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State-of-the-art prediction models are getting increasingly complex and incomprehensible for humans.
This is problematic for many application areas, especially those where knowledge discovery is just as im-
portant as predictive performance, for example medicine or business consulting. As machine learning and
artificial intelligence are playing an increasingly large role in the society through data based decision ma-
king, this is problematic also from broader perspective and worries general public as well as legislators. As
a possible solution, several explanation methods have been recently proposed, which can explain predicti-
ons of otherwise opaque models. These methods can be divided into two main approaches: gradient based
approaches limited to neural networks, and more general perturbation based approaches, which can be
used with arbitrary prediction models. We present an overview of perturbation based approaches, and fo-
cus on a recently introduced implementation of two successful methods developed in Slovenia, EXPLAIN
and IME. We first describe their working principles and visualizations of explanations, followed by the
implementation in ExplainPrediction package for R environment.

Povzetek: Najboljši napovedni modeli postajajo vse bolj zapleteni in nerazumljivi za ljudi. To je pro-
blematično za številna aplikativna področja, zlasti tista, kjer je odkrivanje znanja enako pomembno kot
napovedna točnost, npr. medicina ali poslovno svetovanje. Ker strojno učenje in umetna inteligenca preko
na podatkih temelječega odločanja igrata vse večjo vlogo v družbi, je to problematično tudi s širšega vi-
dika in vse bolj skrbi javnost in zakonodajalce. Kot možna rešitev se je v zadnjem času pojavilo več metod
razlage za napovedne modele. Te metode lahko razdelimo na dve skupini: na gradientne metode, ome-
jene predvsem na umetne nevronske mreže, in splošnejše pristope na osnovi perturbacij vhodov, ki jih je
mogoče uporabiti pri poljubnih napovednih modelih. Predstavljamo pregled perturbacijskih pristopov in
dve uspešni metodi razviti v Sloveniji, EXPLAIN in IME. Najprej opišemo njuno delovanje in vizualizacije
razlag, nato pa še implementacijo v paketu ExplainPrediction za okolje R.

1 Introduction

Machine learning methods and especially prediction mo-
dels are becoming an essential ingredient of many modern
products and services. Through a paradigm of data-based
decisions, they impact mundane everyday tasks (e.g., shop-
ping and entertainment recommendations), as well as life-
changing decisions (e.g., medical diagnostics, credit sco-
ring, or security systems). As societies are getting more
and more complex, we can expect that their reliance on
automatic decisions will increase. It is natural that those
affected by various decisions of prediction models want to
get feedback and understand the reasoning process and bi-
ases of the underlying models. The impact and influence
of automatic decisions are getting so ubiquitous that the
whole area of artificial intelligence is receiving an increa-
sing attention from lawmakers who demand that decisions
of important models are made transparent. Besides public
services, the areas where models’ transparency is of cru-
cial importance are for example medicine, science, policy
making, strategic planning, business intelligence, finance,

marketing, law, and insurance. In these areas, users of mo-
dels are just as interested in comprehending the decision
process, as in the classification accuracy of prediction mo-
dels. Unfortunately, most of the top performing machine
learning models are black boxes in a sense that they do not
offer an intrinsic introspection into their decision proces-
ses or provide explanations of their predictions and biases.
This is true for Artificial Neural Networks (ANN), Support
Vector Machines (SVM), and all ensemble methods (for
example, boosting, random forests, bagging, stacking, and
multivariate adaptive regression splines). Approaches that
do offer an intrinsic introspection such as decision trees or
decision rules do not perform so well or are not applicable
in many cases (17).

To alleviate this problem two types of model explana-
tion techniques have been proposed. The first type, which
is not discussed in this work, is based on the internal wor-
king of the particular learning algorithm. The explanation
methods exploit model’s representation or learning process
to gain insight into the presumptions, biases, and reasoning
leading to final decisions. Two well-known models where
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such approach works well are neural networks and random
forests. Recent explanations for neural networks classifiers
of images mostly rely on layer-wise relevance propagation
(3) or gradients of output neurons with respect to the in-
put (28) to visualize parts of images significant for parti-
cular prediction. The random forest visualizations mostly
exploit the fact that during bootstrap sampling, which is
part of this learning algorithm, some of the instances are
not selected for learning and can serve as an internal vali-
dation set. With the help of this set important features can
be identified and similarity between objects can be measu-
red.

