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LJUBLJANA, DECEMBER 2000



The Mini-Workshop Few-Quark Problems

was organized by
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Preface

The encouragement for the mini-workshops at Bled came from the fruitful and
friendly encounter at the first, 1987 workshop Mesonic Degrees of Freedom in
Hadrons held at Bled and in Ljubljana, and from the successes of other mini-
workshops organized at Bled so far.We intend to organizeWorkshops of a similar
character every year.

It is now for the fourth time that a small group of enthusiasts met in this renowned
holiday resort to clarify several open problems of common interest. The top-
ics of this meeting ranged from few-quark problems, baryon spectra, dimesons,
baryon-baryon interactions, decaying states to solitons and hadronic matter. The
participants enjoyed a focused, intense discussion and critical confrontation of
their results and ideas in a friendly atmosphere. Every participant had up to
one hour time for his exposition which could be interrupted by questions and
remarks, plus half an hour of general discussion. The advantage of such mini-
workshops is the ease with which the participants sincerely acknowledge not
only the successes, but also the weak points and open problems in their research.

Themini-workshop took place in Villa Plemelj, bequeathed to the Society ofMath-
ematicians, Physicists and Astronomers by the renowned Slovenian mathemati-
cian Josip Plemelj. The beautiful environment of Lake Bled helped a lot to the
cheerful atmosphere and optimism in the presentations; however, the inclement
weather contributed to the patience for long afternoon free discussions.

We encouraged the participants to submit a four-page (A4) version of their pre-
sentation or comments for the Proceedings which were initially intended to ap-
pear in the electronic form only, but the participants liked the idea of a printed
version too. Two participants, however, brought their talk with them to Bled and
as a reward it is included unabridged. We did our best and will hopefully soon
see these proceedings grow into a full-fledged serial publication.

Ljubljana, November 2000 M. Rosina
B. Golli
S. Širca



Previous workshops organized at Bled. What Comes beyond the StandardModel (June 29–July 9, 1998). Hadrons as Solitons (July 6-17, 1999). What Comes beyond the StandardModel (July 22–31, 1999). Few-Quark Problems (July 8-15, 2000). What Comes beyond the StandardModel (July 17–31, 2000). Statistical Mechanics of Complex Systems (August 27–September 2, 2000)

Published proceedings. Proceedings to the international workshop on What comes beyond the standard
model, Eds. N. Mankoč Borštnik, H. B. Nielsen, C. Froggatt, Bled, Slovenia,
June 29–July 9, 1998 (Bled Workshops in Physics, Vol. 0, No. 1), published in
1999.
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Chiral Perturbation Theory and Unitarization?
Enrique Ruiz Arriola1??, A. Gómez Nicola2, J. Nieves1 and J. R. Peláez21Departamento de Fı́sica Moderna, Universidad de Granada, E-18071 Granada, Spain2Departamento de Fı́sica Teórica Universidad Complutense, 28040 Madrid, Spain

Abstract. We review our recent work on unitarization and chiral perturbation theory both

in the �� and the �N sectors.We pay particular attention to the Bethe-Salpeter and Inverse

Amplitude unitarization methods and their recent applications to �� and �N scattering.

1 Introduction

Chiral Perturbation Theory (ChPT) is a practical and widely accepted effective
field theory to deal with low energy processes in hadronic physics. [1–3]. The
essential point stressed in this approach is that the low energy physics does not
depend on the details of the short distance dynamics, but rather on some bulk
properties effectively encoded in the low energy parameters. This point of view
has been implicitly adopted in practice in everyday quantum physics; well sepa-
rated energy and distance scales can be studied independently of each other. The
effective field theory approach also makes such a natural idea into a workable
and systematic computational scheme.

The great advantage of ChPT is that the expansion parameter can be clearly
identified a priori (see e.g. Ref. [3]) when carrying out systematic calculations of
mass splittings, form factors and scattering amplitudes. However, the connection
to the underlying QCD dynamics becomes obscure since the problem is naturally
formulated in terms of the relevant hadronic low energy degrees of freedomwith
no explicit reference to the fundamental quarks and gluons. In addition, in some
cases (see below) a possible drawback is the lack of numerical convergence of
such an expansion when confronted to experimental data, a problem that gets
worse as the energy of the process increases. Recent analysis provide good exam-
ples of both rapid convergence and slow convergence in ChPT. In the �� sector
the situation to two loops [4] seems to be very good for the scattering lengths.
Here, the expansion parameter ism2�=(4�f�)2 = 0:01 (m� = 139:6MeV the phys-
ical mass of the charged pion) and the coefficients of the expansion are of order
unity. For instance, to two loops (third order in the expansion parameter) the ex-
pansion of the s-wave of the isospin I = 0 channel reads [5]a00m� = 0:156| {z }

tree

+ 0:043 � 0:003| {z }
1 loop

+ 0:015 � 0:003| {z }
2 loops

+ � � � (1)? Talk delivered by Enrique Ruiz Arriola?? E-mail: earriola@ugr.es



2 E. Ruiz Arriola

where the theoretical errors are described in [5]. Thus the expansion up to two
loops is both convergent a(n) >> a(n+1) and predictive �a(n) << a(n+1) ,�a(n) << a(n). The prediction of ChPT of s-wave scattering lengths aIJ in the
isospin I = 0 and I = 2 channels yields [5]a0 0m� = +0:214 � 0:005 (exp: + 0:26 � 0:05)a2 0m� = -0:420 � 0:010 (exp: - 0:28 � 0:12) (2)

The theoretical predictions for these observables are an order of magnitude more
accurate than the corresponding experimental numbers. Note that in hadronic
physics we are usually dealing with the opposite situation, confronting accurate
measurements to inaccurate theoretical model calculations. On the contrary, for�N scattering, for ChPT in the heavy baryon formulation the expansion is less
rapidly converging than in the �� case, since NLO corrections become compa-
rable to the LO ones. For instance in the P33-channel the expansion up to third
order, after a fit to the threshold properties, reads [6]a133m3� = 35:3|{z}

1st order

+ 47:95| {z }
2nd order

- 1:49|{z}
3rd order

+ � � � = 81:8 � 0:9 (exp:80:3 � 0:6) (3)

Here first order means 1=f2�, second order 1=f2�MN and third order 1=f4� and1=f2�M2N. Despite these caveats, there is no doubt that the effective field theory
approach provides a general framework where one can either verify or falsify,
not only bulk properties of the underlying dynamics, but also the dynamics of all
models sharing the same general symmetries of QCD.

Finally, let us remark that the perturbative nature of the chiral expansion
makes the generation of pole singularities, either bound states or resonances, im-
possible from the very beginning unless they are already present at lowest order
in the expansion. There are no bound states in the �� and �N systems, but the� and the � resonances are outstanding features of these reactions dominating
the corresponding cross sections at the C.M. energies

ps = m� = 770MeV andps = m� = 1232MeV respectively.

2 The role played by unitarity

Exact Unitarity plays a crucial role in the description of resonances. However,
ChPT only satisfies unitarity perturbatively. Nevertheless, there aremanyways to
restore exact unitarity out of perturbative information, i.e.: the K-matrix method
Ref. [7], the Inverse Amplitude Method (IAM) Ref. [8,9], the Bethe-Salpeter Equa-
tion (BSE) Ref. [11,12], the N/D method Ref. [10], etc. ( See e.g. Ref. [13] for a
recent review), which are closely related to one another.

Some of these Unitarization methods have been very successful describing
experimental data in the intermediate energy region including the resonant be-
havior. Despite this success the main drawback is that this approach is not as
systematic as standard ChPT, for instance in the estimation of the order of the
neglected corrections. In this work we report on our most recent works related to
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P/2 - p
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  TVT V

Fig. 1. Diagrammatic representation of the BSE equation. It is also sketched the used kine-

matics.

unitarization, both in the �� and �N sectors, where we have obtained interme-
diate energy predictions using the chiral parameters and their error bars obtained
from standard ChPT applied at low energies. This means in practice transporting
the possible correlations among the fitting parameters obtained from a fit where
the phase shifts are assumed to be gauss-distributed in an uncorrelated way.

3 Results in the �� sector

The ChPT expansion displays a very good convergence in the meson-meson sec-
tor. As a consequence the unitarization methods have been very successful in ex-
tending the ChPT applicability to higher energies. In particular, within a coupled
channel IAM formalism, it has been possible to describe all the meson-meson
scattering data, even the resonant behavior, below 1.2 GeV [9], but without in-
cluding explicitly any resonance field. Theseworks have already been extensively
described in the literature and here we will concentrate in the most recent works
of two of the authors on the �� sector, dealing with the Bethe-Salpeter equation,
which has the nice advantage of allowing us to identify the diagrams which are
resumed.

Indeed, any unitarization method performs, in some way or another, an infi-
nite sum of perturbative contributions. At first sight, this may seem arbitrary, but
some constraints have to be imposed on the unitarization method to comply with
the spirit of the perturbative expansion we want to enforce. In the BSE approach
the natural objects to be expanded are the potential and the propagators. The BSE
as it has been used in Refs. [11,12] reads (See Fig. 1)TIP(p; k) = VIP(p; k) + i

Z d4q(2�)4TIP(q; k)�(q+)�(q-)VIP(p; q) (4)

where q� = (P=2�q) and TIP(p; k) andVIP(p; k) are the total scattering amplitude1

and potential for the channel with total isospin I = 0; 1; 2. and then the projection
over each partial wave J in the CM frame, TIJ(s), is given byTIJ(s) = 12 Z+1-1 PJ (cos �)TIP(p; k) d(cos �) = i8�s� 12 (s;m2;m2) he2iÆIJ(s) - 1i (5)

1 The normalization of the amplitude T is determined by its relation with the differential

cross section in the CM system of the two identical mesons and it is given by d�=d
 =jTP(p; k)j2=64�2s, where s = P2. The phase of the amplitude T is such that the optical

theorem reads ImTP(p; p) = -�tot(s2 - 4sm2)1=2, with �tot the total cross section. The

contribution to the amputated Feynman diagram is (-iTP(p; k)) in Fig. 1.
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where � is the angle betweenp and k in the CM frame, PJ the Legendre polynomi-
als and �(x; y; z) = x2+y2+z2-2xy-2xz-2yz. Notice that in our normalization
the unitarity limit implies jTIJ(s)j < 16�s=�1=2(s;m2;m2).

The solution of the BSE at lowest order, i.e., taking the free propagators for
the mesons and the potential as the tree level amplitude can be obtained after
algebraic manipulations described in detail in Refs. [11,12], renormalization and
matching to the Taylor expansion up to second order in s - 4m2 of the one loop
chiral perturbation theory result. We only quote here the result for the � channel:T-111 (s) = -Ī0(s) + 116�2 �2(l̄2 - l̄1) + 9760� (6)+ 1s- 4m2 �m24�2 �2(l̄2 - l̄1) + 3l̄4 - 6524�- 6f2 (7)

where the unitarity integral Ī0(s) readsĪ0(s) � I0(s) - I0(4m2) = 1(4�)2r1 - 4m2s log

q1- 4m2s + 1q1- 4m2s - 1 (8)

Here the complex phase of the argument of the log is taken in the interval [-�; �[.
Similar expressions hold for the scalar-isoscalar (�) and the scalar-isotensor chan-
nels. Notice that in this, so-called off-shell scheme, the left hand cut is replaced at
lowest order by a pole in the region s << 0. For the low energy coefficients l̄1;2;3;4
we take the values

set A : l̄1 = -0:62 � 0:94; l̄2 = 6:28 � 0:48; l̄3 = 2:9 � 2:4; l̄4 = 4:4� 0:3
set B : l̄1 = -1:7 � 1:0 ; l̄2 = 6:1 � 0:5 ; l̄3 = 2:9 � 2:4; l̄4 = 4:4� 0:3 (9)

In both sets l̄3 and l̄4 have been determined from the SU(3) mass formulae and
the scalar radius as suggested in [1] and in [14], respectively. On the other hand
the values of l̄1;2 come from the analysis of Ref. [15] of the data on Kl4-decays
(setA) and from the combined study of Kl4-decays and ��with some unitariza-
tion procedure (set B) performed in Ref. [16]. The results for the � channel are
shown in Fig. 2.

As discussed in Ref. [12] it is also possible to take into account the left hand
cut in the so-called on-shell scheme where it can be shown that after renormaliza-
tion the on-shell unitarized amplitude acquires the following formTIJ(s)-1 + Ī0(s) -VIJ(s)-1 = TIJ(s0)-1 + Ī0(s0) -VIJ(s0)-1 = -CIJ (10)

where CIJ should be a constant, independent of s and the subtraction point s0,
and chosen to have a well defined limit whenm! 0 and 1=f! 0.VIJ(s) is the on-
shell-potential and has the important property of being real for 0 < s < 16m2, and
presenting cuts in the four pion threshold and the left hand cut caused by the uni-
tarity cuts in the t and u channels. The potential can be determined by matching
the amplitude to the ChPT amplitude in a perturbative expansion. This method
provides a way of generating a unitarized amplitude directly in terms of the low
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Fig. 2. I = J = 1 �� phase shifts as a function of the total CM energy
ps for both sets ofl̄’s given in Eq. (9). Left (right) figures have been obtained with the set A (B) of parame-

ters. Solid lines are the predictions of the off-shell BSE approach, at lowest order, for the

different IJ-channels. Dashed lines are the 68% confidence limits. Circles stand for the

experimental analysis of Refs. [17] and [18].

energy coefficients l̄1;2;3;4 and their errors. In this on-shell scheme a successful
description of both �� scattering data as well as the electromagnetic pion form
factor, in agreement with Watson’s theorem, becomes possible yielding a very ac-
curate determination of some low energy parameters. The procedure to do this
becomes a bit involved and we refer to Ref. [12] for further details. We should
also say that the one-loop unitarized amplitudes generate the complete ChPT re-
sult and some of the two and higher loop results. The comparison of the generated
two-loop contribution of threshold parameters with those obtained from the full
two loop calculation is quantitatively satisfactory within uncertainties.

4 Results in the �N sector

The methods and results found in the �� system are very encouraging, suggest-
ing the extension to the �N system. However, ChPT does not work in the �N
sector as nicely as it does in the �� sector. As we will see, the low convergence
rate of the chiral expansion makes it difficult to match standard amplitudes to
unitarized ones in a numerically sensible manner. After an initial attempt within
the relativistic formulation [19], it was proposed to treat the baryon as a heavy
particle well below the nucleon production threshold [20]. The resulting Heavy
Baryon Chiral Perturbation Theory (HBChPT) provides a consistent framework
for the one nucleon sector, particularly in �N scattering [6]. The proposal of
Ref. [21] adopting the original relativistic formalism but with a clever renormal-
ization scheme seems rather promising but unfortunately the phenomenological
applications to �N scattering have not been worked out yet.

4.1 The IAM method in �-N scattering

The inverse amplitudemethod (IAM) is a unitarizationmethodwhere the inverse
amplitude, and not the amplitude, is expanded, i.e., if we have the perturbative
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expansion for the partial wave amplitude f(!),f(!) = f1(!) + f2(!) + f3(!) + : : : (11)

with ! = pq2 +m2� and q the C.M. momentum, then one considers the expan-
sion 1f(!) = 1f1(!) - f2(!) + f3(!)[f1(!)℄2 + f2(!)2[f1(!)℄3 + : : : (12)

The IAM fulfills exact unitarity, Imf(!)-1 = -q and reproduces the perturbative
expansion to the desired order.

This method has been applied for �N scattering [22] to unitarize the HBChPT
results of Ref. [6] to third order. In this context, it is worth pointing out that the
use of a similar unitarization method, together with very simple phenomeno-
logical models, was already successfully undertaken in the 70’s (see [23] and
references therein). Nonetheless, a systematic application within an effective La-
grangian approach was not carried out. In [22] the phase shifts for the partial
waves up to the inelastic thresholds have been fitted, obtaining the right pole for
the �(1232) in the P33 channel. In that work, it has been pointed out that to get
the best accuracy with data, one needs chiral parameters of unnatural size, very
different from those of perturbative HBChPT. This is most likely related to the
slow convergence rate of the expansion. However, it must be stressed that one
can still reproduce the �(1232) with second order parameters compatible with
the hypothesis of resonance saturation [32]. In a subsequent work [24] we have
proposed an improved IAM method based on a reordering of the HBChPT se-
ries. The encouraging results for the �-channel have also been extended to the
remaining low partial waves [25], as it can be seen in Fig. 3. In this case, the size
of the chiral parameters is natural and the �2 per d.o.f is considerably better than
the IAM applied to plain HBChPT.

4.2 BSE method and the �-resonance
Recently [26], we have used the BSE to HBChPT at lowest order in the chiral ex-
pansion and have looked at the P33 channel. We have found a dispersive solution
which needs four subtraction constants,f3=23=2 ;1(!)-1 = - 24�(!2 -m2) �-f2!2g2A + P(!) + (!2 -m2)J̄0(!)=6P(!) = m3 �0 + 1(!m - 1) + 2(!m - 1)2 + 3(!m - 1)3� (13)

where the unitarity integral is given byJ̄0(!) � J0(!) - J0(m) = -p!2 -m24�2 farcosh!m - i�g; ! > m (14)

The �2 fit yields the following numerical values for the parameters:fit0 = 0:045 � 0:021 ; fit1 = 0:29 � 0:08 ; fit2 = -0:17 � 0:09 ; fit3 = 0:16 � 0:03
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Fig. 3. Phase shifts in the IAM method as a function of the C.M. energy
ps. The shaded

area corresponds to the result of propagating the errors of the chiral parameters obtained

from low-energy data (see Ref. [25]). This illustrates the uncertainties due to the choice of

different parameter sets from the literature. The dotted line is the extrapolated HBChPT

result. The continuous line is an unconstrained IAM fis to the data, whereas for the dashed

line the fit has been constrained to the resonance saturation hypothesis.

with �2=d:o:f: = 0:2. However, if we match the coefficients with those stemming
from HBChPT we would get instead the following numerical values:th0 = 0:001 � 0:003 ; th1 = 0:038 � 0:006 ; th2 = 0:064 � 0:005 ; th3 = 0:036 � 0:002
The discrepancy is, again, attributed to the low convergence rate of the expansion.
The results for the P33 phase shift both for the fit and the MonteCarlo propagated
errors of the HBChPT matched amplitudes have been depicted in Fig. 4
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040
80120160

1200 1300 1400Æ3 31(s)(degr
ees)

ps (MeV)
Fig. 4. P33 phase shifts as a function of the total CM energy

ps. The upper solid line repre-

sents a �2-fit of the parameters, 0;1;2;3 to the data of Ref. [31] (circles). Best fit parameters

are denoted fit0;1;2;3 in the main text. The lower lines stand for the results obtained with

the parameters deduced from HBChPT and denoted th0;1;2;3. Central values lead to the

solid line, whereas the errors on th0;1;2;3 lead to the dash-dotted lines.

4.3 �N scattering and theN�(1535) resonance
One of the greatest advantages of both the IAM and the BSE methods is that
the generalization to include coupled channels is rather straightforward. For the
IAM case we refer to [9] for more details. As for the BSE, two of the authors [30]
have dealt with the problem in the S11 channel, at

ps up to 1800GeV using the
full relativistic, rather than the heavy baryon formulation used in Ref. [27] for
the s-wave and extended in Ref. [28] to account for p-wave effects. For these en-
ergies there are four open channels, namely �N,�N,K� and K�, so that the BSE
becomes a 4 � 4 matrix equation for the I = 1=2, J = 1=2 and L = 0 partial wave.
Additional complications arise due to the Dirac spinor structure of the nucleon,
but the BSE can be analytically solved after using the above mentioned off-shell
renormalization scheme. It turns out [30] that to lowest order in the potential and
the propagators, one needs 12 unknown parameters, which should be used to
fit experimental data. Several features make the fitting procedure a bit cumber-
some. In the first place, there is no conventional analysis in the relativistic ver-
sion of ChPT for this process and thus no clear constraints can be imposed on the
unknown parameters. Secondly, the channel �N ! ��N is not included in our
calculation. Therefore one should not expect perfect agreement with experiment,
particularly in the elastic channel since it is known that 10 - 20% of the N� res-
onance decay width goes into ��N. On the other hand, one cannot deduce from
here how important is the ��N channel in the � production channel, �N ! �N.
Actually, in Ref. [29] it has been suggested that the bulk of the process may be
explained without appealing to the three body intermediate state ��N. The work
of Ref. [29] would correspond in our nomenclature to the on-shell lowest order
BSE approximation, which by our own experience describes well the bulk of the
data. With the BSE we have provided a further improvement at low energies
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by including higher order corrections. In the absence of a canonical low energy
analysis it seems wiser to proceed using the off-shell renormalization scheme. In
Fig. 5 we present a possible 12 parameter fit which accounts both for the elas-
tic low and intermediate energy region and the lowest production channels. The
failure to describe data around theN� resonance is expected, since as we have al-
readymentioned the ��N channel must be included. Our results seem to confirm
the assumption made in Ref. [29] regarding the unimportance of the three body
channel in describing the coupling of the N� resonance to �N.

