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Features of growth

Every organism should grow and progress, until its development stops and it starts the path
towards its end. But for it to have a long and healthy life, its growth must be moderate.
Growing too fast can be very dangerous; uncontrolled growth may cause damage, and even
death — for individuals and businesses, and also for journals.

We started this journal in 2008, publishing 20 papers in that first year. The number of
papers grew to 35 in 2013 (a 75 percent increase). More than half of the papers for the year
2014 are already on-line, and we have a growing back-log of papers accepted but not yet
published. The quality of the research published in these papers and the inclusion of the
journal in various databases have made it popular among mathematicians worldwide. The
number of submissions to our journal is also growing, with over 15 in each of September
and October this year, and correspondingly, both the number and percentage of papers that
we have to reject or redirect to other journals are increasing as well.

We would like to shape this journal into a self-consistent form that will attract the best
possible papers from a rich and wide range of fields of mathematics, while retaining an
expectation that their content combines at least two branches of a discrete nature. To pursue
this goal, however, we must carefully control the growth of our journal, with respect to its
size and maturity. That explains why we are taking some novel approaches to the journal’s
production.

For reasons of business viability, we changed the main publisher from a learned so-
ciety to a university. We decided to apply for support being offered by the Republic of
Slovenia to scientific journals, and a visible consequence is the translation of abstracts into
the Slovenian language. Next, because we are committed to preserving our policy that
neither readers nor authors should pay for access to the journal’s papers over the internet,
from 2014 we are introducing a ‘Creative Commons Copyright’ model for our journal. We
hereby announce that Ars Mathematica Contemporanea will publish four issues per year,
from 2015. If you wish to support our journal and help with the long-term preservation of
its contents, please subscribe to Ars Mathematica Contemporanea, and ask your library to
subscribe to the printed edition.

Dragan Marušič and Tomaž Pisanski
Editors-in-Chief
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Aleksandra Erić, C. M. da Fonseca . . . . . . . . . . . . . . . . . . . . . . 279

GCD-Graphs and NEPS of Complete Graphs
Walter Klotz, Torsten Sander . . . . . . . . . . . . . . . . . . . . . . . . . 289

The bipartite graphs of abelian dessins d’enfants
Rubén A. Hidalgo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

On stratifications for planar tensegrities with a small number of vertices
Oleg Karpenkov, Jan Schepers, Brigitte Servatius . . . . . . . . . . . . . . 305

Relations between graphs
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Abstract

A graph is “nearly embedded” in a surface if it consists of graph G0 that is embedded
in the surface, together with a bounded number of vortices having no large transactions. It
is shown that every large wall (or grid minor) in a nearly embedded graph, many rows of
which intersect the embedded subgraphG0 of the near-embedding, contains a large subwall
that is planarly embedded within G0. This result provides some hidden details needed for
a strong version of the Robertson and Seymour’s excluded minor theorem as presented
in [1].

Keywords: Graph, graph minor, surface, near-embedding, grid minor, excluded minor.

Math. Subj. Class.: 05C10, 05C82

1 Introduction
A graph is a minor of another graph if the first can be obtained from a subgraph of the
second by contracting edges. One of the highlights of the graph minors theory developed
by Robertson and Seymour is the Excluded Minor Theorem (EMT) that describes a rough
structure of graphs that do not contain a fixed graph H as a minor. Two versions of EMT
appear in [7, 8]; see also [3] and [4].

In [1] and [2] the authors used a strong version of EMT in which it is concluded that
every graph without a fixed minor and whose tree-width is large has a tree-like structure,
whose pieces are subgraphs that are almost embedded in some surface, and in which one of
the pieces contains a large grid minor that is (essentially) embedded in a disk on the surface.
Although not explicitly mentioned, this version of EMT follows from the published results
of Robertson and Seymour [8] by applying standard techniques of routings on surfaces.
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Experts in this area are familiar with these techniques (that are also present in Robertson
and Seymour’s work [6]). However, they may be harder to digest for newcomers in the
area, and thus deserve to be presented in the written form. The purpose of this note is to
provide a proof of an extended version of EMT as stated in [1, Theorem 4.2].

It may be worth mentioning that the proof in [1] does not really need the extended
version of the EMT, but the proof in [2] does. Thus, this note may also be viewed as a
support for the main proof in [2].

We assume that the reader is familiar with the basic notions of graph theory and in
particular with the basic notions related to graph minors; we refer to [3] for all terms and
results not explained here.

2 Walls in near-embeddings
In this section, we present our main lemma, which shows that for every large wall (to be
defined in the sequel) in a “nearly embedded” graph, a large subwall must be contained in
the embedded subgraph of the near-embedding. Let us first introduce the notion of the wall
and some of its elementary properties.

Figure 1: The cylindrical 6-wall Q6

For an integer r ≥ 3, we define a cylindrical r-wall as a graph that is isomorphic to a
subdivision of the graph Qr defined as follows. We start with vertex set V = {(i, j) | 1 ≤
i ≤ r, 1 ≤ j ≤ 2r}, and make two vertices (i, j) and (i′, j′) adjacent if and only if one of
the following possibilities holds:

(1) i′ = i and j′ ∈ {j − 1, j + 1}, where the values j − 1 and j + 1 are considered
modulo 2r.

(2) j′ = j and i′ = i+ (−1)i+j .

Less formally, Qr consists of r disjoint cycles C1, . . . , Cr of length 2r (where V (Ci) =
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{(i, j) | 1 ≤ j ≤ 2r}), called the meridian cycles of Qr. Any two consecutive cycles Ci

and Ci+1 are joined by r edges so that the edges joining Ci and Ci−1 interlace on Ci with
those joining Ci and Ci+1 for 1 < i < r. Figure 1 shows the cylindrical 6-wall Q6.

By deleting the edges joining vertices (i, 1) and (i, 2r) for i = 1, . . . , r, we obtain a
subgraph of Qr. Any graph isomorphic to a subdivision of this graph is called an r-wall.

To relate walls and cylindrical walls to (r× r)-grid minors, we state the following easy
correspondence:

(a) Every (4r + 2)-wall contains a cylindrical r-wall as a subgraph.

(b) Every cylindrical r-wall contains an (r × r)-grid as a minor.

(c) Every (r × r)-grid minor contains an b r−12 c-wall as a subgraph.

Lemma 2.1. Suppose that 1 ≤ i < j ≤ r and let t = j − i− 1. Let Si ⊂ Ci and Sj ⊆ Cj

be paths of length at least 2t − 1 in the meridian cycles Ci, Cj of Qr. Then Qr contains t
disjoint paths linking Ci and Cj . Moreover, for each of these paths and for every cycle Ck,
i < k < j, the intersection of the path with Ck is a connected segment of Ck.

Ci

Cj

Si

Sj

Figure 2: Paths linking Si and Sj

Proof. The lemma is easy to prove and the idea is illustrated in Figure 2, in which the
edges on the left are assumed to be identified with the corresponding edges on the right.
The paths are shown by thick lines and the segments Si and Sj are shown by thick broken
lines.

A surface is a compact connected 2-manifold (with or without boundary). The compo-
nents of the boundary are called the cuffs. If a surface S has Euler characteristic c, then the
non-negative number g = 2− c is called the Euler genus of S. Note that a surface of Euler
genus g contains at most g cuffs.

Disjoint cycles C,C ′ in a graph embedded in a surface S are homotopic if there is a
cylinder in S whose boundary components are the cycles C and C ′. The cylinder bounded
by homotopic cycles C,C ′ is denoted by int(C,C ′). Disjoint paths P,Q whose initial
vertices lie in the same cuff C and whose terminal vertices lie in the same cuff C ′ in S
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(possibly C ′ = C) are homotopic if P and Q together with a segment in C and a segment
in C ′ form a contractible closed curve A in S. The disk bounded by A will be denoted
by int(P,Q). The following basic fact about homotopic curves on a surface will be used
throughout (cf., e.g., [5, Propositions 4.2.6 and 4.2.7]).

Lemma 2.2. Let S be a surface of Euler genus g. Then every collection of more than 3g
disjoint non-contractible cycles contains two cycles that are homotopic. Similarly, every
collection of more than 3g disjoint paths, whose ends are on the same (pair of) cuffs in S,
contains two paths that are homotopic.

Let G be a graph and let W = {w0, . . . , wn}, n = |W | − 1, be a linearly ordered
subset of its vertices such that wi precedes wj in the linear order if and only if i < j. The
pair (G,W ) is called a vortex of length n, W is the society of the vortex and all vertices
in W are called society vertices. When an explicit reference to the society is not needed,
we will as well say that G is a vortex. A collection of disjoint paths R1, . . . , Rk in G is
called a transaction of order k in the vortex (G,W ) if there exist i, j (0 ≤ i ≤ j ≤ n)
such that all paths have their initial vertices in {wi, wi+1, . . . , wj} and their endvertices in
W \ {wi, wi+1, . . . , wj}.

Let G be a graph that can be expressed as G = G0 ∪ G1 ∪ · · · ∪ Gv , where G0 is
embedded in a surface S of Euler genus g with v cuffs Ω1, . . . ,Ωv , and Gi (i = 1, . . . , v)
are pairwise disjoint vortices, whose society is equal to their intersection with G0 and is
contained in the cuff Ωi, with the order of the society being inherited from the circular
order around the cuff. Then we say that G is near-embedded in the surface S with vortices
G1, . . . , Gv . A subgraph H of a graph G that is near-embedded in S is said to be planarly
embedded in S if H is contained in the embedded subgraph G0, and there exists a cycle
C ⊆ G0 that is contractible in S and H is contained in the disk on S that is bounded by C.
Our main result is the following.

Theorem 2.3. For every non-negative integers g, v, a there exists a positive integer s =
s(g, v, a) such that the following holds. Suppose that a graph G is near-embedded in the
surface S with vortices G1, . . . , Gv , such that the maximum order of transactions of the
vortices is at most a. Let Q be a cylindrical r-wall contained in G, such that at least
r0 ≥ 3s of its meridian cycles have at least one edge contained in G0. Then Q ∩ G0

contains a cylindrical r′-wall that is planarly embedded in S and has r′ ≥ r0/s.

Proof. Let Cp1 , Cp2 , . . . , Cpr0
(p1 < p2 < · · · < pr0 ) be meridian cycles of Q having an

edge in G0. For i = 1, . . . , r0, let Li be a maximal segment of Cpi
containing an edge

in E(Cpi
) ∩ E(G0) and such that none of its vertices except possibly the first and the last

vertex are on a cuff. It may be that Li = Cpi
if Cpi

contains at most one vertex on a
cuff; if not, then Li starts on some cuff and ends on (another or the same) cuff. (We think
of the meridian cycles to have the orientation as given by the meridians in the wall.) At
least r0/(v2 + 1) of the segments Li either start and end up on the same cuffs Ωx and Ωy

(possibly x = y), or are all cycles. In each case, we consider their homotopies. By Lemma
2.2, these segments contain a subset of q ≥ r0/((3g+ 1)(v2 + 1)) homotopic segments (or
cycles). Since we will only be interested in these homotopic segments or cycles, we will
assume henceforth that L1, . . . , Lq are homotopic.

Let us first look at the case when L1, . . . , Lq are cycles. Since s = s(g, v, a) can be
chosen to be arbitrarily large (as long as it only depends on the parameters), we may assume
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C C’

C’’

Figure 3: Many contractible cycles

that q is as large as needed in the sequel. If the cycles Li are pairwise homotopic and non-
contractible, then it is easy to see that two of them bound a cylinder in S containing many of
these cycles. This cylinder also contains the paths connecting these cycles; thus it contains
a large planarly embedded wall and hence also a large planarly embedded cylindrical wall.
So, we may assume that the cycles L1, . . . , Lq are contractible. By Lemma 2.1, Q contains
t paths linking any two of these cycles that are t apart in Q, say C = Li and C ′ = Li+t+1.
(Here we take t large enough that the subsequent arguments will work.) Again, many of
these paths either reach C ′ without intersecting any of the cuffs, or many reach the same
cuff Ω. A large subset of them is homotopic. In the former case, the paths linking C ′ with
C ′′ = Li+2t+2 can be chosen so that their initial vertices interlace on C ′ with the end-
vertices of the homotopic paths coming from C. This implies that C or C ′′ lies in the disk
bounded by C ′ (cf. Figure 3). By repeating the argument, we obtain a sequence of nested
cycles and interlaced linkages between them. This clearly gives a large subwall, which
contains a large cylindrical subwall that is planarly embedded. In the latter case, when the
paths from C to C ′ go through the same cuff Ωj , we get a contradiction since the vortex on
Ωj does not admit a transaction of large order, and thus too many homotopic paths cannot
reach C ′′.

�x
�y

Li

Lj

A

B

C

D

Figure 4: Many homotopic segments joining two cuffs

We get a similar contradiction as in the last case above, when too many homotopic
segments Li start and end up on the same cuffs Ωx and Ωy . We shall give details for the
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case when x 6= y, but the same approach works also if x = y. (In the case when x = y
and the homotopic segments Li are contractible, the proof is similar to the part of the proof
given above.)

Let us consider the “extreme” segments Li, Lj , whose disk int(Li, Lj) contains many
homotopic segments (cf. Figure 4). Let us enumerate these segments as L′1 = Li, L

′
2, . . . ,

L′m = Lj in the order as they appear inside int(Li, Lj). Let C ′t (for 1 < t < m) be
the meridian cycle containing the segment L′t. Since vortices admit no transactions of
order more than a, at most 4a of the cycles C ′t (1 < t < m) can leave int(Li, Lj). By
adjustingm, we may thus assume that none of them does. In particular, each L′t has another
homotopic segment in int(Li, Lj). Since there are no transactions of order more than a,
there is a large subset of the cycles C ′t that follow each other in int(Li, Lj) as shown by
the thick cycles in Figure 4. Consider four of these meridian cycles A,B,C,D that are
pairwise far apart in the wall Q and appear in the order A,B,C,D within int(Li, Lj).
Then A and C are linked in Q by a large collection of disjoint paths by Lemma 2.1. At
most 8a of these paths can escape intersecting two fixed segments L′u and L′v of B or two
such segments of D by passing through a vortex. All other paths linking A and C intersect
either two segments of B or two segments of D. However, this is a contradiction since the
paths linking A and C can be chosen in Q so that each of them intersects each meridian
cycle in a connected segment (Lemma 2.1). This completes the proof.

3 The excluded minor structure
In this section, we define some of the structures found in Robertson-Seymour’s Excluded
Minor Theorem [7] which describes the structure of graphs that do no contain a given
graph as a minor. Robertson and Seymour proved a strengthened version of that theorem
that gives a more elaborate description of the structure in [8]. Our terminology follows that
introduced in [1].

Let G0 be a graph. Suppose that (G′1, G
′
2) is a separation of G0 of order t ≤ 3, i.e.,

G0 = G′1∪G′2, whereG′1∩G′2 = {v1, . . . , vt} ⊂ V (G0), 1 ≤ t ≤ 3, V (G′2)\V (G′1) 6= ∅.
Let us replace G0 by the graph G′, which is obtained from G′1 by adding all edges vivj
(1 ≤ i < j ≤ t) if they are not already contained in G′1. We say that G′ has been obtained
from G0 by an elementary reduction. If t = 3, then the 3-cycle T = v1v2v3 in G′ is called
the reduction triangle. Every graph G′′ that can be obtained from G0 by a sequence of
elementary reductions is a reduction of G0.

We say that a graph G0 can be embedded in a surface Σ up to 3-separations if there is a
reduction G′′ of G0 such that G′′ has an embedding in Σ in which every reduction triangle
bounds a face of length 3 in Σ.

Let H be an r-wall in the graph G0 and let G′′ be a reduction of G0. We say that the
reductionG′′ preservesH if for every elementary reduction used in obtainingG′′ fromG0,
at most one vertex of degree 3 in H is deleted. (With the above notation, G′2 \G′1 contains
at most one vertex of degree 3 in H .)

Lemma 3.1. Suppose that G′′ is a reduction of the graph G0 and that G′′ preserves an
r-wall H in G0. Then G′′ contains an b(r + 1)/3c-wall, all of whose edges are contained
in the union of H and all edges added to G′′ when performing elementary reductions.

Proof. Let H ′ be the subgraph of the r-wall H obtained by taking every third row and
every third “column”. See Figure 5 in which H ′ is drawn with thick edges. It is easy to
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Figure 5: Smaller wall contained in a bigger wall

see that for every elementary reduction we can keep a subgraph homeomorphic to H ′ by
replacing the edges of H ′ which may have been deleted by adding some of the edges vivj
involved in the reduction. The only problem would occur when we lose a vertex of degree
3 and when all vertices v1, v2, v3 involved in the elementary reduction would be of degree
3 in H ′. However, this is not possible since G′′ preserves H .

Suppose that for i = 0, . . . , n, there exist vertex sets, called parts, Xi ⊆ V (G), with
the following properties:

(V1) Xi ∩W = {wi, wi+1} for i = 0, . . . , n, where wn+1 = wn,

(V2)
⋃

0≤i≤nXi = V (G),

(V3) every edge of G has both endvertices in some Xi, and

(V4) if i ≤ j ≤ k, then Xi ∩Xk ⊆ Xj .

Then the family (Xi ; i = 0, . . . , n) is called a vortex decomposition of the vortex (G,W ).
For i = 1, . . . , n, denote by Zi = (Xi−1 ∩Xi) \W . The adhesion of the vortex decom-
position is the maximum of |Zi|, for i = 1, . . . , n. The vortex decomposition is linked if
for i = 1, . . . , n − 1, the subgraph of G induced on the vertex set Xi \W contains a col-
lection of disjoint paths linking Zi with Zi+1. Clearly, in that case |Zi| = |Zi+1|, and the
paths corresponding to Zi ∩ Zi+1 are trivial. Note that (V1) and (V3) imply that there are
no edges between nonconsecutive society vertices of the vortex. Let us remark that every
vortex (G,W ), in which wi, wj are non-adjacent for |i − j| ≥ 2, admits a linked vortex
decomposition; just take Xi = (V (G) \W ) ∪ {wi, wi+1}.

The (linked) adhesion of the vortex is the minimum adhesion taken over all (linked)
decompositions of the vortex. Let us observe that in a linked decomposition of adhesion q,
there are q disjoint paths linking Z1 with Zn in G−W . For us it is important to note that
a vortex with adhesion less than k does not admit a transaction of order more than k.

Let G be a graph, H an r-wall in G, Σ a surface, and α ≥ 0 an integer. We say that
G can be α-nearly embedded in Σ if there is a set of at most α cuffs C1, . . . , Cb (b ≤ α)
in Σ, and there is a set A of at most α vertices of G such that G − A can be written



194 Ars Math. Contemp. 6 (2013) 187–196

as G0 ∪ G1 ∪ · · · ∪ Gb where G0, G1, . . . , Gb are edge-disjoint subgraphs of G and the
following conditions hold:

(N1) G0 can be embedded in Σ up to 3-separations with G′′ being the corresponding
reduction of G0.

(N2) If 1 ≤ i < j ≤ b, then V (Gi) ∩ V (Gj) = ∅.
(N3) Wi = V (G0) ∩ V (Gi) = V (G′′) ∩ Ci for every i = 1, . . . , b.

(N4) For every i = 1, . . . , b, the pair (Gi,Wi) is a vortex of adhesion less than α, where
the ordering of Wi is consistent with the (cyclic) order of these vertices on Ci.

The vertices in A are called the apex vertices of the α-near embedding. The subgraph
G0 ofG is said to be the embedded subgraph with respect to the α-near embedding and the
decomposition G0, G1, . . . , Gb. The pairs (Gi,Wi), i = 1, . . . , b, are the vortices of the α-
near embedding. The vortex (Gi,Wi) is said to be attached to the cuff Ci of Σ containing
Wi.

If G is α-near-embedded in S, let G0, G1, . . . , Gb be as above and let G′′ be the re-
duction of G0 that is embedded in S. If H is an r-wall in G, we say that H is captured in
the embedded subgraph G0 of the α-near-embedding if H is preserved in the reduction G′′

and for every separation G = K ∪ L of order less than r, where G0 ⊆ K, at least 2
3 of the

degree-3 vertices of H lie in K.
We shall use the following theorem which is a simplified version of one of the corner-

stones of Robertson and Seymour’s theory of graph minors, the Excluded Minor Theorem,
as stated in [8]. For a detailed explanation of how the version in this paper can be derived
from the version in [8], see the appendix of [1].

Theorem 3.2 (Excluded Minor Theorem). For every graph R, there is a constant α such
that for every positive integer w, there exists a positive integer r = r(R,α,w), which tends
to infinity with w for any fixed R and α, such that every graph G that does not contain an
R-minor either has tree-width at most w or contains an r-wall H such that G has an α-near
embedding in some surface Σ in which R cannot be embedded, and H is captured in the
embedded subgraph of the near-embedding.

We can add the following assumptions about the r-wall in Theorem 3.2.

Theorem 3.3. It may be assumed that the r-wall H in Theorem 3.2 has the following
properties:

(a) H is contained in the reduction G′′ of the embedded subgraph G0.

(b) H is planarly embedded in Σ, i.e., every cycle in H is contractible in Σ and the outer
cycle of H bounds a disk in Σ that contains H .

(c) We may prespecify any constant ρ and ask that the face-width of G′′ be at least ρ.

(d) G′′ is 3-connected.

Proof. The starting point is Theorem 3.2. By making additional elementary reductions if
necessary, we can achieve (d). The property (c) is attained as follows. If the face-width is
too small, then there is a set of less than ρ vertices whose removal reduces the genus of the
embedding of G′′. We can add these vertices in the apex set and repeat the procedure as
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long as the face-width is still smaller than ρ. The only subtlety here is that the constant α
in Theorem 3.2 now depends not only on R but also on ρ. See also [4].

After removing the apex set A, we are left with an (r−α)-wall in G−A. By applying
Lemma 3.1, we may assume that H is contained in the reduced graph G′′ ∪G1 ∪ · · · ∪Gb.
The wall H contains a large cylindrical wall Q. Since the vortices have bounded adhesion,
they do not have large transactions. Since the wall is captured in G′′, edges of many
meridians of Q lie in G′′. Therefore, we can apply Theorem 2.3 for the near embedding of
the reduced graph together with the vortices. This shows that a large cylindrical subwall
of Q is planarly embedded in the surface. The size r′ of this smaller wall still satisfies the
condition that r′ = r′(R,α,w)→∞ as w increases.

It is worth mentioning that there are other ways to show that a graph with large enough
tree-width that does not contain a fixed graph R as a minor contains a subgraph that is
α-near-embedded in some surface Σ in which R cannot be embedded, and moreover, there
is an r-wall planarly embedded in Σ (after reductions taking care of at most 3-separations).
Let us describe two of them:

(A) Large face-width argument: One can use property (c) in Theorem 3.3 that the face-
width ρ can be made as large as we want if α = α(R,w, ρ) is large enough. Once
we have that, it follows from [6] that there is a planarly embedded r-wall, where
r = r(R, ρ) → ∞ as ρ → ∞. While this easy argument is sufficient for most
applications, it appears to be slightly weaker than Theorem 3.3 since the quantifiers
change. The difference is that the number of apex vertices is no longer bounded as
a function of α = α(R) but rather as a function depending on R and r, where the
upper bound has linear dependence on r, i.e. it is of the form β(R)r. However, other
parameters of the near-embedding keep being only dependent on R.

(B) Irrelevant vertex: The third way of establishing the same result is to go through
the proof of Robertson and Seymour that there is an irrelevant vertex, i.e. a vertex
v such that G has an R-minor if and only if G − v has. (Compared to the later,
more abstract parts of the graph minors series of papers, this part is very clean and
well understood; it could (and should) be explained in a(ny) serious graduate course
on graph minors.) In that proof, one starts with an arbitrary wall W that is large
enough. A large wall exists since the tree-width is large. Then one compares the
W -bridges attached to W . They may give rise to ≤ 3-separations, to jumps (paths
in bridges whose addition to W yields a nonplanar graph), crosses (pairs of disjoint
paths attached to the same planar face of W whose addition to W yields a nonplanar
graph). If there are many disjoint jumps or crosses on distinct faces of W , one can
find an R-minor. If there are just a few, there is a large planar wall. If there are many
of them on the same face, we get a structure of a vortex with bounded transactions
(or else an R-minor can be discovered). The proof then discusses ways for many
jumps and crosses but no large subset of them being disjoint. One way is to have a
small set of vertices whose removal destroys most of these jumps and crosses. This
gives rise to the apex vertices. The final conclusion is that the jumps and crosses can
affect only a bounded part of the wall, so after the removal of the apex vertices and
after elementary reductions which eliminate≤ 3-separations, there is a large subwall
W0 such that no jumps or crosses are involved in it. The “middle” vertex in W0 is
then shown to be irrelevant.
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For our reference, only this planar wall is needed. By being planar, we mean that
the rest of the graph is attached only to the outer face of this wall. Then we define
the tangle corresponding to this wall and the proof of the EMT preserves this tangle
while making the modifications yielding to an α-near-embedding.
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1 Introduction
An independent set in a graph is a set of pairwise non-adjacent vertices such that all pairs
are at distance two or more. A clique (a subset of the vertices that are pairwise adjacent) in a
graph corresponds to an independent set in the complement of the graph. Hence algorithms
for maximum clique can be applied to find maximum independent sets.

The problem of finding a maximum independent set in a graph is NP-Hard [12]. The
DIMACS Clique Challenge arose from the need to find practical algorithms for the maxi-
mum clique problem, and the proceedings volume is an excellent place to start looking for
information about practical algorithms for clique finding [14]. The challenge also included
a database of difficult clique problems. Bomze, Budinich, Pardalos, and Pelillo [1] provide
a comprehensive survey on the maximum clique problem. Östergård focusses on solving
maximum clique problems on graphs arising from various combinatorial problems. Both
surveys cite the problem of finding a maximum clique of the Keller graph of dimension 7
as a open problem. This problem has subsequently been solved [5].

In general, a d-code is a set of vertices such that pairwise distances are all at least d.
The concept of distance between vertices a and b may be cast in terms of graphs (number
of edges in the shortest path between the vertices), coding theory (the Hamming distance
between (0, 1) sequences representing coordinates of vertices), or sets (the cardinality of
the symmetric difference between the two subsets that represent the vertices). A d-code in
a graph G corresponds to an independent set in the graph H which has the same vertex set
as G and the property that two vertices u and v are adjacent in H if and only if the distance
between them inG is at most d−1. The interest for applications is usually to find maximum
d-codes, and one standard problem in the theory of error-correcting codes [16, 2] is to find
the largest d-code in the n-cube. Here we consider the problem of finding largest d-codes
in the graphs corresponding to other regular polytopes.

For polycyclic and polyhedral graphs in two and three dimensions, the construction
of d-codes has applications to chemistry [15, 4, 7, 8]. For example, sets of codes with
increasing d may be seen as templates for addition to an underlying molecular framework
by addends of increasing steric demand. Codes have been presented for chemically relevant
regular and semi-regular polyhedra [15] and arguments based on d-codes, coupled with
spectral information, give useful rationalisations of the extent and symmetry of addition
in fullerene chemistry, for example [9, 10, 11]. Although not invoked in chemistry so far,
d-anticodes, defined by the requirement that pairwise distances should not exceed d, would
model the opposite regime of attachment to a framework where the added groups cluster
under strong inter-addend attraction. Extension of the existing lists [15] to d-codes in the
graphs of all regular polytopes is a finite task, as there are only the following convex regular
polytopes [3]: in dimension n the n-simplex (αn), the n-cross-polytope (βn), the n-cube
(γn), and additionally in dimension 2 the regular polygons, and in dimensions 3 and 4, five
sporadic polytopes. In dimension 3, α3 is the tetrahedron, β3 the octahedron and γ3 the
cube, and there is a dual pair of sporadic polyhedra: the icosahedron and the dodecahedron.
In dimension 4, the analogues of the icosahedron and dodecahedron are the 600-cell (all of
its independent sets have been enumerated previously [6]) and the 120-cell (again a dual
pair), and there is also the self-dual 24-cell, without analogue in higher or lower dimensions
[3].

Codes for the polytopes common to all dimensions (αn, βn and γn) are well studied.
The 1-skeleton of αn is the complete graph Kn, of diameter 1, and the 1-skeleton of βn is
the complete multipartite graph (the Cocktail-Party graph) Kn(2) ≡ Cp(n) ≡ K2,2,...,2, of
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diameter 2, so coding problems are trivial for both. Codes for γn are the subject of classi-
cal coding theory [16]. As a bipartite graph with equal partite sets, γn has independence
number 2n−1. The coding problem is also trivial in two dimensions, where the order of the
d-code is bn/dc for the cycle of length n. It only remains to study the five exceptional reg-
ular polytopes in dimensions 3 and 4. Most of these problems are easy (see the summary
in Table 3, §3). The difficult case is that of the independence number of the 600-vertex
120-cell, which does not appear to be computable in a reasonable amount of time by use of
standard algorithms. The solution to this problem is described in the following.

2 Maximum Independent Sets of the 120-cell
The 120-cell is the largest regular polytope in 4 dimensions. Its properties are described
in Coxeter’s book on Regular Polytopes [3] and Stillwell’s survey paper [20], for exam-
ple. The 1-skeleton of the 120-cell is a 4-regular graph with 600 vertices, 720 pentagonal
faces and 120 dodecahedral cells. Models exhibiting three-dimensional projections of the
complete object have been constructed; photographs of Donchian’s models are shown in
[3]. A partial model of the 120-cell is given as an example of a construction using Zome
Models [13, Ch. 21]; this 330-vertex subgraph has 45 of the 120 dodecahedra, arranged in
concentric shells of 1, 12 and 32 face-sharing cells.

In the following subsections, the steps leading to the solution of the problem of finding
the maximum independent set order of the 120-cell are described. First, a description is
given of how the vertices of the graph are numbered and how its automorphism group is
computed (§2.1). Then (§2.2) a lower bound of 220 for the maximum independent set order
is derived from an independent set of order 110 in the antipodal collapse of the 120-cell.
An upper bound of 221 is established by use of a linear program (§2.3), and the information
from the solution to the integer program is then exploited (§2.4) to infer structural informa-
tion about a putative independent set of order 221. This information is subsequently used
in the computational search described in the remaining subsections, which establishes that
the maximum independent set order of the 120-cell is 220.

2.1 Numbering the Graph and its Automorphism Group

A special breadth-first search was used for numbering the 120-cell and finding a permuta-
tion representation of its automorphism group on the 600 vertices. The search in question
is performed as follows:

Clockwise BFS Labelling Algorithm:

Input: an adjacency list for the 120-cell or its collapse.
Output: a canonical labelling for the graph and its automorphisms expressed in terms of

permutations of the vertices of the canonically labelled graph.