The second type of explanation approaches are general
and can be applied to any predictive model. The explana-
tions provided by these approaches try to efficiently cap-
ture the causal relationship between inputs and outputs of
the given model. To this end, they perturb the inputs in
the neighborhood of given instance to observe effects of
perturbations on model’s output. Changes in the outputs
are attributed to perturbed inputs and used to estimate their
importance for a particular instance. Examples of this ap-
proach are methods EXPLAIN (24), IME (31), and LIME
(21). These methods can explain models’ decision process
for each individual predicted instance as well as for the mo-
del as a whole. We implemented the methods, proposed by
our group, EXPLAIN and IME, in R package ExplainPre-
diction (23).

The objectives of the paper are twofold. First, we explain
how general perturbation-based explanation methods work
and second, we describe the implementation details, para-
meters, and visualization of the ExplainPrediction package
which implements them. The first aim is achieved through
an explanation of their working principle and graphical ex-
planation of models’ decisions on a well-known data set.
The second aim is no less important. In machine lear-
ning, open source implementations enable progress, empi-
rical comparisons, and replicability of research. Two types
of explanations are implemented in ExplainPrediction and
demonstrated in the paper, individual predictions of new
unlabeled cases and functioning of the model as a whole.
This allows inspection, comparison, and visualization of
otherwise opaque models.

The structure of the remainder of the paper is as follows.
In Section 2, we present the background and related work
on perturbation based explanation approaches. In Section
3, we present methods EXPLAIN and IME. Their imple-
mentation, parameters, and use with the ExplainPrediction
package are covered in Section 4. In Section 5, we present
conclusions and promising research directions.

2 Background and overview of
perturbation approaches

We first present different modes of explanation and pro-
perties of model explanation approaches, followed by an
overview of explanation approaches.

True causal relationships between dependent and inde-
pendent variables are typically hidden except in artificial
domains where all the relations, as well as the probability
distributions, are known in advance. Therefore only ex-
planations of prediction process for a particular model is
of practical importance. The prediction accuracy and the
correctness of explanation for a given model may be ortho-
gonal: the correctness of the explanation is independent of
the correctness of the prediction. However, empirical ob-
servations show that better models (with higher prediction
accuracy) enable better explanations (31). We discuss two
types of explanations:

– Instance explanation explains predictions with the
given model of a single instance and provides the im-
pact of input feature values on the prediction.

– Model explanation is usually an aggregation of in-
stance explanations over many (training) instances, to
provide top-level explanations of features and their va-
lues. This aggregation over many instances enables
identification of different roles attributes may play in
the classifications of instances.

In a typical data science problem setting, users are con-
cerned with both prediction accuracy and the interpretabi-
lity of the prediction model. Complex models have po-
tentially higher accuracy but are more difficult to interpret.
This can be alleviated either by sacrificing some prediction
accuracy for a more transparent model or by using an ex-
planation method that improves the interpretability of the
model. Explaining predictions is straightforward for sym-
bolic models such as decision trees, decision rules, and in-
ductive logic programming, where the models give an over-
all transparent knowledge in a symbolic form. Therefore,
to obtain the explanations of predictions, one simply has to
read the rules in the corresponding model. Whether such
an explanation is comprehensive in the case of large trees
and rule sets is questionable. Piltaver et al. (18) developed
criteria for comprehensibility of decision trees and perfor-
med a user study, which showed that the depth of the dee-
pest leaf that is required when answering a question about
a classification tree is the most important factor influencing
the comprehensibility.

For non-symbolic models, there are no intrinsic expla-
nations. A lot of efforts have been invested in increasing
the interpretability of complex models. For SVM, Hamel
(12) proposed an approach based on self-organizing maps
that groups instances then projects the groups onto a two-
dimensional plane. In this plane, the topology of the groups
is hopefully preserved and support vectors can be visua-
lized. Many approaches exploit the essential property of
additive classifiers to provide more comprehensible expla-
nations and visualizations, e.g., (14) and (19).