�2002040
6080100120140160

1000 1200 1400 1600 1800 2000S 11;Æ(s)(
degrees)

3333333333333333333333333333333333
33333333333333333333333

0:20:30:40:50:60:70:80:911:1

1000 1200 1400 1600 1800 2000
S 11;�

3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333
3333333333333333333333333333333333333333333333333333333333333

00:511:522:53
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� �� p!�n[m
b℄

ps (MeV)
333

3333333 3 333 3 33
00:20:40:60:811:2

1600 1700 1800 1900 2000 2100 2200� �� p!K0 �
[mb℄

ps (MeV)33333333333
333333333333333
333333333333333333333333333333333 33 3333 33333333 3 33 3333

Fig. 5. �N scattering BSE results as a function of C.M. energy
ps. Upper left figure: S11

phase shifts. Upper right figure: inelasticity in the �N channel. Lower left figure:�N! �N
cross section. Lower right figure: �N! K� cross section. Data fromRef. [31]. (See Ref. [30]

for further details.)

5 Conclusions and Outlook

The results presented here show the success and provide further support for uni-
tarization methods complemented with standard chiral perturbation theory, par-
ticularly in the case when resonances are present. But unitarization by itself is
not a guarantee of success; the unitarization method has to be carefully chosen
so that it provides a systematic convergent and predictive expansion, as we have
discussed above. In order to describe the data in the intermediate energy region
the chiral parameters can then be obtained from� Either a direct �2 fit of the order by order unitarized amplitude and the cor-

responding low energy parameters. The upper energy limit is determined by
imposing an acceptable description �2=DOF � 1.



10 E. Ruiz Arriola� Or from a low energy determination of the low energy parameters with errors
by performing a �2-fit of the standard ChPT amplitude until �2=DOF � 1, and
subsequent MonteCarlo error propagation of the unitarized amplitude.

Differences in the low energy parameters within several methods should be com-
patible within errors, as long as the Chiral expansion has a good convergence.
But, unfortunately this is not always the case. Clearly, the �N sector is not only
more cumbersome theoretically than the �� sector but also more troublesome
from a numerical point of view. Standard ChPT to a given order can be seen as a
particular choice which sets higher order terms to zero in order to comply with
exact crossing but breaking exact unitarity. The unitarization of a the ChPT ampli-
tude is also another choice of higher order terms designed to reproduce exact uni-
tarity but breaking exact crossing symmetry. Given our inability to write a closed
analytic expression for an amplitude in a chiral expansion which simultaneously
fulfills both exact crossing and unitarity we have preferred exact unitarity. This
is justified a posteriori by the successful description of data in the intermediate
energy region, which indeed suggests a larger convergence radius of the chiral
expansion.
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22. A. Gómez Nicola and J.R. Peláez, Phys. Rev. D 62 (2000) 017502.

23. J.L. Basdevant, Fort. der Phys. 20 (1972) 283.

24. J. Nieves and E. Ruiz Arriola, hep-ph/0001013
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Nucleons or diquarks: Competition between

clustering and color superconductivity in quark

matter

Michael C. Birse?
Theoretical Physics Group, Department of Physics and Astronomy, University of

Manchester, Manchester M13 9PL, United Kingdom

Baryonic matter at high densities could be very different frommatter in ordinary
nuclei: manifest chiral symmetry might be restored, baryons might dissolve into
a fluid of free quarks, and quark pairs might condense to form a colour supercon-
ductor. Do these changes occur at sharp phase transitions or smooth cross-overs?
How many phase transitions are there? At what densities do they occur? So far
lattice QCD has provided no answers to these questions and we must rely on
models to explore the possible behaviour of strongly interacting matter at high
densities.

The possibility of colour superconductivity has recently attracted consider-
able attention following suggestions byWilczek, Shuryak and others that strongly
attractive quark-quark forces could lead to such a state with a large gap, of the
order of 100 MeV. (For reviews of this idea, see [1,2].) In recent work [3], we have
examined the competition between this pairing of quarks and the three-quark
clustering responsible for forming baryons at low densities. We have used a gen-
eralized Nambu–Jona-Lasinio model, which provides a quark-quark interaction
which is similar to that in the instanton-liquid model often used in studies of
colour superconductivity. Since there is no simple analogue of the BCS state for
composite fermions, we have gone back to a Cooper-type treatment, looking for
the instabilities of a Fermi gas of quarks.

The model includes interactions that generate bound diquarks states in both
scalar and axial diquark channels. The energies of these are found by solving
the quark-quark Bethe-Salpeter equations, which are straightforward algebraic
equations in this kind of model. The relativistic Faddeev equations for the nu-
cleon and � are constructed using the methods of Refs. [4,5] and, in particular,
[6]. These are integral equations which we solve iteratively using the method of
Malfleit and Tjon [7].

A sharp 3-momentum cut-off of about 600 MeV was used to regulate the
contact interaction since this is easy to combine with the effects of the Fermi sea.
However it should be noted that this choice is not covariant. The couplings in
the scalar and axial diquark channels are chosen to give the observed N and �
masses in vacuum. For a parameter set which gives a quark mass of 450 MeV, the
scalar and axial diquarks have masses of 635 MeV and 700 MeV.? E-mail: mike.birse@man.ac.uk
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At finite density, the quark mass is reduced and vanishes at the chiral phase
transition, which occurs at a Fermi momentum of about 370 MeV for the parame-
ter sets we use. (For comparison, nuclear-matter density corresponds to kF = 270
MeV.) In addition, Pauli blocking provides a lower cut-off on the momenta of the
quarks in the Bethe-Salpeter and Faddeev equations.

We find that the nucleon remains bound with respect to the quark-diquark
threshold only up to nuclear matter density. Morover, except for densities below
about a quarter of that of nuclear matter, we find that it is energetically much
more favorable to form three diquarks rather than two nucleons. Hence inmodels
of this type, quark matter is more unstable against pairing (leading to a colour
superconductor) than it is against three-quark clustering, even at the density of
nuclear matter.

Clearly something important is missing from models of this type: confine-
ment. We need to examine whether extending the model to include confinement
at low densities also affects behaviour at high densities. Indeed, is it possible to
get a realistic phase diagram without confinement?
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Distinct Hagedorn temperatures from particle spectra:

a higher one for mesons, a lower one for baryons

Wojciech Broniowski?
The H. Niewodniczański Institute of Nuclear Physics, PL-31342 Cracow, Poland??
Abstract. We analyze experimental particle spectra and show that the Hagedorn temper-

ature is significantly larger for mesons than for baryons. The effect can be explainedwithin

dual string models: excitations of three strings in the baryon produce “faster” combina-

torics than a single string in the meson, hence lead to a more rapid growth of baryons than

mesons. Predictions of other approaches for the gross features of particle spectra are also

discussed.

This research is being carried out in collaboration with Wojciech Florkowski and Piotr

Żenczykowski from INP, Cracow.

1 Introduction

The famousHagedorn hypothesis [1–3], dating back to pre-chromodynamic times
of the sixties, states that at asymptotically largemasses,m, the density of hadronic
resonance states, �(m), grows exponentially:�(m) � exp

� mTH� (1)

The Hagedorn temperature, TH, is a scale controlling the exponential growth of
the spectrum. Although the Hagedorn hypothesis has sound thermodynamical
consequences (one cannot heat-up a hadronic system above this temperature),TH should not be immediately associated with thermodynamics. In this talk we
are concerned with the spectrum of particles per se, as read off form the Particle
Data Tables [4]. In this context the “temperature” TH is just a parameter in Eq. (1).

Ever since hypothesis (1) was posed, it has been believed that there is one
universal Hagedorn temperature for all hadrons. Presently available experimental

data show that this is not the case, as has been pointed out by W. Florkowski and
WB in Refs. [5,6].? E-mail: broniows@solaris.ifj.edu.pl?? Research supported in part by the Scientific and Techological Cooperation Joint Project

between Poland and Slovenia, financed by the Ministry of Science of Slovenia and the

Polish State Commettee for Scientific Research, and by the Polish State Committee for

Scientific Research, project 2 P03B 094 19
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Fig. 1. Cumulants of meson and baryon spectra, and the Hagedorn-like fit with Eqs. (4,5),

plotted as functions of mass.

This talk has two parts: experimental and theoretical. In the experimental
part (Sec. 2) we show how well the Hagedorn hypothesis works even for very
low masses, and point out the key observation that the mesonic temperature is sig-

nificantly larger from the baryonic temperature. In the theoretical part (Sec. 3) we
argue that the only framework (known to us) which is capable of producing the
observed behavior in a natural way are the Dual String Models [7]. In Sec. 4 we
discuss other approaches and more speculative ideas.

2 Experiment

2.1 Experimental spectra of mesons and baryons

In Fig. 1 we compare the cumulants of the spectrum [4], defined as the number of
states with mass lower thanm. The experimental curve isNexp(m) =Xi gi�(m -mi); (2)

where gi = (2Ji + 1)(2Ii + 1) is the spin-isospin degeneracy of the ith state, andmi is its mass. The theoretical curve corresponds toNtheor(m) = Zm0 �theor(m0)dm0; (3)

where �theor(m) = f(m) exp(m=T); (4)

with f(m) denoting a slowly-varying function. A typical choice [3,8], used in the
plot of Fig. 1, is f(m) = A=(m2 + (500MeV)2)5=4: (5)
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Formula m0 Tmes Tbar �2mes �2bar
MeV MeV MeVA(m2+m20)5=4 exp(mT ) 500 195 141 0.016 0.015

- - - 1000 228 152 0.014 0.015

- - - 250 177 136 0.025 0.015A(m+m0)5=2 exp(mT ) 1000 223 154 0.015 0.015A exp(mT ) 311 186 0.014 0.015AmI2(mT ) 249 157 0.014 0.015

Table 1. Various Hagedorn-like fits. Rows 1-4 use formulas of Ref. [2], row 5 uses a simple

exponent, and row 6 uses the scalar string model of Ref. [10]. The last two column display

the mean suared deviation for the meson and baryon case, respectively.

Parameters TH and A are obtained with the least-square fit to logNtheor, made
over the range up to m = 1:8GeV, and skipping the lightest particle in the set.
Other choices of f(m) give fits of similar quality (see Fig. 2). A striking feature
of Fig. 1 is the linearity of logN starting at very low m, and extending till m �1:8GeV. Clearly, this shows that (1) is valid in the range of available data.1 How-
ever, the slopes in Fig. 1 are different for mesons and baryons. For the assumedf(m) of Eq. (5) we getTmeson = 195MeV; Tbaryon = 141MeV: (6)

This means that Tmeson > Tbaryon, and the inequality is substantial! Although it has
been known to researchers in the field of hadron spectroscopy that the baryons
multiply more rapidly than mesons [9], to our knowledge this fact has not been
presented as vividly as in Fig. 1. To emphasize the strength of the effect we note
that in order to make the meson line parallel to the baryon line, we would have
to aggregate � 500 additional meson states up tom = 1:8MeV as compared to the
present number of � 400.
2.2 Are we asymptotic?

An important question is whether the presently available range of masses is as-
ymptotic in view of Eq. (1). The answer is no! This is how we can look at this
question quantitatively. Consider the generic form of the spectrum of Eq. (4). We
can rewrite it asf(m)em=T = elog f(m)+m=T ' elog[f(m)+f0(m)�m℄+(m+�m)=T =

const e� 1T+ f0(m)f(m) ��m = const e�mTeff ;
wherem = m + �m, and in the range of datam � 1GeV. We have defined Teff as
the effectiveHagedorn temperature in the (non-asymptotic) region aroundm. The

1 Above 1.8GeV the data seems to be sparse and we should wait for this region to be

explored by future experiments.
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Fig. 2. Various Hagedorn-like fits, made according to formulas of Table 1.

value of Teff follows directly from the data. We have, according to Eq. (7),1T = 1Teff: - f0(m)f(m) : (7)

The following statements are obvious:� since f0(m) < 0, T< Teff,� only at m ! 1 we have T = Teff. In the region of data we find significant
differences between T and Teff.
Here is a numerical example. Considerf(m) = A(m2 +m20)5=4 ; (8)

which leads to 1T = 1Teff: + 52 m(m2 +m20) (9)

Now we takem0 = 0:5GeV andm = 1GeV and find

for mesons: Teff = 311MeV, T = 192MeV (exact fit: 195MeV)
for baryons: Teff = 186MeV, T = 136MeV (exact fit: 141MeV)

We conclude that only in the asymptotic region, m >> m0, the choice off(m) is not important. In the region of presently-available data f(m)matters very
much for the extracted values of the Hagedorn temperature. This simply means
that we need a theory in order to make quantitative statements!

The numerical parameters obtained from various choices of the functionf(m) are collected in Table 1. Figure 2 shows the fits corresponding to the rows 1,
4, 5 and 6 of Table 1. Note the fits are very close to each other and the theoretical
curves are virtually indistinguishable in the region of data. In view of the above
discussion it makes little sense to treat the Hagedorn temperature as an absolute
parameter and to quote its value without specifying the model that yields the
function f(m).
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Fig. 3. Strange vs. non-strange mesons (a), and baryons (b).

2.3 Flavor universality

In Fig. 3we show the cumulants of particle spectra of a given value of strangeness.
We can clearly see that the slopes in the figure do not depend on strangeness. The
meson plot includes various Hagedorn fits of Fig. 2. The two sets of lines are dis-
placed in them variable by roughly 150MeV, which is the difference of the masses
on the strange and non-strange quarks. The conclusion here is that the addition
of the strange quark mass has no effect on the rate of growth of the number of
states withm. Certainly, we are rediscovering the SU(3) flavor symmetry here!

2.4 Plot in the exponential variable

We end the experimental part of this talk by showing the same information as in
Fig. 1, but instead of using logarithmic units on the vertical axes, we take expo-
nential units on the horizontal axis. More precisely, we take the fit to the spectrum
with of the form with the simple exponent (row 5 in Table 1), which leads to the
cumulant N(m) = AT(exp(m=T) - 1), where the values of A and T result from
the least-square fit. Next, we define the variable y = AT(exp(m=T)- 1) and plot
the cumulants as functions of y. Note that the A and T parameters are different
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Fig. 4. Cumulants of the meson and baryon spectra plotted in exponential variables.

for mesons and baryons. Again, the linearity of data in the figure is striking. It
starts at basically m = 0, and extends to m � 1:8GeV. The advantage of the plot
in Fig. 4 to that of Fig. 1 is that now the steps in the experimental cumulant are of
a similar size independently ofm.

We conclude this section by stating that the exponential growth of hadronic
spectra in the region ofm up to about 1.8GeV, with Tmes > Tbar, is an experimental
fact.

3 Theory

We are faced with two basic theoretical questions:

1. Why is the spectrum of resonances exponential?
2. Why do mesons and baryons behave so differently?

Concerning the first question, let us stress that it is not at all easy to get an ex-
ponentially rising spectrum of resonances. Take the simplistic harmonic-oscillator
model, whose density of states grows as md-1, with d denoting the number of
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dimensions. For mesons there is one relative coordinate, hence � � m2, whereas
the two relative coordinates in the baryon give � � m5. Weaker-growing poten-
tials lead to a faster growth of the number of states, but fall short of the behavior
(1). We know of three approaches yielding behavior (1), both involving combi-
natorics of infinitely-many degrees of freedom. These are the Statistical Bootstrap

Model [1–3,11], Bag Models [12–14], and Dual String Models [7]. The first two,
however, lead to the same rate of growth for the mesons and baryons. Statistical
BootstrapModels are discussed in Sec. 3.1. In BagModels [12–14] the exponential
growth of the spectrum is associated with the melting out of the vacuum around
the bag when the hadron is being excited. Since the scales in the Bag Model are
practically the same for the meson and the baryon (the size scales as the number
of constituents to the power 1=4), the Bag Models are not capable of answering
question 2. On the other hand, the Dual String Models [7] is offer a natural expla-
nation of questions 1 and 2. This has already been pointed out in Ref. [6].

3.1 Statistical Bootstrap Models

Statistical bootstrap models [1,3,11] form particles from clusters of particles, and
employ the principle of self-similarity. The simplest, “generic”, bootstrap equa-
tion has the form�(m) = Æ(m-m0)+ 1Xn=2 1n! Z10 dm1:::dmn� Æ(m- nXi=1mi)�(m1):::�(mn); (10)
where �(m) is the particle spectrum (here, for a moment, mesons and baryons
are not distinguished). Equation (10) can be nicely solved with help of Laplace
transforms [1,3,15], yielding the asymptotic solution �(m) � exp(m=T), withT = m0=log(- log 4e ). More complicated bootstrap equations involve integration
overmomenta, more degrees of freedom, different combinatorial factors [3], how-
ever, irrespectively of these details, they always lead to an exponentially growing
spectrum. It can be shown, following e.g. the steps of Ref. [16], that the model
leads to equal Hagedorn temperatures for mesons and for baryons. This is quite
obvious. Since baryons are formed by attaching mesons to the “input” baryon,
the baryon spectrum grows at exactly the same rate as the meson spectrum. Spe-
cific calculations confirm this simple observation. Thus the bootstrap idea is not

capable of explaining the different behavior of mesons and baryons in Fig. 1.

3.2 Dual String models

TheDual String models [7] also date back to pre-QCD times. Their greatest success
is a natural explanation of the Regge trajectories – a basic experimental fact which
remain a serious problem for other approaches. Similarly to the bootstrapmodels,
the Dual String Models lead to exponentially-growing spectra, but they do give
the demanded effect of Tmeson > Tbaryon, at least at asymptotic masses [6].
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�nq q �n1 n2n3q qq

1

Fig. 5. Meson and baryon string configurations.

Let us analyzemesons first. The particle spectrum is generated by the harmonic-
oscillator operator describing vibrations of the string,N = 1Xk=1 DX�=1 kayk;�ak;�; (11)

where k labels the modes and � labels additional degeneracy, related to the num-
ber of dimensions [7]. Eigenvalues of N are composed in order to get the square
of mass of the meson, according to the Regge formula�0m2 - �0 = n; (12)

where �0 � 1GeV-2 is the Regge slope, and �0 � 0 is the intercept. Here is an
example: take n = 5. The value 5 can be formed by taking the k = 5 eigenvalue
of N (this is the leading Regge trajectory, with a maximum angular momentum),
but we can also obtain the same m2 by exciting one k = 4 and one k = 1 mode,
alternatively k = 3 and k = 2 modes, and so on. The number of possibilities
corresponds to partitioning the number 5 into natural components: 5, 4+1, 3+2,
3+1+1, 2+2+1, 2+1+1+1, 1+1+1+1+1. Here we have 7 possibilities, but the num-
ber of partitions grows very fast with n. Partitions withmore than one component
describe the sub-leading Regge trajectories. WithD degrees of freedom each com-
ponent can come inD different species. Let us denote the number of partitions in
our problem as PD(n). For large n the asymptotic formula for partitio numerorum

leads to the exponential spectrum according to the formula [17,7].�(m) = 2�0mPD(n); PD(n) 'r 12n � D24n�D+14
exp

 2�rDn6 ! ; (13)

where n = �0m2. We can now read-off the mesonic Hagedorn temperature:Tmeson = 12�r 6D�0 : (14)

Now the baryons: the “Mercedes-Benz” string configuration for the baryon
is shown in Fig. 5. The three strings vibrate independently, and the corresponding
vibration operators, N, add up. Consequently, their eigenvalues n1, n2, and n3
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Fig. 6. Predicions of the scalar string model of Ref. [10], with D = 6.
add up. Thus we simply have a partition problem with 3 times more degrees of
freedom than in the meson. The replacement D ! 3D in (13) leads immediately
to Tbaryon = 12�r 2D�0 ; (15)

such that Tmeson=Tbaryon = p3: (16)

We stress that the presented picture is fully consistent with the Regge phenomenol-
ogy. The leading Regge trajectory for baryons is generated by the excitation of a
single string, i.e. two out of three numbers ni vanish (this is the quark-diquark
configuration). The subleading trajectories for baryons come in a much larger de-
generacy than for mesons, due to more combinatorial possibilities. The slopes of
the meson and baryon trajectories are universal, and given by �0. We stress that
the “number-of-strings” mechanism described above is asymptotic. Thus, there is
a problem in applying string models to the experimentally accessible range ofm.
This range is not asymptotic enough to use Eq. (13). From the Regge formula (12)
we find immediately that form in the range 1- 2GeV the values of n lie between1 and 4, hence n is not large enough to justify the form (13).