To obtain the initial canonical labelling, select one vertex to be labelled as vertex 0 and
then choose one way to label its four neighbours as 1, 2, 3 and 4. The remaining vertices
are labelled using a breadth-first search starting at vertex 0, and visiting its neighbours
1, 2, 3, and 4 in order. In order to make the breath-first search labelling deterministic, the
neighbours of a vertex v are visited in an order which is decided as follows. Each unlabelled
neighbour u of vertex v is in one pentagon with vertex v and the breadth-first search parent
p of vertex v. Let the other two vertices of the pentagon be x and y so that the vertices of
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Figure 1: A subgraph of the 120-cell, as labelled by the Clockwise BFS Labelling Algo-
rithm.

this pentagon in cyclic order are u, v, p, x, y. Since x is a neighbour of p (and p is the
breadth-first search parent of v), x has already been labelled. The order of the neighbours
of vertex v is selected so that the labels of the vertices indicated by x in their pentagons are
sorted in increasing order. Figure 1 shows a portion of the 120-cell labelled this way.

The 120-cell has an automorphism group of order 14,400. Obtaining the permutations
of the automorphism group is easy using the clockwise BFS as described above, as they
correspond to choosing a start vertex for the BFS in each of the 600 possible ways, and for
each start, considering each of the 4! permutations of its neighbours (14,400 = 600 × 4!).

2.2 A Lower Bound from the Antipodal Collapse

Given a vertex v of a graph, its antipodal vertices are those at maximum distance from v.
The 120-cell has the property that each of its vertices has a unique antipodal vertex. The
antipodal collapse of the 120-cell is obtained by identifying each vertex of the 120-cell
with its antipodal vertex. If {u, u′} and {v, v′} are two sets of antipodal pairs of vertices of
a graphG, then in the collapse, there is one edge between {u, u′} and {v, v′} corresponding
to each edge of the form (u, v), (u, v′), (u′, v), or (u′, v′) of the original graph G. Since
multiple edges are inconsequential for the independent-set problem, each multiple edge is
replaced by a single edge. The result is a 4-regular graph on 300 vertices which has the
same local structure as the 120-cell. This graph is the 1-skeleton of the hemi-120-cell, one
of the projective regular polytopes of rank 4 in projective 3-space [17, Section 6C].

The automorphism group order of the collapse is 300 × 4! = 7200, and the Clockwise
BFS Labelling Algorithm from Section 2.1 is first used to label the vertices and find the
automorphisms. An independent set of order k in the antipodal collapse can be lifted to
one of order 2k in the 120-cell (if a vertex is in the independent set in the collapse, then
include the two corresponding vertices of the 120-cell).

A non-exhaustive computer search indicated that the antipodal collapse has at least
60 independent sets of order 110 up to isomorphism. This shows that the 120-cell has
an independent set of order 220. The most symmetrical of the sets that we found in the
antipodal collapse has stabiliser group of order 8. This set is lifted (Table 1) to give an
independent set of order 220 in the 120-cell, with 16 automorphisms.
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2.3 A Linear Programming Upper Bound

An upper bound of 221 is not difficult to prove by solving a linear programming problem
which sets up necessary constraints for a maximum independent set of the 120-cell. The
nine variables for this linear program are as follows:

R = the number of red (independent set) vertices
Bi for i = 0, 1, 2, 3, 4 = the number of blue (not in the independent set) vertices having

i red neighbours.
Pi for i = 0, 1, 2 = the number of pentagons with i red vertices. Each of the nine vari-

ables is constrained to be non-negative. The LP has six further constraints (five equalities
and one inequality). These are introduced after proving some theorems required to justify
the sixth constraint. The other constraints are all trivial conditions.

A blue pentagon is a pentagon whose vertices are all blue (i.e., none of them are in the
independent set). An isolated blue pentagon is defined to be a blue pentagon such that all
of its ten incident vertices (i.e., the ten vertices that are adjacent to a vertex of the pentagon
but are not themselves in the pentagon) are red. A blue pentagon with at least one incident
blue vertex is called a non-isolated blue pentagon. A blue vertex with one red and three
blue neighbours is called a key. A blue vertex with four red neighbours is called an isolated
blue vertex.

Remark 2.1. The independent set of order 220 listed in Table 1 has no isolated blue ver-
tices and no keys.

Theorem 2.2. For any maximum independent set, the number of non-isolated blue pen-
tagons is at most B1 (the number of keys).

Proof. Note that for a maximum independent set, it is not possible to have a blue vertex
v with four blue neighbours since otherwise the independent set order could be increased
by colouring v red. Therefore, if there is a blue pentagon which is a non-isolated blue

0 5 6 9 10 13 14 21 22 23 24 29 32 37 39
42 46 47 55 58 60 61 64 68 69 71 74 76 78 81
83 85 89 90 91 93 95 98 100 102 105 108 109 113 114

116 119 122 129 132 133 136 138 142 148 150 154 155 162 167
171 172 173 178 182 185 186 190 193 194 195 196 197 199 202
210 211 216 217 220 222 227 228 229 230 232 236 242 243 248
249 253 259 260 263 265 267 274 277 280 281 282 283 284 286
289 290 292 293 297 300 304 309 311 312 316 317 318 319 322
324 326 328 329 333 334 335 336 343 346 348 350 357 366 370
373 374 375 379 380 381 385 390 391 398 400 406 410 411 414
417 419 421 423 426 427 428 431 433 435 436 437 440 441 442
443 455 458 462 465 466 470 475 476 480 482 489 493 495 497
500 505 507 508 509 510 511 514 517 518 520 524 525 528 529
533 535 537 540 542 544 545 551 556 557 560 563 566 570 571
574 579 581 584 586 588 589 592 594 599

Table 1: An independent set of order 220 in the 120-cell generated from a set of order 110
in the antipodal collapse.
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pentagon, there must be at least one blue vertex on that pentagon which has one red and
three blue neighbours (a key). The number of vertices like this is B1. This does not
complete the proof however because a key can be on 0, 1, 2, or 3 blue pentagons.

To finish the proof, start by assigning a weight to each vertex v of the graph which is a
key: assign a weight of one if v is contained in at least one non-isolated blue pentagon and
zero otherwise. The sum of the weights of the keys is at most B1.

Next, assign fractional weights to the non-isolated blue pentagons. If a key v is on r
blue pentagons, this key contributes a weight of 1/r to each of its blue pentagons. The sum
of the weights of the non-isolated blue pentagons is equal to the sum of the weights of the
keys.

To finish the proof, we argue that for each of the non-isolated blue pentagons, the sum
of the contributions from its keys is at least one, meaning that the number of non-isolated
blue pentagons is at most B1. This argument is broken down into three cases according to
the types of keys on each non-isolated blue pentagon P .

Case 1: Pentagon P contains a key v which is only in one non-isolated blue pentagon.
In this case, the weight that v contributes to P is one and so P has weight at least one.

Case 2: Pentagon P contains a key v which is in two non-isolated blue pentagons.
Let A and B the the two non-isolated blue pentagons containing v and let (v, x) be the
edge common to A and B. Vertex x is also a key. If it is a key which is in exactly two
non-isolated blue pentagons then the weight of P is at least one, since each of v and x
contributes 1/2 to the weight of P . If x is in three blue pentagons, then consider Case 3
instead of Case 2.

Case 3: Pentagon P contains a key v which is in three non-isolated blue pentagons. Let
the three blue neighbours of v be x, y and z where x and y are the vertices which are on
P . Since v is on three non-isolated blue pentagons, x and y are either on two or three non-
isolated blue pentagons and hence they contribute at least 1/3 to each pentagon they are
on. Since P has contributions of at least 1/3 from v, x, and y, the sum of its contributions
is at least one, as required.

Corollary 2.3. For any maximum independent set of the 120-cell, the number of isolated
blue pentagons is at least P0 −B1.

Theorem 2.4. For a maximum independent set of the 120-cell, if I is the number of isolated
blue pentagons, then 2I ≤ P1.

Proof. In a dodecahedron, an isolated blue pentagon P appears as a blue pentagon with
five incident red vertices. This means that the only possibility for another blue pentagon
in the dodecahedron is the pentagon Q antipodal to P (all other pentagons contain at least
one of the five reds). But the vertices in the dodecahedron incident to Q cannot be red
(they have neighbours which are red) and therefore, a dodecahedron contains at most one
isolated blue pentagon.

Any edge (u, v) of the pentagon Q antipodal to P with both endpoints blue is in a
pentagon P ′ with exactly one red vertex in the dodecahedron which contains P and Q.
Since the pentagon Q has at least one edge with both endpoints blue, there is at least one
pentagon P ′ with exactly one red vertex in the dodecahedron with P and Q.

Each pentagon of the 120-cell falls into exactly two dodecahedra. To finish the proof,
we argue that a pentagon P ′ with exactly one red vertex occurs as one which must be
present as described above because of an isolated blue pentagon in at most one of its two
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dodecahedra. Suppose that P ′ corresponds to isolated blue pentagons in both of its two
dodecahedra. Then the picture must be as in Figure 2 where the isolated blue pentagons are
A and B, and P ′ is the pentagon with the bold edges. Vertex x is incident to A and vertex
y is incident to B so both x and y must be red. This is a contradiction since x and y are
adjacent to each other in the 120-cell.

 B

 A

y

x

r

a

b

u v

Figure 2: Two isolated blue pentagons A and B sharing a pentagon P ′ that has one red
vertex (P ′ outlined in bold).

The conclusion is that each isolated blue pentagon maps to at least one pentagon with
exactly one red in each of its two dodecahedra. Further, such pentagons with one red
correspond to at most one isolated blue pentagon of the graph. This implies that 2I ≤
P1.

We now have the necessary theory to justify an integer programming problem which
provides necessary constraints on a maximum independent set of the 120-cell. The condi-
tions for the integer programming problem are:

1. B1 +B2 +B3 +B4 +R = 600
2. P0 + P1 + P2 = 720
3. 4R = 1B1 + 2B2 + 3B3 + 4B4

4. 6R = 0P0 + 1P1 + 2P2

5. 5P0 + 2P1 = 3B1 + 1B2

6. P1 ≥ 2(P0 −B1)
The justifications for these constraints are:

1. The 120-cell has 600 vertices and for a maximum independent set B0 = 0 as noted
earlier.
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2. The 120-cell has 720 pentagons.

3. Each red vertex is incident to four blue vertices. Hence, four times the number of
red vertices is equal to the number of times a blue vertex is adjacent to a red one.

4. Each vertex is in six pentagons. Hence, six times the number of red vertices is equal
to the number of times a red vertex occurs in a pentagon.

5. A blue 2-path is a path on 3 vertices (and hence two edges) whose vertices are
all blue. Since each 2-path of the graph is in a unique pentagon, the number of blue 2-
paths is 5P0 + 2P1. The number of blue 2-paths is also equal to 3B1 + 1B2 since a blue
vertex with three blue neighbours is the centre of three blue 2-paths, a blue vertex with two
blue neighbours is the centre of one blue 2-path, and a blue vertex with zero or one blue
neighbours is not the central vertex of any blue 2-path.

6. This constraint comes from combining Corollary 2.3 with Theorem 2.4.

To get an upper bound for the maximum independent set order, the objective function
is to maximize the value of R. Solving the linear programming relaxation gives an up-
per bound of 2880/13 = 221.538 . . . which gives an upper bound of 221 on the integer
programming problem. (The optimum solution is attained for the vector P0 = 360/13,
P1 = 720/13, P2 = 8280/13, B1 = 0, B2 = 3240/13, B3 = 1680/13, B4 = 0, and the
polytope thus defined is three-dimensional and has nine-vertices.) Applying the same tactic
to the antipodal collapse gives an upper bound of 110 for the collapse, implying that the
independent set of order 110 found in §2.2 is a maximum independent set of the antipodal
collapse.

2.4 Exploiting the Integer Program Information

The example in §2.2 gives a lower bound of 220 for the order of a maximum independent
set of the 120-cell. On the other hand, §2.3 proves an upper bound of 221. This implies
that if the independent set from §2.2 is not optimal, then there is an independent set of the
120-cell of order 221. The next step is to examine the solutions of the integer programming
problem from §2.3 which have the number R of red vertices equal to 221 to gain structural
information as to what a solution of order 221 must look like.

Table 2 shows all the integer solutions that could result in an independent set of order
221. Correctness of the LP code is not an issue since it is not hard to check the final
solutions by hand.

Scanning the table of solutions, we observe that P0 − B1 is always at least 25. From
Corollary 2.3, the implication is that any independent set of order 221 has at least 25 iso-
lated blue pentagons. Observe also that all cases satisfy the constraint that the number B1

of keys plus two times the number B4 of isolated blues is at most seven.

The existence of an independent set of order 221 requires that there is some way to
add at least 25 isolated blue pentagons to the 120-cell without creating too many keys or
isolated blue vertices (B1 + 2B4 ≤ 7). The next two sections explain how we first tried
planting a smaller number of isolated blue pentagons in part of the graph in all ways up to
isomorphism and give an account of how the search for the 25 isolated blue pentagons was
completed.
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P0 P1 P2 B1 B2 B3 B4

25 64 631 0 253 126 0
26 62 632 0 254 124 1
27 60 633 0 255 122 2
28 58 634 0 256 120 3
26 62 632 1 251 127 0
27 60 633 1 252 125 1
28 58 634 1 253 123 2
29 56 635 1 254 121 3
27 60 633 2 249 128 0
28 58 634 2 250 126 1
29 56 635 2 251 124 2
28 58 634 3 247 129 0
29 56 635 3 248 127 1
30 54 636 3 249 125 2
29 56 635 4 245 130 0
30 54 636 4 246 128 1
30 54 636 5 243 131 0
31 52 637 5 244 129 1
31 52 637 6 241 132 0
32 50 638 7 239 133 0

Table 2: Solutions to the Linear Program that would correspond to an independent set of
order 221.

2.5 Planting Blue Pentagons

A typical approach to trying to plant 25 isolated blue pentagons into the 120-cell that covers
all possibilities up to isomorphism is to choose some smaller number of pentagons (for
example, seven) that are placed in all ways up to isomorphism and then add the rest without
concern for duplication since at some point, isomorphism screening is too costly for the
amount of duplication prevented. This approach was taken first and it resulted in too many
cases for a practical solution. The next strategy applied was to consider only a subgraph
of the 120-cell for which it is possible to prove that at least some number k of isolated
pentagons must be present in order to reach an independent set of order 221, and then to
place the k pentagons in this region in all ways up to isomorphism.

It is assumed that vertices of the 120-cell are labelled by the Clockwise BFS Labelling
Algorithm from Section 2.1 The restricted region for consideration is defined by first sort-
ing the pentagons. Before sorting, a list of five integers is created for each pentagon which
contains the labels of its vertices in reverse sorted order (which is not necessarily the same
as a cyclic ordering). Then these lists are compared lexicographically while sorting the pen-
tagons. This gives a sorted order of pentagons P0, P1, . . . , P719. The first six pentagons
are the ones pictured in Figure 1. The sequences used to sort them are:

P0 : 8, 5, 2, 1, 0

P1 : 11, 6, 3, 1, 0

P2 : 12, 9, 3, 2, 0

P3 : 14, 7, 4, 1, 0
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P4 : 15, 10, 4, 2, 0 and
P5 : 16, 13, 4, 3, 0.
The last two pentagons (illustrating how lexicographic order is used to break ties) are:
P718 : 599, 598, 596, 592, 591 and
P719 : 599, 598, 597, 594, 593.
This (slightly unnatural) ordering was selected so that the maximum vertex number

occurring in the pentagons numbered P0, P1, . . . , Pk is minimized given a chosen value
of k. Intuitively, this helps to compress the first k pentagons into a small subgraph of the
120-cell.

After some experimentation, it was decided that planting seven pentagons in all ways
up to isomorphism was the best compromise between the number of cases created and
the difficulty for finishing the cases. The restricted region for planting these pentagons is
shown to consist of the first 173 pentagons (P0, P1, . . . , P172) in the following lemma.

Lemma 2.5. If the 120-cell has an independent set of order 221 then it is possible to find
an independent set of order 221 such that there are at least seven isolated blue pentagons
in the first 173 pentagons (P0, P1, . . . , P172).

Proof. We already know from the results in §2.3 that the entire graph contains at least
25 isolated blue pentagons if there is an independent set of order 221. The idea for this
proof is to count the number of isolated blue pentagons in the graph by considering the
sets of pentagons numbered P0, P1, . . . , P172 for each of the automorphisms of the graph.
If the average count over each of these sets P0, P1, . . . , P172 is greater than six, then we
can conclude that there is at least one automorphism of the graph such that the count for
P0, P1, . . . , P172 is at least seven.

Owing to the structure of the automorphism group of the graph, taking into consider-
ation the sets of pentagons labelled P0, P1, . . . , P172 over all automorphisms accounts for
each pentagon the same number of times; each is included 14, 400× 173/720 times. If the
graph has 25 or more isolated blue pentagons, then the sum of the number of isolated blue
pentagons over each choice for P0, P1, . . . , P172 is equal to at least 25×14400×173/720.
Hence, the average term is equal to at least 25×173/720. But 25×173/720 > 6 and there-
fore, since the average is greater than six, at least one case must be greater than six.

The total number of ways to plant seven isolated blue pentagons in the set P0, . . . , P172

is equal to 8,211,380. It is a little more difficult than usual to define a canonical form
for these, because some of the automorphisms of the graph can map a choice of seven
pentagons selected from P0, P1, . . . , P172 to another choice of seven pentagons which is
lexicographically smaller, but is no longer a selection from the pentagons P0, P1, . . . , P172

because the new set contains a pentagon numbered 173 or higher. To accommodate this
difficulty, the canonical form is selected so that it is the lexicographically minimum set of
seven pentagons with the additional property that the pentagon with the largest number in
the set corresponds to some Pk for k ≤ 172.

The algorithms used for this phase were very simple. A nested set of seven loops was
used to plant all possible choices for seven isolated blue pentagons. For each isolated blue
pentagon selected, the ten incident vertices are coloured red. Vertices adjacent to a red
vertex are coloured blue. To determine if an additional choice for an isolated blue pentagon
is compatible with a previously chosen set, it suffices to check if its ten incident vertices
can all legally be coloured red (that is, they are either uncoloured or red already, but cannot
be blue).
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Then the 8,211,380 ways to place the isolated blue pentagons were run through a screen
which kept only the canonical cases. For this step, the automorphism group of the graph
was precomputed as described in §2.1. As a check on the computation, for each of the
1,379,646 cases retained, we determined the number of valid images it had (that is, the
number of ways to renumber it with an automorphism such that the largest label on a
pentagon is 172). The sum of these was equal to 8,211,380 (the number of cases possible
without removing duplicates), a necessary condition for correctness. As an additional check
of correctness, the number of cases to consider up to isomorphism matches that from a
computation done earlier with a different approach.

2.6 Finishing the Search by a Backtrack

For each of the 1,379,646 non-isomorphic ways of planting seven blue pentagons in the
pentagons P0, P1, ...P172 (described in §2.5), the next step is to determine if it is possible
to extend the configuration so that it contains at least 25 isolated blue pentagons. The
possibilities for an independent set of order 221 outlined in §2.4 indicate that a solution of
order 221 does not have many keys or isolated blues, more specifically, thatB1+2B4 ≤ 7.

A backtracking routine was used to try to extend each of the cases with the seven
isolated blue pentagons to 25 isolated blue pentagons without creating too many isolated
blues or keys in the process. Some tricks were used to make this computation finish in a
reasonable amount of time.

The backtracking algorithm at level k considers two cases: one where the pentagon
Pk is not included as an isolated blue pentagon, and if feasible, a second case where the
pentagon Pk is included as an isolated blue pentagon (which means that its ten incident
vertices are coloured red).

The colour of a vertex is recorded as an integer which is 0 if a vertex is not coloured.
The colour is decremented each time a vertex is coloured red, or incremented each time
a vertex is coloured blue. This permits the algorithm to colour vertices then backtrack by
uncolouring the vertices without using a data structure such as a stack to indicate vertices
with a status change. Only blue or white vertices can legally be coloured blue. Only red or
white vertices can legally be coloured red. If a vertex is coloured red, then its neighbours
are immediately coloured blue. When the colour of a vertex returns to zero, it returns to
the uncoloured status.

As the algorithm progresses, certain vertices can safely be coloured red. These are
characterized in the next theorem.

Theorem 2.6. Suppose a 120-cell has an independent set of vertices coloured red, the
neighbours of these are coloured blue, and the remaining vertices are uncoloured. If there
is an uncoloured vertex v with three blue neighbours and one uncoloured neighbour w,
then if there is a maximum independent set of the 120-cell which is consistent with the
entire colouring, there is a maximum independent set with v coloured red.

Proof. If v is red in the maximum independent set then there is nothing to prove. If v
is not red, then w is red because if w is blue instead, v is a blue vertex with four blue
neighbours, contradicting the maximality of the independent set (colouring v red increases
the independent set order). An independent set of the same order can then be found by
changing the colouring so that v is red and w is blue.

The algorithm first inserts the initial seven isolated blue pentagons, waiting until they
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are all included before applying Theorem 2.6. The delay is needed because applying the
theorem earlier can result in a colouring inconsistent with the initial pentagons. If there are
two uncoloured vertices u and v which are adjacent to each other and also each is adjacent
to three blues, there are two choices for how to apply Theorem 2.6, and it is possible that
only one of these is consistent with the initial selection of the seven isolated blue pentagons.

During the course of the backtrack, each time an isolated blue pentagon is added to the
current configuration, a queue is used to record vertices which evolve to being white with
three blue neighbours. As the goal is to try to add 25 isolated blue pentagons, 25 queues
suffice.

After addition of the ten incident reds of the isolated blue pentagon, the algorithm
traverses the queue, and each vertex in the queue which is not blue is coloured red (as
noted in the last paragraph, applying Theorem 2.6 at a vertex may prevent its subsequent
use at another vertex). This process can trigger the addition of further vertices to the queue.
When the isolated blue pentagon is removed (when the computation backtracks), the queue
is first traversed in the reverse order to undo these changes.

New isolated blue vertices are recorded at the point when the fourth neighbour of the
isolated blue is initially coloured red. The number is decremented when this fourth neigh-
bour becomes uncoloured again. Keys arise either when an uncoloured vertex with three
blue neighbours is coloured blue or when a third neighbour of a blue vertex is initially
coloured blue. To facilitate the detection of isolated blue vertices and keys, respectively,
the number of red neighbours and the number of blue neighbours of each vertex are main-
tained.

The algorithm takes exponential time to run, which is not surprising as the problem is
hard. A careful selection of the data structures results in an approach such that the work it
does to maintain the data structures is at most a constant times the number of times a vertex
is coloured red.

The algorithm also used some precomputed upper bounds. We determined the max-
imum number of isolated blue pentagons possible if the pentagons are chosen from Pk,
Pk+1, . . . , P719 such that the penalty (equal to B1 + 2B4) is at most seven (as required
for an independent set of order 221). There is no point in continuing this computation past
the point where 18 isolated blue pentagons are possible: since we start with seven, only 18
more are required. Theorem 2.6 was not used for computing these upper bounds, owing
to its interference with what we were trying to compute. At a given level of the backtrack
for placing the 25 blue pentagons, if the number of isolated blue pentagons included so far
plus the bound for the level is less than 25, the algorithm backs up, since it is necessary to
have at least 25 isolated blue pentagons for an independent set of order 221.

It is possible in the course of the algorithm that an isolated blue pentagon which has yet
not been considered ends up with all ten of its incident vertices red. This however does not
preclude the algorithm from adding it: the incident vertices just get coloured red more than
once.

The algorithm for this last backtrack was coded independently twice to ensure correct-
ness. The 1,379,646 cases were split into 64 slices, and run in parallel on a 64-processor
array, with the run of the C program for a typical slice taking 16−18 hours. Both programs
concluded that it is not possible to include 25 blue pentagons in the 120-cell with a penalty
of seven or less after applications of Theorem 2.6 are taken into account. Because this
must be possible for an independent set of order 221 to exist, the maximum independent
set order of the 120-cell is 220.
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Polytope n m f r g D |Cd|
Icosahedron 12 30 20 5 3 3 3, 2
Dodecahedron 20 30 12 3 5 5 8, 4, 2, 2
24-cell 24 96 96 8 3 3 8, 2
600-cell 120 720 1200 12 3 5 24, 8, 3, 2
120-cell 600 1200 720 4 5 15 220, 120, 48, 28, 24, 10, 8, 5, 5,

3, 2, 2, 2, 2

Table 3: Exceptional polytopes in dimensions three and four. The columns n, m, and f
give the numbers of vertices, edges and two-dimensional faces of the polytope; r, g and D
are the vertex degree, girth and diameter of the graph. The entries |Cd| are the maximum
orders of d-codes for d = 2, 3, ...D − 1.

3 Other Results
Table 3 lists the orders of the maximum d-codes for all five exceptional polytopes. Apart
from the 2-code of the 120-cell, the only case requiring special tactics is the 4-code of the
120-cell, which was solved as described in [18]. All five polytopes have antipodal pairs
as their d-codes for d = D, the diameter of the graph. When the codes are considered in
terms of their ‘contact polytopes’ [15], some interesting ‘Russian Doll’-like interconnec-
tions are seen. In the sense used in previous work [15], the contact polytope of a d-code
has the same vertices as the independent set, and two vertices of the contact polytope are
joined by an edge if the independent-set vertices are at distance d in the parent graph. Sim-
plices of dimensions two, three and four appear: the triangle (α2) is the contact polygon
of the 3-code of the icosahedron, the 4-code of the 600-cell and the 11-code of the 120-
cell; the tetrahedron (α3) is the contact polyhedron of the 3-code of the dodecahedron; the
four-dimensional simplex (α4) is the contact polytope of the 9-code of the 120-cell. The
cube appears (γ3) appears as the contact polytope of the 2-code of the dodecahedron. The
hyperoctahedron (β4) appears as the contact polytope of 2-code of the 24-cell, 3-code of
the 600-cell and the 8-code of the 120-cell. The 24-cell itself is the contact polytope of the
2-code of the 600-cell. The 3-code of the 120-cell is a perfect code [10] in the sense that
each vertex of the code is at the centre of a ball of radius 1 containing one vertex of the
120-cell and its four nearest neighbours; the 120-cell is then partitioned exactly into 120
such balls, with centres on the vertex set of a 600-cell whose edges are paths of length 3
in the 120-cell. These observations are closely related to the fact, pointed out by Coxeter
[3], that the vertices of the 120-cell embedded as an equilateral object in four-dimensional
space include the vertices of all fifteen of the other regular polytopes in four dimensions,
a property that has no analogy in three dimensions, where the dodecahedron contains the
vertices of the cube and tetrahedron, but not those of the octahedron or icosahedron.
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Abstract

Let G be a graph. Denote by Li(G) its i-iterated line graph and denote by W (G) its
Wiener index. Dobrynin, Entringer and Gutman stated the following problem: Does there
exist a non-trivial tree T and i ≥ 3 such that W (Li(T )) = W (T )? In a series of five
papers we solve this problem. In a previous paper we proved that W (Li(T )) > W (T ) for
every tree T that is not homeomorphic to a path, claw K1,3 and to the graph of “letter H”,
where i ≥ 3. Here we prove that W (Li(T )) > W (T ) for every tree T homeomorphic to
the claw, T 6= K1,3 and i ≥ 4.

Keywords: Wiener index, iterated line graph, tree, claw.

Math. Subj. Class.: 05C12

1 Introduction
LetG be a graph. For any two of its vertices, say u and v, denote by dG(u, v) (or by d(u, v)
if no confusion is likely) the distance from u to v in G. The Wiener index of G, W (G), is
defined as

W (G) =
∑
u6=v

d(u, v),

where the sum is taken through all unordered pairs of vertices of G. Wiener index was
introduced by Wiener in [12]. It is related to boiling point, heat of evaporation, heat of
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formation, chromatographic retention times, surface tension, vapour pressure, partition co-
efficients, total electron energy of polymers, ultrasonic sound velocity, internal energy, etc.,
see [8]. For this reason Wiener index is widely studied by chemists. The interest of mathe-
maticians was attracted in 1970’s. It was reintroduced as the distance and transmission, see
[5] and [11], respectively. Recently, there are whole special issues of journals devoted to
(mathematical properties) of Wiener index, see [6] and [7], as well as several surveys, see
e.g. [3] and [4].

By definition, if G has a unique vertex, then W (G) = 0. In this case, we say that the
graph G is trivial. We set W (G) = 0 also when the set of vertices (and hence also the set
of edges) of G is empty.

The line graph of G, L(G), has vertex set identical with the set of edges of G. Two
vertices of L(G) are adjacent if and only if the corresponding edges are adjacent in G.
Iterated line graphs are defined inductively as follows:

Li(G) =

{
G if i = 0,
L(Li−1(G)) if i > 0.

In [1] we have the following statement.

Theorem 1.1. Let T be a tree on n vertices. Then W (L(T )) = W (T )−
(
n
2

)
.

Since
(
n
2

)
> 0 if n ≥ 2, there is no nontrivial tree for whichW (L(T )) = W (T ). How-

ever, there are trees T satisfying W (L2(T )) = W (T ), see e.g. [2]. In [3], the following
problem was posed:

Problem 1.2. Is there any tree T satisfying the equality W (Li(T )) = W (T ) for some
i ≥ 3?

As observed above, if T is a trivial tree then W (Li(T )) = W (T ) for every i ≥ 1,
although here the graph Li(T ) is empty.

Denote by H the tree on six vertices out of which two have degree 3 and four have
degree 1. Since H can be drawn to resemble the letter H , it is often called the H-graph.
Graphs G1 and G2 are homeomorphic if and only if the graphs obtained from G1 and G2,
respectively, by substituting the vertices of degree two together with the two incident edges
with a single edge, are isomorphic. In [10] we proved the following:

Theorem 1.3. Let T be a tree, not homeomorphic to a path, claw K1,3 and the graph H .
Then W (Li(T )) > W (T ) for all i ≥ 3.

Since the case when T is a path is trivial, it remains to consider graphs homeomorphic
to the claw K1,3 and those homeomorphic to H . In this paper we concentrate on graphs
homeomorphic to the clawK1,3. The remaining two cases, namely the trees homeomorphic
to H for i ≥ 3 and trees homeomorphic to K1,3 for i = 3, are dealt with in a forthcoming
paper.

First, consider the case of the claw K1,3 itself. Then Li(K1,3) is a cycle of length 3 for
every i ≥ 1. Since W (K1,3) = 9 and the Wiener index of the cycle of length 3 is 3, we
have W (Li(K1,3)) < W (K1,3) for every i ≥ 1. For other trees homeomorphic to K1,3,
we prove the opposite inequality, provided that i ≥ 4:

Theorem 1.4. Let T be a tree homeomorphic to K1,3, such that T 6= K1,3. Then it holds
that W (Li(T )) > W (T ) for every i ≥ 4.
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In [9] we proved the following statement:

Theorem 1.5. Let G be a connected graph. Then fG(i) = W (Li(G)) is a convex function
in variable i.