Visualization of decision boundaries is an important as-
pect of model transparency. Barbosa et al. (6) present a
technique to visualize how the kernel embeds data into
a high-dimensional feature space. With their Kelp met-
hod, they visualize how kernel choice affects neighborhood
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structure and SVM decision boundaries. Schulz et al. (27)
propose a general framework for visualization of classifiers
via dimensionality reduction. Goldstein et al. (11) propose
another useful visualization tool for classifiers that can pro-
duce individual conditional expectation plots, graphing the
functional relationship between the predicted response and
the feature for individual instance.

Some explanations methods (including the ones presen-
ted in Section 3) are general in a sense that they can be
used with any type of classification model (15; 21; 24; 30).
This enables their application with almost any prediction
model and allows users to analyze and compare outputs
of different analytical techniques. Lemaire et al. (15) ap-
plied their method to a customer relationship management
system in the telecommunications industry. The method
which successfully deals with high-dimensional text data
is presented in (16). Its idea is based on general explana-
tion methods EXPLAIN and IME and offers an explanation
in the form of a set of words which would change the pre-
dicted class of a given document. Bosnić et al. (9) adapt the
general explanation methodology to data stream scenario
and show the evolution of attribute contributions through
time. This is used to explain the concept drift in their in-
cremental model. In a real-life breast cancer recurrence
prediction, Štrumbelj et al. (29) illustrate the usefulness of
the visualizations and the advantage of using the general
explanation method. Several machine learning algorithms
were evaluated. Predictions were enhanced with instance
explanations using the IME method. Visual inspection and
evaluation showed that oncologists found the explanations
useful and agreed with the computed contributions of fea-
tures. Pregeljc et al. (20) used traditional modeling approa-
ches together with data mining to gain insight into the con-
nections between the quality of organization in enterprises
and the enterprises’ performance. The best performing mo-
dels were complex and difficult to interpret, especially for
non-technical users. Methods EXPLAIN and IME explai-
ned the influence of input features on the predicted econo-
mic results and provided insights with a meaningful eco-
nomic interpretation. The interesting economic relations-
hips and successful predictions come mostly from complex
models such as random forests and ANN. Without proper
explanation and visualization, these models are often neg-
lected in favor of weaker, but more transparent models. Ex-
perts from the economic-organizational field, which revie-
wed and interpreted the results of the study, agreed that
such an explanation and visualization is useful and faci-
litates comparative analysis across different types of pre-
diction models. Bohanec et al. (7) present an innovative
application of explanation methods EXPLAIN and IME in
the context of B2B sales forecasting. They demonstrate
how users can validate their assumptions with the presented
explanations and test their hypotheses using the explanati-
ons for a sort of what-if analysis. Bohanec et al. (8) address
the problem of weak acceptance of machine learning mo-
dels in business environments. The propose a framework
of top-performing machine learning models coupled with

general explanation methods to provide an additional in-
formation to the decision-making process. This is shown
to reduce error, efficiently support business decision ma-
kers and builds a foundation for sustainable organizational
learning. Demšar and Bosnić (10) use the general explana-
tion methods EXPLAIN and IME to detect concept drift in
data streams. Due to the generality of explanations, their
drift detector can be combined with an arbitrary classifica-
tion algorithm and features good drift detection, accuracy,
robustness, and sensitivity.

Many explanation methods are related to statistical sen-
sitivity analysis and uncertainty analysis (26). In that met-
hodology sensitivity of models is analyzed with respect to
models’ input. A related approach, called inverse classifi-
cation (1) tries to determine the minimum required change
to a data point in order to reclassify it as a member of a dif-
ferent class. An SVM model-based approach is proposed
by Barbella et al. (5). Another sensitivity analysis-based
approach explains contributions of individual features to a
particular classification by observing (partial) derivatives
of the classifiers prediction function at the point of interest
(4). A limitation of this approach is that the classification
function has to be first-order differentiable. For classifiers
not satisfying this criterion (for example, decision trees) the
original classifier is first fitted with a Parzen window-based
classifier that mimics the original one and then the explana-
tion method is applied to this fitted classifier. The method
is practically useful with kernel-based classification met-
hod to predict molecular features (13).