One can do better by using an improved asymptotic formula, derived in Ref.
[10]. The results obtained in the scalar string model [10] are displayed in Fig. 6.
Here the formula for the meson spectrum is�mes(m) = 36� �salar(m); �salar(m) = 2�0(4��0mTmes)�mI�( mTmes

); (17)

where I2 is a modified Bessel function, Tmes is the meson Hagedorn tempera-
ture (the only adjustable parameter here), and � = 1 +D=2, with D denoting the
number of transverse dimensions. The factor of 36 = 6 � 6 is just the spin-flavor
degeneracy of the qq configuration [10]. For the baryons we fold the three scalar-
string densities, �salar(m). We use 56 (rather than 36) copies of the string, which
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�qq qq �

1

Fig. 7. qqqq and glueball configurations.

is the degeneracy of the baryon multiplet in the ground state. We notice good
agreement with data in Fig. 6, for D = 6. Note that both curves are fitted with
only one parameter, Tmes. For lower values of D one can fit the mesons equally
well, but too many baryon states are predicted.

3.3 Exotics as dual strings

During this workshop we have heard many talks on hadron exotics. If an exotic
is a multi-string configuration, e.g. as in Fig. 7, then the corresponding spectrum
will grow exponentially with the Hagedorn temperature inversely proportional
to the square root of the number of strings. For instance, Tqqqq = 1p5Tmeson. This

is reminiscent of the effect described in Ref. [18]. For the glueballs, described by
the closed string in Fig. (7), we get TG = Tmeson.

Thus, according to the string model, the qqqq grow more rapidly than non-
exotic mesons and baryons, and glueballs grow at the same rate as mesons.

4 Other approaches

In the remaining part of this talk we will, in a sense, work against our results
presented in previous sections, where have we argued that the plots of Fig. 1
are linear, and offered an explanation of the difference between the mesonic and
baryonic Hagedorn temperatures within the Dual String Models.

What if the experimental plots of Fig. 1 are not really linear, and the effect
of bending down of the curves at higher masses is physical, rather than due to
incomplete experiments? Below we will show alternative descriptions which do
not comply to Eq. (1), but nevertheless reproduce the present data at least as good
as the Hagedorn-like fits.

4.1 Compound hadrons

In the statistical model of nuclear reactions one uses the compound-nucleus model

[19,20]. In this model the density of states grows at large excitation energies, E�,
according to the formula �(E) � (E�)-5=4eapE� ; (18)
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Fig. 8. Fits of the Compound Hadron Model, Eq. (19).

where a is a constant. Formula (18) can be derived within the Fermi gas model
[20]. More generally, it can be derived in a model where the single-particle or-
bits are equally spaced. One then considers 1p1h, 2p2h, 3p3h, etc., excitations and
counts the number of states at a given excitation energy, E�. Amusingly, this leads
[21] to the partitio numerorum formula (13), but now the number n has the inter-
pretation n = E�=�E, with �E denoting the level spacing.

We now use the following Compound-Hadron-Model formula for the mass
spectra: �(m) = A�(m -m0) exp�2�q (m-m0)6�E ��(m -m0)2 + (0:5GeV)2�5=8 ; (19)

where A is a constant, m0 is the ground-state mass, and �E is the average level
spacing. The constant 0:5GeV in the denominator has been introduced ad hoc,
similarly as in Eq. (5), in order for the formula to make sense atm! m0. Asymp-
totically, the power ofmmultiplying the exponent is -5=4, as in Eq. (18).

The underlying physical picture behind compound hadrons is as follows:
hadrons are bound objects of constituents (quarks, gluons, pions). The Fock space
contains a ground state, and excitations on top of it. In the case of the compound
nucleus these elementary excitations are 1p1h, 2p2h, 3p3h; etc. states. In the case
of hadrons they are formed of qq̄ and gluon excitations, e.g. for mesons we haveqq̄, qq̄g, qqq̄q̄, qq̄gg, etc.We can form the excitation energy (hadronmass) by dif-
ferently composing elementary excitations. This bring us to the above-described
combinatorial problem [21]. It seems reasonable to take zero ground-state en-
ergy for mesons, mmes0 = 0, since they are excitations on top of the vacuum. For
baryons we takembar0 = 900MeV, which is the mass of the nucleon. The quantity�E is treated as a model parameter and is fitted to data.

The results of the compound-hadron-model fit, Eq. (19), are shown in Fig. 8.
The curves are slightly bent down, compared to the Hagedorn-like fits of Figs.
1,2, which is caused by the square root in the exponent of Eq. (19). But the fits
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Fig. 9. Experimental cumulants and the predicions of the quark model of Ref. [22,23], as

counted in Ref. [9], indicated by dots.

are at least as good, or even better when the fit region is extended tom = 2GeV.
Numerically, the least-square fit for m up to 1.8GeV gives �Emes = 100MeV for
mesons, and�Ebar = 106MeV for baryons. The proximity of these numbers shows
that the scales for mesons and baryons are similar, as should be the case.

The obtained values for�Emes mean that the corresponding n atm = 1:8GeV
is around 18 for mesons and 9 for baryons. Such values of n are sufficiently large
to justify the use of the asymptotic formulas.

4.2 Combinatorial saturation and the light-flavor-desert hypothesis

There is a possibility of an interesting effect we wish to point out. It is natural
to expect that a bound hadronic system has an upper limit for the excitation en-
ergy. It is helpful to think here of bags of finite depth. Thus, in constructing the
single-particle Fock space for bound objects we should have a limited number of
quanta to our disposal. If such a limit is put into the Compound Hadron Model,
it will result in a maximum number of states that can possibly be formed out of
light quarks [5]. We can call it the “light-flavor-desert hypothesis”: above a certain
mass there are no more light-flavor resonances. Certainly, this is tangential to
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the conventional wisdom that the Regge trajectories should continue indefinitely.
Note, however, that infinite Regge trajectories have recently been challenged by
Brisudová, Burakovsky and Goldman, who claim that they should stop aroundm � 2:7GeV. Amusingly, this is consistent with the presently-available data. The
cumulants if Fig. 1 flatten-out in that region.

4.3 Quark models

Many talk in this workshop were devoted to variants of the quark model. Here
we present the result of counting of states in the model of Refs. [22,23], as made
by Freund and Rosner [9].

When we look at Fig. 9, we again see good agreement in the predicted and
experimental number of states. This is not at all surprising, since the quark model
is designed to fit the data “state by state” in the low-mass regime. As for other
approaches, spectra at highermwould be needed to verify the predictions.

5 Final remarks

There are many fundamental questions which should be cleared when more ex-
perimental data on hadron resonances are available: Is the Hagedorn hypoth-
esis of exponentially-growing spectra indeed correct, or is the growth weaker
at higher masses? Do the Regge trajectories continue for ever, or stop? Conse-
quently, is there a light-flavor desert above a certainmass? Are there exotic states,
if so, at what rate do they grow?... Certainly, the spectrum above 2GeVmay reveal
many answers and help us to verify various models and approaches.

However, even the presently-available spectrum allows for interesting spec-
ulations. Recall the remarksmade here by Leonid Glozman, concerning the parity
doublets in the N and � spectra above 2GeV [24]. Almost all states in that region
can be paired, and such a regularity suggests that the data in that region may be
complete! This, in turn, indicates that the bending down of the cumulants in Fig.
1 may be a physical, rather than experimental effect.

Another important aspect, not touched in this talk, are the thermodynamical
implications of the presence of two distinct Hagedorn temperatures for the phe-
nomenology of heavy-ion collisions, transition to quark-gluon plasma, etc. This
will be discussed in [21].

The author thanks Keith R. Dienes for many profitable e-mail discussions on
the issues of hadron spectra in stringmodels, as well as to Andrzej Białas, Andrzej
Horzela, Jan Kwieciński, and Kacper Zalewski for numerous useful comments
and encouragement.
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In this talk I describe some recent work with C. K. Chow on heavy baryons—
i.e. baryons with a single heavy quark. In the combined heavy quark and largeN limits of QCD a simple physical picture emerges of such states. The system is
well described by the collective motion of the light quark and gluon degrees of
freedom against the heavy quark. This can be shown by studying commutators of
collective operators with the QCD Hamiltonian in the context of a power count-
ing scheme in which both the heavy quark and the nucleon mass is treated as
heavy. The power counting parameter is � where � � �=MQ; ; 1=N. Collective
excitations have an energy which scale as �1=2 and hence all become degener-
ate with the ground state in this combined limit—this indicates the emergence
of a new symmetry. This new symmetry is contracted O(8) and is the spectrum
generating algebra for the three dimensional harmonic oscillator. One can exploit
this symmetry to make model independent predictions of excited state masses,
electro-magnetic and weak transitions of these states up to a fixed order in the
expansion. Unfortunately, the expansion turns out to be in �1=2 rather than � so
the predictive power of this expansion is not clear. However at next-to-leading
order the expansion has only two parameters and several observables (of which
only one has presently been measured) so that the possibility of getting semi-
quantitative information from this expansion is quite real.
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Abstract. The SU6 quarkmodel for theNN and YN interactions, developed by the Kyoto-

Niigata group, is upgraded to incorporate some effects of scalar and vector mesons ex-

changed between quarks. The phase-shift agreement in theNN sector at the non-relativistic

energies up to Tlab = 350 MeV is greatly improved. The essential feature of the �N-�N
coupling is qualitatively similar to that obtained from the previous models. The G-matrix

calculation of the �N-�N coupled-channel system shows that the � single-particle poten-

tial is repulsive in ordinary nuclear matter. The single-particle spin-orbit strength for the� particle is found to be very small, in comparison with that of the nucleons.

The quark-model study of the nucleon-nucleon (NN) and hyperon-nucleon (YN)
interactions is motivated to gain a natural and accurate understanding of the fun-
damental strong interaction, in which the quark-gluon degree of freedom is be-
lieved to be the most economical ingredient to describe the short-range part of
the interaction, while the medium- and long-range parts are dominated by the
meson-exchange processes. We have recently achieved a simultaneous and real-
istic description of the NN and YN interactions in the resonating-group (RGM)
formalism of the spin-flavor SU6 quark model. [1–3] In this approach the effec-
tive quark-quark interaction is built by combining a phenomenological quark-
confining potential and the colored version of the Fermi-Breit (FB) interaction
withminimum effectivemeson-exchange potentials (EMEP) of scalar and pseudo-
scalar meson nonets directly coupled to quarks. The flavor symmetry breaking
for the YN system is explicitly introduced through the quark-mass dependence
of the Hamiltonian. An advantage of introducing the EMEP at the quark level
lies in the stringent relationship of the flavor dependence appearing in the vari-
ousNN and YN interaction pieces. In this way we can utilize our rich knowledge
of the NN interaction to minimize the ambiguity of model parameters, which is
crucial since the present experimental data for the YN interaction are still very
scarce.? Talk delivered by Yoshikazu Fujiwara?? E-mail: fujiwara@ruby.scphys.kyoto-u.ac.jp
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In this report we upgrade our model to incorporate vector mesons and the
momentum-dependent Bryan-Scott terms, and compare the NN and YN observ-
ables with the existing experimental data. This model is dubbed fss2 since it is
based on our previous model FSS [2,3] The agreement to the phase-shift parame-
ters in the NN sector is greatly improved. The model fss2 shares the good repro-
duction of the YN scattering data and the essential features of the �N-�N cou-
pling with our previous models [1–3]. The single-particle (s.p.) potentials ofN, �
and � are predicted through the G-matrix calculation, which employs the quark-
exchange kernel explicitly. [4] The strength of the s.p. spin-orbit potential is also
examined by using these G-matrices. [5] These applications of fss2 are discussed
by Kohno in the present symposium.

A new version of our quark model is generated from the Hamiltonian which
consists of some extra pieces of interaction generated from the scalar (S), pseu-
doscalar (PS) and vector (V) meson-exchange potentials acting between quarks:H = 6Xi=1�mi2 + p2i2mi� + 6Xi<j 0�UCfij +UFBij +X� US�ij +X� UPS�ij +X� UV�ij 1A :
It is important to include the momentum-dependent Bryan-Scott term in the S-
and V-meson contributions, in order to ensure the correct asymptotic behavior of
the s.p. potentials in high-momentum region. [6] We have calculated UN(q1) by
using the so-called teff� prescription and made sure that it turns into repulsive
beyond the incident momentum q1 � 6 fm-1, while our old model FSS is too at-
tractive, having the minimum value � -70 MeV around q1 � 10 fm-1. Another
important feature of fss2 is the introduction of vector mesons for improving the
fit to the phase-shift parameters in theNN sector. Since the dominant effect of the!-meson repulsion and the LS components of �,! and K� mesons are already ac-
counted for by the FB interaction, only the quadratic LS (QLS) component of the
octet mesons is expected to play an important role to cancel partially the strong
one-pion tensor force. Further details of the model fss2 is given in [7]. The model
parameters are determined by fitting the most recent result of the phase shift anal-
ysis, SP99 [8], for the np scattering with the partial waves J � 2 and the incident
energies Tlab � 350MeV, under the constraint of the deuteron binding energy and
the 1S0 NN scattering length, as well as the low-energy YN total cross sections.
The deuteron D-state probability of fss2 is 5.5 %, which is slightly smaller than
5.88 % in FSS [2].

Figure 1 shows some important low-partial wave NN phase-shift param-
eters, compared with the experiment SP99. The previous result by FSS is also
shown with the dotted curves. The 3D2 phase shift is greatly improved by theQLS component. The good accuracy of the NN phase-shift parameters continues
up to Tlab � 600MeV, where the inelasticity of the S-matrix becomes appreciable.

The total cross sections of the NN and YN scattering predicted by fss2 are
comparedwith the available experimental data in Fig. 2. The “total” cross sections
for the scattering of charged particles (i.e., pp, �+p and �-p systems) are calcu-
lated by integrating the differential cross sections over cos�min = 0:5 � cos�max =-0:5. The solid curves indicate the result in the particle basis, while the dashed
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Fig. 1. Comparison of np phase shifts with the phase-shift analysis SP99 by Arndt et al.

The dotted curves are by FSS.

curves in the isospin basis. In the latter case, the effects of the charge symmetry
breaking, such as the Coulomb effect and the small difference of the threshold en-
ergies for �-p and �0n channels, are neglected. The empirical total cross sections
for the np and pp systems include the inelastic cross sections. This is the reason
why our result with no inelasticity underestimate these total cross sections above
the pion threshold. If we properly compare the total elastic cross sections with
an appropriate angular range, we find that the agreement with the experiment is
excellently good up to Tlab = 800 MeV. We find that the cusp structure of the �p
total cross sections at the �N threshold is enhanced by the effect of the P-wave�N-�N coupling due to the antisymmetric spin-orbit force (LS(-) force), which
is a new feature of the YN interaction as the scattering of non-identical particles.
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Fig. 2. CalculatedNN and YN total cross sections compared with the available experimen-

tal data.
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In the present model fss2, the �N(I = 1=2) 3P1 resonance still stays at the�N channel, which is similar to the situation in RGM-H [2]. As to the �N-�N
coupling in the positive-parity states, the present 3S1-3D1 tensor coupling by the
one-pion tensor force is rather close to that in RGM-F [1]. The �-p inelastic cap-
ture ratio at rest is rR = 0:442 in fss2, which is slightly smaller than the recent
empirical values rRexp = 0:474 � 0:016 and 0:465 � 0:011 [9,10].

In summary, we have upgraded our quark model FSS to fss2, by incorporat-
ing the momentum-dependent Bryan-Scott term and the vector-meson exchange
potential acting between quarks. With a few phenomenological ingredients, the
accuracy of the model in the NN sector has now become almost comparable to
that of the OBEP models. The existing data for the YN scattering are well repro-
duced and the essential feature of the�N-�N coupling is almost unchanged from
our previous models. [1,2] We also calculatedNN and YNG-matrices in ordinary
nuclear matter, by solving the Bethe-Goldstone equations for the quark-exchange
kernel. Similar to our previous models, fss2 predicts a repulsive � s.p. potential,
the strength of which is about 10 MeV. The repulsive isoscalar part of the � s.p.
potential is reported to be compatible with recent BNL (K-; ��) data [11]. The
relative ratio of the Scheerbaum factors for � toN is about 1/5 in fss2, due to the
strong effect of LS(-) force and the effect of the flavor symmetry breaking. It can
be further reduced by many-body effects such as the starting-energy dependence
and the density dependence of the G-matrix. This small spin-orbit potential for
the �might be confirmed in future experiments.
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Baryon Structure in the Low Energy Regime of QCD

Leonid Ya. Glozman?
Institute for Theoretical Physics, University of Graz, Universitätsplatz 5, A-8010 Graz,

Austria

I review the key problem of light and strange baryon spectroscopy, which sug-
gests a clue for our understanding of underlying dynamics. Then I discuss the
spontaneous breaking of chiral symmetry in QCD. In the region of spontaneously
broken chiral symmetry, where the Goldstone boson degree of freedom is impor-
tant, the structure of the elementary excitation of the QCD vacuum can be approx-
imately reproduced by absorption of the scalar interaction between bare (current)
quarks into the mass of the quasi particles - i.e. constituent quarks. This implies
that in the low-energy regime the proper chiral dynamics is due to the coupling of
Goldstone bosons and constituent quarks and that the nucleon should be viewed
as a system of confined constituent quarks that interact via the Goldstone bo-
son exchange (GBE) [1]. The GBE interaction contains both the ultraviolet (short
range) part, which is independent of pion mass, and the infrared (Yukawa) part.
The latter one is important for the long-range nuclear force, but it does not pro-
duce any significant effect in baryons because of their small matter radius. The
short-range part of the GBE interaction causes a flavor-spin dependent force be-
tween quarks and has a range �-1� . While the infrared (Yukawa) part of the in-
teraction vanishes in the chiral limt, the ultraviolet one - does not [2]. This means
that the short-range part of the GBE interaction is “more fundamental” than its
Yukawa part. This short-range part of the GBE interaction stems from the 5
structure of the vertex and hence is demanded by the Lorentz invariance. At the
microscopical level this short range interaction comes from the t-channel itera-
tions of that bare gluonic interaction between quarks that is responsible for chiral
symmetry breaking [3]. This is a typical antiscreening behavior; the interaction is
represented by a bare gluonic vertex at large momenta, but it blows up at small
momenta in the GBE channel due to the (Landau) pole that occures at q2 = 0.
I show how this explicitly flavor-dependent short-range part of GBE interaction,
when combined with the SU(6) symmetry (that is demanded by largeN limit in
QCD), solves the key problem of baryon spectroscopy and present baryon spectra
obtained in a simple analytical calculation [1] as well as in covariant three-body
calculations [4]. Finally I show recent lattice results [5–8] and comment on their
connection with the present physical picture.

? E-mail: lyg@physik.kfunigraz.ac.at
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Abstract. We present a calculation of the fourth-order (NLO) contribution to spin-de-

pendent Compton scattering in heavy-baryon chiral perturbation theory, and we give re-

sults for the four spin polarisabilities. No low-energy constants, except for the anoma-

lous magnetic moments of the nucleon, enter at this order. The NLO contributions are as

large or larger than the LO pieces, making comparison with experimental determinations

questionable. We address the issue of whether one-particle reducible graphs in the heavy

baryon theory contribute to the polarisabilities.