Hence, to prove Theorem 1.4 it suffices to prove:

Theorem 1.6. Let T be a tree homeomorphic to K1,3, such that T 6= K1,3. Then it holds
W (L4(T )) > W (T ).

2 Proofs

Let a, b, c ≥ 1. Denote by Ca,b,c a tree that has three paths of lengths a, b and c, starting
at a common vertex of degree 3. Obviously, Ca,b,c is homeomorphic to K1,3 and C1,1,1 =
K1,3. By symmetry, we may assume a ≥ b ≥ c, see Figure 1 for C5,4,3.

Figure 1: The graph C5,4,3.

Denote

∆Ca,b,c = W (L4(Ca,b,c))−W (Ca,b,c).

Our aim is to prove ∆Ca,b,c > 0 if a ≥ 2. We start with the case a ≤ 3. This case will
serve as the base of induction in the proof of Theorem 1.6.

Lemma 2.1. Let 3 ≥ a ≥ b ≥ c ≥ 1 and a 6= 1. Then ∆Ca,b,c > 0.

Proof. Since 3 ≥ a ≥ b ≥ c ≥ 1 and a 6= 1, there are 9 cases to consider. In Table 1
we present ∆Ca,b,c for each of these cases. The results were found by a computer, though
it is rather easy to find W (Ca,b,c) by hand, and W (L4(Ca,b,c)) can be found by applying
Proposition 2.3 to L2(Ca,b,c).
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(a, b, c) W (Ca,b,c) W (L4(Ca,b,c)) ∆Ca,b,c

(3, 3, 3) 138 642 504
(3, 3, 2) 102 533 431
(3, 3, 1) 75 257 182
(3, 2, 2) 72 435 363
(3, 2, 1) 50 192 142
(3, 1, 1) 32 65 33
(2, 2, 2) 48 348 300
(2, 2, 1) 31 138 107
(2, 1, 1) 18 38 20

Table 1: ∆Ca,b,c for a ≤ 3.

In what follows we assume that a ≥ 4. Denote

δ0(a, b, c) = W (Ca,b,c)−W (Ca−1,b,c)

δ4(a, b, c) = W (L4(Ca,b,c))−W (L4(Ca−1,b,c)).

Then
∆Ca,b,c −∆Ca−1,b,c = δ4(a, b, c)− δ0(a, b, c), (2.1)

so if we prove δ4(a, b, c)− δ0(a, b, c) ≥ 0, we obtain ∆Ca,b,c ≥ ∆Ca−1,b,c.
We distinguish 4 vertices in Ca,b,c. Denote by y the vertex of degree 3, and denote by

x1, x2 and x3 the pendant vertices so that d(x1, y) = a, d(x2, y) = b and d(x3, y) = c, see
Figure 1. As is the custom, by V (G) we denote the vertex set of G.

Lemma 2.2. Let a, b, c ≥ 1. Then

δ0(a, b, c) =

(
a+ b+ 1

2

)
+

(
a+ c+ 1

2

)
−
(
a+ 1

2

)
.

Proof. Since Ca−1,b,c is a subgraph of Ca,b,c with V (Ca,b,c) − V (Ca−1,b,c) = {x1}, we
have

δ0(a, b, c) = W (Ca,b,c)−W (Ca−1,b,c) =
∑
u

d(u, x1),

where the sum goes through all u ∈ V (Ca,b,c) \ {x1}. For vertices u of the x1 − x2 path,
the sum of all d(u, x1) is 1 + 2 + · · ·+ (a+b) =

(
a+b+1

2

)
. For vertices of the x1 − x3 path

which do not lay on x1 − x2 path, the sum of d(u, x1) is (a+1) + (a+2) + · · ·+ (a+c) =(
a+c+1

2

)
−
(
a+1
2

)
, see Figure 1. Since the paths x1− x2 and x1− x3 contain all vertices of

Ca,b,c, we have δ0(a, b, c) =
(
a+b+1

2

)
+
(
a+c+1

2

)
−
(
a+1
2

)
.

For two subgraphs S1 and S2 of G, by d(S1, S2) we denote the shortest distance in
G between a vertex of S1 and a vertex of S2. If S1 and S2 share an edge then we set
d(S1, S2) = −1.

Analogously as a vertex of L(G) corresponds to an edge of G, a vertex of L2(G)
corresponds to a path of length two in G. For x ∈ V (L2(G)) we denote by B2(x) the
corresponding path in G. Let x and y be two distinct vertices of L2(G). It was proved in
[9] that

dL2(G)(x, y) = dG(B2(x), B2(y)) + 2.
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Let u, v ∈ V (G), u 6= v. Denote by βi(u, v) the number of pairs x, y ∈ V (L2(G)),
with u being the center of B2(x) and v being the center of B2(y), such that d(B2(x),
B2(y)) = d(u, v) − 2 + i. Since d(u, v) − 2 ≤ d(B2(x), B2(y)) ≤ d(u, v), we have
βi(u, v) = 0 for all i /∈ {0, 1, 2}. Denote by deg(w) the degree of w in G. In [9] we have
the following statement:

Proposition 2.3. Let G be a connected graph. Then

W (L2(G)) =
∑
u 6=v

[(
deg(u)

2

)(
deg(v)

2

)
d(u, v) + β1(u, v) + 2β2(u, v)

]

+
∑
u

[
3

(
deg(u)

3

)
+ 6

(
deg(u)

4

)]
, (2.2)

where the first sum goes through unordered pairs u, v ∈ V (G) and the second one goes
through u ∈ V (G).

We apply Proposition 2.3 to L2(Ca,b,c) and L2(Ca−1,b,c). This enables us to calculate
δ4(a, b, c) using degrees and distances of the second iterated line graph.

Figure 2: The graph L2(C5,4,3).

Denote by w1 the pendant vertex of L2(Ca,b,c) corresponding to the path of length 2
terminating at x1. Since a ≥ 4, the unique neighbour of w1 has degree 2. Denote by w this
neighbour, see Figure 2. For every vertex u ∈ V (L2(Ca,b,c)) \ {w,w1}, denote by n(u)
the number of neighbours of u, whose distance to w is at least d(u,w). We have:

Lemma 2.4. Let a ≥ 4 and b, c ≥ 1. Then

δ4(a, b, c) =
∑
u

[(
deg(u)

2

)
d(u,w) +

(
n(u)

2

)]
,

where the sum goes through all vertices of V (L2(Ca,b,c)) \ {w,w1}.

PROOF. Observe that L2(Ca−1,b,c) is a subgraph of L2(Ca,b,c) and V (L2(Ca,b,c)) \
V (L2(Ca−1,b,c)) = {w1}. Since deg(w1) = 1, the vertex w1 cannot be the center of
a path of length 2, implying that βi(u,w1) = 0 for every u and i. Since

(
deg(w1)

2

)
=
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0, all summands of (2.2) containing w1 contribute 0 to W (L4(Ca,b,c)). The vertices of
L2(Ca−1,b,c), exceptw, have the same degree inL2(Ca,b,c) as inL2(Ca−1,b,c). The degree
of w is 1 in L2(Ca−1,b,c), and it is 2 in L2(Ca,b,c). Therefore

∑
u[3
(
deg(u)

3

)
+ 6
(
deg(u)

4

)
]

has the same value in L2(Ca,b,c) as in L2(Ca−1,b,c), so these sums will cancel out. Thus,
we have

δ4(a, b, c) = W (L2(L2(Ca,b,c)))−W (L2(L2(Ca−1,b,c)))

=
∑
u

[(
deg(u)

2

)(
2

2

)
d(u,w) + β1(u,w) + 2β2(u,w)

]
,

where the sum goes through u ∈ V (L2(Ca−1,b,c)) \ {w}.
Let u ∈ V (L2(Ca−1,b,c)) \ {w}. Since deg(w1) = 1 and deg(w) = 2 in L2(Ca,b,c),

the unique path of length 2 centered at w contains an endvertex closer to u than w. Hence,
β2(u,w) = 0. Consequently, β1(u,w) equals the number of paths of length 2 centered at
u, both endvertices of which have distance tow at least d(u,w). Hence, β1(u,w) =

(
n(u)
2

)
,

which completes the proof.

Using Lemma 2.4 we prove the induction step.

Lemma 2.5. Let a ≥ b ≥ c ≥ 1 and a ≥ 4. Then δ4(a, b, c) ≥ δ0(a, b, c).

Proof. We distinguish 8 more vertices in L2(Ca,b,c). Denote by w2 and w3 pendant ver-
tices corresponding to the paths of length 2 containing x2 and x3, respectively, see Figure 1
and 2. Denote by z1, z2 and z3 the vertices corresponding to the paths of length 2, whose
endvertex is y; and denote by z4, z5 and z6 the vertices corresponding to the paths of length
2 centered at y. Of course, if b ≤ 2 or c ≤ 2, then some of these vertices are not defined.

For u ∈ V (L2(Ca−1,b,c)) \ {w}, denote

h(u) =

(
deg(u)

2

)
d(u,w) +

(
n(u)

2

)
.

By Lemma 2.4, we have δ4(a, b, c) =
∑

u h(u), where the sum goes through all vertices of
V (L2(Ca,b,c)) \ {w,w1}. If u ∈ {w2, w3} then deg(u) = 1 and n(u) = 0, so h(u) = 0.
Thus, vertices of degree 1 contribute 0 to

∑
u h(u). Denote

Si =
∑
u

h(u),

where the sum is taken over all interior vertices u of thewi−zi path, u 6= w and 1 ≤ i ≤ 3.
Then δ4(a, b, c) =

∑3
i=1 Si +

∑6
i=1 h(zi).

Regarding the values of a, b and c, we distinguish 4 cases:

Case 1. a ≥ 4 and b, c ≥ 3.
If u is a vertex of degree 2, then n(u) = 1 and

(
deg(u)

2

)
= 1. Hence h(u) = d(u,w).

Thus,

S1 = 1 + 2 + · · ·+ (a−4) =
(a− 3

2

)
S2 = a+ (a+1) + · · ·+ (a+b−4) =

(a+ b− 3
2

)
−
(a
2

)
S3 = a+ (a+1) + · · ·+ (a+c−4) =

(a+ c− 3
2

)
−
(a
2

)
.
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If u ∈ {z1, z2, z3}, then deg(u) = 3 and n(u) = 2. Thus h(u) = 3d(u,w) + 1. If
u ∈ {z4, z5}, then deg(u) = 4 and n(u) = 3, so h(u) = 6d(u,w) + 3. Finally, if u = z6,
then deg(u) = 4 and n(u) = 2, so h(u) = 6d(u,w) + 1. This gives

h(z1) = 3(a−3) + 1 h(z4) = h(z5) = 6(a−2) + 3
h(z2) = h(z3) = 3(a−1) + 1 h(z6) = 6(a−1) + 1.

Since δ4(a, b, c) =
∑3

i=1 Si +
∑6

i=1 h(zi), we have

δ4(a, b, c) =
(a− 3

2

)
+
(a+ b− 3

2

)
+
(a+ c− 3

2

)
− 2
(a
2

)
+(3a−8) + 2(3a−2) + 2(6a−9) + (6a−5).

Denote P = δ4(a, b, c) − δ0(a, b, c). By Lemma 2.2 we have δ0(a, b, c) =
(
a+b+1

2

)
+(

a+c+1
2

)
−
(
a+1
2

)
. Expanding the terms we get

P = 17a− 4b− 4c− 17.

Since a ≥ b and a ≥ c, we have P ≥ 9a − 17. Finally, since a ≥ 4, we have P =
δ4(a, b, c)− δ0(a, b, c) ≥ 0.

Case 2. a ≥ 4, b ≥ 3 and c ≤ 2.
We calculate first δ4(a, b, 1). In L2(Ca,b,1) we have S3 = 0; note that z3 is not defined

here and that deg(z5) = deg(z6) = 3 (see Figure 2). Analogously as in Case 1 we get:

S1 =
(
a−3
2

)
h(z2) = 3(a−1) + 1

S2 =
(
a+b−3

2

)
−
(
a
2

)
h(z4) = 6(a−2) + 3

S3 = 0 h(z5) = 3(a−2) + 1
h(z1) = 3(a−3) + 1 h(z6) = 3(a−1)

since n(z5) = 2 and n(z6) = 1. Thus,

δ4(a, b, 1) =
(a− 3

2

)
+
(a+ b− 3

2

)
−
(a
2

)
+ (3a−8)

+(3a−2) + (6a−9) + (3a−5) + (3a−3).

Denote P = δ4(a, b, 1) − δ0(a, b, 2). By Lemma 2.2 we have δ0(a, b, 2) =
(
a+b+1

2

)
+(

a+3
2

)
−
(
a+1
2

)
. Expanding the terms we get

P = 9a− 4b− 18.

Since a ≥ b, we have P ≥ 5a − 18, and as a ≥ 4, we have P ≥ 0. Since δ4(a, b, 2) ≥
δ4(a, b, 1) and δ0(a, b, 2) ≥ δ0(a, b, 1), we conclude δ4(a, b, i) − δ0(a, b, i) ≥ P ≥ 0 for
i ∈ {1, 2}.

Case 3. a ≥ 4, b = 2 and c ≤ 2.
We find δ4(a, 2, 1). In L2(Ca,2,1) we have S2 = S3 = 0. Again, the vertex z3 is not

defined here, deg(z2) = 2 and deg(z5) = deg(z6) = 3 (see Figure 2). Analogously as in
the previous cases we get:

S1 =
(
a−3
2

)
h(z4) = 6(a−2) + 3

h(z1) = 3(a−3) + 1 h(z5) = 3(a−2) + 1
h(z2) = (a−1) h(z6) = 3(a−1)
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since n(z2) = 1, n(z5) = 2 and n(z6) = 1. Thus,

δ4(a, 2, 1) =
(a− 3

2

)
+ (3a−8) + (a−1) + (6a−9) + (3a−5) + (3a−3).

Denote P = δ4(a, 2, 1)−δ0(a, 2, 2). By Lemma 2.2 we have δ0(a, 2, 2) = 2
(
a+3
2

)
−
(
a+1
2

)
.

Expanding the terms we get
P = 8a− 26.

Since a ≥ 4, we have P ≥ 0. Since δ4(a, 2, 2) ≥ δ4(a, 2, 1) and δ0(a, 2, 2) ≥ δ0(a, 2, 1),
we conclude δ4(a, 2, i)− δ0(a, 2, i) ≥ P ≥ 0 for i ∈ {1, 2}.

Case 4. a ≥ 4 and b = c = 1.
In L2(Ca,1,1) we have S2 = S3 = 0. Note that the vertices z2 and z3 are not defined,

while deg(z4) = deg(z5) = 3 and deg(z6) = 2 (see Figure 2). Analogously as in the
previous cases we get:

S1 =
(
a−3
2

)
h(z4) = h(z5) = 3(a−2) + 1

h(z1) = 3(a−3) + 1 h(z6) = (a−1)

since n(z4) = n(z5) = 2 and n(z6) = 0. Thus,

δ4(a, 1, 1) =
(a− 3

2

)
+ (3a−8) + 2(3a−5) + (a−1).

Denote P = δ4(a, 1, 1)−δ0(a, 1, 1). By Lemma 2.2 we have δ0(a, 1, 1) = 2
(
a+2
2

)
−
(
a+1
2

)
.

Expanding the terms we get
P = 4a− 15.

Since a ≥ 4, we have P ≥ 0, and hence δ4(a, 1, 1)− δ0(a, 1, 1) ≥ P ≥ 0.

Proof of Theorem 1.6. Let T be the tree Ca,b,c with a ≥ b ≥ c ≥ 1, such that a 6= 1. If
a ≤ 3, then ∆Ca,b,c = W (L4(Ca,b,c))−W (Ca,b,c) > 0, by Lemma 2.1.

Now suppose that a ≥ 4. Consider lexicographical ordering of triples (a′, b′, c′) with
a′ ≥ b′ ≥ c′ ≥ 1 and a′ ≥ 2. Further, assume that ∆Ca′,b′,c′ > 0 for every triple
(a′, b′, c′), such that a′ ≥ b′ ≥ c′ ≥ 1 and a′ ≥ 2, which is in the lexicographical ordering
smaller than (a, b, c).

Let (a∗, b∗, c∗) be ordering of triple (a−1, b, c), such that the multisets {a∗, b∗, c∗} and
{a−1, b, c} are the same and a∗ ≥ b∗ ≥ c∗. Then Ca−1,b,c and Ca∗,b∗,c∗ are isomorphic
graphs. Moreover, since a ≥ 4, we have a∗ ≥ 3. By (2.1) and Lemma 2.5 we see that

∆Ca,b,c −∆Ca∗,b∗,c∗ = ∆Ca,b,c −∆Ca−1,b,c

= δ4(a, b, c)− δ0(a, b, c)

≥ 0.

Since (a∗, b∗, c∗) is in the lexicographical ordering smaller than (a, b, c) and a∗ ≥ 2, by
the induction hypothesis we have ∆Ca∗,b∗,c∗ > 0. Hence, ∆Ca,b,c = W (L4(Ca,b,c)) −
W (Ca,b,c) > 0.
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[7] I. Gutman, S. Klavžar, B. Mohar (eds), Fiftieth Anniversary of the Wiener index, Discrete Appl.
Math. 80 (1997), 1–113.

[8] I. Gutman, I. G. Zenkevich, Wiener index and vibrational energy, Z. Naturforsch. 57 (2002),
824–828.
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Abstract

It is shown that exactly 7 distance-transitive cubic graphs among the existing 12 possess
a particular ultrahomogeneous property with respect to oriented cycles realizing the girth
that allows the construction of a related Cayley digraph with similar ultrahomogeneous
properties in which those oriented cycles appear minimally “pulled apart”, or “separated”
and whose description is truly beautiful and insightful. This work is proposed as the ini-
tiation of a study of similar ultrahomogeneous properties for distance-transitive graphs in
general with the aim of generalizing to constructions of similar related “separator” Cayley
digraphs.

Keywords: Distance-transitive graph, ultrahomogeneous graph, Cayley graph.

Math. Subj. Class.: 05C62, 05B30, 05C20, 05C38

1 Introduction
A graph is said to be distance-transitive if its automorphism group acts transitively on
ordered pairs of vertices at distance i, for each i ≥ 0 [3, 10, 15]. In this paper we deal
mainly with finite cubic distance-transitive graphs. While these graphs are classified and
very well-understood since there are only twelve examples, for this very restricted class
of graphs we investigate a property called ultrahomogeneity that plays a very important
role in logic, see for example [7, 18]. For ultrahomogeneous graphs (resp. digraphs), we
refer the reader to [5, 9, 11, 17, 19] (resp. [6, 8, 16]). Distance-transitive graphs and
ultrahomogeneous graphs are very important and worthwhile to investigate. However, to
start with, the following question is answered in the affirmative for 7 of the 12 existing
cubic distance-transitive graphs G and negatively for the remaining 5:

Question 1.1. If k is the largest ` such that G is `-arc-transitive, is it possible to orient all
shortest cycles of G so that each two oppositely oriented (k − 1)-arcs of G are just in two
corresponding oriented shortest cycles?

E-mail address: ijdejter@uprrp.edu (Ítalo J. Dejter)

Copyright c© 2013 DMFA Slovenije
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The answer (below) to Question 1 leads to 7 connected digraphs S(G) in which all ori-
ented shortest cycles of G are minimally “pulled apart” or “separated”. Specifically, it is
shown that all cubic distance-transitive graphs are {Cg}Pk

-ultrahomogeneous, where g =

girth, but only the 7 cited G are { ~Cg}~Pk
-ultrahomogeneous digraphs and in each of these

7 digraphs G, the corresponding “separator” digraph S(G) is: (a) vertex-transitive digraph
of indegree = outdegree = 2, underlying cubic graph and automorphism group as that of G;
(b) { ~Cg, ~C2}-ultrahomogeneous digraph, where ~Cg = induced oriented g-cycle, with each
vertex taken as the intersection of exactly one such ~Cg and one ~C2; (c) a Cayley digraph.
The structure and surface-embedding topology [2, 12, 20] of these S(G) are studied as
well. We remark that the description of these S(G) is truly beautiful and insightful.

It remains to see how Question 1 can be generalized and treated for distance-transitive
graphs of degree larger than 3 and what separator Cayley graphs could appear via such a
generalization.

2 Preliminaries
We may consider a graph G as a digraph by taking each edge e of G as a pair of oppositely
oriented (or O-O) arcs ~e and (~e)−1 inducing an oriented 2-cycle ~C2. Then, fastening ~e
and (~e)−1 allows to obtain precisely the edge e in the graph G. Is it possible to orient all
shortest cycles in a distance-transitive graph G so that each two O-O (k − 1)-arcs of G are
in just two oriented shortest cycles, where k = largest ` such that G is `-arc transitive? It is
shown below that this is so just for 7 of the 12 cubic distance-transitive graphsG, leading to
7 corresponding minimum connected digraphs S(G) in which all oriented shortest cycles
of G are “pulled apart” by means of a graph-theoretical operation explained in Section 4
below.

Given a collection C of (di)graphs closed under isomorphisms, a (di)graph G is said to be
C-ultrahomogeneous (or C-UH) if every isomorphism between two induced members of C
in G extends to an automorphism of G. If C is the isomorphism class of a (di)graph H ,
we say that such a G is {H}-UH or H-UH. In [14], C-UH graphs are defined and studied
when C is the collection of either the complete graphs, or the disjoint unions of complete
graphs, or the complements of those unions.

Let M be an induced subgraph of a graph H and let G be both an M -UH and an H-UH
graph. We say that G is an {H}M -UH graph if, for each induced copy H0 of H in G and
for each induced copy M0 of M in H0, there exists exactly one induced copy H1 6= H0

of H in G with V (H0) ∩ V (H1) = V (M0) and E(H0) ∩ E(H1) = E(M0). The vertex
and edge conditions above can be condensed as H0 ∩H1 = M0. We say that such a G is
tightly fastened. This is generalized by saying that an {H}M -UH graph G is an `-fastened
{H}M -UH graph if given an induced copyH0 ofH inG and an induced copyM0 ofM in
H0, then there exist exactly ` induced copiesHi 6= H0 ofH inG such thatHi∩H0 ⊇M0,
for each i = 1, 2, . . . , `, with at least H1 ∩H0 = M0.

Let ~M be an induced subdigraph of a digraph ~H and let the graphG be both an ~M -UH and
an ~H-UH digraph. We say that G is an { ~H} ~M -UH digraph if for each induced copy ~H0 of
~H in ~G and for each induced copy ~M0 of ~M in ~H0 there exists exactly one induced copy
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~H1 6= ~H0 of ~H in G with V ( ~H0) ∩ V ( ~H1) = V ( ~M0) and A( ~H0) ∩ Ā( ~H1) = A( ~M0),
where Ā( ~H1) is formed by those arcs (~e)−1 whose orientations are reversed with respect
to the orientations of the arcs ~e of A( ~H1). Again, we say that such a G is tightly fastened.
This case is used in the constructions of Section 4.

Given a finite graph H and a subgraph M of H with |V (H)| > 3, we say that a graph
G is (strongly fastened) SF {H}M -UH if there is a descending sequence of connected
subgraphs M = M1,M2 . . . ,Mt ≡ K2 such that: (a) Mi+1 is obtained from Mi by the
deletion of a vertex, for i = 1, . . . , t−1 and (b)G is a (2i−1)-fastened {H}Mi

-UH graph,
for i = 1, . . . , t.

This paper deals with the above defined C-UH concepts applied to cubic distance-transitive
(CDT) graphs [3]. A list of them and their main parameters follows:

CDT graph G n d g k η a b h κ
Tetrahedral graph K4

Thomsen graph K3,3

4
6

1
2

3
4

2
3

4
9

24
72

0
1

1
1

1
2

3-cube graph Q3

Petersen graph
8
10

3
2

4
5

2
3

6
12

48
120

1
0

1
0

1
0

Heawood graph
Pappus graph

14
18

3
4

6
6

4
3

28
18

336
216

1
1

1
1

0
0

Dodecahedral graph
Desargues graph

20
20

5
5

5
6

2
3

12
20

120
240

0
1

1
1

1
3

Coxeter graph
Tutte 8-cage

28
30

4
4

7
8

3
5

24
90

336
1440

0
1

0
1

3
2

Foster graph
Biggs-Smith graph

90
102

8
7

10
9

5
4

216
136

4320
2448

1
0

1
1

0
0

where n = order; d = diameter; g = girth; k = AT or arc-transitivity (= largest ` such that
G is `-arc transitive); η = number of g-cycles; a = number of automorphisms; b (resp. h)
= 1 if G is bipartite (resp. hamiltonian) and = 0 otherwise; and κ is defined as follows:
let Pk and ~Pk be respectively a (k − 1)-path and a directed (k − 1)-path (of length k − 1);
let Cg and ~Cg be respectively a cycle and a directed cycle of length g; then (see Theorem 3
below): κ = 0, if G is not ( ~Cg; ~Pk)-UH; κ = 1, if G is planar; κ = 2, if G is { ~Cg} ~Pk

-UH

with g = 2(k − 1); κ = 3, if G is { ~Cg} ~Pk
-UH with g > 2(k − 1).

In Section 3 below, Theorem 2 proves that every CDT graph is an SF {Cg}Pk
-UH graph,

while Theorem 3 establishes exactly which CDT graphs are not { ~Cg} ~Pk
-UH digraphs; in

fact 5 of them. Section 4 shows that each of the remaining 7 CDT graphsG yields a digraph
S(G) whose vertices are the (k − 1)-arcs of G, an arc in S(G) between each two vertices
representing corresponding (k − 1)-arcs in a common oriented g-cycle of G and sharing
just one (k − 2)-arc; additional arcs of S(G) appearing in O-O pairs associated with the
reversals of (k − 1)-arcs of G. Moreover, Theorem 4 asserts that each S(G) is as claimed
and itemized at end of the Introduction above.

3 (Cg, Pk)-UH properties of CDT graphs
Theorem 3.1. Let G be a CDT graph of girth = g, AT = k and order = n. Then, G is an
SF {Cg}Pk

-UH graph. In particular, G has exactly 2k−23ng−1 g-cycles.
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Proof. We have to see that each CDT graph G with girth = g and AT = k is a (2i+1 − 1)-
fastened {Cg}Pk−i

-UH graph, for i = 0, 1, . . . , k − 2. In fact, each (k − i − 1)-path
P = Pk−i of any such G is shared by exactly 2i+1 g-cycles of G, for i = 0, 1, . . . , k − 2.
For example if k = 4, then any edge (resp. 2-path, resp. 3-path) of G is shared by 8 (resp.
4, resp. 2) g-cycles of G. This means that a g-cycle Cg of G shares a P2 (resp. P3, resp.
P4) with exactly other 7 (resp. 3, resp. 1) g-cycles. Thus G is an SF {Cg}Pi+2 -UH graph,
for i = 0, 1, . . . , k − 2. The rest of the proof depends on the particular cases analyzed in
the proof of Theorem 3 below and on some simple counting arguments for the pertaining
numbers of g-cycles.

Given a CDT graph G, there are just two g-cycles shared by each (k − 1)-path. If in ad-
dition G is a {~Cg}~Pk

-UH graph, then there exists an assignment of an orientation for each
g-cycle of G, so that the two g-cycles shared by each (k − 1)-path receive opposite orien-
tations. We say that such an assignment is a {~Cg}~Pk

-O-O assignment (or {~Cg}~Pk
-OOA).

The collection of η oriented g-cycles corresponding to the η g-cycles of G, for a partic-
ular {~Cg}~Pk

-OOA will be called an {η ~Cg}~Pk
-OOC. Each such g-cycle will be expressed

with its successive composing vertices expressed between parentheses but without separat-
ing commas, (as is the case for arcs uv and 2-arcs uvw), where as usual the vertex that
succeeds the last vertex of the cycle is its first vertex.

Theorem 3.2. The CDT graphs G of girth = g and AT = k that are not { ~Cg} ~Pk
-UH

digraphs are the graphs of Petersen, Heawood, Pappus, Foster and Biggs-Smith. The re-
maining 7 CDT graphs are { ~Cg} ~Pk

-UH digraphs.

Proof. Let us consider the case of each CDT graph sequentially. The graph K4 on vertex
set {1, 2, 3, 0} admits the {4 ~C3}~P2

-OOC {(123), (210), (301), (032)}. The graph K3,3

obtained from K6 (with vertex set {1, 2, 3, 4, 5, 0}) by deleting the edges of the triangles
(1, 3, 5) and (2, 4, 0) admits the {9 ~C4}~P3

-OOC {(1234), (3210), (4325), (1430), (2145),
(0125), (5230), (0345), (5410)}. The graph Q3 with vertex set {0, . . . , 7} and edge set
{01, 23, 45, 67, 02, 13, 46, 57, 04, 15, 26, 37} admits the {6 ~C4}~P2

-OOC {(0132), (1045),
(3157), (2376), (0264), (4675)}.

The Petersen graph Pet is obtained from the disjoint union of the 5-cycles µ∞ = (u0u1u2

u3u4) and ν∞ = (v0v2v4v1v3) by the addition of the edges (ux, vx), for x ∈ Z5. Apart
from the two 5-cycles given above, the other 10 5-cycles of Pet can be denoted by µx =
(ux−1uxux+1vx+1vx−1) and νx = (vx−2vxvx+2ux+2ux−2), for each x ∈ Z5. Then,
the following sequence of alternating 5-cycles and 2-arcs starts and ends up with opposite
orientations:

µ2
− u3u2u1 µ∞+ u0u1u2 µ1

− u2v2v0 ν0
− v3u3u2 µ2

+,

where the subindexes ± indicate either a forward or backward selection of orientation and
each 2-path is presented with the orientation of the previously cited 5-cycle but must be
present in the next 5-cycle with its orientation reversed. Thus Pet cannot be a {~C5}~P3

-UH
digraph.