Due to recent successes of deep neural networks in
image recognition and natural language processing, several
explanation methods specific to these two application areas
emerged, recently. Methods working on images try to vi-
sualize parts of images (i.e., groups of pixels) significant
for a particular prediction. These methods mostly rely on
the propagation of relevance within the network. For ex-
ample, layer-wise relevance propagation (3), and computa-
tion of gradients of output neurons with respect to the input
(28). In language processing Arras et al. (2) applied layer-
wise relevance propagation to a convolutional neural net-
work and a bag-of-words SVM classifier trained on a topic
categorization task. The explanations indicate how much
individual words contribute to the overall classification de-
cision.

3 Methods EXPLAIN and IME

General explanation methods can be applied to any clas-
sification model which makes them a useful tool both for
interpreting models (and their predictions) and comparing
different types of models. By modification of feature va-
lues of interest, what-if analysis is also supported. Such
methods cannot exploit any model-specific properties (e.g.,
gradients in ANN) and are limited to perturbing the inputs
of the model and observing changes in the model’s output
(15; 24; 30).
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The presented general explanation methods provide two
types of explanations for prediction models: instance ex-
planations and model explanations (see Section 2). Model
explanations work by summarizing a representative sample
of instance explanations. The presented methods estimate
the impact of particular explanation feature for a given in-
stance by perturbing similar instances.

The key idea of EXPLAIN and IME is that the contri-
bution of a particular input value (or set of values) can be
captured by “hiding” the input value (set of values) and ob-
serving how the output of the model changes. As such, the
key component of general explanation methods is the ex-
pected conditional prediction – the prediction where only a
subset of the input variables is known. Let Q be a subset
of the set of input variables Q ⊆ S = {X1, . . . , Xa}. Let
pQ(yk|x) be the expected prediction for x, conditional to
knowing only the input variables represented in Q:

pQ(yk|x) = E(p(yk)|Xi = x(i),∀Xi ∈ Q). (1)

Therefore, pS(yk|x) = p(yk|x). In practical settings, the
classification function of the model is not known - one can
only access its prediction for any vector of input values.
Therefore, exact computation of this equation is not possi-
ble and sampling-based approximations are used.

To produce model explanations we sum instance level
explanations. The evidence for and against each class is
collected and visualized separately. In this way, one can,
for example, see that a particular value of an attribute sup-
ports specific class but not in every context.

3.1 EXPLAIN, one-variable-at-a-time
approach

EXPLAIN method computes the influence of a feature va-
lue by observing its impact on the model’s output. The EX-
PLAIN assumes that the larger the changes in the output,
the more important role the feature value plays in the mo-
del. The shortcoming of this approach is that it takes into
account only a single feature at a time, therefore it cannot
detect certain higher order dependencies (in particular dis-
junctions) and redundancies in the model. The EXPLAIN
assumes that the characterization of the i-th input variable’s
importance for the prediction of the instance x is the diffe-
rence between the model’s prediction for that instance and
the model’s prediction if the value of the i-th variable was
not known. The source of explanations is therefore:

p(yk|x)− pS\{i}(yk|x). (2)

If this difference is large then the i-th variable is impor-
tant. If it is small then the variable is less important. The
sign of the difference reveals whether the value contributes
towards or against class value yk. This approach was exten-
ded in (24) to use log-odds ratios (or weight of evidence),
or information gain instead of the difference in predicted
class probabilities.

The lack of information about Ai in pS\{i}(yk|x) is ap-
proximated with several predictions. For nominal attribu-
tes, we replace the actual value of Ai in each prediction
with each of the possible values of attribute Ai, and weight
each prediction with the prior probability of the value:

p(yk|x \Ai)
.
=

mi∑
s=1

p(Ai = as)p(yk|x← Ai = as) (3)

Here mi is the number of nominal values of attribute Ai

and the term p(yk|x← Ai = as) represents the predicted
probability of yk when in instance x we replace the actual
value of Ai with as. For numerical attributes, we use dis-
cretization to split the values of numerical attribute Ai into
intervals. The middle points of these intervals are taken as
the representative replacement values in Eq. (3), for which
we compute predictions p(yk|x← Ai = as). Instead of
prior probabilities of individual values p(Ai = as), we use
probabilities of the intervals for weighting the predictions.