1 Introduction

The usual notation for the Compton scattering amplitude in the Breit frame is, for
incoming real photons of energy ! and momentum q to outgoing real photons
of the same energy energy and momentum q 0,T = � 0������= � 0 � �A1(!; �) + � 0 � q̂� � q̂ 0A2(!; �)+i� � (� 0 � �)A3(!; �) + i� � (q̂ 0 � q̂)� 0 � �A4(!; �)+�i� � (� 0 � q̂)� � q̂ 0 - i� � (�� q̂ 0)� 0 � q̂�A5(!; �)+�i� � (� 0 � q̂ 0)� � q̂ 0 - i� � (�� q̂)� 0 � q̂�A6(!; �); (1)

where hats indicate unit vectors. By crossing symmetry the functions Ai are even
in ! for i = 1; 2 and odd for i = 3 - 6. The leading pieces in an expansion in
powers of! are given by low-energy theorems[1], and the next terms contain the
electric and magnetic polarisabilities � and � and the spin polarisabilities i:A1(!; �)=-Q2mN + 4�(� + cos��)!2 +O(!4)A2(!; �)=-4��!2 +O(!4)A3(!; �)= e2!2m2N �Q(Q+ 2�) - (Q+ �)2 cos ��+ 4�!3(1 + 5 cos�) +O(!5)? Talk delivered by Judith McGovern?? E-mail: judith.mcgovern@man.ac.uk
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Fig. 1. Diagrams which contribute to spin-dependent Compton scattering in the � � v = 0
gauge at LO. The solid dots are vertices fromL(2) and the open circle is a vertex fromL(3).A4(!; �)=- e2!2m2N (Q+ �)2 + 4�!32 +O(!5)A5(!; �)= e2!2m2N (Q + �)2 + 4�!34 +O(!5)A6(!; �)=- e2!2m2NQ(Q+ �) + 4�!33 +O(!5) (2)

where the charge of nucleon is Q = (1 + �3)=2 and its anomalous magnetic mo-
ment is � = (�s + �v�3)=2. Only four of the spin polarisabilities are independent
since three are related by 5 + 2 + 24 = 0. The polarisabilities are isospin de-
pendent.

Compton scattering from the nucleon has recently been the subject of much
work, both experimental and theoretical. The unpolarised polarisabilities have
been well known for a number of years now, at least for the neutron, but it is only
very recently that determinations of the spin polarisabilities have been extracted
from fixed-t dispersion analyses of photoproduction data. The forward spin po-
larisability 0 = 1 + 5 has a longer history, with determinations that are in
the range of recent values, namely -0:6 to -1:5 � 10-4 fm4 for the proton.[2–5]
Direct measurements of the polarised cross-section at MAMI have been used to
obtain a value of -0:8 � 10-4 fm4, as reported by Pedroni at the GDH200 con-
ference. No direct measurements of polarised Compton scattering have yet been
attempted. However the backwards spin polarisability � = 1-5 has recently
been extracted from unpolarised Compton scattering from the proton. The LEGS
group[6] obtained -27 � 10-4 fm4, far from the previously accepted value of-37 � 10-4 fm4, which is dominated by t-channel pion exchange. In contrast re-
sults presented by Wissmann at the GDH2000 conference give a value extracted
from TAPS data which is compatible with the old value.

2 Polarisabilities in HBCPT

The non-spin polarisabilities have previously been determined to NLO (fourth
order) in heavy baryon chiral perturbation theory (HBCPT). The values are in
good agreement with experiment, with the NLO contribution (where LEC’s en-
ter) being small compared to the LO part (which comes from pion-nucleon loops).
The spin polarisabilities have also been calculated;[7] at lowest order the value0 = �emg2A=(24�2f2�m2�) = 4:51 is obtained for both proton and neutron, where
the entire contribution comes from �N loops.[8] The effect of the � enters in
counter-terms at fifth order in standard HBCPT, and has been estimated to be
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Fig. 2. Diagrams which contribute to spin-dependent forward Compton scattering in the� � v = 0 gauge at NLO. The solid dots are vertices from L(2).
so large as to change the sign[8]. The calculation has also been done in an exten-
sion of HBCPTwith an explicit� byHemmert et al.[9] They find that the principal
effect is from the � pole, which contributes -2:4, with the effect of �� loops be-
ing small, -0:2. Clearly the next most important contribution is likely to be the
fourth-order �N piece, and this is the result which is presented here.[10]

Two other groups have also presented fourth order calculations of the spin
polarisabilities recently; Ji et al. calculated 0 and obtained an expression in com-
plete agreement with ours.[11] Gellas et al. have also calculated all four polaris-
abilities.[12] Their calculations agree with ours, but we disagree on what consti-
tutes the polarisabilities; we will say more about this later.

In HBCPT the fixed terms in the amplitudesA3 toA6 are reproduced at lead-
ing (third) order, by the combination of the Born terms and the seagull diagram.
The same terms are produced entirely from Born graphs in the relativistic theory,
but integrating out the antinucleons generates a seagull term in the third-order
Lagrangian which has a fixed coefficient.[8] This illustrates a point to which we
will come back, namely that one cannot determine by inspection which graphs in
HBCPT are one-particle reducible. The loop diagrams of Fig. 1 have contributions
of order!which cancel and so do not affect the LET, while the!3 terms give the
polarisabilities at this order.

At NLO, the diagramswhich contribute are given in Fig. 2. In the Breit frame,
only diagrams 2a-h contribute, and there can be no seagulls at this order. It fol-
lows that there are no undetermined low-energy constants in the final ampli-
tude.When the amplitudes are Taylor expanded, there are contributions at order! and!3. The former do not violate the LETs, however. The third-order contribu-
tions to the LETs actually involve the bare values of � which enter in the second-
order Lagrangian. However �v has a pion loop contribution at the next order:Æ�v = -g2Am�MN=4�f2�. This then contributes to the fourth-order Compton scat-
tering amplitude. Reproducing these terms is one check on our calculations. The
order !3 pieces give the polarisabilities. The requirement 5 + 2 + 24 = 0 is
satisfied, which provides another non-trivial check on the results.
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The loop contributions to the polarisabilities to NLO are1 = �emg2A24�2f2�m2� �1 - �m�8MN �8 + 5�3��2 = �emg2A48�2f2�m2� �1 - �m�4MN �8 + �v + 3(1 + �s)�3��3 = �emg2A96�2f2�m2� �1 - �m�4MN �6 + �3��4 = �emg2A96�2f2�m2� �-1 + �m�4MN �15 + 4�v + 4(1 + �s)�3��0 = �emg2A24�2f2�m2� �1 - �m�8MN �15 + 3�v + (6 + �s)�3�� (3)

Although the subleading pieces have a factor ofm�=MN comparedwith the lead-
ing piece, the numerical coefficients are often large. The anomalous magnetic mo-
ments are �s = -0:12 and �v = 3:71; with these values the numerical results for
the polarisabilities to fourth order are1 = [-21:3�3℄ + 4:5 - (2:1 + 1:3 �3)2 = 2:3 - (3:1 + 0:7 �3)3 = [10:7�3℄ + 1:1 - (0:8 + 0:1 �3)4 = [-10:7�3℄ - 1:1 + (3:9 + 0:5 �3)0 = 4:5 - (6:9 + 1:5 �3)� = [-42:7�3℄ + 4:5 + (2:7 - 1:1 �3) (4)

The term in square brackets, where it exists, is the third-order t-channel pion
exchange contribution. (There is no fourth-order contribution.)

The NLO contributions are disappointingly large, and call the convergence
of the expansion into question. While the fifth-order terms have also been esti-
mated to be large,[8] this is due to physics beyond �N loops, namely the contri-
bution of the �. Our results show that even in the absence of the �, convergence
of HBCPT for the polarisabilities has not yet been reached.

3 Comments on the definition of polarisabilities

We now return to the difference between our results and those of the Jülich group,
who give expressions for the polarisabilities which are analytically and numer-
ically different from ours. The entire difference comes from the treatment of di-
agram 2g, which we include in the polarisabilities and they omit. The polaris-
abilities are not in fact usually defined as in Eq. 2, but as the first term in the
expansion of the amplitudes after subtraction of the “Born terms”. This removes
the LET terms, but, depending on the model used for the Born graphs, also some!-dependent terms. Gellas et al. argue that the contribution of 2g should also be
removed by this subtraction.
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There are two main objections to this definition. First, it is not model- and
representation-dependent, as the one-particle reducible part of 2g beyond the
LET piece involves an off-shell “formfunction” or “sideways formfactor”, and
as stressed by Scherer [13], these cannot be unambiguously defined. Furthermore
the procedeure Gellas et al. have adopted does not respect Lorentz invariance. At
this order there are terms that vanish in the Breit frame which are in fact gen-
erated by a lowest-order boost of the third-order (fully irreducible) loop ampli-
tude. (In the centre-of-mass frame these show up as pieces with, apparently, the
wrong crossing symmetry: they are even in ! in amplitudes A3 to A6, and start
at !4). However the prescription of Gellas et al. discards the contribution of 2g
to these pieces, violating the boost invariance of the resulting LO+NLO ampli-
tude. (As Meißner explained in his talk, their prescription is to discard the part
of 2g which has the form f(!)=!, where f is analytic. In fact pieces like this also
arise from other diagrams, notably 2f, while diagrams 2a-e, though apparently
irreducible, contribute LET pieces. The distinction between reducible and irre-
ducible in HBCPT is hidden, as mentioned earlier.)

The other objection to excluding so much from the definition of the polaris-
ability is that, even if it is done consistently, it does not correspond to the defi-
nition used in the extraction from fixed-t dispersion relations. There, the polaris-
abilities are related to the integral of the imaginary part of the amplitudes over
the cut, where the amplitudes used have effectively been subtracted at the point
where an intermediate nucleon would be on shell.[4] This can at most change the
spin polarisabilities by something of order �emm-4N , which is small numerically
and is NNLO in HBCPT.

Thus the exclusion of 2g from the “structure constants” such as polarisabili-
ties is neither a consistent definition, nor one that corresponds to dispersion rela-
tion determinations.
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Abstract. The  ! 3� form factor was calculated in a simple–minded constituent model

with a constant quark mass parameter, as well as in the Schwinger-Dyson approach. The

comparison of these and various other theoretical results on this anomalous process, as

well as the scarce already available data (hopefully to be supplemented by more accurate

CEBAF data), seem to favor Schwinger–Dyson modeling which would yield relatively

small low–momentum values of the constituent (dynamically dressed) quark mass func-

tion.

The Abelian-anomalous �0 !  amplitude is exactly [1,2] T2� (m� = 0) =e2N=(12�2f�) in the chiral and soft limit of pions of vanishing mass m�. On
similarly fundamental grounds, the anomalous amplitude for the (q)! �+(p1)�0(p2)�-(p3) process, is predicted [3] to beF3� (0; 0; 0) = 1ef2� T2� (0) = eN12�2f3� ; (1)

also in the chiral limit and at the soft point, where the momenta of all three pi-
ons vanish: fp1; p2; p3g = f0; 0; 0g. While the chiral and soft limit are an excellent
approximation for �0 ! , the already published [4] and presently planned
Primakoff experiments at CERN [5], as well as the current CEBAF measurement
[6] of the (q)! �+(p1)�0(p2)�-(p3), involve values of energy and momentum
transfer which are not negligible compared to typical hadronic scales. This gives
a lot of motivation for theoretical predictions of the  ! 3� amplitude for non–
vanishing fp1; p2; p3g, i.e., the form factor F3� (p1; p2; p3). We calculated it as the
quark “box”-amplitude (see Fig. 1) in the two related approaches [7,8] sketched
below.

In our Ref. [7], the intermediate fermion “box” loop is the one of “simple”
constituent quarks with the constant quark mass parameter M. The isospinor	 = (u; d)T of the light constituent quarks couple to the isovector pions �a
through the pseudoscalar Yukawa coupling g5�a. Its constant quark-pion cou-
pling? Talk delivered by Dubravko Klabučar?? E-mail: klabucar@phy.hr
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Fig. 1. One of the box diagrams for the process (q) ! �+(p1)�0(p2)�-(p3). The other

five are obtained from this one by the permutations of the vertices of the three different

pions.

strength g is related to the pion decay constant f� = 92:4MeV through the quark-
level Goldberger-Treiman (GT) relation g=M = 1=f�. The result of this calculation
also corresponds to the form factor, in the lowest order in pion interactions, of the
sigma-model and of the chiral quark model. In Ref. [7], we give the analytic ex-
pression for the form factor in terms of an expansion in the pion momenta up to
the order O(p8) relative to the soft point result, and also perform its exact nu-
merical evaluation. The latter predictions of this quark loop model [7] are given
[normalized to the soft-point amplitude (1)] in Fig. 2 by the long-dashed curve
forM = 330MeV, by the line of empty boxes forM = 400MeV, and by the line
of crosses for the large valueM = 580MeV. Note that in the lowest order in pion
interactions, they are also the form factors of the �-model and of the chiral quark
model.

Our second Ref. [8] employs the Schwinger-Dyson (SD) approach [9], which
is consistent both with the chiral symmetry constraints in the low-energy domain
and with the perturbative QCD in the high-energy domain. In this approach,
quarks in the fermion loop do not have free propagators with the simple-minded
constant constituent massM. Instead, the box loop amplitude is evaluated with
the dressed quark propagatorS(k) = 1ik=A(k2) +m+ B(k2) � Z(k2)i k= +M(k2) (2)

containing the momentum-dependent, mostly dynamically generated quark mass
function M(k2) following from the SD solution for the dressed quark propaga-
tor (2). The explicit chiral symmetry breaking m(� 2 MeV in the present model
choice [10,8]) is two orders of magnitude smaller than the quark mass function at

small momenta, where it corresponds to the notion of the constituent quark mass.
Indeed, in Refs. [10,8] as well as in the model choice reviewed in our Ref. [11],
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Fig. 2. Various predictions for the dependence of the normalized 3� form factor eF3� on

the Mandelstam variable s � (p1 + p2)2. The kinematics is as in the Serpukhov measure-

ment (which provided4 the shown data point): the photon and all three pions are on shell,q2 = 0 and p21 = p22 = p23 = m2�.M(k2 � 0) � 300 to 400 MeV. On the other hand, since already the present–
day SD modeling is well–based [9] on many aspects of QCD, such SD–generatedM(k2) should be close to the true QCD quark mass function.

SD approach employs the Bethe–Salpeter (BS) bound–state pion–quark–anti-
quark vertex ��a(k; p�a) (here, in Fig. 1, instead of the aforementioned momen-
tum–independent Yukawa coupling). The propagator (2) is consistent with the
solution for the BS solution for ��a(k; p�a), and then, in this approach, the light
pseudoscalar mesons are simultaneously the quark-antiquark bound states and
the (quasi) Goldstone bosons of dynamical chiral symmetry breaking [9]. Thanks
to this, and also to carefully preserving the vector Ward-Takahashi identity in the
quark-photon vertex, the both fundamental anomalous amplitudes T2� (0) andF3� (0; 0; 0) for the respective decays �0 !  and  ! �+�0�-, are evaluated
analytically and exactly in the chiral limit and the soft limit [10]. (Note that repro-
ducing these results even only roughly, let alone analytically, is otherwise quite
problematic for bound-state approaches, as discussed in Ref. [11].)

In Fig. 2, the solid curve gives our 3� form factor obtained in the SD ap-
proach for the empirical pion mass, m� = 138:5 MeV, while the dashed curve
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gives it in the chiral limit, m� = 0 = m. To understand the relationship be-
tween the predictions of these two approaches, one should, besides the curves
in Fig. 2, compare also the analytic expressions we derived for the form factors
[esp. Eqs. (20)–(21) in Ref. [8] and analogous formulas in Ref. [7]]. This way, one
can see, first, why the constant, momentum-independent term is smaller in the
SD case, causing the downward shift of the SD form factors with respect to those
in the constant constituent mass case. Second, this constant term in the both
approaches diminishes with the increase of the pertinent mass scales, namelyM in the constant-mass case, and the scale which rules the SD–modeling and
which is of course closely related to the resulting scale of the dynamically gener-

ated constituent mass M(k2 � 0). Finally, the momentum–dependent terms are
similar in the both approaches; notably, the coefficients of the momentum expan-
sions (in powers of pi � pj) are similarly suppressed by powers of their pertinent
scales. This all implies a transparent relationship betweenM(k2) at small k2 and
the 3� form factor, so that the accurate CEBAF data, which hopefully are to
appear soon [6], should be able to constrain M(k2) at small k2, and thus the
whole infrared SD modeling. Admittedly, we used the Ball–Chiu Ansatz for the
dressed quark–photon vertex, but this is adequate since Ref. [12] found that for-0:4GeV2 < q2 < 0:2GeV2, the true solution for the dressed vertex is approx-
imated well by this Ansatz plus the vector–meson resonant contributions which
however vanish in our case of the real photon, q2 = 0. Therefore, if the experi-
mental form factor is measured with sufficient precision to judge the present SD
model results definitely too low, it will be a clear signal that the SD modeling
should be reformulated and refitted so that it is governed by a smaller mass scale
and smaller values ofM(k2 � 0).

The only alreadyavailable data, the Serpukhov experimental point [4] (shown
in the upper left corner of Fig. 2), is higher than all theoretical predictions and is
probably an overestimate. However, the SD predictions are farthest from it. In-
deed, in the momentum interval shown in Fig. 2, the SD form factors are lower
than those of other theoretical approaches (for reasonable values of their param-
eters) including vector meson dominance [13] (the dotted curve) and of chiral
perturbation theory [14] (the dash-dotted curve). Therefore, even the present ex-
perimental and theoretical knowledge indicates that the momentum–dependent
mass function in the SD model [10] we adopted [8], may already be too large
at small k2, where its typical value for light u; d quarks is M(k2 � 0) � 360
MeV. Note that this value is, at present, probably the lowest in the SD–modeling
except for the model reviewed in Ref. [11], which has very similar M(k2) at
low k2. (Some other very successful [9] SD models obtain even higher values,M(k2 � 0) � 600 MeV and more, which would lead to even lower 3� transi-
tion form factors.) It is thus desirable to reformulate SD phenomenology using
momentum–dependent mass functions which are smaller at low k2. This con-
clusion is in agreement with recent lattice QCD studies of the quark propagator
which find [15]M(k2 = 0) = 298 � 8MeV (form = 0).
Acknowledgment: D. Klabučar thanks the organizers, M. Rosina and B. Golli,
for their hospitality and for the partial support which made possible his partic-
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Nuclear matter and hypernuclear states calculated

with the new SU6 Quark Model Kyoto-Niigata

potential?
Michio Kohno1??, Y. Fujiwara2, C. Nakamoto3 and Y. Suzuki41Physics Division, Kyushu Dental College, Kitakyushu 803-8580, Japan2Department of Physics, Kyoto University, Kyoto 606-8502, Japan3Suzuka National College of Technology, Suzuka 510-0294, Japan4Department of Physics, Niigata University, Niigata 950-2181, Japan

Abstract. Nuclear matter saturation curves and hyperon single-particle (s.p.) properties

in nuclear matter are presented, using the new version of the SU6 quark model Kyoto-

Niigata potential. The � s.p. potential is turned out to be repulsive. The s.p. spin-orbit

strength for the � becomes small due to the LS(-) component. With these favorable re-

sults in view of the experimental data, the extension of the quark model predictions to the

strangeness -2 sector is in progress.

The spin-flavor SU6 quark model provides a unified framework to describe theNN and YN interactions. Because of the scarcity of the experimental informa-
tion in the strangeness sector it is interesting and valuable to discuss quantitative
predictions of the quark model potential. In refs. [1,2] we presentedG-matrix cal-
culations for theNN,�N and �N interactions in nuclear matter, using the Kyoto-
Niigata potential FSS [3,4]. As Fujiwara explained in his talk in this workshop, we
upgraded the FSS to the new version fss2 to remedy the insufficient description
at higher energies by incorporating the momentum dependent Bryan-Scott terms
and vector mesons.