Another way to see this is via the auxiliary table indicated below, that presents the form
in which the 5-cycles above share the vertex sets of 2-arcs, either O-O or not. The table
details, for each one of the 5-cycles ξ = µ∞, ν∞, µ0, ν0, (expressed as ξ = (ξ0, . . . , ξ4) in
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the shown vertex notation), each 5-cycle η in {µi, νi; i =∞, 0, . . . , 4}\{ξ} that intersects ξ
in the succeeding 2-paths ξiξi+1ξi+2, for i = 0, . . . , 4, with additions involving i taken mod
5. Each such η in the auxiliary table has either a preceding minus sign, if the corresponding
2-arcs in ξ and η are O-O, or a plus sign, otherwise. Each−ηj (resp. ηj) shown in the table
has the subindex j indicating the equality of initial vertices ηj = ξi+2 (resp. ηj = ξi) of
those 2-arcs, for i = 0, . . . , 4:

µ∞:(+µ1
0,+µ

2
0,+µ

3
0,+µ

4
0,+µ

0
0),

µ0 :(+µ∞4 ,+ν3
3 ,−ν4

1 ,−ν1
4 ,+ν

2
2 ),

ν∞:(+ν2
0 ,+ν

4
0 ,+ν

1
0 ,+ν

3
0 ,+ν

0
0 ),

ν0 :(+ν∞4 ,−µ1
2,+µ

3
4,+µ

2
1,−µ4

3).

This partial auxiliary table is extended to the whole auxiliary table by adding x ∈ Z4

uniformly mod 5 to all superindexes 6=∞, reconfirming that Pet is not {~C5}~P3
-UH.

For each positive integer n, let In stand for the n-vertex cycle (0, 1, . . . , n − 1). The
Heawood graph Hea is obtained from I14 by adding the edges (2x, 5 + 2x), where x ∈
{1, . . . , 7} and operations are in Z14. The 28 6-cycles of Hea include the following 7
6-cycles:

γx=(2x, 2x+1, 2x+2, 2x+3, 2x+4, 2x+ 5), δx=(2x ,2x+5, 2x+6, 2x+7, 2x+8, 2x+13),
εx=(2x, 2x+5, 2x+4, 2x+9, 2x+8, 2x+13), ζx=(2x+12, 2x+3, 2x+4, 2x+5, 2x ,2x+13),

where x ∈ Z7. Now, the following sequence of alternating 6-cycles and 3-arcs starts and
ends with opposite orientations for γ0:

γ0
+ 2345 γ1

− 7654 γ2
+ 6789 γ3

− ba98 γ4
+ abcd γ5

− 10dc γ6
+ 0123 γ0

−,

(where tridecimal notation is used, up to d = 13). Thus Hea cannot be a {~C7}~P4
-UH

digraph. Another way to see this is via an auxiliary table for Hea obtained in a fashion
similar to that of the one for Pet above from:

γ0:(+γ6
2 ,+δ

5
1 ,+γ

1
0 ,+ζ

6
1 ,−ε

5
1,−ζ

0
4 );

δ0:(+ζ00 ,+γ
2
1 ,−ζ33 ,+δ45 ,+ε04,+δ33);

ε0:(+ε52,−γ
2
4 ,+ε

2
0,+ζ

4
5 ,+δ

0
4 ,−ζ

6
2 );

ζ0:(+δ00 ,+γ
1
3 ,−ε15,−δ42 ,−γ0

5 ,+ε
3
3).

This reaffirms that Hea is not {~C6}~P4
-UH.

The Pappus graph Pap is obtained from I18 by adding to it the edges (1+6x, 6+6x), (2+
6x, 9 + 6x), (4 + 6x, 11 + 6x), for x ∈ {0, 1, 2}, with sums and products taken mod 18.
The 6-cycles of Pap are expressible as: A0 = (123456), B0 = (3210de), C0 = (34bcde),
D0 = (165gh0), E0 = (329ab4) (where octodecimal notation is used, up to h = 17),
the 6-cycles Ax, Bx, Cx, Dx, Ex obtained by uniformly adding 6x mod 18 to the vertices
of A0, B0, C0, D0, E0, for x ∈ Z3 \ {0}, and F0 = (3298fe), F1 = (hg54ba), F2 =

(167cd0). No orientation assignment makes these cycles into an {18 ~C6}~P3
-OOC, for the

following sequence of alternating 6-cycles and 2-arcs (with orientation reversed between
each preceding 6-cycle to corresponding succeeding 6-cycle) reverses the orientation of its
initial 6-cycle in its terminal one:

D−1
1 654A0123B0210C1h01D−1

0 g56C−1
2 876B−1

1 789A−1
1 cbaD2abcA

−1
1 987B−1

1 678C−1
2 765D1

=(654bc7) 654 (123456) 123 (3210de) 210 (0129ah)h01 (10hg56) g56 (5gf876) 876
(216789) 789(cba987) cba(d0habc) abc(cba987) 987 (216789) 678 (5gf876) 765(cb4567).

Another way to see this is via an auxiliary table for Pap obtained in a fashion similar to
those above for Pet and Hea, where x = 0, 1, 2 (mod 3):

−Ax:(Bx,Ex ,Ex+2,Dx+1,Dx ,Bx+1);
−Bx:(Ax,Cx+1,F2 ,Ax+2,Cx ,F0 );

−F0:(E0,B1,E1,B2,E2,B0);
−F1:(D0,E2,D1,E0,D2,E1);

−Cx:(Ex,Dx+1,Dx+2,Bx+2,Bx ,Ex+2);
−Dx:(Ax,Cx+2,F1 ,Ax+2,Cx+1,F2 );

−F2:(B1,D1,B2,D2,B0,D0);

−Ex:(F0 ,Cx+1,Ax+1,F1 ,Cx ,Ax ).
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This reaffirms that Pap is not a {~C6}~P3
-UH digraph. In fact, observe that any two 6-cycles

here that share a 2-path possess the same orientation, in total contrast to what happens in
the 7 cases that are being shown to be { ~Cg} ~Pk

-UH digraphs, in the course of this proof.

The Desargues graphDes is obtained from the 20-cycle I20, with vertices 4x, 4x+1, 4x+
2, 4x + 3 redenoted alternatively x0, x1, x2, x3, respectively, for x ∈ Z5, by adding the
edges (x3, (x + 2)0) and (x1, (x + 2)2), where operations are mod 5. Then, Des admits
a {20 ~C6}~P3

-OOC formed by the oriented 6-cycles Ax, Bx, Cx, Dx, for x ∈ {0, . . . , 4},
where

Ax=(x0x1x2x3(x+1)0(x+4)3),
Cx=(x2x1x0(x+3)3(x+3)2(x+3)1),

Bx=(x1x0(x+4)3(x+4)2(x+2)1(x+2)2),
Dx=(x0(x+4)3(x+1)0(x+1)1(x+3)2(x+3)3).

The successive copies of ~P3 here, when reversed in each case, must belong to the following
remaining oriented 6-cycles:

Ax:(Cx,Cx+2,Bx+1,Dx+1,Dx ,Bx );
Cx:(Ax,Dx+4,Dx ,Ax+3,Bx+1,Bx+3);

Bx:(Ax,Ax+4,Dx+1,Cx+4,Cx+2,Dx+4);
Dx:(Ax,Cx+1,Bx+1,Bx+4,Cx ,Ax+4);

showing that they constitute effectively an {η ~Cg}~Pk
-OOC.

The dodecahedral graph ∆ is a 2-covering graph of the Petersen graph H , where each
vertex ux, (resp., vx), of H is covered by two vertices ax, cx, (resp. bx, dx). A {12 ~C5}~P2

-
OOC of ∆ is given by the oriented 5-cycles (a0a1a2a3a4), (c4c3c2c1c0) and, for each
x ∈ Z5, also by (axdxbx−2dx+1ax+1) and (dxbx+2cx+2cx−2bx−2).

The Tutte 8-cage Tut is obtained from I30, with vertices 6x, 6x+ 1, 6x+ 2, 6x+ 3, 6x+
4, 6x+5 denoted alternatively x0, x1, x2, x3, x4, x5, respectively, for x ∈ Z5, by adding the
edges (x5, (x+ 2)0), (x1, (x+ 1)4) and (x2, (x+ 2)3). Then, Tut admits the {90 ~C8}~P5

-
OOC formed by the oriented 8-cycles:

A0=(4500010203040510),
D0=(3332314443421312),

B0=(4243444510111213),
E0=(4510050441403500),

C0=(0203044140252423),
F 0=(4500354025241110),

G0=(1011242302010045),
J0=(1005040332314445),

H0=(2324111005040302),
K0=(3132030201004544),

I0=(0102030441421314),
L0=(2324253031320302),

M0=(3540410403020100),
P 0=(4544434241040510),

N0=(0001141520213435),
Q0=(4041421314153025),

O0=(4243222134331213),
R0=(0102033231301514),

together with those obtained by adding y ∈ Z5 uniformly mod 5 to all numbers x of
vertices xi in A0, . . . , R0, for each y = 1, 2, 3, 4, yielding in each case oriented 8-cycles
Ay, . . . , Ry .

The Coxeter graph Cox is obtained from three 7-cycles (u1u2u3u4u5u6u0), (v4v6v1v3v5

v0v2), (t3t6t2t5t1t4t0) by adding a copy of K1,3 with degree-1 vertices ux, vx, tx and a
central degree-3 vertex zx, for each x ∈ Z7. Cox admits the {24 ~C7}~P3

-OOC:

{01=(u1u2u3u4u5u6u0),
11=(u1z1v1 v3 z3u3u2),

02=(v1v3v5v0v2v4v6),
12=(z4v4v2v0z0 t0t4),

03=(t1t5t2 t6 t3 t0 t4),
13=(t6t2t5z5u5u6z6),

21=(v5z5u5u4u3 z3 v3),
31=(v5v0z0u0u6 u5 z5),

22=(t6z6v6v4v2 z2t2),
32=(z4t4t1z1v1 v6v4),

23=(u1z1t1t4t0z0u0),
33=(t6t2z2u2u3z3t3),

41=(u1u0z0v0v2 z2 u2),
51=(z4u4u3u2z2 v2 v4),

42=(t6t3z3v3v1v6 z6),
52=(v5v3v1z1t1t5 z5),

43=(z4u4u5z5t5t1t4),
53=(t6z6u6u0z0t0t3),

61=(z4v4v6z6u6 u5 u4),
71=(u1u0u6z6v6 v1 z1),

62=(v5v3z3t3t0 z0v0),
72=(v5z5t5t2z2 v2v0),

63=(u1u2z2t2t5t1z1),
73=(z4t4t0t3z3u3u4)}.
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The Foster graph Fos is obtained from I90, with vertices 6x, 6x+ 1, 6x+ 2, 6x+ 3, 6x+
4, 6x+ 5 denoted alternatively x0, x1, x2, x3, x4, x5, respectively, for x ∈ Z15, by adding
the edges (x4, (x + 2)1), (x0, (x + 2)5) and (x2, (x + 6)3). The 216 10-cycles of Fos
include the following 15 10-cycles, where x ∈ Z15:

φx=(x4x5(x+1)0(x+1)1(x+1)2(x+1)3(x+1)4(x+1)5(x+2)0(x+2)1).

Then, the following sequence of alternating 10-cycles and 4-arcs:

φ0
+[14]φ1

−[31]φ2
+[34]φ3

−[51]φ4
+[54]φ5

−[71]φ6
+[74]φ7

−[91]φ8
+[94]φ9

−[b1]φa
+[b4]φb

−[d1]φc
+[d4]φd

−[01]φe
+[04]

may be continued with φ0
−, with opposite orientation to that of the initial φ0

+, where [xj ]
stands for a 3-arc starting at the vertex xj in the previously cited (to the left) oriented 10-
cycle. Thus Fos cannot be a {~C10}~P5

-UH digraph. Another way to see this is via the
following table of 10-cycles of Fos, where the 10-cycle φ0 intervenes as 10-cycle 00:

00=(04051011121314152021)
10=(00010203042122232425)

80=(02039291747580816463)
90=(0405d0d1d24344452021)

20=(03040510111273749192)
30=(030405d0c5a095949392)

a0=(0405d0d1b4b3b2232221)
b0=(04051035345150452021)

40=(00010263626160553025)
50=(04051035404124232221)

c0=(02030421228382816463)
d0=(03042120455075749192)

60=(03040510353433329392)
70=(0001R203929332313025)

e0=(05103540657095a0c5d0)
f0=(020392933233c2c36263)

where (a) hexadecimal notation of integers is used; (b) the first 14 10-cycles x0, (x =
0, . . . , 13 = d), yield corresponding 10-cycles xj , (j ∈ Z15). via translation modulo 15
of all indexes; and (c) the last two cycles, e0 and f0, yield merely additional 10-cycles
e1, e2, f1 and f2 by the same index translation. A corresponding auxiliary table as in the
discussions for Pet, Hea and Pap above, in which the ± assignments are missing and left
as an exercise for the reader is as follows:

00:(20,4a,11,1e,37,21,89,bc,b0,88)

10:(0e,5d,c0,c9,50,01,6e,9d,92,70)

80:(c7,d0,57,07,06,b4,d0,c0,66,76)

90:(1d,4d,2c,24,34,12,a4,b0,bc,a0)
20:(0e,00,7d,93,d7,c1,c7,d0,9b,60)

30:(6c,d8,e0,59,69,08,66,c9,60,9b)

a0:(9b,db,59,cb,68,72,c9,50,d8,90)

b0:(60,db,93,03,50,72,d0,90,00,50)
40:(7c,cd,76,05,73,52,ee,dd,70,92)

50:(36,4d,be,8b,a6,12,10,a0,88,a0)

c0:(10,28,88,42,a6,16,2e,80,36,a4)
d0:(a4,b0,42,37,b4,a7,80,20,28,89)

60:(36,b0,33,11,39,a7,f3,89,30,20)

70:(49,ad,f3,89,43,22,4c,bd,40,10)

e0:(36,42,39,45,3c,48,30,4b,33,4e)
f0:(70,60,73,63,76,66,79,69,7c,6c)

Let A = (A0, A1, . . ., Ag), D = (D0, D2, . . ., Df ), C = (C0, C4, . . ., Cd), F = (F0, F8,
. . ., F9) be 4 disjoint 17-cycles. Each y = A,D,C, F has vertices yi with i expressed as
an heptadecimal index up to g = 16. We assume that i is advancing in 1,2,4,8 units mod
17, stepwise from left to right, respectively for y = A,D,C, F . Then the Biggs-Smith
graph B-S is obtained by adding to the disjoint union A ∪D ∪ C ∪ F , for each i ∈ Z17,
a 6-vertex tree Ti formed by the edge-disjoint union of paths AiBiCi, DiEiFi, and BiEi,
where the verticesAi,Di, Ci, Fi are already present in the cyclesA,D, C, F , respectively,
and where the vertices Bi and Ei are new and introduced with the purpose of defining the
tree Ti, for 0 ≤ i ≤ g = 16. Now, S has the collection C9 of 9-cycles formed by:

S0=(A0A1B1C1C5C9CdC0B0),
T 0=(C0C4B4A4A3A2A1A0B0),

W 0=(A0A1B1E1F1F9F0E0B0),
X0=(C0C4B4E4D4D2D0E0B0),

U0=(E0F0 F9F1FaF2E2D2D0,)
V 0=(E0D0D2D4D6D8E8F8F0),

Y 0=(E0B0A0A1A2B2E2D2D0),
Z0=(F0 F8 E8B8C8C4C0B0E0),
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and those 9-cycles obtained from these, as Sx, . . . , Zx, by uniformly adding x ∈ Z17 mod
17 to all subindexes i of vertices yi, so that |C9| = 136.

An auxiliary table presenting the form in which the 9-cycles above share the vertex sets of
3-arcs, either O-O or not, is shown below, in a fashion similar to those above for Pet, Hea,
Pap and Fos, where minus signs are set but plus signs are tacit now:

S0:(-T e
1 , T

1
7 ,-Z1

4 ,S
d
4 , S

4
3 ,-Z9

3 , T
d
0 ,-T 0

6 , U
0
8 ),

T 0:( S4
6 ,-S3

0 ,-Y 2
2 , T

1
4 ,T

g
3 ,-Y 0

1 ,-S0
7 , S

g
1 , V

0
8 ),

W 0:(-U0
4 ,W

8
2 ,W

9
1 ,-U1

3 ,X
2
7 ,-Xb

4 , Y
0
6 ,-X0

8 , X
9
5 ),

X0:(-V 0
4 ,X

f
2 ,X

2
1 ,-V 4

3 ,-W 6
5 ,W

8
8 ,-Z0

8 ,W
f
4 ,-W 0

7 ),

U0:(Y g
3 ,-U1

6 ,Z
1
7 ,-W g

3 ,-W 0
0 , Z

9
0 ,-Ug

1 , Y
0
0 , S

0
8),

V 0:(-Zd
2 ,-V 4

6 ,Y
2
5 ,-Xd

3 ,-X0
0 ,Y

0
7 ,-V d

1 ,-Z0
5 ,T

0
8 ),

Y 0:( U0
7 ,-T 0

5 ,-T f
2 , U

1
0 ,-Y 2

8 , V
f
2 ,W

0
6 , V

0
5 ,-Y f

4 ),

Z0:( U8
5 ,-Z8

6 ,-V 4
0 ,-S8

5 ,-Sg
2 ,-V 0

7 ,-Z9
1 , U

g
2 ,-X0

6 ),

This table is extended by adding x ∈ Z17 uniformly mod 17 to all superindexes, confirming
that B-S is not {~C9}~P4

-UH..

4 Separator digraphs of 7 CDT graphs
For each of the 7 CDT graphs G that are { ~Cg} ~Pk

-UH digraphs according to Theorem 3,
the following construction yields a corresponding digraph S(G) of outdegree and indegree
two and having underlying cubic graph structure and the same automorphism group of G.
The vertices of S(G) are defined as the (k − 1)-arcs of G. We set an arc in S(G) from
each vertex a1a2 . . . ak−1 into another vertex a2 . . . ak−1ak whenever there is an oriented
g-cycle (a1a2 . . . ak−1ak . . .) in the {η ~Cg}~Pk

-OOC provided by Theorem 3 to G. Thus

each oriented g-cycle in the mentioned {η ~Cg}~Pk
-OOC yields an oriented g-cycle of S(G).

In addition we set an edge e in S(G) for each transposition of a (k − 1)-arc of G, say
h = a1a2 . . . ak−1, taking it into h−1 = ak−1ak−2 . . . a1. Thus the ends of e are h and
h−1. As usual, the edge e is considered composed by two O-O arcs.

The polyhedral graphsG here are the tetrahedral graphG = K4, the 3-cube graphG = Q3

and the dodecahedral graph G = ∆. The corresponding graphs S(G) have their underly-
ing graphs respectively being the truncated-polyhedral graphs of the corresponding dual-
polyhedral graphs that we can refer as the truncated tetrahedron, the truncated octahedron
and the truncated icosahedron. In fact:

(A) S(K4) has vertices 01, 02, 03, 12, 13, 23, 10, 20, 30, 21, 31, 32; the cycles (123), (210),
(301), (032) of the {η ~Cg}~Pk

-OOC of K4 give place to the oriented 3-cycles (12, 23,
31), (21, 10, 02), (30, 01, 13), (03, 32, 20) of S(K4); the additional edges of S(K4) are
(01, 10), (02, 20), (03, 30), (12, 21), (13, 31), (23, 32).

(B) The of oriented cycles of S(Q3) corresponding to the {η ~Cg}~Pk
-OOC ofQ3 are (01, 13,

32, 20), (10, 04, 45, 51), (31, 15, 57, 73) ,(23, 37, 76, 62), (02, 26, 64, 40), (46, 67, 75, 54);
the additional edges of S(Q3) are (01, 10), (23, 32), (45, 54), (67, 76), (02, 20), (13, 31),
(46, 64), (57, 75), (04, 40), (15, 51), (26, 62), (37, 73).

(C) The oriented cycles of S(∆) corresponding to the {η ~Cg}~Pk
-OOC of ∆ are (a0a1, a1a2,

a2a3, a3a4, a4 a0), (c4c3, c3c2, c2c1, c1c0, c0c4), and both (axdx, dxbx−2, bx−2dx+1, dx+1

ax+1, ax+1ax) and (dxbx+2, bx+2cx+2, cx+2cx−2, cx−2bx−2, bx−2dx), for each x ∈ Z5;
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Figure 1: S(K4), S(Q3) and S(∆)

the additional edges are (axax+1, ax+1ax), (cxcx+1, cx+1cx), (axdx, dx ax), (dxbx+2,
bx+2dx), (bxdx+2, dx+2bx), and (bxcx, cxbx), for each x ∈ Z5.

Among the 7 CDT graphs G that are { ~Cg} ~Pk
-UH digraphs, the polyhedral graphs treated

above are exactly those having arc-transitivity k = 2. Figure 1 contains representations of
these graphs S(G), namely S(K4), S(Q3) and S(∆), with the respective 3-cycles, 4-cycles
and 5-cycles in black trace to be considered clockwise oriented, but for the external cycles
in the cases S(Q3) and S(∆), to be considered counterclockwise oriented. The remaining
edges (to be referred as transposition edges) are gray colored and considered bidirectional.
The cycles having alternate black and gray edges here, arising respectively from arcs from
the oriented cycles and from the transposition edges, are 6-cycles. Each such 6-cycle has
its vertices sharing the notation, indicated in gray, of a unique vertex of the corresponding
G. Each vertex of G is used as such gray 6-cycle indication.

The truncated tetrahedron, truncated octahedron and truncated icosahedron, oriented as
indicated for Figure 1, are the Cayley digraphs of the groupsA4, S4 andA5, with respective
generating sets {(123), (12)(34)}, {(1234), (12)} and {(12345), (23)(45)}. Thus

S(K4)≡Cay(A4,{(123),(12)(34)}),S(Q3)≡Cay(S4,{(1234),(12)}),S(∆)≡Cay(A5,{(12345),(23)(45)}).

(D) The oriented cycles of S(K3,3) corresponding to the {η ~Cg}~Pk
-OOC of K3,3 are:

(123, 234, 341, 412), (321, 210, 103, 032), (432, 325, 254, 543),
(143, 430, 301, 014), (214, 145, 452, 521), (012, 125, 250, 501),
(523, 230, 305, 052), (034, 345, 450, 503), (541, 410, 105, 054);

and additional edges of S(K3,3) are:

(123, 321), (234, 432), (341, 143), (412, 214), (210, 012), (103, 301),
(032, 230), (325, 523), (254, 452), (543, 345), (430, 034), (014, 410),
(145, 541), (521, 125), (250, 052), (501, 105), (305, 503), (450, 054).
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Figure 2: S(K3,3)

A cut-out toroidal representation of S(K3,3) is in Figure 2, where black-traced 4-cycles
are considered oriented clockwise, corresponding to the oriented 4-cycles in the {η ~Cg}~Pk

-
OOC of K3,3, and where gray edges represent transposition edges of S(K3,3), which gives
place to the alternate 8-cycles, constituted each by an alternation of 4 transposition edges
and 4 arcs of the oriented 4-cycles. In S(K3,3), there are 9 4-cycles and 9 8-cycles. Now,
the group < (0, 5, 4, 1)(2, 3), (0, 2)(1, 5) > has order 36 and acts regularly on the vertices
of S(K3,3). For example, (0, 2)(1, 5) stabilizes the edge (145, 541), and the permuta-
tion (0, 5, 4, 1)(2, 3) permutes (clockwise) the black oriented 4-cycle (541, 410, 105, 054).
Thus S(K3,3) is a Cayley digraph. Also, observe the oriented 9-cycles in S(K3,3) obtained
by traversing alternatively 2-arcs in the oriented 4-cycles and transposition edges; there are
6 such oriented 9-cycles.

(E) The collection of oriented cycles of S(Des) corresponding to the {η ~Cg}~Pk
-OOC of

Des is formed by the following oriented 6-cycles, where x ∈ Z5:

(x0x1x2, x1x2x3, x2x3x
1
0, x3x

1
0x

4
3, x

1
0x

4
3x0, x

4
3x0x1),

(x1x0x4
3, x0x4

3x
4
2, x

4
3x

4
2x

2
1, x

4
2x

2
1x

2
2, x

2
1x

2
2x1, x2

2x1x0),
(x2x1x0, x1x0x

3
3, x0x

3
3x

3
2, x

3
3x

3
2x

3
1, x

3
2x

3
1x2, x

3
1x2x1),

(x0x4
3x

1
0, x

4
3x

1
0x

1
1, x

1
0x

1
1x

3
2, x

1
1x

3
2x

3
3, x

3
2x

3
3x0, x3

3x0x4
3),

respectively for the 6-cycles Ax, Bx, Cx, Dx, where xji stands for (x + j)i; each of the
participant vertices here is an end of a transposition edge. Figure 3 represents a subgraph
S(M3) of S(Des) associated with the matching M3 of Des indicated in its representation
“inside” the left-upper “eye” of the figure, where vigesimal integer notation is used (up
to j = 19); in the figure, additional intermittent edges were added that form 12 square
pyramids, 4 such edges departing from a corresponding extra vertex; so, 12 extra vertices
appear that can be seen as the vertices of a cuboctahedron whose edges are 3-paths with
inner edge in S(M3) and intermittent outer edges. There is a total of 5 matchings, like
M3, that we denote Mx, where x = 3, 7, b, f, j. In fact, S(Des) is obtained as the union⋃
{S(Mx);x = 3, 7, b, f, j}. Observe that the components of the subgraph induced by the

matchingMx inDes are at mutual distance 2 and thatMx can be divided into three pairs of
edges with the ends of each pair at minimum distance 4, facts that can be used to establish
the properties of S(Des).
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Figure 3: M3 and the subgraph of S(Des) associated to it
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In Figure 3 there are: 12 oriented 6-cycles (dark-gray interiors); 6 alternate 8-cycles (thick-
black edges); and 8 9-cycles with alternate 2-arcs and transposition edges (light-gray inte-
riors). The 6-cycles are denoted by means of the associated oriented 6-cycles ofDes. Each
9-cycle has its vertices sharing the notation of a vertex of V (Des) and this is used to denote
it. Each edge e in M3 has associated a closed walk in Des containing every 3-path with
central edge e; this walk can be used to determine a unique alternate 8-cycle in S(M3),
and viceversa. Each 6-cycle has two opposite (black) vertices of degree two in S(M3). In
all, S(Des) contains 120 vertices; 360 arcs amounting to 120 arcs in oriented 6-cycles and
120 transposition edges; 20 dark-gray 6-cycles; 30 alternate 8-cycles; and 20 light-gray
9-cycles. By filling the 6-cycles and 8-cycles here with 2-dimensional faces, then the 120
vertices, 180 edges (of the underlying cubic graph) and resulting 20 + 30 = 50 faces yield
a surface of Euler characteristic 120 − 180 + 50 = −10, so this surface genus is 6. The
automorphism group of Des is G = S5 × Z2. Now, G contains three subgroups of index
2: two isomorphic to to S5 and one isomorphic to A5 × Z2. One of the two subgroups of
G isomorphic to S5 (the diagonal copy) acts regularly on the vertices of S(Des) and hence
S(Des) is a Cayley digraph.

(F) The collection of oriented cycles of S(Cox) corresponding to the {η ~Cg}~Pk
-OOC of

Cox is formed by oriented 7-cycles, such as:

01 = (u1u2u3, u2u3u4, u3u4u5, u4u5u6, u5u6u0, u6u0u1, u0u1u2),

and so on for the remaining oriented 7-cycles xy with x ∈ {0, . . . , 7} and y ∈ {1, 2, 3},
based on the corresponding table in the proof of Theorem 3. Moreover, each vertex of
S(Cox) is adjacent via a transposition edge to its reversal vertex. Thus S(Cox) has: under-
lying cubic graph; indegree = outdegree = 2; 168 vertices; 168 arcs in 24 oriented 7-cycles;
84 transposition edges; and 42 alternate 8-cycles. Its underlying cubic graph has 252 edges.
From this information, by filling the 7- and 8-cycles mentioned above with 2-dimensional
faces, we obtain a surface with Euler characteristic 168 − 252 + (24 + 42) = −18, so its
genus is 10. On the other hand, S(Cox) is the Cayley digraph of the automorphism group
of the Fano plane, namely PSL(2, 7) = GL(3, 2) [4], of order 168, with a generating set
of two elements, of order 2 and 7, representable by the 3×3-matrices (100, 001, 010)T and
(001, 101, 010)T over the field F2, where T stands for transpose.

Figure 4 depicts a subgraph of S(Cox) containing in its center a (twisted) alternate 8-cycle
that we denote (in gray) z1u1, and, around it, four oriented 7-cycles adjacent to it, (namely
11, 71, 23, 63, denoted by their corresponding oriented 7-cycles in Cox, also in gray),
plus four additional oriented 7-cycles (namely 00, 32, 41, 52), related to four 9-cycles
mentioned below. Black edges represent arcs, and the orientation of these 8 7-cycles is
taken clockwise, with only gray edges representing transposition edges of S(Cox). Each
edge of Cox determines an alternate 8-cycle of S(Cox). In fact, Figure 4 contains not
only the alternate 8-cycle corresponding to the edge z1u1 mentioned above, but also those
corresponding to the edges u1u2, v1z1, t1z1 and u0u1. These 8-cycles and the 7-cycles in
the figure show that alternate 8-cycles C and C ′ adjacent to a particular alternate 8-cycle
C ′′ in S(Cox) on opposite edges e and e′ of C ′′ have the same opposite edge e′′ both to
e and e′ in C and C ′, respectively. There are two instances of this property in Figure 4,
where the two edges taking the place of e′′ are the large central diagonal gray ones, with
C ′′ corresponding to u1z1. As in (E) above, the fact that each edge e of Cox determines
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Figure 4: A subdigraph of S(Cox) associated with an edge of Cox

an alternate 8-cycle of S(Cox) is related with the closed walk that covers all the 3-paths
having e as central edge, and the digraph S(Cox) contains 9-cycles that alternate 2-arcs in
the oriented 7-cycles with transposition edges. In the case of Figure 4, these 9-cycles are,
in terms of the orientation of the 7-cycles:

(u2u1z1, u1z1v1, z1v1v3, v3v1z1, v1z1t1, z1t1t5, t5t1z1, t1z1u1, z1u1u2),
(v1z1u1,z1u1u0,u1u0u6,u6u0u1,u0u1u2,u1u2u3,u3u2u1,u2u1z1,u1z1v1),
(u0u1z1, u1z1t1, z1t1t4, t4t1z1, t1z1v1, z1v1v6, v6v1z1, v1z1u1, z1u1u0),
(t1z1u1,z1u1u2,u1u2z2,z2u2u1,u2u1u0,u1u0z0,z0u0u1,u0u1z1,u1z1t1).

A convenient description of alternate 8-cycles, as those denoted in gray in Figure 4 by the
edges z1u1, z1v1, u2u1, u0u1, z1t1 of Cox, is given by indicating the successive passages
through arcs of the oriented 7-cycles, with indications by means of successive subindexes
in the order of presentation of their composing vertices, which for those 5 alternate 8-cycles
looks like:

(11
60,7

1
56,2

3
60,6

3
56), (52

12,3
2
23,7

1
45,1

1
01), (01

01,1
1
56,6

3
60,4

1
56), (23

56,7
1
60,0

0
56,4

1
60), (32

12,5
2
23,6

3
45,2

3
01).