To demonstrate the behavior of the method an example
of an explanation is given. Let a binary domain contain
three important (A1, A2, and A3) and one irrelevant attri-
bute (A4), so the set of attributes is S = {1, 2, 3, 4}. The
class variable C is expressed as the parity (xor) relation of
three attributes C = A1 ⊕A2 ⊕A3.

Let us assume that we trained a perfect model for this
problem. Our correct model classifies an instance x =
(A1 = 1, A2 = 0, A3 = 1, A4 = 1) to class C = 0, and
assign it the probability p(C = 0|x) = 1. When explaining
classification for this particular instance p(C = 0|x), met-
hod EXPLAIN simulates the lack of knowledge of a single
attribute at a time, so it has to estimate pS\{1}(C = 0|x),
pS\{2}(C = 0|x), pS\{3}(C = 0|x), and pS\{4}(C =
0|x). Without the knowledge about the values of each of
the attributes A1, A2, and A3, the model cannot correctly
determine the class value, so the correct estimates of class
probabilities are pS\{1}(C = 0|x) = pS\{2}(C = 0|x) =
pS\{3}(C = 0|x) = 0.5 The differences of probabilities
pS(yk|x)−pS\{i}(yk|x) therefore equal 0.5 for each of the
three important attributes, which indicate that these attribu-
tes have positive impact on classification to class 0 for the
particular instance x. The irrelevant attribute A4 does not
influence the classification, so the classification probability
remain unchanged pS\{4}(C = 0|x) = 1. The difference
of probabilities pS(C = 0|x) − pS\{4}(C = 0|x) = 0 so
the explanation of the irrelevant attribute’s impact is zero.

In reality, the trained models are rarely perfect, so the
obtained probabilities used in Eq. (2) contain a certain
amount of error which translates to an error of explanati-
ons. The empirical evaluation (24) has shown that better
models produce better explanations.

3.2 IME, all-subsets approach
The one-variable-at-a-time approach is simple and compu-
tationally less intensive but has some disadvantages. The
main disadvantage is that disjunctive concepts or redundan-
cies between input variables may result in unintuitive con-
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tributions for variables (31). A solution was proposed in
(30), where all subsets of values are observed. Such proce-
dure demands 2a steps, where a is the number of attributes
and results in the exponential time complexity. However,
the contribution of the variable corresponds to the Shapley
value for the coalitional game of a players. This allows an
efficient approximation based on sampling.

As sampling takes values for attribute Ai from the exis-
ting set of values, we don’t need any approximation similar
to Eq. (3) for numerical attributes in IME.

3.3 Presenting explanations

The working and practical utility of the one-variable-at-a-
time contributions and their visualization are illustrated on
the well-known Titanic data set. The task is to classify the
survival of a passenger in the disaster of the Titanic ship.
The three input variables report the passengers’ status du-
ring travel (first, second, third class, or crew), age (adult
or child), and gender. Note the similarity of the problem
with many business decision problems, such as churn pre-
diction, mail response, insurance fraud, etc. As an exam-
ple, random forest (rf) classifier is used. This model is ro-
bust and usually provides good prediction accuracy but it
is incomprehensible. The Fig. 1a shows an example of an
instance explanation for the prediction of the instance with
id 2 (a first class adult male passenger). The text at the top
includes the class value in question, the instance id, and the
type of model. At the bottom, the description contains the
type of explanation technique used, the model’s prediction
for the selected class value, and the actual correct class va-
lue for the instance. The input variables’ names are shown
on the left-hand side and their values for the particular in-
stance are on the right-hand side. The thick dark shaded
bars indicate the contributions of the instance’s values for
each corresponding input variable towards (or against) the
class value “survived=yes”. The thinner and lighter bars
above indicate average contributions of these values across
all instances. For the given instance one can observe that
“sex=male” speaks against survival and “status=first class”
speaks in favor of survival while being an adult has little in-
fluence. Thinner average bars above them reveal that being
male can be both favorable and dangerous while being in
the first class is on average even more beneficial than in
the selected case. Note that the same visualization can be
used even if some other classification method is applied. A
more general view of the model is provided by averaging
the explanations for the training data and their visualiza-
tion in a summary form, which shows the average impor-
tance of each input variable and its values. For numerical
attributes, explanations for intervals of values are shown;
to get sensible intervals, numerical attributes are discreti-
zed. An example of such a model explanation for Titanic
data set is presented in Fig. 1b. On the left-hand side, the
input variables and their values are shown. For each value,
the average negative and the average positive contributions
across all instances is displayed. Note that negative and