Since the quark model potential is defined in a form of RGM kernel, we first
define partial wave Born amplitudes in momentum space by numerical angle in-
tegration. This amplitude is applied to solve the Bethe-Goldstone equation. Nu-
clear matter saturation curves with the QTQ and the continuous choices for in-
termediate spectra are shown in Fig. 1, compared with the results from the Paris
[5] and the Bonn-B [6] potentials. The result demonstrates that the quark model
potential works as well as the sophisticated OBEP in spite of the different descrip-
tion of the short-ranged repulsive interaction.

The s.p. potentials U(k) of N, � and � calculated by the G-matrices with the
continuous choice for intermediate spectra are shown in Fig. 2. It is noted that the� s.p. potential turns out to be repulsive, reflecting the characteristic repulsion in
the 3S1 +3D1 channel of the isospin 3/2, which is in line with the recent analysis
[7] of the (K-; ��) experimental spectra.? Talk delivered by Michio Kohno?? E-mail: kohno@kyu-dent.ac.jp
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the Nijmegen NSC potential [9] are also

shown.

Another interesting quantity is the strength of the s.p. spin-orbit potential,
which is characterized by the strength SB in the Thomas form:U`sB (r) = -�2 SB 1r d�(r)dr ` � � :
The quark model description of the YN interaction contains the antisymmetric
spin-orbit (LS(-)) component which originates from the Fermi-Breit LS interac-
tion. The large cancellation between the LS and LS(-) contributions in the isospinI = 1=2 channel leads to a small s.p. spin-orbit potential for the �, S�=SN � 0:26,
which is favourably compared with recent experimental data. The short-range
correlation is also found to reduce the S�=SN. On the other hand S�=SN � 0:54.
Detailed accounts of the s.p. spin-orbit strengths are reported in ref. [2].

Encouraged by these successful predictions of the quark model NN and YN
interactions, we are now preparing the studies of the effective interactions in the��-��-�N channel and the multi � hyperonic nuclear matter.
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Exact treatment of the Pauli operator in nuclear

matter?
Michio Kohno1??, K. Suzuki2, R. Okamoto2 and S. Nagata31Physics Division, Kyushu Dental College, Kitakyushu 803-8580, Japan2Department of Physics, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan3Department of Applied Physics, Miyazaki University, Miyazaki 889-2192, Japan

Abstract. Exact formulae are derived for the matrix element of the Pauli operatorQ in the

Bethe-Goldstone equation and the binding energy per particle in nuclear matter. Numer-

ical calculations are carried out, using the Bonn B potential and the quark model Kyoto-

Niigata potential fss2. The exact treatment of the operator Q brings about non-negligible

attractive contribution to the binding energy compared with the standard angle average

approximation. However the difference is rather small, which quantitatively demonstrates

the good quality of the angle average prescription in nuclear matter calculations.

The Pauli principle plays an essential role in the nucleon-nucleon scattering in
nuclear medium. It constrains single particle momenta of intermediate two par-
ticles to be above the Fermi momentum kF. The Pauli operator Q is defined asQ = 12X�� j��ih��j �(k� - kF)�(k� - kF) :
The operator Q depends not only on the magnitude of total and relative mo-
menta of scattering two nucleons but also on their relative angles. Properties of
this angular dependence, owing to which partial waves with different angular
momenta are coupled, were investigated in the early stage of the development
of the Brueckner theory. Werner presented explicit coupled equations in 1959 [1].
However, since the numerical calculations are rather involved, the standard angle
average approximation has been introduced to avoid the difficulty.

Thematrix element of the operatorQ between angular-momentum-coupling
states is given ashKk(`1S1)J1M1T1Tz1jQjK 0k 0(`2S2)J2M2T2Tz2i= Æ(K-K 0)Æ(k - k 0)k2 ÆS1S2ÆT1T2ÆTz1Tz2Q(`1J1M1; `2J2M2 : S1T1kK�K�K) :
Wederived [2] useful analytic expressions for theQ(`1J1M1; `2J2M2 : S1T1kK�K�K)
asQ(`1J1M1; `2J2M2 : STkK�K�K)? Talk delivered by Michio Kohno?? E-mail: kohno@kyu-dent.ac.jp



50 M. Kohno= f`1ST f`2ST f Æ`1`2ÆJ1J2ÆM1M2 x0 + XL>0;L=even

(-1)S+M1p4� ^̀1 ^̀2 Ĵ1 Ĵ2L̂3�h`10`20jL0ihJ1 -M1J2M2jLMiYLM(�K; �K)W(`1J1`2J2; SL)[PL+1(x0) - PL-1(x0)℄g ;
where �K and �K are the polar angles of the c.m. momentum K, ^̀� p2` + 1,f`ST � 1 - (-1)`+S+T2 and x0 = 8>><>>: 0 for k <qk2F - K2=4;K2=4+k2-k2FKk for

qk2F - K2=4 < k < kF + K=2;1 otherwise.

We also presented practical expressions for the nucleon single particle potential,
based on which numerical calculations of the ground state energy were carried
out.
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Fig. 1. Energies per nucleon in symmetric nuclear matter as a function of the Fermi mo-

mentum kF: (a) Bonn-B potential [3] and (b) quark model potential fss2 [4].

Calculated saturation curves with the Bonn B potential [3] and the new ver-
sion of the quark model Kyoto-Niigata potential fss2 [4] are shown in Fig. 1,
where results with the exact Pauli operator and the angle averaged one are com-
pared. The exact treatment of the Pauli operator brings about attractive contri-
butions to the binding energy per nucleon at any nuclear densities. However the
difference is rather small, although the results somewhat depend on the nucleon-
nucleon interaction employed. This quantitatively confirms the good quality of
the angle average approximation. The same conclusion was obtained by Schiller,
Müther and Czerski [5]. It is suggested that the angle average treatment of the
Pauli operator in considering more than three-body correlations is reliable.
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The new driving mechanism for nuclear force: lessons

of the workshop?
Vladimir I. Kukulin??
Institute of Nuclear Physics, Moscow State University, 119899 Moscow, Russia

Abstract. Instead of the Yukawa mechanism for intermediate- and short-range interac-

tion, some new approach based on formation of the symmetric six-quark bag in the statej(0s)6[6℄X; L = 0i dressed due to strong coupling to �, � and � fields are suggested. This

new mechanism offers both a strong intermediate-range attraction which replaces the ef-

fective �-exchange (or excitation of two isobars in the intermediate state) in traditional

force models and also short-range repulsion. Simple illustrative model is developedwhich

demonstrates clearly how well the suggested new mechanism can reproduce NN data.

Some important lessons of the workshop discussions have been included in the talk.

It was found in recent years that the traditional models for NN forces, based
on the Yukawa concept of one- or two-meson exchanges between free nucleons
even at the quark level lead to numerous disagreements with newest precise ex-
perimental data for few-nucleon observables (especially for spin-polarised par-
ticles) [1–3]. There are also various inner inconsistencies and disagreements be-
tween the traditional NN force models and predictions of fundamental theories
for meson-baryon interaction (e.g. for meson-nucleon cut-off factors). All these
disagreements stimulate strongly new attempts to develop alternative forcemod-
els based either on chiral perturbation theory or a new quark-meson models.

Our recent studies in the field [1–3] have led us to a principally new mecha-
nism for intermediate- and short-range NN forces – the so called ”dressed” bag
mechanism which is able to explain the failure of the traditional Yukawa ex-
change models and also to solve many long-standing puzzles in the field. This
mechanism has good resources in explanation of many fundamental difficulties
of modern hadronic physics, e.g. the puzzles in baryon spectroscopy (e.g. normal
ordering in �-sector and inverse ordering in nucleon sector for excited negative
and positive parity states), the complicated interplay between NN short-range
repulsion and intermediate range attraction, the ABC-puzzle in 2�-production inpp and pd collisions etc.

The new model is based on the important observation [4] that two possible
six-quark space symmetries in even NN partial waves (for illustration we con-
sider here the S-wave only), viz. js6[6℄L = 0i and js4p2[42℄L = 0i correspond
to the states of different nature. The first states have almost equal projections? The respective original work included in the talk was done jointly with Drs.

I.T.Obukhovsky, V.N.Pomerantsev and Prof. A. Faessler?? E-mail:kukulin@nucl-th.sinp.msu.ru
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into the NN, �� and CC channels and thus correspond to bag-like intermediate
states while the states of second type are projected mainly onto NN channel and
thus can be considered as clusterised NN states with nodal NN relative motion
wavefunctions. In the present work we develop this picture much further on the
quark-meson microscopic basis and derive the microscopic NN transition ampli-
tudes through six-quark +2� intermediate states in s-channel (see Fig. 1).

The transition is accompanied by a virtual emission and subsequent absorp-
tion of two tightly correlated pions by diquark pairs or, alternatively, by two 1p-
shell quarks when they jump from the 1p- to the 0s-shell orbit or vice versa. These
two pions can form both the scalar � and vector � mesons which surround the
symmetric six-quark bag.
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Fig. 1. The graph illustrates two sequential �-meson emissions and absorptions via an in-

termediate �- (or �-) meson cloud and the generation of a symmetric six-quark bag.

It follows from previous studies (see e.g. [5]) for chiral symmetry restoration
effects in multiquark systems or in high density nuclear matter that some phase
transition happens when the quark density or the temperature of the system is
increased, which leads to a (partial) restoration of the broken chiral symmetry.
The consequence of the above restoration is a strengthening of the sigma-meson
field in the NN overlap region and reduction of the constituent quark mass. This
could be modeled by ”dressing” of the most compact six-quark configurationsjs6[6℄XL = 0i and js5p[51℄XL = 1i inside the NN overlap region with an effective
sigma-meson field. The resulting scalar- and vector-meson clouds will stabilize
the multi-quark bag due to a (partial) chiral symmetry restoration effect in the
dense multi-quark system and thus enhance all the contributions of such a type.
Thus, the picture ofNN interaction emerged from the model can be referred to as
the 6q ”dressed” bag (DB) model for baryon-baryon interaction [1–3].
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The light ”�” or a similar ”scalar-isoscalar meson” with mass m � 300 MeV
is assumed to exist only in a high density environment and not in the vacuum,
contrary to the � and � mesons. This mechanism, being combined with an addi-
tional orthogonality requirement[6], can describe both the short-range repulsion
and the medium range attraction and can replace the t-channel exchange by �-
and!-mesons in the conventional Yukawa-type picture of the NN force.

The direct calculation of the multiloop diagram on Fig. 1 [1,2] using quark
pair-creation model results for S- and D-partial waves (in NN-channel) in a sep-
arable operator of form:VL0LE (r0; r) =  g20G00(E)j2s(r0)ih2s(r)j g0g2G02(E)j2s(r0)ih2d(r)jg2g0G20(E)j2d(r0)ih2s(r)j g22G22(E)j2d(r0)ih2d(r)j ! ; (1)

where the generalised propagators Gll 0(E) are related to the DB intermediate
state [1,2]. The interaction given by Eq.(1) can be interpreted as an effective NN
potential in our model.

In accordance with this, the contribution of mechanism displayed in the dia-
gram in FIG. 1 to theNN interaction in the S andD partial waves can be expressed
through the matrix element:AL0LNN!d0+�!NN = Z d3r0d3r	L0NN�(E; r0)VL0LE (r0; r)	LNN(E; r) ; (2)

where 	LNN and 	L 0NN are the “proper” nodal NN scattering wave functions in
initial and final state respectively.

The interaction operator (1) mixes S- and D-partial waves in the triplet NN
channel and thus it leads to a specific tensor mixing with the range � 1 fm (about
that of the intermediate DB state). Thus the proposed new mechanism for NN
interaction induced by the intermediate dressed six-quark bag js6+ 2�i results in
a specific matrix separable form of interaction with nodal (in S- in P-partial waves)
form factors and a specific tensor mixing of new type [7].

An important question is arising in this development, what is an interrela-
tion between the new above mechanism and the traditional picture of NN inter-
action emerged from RGM. Let us to remind that the consistent RGM description
(i.e. with no �-meson exchange between quarks), as was additionally confirmed
by Fl. Stancu in this Workshop, leads to purely repulsive NN interaction. The
strength of the repulsion is likely of right magnitude because it reproduces well
the slope of NN S-wave phase shifts at E > 200 MeV. Hence the new mecha-
nism for NN interaction considered here, which leads to a strong intermediate-
range attraction, being combined to the above RGM picture, is able to provide
full quark-meson microscopic framework for quantitative description of funda-
mental nuclear force.

Moreover, the proposed model will lead to the appearance of strong 3N and4N forcesmediated by 2� and � exchanges [3]. In thisWorkshop Prof.Moszkowski
has suggested to use specific features of 3N force resulted from the new model to
explain the saturation properties of nuclear matter. It should emphasized in this
connection that the 3N force followed from the new model has a new feature of
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“substitution” when the nuclear matter density arises. In this case the enhance-
ment of the attractive 3N force contribution should be accompanied by the re-
spective weakening two-body attractive contributions and vice versa. So by this
specific mechanism at the sufficiently high density the nuclear matter dynam-
ics will be governed mainly by three- and four-body nuclear forces rather than
two-body contributions. And this specific “substitution” mechanism leads, as is
evident, to relativistic Walecka model, in contrast to conventional force models.

The new 3N force includes both central and spin-orbit components. Such a
spin-orbit 3N force is extremely desirable to explain the low energy puzzle of
the analyzing power Ay in N-d scattering and also the behavior of Ay in the3N system at higher energies EN ' 250 � 350 MeV at backward angles. The
central components of the 3N and 4N forces are expected to be strongly attractive
and thus they must contribute to 3N and (may be) 4N binding energies possibly
resolving hereby the very old puzzle with the binding energies of the lightest
nuclei.

Future studies must show to what degree such expectations can be justified.
The author thanks greatly Profs. Mitja Rosina and Bojan Golli for very nice

hospitality during the Workshop and warm informal atmosphere for discussions
which helped strongly to elucidate many key problems in the field. He also ap-
preciate the Russian Foundation for Basic Research (grant RFBR-DFG No.92-02-
04020) and the Deutsche Forschungsgemeinschaft (grant No. Fa-67/20-1) for par-
tial financial support.
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NJL Model and the Nuclear Tightrope

Steve A. Moszkowski?
UCLA, Los Angeles, USA

1 Introduction

Tightrope is balancing act. There are actually two aspects to this:
I. Large two nucleon scattering lengths and
II. Small Nuclear Binding Energies relative to Rest Energy.

Both of these were known since the 1930’s. However, the NJL Model can help to
get more basic understanding.

2 Large Two Nucleon Scattering Lengths

Large scattering length = small binding (or antibinding).
For T=0, S=1 (d), we get binding = 2.22 MeV, a = 5.4 fm , while for T=1, S=0 (pp),
we get antibinding = 0.1 MeV, a = -23 fm. Clearly, it requires only a slight change
in the potential to get zero binding.
Splitting (to both sides of tightrope!) is due to spin-dependence. Without it we
would not be here! But its role in quark-nuclear physics is unclear. Neglect spin-
dependence for now.

3 Scalar Meson Exchange with NJL Model

For a review of the NJL model, see Klevansky [1] and Vogl andWeise [2]. We will
not discuss the model here, but only mention two important consequences for the
Sigma (Scalar Meson) Exchange Interaction:
1. The mass of the sigma is: m� = 2mq = 2M=N (1)

so that the q- q̄ forms a state with zero binding relative to the constituent quarks.
(This is if we neglect any explicit chiral symmetry breaking, which means that the
current quark mass, and thus also the pion mass, is neglected.)
2. The strength of the equivalent Yukawa interaction is:g24� � �N; (2)? E-mail: stevemos@ucla.edu



NJL Model and the Nuclear Tightrope 57

(provided the NJL Cutoff is atm�)
This is not far from the strength required to get a = 1 and Nb = N-12 deeply
bound states.
Some other points: OPEP (with empirical pion mass) gives only 30 percent of
binding.
We need a repulsion to get rid of deeply bound states. Goldstone-Boson exchange
can lead to such a repulsion, see Bartz and Stancu [3], though it is not the only
possible explanation.

4 Small Nuclear Binding Energies Relative to Rest Energy

4.1 Known Results

BE/A of nuclei ranges up to 8.5 MeV.
BE/A of nuclear matter � 16 MeV.
Rest Energy/A = 938 MeV.
Binding energies are only about 1 percent of rest energies!

4.2 NJL Model For Nuclear Matter

We are actually describing quark matter. There is no confinement or quark clus-
tering in the NJL model.
Consider first a toy model in two dimensions.T = g�2 for small � (3)W = -(g- g)�2 (4)

This expression forW applies for � up to the valuewheremq = 0. g is the critical
value of g necessary to just give two body binding in 2D.W = 1�1=2 - 2 + 3�-1 for larger� (5)

We get saturation, but with zero quark mass!

For a more realistic model in three dimensions, the calculations are more compli-
cated, but one still gets saturation with zero quark mass, similar to 2D.

4.3 Generalized NJL Model (With J. da Providencia)

Assume q - q̄ coupling gets stronger with density:gs = g[1-b(g-g)2�2℄ This still preserves chiral symmetry (with dependence on�2). Effective scalar coupling gs = (b+1)(g-g) but we need vector meson with
coupl. gv = b(g-g) to get same low � result. We (somewhat arbitrarily) identify
b with b = Nb = N-12 We can solve the Generalized NJL model numerically.
Note that the correction opposes chiral symmetry restoration.
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We can make a low density expansion. For energy per particle and neglect-
ing all kinetic energies: Wm � -g�2 + bg2�2 + ::: (6)WM � - g�2N + (N - 1)g2�22N + ::: (7)

Here m denotes the constituent quark mass andM = Nm the nucleon mass. For
the effective mass, which is the ratio of either mass in the medium to that in free
space, we have: m� = 1 - g� + ::: (8)g�0 = 12(N - 1) = (1 -m�) (9)

Apart from kinetic energies, the saturation energy per nucleon is:W0M = - 18N(N - 1) (10)

For N = 3;W0 = -20MeV (CLOSE to empirical value!)

4.4 Connection with RelativisticMean Field Theory at Low Density

In the relativistic mean field approach, the nuclear matter energy per particle,
(neglecting kinetic energy) is given by:W(m�; �̂)M = m� - 1 + Bv �̂2 + (1 -m�)22Bs�̂m��s (11)

Herem� denotes the effectivemass in units of the free nucleonmass. TheWalecka
and Zimanyi-Moszkowski derivative coupling models [4] correspond to �s = 0; 2
respectively. If B� 1, then Bv � Bs � B. We then obtain, for small densities:m� = 1 - B�̂ + ::: (12)WM = �sB22 (-2�̂ + �̂2) + ::: (13)

Comparing the effective mass, with that from the generalized NJL model, we see
that: B = 12(N - 1) (14)W0 = -M�sB22 = -M �s8(N - 1)2 (15)

For �s = 1, we reproduce the results of the generalized NJL model, at least
for large N. This is intermediate between the original Walecka model and the
derivative coupling model and is close to the hybrid model used by Glenden-
ning, Weber and S.M. [5]. Of course, the mean field models, unlike the general-
ized NJL model, lead to finite energies at all densities, but the GNJL is slightly
less phenomenological.
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5 Open Problems

NJL is like a quark shell model, see Petry et. al. [6] and Talmi [7]. How to include
effect of quark clustering, without losing NJL simplifications?
Relation of Effective Vector repulsion to short range correlations?
Can Goldstone Boson Exchange do the job, or do we need non-localities, as in
Moscow potential?
Where does the density dependence of gs come from?
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Treatment of three-quark problems in Faddeev

theory?
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We propose a method that allows for the efficient solution of the three-body Fad-
deev equations in the presence of infinitely rising confinement interactions. Such
a method is useful in calculations of nonrelativistic and especially semirelativis-
tic constituent quark models. The convergence of the partial wave series is ac-
celerated and possible spurious contributions in the Faddeev components are
avoided.