In a similar fashion, the four bi-alternate 9-cycles displayed just above can be presented by
means of the shorter expressions:

(11
61,5

2
13,6

3
46), (71

50,0
1
50,1

1
50), (23

61,3
2
13,7

1
46), (63

50,4
1
50,2

3
50).

By the same token, there are twenty four tri-alternate 28-cycles, one of which is expressible
as:

(01
03,6

1
03,3

2
40,2

3
36,5

3
36,4

2
62,1

1
40).
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At this point, we observe that S(K4), S(Q3) and S(∆) have alternate 6-cycles, while
S(K3,3), S(Des) and S(Cox) have alternate 8-cycles.

(G) The collection of oriented cycles of S(Tut) corresponding to the {η ~Cg}~Pk
-OOC of

Tut is formed by oriented 8-cycles, such as: A0 =

(4500010203, 0001020304, 0102030405, 0203040510, 0304051045, 0405104500, 0510450001, 1045000102)

and so on for the remaining oriented 8-cycles Xy with X ∈ {A, . . . , R} and y ∈ Z5 based
on the corresponding table in the proof of Theorem 3. Moreover, each vertex of S(Tut)
is adjacent via a transposition edge to its reversal vertex. Thus S(Tut) has: underlying
cubic graph; indegree = outdegree = 2; 720 vertices; 720 arcs in 90 oriented 8-cycles;
360 transposition edges; and 180 alternate 8-cycles, (36 of which are displayed below); its
underlying cubic graph has 1080 edges. From this information, by filling the 900 8-cycles
above with 2-dimensional faces, a surface with Euler characteristic 720 − 1080 + 240 =
−120 is obtained, so genus = 61. On the other hand, the automorphism group of Tut is the
projective semilinear group G = PΓL(2, 9) [13], namely the group of collineations of the
projective line PG(1, 9). The group G contains exactly three subgroups of index 2 (and so
of order 720), one of which (namely M10, the Mathieu group of order 10, acts regularly on
the vertices of S(Tut). Thus S(Tut) is a Cayley digraph.

A fifth of the 180 alternate 8-cycles of S(Tut) can be described by presenting in each
case the successive pairs of vertices in each oriented 8-cycle Xy as follows, each such pair
denoted by means of the notation Xy

u(u+1) , where u stands for the 4-arc in position u in
Xy , with 0 indicating the first position:

(A0
01,

(A0
34,

M0
34,

J0
70,

B4
34,

L3
70,

K0
12)

H0
23)

(A0
12,

(A0
45,

P 1
01,

E0
70,

I070,

P 0
45,

M0
23)

J0
67)

(A0
23,

(A0
56,

H0
34,

E1
45,

B1
70,

F 1
70,

P 1
70)

E0
67)

(A0
67,

(B0
12,

G0
45,

R3
34,

M1
67,

N1
56,

E1
34)

C2
23)

(A0
70,

(B0
23,

K0
23,

M1
45,

L2
12,

Q2
67,

G0
34)

R3
23)

(B0
01,

(B0
45,

C2
34,

D3
67,

Q3
23,

R1
70,

P 0
67)

K1
01)

(B0
56,

(C0
12,

D0
34,

N4
67,

O0
56,

F 3
45,

D3
56)

G3
67)

(B0
67,

(C0
45,

H4
45,

L0
67,

C4
67,

J2
01,

D0
23)

Q1
12)

(C0
01,

(C0
56,

G3
70,

H0
56,

H3
70,

O4
34,

M0
01)

L0
56)

(C0
70,

(D0
70,

M0
12,

I367,

I001,

P 4
12,

D1
12)

R3
67)

(D0
01,

(E0
01,

I412,

N4
01,

O1
12,

K1
45,

I356)

P 0
34)

(D0
45,

(E0
12,

O2
67,

N2
34,

L1
45,

F 3
34,

O0
45)

N4
70)

(E0
23,

(F 0
23,

M0
70,

N4
45,

H3
01,

R1
45,

N2
23)

J3
45)

(E0
56,

(F 0
56,

F 1
01,

Q2
56,

Q2
45,

M1
56,

F 0
67)

G0
56)

(F 0
12,

(G0
01,

J3
56,

I145,

P 3
56,

O4
23,

Q1
34)

H0
67)

(G0
12,

(I023,

Q1
01,

J1
23,

J2
12,

K1
67,

I134)

O2
01)

(G0
23,

(J0
34,

L2
23,

R3
56,

R2
12,

P 4
23,

Q1
70)

K0
56)

(H0
12,

(K0
70,

L3
01,

R0
01,

K1
34,

L0
34,

N4
12)

O1
70)

Again, as in the previously treated cases, we may consider the oriented paths that alter-
natively traverse two arcs in an oriented 8-cycle and then a transposition edge, repeating
this operation until a closed path is formed. It happens that all such bi-alternate cycles are
12-cycles. For example with a notation akin to the one in the last table, we display the first
row of the corresponding table of 12-cycles:

(A0
02,

(......,
P 1

02,
......,

R0
60,

......,
K0

02)

......)

(A0
13,

(......,
H0

35,
......,

C0
60,

......,
M0

13)

......)

(A0
24,

(......,
J0
71,
......,

Q4
13,

......,
P 1

60)

......)

As in the case of the alternate 8-cycles above, which are 180, there are 180 bi-alternate
12-cycles in S(Tut). On the other hand, an example of a tri-alternate 32-cycle in S(Tut)
is given by:

(A0
03, H0

36, O4
36, D2

50, I061, D1
14, O1

50, K0
72).
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There is a total of 90 such 32-cycles. Finally, an example of a tetra-alternate 15-cycle in
S(Tut) is given by (A0

04, J
0
73,K

0
62), and there is a total of 240 such 15-cycles. More can

be said about the relative structure of all these types of cycles in S(Tut).

The automorphism groups of the graphs S(G) in items (A)-(G) above coincide with those
of the corresponding graphs G because the construction of S(G) depends solely on the
structure of G as analyzed in Section 3 above. Salient properties of the graphs S(G) are
contained in the following statement.

Theorem 4.1. For each CDT graph that is a { ~Cg} ~Pk
-UH digraph, S(G) is: (a) a vertex-

transitive digraph with indegree = outdegree = 2, underlying cubic graph and the auto-
morphism group of G; (b) a { ~Cg, ~C2}-ultrahomogeneous digraph, where ~Cg stands for
oriented g-cycle coincident with its induced subdigraph and each vertex is the intersec-
tion of exactly one such ~Cg and one ~C2; (c) a Cayley digraph. Moreover, the following
additional properties hold, where s(G) = subjacent undirected graph of S(G):

(A) S(K4) ≡ Cay(A4, {(123), (12)(34)}), s(K4) = truncated octahedron;

(B) S(Q3) ≡ Cay(S4, {(1234), (12)}), s(Q3) = truncated octahedron;

(C) S(∆) ≡ Cay(A5, {(12345), (23)(45)}), s(∆) = truncated icosahedron;

(D) S(K3,3) is the Cayley digraph of the subgroup of S6 on the vertex set {0, 1, 2, 3, 4, 5}
generated by (0, 5, 4, 1)(2, 3) and (0, 2)(1, 5) and has a toroidal embedding whose
faces are delimited by 9 oriented 4-cycles and 9 alternate 8-cycles;

(E) S(Des) is the Cayley digraph of a diagonal copy of S5 in the automorphism group
S5 × Z2 of Des and has a 6-toroidal embedding whose faces are delimited by 20
oriented 6-cycles and 30 alternate 8-cycles;

(F) S(Cox) ≡ Cay(GL(3, 2), {(100, 001, 010)T , (001, 101, 010)T }), has a 10-toroidal
embedding whose faces are delimited by 24 oriented 7-cycles and 42 alternate 8-
cycles;

(G) S(Tut) is the Cayley digraph of a subgroup M10 of order 2 in the automorphism
group PΓL(2, 9) of Tut and has a 61-toroidal embedding whose faces are delimited
by 90 oriented 8-cycles and 180 alternate 8-cycles.

Corollary 4.2. The bi-alternate cycles in the graphs S(G) above are 9-cycles unless either
G = Q3 or G = ∆, in which cases they are respectively 12-cycles and 15-cycles.
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Abstract

An independent set Ic is a critical independent set if |Ic| − |N(Ic)| ≥ |J | − |N(J)|,
for any independent set J . The critical independence number of a graph is the cardi-
nality of a maximum critical independent set. This number is a lower bound for the in-
dependence number and can be computed in polynomial-time. The existing algorithm
runs in O(n2.5

√
m/ log n) time for a graph G with n = |V (G)| vertices and m edges.

It is demonstrated here that there is a parallel algorithm using n processors that runs in
O(n1.5

√
m/ log n) time. The new algorithm returns the union of all maximum critical

independent sets. The graph induced on this set is a König-Egerváry graph whose compo-
nents are either isolated vertices or which have perfect matchings.
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1 Introduction
A new faster parallel algorithm is given for finding maximum critical independent sets and
calculating the critical independence number of an arbitrary graph.
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The following notation is used throughout: the vertex set of a graph G is V (G), the
order of G is n = n(G) = |V (G)|, the set of neighbors of a vertex v is NG(v) (or simply
N(v) if there is no possibility of ambiguity), the set of neighbors of a set S ⊆ V (G) in G
is NG(S) = ∪u∈SN(u) (or simply N(S) if there is no possibility of ambiguity), the set
N [S] = N(S)∪S, and the graph induced on S isG[S]. All graphs are assumed to be finite
and simple.

A set I ⊆ V (G) of vertices is an independent set if no pair of vertices in the set are
adjacent. The independence number α = α(G) is cardinality of a maximum independent
set (MIS) of vertices in G. An independent set of vertices Ic is a critical independent set if
|Ic|−|N(Ic)| ≥ |J |−|N(J)|, for any independent set J . A maximum critical independent
set (MCIS) is a critical independent set of maximum cardinality. The critical independence
number of a graph G, denoted α′ = α′(G), is the cardinality of a maximum critical inde-
pendent set. If Ic is a maximum critical independent set, and so α′(G) = |Ic|, then clearly
α′ ≤ α. The critical difference d is max{|Ic| − |N(Ic)| : Ic is an independent set}.

Critical independent sets are of interest for both practical and theoretical reasons. By a
theorem of Butenko and Trukhanov, any critical independent set can be extended to a max-
imum independent set [4]. Zhang and Ageev gave polynomial-time algorithms for finding
critical independent sets [17, 1]. Thus, finding a critical independent set is a polynomial-
time technique for reducing the search for the well-known widely-studied NP-hard problem
of finding a maximum independent set in a graph [7]. Maximum critical independent sets
are central in the investigation of the structure of maximum independent sets, a connection
via the Independence Decomposition Theorem, recounted in the next section.

The existing algorithm for finding a MCIS and calculating α′ runs inO(n2.5
√
m/log n)

time [11]. It is demonstrated here that there is a parallel algorithm using n processors that
runs in O(n1.5

√
m/ log n) time. The new algorithm finds the set H of vertices which

are in some maximum critical independent set, that is, the union of all MCISs. The graph
induced on this set is a König-Egerváry graph whose non-trivial components each have a
perfect matching.

2 The set H of vertices in some MCIS
The correctness of the algorithm presented in the next section depends on the following
decomposition theorem, a corollary of, and equivalent to, the Independence Decomposition
Theorem in [12]. A matching in a graph is a set of pairwise non-incident (or independent)
edges. The matching number µ of a graph is the cardinality of a maximum matching. A
König-Egerváry graph is one where α+ µ = n.

Theorem 2.1. (Larson, [12]) For any graph G, there is a unique set X ⊆ V (G) such that

1. α(G) = α(G[X]) + α(G[Xc]),

2. G[X] is a König-Egerváry graph,

3. for every non-empty independent set I in G[Xc], |N(I)| > |I|, and

4. for every maximum critical independent set Jc of G, X = Jc ∪N(Jc).

According to the theorem there is a unique set X ⊆ V (G) such that, for any maximum
critical independent set Ic, Ic ∪ N(Ic) = X . For any graph G let X = X(G) be the set
guaranteed by Theorem 2.1. Call G[X] the distinguished König-Egerváry subgraph of G.
König-Egerváry graphs were first characterized by Deming [6] and Sterboul [16] in the
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1970s. The first author’s Graffiti.pc program conjectured (number 329 in [5]) a characteri-
zation in terms of the critical independence number: a graph G is a König-Egerváry graph
if, and only if, α(G) = α′(G). The conjecture was first proven by Larson in [12]. In [14]
Levit & Mandrescu extended the statement of this result as follows.

Theorem 2.2. (Levit & Mandrescu, [14]) The following are equivalent:

1. G is a König-Egerváry graph,

2. there is a maximum independent set of G that is a MCIS,

3. every maximum independent set of G is a MCIS,

Figure 1: The vertices Ic = {a, b} form a (maximum cardinality) critical independent set;
this set of vertices can be extended to a maximum independent set of the graph. According
to Theorem 2.1 the setsX = Ic∪N(Ic) = {a, b, c, d} andXc = V \X = {e, f, g} induce
a decomposition of the graph into a König-Egerváry subgraphG[X] and one,G[Xc], where
every non-empty independent set of vertices I has more than |I| neighbors.

It will now be shown that the graph induced on the set H (the union of all MCISs) is
König-Egerváry. This fact will be used in the proof of correctness of the parallel algorithm.
While the class of König-Egerváry graphs contains all the bipartite graphs (by the König-
Egerváry Theorem, [15]) and subgraphs of bipartite graphs are bipartite, it is not true in
general that subgraphs of König-Egerváry graphs are König-Egerváry. So it is worth noting
that G[X] is König-Egerváry, G[H] is a subgraph of G[X], and G[H] is König-Egerváry.

The following results are required in the proof of Theorem 2.5.

Lemma 2.3. (The Matching Lemma, [11]) If I is a critical independent set, then there is a
matching from N(I) to I .

Let Ω = Ω(G) be the set of maximum independent sets in G. The core of a graph G,
denoted core(G), is defined to be ∩{S : S ∈ Ω}, namely, the set of vertices which are in
every maximum independent set; and ξ = ξ(G) = |core(G)|. This notation follows [3].

Theorem 2.4. (Levit & Mandrescu, [13]) If G is a König-Egerváry graph, then G has a
perfect matching if, and only if, | ∩ {S : S ∈ Ω(G)}| = | ∩ {V (G)− S : S ∈ Ω}|.

Theorem 2.5. If Ic is a maximum critical independent set of a graph G, X = Ic ∪N(Ic),
and H is the union of all maximum critical independent sets, then

1. H ∪N(H) = X ,

2. G[H] is a König-Egerváry graph,
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3. I is a maximum independent set of G[H] if, and only if, I is a MCIS of G and
α′(G) = α(G[H]),

4. The non-trivial components of G[H] have a perfect matching,

5. If I0 are the isolated vertices in G[H] then α(G[H]) = |I0|+ 1
2 |H \ I0|.

Proof. Let Ic be a MCIS of a graph G and X = Ic ∪ N(Ic). By Theorem 2.1 it follows
that, for any MCIS Jc of G, Jc ∪ N(Jc) = X . Let Ωc be the set of MCISs of G. Then
H ∪N(H) = ∪{Jc : Jc ∈ Ωc}∪N(∪{Jc : Jc ∈ Ωc}) = [∪{Jc : Jc ∈ Ωc}]∪ [∪{N(Jc) :
Jc ∈ Ωc}] = ∪{Jc ∪N(Jc) : Jc ∈ Ωc} = X , proving 1.

Now, Ic ⊆ H . Let H ′ = H \ Ic. So n(G[H]) = |Ic|+ |H ′|. Furthermore, α(G[H]) ≥
|Ic|. By construction H ′ ⊆ N(Ic). By the Matching Lemma there is a matching from
N(Ic) into Ic inG. Thus there is a matching fromH ′ into Ic inG[H] and µ(G[H]) ≥ |H ′|.
So α(G[H]) + µ(G[H]) ≥ |Ic|+ |H ′| = n(H) and, for any graph, α + µ ≤ n, it follows
that α(G[H]) + µ(G[H]) = n(G[H]), that is, G[H] is König-Egerváry, proving 2. It now
follows easily that α(G[H]) = |Ic| and thus that Ic is a maximum independent set ofG[H],
proving one direction of 3.

Now let I be a maximum independent set of G[H]. So I is an independent set in G[X],
|I| ≥ |Ic|, and α(G[X]) ≥ |I|. It will now be argued that α(G[X]) = |Ic| and, hence,
|Ic| = |I|. Theorem 2.1 implies that G[X] is König-Egerváry. Then it is not difficult to see
that the Matching Lemma implies that µ(G[X]) = |N(Ic)|. Finally, we have n(G[X]) =
α(G[X]) + µ(G[X]) ≥ |Ic|+ |N(Ic)| = |X| = n(G[X]). The claim them follows. Then,
since I and Ic are maximum independent sets of G[H], I ∪ N(I) ⊆ H ∪ N(H) = X .
N(I) ⊆ X\I andN(Ic) ⊆ X\Ic. It is worth noting here that,N(I) is the set of neighbors
of I in graph G (as opposed to graph G[H]). No use is made in this proof of neighbors of
a set of vertices in graph G[H] and no subscripts are ever required for clarity. To continue,
it follows that |N(I)| ≤ |X \ I| and |N(Ic)| = |X \ Ic|. Since |X \ I| = |X \ Ic|,
it follows that |N(I)| ≤ |N(Ic)| and, thus, that |I| − |N(I)| ≥ |I| − |N(Ic)|. But,
if |I| − |N(I)| > |Ic| − |N(Ic)|, Ic is not a critical independent set, contradicting our
assumption. Thus |I| − |N(I)| = |Ic| − |N(Ic)|, and I is a critical independent set of G,
proving the other direction of 3.

Let I0 be the set of isolated vertices in G[H]. These are contained in any maximum
independent set of G[H]. Let I ′c = Ic \ I0 and H ′ = H \ I0. It is then claimed that
G[H ′] has a perfect matching. Let v ∈ H ′. Suppose v ∈ core(G[H ′]), that is, v is in every
maximum independent set ofG[H ′]. Then v is in every maximum independent set ofG[H]
and, thus, in every maximum critical independent set of G. But H is the set of vertices in
some maximum critical independent set of G. So no vertex in N(v) is in any maximum
independent set of G[H], or in any maximum critical independent set of G, which is a
contradiction. Thus | ∩ {S : S ∈ Ω(G[H ′])}| = 0. By similar reasoning it can be shown
that | ∩ {V (G[H ′]) − S : S ∈ Ω(G[H ′])}| = 0. Thus | ∩ {S : S ∈ Ω(G[H ′])}| =
| ∩ {V (G[H ′])− S : S ∈ Ω(G[H ′])}|. Theorem 2.4 then implies that G[H ′] has a perfect
matching, proving 4.

It is clear that, sinceG[H] is König-Egerváry, andG[H ′] has a perfect matching,G[H ′]
is also König-Egerváry; that is, α(G[H ′]) + µ(G[H ′]) = n(G[H ′]). Since n(G[H ′]) =
2µ(G[H ′]), it follows that α(G[H ′]) = 1

2n(G[H ′]) = 1
2 |H \ I0|. Finally α(G[H]) =

|I0|+ α(G[H ′]) = |I0|+ 1
2 |H \ I0|, proving 5.
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3 A parallel MCIS algorithm
The criterion given for testing whether a vertex belongs to a critical independent set begins
by passing to a certain bipartite graph. The computational speed of the following algorithm
is due to the fact that the independence number of a bipartite graph can be computed in
polynomial time.

Definition 3.1. For a graphG, the bi-double graphB(G) has vertex set V ∪V ′, where V ′ is
a copy of V . If V = {v1, v2, . . . , vn}, let V ′ = {v′1, v′2, . . . , v′n}. Then, (x, y′) ∈ E(B(G))
if, and only if, (x, y) ∈ E(G).

The bi-double graph B(G) of G can also be described as K2�G, the cartesian product
of K2 and G.

Corollary 3.2. (Larson, [11]) A graph G contains a non-empty critical independent set
if, and only if, there is a vertex v ∈ V (G) such that α(B(G)) = α(B(G) − {v, v′} −
N({v, v′}) + 2.

In fact, the proof of this corollary actually shows that a vertex v satisfying the specified
condition is in some critical set. It is also shown in [11] that any critical independent set
can be extended to a MCIS. These results are now combined in a form directly useful in
the current context.

Theorem 3.3. (MCIS Criterion) A vertex v in a graph G is in some MCIS if, and only if,
α(B(G)) = α(B(G)− {v, v′} −N({v, v′}) + 2.

The following algorithm results in the set of all vertices which are in some maximum
critical independent set. Step 4 requires n iterations—but, due to the MCIS Criterion, these
n tests can be run independently on n processors. This is where the parallelization takes
place.

MCIS subgraph algorithm

1. Construct B(G).

2. a := α(B(G)).

3. H := ∅.
4. For each vertex v in V (G),

(a) t := α(B(G)− {v, v′} −N({v, v′}) + 2.
(b) If t = a, H := H ∪ {v}.

According to Theorem 3.3 these steps will result in the construction of a set H consist-
ing of all vertices which are in some MCIS. This can be extended in various ways to find
the following invariants or sets.

1. Find α′. In order to calculate α′, the remaining step is to identify the trivial and non-
trivial components ofH . Let I0 be the isolated vertices inH . Then, by Theorem 2.5,
α′(G) = |I0|+ 1

2 (|H \ I0|).
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2. Find X . In order to calculate the decomposition guaranteed by the Independence
Decomposition Theorem, it remains to find the neighbors of the vertices inH . Again
by Theorem 2.5, H ∪N(H) = X . Let Xc = V (G) \X . Then G[Xc] will have the
property that, for every non-empty independent set J , |N(J)| > |J |.

3. Find a MCIS Ic of G. In order to find a MCIS, Theorem 2.5 implies that it suffices
to find a maximum independent set Ic in H . Then Ic is a MCIS in G.

Since B(G) is a bipartite graph on 2n vertices, calculating a maximum matching of
B(G) and, hence, calculating α(B(G)) requires O(n1.5

√
m/ log n) operations, using the

algorithm of Alt, et al. [2]. This algorithm will be run once and then a second time inde-
pendently on each of n processors. So the total running time is still O(n1.5

√
m/ log n).

If M is a matching in a graph G and w is a vertex incident to an edge in M , let w′ be
the vertex matched to w under M . The new algorithm can now be stated. The parallelism
occurs in step 1.

The parallel MCIS algorithm

1. Find H .

2. Find the set I0 of isolated vertices in G[H]. H0 := I0.

3. If H \H0 = ∅, I := I0. STOP.

4. Find a maximum matching M of G[H].

5. Let w ∈ H \H0.

6. N1 := N(I0 ∪ {w}), M1 := {v′ : v ∈ N1}, I1 := I0 ∪ M1, H1 := I1 ∪ N1

(=H0 ∪N1 ∪M1).

7. i := 1.

8. While H \Hi 6= ∅:

(a) i. If Hi 6= Hi−1: Ni+1 := N(Ii).
ii. Else if Hi = Hi−1:

A. Let w ∈ H \Hi.
B. Ni+1 := N(Ii ∪ {w}),

(b) Mi+1 := {v′ : v ∈ Ni+1}, Ii+1 := Ii ∪ Mi+1. Hi+1 := Ii+1 ∪ Ni+1,
i := i+ 1.

9. I := Ii.

Theorem 3.4. If G is a graph then the set I produced by the Parallel MCIS algorithm is a
maximum critical independent set of G.

Proof. LetG be a graph,H be the set of vertices in some maximum critical independent set
ofG, andM be the maximum matching ofG[H] produced by the Parallel MCIS algorithm.
Theorem 2.5 implies that α′(G) = α(G[H]). Thus it is enough to show that the set I
produced by this algorithm is a maximum independent set of G[H].

Let I0 be the set of isolated vertices in G[H] and H ′ = H \ I0. It was shown that G[H]
is a König-Egerváry graph whose non-trivial components have perfect matchings. G[H ′]
is the union of the non-trivial components. So M is a perfect matching of G[H ′].
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The algorithm will first be described for the convenience of the reader. The first step
is to identify the isolated vertices. These can be extended to a maximum independent set
of G[H]. Then choose any vertex w among the remaining vertices. By the definition of
the set H , there is a MCIS and, by Theorem 2.5, this is a maximum independent set of
G[H]. So there is maximum independent set I of G[H] which contains w. The neighbors
of this vertex cannot be in I but each of these vertices is incident to some edge in the perfect
matching M of G[H] and, since one vertex from every edge of M must be in I , it follows
that the vertices matched to N(w) under M must be in I . In general, having constructed
an independent set J , the neighbors of J cannot be in the maximum independent set but,
since one vertex from every edge in M must be in the maximum independent set, the
vertices matched to N(J) under M must be in the set. If at some point there are no new
vertices in N(J), but the vertices in the graph have not been used up, an arbitrary vertex
can be selected from the remaining vertices, added to the independent set, and the process
continued.

The set I0 is an independent set, H0 = I0, and there is a maximum independent set of
G[H] containing I0. Assume that after the (k − 1)th iteration of the while loop, Ik is an
independent set and there is a maximum independent set of G[H] containing Ik. It will be
shown that Ik+1 is an independent set and there is a maximum independent set of G[H]
which contains Ik+1.

If H \ Hk = ∅ after the (k − 1)th iteration of the while loop, then H = Hk and I is
a maximum independent set of G[H]. Assume then that H \ Hk 6= ∅ after the (k − 1)th
iteration of the while loop. Hk is formed by (possibly) adding vertices to Hk−1, namely,
N(Ik−1) \Hk−1 together with the vertices matched to these under M . Either Hk 6= Hk−1
or Hk = Hk−1. Note that, in either case, by construction, Nk ⊆ Nk+1, Mk ⊆ Mk+1,
Ik ⊆ Ik+1, and Hk ⊆ Hk+1.

In the first case, Hk \Hk−1 6= ∅. Hk is formed by adding the vertices Nk \Nk−1 and
their neighbors Mk \Mk−1 = Ik \ Ik−1 under the matching M . The vertices Mk \Mk−1
may or may not have neighbors outside ofHk. Nk+1 = N(Ik),Mk+1 = {v′ : v ∈ Nk+1},
Ik+1 = Ik ∪Mk+1, and Hi+1 = Ii+1 ∪Ni+1. By assumption Ik is an independent set and
there is a maximum independent set of G[H] containing Ik. The vertices in Ik+1 are the
vertices in Ik together with the vertices matched to the neighbors of Ik under M . Let I be
a maximum independent set of G[H] containing Ik. It cannot contain any neighbor of Ik.
Since any maximum independent set I of G[H] must contain one vertex from each edge of
M , I must contain the vertices matched to N(Ik) under M . Thus Ik+1 is an independent
set and it can be extended to a maximum independent set of G[H].

In the case where Hk = Hk−1, the kth step in the while loop of the algorithm (step
8) works as follows: A vertex w is selected from from H \ Hk. Since Ik is independent
and w /∈ N(w), Ik+1 = Ik ∪ {w} is an independent set. By assumption there is a MCIS
containingw and, following Theorem 2.5, there is a maximum independent set I containing
w. Each edge inM must be incident to some vertex in I . Let I ′ = (I \Hk)∪Ik. It remains
to be shown that I ′ is a maximum independent set of G[H]. Since Hk = Ik ∪ N(Ik) it
follows that I ′ is an independent set. It is now enough to show that, for every edge xy in
M , either x or y is in I ′. Either x or y is in I . Assume x ∈ I . If x /∈ I ′ then x ∈ Hk. But
then by the construction of Hk, y is matched to x under M and y is also in Hk. But Ik is a
maximum independent set in G[Hk]. So either x or y must be in Ik and, thus I ′. So Ik+1

is contained in a maximum independent set.
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The MCIS Subgraph algorithm, which produces H , requires O(n1.5
√
m/ log n) oper-

ations. Finding a maximum matching of G[H] requires the same order or of operations.
The remaining steps only require finding the neighbors of sets of vertices. So the total
running time of Parallel MCIS Algorithm is O(n1.5

√
m/ log n).
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Faculty of Mathematics and Physics, University of Ljubljana

Jadranska 19, SI-1000, Ljubljana Slovenia

Bojan Kuzma
University of Primorska, FAMNIT, Glagoljaška 8, SI-6000 Koper, Slovenia

and
Institute of Mathematics, Physics and Mechanics, Department of Mathematics,

Jadranska 19, SI-1000 Ljubljana, Slovenia

Received 12 August 2011, accepted 5 June 2012, published online 28 October 2012

Abstract

Let F be a field. We classify multiplicative maps from Mn(F) to M(nk)
(F) which

annihilate a zero matrix and map rank-k matrix into a rank-one matrix.

Keywords: Matrix semigroup, Homomorphism, Representation.
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1 Introduction and preliminaries
Let Mn(F) denote the semigroup of all n–by–n matrices with coefficients in a field F,
let Eij be its matrix units, and let Id = Idn :=

∑
Eii be its identity. In [5], Jodeit and

Lam classified nondegenerate semigroup homomorphisms π :Mn(F)→Mn(F), that is,
maps which are (i) multiplicative π(AB) = π(A)π(B) and (ii) their restriction on singular
matrices is nonconstant. It was shown that the semigroup of such maps is generated by
three simple types: (i) a similarity, (ii) a fixed field homomorphism applied entry-wise on
a matrix, and (iii) the map which sends A to a matrix of its cofactors. We refer below for
more precise definitions.

The complete classification of degenerate maps on Mn(F) is more involved. They
are all of the type A 7→ π1(A) ⊕ Idn−m for some integer m ∈ {0, . . . , n} and some
degenerate multiplicative π1 : Mn(F) → Mm(F) with π1(0) = 0 [5]. When m = 1,
Ðoković [2, Theorem 1] proved the following.
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Lemma 1.1. Let F be a field, and n ≥ 2. If π :Mn(F) → F is multiplicative, then there
exists multiplicative φ : F→ F so that π(X) = φ(detX).

When m < n and the characteristic of F differs from 2, Ðoković [2, Theorem 2]
also showed π1 factors through determinant so that π1 = f ◦ det for some multiplicative
f : F → Mm(F). The classification of those seems to be difficult, and as far as we
know they are known only in case F = C is the filed of complex numbers, by the work
of Omladič, Radjavi, and Šemrl [8]. Later, Guralnick, Li, and Rodman [4], extended the
result of Ðoković to include also the case n = m.

Semigroup homomorphisms mapping into higher dimensional algebras are less known.
Kokol-Bukovšek [6, 7] classified them in case they are nondegenerate and map 2–by–2
matrices into 3–by–3 or into 4–by–4. Under additional assumption that a degenerate ho-
momorphism is a polynomial in matrix entries, the classification is well-known, see a book
by Weyl [9] (see also Fulton and Harris [3] for holomorphic homomorphisms over a field
of complex numbers).