positive contributions would cancel each other out if sum-
med together, so it is important to keep them separate. The
lighter bars shown are equivalent to the lighter bars in the
instance explanation on Fig. 1a. For each input variable,
the average positive and negative contributions for all va-
lues and instances are shown (darker bars). The visualiza-
tion reveals that the sex has the strongest effect in random
forest model. Traveling in the first or second class has a
predominantly positive contribution towards the survival,
being a child or female has greater positive than negative
contribution, while traveling in the third class has a nega-
tive contribution.

4 Implementation in R package
ExplainPrediction

The methods EXPLAIN and IME are implemented in the
R package ExplainPrediction. The top level entry is the
explainVis function which explains predictions of a given
model and visualizes the explanations. In this section, we
explain the parameters of explainVis and show how to call
it. We also share some useful tips for using the explanati-
ons.

4.1 Controlling explanations
The function explainVis enables fine control over compu-
tation and visualization of explanations through its argu-
ments listed in Listing 1 and explained below.

Parameters controlling input/output

model specifies the input prediction model.

trainData is the input data set which is used to compute
average explanations, discretization, and other infor-
mation needed for explanation of instances and mo-
del.

testData is the input data set containing instances that are
going to be explained.

fileType determines the graphical format of the output vi-
sualization file: pdf, eps, emf, jpg, png, bmp, or tif. If
“none” is specified, the visualization is directed to a
graphical window.

dirName specifies the output folder where resulting visu-
alization files will be saved.

fileName contains the file name of the resulting output vi-
sualization files.

The parameters of both explanation methods

method specifies the explanation method, either EX-
PLAIN or IME.

classValue specifies the class value for which explanations
are generated.
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Figure 1: An instance explanation a) and a model explanation b) for the random forest model classifying the Titanic data
set. The tiny bars in the instance explanation represent the average positive and average negative contributions of the
values and are equal to the corresponding value-bars in the model explanation (note the difference in scale).

visLevel determines the level of explanations desired, i.e.
the model level or instance level explanations.

estimator specifies the feature evaluation method used to
greedily discretize attributes needed when averaging
explanation over intervals of numeric attributes. The
default value NULL invokes discretization with at-
tribute evaluation algorithms ReliefF (classification)
or RReliefF (regression) from R package CORElearn
(25).

recall can provide the list with all explanations data retur-
ned by one of the previous calls to function explainVis,
which speeds-up the computations.

Parameters specific to EXPLAIN (see (24))

explainType specifies for the EXPLAIN method how the
prediction with knowledge about given feature and the
prediction without knowledge of this feature are com-
bined into the final explanation. The values ”WE”,
”infGain”, and ”predDiff” mean that the difference
is interpreted as the weight of evidence, information
gain, or plain difference of predictions, respectively.
For regression problem only the difference of predicti-
ons is available.

naMode specifies for the EXPLAIN method how the im-
pact of missing information about certain feature va-
lue is estimated. It can be estimated by the weighted
average of predictions over all possible feature’s va-
lues, or by inserting NA value as a feature value.

nLaplace specifies for the EXPLAIN method and classi-
fication problems the value to be used in Laplace cor-
rection of estimated probabilities.