We start from the total Hamiltonian of a nonrelativistic or a semirelativistic
three-quark system, which can be written asH = H0 + v� + v� + v; (1)

where H0 is the three-body kinetic-energy operator and vÆ = vÆ + vhfÆ represents
the mutual quark-quark interactions containing both the confinement (vÆ) and
hyperfine (vhfÆ ) potentials in the subsystems Æ = �;�; 

In the nonrelativistic case we may express the kinetic-energy operator by
four equivalent formsH0 = p2�2�� + q2�2M� = p2�2�� + q2�2M� = p22� + q22M = 3Xi=1 k2i2mi ; (2)

i.e. either through individual particle momenta ki in the center-of-mass system or
in terms of relative momenta pÆ and qÆ conjugate to the usual Jacobi coordinatesxÆ and yÆ, respectively (Æ = �;�; ). In Eq. (2),mi denotes the individual particle
mass, �Æ the reduced mass in the two-body subsystem Æ, and MÆ the reduced
mass of this subsystem with the third particle Æ. In the semirelativistic case the
kinetic-energy operator takes the formH0 = 3Xi=1qk2i +m2i ; (3)

where again ki are the individual particle three-momenta in the frame with total

three-momentum P = P3i=1 ki = 0. We note that a Hamiltonian as in Eq. (1) to-
gether with the relativistic kinetic-energy operator (3) represents an allowedmass? Talk delivered by Zoltan Papp?? E-mail: zpapp@physics.csulb.edu
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operator in the point-form formalism of Poincaré-invariant quantum mechanics,
irrespective of the dynamical origin of the interactions.

Strictly speaking the standard Faddeev scheme applies only for potentials
falling of fast enough at large distances. This makes it necessary to modify the
Faddeev formalism. Otherwise one risks unpleasant properties in the Faddeev
components. In particular, for infinitely rising potentials spurious contributions
are picked up and also the partial-wave series becomes slowly convergent.

One can circumvent these difficulties by performing the Faddeev decompo-
sition in such a way that all the long-range potentials are included in a modified
channel Green’s operator. Specifically, in our case at least the long-range parts of
the confinement interactions in all subsystems �;�; and  should be included in
the modified channel resolvent. One can attain this goal by adopting a different
splitting of the total Hamiltonian intoH = H + ṽ� + ṽ� + ṽ; (4)

where H = H0 + ṽ� + ṽ� + ṽ (5)

contains, besides the kinetic energy, the long-range parts ṽÆ of the confining inter-
actions vÆ in all subsystems. The potentials ṽÆ are the residual interactions con-
taining the hyperfine potentials and the short-range parts of the confinement.

Based on Eqs. (4) and (5) we now decompose the total wave function intoj	i = j ̃�i + j ̃�i+ j ̃i; (6)

where the modified Faddeev components are defined asj ̃�i = G(E)ṽ�j	i (7)

with G(E) = (E -H)-1: (8)

They fulfill the integral equationsj ̃�i = G�(E)ṽ�(j ̃�i + j ̃i); (9)

with �;�;  again a cyclic permutation. The new channel resolvent is given byG�(E) = (E -H - ṽ�)-1 : (10)

It exhibits just the desired property of including the long-range confining inter-
actions in all subsystems �;�; . Only the short-range potential ṽ� remains in
the modified Faddeev equations (9). Specifically, since now G� contains also the
long-range parts ṽ� + ṽ of the confinement interactions in channels � and ,
the dependence of the component j ̃�i on the Jacobi coordinate yÆ can never be-
come a free motion. Rather the proper confinement-type asymptotic conditions
are imposed on j ̃�i. As a result, spurious contributions are avoided in the in-
dividual Faddeev components, and at the same time the partial-wave expansion
converges much faster.
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The splitting of the interactions in Eqs. (4) and (5) has to be done with care.
In general, the interaction parts put into H must not produce any bound state.
Otherwise the proper behavior of the Faddeev components j ̃�i would again be
spoiled. Suppose the potentials contained in H would produce bound states.
Then at the corresponding energies, the resolvent G(E) would become singular.

Consequently, according to Eq. (7), any large Faddeev component je �i could be
generated even if the full solution j	i remains infinitesimally small. Therefore,
besides the true physical solutions of the Hamiltonian H, Eqs. (9) would also pro-
duce spurious solutions associated with the discrete eigenstates of the Hamilto-
nianH. These spurious solutions would occur for any ṽ�, thus having no bearing
for the physical spectrum of H. Of course, when adding up the three individual
Faddeev components these spurious solutions would cancel out. However, they
would cause numerical instabilities in the practical calculations. Therefore they
should be avoided by not allowing H to produce any bound states.

In the case of confinement interactions the above requirement cannot strictly
be met, since even the longest-range parts of the infinitely rising potential gener-
ate bound states. However, there is a practical way out: one needs to eliminate the
bound states generated by H only in the region of physical interest. Outside that
domain, i.e. reasonably far above the physical spectrum, they do not matter. In
practice, upon splitting the interactions in the Hamiltonian (4) an auxiliary short-
range potential is introduced with no effect on the physically interesting states.
It only serves the purpose of cutting off the confinement interaction at short and
intermediate distances thus avoiding low-lying bound states of H.

We solve Eqs. (9) along the Coulomb-Sturmian (CS) separable expansion ap-
proach. The further details of the method and the demonstration of its power in
the example of the Goldstone-boson-exchange chiral quark model for baryons is
given in Refs. [1℄ and [2℄.
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News from the Goldstone-Boson-Exchange Chiral

Quark Model
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Austria

The chiral constituent quark model based on Goldstone-boson-exchange as the
effective hyperfine interaction between constituent quarks has performedwell for
the description of the spectroscopy of all light and strange baryons [1]. Originally
the model was constructed with the spin-spin component of the pseudoscalar
exchange only [2]. Recently it has been extended to include all force components
(central, tensor, spin-orbit) and furthermore vector and scalar exchanges [3,4].
Also, rigorous semirelativistic solutions of the three-quark problem have been
provided [5]. We discuss the present status of the development of the Goldstone-
boson-exchange chiral quark model.

Themodel, in different variants, has already been applied (by several groups)
to various problems beyond baryon spectroscopy. One has thus obtained valu-
able insight into its performance more generally in low- and intermediate-energy
hadron processes. We summarize the corresponding results and discuss them in
comparison to other constituent quark models and/or (effective) approaches to
low-energy QCD.
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Few-body problems inspired by hadron spectroscopy

Jean-Marc Richard?
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Abstract. I discuss some results derived in very simplifiedmodels of hadron spectroscopy,

where a static potential is associated with non-relativistic kinematics. Several regularity

patterns of the experimental spectrum are explained in such simple models. It is un-

derlined that some methods developed for hadronic physics have applications in other

fields, in particular atomic physics. A few results can be extended to cases involving spin-

dependent forces or relativistic kinematics.

1 Introduction

As discussed in several contributions at this nice workshop, the dynamics of light
quarks is far from being simple, with non-perturbative effects even at short dis-
tances, and highly-relativistic motion of the constituents inside hadrons. Never-
theless, it is interesting to consider a fictitious world, with the hadron spectrum
governed by a simple Hamiltonian where a non-relativistic kinematics is supple-
mented by a static, flavour-independent potential. The regularities derived from
the properties of the Schrödinger equation are similar to these observed in the
actual spectrum. This suggests that the actual QCD theory of quark confinement
should exhibit similar regularities.

One should also notice that several results derived in the context of quark
models of hadrons have been successfully applied to other few-body problems,
in particular in atomic physics.

Another challenge consists of extending theorems on level order, convexity,
etc., to less naive Hamiltonians with spin-dependent forces and relativistic kine-
matics. Some of the first results will be mentioned.

2 Results on mesons

The discovery of 	 and � resonances and their excitations has stimulated many
studies in the quark model. In particular, the successful description of these spec-
tra by the same potential has motivated investigations on the consequences of
flavour independence. The rigorous results have been summarized in the reviews
by Quigg and Rosner and byMartin andGrosse. A few examples are given below,
dealing with energy levels.? E-mail: jmrichar@isn.in2p3.fr
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All potentials models reproduce the observed pattern of quarkonium thatE(1P) < E(2S). Note the notation adopted here, (n; `), in terms of which the
principal quantum number of atomic physics is n + `. It has been proved thatE(n + 1; `) > E(n; ` + 1) if �V > 0, and the reverse if �V < 0. The Coulomb
degeneracy is recovered as a limiting case. The sign of � reflects whether the
chargeQ(r) seen at distance r grows (asymptotic freedom), decreases or remains
constant (Gauss theorem).

This “Coulomb theorem” can be applied successfully tomuonic atoms, which
are sensitive to the size of the nucleus (Q(r)%), and to alkaline atoms whose last
electron penetrates the inner electron shells (Q(r)&).

Another theorem describes how the harmonic oscillator (h.o.) degeneracyE(n+ 1; `) = E(n; `+ 2) is broken. A strict inequality is obtained if the sign of V 00
is constant.

In both the complete Hamiltonian p21=(2m1) + p22=(2m2) + V(r12) or its re-
duced version p2=(2�) + V(r), the individual inverse masses mi or the inverse
reduced mass enter through a positive operator p2, and linearly. It results that
each energy level is an increasing function of this inverse massm-1i or �-1, and
that the ground-state energy (or the sum of first levels) is a concave function of
this variable. There are many applications. For instance, for the ground-state of
the meson with charm and beauty,(bs̄) + (̄) - (s̄) < (b̄) < (bb̄+ ̄)=2: (1)

3 Level order of baryon spectra

For many years, the only widespread knowledge of the 3-body problem was the
harmonic oscillator. This remains true outside the few-body community. The dis-
cussion on baryon excitations is thus often restricted to situations where V =P v(rij), with v(r) = Kr2 + Æv, and Æv treated as a correction.

First-order perturbation theory is usually excellent, especially if the oscilla-
tor strength K is variationally adjusted to minimise the magnitude of the correc-
tions. However, when first-order perturbation is shown (or claimed) to produce
a crossing of levels, one is reasonably worried about higher-order terms, and a
more rigorous treatment of the energy spectrum becomes desirable.

A decomposition better than V =PKr2ij + Æv is provided by the generalised
partial-wave expansion V = V0(�) + ÆV; (2)

where � / (r212 + r223 + r231)1=2 is the hyperradius. The last term ÆV gives a very
small correction to the first levels. With the hyperscalar potential V0 only, the
wave function reads 	 = �-5=2u(�)P[L℄(
), where the last factor contains the
“grand-angular” part. The energy and the hyperradial part are governed byu 00(�) - `(` + 1)�2 u(�) +m[E -V0(�)℄u(�) = 0; (3)

very similar to the usual radial equations of the 2-body problem, except that the
effective angular momentum is now ` = 3=2 for the ground-state and its radial
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excitations and ` = 5=2 for the first orbital excitation with negative parity. The
Coulomb theorem holds for non-integer `. If �V > 0, then E(2S) > E(1P), i.e.,
the Roper comes above the orbital excitation. Note that a three-body potential
cannot be distinguished from a simple pairwise interaction once it is reduced
to its hyperscalar component V0 by suitable angular integration. It also results
from numerical tests that relativistic kinematics does not change significantly the
relativemagnitude of orbital vs. radial excitation energies.

The splitting of levels in the nearly hyperscalar potential (2) is very similar
to the famous pattern of the N = 2 h.o. multiplet, except that the Roper is disen-
tangled. A similar result is found for higher negative-parity excitation: the splitN = 3 levels of the nearly harmonic model are separated into a radially excitedL = 1 and a set of split L = 3 levels.
4 Tests of flavour independence for baryons

The analogue for baryons of the inequality between bb̄, ̄ and b̄ reads.(QQq) + (Q 0Q 0q) � 2(QQ 0q): (4)

Unlike the meson case, it requires mild restrictions on the potentials.
For instance, the equal spacing rule
--�� = ��-�� = ��-� is understood

as follows: the central force gives a concave behaviour, with for instance 
- -�� < �� -��, but a quasi perfect linearity is restored by the spin–spin interaction
which acts more strongly on light quarks. A similar scenario holds for the Gell-
Mann–Okubo formula.

Inequalities can also be written for baryons with heavy flavour, some of them
being more accessible than others to experimental checks in the near future. Ex-
amples are 3(bs) � (bbb) + () + (sss); (5)2(bq) � (bbq) + (q); 2(qq) � (q) + (qqq):
5 Baryons with two heavy flavours

There is a renewed interest in this subject. The recent observation of the (b̄)
mesons demonstrates our ability to reconstruct hadrons with two heavy quarks
from their decay products.

Baryons with two heavy quarks (QQ 0q) are rather fascinating: they combine
the adiabatic motion of two heavy quarks as in J=	 and �mesons with the highly
relativistic motion of a light quark as in flavoured mesons D or B.

Thewave function of (QQq) exhibits a clear diquark clusteringwith r(QQ)�r(Qq) for the average distances. This does not necessarily mean that for a given
potential model, a naive two-step calculation is justified. Here I mean: estimate
first the (QQ) mass using the direct potential v(QQ) only, and then solve the[(QQ)-q℄ 2-body problemusing a point-like diquark. If v is harmonic, one would
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miss a factor 3=2 in the effective spring constant of the (QQ) system, and thus a
factor (3=2)1=2 in its excitation energy.

On the other hand, it has been checked that the Born–Oppenheimer approx-
imation works extremely well for these (QQq) systems, even when the quark
mass ratio Q=q is not very large. This system is the analogue of H+2 in atomic
physics.

6 The search of multiquarks

A concept of “order” or “disorder” might be introduce to study multiquark sta-
bility. This is related to the breaking of permutation symmetry. Consider for in-
stanceH4(x) = 4Xi=1 p2i2m + (1 - 2x)(V12+V34) + (1 + x)(V13+V14+V23+ V24)= HS + xHMS; (6)

where the parameter x measures the departure from a fully symmetric interac-
tion. From the variational principle, the ground-state energy E(x) is maximal atx = 0. In most cases, E(x)will be approximately parabolic, so the amount of bind-
ing below E(0) is measured by jxj.

In simple colour models of multiquark confinement, the analogue of jxj is
larger for the threshold (two mesons) that for a (q̄q̄qq) composite. So a stable
multiquark is unlikely.

For the (Q̄Q̄qq) systems presented by our slovenian hosts, and discussed
earlier by Ader et al., Stancu and Brink, and others, there is another asymme-
try, in the kinetic energy, which now favours multiquark binding. So there is a
competition with the colour-dependent potential.

The methods developed for quark studies has been applied for systematic
investigations of the stability of three-charge and four-charge systems in atomic
physics.
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fluctuations of the quark condensate
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Abstract. The quantum fluctuations of the quark condensate are calculated using a regu-

lated Nambu Jona-Lasinio model. The corresponding quantum fluctuations of the chiral

fields are compared to those which are predicted by an ”equivalent” sigma model. They

are found to be large and comparable in size but they do not restore chiral symmetry.

The restoration of chiral symmetry is prevented by an ”exchange term” of the pion field

which does not appear in the equivalent sigmamodel. A vacuum instability is found to be

dangerously close when the model is regulated with a sharp 4-momentum cut-off.

1 Introduction.

This lecture discusses the modifications of vacuum properties which could arise
due to quantum fluctuations of the chiral field, more specifically, due to the quan-
tum fluctuations of the quark condensate. The latter is found to be surprisingly
large, the root mean square deviation of the quark condensate attaining and ex-
ceeding 50% of the condensate itself. We shall discuss two distinct modifications
of the vacuum: restoration of chiral symmetry due to quantum fluctuations of
the chiral field, as heralded by Kleinert and Van den Boosche [1], and a vacuum
instability not related to chiral symmetry restoration [2].

2 Chiral symmetry restoration due to quantum fluctuations of
the chiral field.

2.1 The linear sigma model argument.

The physical vacuum with a spontaneously broken chiral symmetry is often de-
scribed by the linear sigma model, which, in the chiral limit (m� = 0), has a eu-
clidean action of the form:I = Z d4x�12 (���)2 + 12 (���i)2 + �28 ��2 + �2i - f2��2� (1)? E-mail: ripka@cea.fr
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Classically, we have (for translationally invariant fields):�2 + �2i = f2� (2)

and the vacuum stationary point is:� = f� �i = 0 (3)

We assume that �2 is large enough (and the �-meson is heavy enough) not to
have to worry about the quantum fluctuations of the � field. So we quantize the
pion fieldwhile the � field remains classical.Wemay then say that: �2 = f2�-
�2i �.
Classically,


�2i � = 0 but the quantum fluctuations of the pion fieldmake

�2i � > 0

and therefore �2 < f2�.
Let us estimate the fluctuation


�2i � of the pion field. A system of free pions
of massm� is described by the partition function:Z = Z D (�) e- 12 R d4x�i(-�2�+m2�)�i = e- 12 tr ln(-�2�+m2�) (4)

It follows that:12 Z d4x 
�2i (x)� = -� lnZ�m2� = ��m2� 12tr ln �-�2� +m2�� = 12
 �N2f - 1�Xk<� 1k2 +m2�
(5)

where the sum is regularizedusing a 4-momentum cut-off andwhere
 = R d4x.is
the euclidean space-time volume. In the chiral limitm� = 0, we have:
�2i (x)� = 12
 �N2f - 1�Xk<� 1k2 = �N2f - 1� �216�2 (6)

so that: �2 = f2� - �N2f - 1� �216�2 (7)

If we had evaluated this quantity with a 3-momentum cut-off, we would have

obtained

�2i � = �N2f - 1� �28�2 . Let us pursue with a 4-momentum cut-off. We

have: 
�2i �f2� = �N2f - 1� �216�2f2� (8)

We deduce that chiral symmetry restoration will occur when � = 0, that is, whenh�2i if2� > 1: 
�2i �f2� = �N2f - 1� �216�2f2� > 1 (9)

With f� = 93 MeV and withN2f - 1 = 3 pions, the condition reads:�2 > 12:20 � 10-6 � > 674 MeV (10)

In most calculations which use the Nambu Jona-Lasinio model, this condition is
fulfilled. We conclude that the quantum fluctuations of the pion do indeed restore
chiral symmetry. If we had used a 3-momentum cut-off, chiral symmetry would
be restored when � > 477 MeV.
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2.2 The non-linear sigma model argument.

We now argue that this is precisely what is claimed by Kleinert and Van den
Boosche [1], although it is said in a considerably different language. They argue
as follows. If �2 (and therefore the � mass) is large enough, the action can be
thought of as the action of the non-linear sigma model, which in turn can be
viewed as an action with N2f fields, namely (�; �i), subject to the constraint:�2 + �2i = f2� (11)

The way to treat the non-linear sigma model is in the textbooks [3]. We work with
the action:I� (�; �) = Z d4x�12 (���)2 + 12 (���i)2 + � ��2 + �2i - f2��� (12)

in which we add a constraining parameter �. The action is made stationary with
respect to variations of �. We integrate out the � field, to get the effective action:I� (�) = Z d4x�12 (���)2 + � ��2 - f2���+ 12tr ln �-�2� + �� (13)

The action is stationary with respect to variations of � and � if:�� = 0 �2 = f2� - 12 �N2f - 1�Xk 1k2 + � (14)

So either � = 0 and � 6= 0, in which case we have:�2 = f2� - 12 �N2f - 1�Xk 1k2 (15)

or � 6= 0 and � = 0.
The condition (15) is exactly the same as the condition (7). Thus, the ”stiffness

factor”, discussed in Ref.[1], is nothing but a measure of
h�2i if2� .

3 Quantum fluctuations of the quark condensate calculated in
the Nambu Jona-Lasinio model.

We now show that the quantum fluctuations of the chiral field are indeed large
in the Nambu Jona-Lasinio model, but that chiral symmetry is far from being
restored. The regularized Nambu Jona-Lasinio model is defined in section 4. We
begin by giving some results.