It is our aim to show that all homomorphisms from n–by–n matrices to
(
n
k

)
–by–

(
n
k

)
matrices which map a rank-k matrix into a rank-one come from exterior product. Both
assumptions on the dimension of the target space as well as on the rank of the matrices
are essential; otherwise there are many more maps as we show in Remark 1.4 below. We
remark that the main idea, that rank-k idempotents are mapped into rank-1 idempotents, is
essentially due to Jodeit and Lam [5].

To be self-contained, we briefly repeat the basics about exterior products. Let e1, . . . ,
en be the standard basis of column vectors in Fn. Given a linear operator X on Fn, denote
by
∧k

(X) the k-th exterior product of X , acting on
∧k

(Fn), i.e., a k-th exterior product
of Fn. Recall [3] that, as a vector space,

∧k
(Fn) has a basis consisting of

(
n
k

)
elements

{ei1 ∧· · ·∧eik ; 1 ≤ i1 < i2 < · · · < ik ≤ n}, where x∧y = −y∧x and x∧x = 0 is the
alternating tensor. Then by definition,

∧k
(X) : ei1 ∧ · · · ∧ eik 7→ (Xei1) ∧ · · · ∧ (Xeik).

It follows easily that
∧k

(AB) =
∧k

(A)
∧k

(B). Also, in lexicographic order of a basis(
ei1 ∧ · · · ∧ eik

)
1≤i1<···<ik≤n

, the matrix of
∧k

(X) equals the
(
n
k

)
–by–

(
n
k

)
matrix of all

k–by–k minors ofX , where the element at position corresponding to (ei1∧· · ·∧eik , ej1∧
· · ·∧ejk) is the minor obtained by taking columns i1, . . . , ik and rows j1, . . . , jk of a matrix
X . In particular,

∧n
(X) = detX and

∧n−1
(X) is similar to a matrix of cofactors under

similarity S =
∑n
i=1(−1)i+1Ei (n−i+1).

Besides the (n − 1)-st exterior product there are at least two additional multiplicative
maps from Mn(F) to itself. One is an inner automorphism X 7→ SXS−1 where S ∈
Mn(F) is fixed, invertible. The other is induced by a field homomorphism φ : F→ F (i.e.
an additive multiplicative map) applied entry-wise, that is, it maps a matrix

∑
xijEij into∑

φ(xij)Eij . With a slight abuse of notation, we denote this map again by φ : X 7→ φ(X).

Theorem 1.2. Let F be a field, let n ≥ 2 be an integer, and let m =
(
n
k

)
for some integer

k = 1, . . . , n. If π : Mn(F) → Mm(F), π(0) = 0, is a multiplicative map such that
rk(π(A0)) = 1 for some matrix A0 of rank-k, then

π(X) = Sφ(
∧k

(X))S−1

where φ : F→ F is a multiplicative map and S ∈Mm(F) is invertible.
Moreover, if k < n then φ is also additive, hence a field embedding.
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Remark 1.3. Without the assumption π(0) = 0, there are more possibilities. Say, π(A) =
1⊕Sym2(

∧n−1
A)⊕ f(detA), where Sym2 is the second symmetric power (see [3]) and

f : F→Mm−1−(n+1
2 )(F) is multiplicative.

However, we remark that to classify multiplicative maps π it suffices to assume π(0) =
0. In fact, if π : Mn(F) → Mm(F) is multiplicative, then P := π(0) is an idempotent,
and from π(X)P = π(X0) = π(0) = P = π(0X) = Pπ(X) we deduce that, relative to
decomposition Fm = KerP ⊕ ImP we have

π(X) = π1(X)⊕ Idr,

where r := rkP and π1 :Mn(F)→Mm−r(F) is multiplicative with π1(0) = 0.

Remark 1.4. If m 6=
(
n
k

)
there are more possibilities, say π : Mn(F) → M(n

2

4 )
(F),

defined by A 7→
∧4

(A ⊗ A), is multiplicative and maps a rank-2 matrix E11 + E22 into
matrix of rank-one but is not of the form in the Theorem. This is because if rkA = r then
rk(
∧k

A) =
(
r
k

)
, while π maps a rank-3 matrix E11+E22+E33 into a matrix whose rank

equals 126.
If rank(π(A0)) 6= 1 there are more possibilities as can be seen by the map π :

Mn(F)→M(nk)
(F), defined by A 7→ A⊕ 0(nk)−n

.

Proof of Theorem 1.2. If k = n then m = 1, so π : Mn(F) → F. Such multiplicative
maps were proven to be in accordance with our results by Lemma 1.1.

Hence, we may assume in the sequel that k < n. Clearly, π(Id) is an idempotent,
and from π(X)π(Id) = π(X · Id) = π(X) = π(Id)π(X) we deduce that, relative to
decomposition Fm = Imπ(Id)⊕Kerπ(Id) we have π(X) = π1(X)⊕0m−r ∈Mr(F)⊕
0m−r, where r := rkπ(Id) and π1 is multiplicative with π1(0) = 0 and π1(Id) = Idr. As
such, if X is invertible, then Idr = π1(Id) = π1(XX

−1) = π1(X)π1(X
−1), so π1(X) is

also invertible and π1(X)−1 = π1(X
−1).

Let X be any matrix of rank-k. Then, there exist invertible S, T ∈ Mn(F) with
SXT = Idk ⊕0n−k, and in particular, there exist invertible S1, T1 such thatX = S1A0T1.
Consequently,

1 = rkπ(A0) = rk
(
π1(S

−1
1 XT−11 )⊕ 0m−r

)
= rk

(
π1(S1)

−1π1(X)π1(T1)
−1 ⊕ 0m−r

)
,

wherefrom rkπ(X) = 1 for every X of rank-k. Consequently, π(Idk ⊕0n−k) is an idem-
potent of rank-1, and by appropriate similarity we may assume it equals E11.

Given X = X̂ ⊕ 0n−k ∈ Mk(F) ⊕ 0n−k, we have X = (Idk ⊕0)X(Idk ⊕0),
wherefrom π(X) = E11π(X)E11 ∈ FE11. Hence, π induces a multiplicative map
π̂ :Mk(F)→ F by

π̂(X̂)E11 := π(X̂ ⊕ 0n−k).

It follows by Lemma 1.1 that there exists a nonzero multiplicative map φ1 : F → F such
that

π̂(X̂) = φ1(det X̂).

In particular, if the rank of X = X̂ ⊕ 0n−k is smaller than k, then π(X) = π̂(X̂)E11 = 0.
By multiplicativity, π(X) = 0 for every X ∈Mn(F) with rkX ≤ k−1. Moreover, given
any A ∈ Mn(F), letting Â be the compression of A to the upper-left k–by–k block, we
have

π
(
(Idk ⊕0)A(Idk ⊕0)

)
= π(Â⊕ 0n−k) = φ1(det Â).
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Next, among diagonal idempotent matrices, there exists exactly m :=
(
n
k

)
of them that

have k ones and n − k zeros on diagonal. We order them lexicographically according to
position of ones on diagonal, and denote them

P1 = (Idk ⊕0n−k), . . . , Pm = (0n−k ⊕ Idk).

Given two such diagonal idempotents Pi, Pj , we have rk(PiPj) ≤ k and the equality holds
only if Pi = Pj . Hence π(P1), . . . , π(Pm) are pairwise orthogonal idempotents of rank-
one. It is well-known (say, [1, Lemma 2.2]) that, by applying appropriate similarity, we
can achieve π(Pi) = Eii for i = 1, . . . ,m. Combined with π(Pi) = π1(Pi) ⊕ 0m−r ∈
Mr(F)⊕ 0n−r ⊆Mm(F) we see that r = 0. Hence, π = π1 is already unital.

As above for π(P1AP1) = φ1(det Â) we see that for each i = 1, . . . ,m there exist
nonzero multiplicative map φi : F→ F so that

π(PiAPi) = φi(detA
(ii))Eii, (1.1)

where, for a matrix X ∈ Mn(F), we denote X(ij) the k–by–k submatrix of X which lies
on the rows where Pi has nonzero entries and on the columns where Pj has nonzero entries.
Observe that a nonzero multiplicative φi satisfies φi(1) = 1.

Consider any A ∈Mn(F). Then,

π(A) = Idπ(A) Id =
( m∑
i=1

Eii

)
π(A)

( m∑
j=1

Ejj

)
=
∑
i,j

Eiiπ(A)Ejj =
∑
i,j

π(PiAPj).

Given indices i 6= j, there exists Bji ∈ Mn of rank-k such that Bji = PjBjiPi and
det (Bji)

(ji)
= 1; for instance, if Pi =

∑
t∈{t1,...,tk}Ett and Pj =

∑
s∈{s1,...,sk}Ess,

with t1 < · · · < tk and s1 < · · · < sk, we can take

Bji =

k∑
i=1

Esiti (1.2)

and then (Bji)
(ji)

= Idk. In particular then, π(Bji) = γjiEji 6= 0. It follows that

π(PiAPj)π(Bji) = π(Pi(APjPjBji)Pi) = φi
(
det (PiAPjPjBjiPi)

(ii))
Eii. (1.3)

Observe that
(PiAPjPjBjiPi)

(ii) = A(ij)B
(ji)
ji .

(This follows easily by writing Pi =
∑
t∈{t1,...,tk}Ett and Pj =

∑
s∈{s1,...,sk}Ess, t1 <

t2 < · · · < tk and s1 < s2 < · · · < sk, and observing that

PiXPj =
∑

(t,s)∈{t1,...,tk}×{s1,...,sk}

xtsEts

and
PjY Pi =

∑
(t,s)∈{t1,...,tk}×{s1,...,sk}

ystEst,
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and hence PiXPj · PjY Pi =
∑
t,t′∈{t1,...,tk}

∑
s∈{s1,...,sk} xtsyst′Ett′ .)

Hence,

φi(det(PiAPjPjBjiPi)
(ii)) = φi(detA

(ij))φi(det(Bji)
(ji)) = φi(detA

(ij)) · φi(1)
= φi(detA

(ij)).

On the other hand, π(PiAPj) = π(Pi)π(A)π(Pj) = Eiiπ(A)Ejj = αij(A)Eij where-
from π(PiAPj) · π(Bji) = αij(A)Eij · γjiEji = αij(A)γjiEii, and hence, by (1.3)

αij(A) =
1

γji
φi(detA

(ij)).

By similar arguments we also have that

γji αij(A)Ejj = π(Bji)π(PiAPj) = π(BjiPiAPj) = π(PjBjiPiAPj)

= φj(detA
(ij))Ejj

and since A was arbitrary, we see that φi = φj =: φ is independent of i, j. Hence,

π(X) =
∑
i,j

αij(X)Eij =
∑
i,j

1

γij
φ(detX(ij))Eij ,

where, in accordance with (1.1), we define γii = 1 for i = 1, . . . ,m. Recall also that
φ(1) = φi(1) = 1.

We only need to show that multiplicativity of π forces that φ is additive and that
γijγjv = γiv . To prove additivity of φ, choose a scalar α and consider a rank-(k + 1)
matrix Aα := ( 1 α0 1 )⊕ Idk−1⊕0n−k−1. It is easy to see that in Aα the number of k–by–k
submatrices of rank-k equals (k+2), and they are all obtained from the principal (k+1)–
by–(k + 1) block by deleting one of the following (i) the same row and column, or (ii)
second row and first column. Under (i) the resulting submatrix equals Idk, while under (ii)
it equals α⊕ Idk−1. Thus, there exist indices i1, . . . , ik+1 and i, j ∈ {i1, . . . , ik+1}, i 6= j,
so that

π(Aα) =

k+1∑
t=1

φ(1)Eitit +
1
γij
φ(α)Eij .

(A deeper analysis reveals that, in lexicographic order, i =
(
n−2
k−2
)
+ 1 and j =

(
n−1
k−1
)
+ 1).

As AαAβ = Aα+β , the multiplicativity of π together with φ(1) = 1 yields∑
t

Eitit +
1
γij
φ(α+ β)Eij = π(AαAβ) = π(Aα)π(Aβ) =

∑
t

Eitit +
φ(α)+φ(β)

γij
Eij ,

wherefrom φ is additive.
It remains to prove γijγjv = γiv . Take matrices Bij and Bjv defined in (1.2). Then,

det
(
(BijBjv)

(iv)
)
= det((Bij)

(ij)) det((Bjv)
(jv)) = 1 · 1 = 1. Hence,

1

γiv
Eiv =

1

γiv
φ(det(BijBjv)

(iv))Eiv = π(BijBjv) = π(Bij)π(Bjv) =
1

γijγjv
Eij ·Ejv,

wherefrom γiv = γijγjv.
Consider now an invertible diagonal matrix D = diag(γ11, . . . , γ1m). Then, π(X) =∑
i,j

1
γij
φ(detX(ij))Eij = D−1

∑
i,j φ(detX

(ij))EijD = D−1φ(
∧k

(X))D.
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Abstract

This note presents the first known examples of a geometric trilateral-free (233) config-
uration and a geometric trilateral-free (273) configuration. The (273) configuration is also
pentalateral-free.

Keywords: Configurations, trilaterals.

Math. Subj. Class.: 05B30, 51E30, 05C38

1 Introduction
A (combinatorial) (n3) configuration is an incidence structure consisting of n distinct
points and n distinct lines for which each point lies on exactly three lines, each line is
incident with exactly three points, and any two points are incident with at most one com-
mon line. If an (n3) configuration may be depicted in the Euclidean plane using points
and (straight) lines, it is said to be geometric. As observed in [5] (pg. 17–18), it is evident
that every geometric (n3) configuration is combinatorial, but the converse of this statement
does not hold.

Adopting the terminology from [2], we say that a g-lateral in a configuration is a cycli-
cally ordered set {p0, l0, p1, l1, . . . , lg−2, pg−1, lg−1} of pairwise distinct points pi and
pairwise distinct lines such that pi is incident with li−1 and li for each i ∈ Zg . Hence a 3-
lateral is a trilateral, or triangle, a 4-lateral is a quadrilateral, and a 5-lateral is a pentalateral,
according to the previously established nomenclature. A configuration is g-lateral-free, for
a particular g ∈ {3, 4, 5}, if no g-lateral exists within the configuration.

Several recent papers (see [1], [3]) have examined triangle-free (n3) configurations.
The smallest example of a triangle-free configuration is the Cremona-Richmond (153) con-
figuration. A theorem mentioned in [5] (Theorem 5.4.3, pg. 333) states the following:

Theorem 1.1. For every n ≥ 15 except n = 16 and possibly n = 23 and n = 27, there
are geometric trilateral-free (n3) configurations.

E-mail address: mwr23@georgetown.edu (Michael W. Raney)

Copyright c© 2013 DMFA Slovenije
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In this note we provide new examples of a geometric, triangle-free (233) configura-
tion and a geometric, triangle-free (273) configuration, so that this theorem may now be
modifed:

Theorem 1.2. For every n ≥ 15 except n = 16, there are geometric trilateral-free (n3)
configurations.

Additionally, the (273) configuration is also pentalateral-free. It serves as the smallest
known example of a geometric (n3) configuration that is both 3-lateral-free and 5-lateral-
free; the formerly smallest known example of such a configuration is a (513) configuration
[2].

2 The examples
Configuration tables and diagrams of both of these new configurations C1 and C2 are pro-
vided below, and rational coordinates for their geometric realizations are given. Verification
that the former configuration is trilateral-free, and that the latter configuration is trilateral-
free and pentalateral-free, has been conducted using Mathematica.

2.1 C1, a geometric triangle-free (233) configuration1 1 1 2 2 3 3 4 4 5 5 6 6 7 8 9 9 11 12 12 15 18 21
2 8 16 13 17 4 6 7 20 10 14 7 9 10 11 10 19 14 13 15 16 19 22
3 21 20 19 23 5 22 15 23 18 16 8 12 13 17 11 21 22 14 18 17 20 23


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Point Coordinates Point Coordinates Point Coordinates
1 (33/4, 29/4) 2 (7, 7) 3 (2, 6)
4 (4, 6) 5 (5, 6) 6 (2, 5)
7 (3, 5) 8 (6, 5) 9 (1, 4)
10 (3, 4) 11 (542/97, 4) 12 (0, 3)
13 (3, 3) 14 (455/97, 3) 15 (0, 2)
16 (445/97, 2) 17 (462/97, 2) 18 (0, 1)
19 (1, 1) 20 (1132/291, 1) 21 (1, 0)
22 (2, 0) 23 (1876/485, 0)

2.2 C2, a geometric triangle-free, pentalateral-free (273) configuration1 1 1 2 2 3 3 4 4 4 5 6 7 7 7 10 10 11 12 13 13 15 16 18 19 22 25
2 10 20 5 9 6 8 5 14 21 8 9 8 11 23 11 17 14 20 14 16 24 17 21 20 23 26
3 13 27 19 12 15 25 6 17 24 18 22 9 16 26 12 19 22 23 15 25 27 18 26 21 24 27



Point Coordinates Point Coordinates Point Coordinates
1 (0, 8) 2 (3, 8) 3 (4, 8)
4 (2, 7) 5 (3, 7) 6 (5, 7)
7 (1, 6) 8 (4, 6) 9 (5, 6)
10 (0, 5) 11 (1, 5) 12 (6, 5)
13 (0, 4) 14 (2, 4) 15 (8, 4)
16 (1, 3) 17 (2, 3) 18 (7, 3)
19 (3, 2) 20 (6, 2) 21 (7, 2)
22 (5, 1) 23 (6, 1) 24 (8, 1)
25 (4, 0) 26 (7, 0) 27 (8, 0)
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3 Motivation for the results
Both C1 and C2 have arisen serendipitously in conjunction with the author’s study of magic
(n3) configurations. An (n3) configuration is said to be magic if it is possible to assign the
integers {1, 2, . . . , n} as labels for its n points, where each integer is used exactly once,
in such a manner that the sum of the point labels along each line of the configuration is
always the same magic constant, M . Since each point of the configuration is involved in
three such sums, we see that

nM = 3

n∑
i=1

i = 3
n(n+ 1)

2

M =
3

2
(n+ 1)

Hence n must be odd (and at least 7) for a magic configuration to be possible. The smallest
example of a magic configuration turns out to one of the 31 (113) configurations. Its
combinatorial table is 1 1 1 2 2 2 3 3 3 4 4

6 7 8 5 6 7 4 5 7 5 6
11 10 9 11 10 9 11 10 8 9 8


This configuration is (113)17, according to the (113) configuration labeling scheme initi-
ated in [4] and referenced in [6],[7].

Magic (n3) configurations have not, to the author’s knowledge, been previously considered
in the literature on configurations, although other magic configurations such as magic stars
have been studied [8].
C1 is dual to the magic (233) configuration1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 9
13 14 15 11 12 15 10 15 16 12 13 14 8 9 14 9 10 13 8 10 11 12 11
22 21 20 23 22 19 23 18 17 20 19 18 23 22 17 21 20 17 21 19 18 16 16


with magic constant 3

2 (23 + 1) = 36. Also, C2 is dual to the magic (273) configuration1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9
14 17 18 15 16 18 13 16 17 11 12 17 10 12 18 10 11 16 11 14 15 12 13 15 10 13 14
27 24 23 25 24 22 26 23 22 27 26 21 27 25 19 26 25 20 24 21 20 22 21 19 23 20 19


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with magic constant 3
2 (27 + 1) = 42. This means that in each case there exists an iso-

morphism between Ci and its dual that interchanges the roles of points and lines while
preserving incidence structure. We say that the dual configuration of a magic configuration
is comagic; hence C1 and C2 are comagic. So for both C1 and C2 it is possible to label its
lines in such a manner that the sum of the labels of the three lines incident to any point of
the configuration is always the same magic constant, again 3

2 (n+ 1).

It turns out that a diagram associated with a comagic configuration may be conveniently
constructed. Suppose that (x1 x2 x3)

T is a line in the configuration table of the original
magic configuration, where x1 < x2 < x3. It follows that the point (x1, x2, x3) ∈ R3 lies
in the plane {(x, y, z) ∈ R3 : x + y + z = 3

2 (n + 1)}. After plotting each corresponding
point in this plane, for k = 1, . . . , n we connect three points with an arc (labeled k) if
the three points share k as a coordinate. We thereby produce a diagram within the plane
x+ y + z = 3

2 (n+ 1).

Next, we project the diagram onto the xz-plane by simply eliminating the y-coordinate.
No information about the configuration is lost when doing this, since for any point we may
recapture x2 = 3

2 (n + 1) − x1 − x3. Below is a diagram for C1 achieved in this fashion
with each (x1, x3) point indicated.

Observe that this diagram has three nonlinear arcs. After some algebraic manipulation in-
volving shifting seven of the 23 points, we find that it is possible to recast the diagram so
that all of the arcs indeed are straight lines. After rescaling the points (via the transforma-
tion (x, z) 7→ (x − 1, 23 − z)) we arrive at the geometric realization for C1 provided in
Section 2.1.

We again depict the diagram for C1, this time with its associated magic line labeling.
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When undergoing this process for the (273) configuration, we discover pleasantly that
no shifting of arcs is required. This is a consequence of each line (x1 x2 x3)

T sat-
isfying the conditions 1 ≤ x1 ≤ 9, 10 ≤ x2 ≤ 18, and 19 ≤ x3 ≤ 27. After
lopping off the x2-coordinates and rescaling the resulting points (via the transformation
(x, z) 7→ (x− 1, z − 19)) we arrive at the geometric realization for C2 provided in Section
2.2.

We display the diagram of C2 again with its associated magic line labeling.
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Abstract

A graph G is singular if the zero-one adjacency matrix has the eigenvalue zero. The
multiplicity of the eigenvalue zero is called the nullity of G. For two vertices y and z of G,
we call (G, y, z) a device with respect to y and z. The nullities of G, G − y, G − z and
G−y− z classify devices into different kinds. We identify two particular classes of graphs
that correspond to distinct kinds. In the first, the devices have the minimum allowed value
for the nullity of G− y − z relative to that of G for all pairs of distinct vertices y and z of
G. In the second, the nullity of G− y reaches the maximum possible for all vertices y in a
graph G. We focus on the non–singular devices of the second kind.

Keywords: Adjacency matrix, singular graphs, nut graphs, uniform–core graphs, nuciferous graphs,
interlacing.

Math. Subj. Class.: 05C50,05C35, 05C60, 05B20, 92E10, 74E40

1 Introduction
A graphG = G(V, E) of order n has a labelled vertex set V = {1, 2, ..., n}. The set E ofm
edges consists of unordered pairs of adjacent vertices. We write V(G) for a graph G when
the graph G needs to be specified. A subset of V is said to be independent if no two of its
vertices are adjacent, i.e., no two are connected by an edge. For a subset V1 of V , G − V1
denotes the subgraph of G induced by V\V1. The subgraph of G obtained by deleting a
particular vertex y is denoted by G − y and that obtained by deleting two distinct vertices
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y and z is denoted by G− y − z. A graph is said to be bipartite if its vertex set V may be
partitioned into two independent subsets V1 and V2. The cycle and the complete graph on
n vertices are denoted by Cn and Kn, respectively. The complete bipartite graph Kn1,n2

has a vertex partition into two subsets V1 and V2 of independent vertices of sizes n1 and
n2, respectively, and has edges between each member of V1 and each member of V2.

1.1 The adjacency matrix

The graphs we consider are simple, that is, without loops or multiple edges. We use A(G)
(or just A when the context is clear) to denote the 0-1 adjacency matrix of a graph G,
where the entry aik of the symmetric matrix A is 1 if {i, k} ∈ E and 0 otherwise. We note
that the graph G is determined, up to isomorphism, by A. The adjacency matrix AC of
the complement GC of G is J− I−A, where each entry of J is one and I is the identity
matrix. The degree of a vertex i is the number of non–zero entries in the ith row of A. If
the adjacency matrix A of a n-vertex graph G satisfies Ax = λx for some non-zero vector
x then x is said to be an eigenvector belonging to the eigenvalue λ. There are n linearly
independent eigenvectors. The eigenvalues of A are said to be the eigenvalues of G and to
form the spectrum of G. They are obtained as the roots of the characteristic polynomial
φ(G,λ) of the adjacency matrix of G, defined as the polynomial det(λI−A) in λ.

Cauchy’s inequalities for a Hermitian matrix M (also collectively known as the In-
terlacing Theorem) place restrictions on the multiplicity of the eigenvalues of principal
submatrices relative to those of M (See [6] for instance). When they are applied to graphs
we have:

Theorem 1.1. Interlacing Theorem: LetG be an n-vertex graph and w ∈ V . If the eigen-
values of G are λ1, λ2, . . . , λn and those of G − w are ξ1, ξ2, . . . , ξn−1, both in non-
increasing order, then λ1 ≥ ξ1 ≥ λ2 ≥ ξ2 ≥ . . . ≥ ξn−1 ≥ λn.

1.2 Cores of singular graphs

For the linear transformation A, the kernel, ker(A), of A is defined as the subspace of Rn
mapped to zero by A. It is also referred to as the nullspace of A. A graph G is said to be
singular of nullity ηG if the dimension of the nullspace ker(A) of A is ηG and ηG > 0. If
there exists a non-zero vector x in the nullspace of the adjacency matrix A, then x is said
to be a kernel eigenvector of the singular graph G and satisfies Ax = 0. It is therefore an
eigenvector of A for the eigenvalue zero whose multiplicity ηG is also the number of roots
of φ(G,λ) equal to zero. A vertex corresponding to a non-zero entry of x is said to be a
core vertex CV of G. The core vertices corresponding to x induce a subgraph of G termed
the core of G with respect to x. The core structure of a singular graph will be the basis of
our classification of all graphs relative to ηG.

A core graph is a singular graph in which every vertex is a core vertex. The empty
graph (K4)

C and the four cycle C4 are examples of 4–vertex core graphs of nullity four
and two, respectively. A core graph of order at least three and nullity one is known as a nut
graph. It is connected and non–bipartite [12].

For singular graphs, the vertices can be partitioned into core and core-forbidden ver-
tices. The set CV of core vertices consists of those vertices lying on some core of G. A
core-forbidden vertex (CFV) corresponds to a zero entry in every kernel eigenvector. The
set V\CV is the set of CFVs. It follows that, in a core graph, the set of CFVs is empty.
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Let y and z be two distinct vertices of a graph G. By interlacing, when a vertex y or z
is deleted from G, the nullity ηG−y or ηG−z , that is the multiplicity of the eigenvalue zero
of G − y or G − z, respectively, may take one of three values from ηG − 1 to ηG + 1. If
the two distinct vertices y and z are deleted, then the nullity ηG−y−z of G − y − z may
take values in the range from ηG − 2 to ηG +2. Let us call the graph having two particular
distinct vertices y and z a device (G, y, z). The set of devices can be partitioned into three
main varieties, namely variety 1 when both vertices are CVs, variety 2 when one vertex is a
CFV and one a CV and variety 3 when both vertices are CFVs. A device (G, y, z) is said
to be of kind (ηG, ηG−y, ηG−z, ηG−y−z). Since ηG−y and ηG−z can take three values each
and ηG−y−z can take five values, there are potentially 45 kinds of graphs relative to ηG.
Interlacing further restricts the values of ηG−y−z . Moreover, there are kinds of graphs that
exclude certain combinatorial properties, such as that of being bipartite, as we shall see in
Section 5. In Section 2, we express the characteristic polynomial of φ(G−y, λ) as the sum
of two terms in ληG and ληG − 1 with coefficients fa(λ) and fb(λ), respectively, each of
which is a polynomial expanded in terms of the entries of the eigenvectors of A forming an
orthonormal basis for Rn. By comparing the diagonal entries of the adjugate of (λI −A)
and of the spectral decomposition of (λI − A)−1 we obtain, in Section 3, an expression
for φ(G− y − z) as the sum of three terms in ληG , ληG − 1 , ληG − 2, respectively, with
polynomial coefficients. Moreover, the well known Jacobi’s identity (see, for instance,
[4]), relating the entries of the adjugate of (λI−A) with the characteristic polynomials of
a graph G and those of particular subgraphs of G, is used to determine which kinds are not
realized by any graph G.

In Section 4, the vertices of a graph are partitioned into three subsets of type lower,
middle or upper, respectively, according to the vanishing or otherwise of fa(0) and fb(0).
The Interlacing Theorem and Jacobi’s identity impose restrictions on the 45 kinds, so that
not all are possible. In Sections 5 and 6, we show why there exist exactly twelve kinds of
device (G, y, z) and how they are partitioned into the three main varieties. In Section 7,
we identify two interesting classes of graphs that in a certain sense have extremal nullities.
The first one has the minimum possible nullity ηG−y−z , that is ηG − 2, for all pairs of
distinct vertices y and z in a graph G. A graph G in the second class has the maximum
possible nullity ηG−y , that is ηG + 1, for all vertices y of G. We show that devices within
the second class can reach the maximum allowed ηG + 2 for the nullity ηG−y−z for some
but not for all pairs of distinct vertices y and z in a graph G. A characterization is given of
the non–singular devices within the second class having the inverse A−1 of the adjacency
matrix A with zero entries only on the diagonal.

2 Characteristic polynomials

We first need to define some necessary notation.

Associated with the n× n adjacency matrix A of a n–vertex graph of nullity ηG, there
is an ordered orthonormal basis xr, 1 ≤ r ≤ n, for Rn, consisting of eigenvectors of A,
with the ηG eigenvectors in the nullspace being labelled first. Let the n× 1 column vector
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xr be (xry), where for vertex y, 1 ≤ y ≤ n. If

P =


x11 x21 · · · xn1
x12 x22 · · · xn2
...

...
...

...
x1n x2n · · · xnn

 ,

where the ith column of P is the eigenvector xi belonging to the eigenvalue λi in the
spectrum of A, diagonalization of A is given by P−1AP = D[λi], where D[λi] is the
diagonal matrix having λi as the ith entry on the main diagonal. Expressing A in terms
of D and P leads to the spectral decomposition theorem, which can also be applied to
(λI−A)−1. This leads to an expression for the characteristic polynomial of the adjacency
matrix φ(G − y, λ) of G − y which is given explicitly in terms of the eigenvector entries
{xiy}. Together with Jacobi’s identity, it will serve as a basis for the characterization of
graphs according to those kinds that can exist.

Lemma 2.1.

φ(G− y, λ) =
n∑
i=1

(xiy)
2

(λ− λi)
φ(G,λ).

Proof. The characteristic polynomial of the adjacency matrix φ(G− y, λ) of G− y is the
yth diagonal entry (adj(λI−A))yy of the adjugate of (λI−A). For arbitrary λ, the matrix
(λI−A) is invertible and φ(G−y, λ) = ((λI−A)−1)yyφ(G,λ). Since P−1AP = D[λi],

it follows that
adj(λI−A)

φ(G,λ)
= (λI−A)−1 = PD[

1

λ− λi
]P−1.