Parameters specific to IME (see (30))

pError specifies for the IME method the estimated proba-
bility of an error in explanations. Together with the
err parameter, this determines the number of needed
samples.

batchSize specifies for the IME method the number of
samples processed for each explanation in one ba-
tch. To reduce processing overhead in calls to pre-
dict function we process several samples at once. This
strategy reduces the overhead but may process more
samples than required.

maxIter sets the maximal number of iterations in IME
method allowed for a single explanation.
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Listing 1: Top level call to explanation methods and their visualization.

explainVis(model, trainData, testData, method=c(”EXPLAIN”, ”IME”), classValue=1,
fileType=c(”none”,”pdf”,”eps”,”emf”,”jpg”,”png”,”bmp”,”tif”,”tiff”), dirName=getwd(), fileName=”explainVis”,
visLevel=c(”both”,”model”,”instance”), explainType=c(”WE”,”infGain”,”predDiff”), naMode=c(”avg”, ”na”),
nLaplace=nrow(trainData), estimator=NULL, pError=0.05, err=0.05, batchSize=40, maxIter=1000,
genType=c(”rf”, ”rbf”, ”indAttr”), noAvgBins=20, displayAttributes=NULL, modelVisCompact=FALSE,
displayThreshold=0.0, colors=c(”navyblue”, ”darkred”, ”blue”, ”red”, ”lightblue”, ”orange”),
normalizeTo=0, noDecimalsInValueName=2, recall=NULL
modelTitle=ifelse(model$noClasses==0,”Explaining \%R\nmodel: \%M”, ”Explaining \%R=\%V\\nmodel: \%M”),
modelSubtitle=”Method: \%E, type: \%X”,
instanceTitle=ifelse(model$noClasses==0, ”Explaining \%R\\ninstance: \%I, model: \%M”,

”Explaining \%R=\%V\\ninstance: \%I, model: \%M”),
instanceSubtitle=ifelse(model$noClasses==0, ”Method: \%E\\nf(\%I)=\%P, true \%R=\%T”,

”Method: \%E, type: \%X\\nP(\%R=\%V)=\%P, true \%R=\%T”) )

genType specifies the type of data generator used to gene-
rate random part of instances in method IME. The ge-
nerators from R package semiArtificial(22) are used:
”rf” stands for the random forest based generator,
”rbf” invokes RBF network based generator, and in-
dAttr” assumes independent attributes and generates
values for each attribute independently.

noAvgBins specifies for the IME method the number of
discretization bins used to present model level expla-
nations and average explanations.

Visualization parameters:

displayAttributes is the vector of attribute names which
are visualized in model level visualization.

modelVisCompact determines if attribute values are dis-
played in model level visualization.

displayThreshold specifies the threshold value for abso-
lute values of explanations below which feature con-
tributions are not displayed in instance and model ex-
planation graphs.

normalizeTo determines the value for instance level visu-
alization to which the sum of the absolute values of
feature contributions are normalized (e.g., 1 or 100).

colors determines colors used in visualization.

noDecimalsInValueName specifies how many decimal
places will numeric feature values use in visualizati-
ons.

modelTitle, modelSubtitle, instanceTitle, and instance-
Subtitle are string templates for various titles of dif-
ferent graphs. The template uses several variables,
which are inserted at the appropriate place: response
variable %R, the selected class value for explanation
%V, type of model %M, explanation method %E, ex-
planation type %X, instance name %I, predicted valu-
e/probability of the response %P, and the true value of
the response %T.

4.2 Producing explanations

The function explainVis generates explanations and their
visualizations given the trained model, its training data, and
data for which we want explanations. This is the front-
end explanation function which takes care of everything,
internally calling other functions. The produced visualiza-
tions are output to a graphical device or saved to a file. The
function returns a list with explanations, average explana-
tions, and additional data like discretization used and data
generator. An example of a call is presented in Listing 2.

The explanations support several models implemented
in packages CORElearn, randomForest, nnet, and e1071.
Adding support for new predictors is easy and involves
preparation of class names and class values in the for-
mat expected by the package ExplainPrediction when cal-
ling the predictor. This is demonstrated in the function
wrap4Explanation, which is part of the ExplainPrediction
package.