In the Nambu Jona-Lasinio model, the chiral field is composed of a scalar
field S andN2f - 1 pseudoscalar fields Pi. They are related to the quark bilinears:S = V � ̄ � Pi = V � ̄i5�i � (16)
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where V = - g2N is the 4-quark interaction strength. The quark propagator in the
vacuum is: 1k�� +M0r2k (17)

and the model is regularized using either a sharp 4-momentum cut-off or a soft
gaussian cut-off function:rk = 1 if k2 < �2 rk = 0 if k > � (sharp cut-off) (18)rk = e- k22�2 (gaussian regulator) :
Let '0 = M0 be the strength of the scalar field in the physical vacuum. We shall
show results obtained with typical parameters. If we chooseM0 = 300 MeV and� = 750 MeV, then M0� = 0:4. We then obtain f� = 94:6 MeVwith a sharp cut-off
and f� = 92:4 MeV with a gaussian cut-off (in the chiral limit). The interaction
strengths are:V = -9:53 �-2 (sharp cut-off) V = -18:4 �-2 (gaussian cut-off) (19)

and the squared pseudo-scalar field has the expectation value
P2i � = V2D� ̄i5�i �2E (20)

At low q we identify the pion field as:�i =pZ�Pi f� =pZ�M0 (21)

so that, in the Nambu Jona-Lasinio model:
�2i �f2� = V2D� ̄i5�i �2EM20 (22)

where
D� ̄i5�i �2E is the pion contribution to the squared condensate.

3.1 Results obtained for the quark condensate and for the quantum

fluctuations of the chiral field.

Let us examine the values of the quark condensates and of the quantum fluctua-
tions of the chiral field calculated in the chiral limit.� The quark condensate calculated with a sharp cut off is:
 ̄ � 13 = -0:352 �� = 263 MeV (sharp cut-off) (23)

is about 25 % smaller when it is calculated with a soft gaussian regulator:
 ̄ � 12 = -0:280 �� = 210 MeV (gaussian regulator) (24)
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 ̄ � �-contribution �-contribution total

classical -0.04187 0 -0.04187

exchange term 0.00158 -0.00475 -0.00317

ring graphs 0.00014 0.00134 0.00148

total contribution -0.04015 -0.00341 -0.04356

Table 1. Various contributions to the quark condensate calculated with a sharp 4-

momentum cut-off and with M0=� = 0:4. The quark condensate is expressed in units

of �3. 
 ̄ � �-contribution �-contribution total

classical -0.02178 0 -0.02178

exchange term 0.00162 -0.00486 -0.00324

ring graphs 0.00077 0.00228 0.00305

total contribution -0.0193 -0.00258 -0.02197

Table 2. Various contributions to the quark condensate calculated with a gaussian cut-off

function and withM0=� = 0:4. The quark condensate is expressed in units of �3.� The magnitude of the quantum fluctuations of the pion field can bemeasured
by the mean square deviation �2 of the condensate from its classical value:�2 = D� ̄�a �2E- 
 ̄ �2 (25)

The relative root mean square fluctuation of the condensate � is:���
 ̄ ��� = 0:41 (sharp cut-off) �
 ̄ � = 0:77 (gaussian regulator)
(26)

These are surprisingly large numbers, certainly larger than 1=N. The linear
sigma model estimate did give us a fair warning that this might occur.� This feature also applies to the ratio

h�2i if2� = V2
( ̄i5�i )2�M20 which was so cru-

cial for the linear sigma model estimate of the restoration of chiral symmetry.
We find:
�2i �f2� = 0:38 (sharp cut-off) 
�2i �f2� = 0:85 (gaussian regulator) (27)� In spite of these large quantum fluctuations of the chiral field, the quark con-
densates change by barely a few percent. This is shown in tables 1 and 2where
various contributions to the quark condensate are given in units of �3. The
change in the quark condensate is much smaller than 1=N.

3.2 The effect and meaning of the exchange terms.

The tables 1 and 2 show that, among the 1=N corrections, the exchange terms
dominate. The exchange and ring graphs are illustrated on figures 1 and 2. The
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way in which they arise is explained in section 4.1. The exchange graphs con-
tribute 2-3 times more than the remaining ring graphs. Furthermore, the pion
contributes about three times more to the condensate than the sigma, so that the
sigma field contributes about as much to the exchange term as any one of the
pions. However, the exchange term in the pion channel enhances the quark con-
densate instead of reducing it. As a result of this there is a very strong cancellation
between the exchange terms and the ring graphs. This is why the sigma and pion
loops contribute so little to the quark condensate. They increase the condensate
by 4%when a sharp cut-off is used, and by 1%when a gaussian regulator is used.
This is about ten times less than 1=N.

The ring graphs reduce the condensate (in absolute value) in both the sigma
and pion channels. This can be expected. Indeed, the ring graphs promote quarks
from the Dirac sea negative energy orbits (which contribute negative values to
the condensate) to the positive energy orbits (which contribute positive values to
the condensate). The net result is a positive contribution to the condensate which
reduces the negative classical value.

What then is the meaning of the exchange terms? The exchange terms have
the special feature of belonging to first order perturbation theory (see figures 1
and 2). Their contribution to the energy is not due to a modification of the Dirac
sea. It is simply the exchange term arising in the expectation value of the quark-
quark interaction in the Dirac sea.

However, the contribution of the exchange term to the quark condensate
does involve qq̄ excitations. These excitations are due to a modification of the
constituent quark mass which is expressed in terms of quark-antiquark excita-
tions of the Dirac sea. The exchange term is modifying (increasing in fact) the
constituent quark mass and therefore the value of f�.

These results suggest that, in order to reduce the Nambu Jona-Lasinio model
to an equivalent sigma model, it might be better to include the exchange term
in the constituent quark mass, which is another way of saying that, in spite of
the 1=N counting rule, it may be better to do Hartree-Fock theory than Hartree
theory. The exchange (Fock) term should be included in the gap equation. The
direct (Hartree) term is, of course, included in the classical bosonized action.

In the equivalent sigma model, f� is proportional to the constituent quark
mass. Failure to notice that that the constituent quark mass is altered by the ex-
change term is what lead Kleinert and Van den Boosche to conclude erroneously
in Ref.[1] that chiral symmetry would be restored in the Nambu Jona-Lasinio
model. They were right however in expecting large quantum fluctuations of the
quark condensate.

4 The regularized Nambu Jona-Lasinio model.

The condensates quoted in section 3.1 were calculated with a regularized Nambu
Jona-Lasinio model which is defined by the euclidean action:Im (q; q̄) = Z d4x �q̄ (-i���)q +m ̄ -� g22N + j�� ̄�a �2� (28)
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The euclidean Dirac matrices are � = � = (i�;). The matrices �a = (1; i5�)
are defined in terms of the N2f - 1 generators � of flavor rotations. Results are

given for Nf = 2 flavors. The coupling constant g2N is taken to be inversely pro-
portional to N in order to reproduce the N counting rules. The current quark
mass m is introduced as a source term used to calculate the regularized quark

condensate

 ̄ �. We have also introduced a source term 12 j � ̄�a �2 which is

used to calculate the squared quark condensate
D� ̄�a �2E.

The quark field is q (x) and the  (x) fields are delocalized quark fields, which
are defined in terms of a regulator r as follows: (x) = Z d4x hx jrjyi q (y) (29)

The regulator r is diagonal in k-space: hk jrjk0i = Ækk0r (k) and its explicit form
in given in Eq.(18). The use of a sharp cut-off function is tantamount to the cal-
culation of Feynman graphs in which the quark propagators are cut off at a 4-
momentum � - a most usual practice. The regulator r, introduced by the delo-
calized fields, makes all the Feynman graphs converge. A regularization of this
type results when quarks propagate in a vacuum described by in the instanton
liquid model of the QCD (see Ref.[4] and further references therein). A Nambu
Jona-Lasinio model regulated in this manner with a gaussian regulator was first
used in Ref.[5], and further elaborated and applied in both the meson and the
soliton sectors [5],[6],[7],[8], [9],[2]. Its properties are also discussed in [10].

With one exception. In this work, as in Ref.[2], the regulator multiplies the
current quark mass. The introduction of the regulator in the current quark mass
term m ̄ = mq̄r2q requires some explanation. The current quark mass m is
used as a source term to calculate the quark condensate


 ̄ �which, admittedly,
would be finite (by reason of symmetry) even in the absence of a regulator - and,
indeed, values of quark condensates are usually calculated with an unregular-
ized source term in the Nambu Jona-Lasinio action. However, when we calcu-

late the fluctuation
D� ̄�a �2E - 
 ̄ �2 of the quark condensate, the expecta-

tion value
D� ̄�a �2E diverges. It would be inconsistent and difficult to inter-

pret the fluctuation
D� ̄�a �2E - 
 ̄ �2 if


 ̄ � were evaluated using a bare

source term and
D� ̄�a �2E using a regulator. When a regularized source termm ̄ = mq̄r2q is used, the current quark mass m can no longer be identified

with the current quark mass term appearing in the QCD lagrangian. Of course,
when a sharp cut-off is used, it makes no difference if the current quarkmass term
is multiplied by the regulator or not. We have seen in section 3.1 that the lead-

ing order contribution to the quark condensate

 ̄ �1=3 diminishes by only 20%

when the sharp cut-off is replaced by a gaussian regulator. (This statement may
be misleading because when the sharp cut-off is replaced by a gaussian regulator,
the interaction strength V is also modified so as to fit f�. If we use a gaussian
regulator, the quark condensate calculated with a regulated source term mr2 is
 ̄ � = -0:0218 �3 whereas the quark condensate calculated with a bare source
termm is


 ̄ � = -0:0505 �3.)
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The way in which the current quark mass of the QCD lagrangian appears
in the low energy effective theory is model dependent and it has been studied
in some detail in Ref.[11] within the instanton liquid model of the QCD vacuum
[12],[13],[4].

An equivalent bosonized form of the Nambu Jona-Lasinio action (28) is:Ij;m (') = -Tr ln(-i��� + r'a�ar) - 12 (' -m) (V- j)-1 (' -m) (30)

The first term is the quark loop expressed in terms of the chiral field ', which
is a chiral 4-vector 'a = (S; Pi) so that 'a�a = S + i5�iPi. In the second term,
the chiral 4-vector ma � (m; 0; 0; 0) is the current quark mass and V is the local
interaction: hxa jV jybi = - g2N ÆabÆ (x- y) (31)

The partition function of the system, in the presence of the sources j and m is
given by the expression:e-W(j;m) = Z D (') e-Ij;m(')- 12 tr ln(V-j) (32)

The quark condensate

 ̄ � and the squared quark condensates

D� ̄�a �2E can

be calculated from the partition functionW (j;m) using the expressions:
 ̄ � = 1
 �W (j;m)�m 12 D� ̄�a �2E = - 1
 �W (j;m)�j (33)

where
 is the space-time volume
R d4x = 
.

The stationary point 'a = (M;0; 0; 0) of the action is given by the gap equa-
tion: (V- j)-1 = -4NNf MM-mgM (34)

This equation relates the constituent quark mass M to the interaction strengthV- j.
4.1 The exchange and ring contributions.

The second order expansion of the action Ijm (') around the stationary point
reads: Ijm (') = Ijm (M) + 12'��+ (V- j)-1�' (35)

where Ijm (M) is the action calculated at the stationary point ' = (M;0; 0; 0) and
where � is the polarization function (often referred to as the Lindhardt function):hxa j�jybi = - ÆÆ'a (x) Æ'b (y)Tr ln(-i��� + r'a�ar) (36)

Substituting this expansion into the partition function (32), we can calculate the
partition functionW (j;m) using gaussian integration with the result:W (j;m) = Ijm (M) + 12tr ln (1 -� (V- j)) (37)
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The first term of the action (37) is what we refer to as the ”classical” action.
The values labelled ”classical” in the tables displayed in section 3.1 are obtained
by calculating the condensates (33) while retaining only the term Ijm in the parti-
tion function (37). The logarithm in (37) is what we refer to as the loop contribu-
tion. The expansion of the logarithm expresses the loop contribution in terms of
the Feynman graphs shown on figure 1.

+ + + ...

Fig. 1. The Feynman graphs which represent the meson loop contribution to the partition

function. The first graph is the exchange graph and the remaining graphs are the ring

graphs.

The first term of the loop expansion is what we call the ”exchange term”,
also referred to as the Fock term:1:Wexh = -12tr� (V- j) (38)

The remaining terms are what we call the ring graphs.

+ +

Fig. 2. The contribution to the quark condensate of the Feynman graphs shown on figure

1. The black blob represents the operator  ̄ . The first graph (which is the dominating

contribution) is the contribution of the exchange term. It represents qq̄ excitations which

describe a change in mass of the Dirac sea quarks. This exchange graph would not appear

in a Hartree-Fock approximation, which would include the exchange graph in the gap

equation.

It is simple to show that the inverse meson propagators are given by:K-1 = �+ (V- j)-1 (39)

They are diagonal inmomentum and flavor space:

qa ��K-1��k0q� = ÆabÆkk0Ka (q)

and a straightforward calculation yields the following explicit expressions for theS (sigma) and P (pion) inverse propagators:

1 The direct (Hartree) term is included in the ”classical” action Ij;m.
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Fig. 3. The effective potential plotted against M when a soft gaussian cut-off function is

used. The potential is expressed units of �4.K-1S (q) = 4NNf�12q2f22M (q) +M2 �f26M (q) + f44M (q)�- gM (q) + MM-mgM�
(40)K-1P (q) = 4NNf�12q2f22M (q) +M2 �f26M (q) - f44M (q)�- gM (q) + MM-mgM�

where the loop integrals are:fnpM (q) = 1
Xk rnk-q2 rpk+q2��k - q2 �2 + r4k-q2M2���k + q2 �2 + r4k+q2M2� (41)

and: gM (q) = 1
Xk r2k-q2�k - q2 �2 + r4k-q2M2 r2k+q2 gM � gM (q = 0) (42)

These are the expressions which are obtained from the second order expansion of
the action (30) retaining the regulators from the outset and throughout.

Innumerable papers have been published (including some of my own) in
which the meson propagators are derived from the unregulated Nambu Jona-
Lasinio action:Ij;m (') = -Tr ln(-i��� +'a�a) - 12 (' -m) (V- j)-1 (' -m) (43)
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Fig. 4. The effective potential plotted againstM when a sharp cut-off is used.The effective

potential is expressed in units of �4.
The expressions obtained for the propagators are then:K-1S (q) = 4NNf�12 �q2 + 4M2� fM (q) + mM-mgM� (44)K-1P (q) = 4NNf�12q2fM (q) + mM -mgM�
where the loop integrals are:fM (q) = 1
 Xk<� 1��k- q2 �2 +M2���k + q2 �2 +M2� (45)

and: gM = 1
 Xk<� 1�k - q2 �2 +M2 (46)

The table 3 shows the low q behaviour of the S and P inverse propagators in
various approximations. They are calculated in the chiral limit.

5 An instability of the vacuum.

The partition function (37) can also be used to calculate the effective potential:� =W (j;m) - j�W (j;m)�j =W (j;m) + 12jD� ̄�a �2E (47)
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Fig. 5. Various contributions to the effective potential calculated with a sharp cut-off andM0=� = 0:8. The contributions are expressed in units of �4.
inverse propagators K-1P (q = 0) Z� = dK-1Pdq2 ���q=0 K-1S (q = 0) dK-1Sdq2 ���q=0
regulated action 0 0.0995 0.0546 0.0592

regulated f (q) 0 0.0850 0.0544 0.0448f (q) = f (0) 0 0.0850 0.0544 0.0850

Table 3. Three approximations to the inverse S and P propagators, calculated with a sharp

4-momentum cut-off and withM0=� = 0:4. The first row gives the values obtained from

an regularized action (30). The second row gives the values obtained from a unregularized

action and by subsequently regularizing the loop integrals. The last row gives the results

obtained by neglecting the q dependence of the loop integral f (q). The inverse quark

propagators are given in units of �2 and dK-1dq2 is dimensionless.

As we vary j, the squared condensate
D� ̄�a �2E changes. Thus, when we plot

the effective potential against j, we discover how the energy of the system varies

when the system is forced to modify the squared condensate
D� ̄�a �2E. The

effective potential has a stationary point at j = 0, that is, in the absence of a con-
straint. If the stationary point of the effective potential is a minimum, the system

is (at least locally) stable against fluctuations of
D� ̄�a �2E. If it is an inflection

point, it is unstable and we shall indeed find that this can easily occur when a
sharp cut-off is used.

When j is varied, the constituent quark mass M also changes, according to
the gap equation (34). One finds thatM is a monotonically increasing function of j
so that the effective potential can be plotted againstM equally well. The vacuum
constituent quark mass is the mass M0 obtained with j = 0. The contribution
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Fig. 6. The effective potential calculated with a sharp 3-momentum cut-off plotted againstM. It is expressed in units of �4.
of each Feynman graph to the effective potential is stationary at the pointM =M0 and this is why plots of the the effective potential against M are nicer to
look at than plots against j. The vacuum constituent quark massM0 is a measure
of the interaction strength V, to which it is related by the gap equation. For a
given shape of the regulator, the occurrence of an instability depends on only one
parameter, namelyM0=�.

Figure 3 shows the effective potential calculated with a gaussian cut-off for
various values ofM0=�. The ground state appears to be stable within the range
of reasonable values ofM0=�.

Figure 4 shows the effective potential plotted againstMwhen a sharp cut-off
is used. WhenM0=� > 0:74 the ground state develops an instability with respect
to increasing values ofM. This instability is not related to the restoration of chiral
symmetry and, indeed, the pion remains a Goldstone boson for all values ofM:
As shown on Fig.5, the instability is due to the classical action and the meson loop
contributions do not modify it.

Figure 6 shows the effective potential calculated with a sharp 3-momentum
cut-off. No instability appears. This provides a clue as to the cause of the in-
stability which arises when a sharp 4-momentum cut-off is used. Indeed, when
a 3-momentum cut-off is used, the Nambu Jona-Lasinio model defines a time-
independent hamiltonian and the 3-momentum cut-off simply restricts theHilbert
space available to the quarks. This allows a quantum mechanical interpretation
of the results. If H is the Nambu Jona-Lasinio hamiltonian, then the ground state
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wavefunction jji is calculated with the hamiltonianH̄j = H- j Z d3x � ̄�a �2 (48)

containing the constraint proportional to j. The effective potential � is then equal
to the energy E (j) = hj jHj ji of the system and it displays a stationary point whenj = 0 or, equivalently, whenM = M0. The Nambu Jona-Lasinio model, regular-
ized with a 3-momentum cut-off, has been used in Refs.[14] and [15] for example.

The use of a 3-momentum cut-off has another important feature. The meson
propagators have only poles on the imaginary axis where they should. When a 4-
momentum cut-off is used, unphysical poles appear in the complex energy plane,
as they do when proper-time regularization is used for the quark loop [16].

The fact that the instability occurs when the model is regularized with a 4-
momentum cut-off and not when a 3-momentum cut-off is used, strongly sug-
gests that the instability is due to the unphysical poles introduced by the regula-
tor. This conclusion is corroborated by the observation that the instability also oc-
curs when a gaussian cut-off is used, but at the much higher valuesM0=� � 2:93
where the cut-off is too small to be physically meaningful. With a gaussian reg-
ulator and in the relevant range of parameters 0:4 < M0=� < 0:8, one needs to
probe the system with values as high asM=� > 4 before it becomes apparent that
the energy is not bounded from below. The instability is an unpleasant feature of
effective theories which use relatively low cut-offs. However, the low value of the
cut-off is dictated by the vacuum properties and we need to learn to work with
it. Further details are found in Ref.[2].

We conclude from this analysis that it is much safer to use a soft regulator,
such as a gaussian, than a sharp cut-off.
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Abstract. We study the nucleon-nucleon interaction in the chiral constituent quark model

of Refs. [1,2] by using the resonating group method, convenient for treating the interac-

tion between composite particles. The calculated phase shifts for the 3S1 and 1S0 channels
show the presence of a strong repulsive core due to the combined effect of the quark in-

terchange and the spin-flavour structure of the effective quark-quark interaction. Such a

structure stems from the pseudoscalar meson exchange between quarks and is a conse-

quence of the spontaneous breaking of the chiral symmetry. We perform single and cou-

pled channel calculations and show the role of coupling of the �� and hidden colour CC

channels on the behaviour of the phase shifts. The addition of a �-meson exchange quark-

quark interaction brings the 1S0 phase shift closer to the experimental data. We intend to

include a tensor quark-quark interaction to improve the description of the 3S1 phase shift.
In this talk I shall mainly present results obtained in collaboration with Daniel
Bartz [3,4] for the nucleon-nucleon (NN) scattering phase shifts calculated in the
resonating group method.