Taking the yth diagonal entry,

φ(G− y, λ)
φ(G,λ)

= (x1y x
2
y · · ·xny )D[

1

λ− λi
]


x1y
x2y
...
xny


=

n∑
i=1

(xiy)
2

(λ− λi)
. (2.1)

For a graph G with adjacency matrix A of nullity ηG, let s(λ) denote φ(G,λ). If the
spectrum of A is λ1, λ2, · · · , λn, starting with the zero eigenvalues (if any), we write

s(λ) =

n∏
`=1

(λ− λ`) = ληGs0(λ) with s0(0) 6= 0. (2.2)

Partitioning the range of summation in Equation (2.1),

φ(G− y, λ)
φ(G,λ)

=

ηG∑
i=1

(xiy)
2

λ
+

n∑
i=ηG+1

(xiy)
2

λ− λi
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Hence

φ(G− y, λ) =
ηG∑
k=1

(xky)
2s0(λ)λ

ηG−1 +

n∑
k=ηG+1

(xky)
2s0(λ)λ

ηG

λ− λk
(2.3)

which we shall express as

φ(G− y, λ) = fbλ
ηG−1 + faλ

ηG . (2.4)

3 Jacobi’s Identity
Relative to (G, y, z), let us denote by j(λ), or j, the entry of the adjugate adj(λI−A)
in the yz position, obtained by taking the determinant of the submatrix of (λI−A) after
deleting row y and column z and multiplying it by (−1)y+z . We use the convention that
ηG−y ≥ ηG−z . Throughout the paper, where the context is clear, we may write s0 for
s0(λ), j for j(λ), etc.

Let s(λ), t(λ), u(λ), v(λ), often referred to simply as s, t, u and v respectively, be the
characteristic polynomials φ(G,λ), φ((G−y), λ), φ((G− z), λ), φ((G−y− z), λ) of the
graphs G, G− y, G− z and G− y − z, respectively, that is, the determinants

s(λ) = det(λI−A(G))

t(λ) = det(λI−A(G− y))
u(λ) = det(λI−A(G− z))
v(λ) = det(λI−A(G− y − z)). (3.1)

From Lemma 2.1,

t(λ) =

n∑
k=1

(xk
y
)2
∏
` 6=k

(λ− λ`) (3.2)

and

u(λ) =

n∑
k=1

(xk
z
)2
∏
` 6=k

(λ− λ`). (3.3)

We shall see that the characteristic polynomial v(λ) of G− y− z can also be expressed
in terms of the eigenvector entries {xry} and {xrz} associated with distinct vertices y and z.

Lemma 3.1. For y 6= z, Jacobi’s identity expresses the entry j of the adjugate of λI−A
in the yz position, for a symmetric matrix A, in terms of the characteristic polynomials s,
u, t and v:

j2 = ut− sv
Expressing Equations (3.2) and (3.3) as in (2.4),

t(λ) =

ηG∑
k=1

(xky)
2s0(λ)λ

ηG−1 +

n∑
k=ηG+1

(xky)
2s0(λ)λ

ηG

λ− λk
= tbλ

ηG−1 + taλ
ηG , (3.4)

and

u(λ) =

ηG∑
k=1

(xkz)
2s0(λ)λ

ηG−1 +

n∑
k=ηG+1

(xkz)
2s0(λ)λ

ηG

λ− λk
(3.5)
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= ubλ
ηG−1 + uaλ

ηG

Now we consider pairs of vertices of G.

Since
adj(λI −A)
φ(G,λ)

= (λI −A)−1 = PD[
1

λ− λi
]P−1,

j(λ) =

n∑
k=1

(xk
y
xk

z
)
∏
` 6=k

(λ− λ`.) (3.6)

We can write

j(λ) =

ηG∑
k=1

xkyx
k
zs0(λ)λ

ηG−1 +

n∑
k=ηG+1

xkyx
k
zs0(λ)λ

ηG

λ− λk
(3.7)

= jbλ
ηG−1 + jaλ

ηG

The characteristic polynomial v(λ) can be written as v(λ) =
u(λ)t(λ)− j2(λ)

s(λ)
,

that is v(λ) = vaλ
ηG + vbλ

ηG−1 + vcλ
ηG−2, where

vc =
1

s0
(ubtb − j2b ) =

1

2
s0

ηG∑
i=1

ηG∑
`=1

(xizx
`
y − x`zxiy)2

vb =
1

s0
(uatb + ubta − 2jajb) = s0

ηG∑
i=1

n∑
`=ηG+1

(xizx
`
y − xiyx`z)2
λ− λ`

va =
1

s0
(uata − j2a) =

1

2
s0

n∑
i=ηG+1

n∑
`=ηG+1

(xiyx
`
z − x`yxiz)2

(λ− λi)(λ− λ`)
(3.8)

4 Three types of vertex
By interlacing, we can identify three types of vertex according to the effect on the nullity
on deletion. We call a vertex y lower, middle or upper if the nullity of G− y is ηG − 1, ηG
or ηG + 1, respectively. We shall distinguish among these three types of vertex according
to the values of the functions fa and fb in Equation (2.4).

In Table 1 we show the entries of the orthonormal eigenvectors {xr} in an ordered basis
for Rn as presented in Section 2. We choose a vertex labelling such that the core vertices
are labelled first. Note the zero submatrix corresponding to the CFVs.

We consider
φ(G− y, λ)
s0ληG

from Equation 2.3. It has poles at λ = µi, 1 ≤ i ≤ h, where,

for 1 ≤ i ≤ h, the µi are the h distinct non-zero eigenvalues of G. Moreover, the gradient

of
n∑

k=ηG+1

(xky)
2

λ− λk
is less than 0 for all λ 6= µi. It follows that

φ(G− y, λ)
s0ληG

has at most

(h − 1) roots strictly interlacing the h distinct eigenvalues of A. Note that
ηG∑
k=1

(xky)
2 ≥ 0

with equality if and only if y is a CFV. Thus at λ = 0, fb is non–zero if y is a CV and zero
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hhhhhhhhhhhhhhhvertex-entries
eigenvector

x1 . . . xηG xηG+1 . . . xn

x1 ∗ . . . ∗ ∗ . . . ∗
x2 ∗ . . . ∗ ∗ . . . ∗
... ∗ . . . ∗ ∗ . . . ∗
x|CV | ∗ . . . ∗ ∗ . . . ∗
x|CV |+1 0 . . . 0 ∗ . . . ∗
...

...
...

...
...

...
...

xn 0 . . . 0 ∗ . . . ∗

Table 1: Ordered orthonormal basis of eigenvectors of A with * representing a possibly
non–zero entry.

if it is a CFV. For a CFV y,
n∑

k=ηG+1

(xky)
2

λ− λk
vanishes at λ = 0 when y is upper, and does

not vanish when y is middle. Note that when
ηG∑
k=1

(xky)
2 = 0, one of the (h− 1) interlacing

roots may be zero. (†)
Different cases occur depending on the vanishing or otherwise of the real constant

ηG∑
k=1

(xky)
2 and

n∑
k=ηG+1

(xky)
2

λ− λk
at λ = 0. Equation (2.3) and the analysis in the previous

paragraph (marked (†)) lead to the result that ηG − 1 ≤ ηG−y ≤ ηG + 1. This can be
generalized for the multiplicity of any eigenvalue of G other than zero by replacing the
cores and the nullspace of G by the µi–cores and µi–eigenspace of G (concepts introduced
in [10]), thus giving another proof of the Interlacing Theorem.

Proposition 4.1. The values of fb and fa of Expression (2.4) for φ(G − y, λ) at λ = 0
distinguish the three types of vertex as follows:

Vertex y Status of y The values of fb and fa
Lower CV fb(0) 6= 0
Middle CF fb(0) = 0 and fa(0) 6= 0
Upper CFV fb(0) = 0 and fa(0) = 0

Proof. Let y be a core vertex of a graph of nullity ηG > 0. There exists xky 6= 0 for some
k, 1 ≤ k ≤ ηG. Then fb(0) 6= 0, which is a necessary and sufficient condition for the
multiplicity of the eigenvalue zero to be ηG − 1 for G− y. It follows that a vertex is lower
if and only if it is a CV.

If y is a CFV, then fb(0) = 0. For G − y, the multiplicity of the eigenvalue zero is at

least ηG. If one of the roots of
n∑

k=ηG+1

(xky)
2

λ− λk
is zero, then λ divides

n∑
k=ηG+1

(xky)
2

λ− λk
, the

multiplicity of the eigenvalue zero is exactly ηG + 1 for G − y and the vertex y is upper.
Otherwise the multiplicity of the eigenvalue zero remains ηG for G− y and the vertex y is
middle.
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We consider three varieties of devices {(G, y, z)} with pairs (y, z) of vertices, namely
variety 1 with both y and z being CVs, variety 2 with z being a CV and y a CFV and variety
3 with both y and z being CFVs. Since a CFV can be upper or middle, varieties 2 and 3
are subdivided further, as seen in Table 3.

From Proposition 4.1,
for variety 1, ub 6= 0; tb 6= 0;
for variety 2, ub 6= 0; jb = tb = vc = 0;
for variety 3: ub = jb = tb = vb = vc = 0.

Some of these varieties can be further subdivided according to the values at λ = 0
of vc, vb and va or ja. From Proposition 4.1, tb(0) 6= 0 if and only if y is a core vertex.
Similarly ub 6= 0 if and only if z is a core vertex. If at least one of z or y is core forbidden,
then jb(0) = 0. However, there are ‘accidental’ cases where jb(0) vanishes when both z
and y are CVs, for example in C4 andK2,3 if the vertices y and z are connected by an edge.
Indeed this is true for all bipartite core graphs of nullity at least two, since each of u and t
has zero as a root. It follows that E2η is a factor of j2 = ut − sv = (jbE

η−1 + jaE
η)2

and therefore jb(0) = 0.

5 Restrictions on the nullity of G − y − z

It is our aim to classify all graphs according to their kind defined by the quadruple

(ηG, ηG−y, ηG−z, ηG−y−z).

Not all the 45 kinds mentioned in Section 1 exist, as we shall discover. The classification
will be given in Table 3 on Page 272. It is best possible since each kind is realized by some
graph.

5.1 Restrictions arising from interlacing

In a device (G, y, z) of kind (ηG, ηG−y, ηG−z, ηG−y−z), interlacing restricts the values that
ηG−y−z can take. The following result shows an instance when ηG−y−z is determined by
interlacing alone.

Lemma 5.1. For (ηG, ηG−y, ηG−z, ηG−y−z) = (ηG, ηG +1, ηG − 1, ηG−y−z), the nullity
ηG−y−z of G− y − z is ηG.

Hence, (ηG, ηG + 1, ηG − 1, ηG) is the only kind where the nullities ηG−y and ηG−z
differ by two. We say that it belongs to variety 2a.

In kinds where the nullities ηG−y and ηG−z differ by one, interlacing allows ηG−y−z
to take either the value ηG−y or ηG−z . All three possible values of ηG−y−z are allowed by
interlacing when ηG−y = ηG−z .

The symmetry about zero of the spectrum of a bipartite graph G (See for instance [8])
requires that the number of zero eigenvalues is 2k, if G has an even number of vertices and
2k+1 if G has an odd number of vertices, for some k ≥ 0. This implies that on deleting a
vertex from a bipartite graph, the nullity changes parity. Therefore if the nullity of a graph
G and of its vertex–deleted subgraph G − y are the same, then G is not bipartite. Since
on deleting a vertex a bipartite graph remains bipartite, it follows that a graph G of a kind
where ηG = ηG−y or ηG−y = ηG−y−z cannot be bipartite.

Lemma 5.2. If a vertex of a graph is middle, then the graph is not bipartite.

Figure 1 shows a device (G, y, z) with a middle vertex z which becomes upper inG−y.
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Figure 1: A graph with two middle vertices y and z.

5.2 Restrictions arising from Jacobi’s Identity

Lemma 3.1 requires that ut− sv which is j2 has 2k, k ≥ 0, zero roots. Let gf denote the
number of zero roots of the real function f . Therefore, for kinds of graph that imply
(i) gut = gsv − 1 and gu 6= gt
or (ii) gut = gsv + 1 and gu = gt,
there is a contradiction and those kinds of graphs do not exist.

Lemma 5.3. The following kinds of graphs do not exist:
(i) (ηG, ηG, ηG − 1, ηG);
(ii) (ηG, ηG + 1, ηG + 1, ηG + 1);
(iii) (ηG, ηG, ηG, ηG − 1).

Furthermore, if gut = gsv and gut is odd, then a graph of that kind exists if ut − sv is
zero at λ = 0, otherwise j2 would have an odd number of zeros. Therefore, if gut = gsv
and gut is odd, jb = 0 at λ = 0.

Lemma 5.4. Graphs with gut = gsv and gut odd exist provided jb = 0 at λ = 0. They are
non–bipartite and of one of the following kinds:
(i) (ηG, ηG, ηG − 1, ηG − 1);
(ii) (ηG, ηG + 1, ηG, ηG + 1).

We shall call kinds (i) and (ii), in Lemma 5.4 above, variety 2b and 3b(i), respectively
(See Table 3).

Lemma 5.5. If (G, y, z) is a singular graph with gut < gsv and gsv odd, then (G, y, z) is
non–bipartite and of kind (ηG, ηG − 1, ηG − 1, ηG − 1).

Proof. If y and z are CVs, gut < gsv , then (ηG, ηG−y, ηG−z, ηG−y−z) is
(i) (ηG, ηG − 1, ηG − 1, ηG) or
(ii) (ηG, ηG − 1, ηG − 1, ηG − 1).

Now if furthermore, gsv is given to be odd, then ηG−y−z = ηG − 1. It follows that
ηG−y = ηG−y−z Therefore, G is not bipartite.

We shall call the graphs in Lemma 5.5 above, variety 1(iii) (See Table 3).

6 Kinds of graphs
In this section we determine the properties of a kind (ηG, ηG−y, ηG−z, ηG−y−z) within
each of the three varieties.
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6.1 Graphs of variety 1

Graphs of variety 1, are necessarily singular and therefore have at least one core. There are
at least two vertices in a core.

Lemma 6.1. For a device (G, y, z) of variety 1 and nullity one, jb(0) 6= 0 for core vertices
y and z.

Proof. For ηG = 1, a non-zero column of the adjugate adj(A) is a kernel eigenvector of G
[9]. The non–zero entries occur only at core vertices. Therefore, jb(0) 6= 0.

There are three types of pairs of vertices (CV,CV) for graphs of variety 1, depending
on the nullity of G − y − z. Since ηG ≥ 1 and gu = gt = ηG − 1, then the nullity gv of
G− y− z can take any of the three values ηG− 2, ηG and ηG− 1, corresponding to variety
1(i), 1(ii) and 1(iii), respectively.

Theorem 6.2. For a device (G, y, z) of variety 1(iii), j(0) 6= 0 for core vertices y and z.

Proof. For nullity one the result follows from Lemma 6.1. Now consider a graph with
ηG > 1 of variety 1(iii), that is when gv = ηG − 1. The number of zeros gut of ut is
2ηG− 2 and less than that of sv which is odd. If j2, which is ut− sv, is not to have an odd
number of zeros, it follows, from j = jbλ

ηG−1 + jaλ
ηG , that jb 6= 0 at λ = 0.

For variety 1(i), the vertices y and z are CVs. Moreover, without loss of generality, the
vertex z is a CV of the subgraph G− y. Only for variety 1(i) is vc 6= 0.

Definition 6.3. The connected graphsG in the devices {(G, y, z)}with all pairs of vertices
(y, z) ∈ V × V being of variety 1(i) are said to form the class of uniform–core graphs.

Equivalently, ηG−y−z = ηG − 2, that is z is a CV of G − y for all vertex pairs (y, z).
It is clear that all vertices of a uniform–core graph are CVs, and that they remain so even
in a vertex–deleted subgraph G − y for any vertex y of G. Note that this is not the case
in general; if y and z are two distinct core vertices of a graph G, then z need not remain a
core vertex of G− y. We shall consider uniform–core graphs in more detail in Section 7.

6.2 Graphs of variety 2

In a device (G, y, z) of variety 2, (y, z) is a mixed vertex pair, that is exactly one vertex z
of the pair (y, z) is a CV.

From Lemmas 5.1 and 5.3, the following result follows immediately.

Proposition 6.4. In a device (G, y, z) of variety 2,
(i) there is only one kind when y is upper, namely kind (ηG, ηG + 1, ηG − 1, ηG) in variety
2a
and (ii) only one kind when y is middle, namely kind (ηG, ηG, ηG − 1, ηG − 1) in variety
2b.

From Lemma 5.2, the graphs of variety 2b are non-bipartite.

Theorem 6.5. In a device (G, y, z) of variety 2b, the term in λ2ηG−1 of j2 is identically
equal to zero.
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Proof. In variety 2b, a graph is of kind (ηG, ηG, ηG−1, ηG−1). The parameter vc vanishes

and vb(λ) =
ubta
s0
6= 0. The number of zeros of ut is the same as that of sv. Therefore,

j2 = ut− sv has at least 2ηG − 1 zeros. In variety 2b, the term in λ2ηG−1 in its expansion

is ubta − s0vb. Also vc vanishes and vb(λ) =
ubta
s0
6= 0. Hence, s0vb = ubta and the term

in λ2ηG−1 in the expansion of j2 is identically equal to zero, as expected from the fact that
j2 is a perfect square.

The parameter vb distinguishes between a graph in variety 2a and one in variety 2b.

Theorem 6.6. For a graph in variety 2a, vb vanishes at λ = 0. For a graph in variety 2b,
vb 6= 0 at λ = 0.

Proof. For both kinds in variety 2, ub 6= 0. For an upper vertex, ta = 0 at λ = 0 and for
a middle vertex ta 6= 0 at λ = 0. Since s0 6= 0, it follows that for a graph in variety 2a
vb = 0 at λ = 0 and, for a graph in variety 2b, vb 6= 0 at λ = 0.

6.3 Graphs of variety 3

We now consider variety 3 for (CFV,CFV) pairs, when tb, ub, jb, vb and vc all vanish.
Interlacing provides three types of vertex pairs depending on whether a CFV in the pair

(y, z) is upper or middle. When both vertices are upper (variety 3a), by Lemma 5.3 only
variety 3a(i) for gv = ηG and variety 3a(ii), when gv = ηG + 2 are allowed. The values at
λ = 0 of va or ja suffice to distinguish between graphs of variety 3(i) and 3(ii).

Theorem 6.7. For variety 3a(i), both va and ja are non–zero at λ = 0. For variety 3a(ii),
both va and ja vanish at λ = 0.

Proof. For variety 3, vb = 0. Variety 3a(i) is (ηG, ηG + 1, ηG + 1, ηG). Since v = vaλ
ηG

and ηG−y−z = ηG, va 6= 0 at λ = 0. Also gj2 = 2ηG so that ja 6= 0 at λ = 0. Variety
3a(ii) is (ηG, ηG+, ηG − 1, ηG − 1). Since gv = ηG + 2, λ2 divides va and λ divides all of
the functions ta, ua and ja.

For variety 3b, one vertex is upper and one is middle. Interlacing allows only gv =
ηG + 1 and ηG, corresponding to variety 3b(i) and variety 3b(ii), respectively. Both vb and
jb vanish at λ = 0. The value of ja at λ = 0 distinguishes between variety 3b(i) and variety
3b(ii).

Theorem 6.8. For variety 3b(i), ja vanishes at λ = 0. For variety 3a(ii), ja is non–zero at
λ = 0.

Proof. For variety 3b(i), λ divides ja, as otherwise ut − sv is not the perfect square j2.
variety 3b(ii) gv = ηG requires ja 6= 0 at λ = 0.

For variety 3c, both vertices are middle. The values at λ = 0 of ta and ua are non–
zero. By Lemma 5.3, gv = ηG + 1 or ηG, corresponding to variety 3c(i) and variety 3c(ii),
respectively.

For variety 3c(ii), when gv = ηG, va is non–zero at λ = 0. Two cases may occur.
Either ja 6= 0 at λ = 0 or the number of zeros of ja is at least one. The former case is
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Vertex y Vertex z variety
1 7 variety 1(i)
1 4 variety 1(ii)
1 2 variety 1(iii)
1 15 variety 2a
1 5 variety 2b
17 18 variety 3a(i)
15 17 variety 3a(ii)
5 15 variety 3b(i)
15 16 variety 3b(ii)
11 16 variety 3c(i)
5 6 variety 3c(iiA)
5 17 variety 3c(iiB)

Table 2: All varieties and kinds for the same graph G illustrated in Figure 2.

denoted by variety 3c(iiA). The latter case is variety 3c(iiB) for which the terms in λ2ηG−2

and in λ2ηG−1 of j2 vanish.
The remaining case is for variety 3c(i) when gv = ηG + 1 and λ divides va.

Figure 2: A device (G, y, z) of all possible kinds for various (y, z).

The graph in Figure 2 exhibits a device (G, y, z) of all varieties and kinds for different
choices of (y, z).

The classification of devices into kinds and varieties has an application in chemistry in
the identification of molecules (with carbon atoms in particular) that conduct or else bar
conduction at the Fermi level. In the chemistry paper [3], conductors and insulators are
classified into eleven cases that are essentially the twelve kinds of Table 3, with case 7 in
[3] corresponding to the kinds (ηG, ηG, ηG, ηG) in variety 3c(iiA) and (ηG, ηG, ηG, ηG) in
variety 3c(iiB). The latter two varieties are distinguishable by the non–vanishing or other-
wise of ja(0).

7 Graphs with analogous vertex pairs
In general, vertex pairs in a graph may be of different varieties and kinds. We shall explore
two interesting classes of graphs with the same extremal nullity (allowed by interlacing)
for all vertex–deleted subgraphs. These emerge in the classification of devices {(G, y, z)}
according to their kind (ηG, ηG−y, ηG−z, ηG−y−z). A pair of vertices y and z for which
ηG−y = ηG−z is said to be an analogous vertex pair.
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Kind Characterization Variety G bipartite
Two CVs 1
(gs, gt, gu) = (ηG, ηG − 1, ηG − 1)

gv = ηG − 2 vc 6= 0 & tb 6= 0 & ub 6= 0 1(i) Allowed
& ηG ≥ 2

gv = ηG vc = 0 & tb 6= 0 & ub 6= 0 & vb(0) = 0 1(ii) Allowed
& ηG ≥ 1

gv = ηG − 1 vc = 0 & tb 6= 0 & ub 6= 0 & vb(0) 6= 0 1(iii) Forbidden
& ηG ≥ 1

CV and CFV 2
(gs, gt, gu) = (ηG, ηG + 1, ηG − 1) vc = 0 & tb = 0 & ub 6= 0 & vb(0) = 0 2a Allowed
gv = ηG & ηG ≥ 1

(gs, gt, gu, gv) = (ηG, ηG, ηG − 1) vc = 0 & tb = 0 & ub 6= 0 & vb(0) 6= 0 2b Forbidden
gv = ηG − 1 & ηG ≥ 1

Two CFVs 3
(gs, gt, gu) = (ηG, ηG + 1, ηG + 1) 3a
gv = ηG vc = 0 & tb = 0 & ub = 0 & vb(0) = 0 3a(i) Allowed

& ta(0) = 0 & ua(0) = 0 & va(0) 6= 0

gv = ηG + 2 vc = 0 & tb = 0 & ub = 0 & vb(0) = 0 3a(ii) Allowed
& ta(0) = 0 & ua(0) = 0 & va(0) = 0

(gs, gt, gu) = (ηG, ηG + 1, ηG) 3b
gv = ηG + 1 vc = 0 & tb = 0 & ub = 0 & vb(0) = 0 3b(i) Forbidden

& ta(0) = 0 & ua(0) 6= 0 & va(0) = 0

gv = ηG vc = 0 & tb = 0 & ub = 0 & vb(0) = 0 3b(ii) Forbidden
& ta(0) = 0 & ua(0) 6= 0 & va(0) 6= 0

(gs, gt, gu) = (ηG, ηG, ηG) 3c
gv = ηG + 1 vc = 0 & tb = 0 & ub = 0 & vb(0) = 0 3c(i) Forbidden

& ta(0) 6= 0 & ua(0) 6= 0 & va(0) = 0

gv = ηG vc = 0 & tb = 0 & ub = 0 & vb(0) = 0 3c(ii) Forbidden
& ta(0) 6= 0 & ua(0) 6= 0 & va(0) 6= 0

gv = ηG &ja(0) 6= 0 vc = 0 & tb = 0 & ub = 0 & vb(0) = 0 3c(iiA) Forbidden
& ta(0) 6= 0 & ua(0) 6= 0 & va(0) 6= 0

& ja(0) 6= 0

gv = ηG& ja(0) = 0 vc = 0 & tb = 0 & ub = 0 & vb(0) = 0 3c(iiB) Forbidden
& ta(0) 6= 0 & ua(0) 6= 0 & va(0) 6= 0

& ja(0) = 0

Table 3: A characterization of all devices (G, y, z) according to their variety and kind.
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The first of these two classes consists of graphs G with the minimum possible nullity
ηG−y−z for all pairs of distinct vertices y and z, (i.e., ηG − 2) and therefore also the
minimum possible nullities ηG−y and ηG−z (i.e., ηG − 1). By Definition 6.3, these graphs
form precisely the class of uniform–core graphs. On the other hand, the second of the two
classes consists of graphs with the maximum possible nullity ηG−y−z , that is ηG + 2, for
some pair of distinct vertices y and z, and therefore also the maximum possible nullities
ηG−y and ηG−z (i.e., ηG + 1).

7.1 Uniform–core graphs

By Definition 6.3, each vertex pair in a uniform–core graph corresponds to a graph of
variety (1i). Since the nullity of a graph is non–negative, and ηG−y−z = ηG − 2 for all
vertex pairs y, z of a uniform–core graph G, then the nullity of G is at least two. To
understand better the core–structure of uniform–core graphs and be able to characterize
them as a subclass of singular graphs, it is necessary to use their core structure with respect
to a basis for their nullspace.

Let B be a basis for the η–dimensional nullspace of A of a singular graph G (with no
isolated vertices) of nullity η ≥ 1. As seen in [11], Hall’s Marriage problem for sets,
or the Rado–Hall Theorem for matroids, guarantees a vertex–subset S of distinct vertex
representatives [1, 11], to represent a system SCores of cores corresponding to the vectors
of B. This implies that deleting a vertex v representing a core F eliminates the core F
from G− v, which will now have a new system of η − 1 cores. Also any k ≥ 1 cores in a
system SCores of ηG cores cover at least k + 1 vertices.

Theorem 7.1. A device (G, y, z) is of variety 1(i) if and only if the two vertices y and z do
not lie in one core only, i.e. at least two cores are needed to cover the vertices y and z.

Proof. Consider a basis B for the nullspace of A. The vertices y and z lie on at least one
core of G. There are two possibilities. Firstly, B has exactly one vector with non–zero
entries at positions associated with y and z. In this case ηG−y−z = ηG−y = ηG− 1, which
does not correspond to variety 1(i). Secondly, B has at least two vectors with non–zero
entries at positions associated with y or z, when ηG−y−z = ηG−y − 1 = ηG − 2, which
corresponds to variety 1(i). The two core vertices must represent two distinct cores in a
system SCores of ηG cores corresponding to a basis B for the nullspace [11].

A subclass U of uniform–core graphs can be constructed from nut graphs. A graph
G ∈ U is obtained from a nut graph H on n vertices and m edges by duplicating each of
the n vertices of H . Then G has 2n vertices and 4m edges. Figure 3 shows the uniform–

core graph G ∈ U obtained from the smallest nut graph H . The nullity of G is
|V(G)|

2
+1.

Deletion of any
|V(G)|

2
+ 1 vertices reduces the graph to a non–singular graph.

Let the vertices of G be labelled 1, 2, ..., n, 1′, 2′, ...n′ where {1, 2, ...} are the vertices
of the nut graph H and {1′, 2′, ...} are the duplicate vertices of {1, 2, ...} in that order in G.
Note that a vertex labelled r for 1 ≤ r ≤ n is adjacent to the original neighbours in H and
also to precisely those primed vertices with the same numeric label. For instance, vertex 1
is adjacent to 2 and 7 in H and to 2, 2’, 7 and 7’ in G. The following result, expressing the
adjacency matrix of G ∈ U in terms of the adjacency matrix of H , is immediate.
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Figure 3: The smallest nut graph H and the uniform–core graph G derived from H .

Theorem 7.2. If H is the adjacency matrix of the nut graph H , then the adjacency matrix

of the uniform–core graph G ∈ U is
(
H H
H H

)
. The spectrum of G consists of n eigen-

values equal in value to double the eigenvalues of H and an additional n zero eigenvalues
corresponding to the n duplicate vertex pairs. If (x1, x2, · · · , xn)t is an eigenvector of H
for an eigenvalue µ, then (x1, x2, · · · , xn, x1, x2, · · · , xn)t is an eigenvector of G for an
eigenvalue 2µ.

We shall now characterize uniform–core graphs by requiring that a set of vertex repre-
sentatives of a system SCores of cores be an arbitrary subset of the vertices for all systems
of cores.

Theorem 7.3. A graph of nullity ηG is a uniform–core graph if and only if it is a singular
graph such that the deletion of any subset of ηG vertices produces a non–singular graph.

Proof. Let us relate the nullspace of A to the vertices of a uniform–core graph G of nullity
ηG. Let S be any subset of ηG vertices of G labelled {1, 2, · · · , ηG} and let B be an
ordered basis for the nullspace of A. If all pairs of vertices give a graph of variety 1(i),
then no two vertices lie in only one core of SCores. Therefore, it is possible to obtain a
new ordered basis B′ for the nullspace of A, by linear combination of the vectors in B,
such that, for 1 ≤ i ≤ ηG, only the vector i of B′ has a non–zero entry at position i [11].
Removal of any vertex in S destroys precisely one eigenvector of B′ reducing the nullity
by one. Deletion of all the vertices in S destroys all the kernel eigenvectors and leaves a
non–singular graph.

A characterization of the subclass G ∈ U of uniform–core graphs uses the operation
NEPS (non–complete extended p-sum) of a nut graph and K2. The graph product NEPS is
described for instance in [2].