4.3 Tips for using the explanations

The presented explanation techniques have many success-
ful applications (shortly reviewed in Section 2). Here we
present a few tips for successful practical use of explanati-
ons.

For many real-world problems gaining the trust of users
is essential to assure successful application of machine le-
arning models. Instance and model explanation can serve
as convenient ice-breakers. If a user can check for some
instances that the generated explanations match his/her un-
derstanding of the problem, this greatly increases chances
of success and is more convincing than reporting high clas-
sification accuracy. This is true even for mispredicted in-
stances as long as the model’s reasoning is sensible for
users.

For larger data sets with many attributes, time to pro-
duce explanations with the IME method can be substantial.
However, in spite of theoretical advantages of IME over
EXPLAIN, in practice, these two methods mostly produce
similar explanations. This indicates that in real-world pro-
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Listing 2: A code that generates explanations of model and instances.

require(ExplainPrediction)
require(CORElearn)
# use iris data set, split it randomly into a training and testing set
trainIdxs <− sample(x=nrow(iris), size=0.7∗nrow(iris), replace=FALSE)
testIdxs <− c(1:nrow(iris))[−trainIdxs]
# build random forests model with certain parameters
modelRF <− CoreModel(Species ˜ ., iris[trainIdxs,], model=”rf”, rfNoTrees=100, selectionEstimator=”MDL”,

minNodeWeightRF=5)
# generate model and instance explanations and visualize them in a graphical window
explainVis(modelRF, iris[trainIdxs,], iris[testIdxs,], method=”EXPLAIN”, fileType=”none”, naMode=”avg”,

explainType=”WE”, classValue=1)

blems there are few redundant attributes and even less re-
dundant attributes of exactly the same strength (if redun-
dant attributes are not of the same strength, learning selects
the stronger ones and there is no redundancy in the model).
In practice, we can compare the behavior of EXPLAIN and
IME on a subsample of instances and attributes. If explana-
tions are similar, the EXPLAIN method can be used instead
of IME.

To reach a desired graphical design (e.g., colors and he-
adings) and show only the most impactful attributes requi-
res some tweaking of visualization parameters. To avoid
regeneration of explanations for each user interaction with
explanations, we provide the recall parameter. In the first
call to the explainVis function, we have to store the in-
visibly returned list to a variable and supply this varia-
ble as the value of parameter recall in subsequent calls to
explainVis. In this case the function reuses already com-
puted explanations, average explanations, discretization,
etc., and only display data differently according to sup-
plied input/output and visualization parameters (visLevel,
dirName, fileType, displayAttributes, modelVisCompact,
displayThreshold, normalizeTo, colors, noDecimalsInVa-
lueName, modelTitle, modelSubtitle, instanceTitle, and in-
stanceSubtitle). Using this hint can make user interactions
with explanations instantaneous even for large data sets.

5 Conclusions

We presented two general methods for explanation of pre-
diction models and their implementation in the ExplainPre-
diction package. The methods allow explanation of indivi-
dual decisions as well as the prediction model as a whole.
The explanations provide information on how the indivi-
dual input variables influence the outcome of prediction
models, thus improving their transparency and comprehen-
sibility. The general methods allow users to compare diffe-
rent types of models or replace their existing model without
having to replace the explanation method. The explanation
methods can be efficiently computed and visualized, and
their implementation offers several parameters that cont-
rol the speed and precision of the computed explanations,
convergence rate and visualization of explanations. Several

models are supported and adding support in almost any pre-
diction model is easy.

The simplicity and elegance of the perturbation based
explanations coupled with efficient implementations and
visualization of instance- and model-based explanations al-
low application of general explanation approaches to new
areas. We expect that broader practical use will spur ad-
ditional research into explanation mechanisms and impro-
vements in the visual design of explanations. There are
also many possibilities for methodological improvements.
An idea worth pursuing seems integration of game theory
based sampling and formulation of explanations as an opti-
mization problem. The implementation of IME in the Ex-
plainPrediction package could be improved by rewriting it
in C language and using better, context-dependent, sam-
pling method.
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