The study of the NN interaction in the framework of quark models has al-
ready some history. Twenty years ago Oka and Yazaki [5] published the first L
= 0 phase shifts with the resonating group method. Those results were obtained
from models based on one-gluon exchange (OGE) interaction between quarks.
Based on such models one could explain the short-range repulsion of the NN
interaction potential as due to the chromomagnetic spin-spin interaction, com-
bined with quark interchanges between 3q clusters. In order to describe the data,
long- and medium-range interactions were added at the nucleon level. During
the same period, using a cluster model basis as well, Harvey [6] gave a classi-
fication of the six-quark states including the orbital symmetries [6℄O and [42℄O.
Mitja Rosina, Bojan Golli and collaborators [7] discussed the relation between the
resonating group method and the generator coordinate method and introduced
effective local NN potentials.

Here we employ a constituent quark model where the short-range quark-
quark interaction is entirely due to pseudoscalar meson exchange, instead of
one-gluon exchange. This is the chiral constituent quark model of Ref. [1], para-
metrized in a nonrelativistic version in Ref. [2]. The origin of thismodel is thought
to lie in the spontaneous breaking of chiral symmetry in QCD which implies
the existence of Goldstone bosons (pseudoscalar mesons) and constituent quarks? E-mail: fstancu@ulg.ac.be



Nucleon-Nucleon Scattering in a Chiral Constituent Quark Model 83

with dynamical mass. If a quark-pseudoscalar meson coupling is assumed this
generates a pseudoscalar meson exchange between quarks which is spin and
flavour dependent. The spin-flavour structure is crucial in reproducing the cor-
rect order of the baryon spectra [1,2]. The present status of this model is presented
by L. Glozman and W. Plessas at this workshop. Hereafter this model will be
called the Goldstone boson exchange (GBE) model.

It is important to correctly describe both the baryon spectra and the baryon-
baryon interactionwith the samemodel. Themodel [1,2] gives a good description
of the baryon spectra and in particular the correct order of positive and negative
parity states, both in nonstrange and strange baryons, in contrast to the OGE
model. In fact the pseudoscalar exchange interaction has two parts : a repulsive
Yukawa potential tail and an attractive contact Æ-interaction. When regularized,
the latter generates the short-range part of the quark-quark interaction. This dom-
inates over the Yukawa part in the description of baryon spectra. The whole in-
teraction contains the main ingredients required in the calculation of the NN po-
tential, and it is thus natural to study the NN problem within the GBE model.
In addition, the two-meson exchange interaction between constituent quarks re-
inforces the effect of the flavour-spin part of the one-meson exchange and also
provides a contribution of a �-meson exchange type [8] required to describe the
middle-range attraction.

Preliminary studies of the NN interaction with the GBE model have been
made in Refs. [9–11]. They showed that the GBE interaction induces a short-range
repulsion in theNN potential. In Refs. [9,10] this is concluded from studies at zero
separation between clusters and in [11] an adiabatic potential is calculated explic-
itly. Here we report on dynamical calculations of the NN interaction obtained
in the framework of the GBE model and based on the resonation group method
[3,4]. In Ref. [3] the 3S1 and 1S0 phase shifts have been derived in single and
three coupled channels calculations. It was found that the coupling to the �� and
CC (hidden colour) channels contribute very little to the NN phase shift. These
studies show that the GBEmodel can explain the short-range repulsion, as due to
the flavour-spin quark-quark interaction and to the quark interchange between
clusters.

However, to describe the scattering data and the deuteron properties, inter-
mediate- and long-range attraction potentials are necessary. In Ref. [4] a �-meson
exchange interaction has been added at the quark level to the six-quark Hamilto-
nian. This interaction has the formV� = -g2�q4� (e-��rr - e-��rr ) ; (1)

An optimal set of values of the parametres entering this potential has been found
to be g2�q4� = g2�q4� = 1:24; �� = 0:60 GeV ; �� = 0:83 GeV : (2)

As one can see from Fig. 1, with these values the theoretical phase shift for 1S0
gets quite close to the experimental points without altering the good short-range
behaviour, and in particular the change of sign of the phase shift at Elab � 260
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Fig. 1. The 1S0 NN scattering phase shift obtained in the GBE model as a function of Elab.
The solid line is without and the dashed linewith the �-meson exchange potential between

quarks with �� = 0:60 GeV and �� = 0:83 GeV. Experimental data are from Ref. [12].

MeV. Thus the addition of a �-meson exchange interaction alone leads to a good
description of the phase shift in a large energy interval. One can argue that the still
existing discrepancy at low energies could possibly be removed by the coupling
of the 5D0 N-� channel. To achieve this coupling, as well as to describe the 3S1
phase shift, the introduction of a tensor interaction is necessary.
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Abstract. Two methods to describe excited states of baryons as decaying states are pre-

sented: the Analytic Continuation in Coupling Constant and the Kohn variational prin-

ciple for the K-matrix. The methods are applied to a simple model of the � resonance

consisting of the pion coupled to three valence quarks.

The work has been done in collaboration with Vladimir Kukulin and Simon Širca.

1 Motivation

Baryons are usually computed as bound states neglecting possible decay chan-
nels. The inclusion of strongly decaying channels may considerably influence the
position of the state as well as some other properties. The aim of the present
work is to estimate this effect in a simplified model and to discuss two possible
approaches to describe decaying states. The methods determine the position and
the width of the resonance, and furthermore, provide a suitable tool to calculate
new observables, which cannot be obtained in a bound state calculation, such as
non-resonant contributions to production amplitudes. In this work we shall focus
on the decay of the � resonance.

2 The model

The decay of the � resonance into the nucleon and the pion is most naturally de-
scribed in models with chiral symmetry, such as the linear � model (LSM), the
chromodielectric model (CDM), the cloudy bag model CBM, etc. Here we use a
simplified model which contains the main features of these models. It assumes
frozen quark profiles and neglects meson-self interaction. Furthermore, it does
not take into account additional scalar fields (sigma mesons in the LSM, chro-
modielectric field and sigmamesons in the CDM, or the bag potential in the CBM)
since their main role is to fix the quark profiles and generate a constant energy
shift for all baryons. In the present calculation, the quarks profiles are taken over
from the ground state calculation in the LSM[1].We know that the profiles do not
change considerably from one model to the other, so this is not a very severe re-
striction. The inclusion of meson self-interactionmay, however, more importantly
alter the results.? E-mail: Bojan.Golli@ijs.si
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For the quark-pion interaction we assume the usual pseudoscalar form:Hquark-meson = ig Z dr3q̄� � �̂5q : (1)

In models with spontaneous symmetry breaking, such as the LSM, the parame-
ter g is related to the ‘constituent’ quark mass by Mq = gf�. From 350 MeV<Mq <450 MeV we estimate that physically sensible values for g are 4 < g < 5.

The model is usually solved at the mean field level. We interpret the solution
as a coherent state of pions around the three quark core, and generate physical
N and � states by the Peierls Yoccoz projection of good spin and isospin. The
resulting states are interpreted as a superposition of 3 bare quarks plus 3 quarks
with one or more pions coupled, respectively, to nucleon or � quantum numbers:j�Ni = PJ=12 ;T=12 j�i= (3q)N + [(3q)N�℄J= 12 ;T=12 + [(3q)��℄ 12 ; 12 + [(3q)N��℄ 12 ; 12 + : : : (2)j��i = PJ=32 ;T=32 j�i= (3q)� + [(3q)N�℄J= 32 ;T=32 + [(3q)��℄ 32 ;32 + [(3q)N��℄ 32 ;32 + : : : (3)

In the � channel, the probability of finding one or more pions is higher than
in the N channel; as a consequence the � lies higher then the nucleon. In the
simplified model we obtain E� - EN = 84 MeV and 126 MeV for g = 4:3 and
5 respectively; including meson self interaction and performing self-consistent
calculation increases the splitting by some 40 MeV. Hence, the �N splitting due
to pions is only roughly one half of the experimental one; an additional hyperfine
interaction is needed to bring E�-EN to the experimental value (293MeV). In our
simple model we therefore introduce a phenomenological form of the interaction:H 0 = "P(3q)� (4)

where P(3q)� is the projector onto components containing 3 quarks coupled to �
quantum numbers. Using " = 262 MeV and 235 MeV for g = 4:3 and 5 respec-
tively, increases the splitting to the desired value.

3 The Kohn variational principle for the phase shift

The ansatz for the � resonance is taken in the formj	�i =  j��i + Z dk �(k0; k) haymt(k)j�NiiJ= 32 ;T=32
where aymt(k) creates a p-wave pion, m; t are the third components of its spin
and isospin, k0 denotes the pion momentum, while j�Ni and j��i correspond to
the nucleon and the � bound states ((2) and (3)), respectively. Asymptotically, the
pion state behaves as�(k0; r) = k0 j1(k0r) - tan Æ k0 y1(k0r) ; r!1 :
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Here we use standing waves to describe the pion rather than outgoing (and in-
coming) waves. In k-space this leads to�(k0; k) =r�2 Æ(k - k0) + �(k0; k)!k -!0 ; tan Æ = p2� !0k0 �(k0; k0)
The variational principle requires that the Kohn functional[2]FK = tan Æ- 2!0k0h�Nj�Ni h	�jH- Ej	�i
remains stationary with respect to variation of  and �(k0; k), as well as to varia-
tion of the intrinsic pion profile in j	�i.

In the above form only one channel is assumed; if more than one channel is
open, tan Æ is replaced by the Kmatrix.

Typical results for the phase shift are displayed in Fig. 1 and compared to the
experimental values. By varying " it is possible to reproduce the experimental
position of the resonance; using g = 4:3 (" = 273 MeV) the width (i.e. the slope
of the curve) is well reproduced while for g = 5 (" = 252 MeV) the width is too
large. These results are obtain by optimizing j	�i; if we do not vary the intrinsic
pion profile but take it over from the bound state calculation the results change
only very slightly provided the value of " is changed by a few MeV. Hence, the
properties of the � do not change significantly when the decay channel is open;
the main effect is that the energy drops by some 10 MeV (10 MeV for g = 4:3 and
13 MeV for g = 5).
4 The Analytic Continuation in Coupling Constant

Consider the scattering of a non-relativistic particle on an attractive potentialV(r)
which possesses a quasi bound state in the continuum. Introduce a parameter
(coupling constant) �: H = Hkin + �V(r) :
For sufficiently large �, � > 1 the state becomes bound. Let’s denote the threshold
value as �th. The method [3] is based on the fact that it much easier to solve the
bound state problem than the continuum case. It consists of the following steps:� Determine �th and calculate E as a function of � for � > �th.� Introduce a variable x = p�- �th; calculate k(x) = i

p-2mE in the bound
state region.� Fit k(x) by a polynomial:k(x) = i(0 + 1x+ 2x2 + : : : + 2Mx2M) :� Construct a Padé approximant:k(x) = i

a0 + a1x+ : : : + aMxM1 + b1x+ : : :+ bMxM : (5)
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Fig. 1. The phase shift in the P33 channel: Æ are the experimental values, � values from

the variational calculation using g = 4:3 and " = 273 MeV, and � those for g = 5 and" = 253MeV.� Analytically continue k(x) to the region � < �th (i.e. to imaginary x) wherek(x) becomes complex.� Determine the position and the width of the resonance as analytic continua-
tion in �: Er = 12m Re cont�!1k2 ; � = -2 12m Im cont�!1k2 : (6)

This method does not provide only the position and the width of the resonance;
the matrix element of an operator O between the resonant state j	ri and a bound
state j�i can be calculated ash	rjOj�i = cont�!1h	b(�)jOj�i :

In our implementation of the method, we relate the coupling constant � to
the parameter of the phenomenological hyperfine interaction:�V(r)! "P(3q)� ; x = p"th - " (7)

where "th is the value of " at the threshold: E�("th) - EN = m�. For sufficiently
high ", the real part of the energy eventually reaches the experimental position of
the resonance; this value of " then corresponds to � = 1 of the original formula-
tion of the method.

In our very preliminary calculation we treat the pion non-relativistically. For" < "th we calculatek(x) = i
p2m�(Eth - E); E = E�(x) - EN ;
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fit k(x) using a Padé approximant (5) and continue k(x) to the resonance region.
The energy difference, E�-EN, and the width of the resonance are then obtained
by (6). The ‘physical value’ of x (and " from (7)) is determined as ReE(= E�-EN)
reaches the experimental value 293 MeV. The corresponding value of ImE(= �)
then predicts the width of � and is to be compared with the experimental value� 120MeV.

Fig. 2 shows the behaviour of E� - EN and � as functions of x for two vales
of g. For higher order of the Padé approximant, M � 3, the method becomes
numerically instable and the determination of E and � is no more reliable. Forg = 4:3 andM = 1 and 2, the experimental splitting is reached for x2 � 230MeV
(and corresponding " = 300 MeV). This yields � � 60MeV which is only half of
the experimental value, most probably due to the non-relativistic treatment. Forg = 5 the value of � is larger (in accordance with Fig. 1) but its determination is
less reliable.

In order to be able predict reliable results it is necessary formulate the ap-
proach relativistically and to understand the origin of numerical instabilities for
higherM.

20i 15i 10i 5i 0 5 10050
100150200250300350

...........................................................................................................................................................
.......................................................................................................................................................................................................................................................................................

.......................................................................................................................
...................................................................................................

.......................................................................................................................................................................................................................................................................
.......

........................................................................... M = 1
................................................

............................................................................................
..........................................................

..........................................

..............................................................................................................
...........

........ .. ........ .. ........ .. ...... M = 2
......................................................

...........................................................................................................
........................................................

...................................

...............................................................................................
.............................................

...................... ...................................... M = 3

x

E� �EN (exp)E� � EN
��

(a) 20i 15i 10i 5i 0 5 10050
100150200250300350

.......................................................................................................................................................................................................................................
..............................................................................................................................................

.................................................................................................................
...............

...........................................................................................................................................................................................................................................
..........................................................

........................................................................... M = 1
...........................................................................................

...................................................................
....................................................

..........

.............................................................................................................
.............................................

........ .. ........ .. ........ .. ...... M = 2
.........................................................................................................

......................................................................
.................................................

..

................................................................................................
............................................

..............................................
........................................ ...................................... M = 3

x

E� �EN (exp)E� � EN
��

(b)
Fig. 2. �N splitting and � width (in MeV) as functions of x (in units

p
MeV) for g = 4:3

(a), and g = 5 (b).
References

1. B. Golli and M. Rosina, Phys. Lett. B 165 (1985) 347; M. C. Birse, Phys. Rev. D 33 (1986)

1934.

2. B. Golli, M. Rosina, J. da Providência, Nucl. Phys. A436 (1985) 733

3. V.M. Krasnopolsky and V.I.Kukulin, Phys. Lett, 69A (1978) 251, V.M. Krasnopolsky and

V.I.Kukulin, Phys. Lett, 96B (1980) 4, N. Tanaka et al. Phys. Rev. C59 (1999) 1391



BLED WORKSHOPS

IN PHYSICS

VOL. 1, NO. 1

Proceedins of the Mini-Workshop
Few-Quark Problems (p. 90)
Bled, Slovenia, July 8-15, 2000

Will dimesons discriminate between meson-exchange

and gluon-exchange effective quark-quark

interaction?
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Abstract. Aphenomenological estimate is derived such that the binding energies of heavy

dimesons are expressed as combinations of masses of different mesons and baryons. We

get b̄b̄qq (I=0, J=1) bound by about 100 MeV and ̄̄qq unbound. The result is almost

model independent and should come out similar in any model which reproduces �b
and � correctly. Therefore it does not discriminate between meson-exchange and gluon-

exchange interaction of the two light quarks.

1 Introduction

The constituent quark model has been rather successful in describing the prop-
erties of individual hadrons [1–3]. The extrapolation to two-hadron systems is,
however, still rather uncertain. Much can be learned by studying heavy two-
meson systems which decay only weakly. Although difficult to detect because of
a low production cross section, they are interesting theoretically, to confront dif-
ferent models. The detailed calculations in the literature [4,5] rely on particular
quark models, therefore we attempt an almost model-independent phenomeno-
logical estimate.

Our estimate of the binding energy [6] is based on the assumption that the
wave functions of the two light quarks around the heavy quark in �, �b and
around the antidiquark in the ̄̄qq and b̄b̄qq dimesons are very similar. This
assumption implies that the heavy antidiquark in a colour triplet state acts just
like a very heavy quark and that the 1=m corrections are neglected [7]. We show
bymeans of a detailed calculation [8,6] that the deviations from both assumptions
lead only to minor corrections.

2 The phenomenological relation for the binding energy of
dimesons

We call the u and d quarks q and the dimesons (tetraquarks) (b̄b̄qq) = Tbb; (̄̄qq) =T. The masses of particles are denoted just by their names, and the tilde denotes
a hyperfine average (e.g. D̃ = 14D + 34D�).? E-mail: mitja.rosina@ijs.si
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The binding energies Ebb̄ of a quark and antiquark in a meson is a function
of the reduced mass only, e.g. � = b + b + Ebb̄; Ebb̄ = F(m = b=2). For the
diquark bb the Schrödinger equation is similar as for the bb̄ meson with twice
weaker interaction� p22(b=2) +Vbb� = 12 � p22(b=4) +Vbb̄� = Ebb ; Ebb = 12F(b=4):

Now we compare the following hadrons (and analogous for charm)Tbb = 2b + 2q + Ebb + EqqQ; � = 2b + Ebb̄; �b = b+ 2q + EqqQ;
where EqqQ � Eqq(b̄b̄) � Eqqb is the potential plus kinetic energy contribution
of the two light quarks in the field of a ”heavy quark”. We obtain the phenomeno-
logical relationsTbb = �b + 12� + ÆEbb; ÆEbb = 12 [F(b=4) - F(b=2)℄:T = � + 12 J= + ÆE; ÆE = 12 [F(=4) - F(=2)℄:

The binding of the (I = 0; J = 1) dimesons is expressed with respect to the
corresponding thresholds4Tbb = �b + 12� - B - B� + ÆEbb = -250MeV+ ÆEbb;4T = � + 12 J= -D -D� + ÆE = -42MeV + ÆE:

Now comes an important idea how to obtain phenomenologically the “cor-
rections” ÆE. In Fig.(2) we interpolate between the phenomenological binding
energies obtained from experimental meson masses and from a popular sets of
quark masses [9], (b=5259 MeV, c=1870 MeV, s=600 MeV). The tilde denotes hy-
perfine averages between 0- and 1- states.12F(14b) = -407MeV; ÆEbb = +122MeV; 4Tbb = -128MeV12F(14) � -197MeV; ÆE = +139MeV; 4T = +97MeV:
These values are very close to the result4Tbb = -131MeV (and T unbound) of
a detailed 4-body calculation [4].

Now we make several corrections to our assumptions and approximations,
based on detailed calculations [8,6].

Table 1. Corrections to the binding energy of Tbb = BB�
Spin-spin interaction +5 MeV

Centre-of-mass motion -15 MeV

Finite size of b̄b̄ +18 MeV

Mixing of colour (6)–(6) configurations -25 MeV

Total: -17 MeV
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We have also performed a search for a two-cluster configuration (“molecule”BB�). At short distance, the colour triplet configurations give a Coulomb-like at-
traction while the colour sextet configurations give repulsion. At intermediate
distances one can gain energy with a strong mixing between triplet and sex-
tet configurations. Detailed calculations [8] with the Born-Oppenheimer wave
function (Resonating Group Method) gave no bound states with a two-cluster
(”molecular” or ”covalent”) structure.

3 Conclusion

It has been hypothesized that the binding energy of heavy dimesons B + B�
and D +D� might discriminate between constituent quark models using gluon-
exchange or meson-exchange spin-spin interaction, or both. It was expected that
models with meson-exchange interaction would give an additional strong attrac-
tion when the two light quarks meet in I+S=0 state.

The argument was wrong. The two light quarks in the dimesons feel the
heavy antidiquark similarly as they feel the heavy quark in �b and � baryons.
Any interaction (OGE, OGBE or combination of both) which fits �b and � will
give similar results for dimeson binding energy and one cannot discriminate. Cal-
culations which simply added OGBE to OGE gave strong binding of dimesons,
but were irrelevant since they would overbind heavy baryons.
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