical
procedure in the estimation of Weibull parameteisrough (2.6), where

Y = In[ln(]/(l— F( x)))] is dependent upon the particular graphical metfad.,
F(x)=i/(n+1) for the mean rank) and = In x ; see also equations (2.7) and (2.25).



74 Felix Noyanim Nwobi and Chukwudi Anderson Ugomma

4.3 Results and Discussion

All computations and simulations in this investigatwere done in R version 3.0.0.
We relied on the functions fitdist() and fitdistr(espectively from R packages
fitdistrplus and MASS (see, e.g., Delignette-Mulletr al (2013) and Ripley (2013)
respectively) for maximum likelihood estimation tife parameters and plots while
codes were developed for the other methods. Refsulthie graphical procedure (MR,
MDR and SCDF) were verified using the approach amrier (1999) on Microsoft Excel
2013. The R code used for this study is availatamfthe first author on request.

Estimates of the parameters based upon both thphigeh and theoretical
procedures described in Section 2.2 are presentddble 2. The shape paramej@r
lies within the interval (0, 1) which implies, agicated in Section 2.1, that the function
(irrespective of the method) decreases exponenthle ranked the performance of the
methods based on the least MSE criterion. In corsparthe Mean Rank (MR) method
has the least MSE (3.88x1Y) and at the same time has the legs{@0563) making it
the best among the five methods under study (gcaplind analytical procedures) for
this particular dataset. The Maximum Likelihoodiisttion (MLE) method is, however,
superior to Method of Moments in the analyticalgadure. From these results the best
estimate for the shape and scale parameters agpecta®ly (B,ﬁ):(o,5325,0,453);

based on our dataset.

The visual assessments of fit are shown in thediam (Figure 2(a)) overlaid with
the Weibull densities generated from the differeméthods and in the empirical
cumulative distribution function plot of Figure 2(he MOM is clearly different from
other methods given their MSEs but this differemgenot very clear in Figure 2.
However, simulation results show (Table 3) that MieE performed best 86% of the
time when then, simulations are run 10,000 timeé3milar result was obtained when the KS
goodness-of-fit test was conducted to test the watggof the Weibull distribution in fittinthe
simulation data.

Table 2: Summary of results and comparison of methods fabWeparameter estimation

Procedure  Method a B MSE KS
MR 0.4539 05325 3.88xfH 0.0563
Graphical MDR 0.4494 0.5452 4.21x™®  0.0615
SCDF 0.4461 0.5553 4.49x%H 0.0656
MLE 0.4563 0.5421 6.59x18  0.0617
MOM 0.5244 0.6026 1.18x1®  0.1055

Analytical
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Table 3 Simulation results (based on 10,000 iterations)

Method
n Measure MR MDR SCDF MLE MOM
MSE 3.5726 3.5815 3.5837 1.2557 1.6770
25 KS 0.0600 0.0600 0.0601 0.0501 0.9821
MSE 4.6281 4.6323 4.6282 1.4930 3.5122
50 KS 0.0681 0.0682 0.0683 0.0540 0.9596
MSE 4.9234 4.9502 4.9407 1.5438 4.2108
75 KS 0.0683 0.0684 0.0684 0.0563 0.9741
MSE 4.8839 4.9119 4.8985 1.3216 4.4869
100 KS 0.0653 0.0654 0.0654 0.0587 0.0964
MSE 5.2496 5.2389 5.2598 1.4261 4.9398
125 KS 0.0750 0.0750 0.0751 0.0590 0.9600
MSE 5.4266 5.4118 5.4341 1.4671 5.2043
150 KS 0.0672 0.0671 0.0673 0.0604 0.9665
MSE 6.4067 6.3872 6.4096 1.7235 6.0586
175 KS 0.0726 0.0726 0.0726 0.0657 0.9720
200 MSE 5.1548 5.1831 1.3525 1.4170 5.0833

KS 0.0674 0.0675 0.0818 0.0614 0.9816
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5 Conclusion

The performances of five methods in the estimatibthe parameters of the
Weibull distribution were compared in this studyneTMR was selected as the best
method that gives the best estimates of the twaipater model for square returns
dataset, while the MLE is preferred over the MOM the analytical procedure.
These decisions were based on the minimum MSErmite When these methods
were compared based upon simulation results, theirmman likelihood estimate
method showed superiority over other methods. ®Hastl squares method (LSM),
we remark, is also known as the rank regressionhotet(RRM) because the
estimation of the parameters of the Weibull disitibn is dependent upon
regressing some form of log and rank transformatioha given dataset according
to the rank plotting position.
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Appendix

Table Al: Weekly stock prices (read row-wise)
1.03 1.06 099 103 099 095 096 098 0.93 1.05
092 099 097 09 091 094 097 099 115 1.27
146 183 231 249 273 270 252 249 276 3.00
3.18 3.88 384 379 376 375 3.89 404 470 434
455 420 419 412 413 377 325 3.14 312 2.82
3.24 344 350 364 372 3.68 341 324 326 3.42
3.38 4.02 421 423 404 411 428 484 446 4.87
500 591 736 734 723 719 6.79 6.03 597 5.69
6.42 6.23 586 546 4.71 432 479 4.62 454 422
428 408 395 416 350 3.65 3.22 350 3.97 296
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