Definition 7.4. Given a collection {G1, G2, · · · , Gk, · · · , Gn} of graphs and a correspond-
ing set B ⊆ {0, 1}n\{(0, 0, ..., 0)}, called the basis, of non–zero binary n-tuples, the NEPS
of G1, G2, ..., Gn is the graph with vertex set V(G1) × V(G2) × · · · × V(Gn) in which
two vertices {w1, w2, · · · , wn} and {y1, y2, · · · , yn} are adjacent if and only if there ex-
ists (β1, β2, · · · , βn) ∈ B such that wi = yi whenever βi = 0 and wi is adjacent to yi
whenever βi = 1.
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Lemma 7.5. [2] If for 1 ≤ i ≤ n, λi1, λi2, · · · , λini is the spectrum of Gi, of order ni for
1 ≤ i ≤ n, then the spectrum of the NEPS of G1, G2, · · · , Gn with respect to basis B is
{
∑
β∈B

λβ1

1i1
, λβ2

2i2
, · · · , λβn

nin
: ik = 1, 2, ..., nk & k = 1, 2, ..., n}.

The following result follows from the construction of a uniform–core graph G ∈ U .

Theorem 7.6. A uniform–core graph G ∈ U is the NEPS of a nut graph G1 and K2 with
basis {(1, 0), (1, 1)}.

From Lemma 7.5 and Theorem 7.6, the spectrum of the uniform–core graph G ∈ U
is λi + λiλj where {λi} is the spectrum of the nut graph H and {λj} = {1,−1} is the
spectrum of K2. This agrees with the result in Theorem 7.2.

7.2 Non-singular graphs with a complete weighted inverse

We shall now look into the second class of devices. Such a graph G is a device (G, y, z),
of variety 3a(ii), for some pair of distinct vertices y and z. Graphs which are devices
(G, y, z), of variety 3a(ii), for a particular pair of vertices y and z exist, as shown in the
example of Figure 2 for vertex connections 15 and 17. Can a graphG be a device (G, y, z),
of variety 3a(ii), for all vertex pairs {y, z}? The question amounts to determining whether
it is possible to have η(G− y − z) equal to the maximum allowed nullity relative to η(G),
that is η(G) + 2, for all vertex pairs {y, z}. The answer is in the negative.

Lemma 7.7. It is impossible that a graph G is a device (G, y, z) of variety 3a(ii) for all
pairs of distinct vertices y and z.

Proof. Suppose G is a graph which is a device (G, y, z) of variety 3a(ii) for all pairs of
distinct vertices y and z. This requires that each of the graphs G− y and G− z is singular
and therefore has CVs. Deletion of a CV from G − y, restores the nullity back to η(G).
Hence it is impossible to achieve η(G− y − z) = η(G) + 2, for all vertex pairs {y, z}.

By Lemma 5.3(ii), the kind (ηG, ηG−y, ηG−z, ηG−y−z)=(ηG, ηG+1, ηG, ηG+1) is im-
possible. Hence the only devices (G, y, z) within the second class that have the maximum
value of η(G − y) relative to ηG, for all vertices y, are of kind (ηG, ηG + 1, ηG + 1, ηG).
Our focus is on the non–singular graphs of this kind having the inverse A−1 equal to the
adjacency matrix of the complete graph with real non–zero weighted edges and no loops.

The smallest candidate is K2. Indeed A(K2) = A(K2))
−1 =

(
0 1
1 0

)
.

Definition 7.8. Let G be a non–singular graph G with the off–diagonal entries of the in-
verse A−1 of its adjacency matrix A being non–zero and real, and all the diagonal entries
of A−1 being zero. Then G is said to be a nuciferous graph.

The motivation for the name nuciferous graph (meaning nut–producing graph) will
become clear from Theorem 7.9. To characterize this class of graphs, let us consider the
deck {G−v : v ∈ V} of subgraphs, as in the investigation of the polynomial reconstruction
problem [10].

Theorem 7.9. Let G be a nuciferous graph. Then G is either K2 or each vertex–deleted
subgraph G− v is a nut graph.
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Proof. Let Q be the n − 1 × n matrix obtained from A−1 by suppressing the diagonal
entry from each column. Therefore each entry of Q is non–zero.

Let the ith column of Q be qi := (q(1)i, q(2)i, ..., q(i−1)i, q(i+1)i, q(i+2)i, ..., q(n)i)
t

for 2 ≤ i ≤ n − 1. The first and last columns are q1 := (q(2)1, q(3)1, ..., q(n)1)
t and

qn := (q(1)n, q(2)n, ..., q(n−1)n)
t, respectively.

Since AA−1 is the identity matrix I, then A(G−i)qi = 0 for all 1 ≤ i ≤ n. Therefore
qi is a kernel eigenvector (with non–zero entries) of G − i for all the vertices i. Hence
G− i is a core graph. By interlacing, it has nullity one. It follows that each vertex–deleted
subgraph is a nut graph.

From Lemma 7.7, nuciferous devices (G, y, z) are not of type of variety 3a(ii) for all
pairs of distinct vertices y and z. Moreover, from Theorem 7.9, for G 6= K2, each vertex–
deleted subgraph is a nut graph and therefore has nullity one. On deleting a vertex from a
nut graph, the nullity becomes zero. Hence a candidate graph G cannot be of variety 3a(ii)
for any pair of vertices y and z.

Theorem 7.10. Let G be a nuciferous graph G. If G is not K2, then
(i) it has order at least eight;
(ii) the device (G, y, z) is of variety 3a(i) for all pairs of distinct vertices y and z;
(iii) the graph G is not bipartite.

Proof. (i) Since nut graphs exist for order at least seven [12], it follows, from Theorem 7.9,
that a nuciferous graph G, of order at least three, has at least eight vertices.

(ii) From the proof of Lemma 7.7, a nuciferous graph G is of kind (ηG, ηG + 1, ηG +
1, ηG). Thus G is a device (G, y, z) of variety 3a(i) for all pairs of distinct vertices y and z.

(iii) From Theorem 7.9,G−y andG−z are nut graphs and therefore cannot be bipartite
[12]. Hence G has odd cycles and cannot be bipartite.

To date, no graph (except K2) has been found to satisfy the condition of Theorem 7.9.
An exhaustive search on all graphs on up to 10 vertices and all chemical graphs on up to
16 vertices reveals no counter example. We conjecture the following result.

Conjecture 7.11. There are no graphs for which every vertex–deleted subgraph is a nut
graph.

8 Chemical implications
Graph theory has strong connections with the study of physical and chemical properties of
all-carbon frameworks such as those in benzenoids, fullerenes and carbon nanotubes. The
eigenvalues and eigenvectors of the adjacency matrix of the molecular graph (the graph of
the carbon skeleton) are used in qualitative models of the energies and spatial distributions
of the mobile π electrons of such systems. Specifically, graphs and their nullities figure
in simple theories of ballistic conduction of electrons by conjugated systems. In the sim-
plest formulation [3] of the SSP (Source and Sink Potential ) [5] approach to molecular
conduction, the variation of electron transmission with energy is qualitatively modelled in
terms of the characteristic polynomials of G, G − y, G − z, G − y − z, where G is the
molecular graph and vertices y and z are in contact with wires. (This is the motivation
for the definition of a device in the present paper.) As a consequence, the transmission at
the Fermi level (corresponding here to λ = 0) obeys selection rules couched in terms of
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the nullities ηG, ηG−y , ηG−z , and ηG−y−z [7], motivating the definition of kinds here. In
terms of the varieties defined here, the SSP theory predicts conduction at the Fermi level for
connection across the vertex pair (y, z) for 1(ii), 1(iii), 3a(i), 3b(ii), 3c(i) and 3c(iiA),
and, conversely, insulation at the Fermi level for 1(i), 2a, 2b, 3a(ii), 3b(i) and 3c(iiB).

The two classes of graphs with analogous vertex pairs and certain extremal conditions
on the nullity of their vertex-deleted subgraphs, explored in Section 7 are envisaged to have
interesting developments in spectral graph theory. Moreover, the classification of graphs
into varieties and kinds has an application in chemistry in the identification of molecules
(with carbon atoms in particular) that conduct or else bar conduction at the Fermi level
that has already been investigated in [3]. According to the SSP theory, the first class, the
uniform–core graphs, corresponds to insulation at the Fermi–level for all two vertex con-
nections and the second class, the nuciferous graphs, to Fermi–level conducting devices
(G, y, z) for all pairs of distinct vertices y and z. The latter class has the additional prop-
erties that it consists of devices corresponding to non-singular graphs that are Fermi–level
insulators when y = z. Therefore nuciferous graphs have no non–bonding orbital and are
conductors for all distinct vertex connection pairs and insulators for all one vertex connec-
tions. We conjecture that the only nuciferous graph is K2.
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Abstract

Recently, Kim and Shader analyzed the multiplicities of the eigenvalues of a Φ-binary
tree. We carry this discussion forward extending their results to a larger family of trees,
namely, the wide double path, a tree consisting of two paths that are joined by another
path. Some introductory considerations for dumbbell graphs are mentioned regarding the
maximum multiplicity of the eigenvalues. Lastly, three research problems are formulated.
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1 Preliminaries
For a given n × n real symmetric matrix A = (aij), we define the graph of A, and write
G(A), as the undirected graph whose vertex set is {1, . . . , n} and edge set is {ij | i 6=
j and aij 6= 0}. On the other hand, for a given (weighted) graph G, we may define
A(G) = (aij) to be the (real) symmetric matrix whose graph G(A) is G. We focus our
attention to the set

S(G) = {A ∈ Rn×n |A = AT and G(A) = G} ,

i.e., the set of all symmetric matrices sharing a common graph G on n vertices. Neverthe-
less, all results can easily be extended to complex Hermitian matrices.

If G is a tree, then the matrix A(G) is called acyclic. In particular, if G is a path, we
order the vertices of G such that A(G) is a tridiagonal matrix.

We will often omit the mention of the graph of the matrix if it is clear from the context.
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Let us denote the (algebraic) multiplicity of the eigenvalue θ of a symmetric matrix
A = A(G) by mA(θ). The (n− 1)× (n− 1) principal submatrix, formed by the deletion
of row and column indexed by i, which is equivalent to removing the vertex i from G, is
designated by A(G\i).

Among the linear algebra community, most of the results on multiplicities of eigen-
values are mainly confined to trees motivated by the Parter-Wiener Theorem [16] and to
Cauchy’s Interlacing Theorem.

For a more detailed account on the subject the reader is referred to [16]. We remark
that the Parter-Wiener Theorem was reformulated in the survey work [7], by the second
author, motivated by the earlier seminal work of C. Godsil on matchings polynomials [9,
10, 11]. The same approach produced a result for the multiplicities of an eigenvalue of a
matrix involving certain paths of the underlying graph, with many interesting applications
to general graphs [4].

Theorem 1.1. [6, 8] Let P be a path that does not contain any edge of any cycle in G.
Then

mA(G\P )(θ) > mA(G)(θ)− 1 . (1.1)

Since a tree has no cycles, the inequality (1.1) is true for any path in a tree, which
generalizes a result for the standard adjacency acyclic matrices [9].

The inequality (1.1) can provide us an upper bound for the multiplicity of an eigenvalue
of a graph. The next result was established by R.A. Beezer in [3, Lemma 2.1] and it gives a
lower bound. It was originally stated for standard adjacency matrices, but it can be proved
for weighted adjacency matrices.

Lemma 1.2. Let us suppose that H1, . . . ,Hk be graphs, and let v1, . . . , vt be additional
vertices. Construct a graph H by adding new edges that have one endpoint in the set
{v1, . . . , vt} and the other endpoint in a vertex of some Hi. If

A =


A1 0

. . . CT

0 Ak

C D

 ∈ S(H) ,

where Ai ∈ S(Hi), for i = 1 . . . k, D is a real diagonal block, and C has t rows, then

mA(λ) >
k∑

i=1

mAi(λ)− t . (1.2)

We remark that (1.2) is a special case of Cauchy-type interlacing theorems for block
Hermitian matrices. In fact, if λ is an eigenvalue of the upper block decomposition A1 ⊕
· · · ⊕ Ak, a block vector calculation shows that the dimension the eigenspace of λ of A is
at least as great as the dimension of the intersection of the eigenspace of λ of B and the
null space of C (for more details the reader is referred to [15]).

Interestingly, Lemma 1.2 provides us an algorithm construct matrices of certain graphs
where the maximum multiplicity is attained. For example, let us consider the (4, 3)-tadpole
graph T
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Considering the path joining vertices 1 and 4 in (1.1) we see that, for any eigenvalue λ of
A ∈ S(T ), mA(λ) 6 2 (see also [2, 8]). On the other hand, from (1.2), setting A1 for
the Jacobi matrix whose graph is the path joining vertices 1 and 2 (an edge) and A2 for the
matrix whose graph is the cycle containing vertices 4, 5, 6, and 7, we have

mA(λ) > mA1(λ) +mA2(λ)− 1 > 1 + 2− 1 = 2 .

Therefore, if we want to construct a matrix in S(T ) with an eigenvalue, say
√

2 of maximal
multiplicity, we may set

A1 =

(
1 1
1 −1

)
and

A2 =


0 1 0 −1
1 0 1 0
0 1 0 1
−1 0 1 0

 ,

constructed as in [5]. Then any matrix of the form

A =



−1 1 0 0 0 0 0
1 1 ∗ 0 0 0 0
0 ∗ ∗ ∗ 0 0 0
0 0 ∗ 0 1 0 −1
0 0 0 1 0 1 0
0 0 0 0 1 0 1
0 0 0 −1 0 1 0


has
√

2 (and, in this case, −
√

2 too) as an eigenvalue of maximal multiplicity 2.
In general, for a given (m,n)-tadpole Gm,n, if λ is an eigenvalue of A ∈ S(Gm,n) but

not eigenvalue of A(Cm), then λ is simple, from (1.1).
In this note, we show how to use inequality (1.1) to generalize a result on the maximum

multiplicity of an eigenvalue of a Φ-binary tree due to Kim and Shader [18] to a more
general family of trees: a wide double path. A wide double path is consists of two paths
that are joined by another path. Unordered multiplicity lists for two classes of wide double
paths are established generalizing previous results. At the end three new research problems
are pointed out.

First, we show how combining both bounds (1.1) and (1.2) in order to give necessary
and sufficient conditions for an eigenvalue has maximal multiplicity in the case of a dumb-
bell graph.
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2 Dumbbell graphs
A dumbbell graph is obtained by joining two cycles by a path. We will assume that the
length of this path is greater than 2. Nevertheless, all results are true for lower lengths, with
slight modifications.

Dumbbells graphs are a special class of bicyclic graphs, i.e., connected graphs in which
the number of edges equals the number of vertices plus one. These graphs are well con-
sidered in graph theory, combinatorics, and optimization literature [12, 13, 14, 19, 20, 21].
Much attention has recently been paid to the spectral properties of these non-acyclic graphs
[22, 23].

We start this section establishing an upper bound for the multiplicity of an eigenvalue
of a dumbbell graph.

Proposition 2.1. The maximum multiplicity of an eigenvalue of a dumbbell graph is 3.

Proof. Let P be the path intersecting both pendant cycles of the dumbbell graph D. Ob-
serve that the (disconnect) subgraph D\P is the union of two paths. Then, from (1.1),

mA(D)(λ) 6 mA(D\P )(λ) + 1 6 2 + 1 = 3 ,

for any eigenvalue λ of D.

Next we characterize the matrices where an eigenvalue attains the maximum multiplic-
ity.

Proposition 2.2. Let D be a dumbbell graph and let P be the path intersecting both pen-
dant cycles C1 and C2 at the vertices v1 and v`, respectively. If λ is an eigenvalue of
A ∈ S(D) of multiplicity 3, then λ is an eigenvalue of A(C1 \ v1) and of A(C2 \ v`).

Proof. Again, by Theorem 1.1, if mA(D)(λ) = 3, then

mA(D\P )(λ) > 3− 1 = 2 .

Since D\P = (C1 \ v1) ∪ (C2 \ v`) and both C1 \ v1 and C2 \ v` are paths, λ must be an
eigenvalue of each A(C1 \ v1) and of A(C2 \ v`).

Corollary 2.3. LetD be a dumbbell graph and let P = v1v2 · · · v` be the path intersecting
both pendant cycles C1 and C2 at the vertices v1 and v`, respectively. If λ is an eigenvalue
of A ∈ S(D) of multiplicity 3, then λ is an eigenvalue of both A(C1) and A(C2).

Proof. Considering the path P ′ = v2 · · · v` and (1.1), we have

mA(D\P ′)(λ) > 2 .

Now we only have to observe that D \ P ′ = C1 ∪ (C2 \ v`) and mA(C2\v`)(λ) = 1.

Note that we can conclude a result more general than Corollary 2.3. In fact, λ should
be an eigenvalue of any tadpole graph obtaining by joining, for example, the path vi · · · v`,
for any i = 2, . . . , `− 1, to the cycle C2 at v`.

The next result is a straightforward consequence of (1.1).
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Proposition 2.4. Let D be a dumbbell graph and let P be the path intersecting both pen-
dant cycles C1 and C2 at the vertices v1 and v`, respectively. If λ is an eigenvalue of
A ∈ S(D) but neither an eigenvalue of A(C1 \ v1) nor of A(C2 \ v`) or neither an eigen-
value of A(C1) nor of A(C2), then mA(λ) = 1, i.e., λ is a simple eigenvalue of A.

As we mentioned before, Lemma 1.2 provides an interesting algorithm producing ma-
trices of certain graphs with eigenvalues of maximum multiplicity. For, let us consider the
real number λ. For a given path of order k1, let A1 be a tridiagonal matrix of order k1, with
eigenvalue λ, using (according Jean Favard) the simple et élégant Wendroff’s algorithm
[24], appeared a long time ago but somehow has not received so far the appropriate con-
sideration by the linear algebra community. Now, using the general algorithm established
in [5], it is possible to construct periodic Jacobi matrices, say A2 and A3, whose cycles are
of orders k2 and k3, respectively, with λ being an eigenvalue of both matrices. Let us set

A =


A1

A2 xT yT

A3

x 0 0
y 0 0

 ∈ S(H) ,

where x is the 0, 1 vector with 1’s in the position 1 and k1 + 1 and 0 elsewhere, and,
analogously, y is the 0, 1 vector with 1’s in the position k1 and k1 +k2 +1 and 0 elsewhere.
Then λ is an eigenvalue of A of multiplicity 3. In fact, from (1.2),

mA(λ) > mA1
(λ) +mA2

(λ) +mA3
(λ)− 2 = 1 + 2 + 2− 2 = 3 .

3 Maximum multiplicities
We now turn back our attention to a family of binary trees. Recall that a binary tree is a tree
such that the degree of each vertex is no more than three. In this section we will consider
the family constituted by the trees of the following form: take five paths P1, . . . , P5 and
two vertices u and v; join any terminal vertex of P1, P2, and P5 to u; the other terminal
vertex of P5 and any terminal vertex of P3 and of P4 are added to v. These trees can also
be seen as consisting of two paths that are joined by another path. Therefore, we will call
them wide double paths. The paths P1, . . . , P4 are the legs (or branches) of such tree.

In [18] Kim and Shader studied several spectral properties of the so-called Φ-binary
trees. It is a particular case of the trees under discussion now: P5 has size 1 (i.e., a single
vertex) and the longest legs among the four legs are connected to different terminal vertices.

Theorem 3.1. Let T be a wide double path andA ∈ S(T ). Then the maximum multiplicity
of an eigenvalue of A is 3.

Proof. We only have to apply (1.1), for example, to the path P1 − u− P5 − v − P3.

Theorem 3.2. For a given wide double path T , λ is an eigenvalue of A ∈ S(T ) of maxi-
mum multiplicity if and only if λ is an eigenvalue of each path P1, . . . , P5.

Proof. SetAi = A(Pi), for i = 1, . . . , 5. Let us assume first thatmA(λ) = 3. Considering
the path P1 − u− P5 − v − P3 in T , from (1.1), it follows

mA2
(λ) +mA4

(λ) > 3− 1 = 2 .
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Thus, mA2(λ) = mA4(λ) = 1. Analogously, we prove mA1(λ) = mA3(λ) = 1. It
remains to prove that mA5

(λ) = 1. In fact, since P5 can be obtained from T deleting the
paths P1 − u− P2 and P3 − u− P4, we have again, from (1.1),

1 > mA5
(λ) > mÃ(λ)− 1 > mA(λ)− 2 = 1 ,

where Ã = A(H), with H being the generalized star with center u and legs P1, P2, and
P5.

Conversely, if mAi(λ) = 1, for i = 1, . . . , 5, then

3 > mA(λ) >
5∑

i=1

mAi(λ)− 2 = 3 .

from Theorem 3.1 and (1.2).

Let us set `i for the order of the path Pi, with i = 1, . . . , 5, in a wide double path W .

Corollary 3.3. The number n3 of eigenvalues with multiplicity 3 of a wide double path is
at most min{`1, . . . , `5}.

Corollary 3.4. [18, Theorem 2(a)] Let T be a Φ-binary tree andA ∈ S(T ). Then there are
no eigenvalues of multiplicity 4 or more, and the number n3 of eigenvalues with multiplicity
3 is at most one. Furthermore, if λ ∈ σ(A) with mA(λ) = 3, then the diagonal entry of A
corresponding to the axis vertex of T is λ.

We now investigate the eigenvalues of multiplicity 2. The first result is a consequence
of Lemma 1.2 and Theorem 3.2.

Lemma 3.5. Let T be a wide double path and let A ∈ S(T ). If λ ∈ σ(A) is an eigenvalue
of exactly four of the paths P1, . . . , P5, then mA(λ) = 2.

As before, n2 denotes the number of eigenvalues of multiplicity 2 of a given matrix.

Theorem 3.6. Let W be a wide double path and r = min{`i + `j | i = 1, 2, j = 3, 4}.
Then

n2 6 r − 2n3 . (3.1)

Proof. By Theorem 3.2, if λ1, . . . , λn3
are the distinct eigenvalues of A of multiplicity 3,

then they must be (simple) eigenvalues of both A(P2) and A(P4). Taking into account
Lemma 3.5, the inequality (3.1) follows.

We remark that Theorem 3.2 is in fact much more general. An analogous result can be
proved for any generalized caterpillar, i.e., a tree for which removing the legs produces a
path, and the maximum multiplicity of any eigenvalue is equal to the number of legs minus
one. In particular we have the following result.

Lemma 3.7. Let S be a generalized star and A ∈ S(S). Then mA(λ) = 2 if and only if λ
is an eigenvalue of each leg.

Theorem 3.8. Let T be a wide double path and A ∈ S(T ). Then mA(λ) = 2 if and only if
λ is a simple eigenvalue of the paths P1, P2, and of the generalized star with center v and
legs P3, P4, P5, or is a simple eigenvalue of the paths P3, P4, and of the generalized star
with center u and legs P1, P2, P5.
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Proof. Let us assume that mA(λ) = 2. From (1.1), for any path P in T , mA(T\P )(λ) > 1.
Therefore, if λ is not an eigenvalue of P1 (P2), then it must be an eigenvalue of both P3

and P4. Moreover, if S denotes the generalized star with center u and legs P1, P2, P5, then
mA(S)(λ) > 1. The other assertion is set in a similar fashion.

The converse follows from (1.1) and (1.2).

We now address the question on the number n1 of simple eigenvalues of A ∈ S(W ).
Since

n = n1 + 2n2 + 3n3 = `1 + · · ·+ `5 + 2 ,

on the one hand, we have
n1 6 n . (3.2)

In fact, the equality is attained when we construct A(L1), . . . , A(L5), with distinct eigen-
values. On the other hand,

n1 = `1 + `2 + `3 + `4 + `5 + 2− 2n2 − 3n3

> `1 + `2 + `3 + `4 + `5 + 2− 2r + n3

> |`1 − `2|+ |`3 − `4|+ `5 + 2 . (3.3)

Interestingly, we observe that, from the lower bound (3.3), any matrix in S(W ) must have
at least `5 + 2 simple eigenvalues. This generalizes [18, Corollary 3].

4 Unordered multiplicity lists
Recall that if m1 > · · · > mk, with m1 + · · · + mk = n, are the multiplicities of the
distinct eigenvalues of an n-by-n symmetric matrixA, then (m1, . . . ,mk) is the unordered
multiplicity list (or list) of the eigenvalues of A. By unordered multiplicity list of a graph
G we mean the set of unordered multiplicity lists for all matrices in S(G).

Without loss of generality, we will assume that `1 > `2 and `3 > `4. Moreover, we
convention that for a finite sequence of real numbers a1, . . . , ai, with i 6 0, is empty.

We are able now to find the unordered multiplicity lists of the wide double path under
discussion.

Theorem 4.1. Let W be a wide double path of order n, with `1 > `2 and `3 > `4. Then
the set of unordered multiplicity lists of W consists of the positive integer lists of the form

(3, . . . , 3︸ ︷︷ ︸
n3

, 2, . . . , 2︸ ︷︷ ︸
n2

, 1, . . . , 1︸ ︷︷ ︸
n1

) , (4.1)

with 0 6 n3 6 min{`2, `4, `5}, 0 6 n2 6 `2 + `4 − 2n3, and n1 = n− 2n2 − 3n3.

Proof. From our discussion in the previous section, it is clear that any unordered multiplic-
ity list of W is of the form (4.1).

Conversely, let S1 (resp., S2) be the generalized star with center vertex u (resp., v) and
legsL1, L2, L5 (resp., L3, L4, L5). Now, for k = 0, . . . ,min{`2, `4, `5}, p = 0, . . . , `2−k,
and q = 0, . . . , `4 − k, let us consider the `1 + `5 − k + p+ 1 distinct real numbers

β1, . . . , β`4−k−q, θ1, . . . , θ`1−`4+`5+p+q+1
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strictly interlacing with the `1 + `5 − k + p (distinct) real numbers

λ1, . . . , λ`5 , α1, . . . , α`1−k, α̃`2−k−p+1, . . . , α̃`2−k ,

and the `3 + `5 − k + q + 1 distinct real numbers

α1, . . . , α`2−k−p, µ1, . . . , µ`3−`2+`5+q+p+1

strictly interlacing with the `3 + `5 − k + q (distinct) real numbers

λ1, . . . , λ`5 , β1, . . . , β`3−k, β̃`4−k−q+1, . . . , β̃`4−k .

Now we consider A ∈ S(W ) such that

σ(A(L5)) = {λ1, . . . , λk, λk+1, . . . , λ`5}
σ(A(L1)) = {λ1, . . . , λk, α1, . . . , α`2−k−p, α`2−k−p+1, . . . , α`1−k}
σ(A(L2)) = {λ1, . . . , λk, α1, . . . , α`2−k−p, α̃`2−k−p+1, . . . , α̃`2−k}
σ(A(S1)) = {λ1, λ1, . . . , λk, λk, α1, . . . , α`2−k−p, β1, . . . , β`4−k−q, θ1, . . . ,

θ`1−`4+`5+p+q+1}
σ(A(L3)) = {λ1, . . . , λk, β1, . . . , β`4−k−q, β`4−k−q+1, . . . , β`3−k}
σ(A(L4)) = {λ1, . . . , λk, β1, . . . , β`4−k−q, β̃`4−k−q+1, . . . , β̃`4−k}
σ(A(S2)) = {λ1, λ1, . . . , λk, λk, β1, . . . , β`4−k−q, α1, . . . , α`2−k−p, µ1, . . . ,

µ`3−`2+`5+q+p+1},

The existence of the Jacobi matrices is granted by [24] and the two generalized stars by
[17, Theorem 11].

It is clear that the unordered multiplicity list of A is

(3, . . . , 3︸ ︷︷ ︸
t3

, 2, . . . , 2︸ ︷︷ ︸
t2

, 1, . . . , 1︸ ︷︷ ︸
t1

) , (4.2)

with t3 = k, t2 = `2+`4−2k−p−q, and t1 = (`1−`2)+(`3−`4)+`5+2+k+2(p+q).
Note that 0 6 k + 2(p+ q) 6 2(`2 + `4).

Observe that with 1 = `5 6 `2, `4,6 `1, `3, we are able to recover the results in [18]
for Φ-binary trees. Moreover, Theorem 4.1 can also be applied for `5 = 0 [1, 17].

Finally, a tree is minimal provided there is a matrix such that number of distinct eigen-
values is equal to the diameter (counting edges) plus one. From Theorem 4.1, we conclude
that the wide double paths are minimal, for `2, `4 6 `1, `3 6 `5. In fact, with t3 = 0,
t2 = `2 + `4, and t1 = (`1 − `2) + (`3 − `4) + `5 + 2, since the number of distinct
eigenvalues is `1 + `3 + `5 + 2 and the diameter is `1 + `3 + `5 + 1.

5 Open problems
In this paper, we provided the solution for the inverse eigenvalue problem of a wide double
path, generalizing the results for the very particular case of the family of the so-called Φ-
binary trees, recently established. The approach adopted here is different, offering a general
result with a more concise proof.

A natural generalization a wide double path is when we have more than 2 legs adjacent
to the “central” vertices u and v. Let us suitably call such trees as wide double generalized
stars.
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Problem 1. Characterize the unordered multiplicity lists of a wide double generalized star.

It seems this is not a difficult problem to handle and an elegant characterization similar
to Theorem 4.1 may be achieved.

A more hard problem is related an analogous characterization for binary trees.

Problem 2. Characterize the unordered multiplicity lists of a binary tree.

Our results may also be seen as the starting point for a more meaningful study:

Problem 3. What are the unordered multiplicity lists of trees having maximum multiplicity
3?

Of course, from our approach, the previous question can be extended to general graphs.
Probably new techniques will need to be developed for this attractive and vast area of
research. Some computational experiments allow us to assert that there will be some sur-
prising multiplicity lists.
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Abstract

A gcd-graph is a Cayley graph over a finite abelian group defined by greatest common
divisors. Such graphs are known to have integral spectrum. A non-complete extended p-
sum, or NEPS in short, is well-known general graph product. We show that the class of
gcd-graphs and the class of NEPS of complete graphs coincide. Thus, a relation between
the algebraically defined Cayley graphs and the combinatorially defined NEPS of complete
graphs is established. We use this link to show that gcd-graphs have a particularly simple
eigenspace structure, to be precise, that every eigenspace of the adjacency matrix of a gcd-
graph has a basis with entries −1, 0, 1 only.

Keywords: Integral graphs, Cayley graphs, graph products.

Math. Subj. Class.: 05C25, 05C50

1 Introduction
Given a set B ⊆ {0, 1}n and graphs G1, . . . , Gn, the NEPS (non-complete extended p-
sum) of these graphs with respect to basisB,G = NEPS(G1, . . . , Gn;B), has as its vertex
set the Cartesian product of the vertex sets of the individual graphs, V (G) = V (G1)×· · ·×
V (Gn). Distinct vertices x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ V (G) are adjacent in G,
if and only if there exists some n-tuple (β1, . . . , βn) ∈ B such that xi = yi, whenever
βi = 0, and xi, yi are distinct and adjacent in Gi, whenever βi = 1. In particular,
NEPS(G1; {(1)}) = G1 and NEPS(G1; ∅) = NEPS(G1; {(0)}) is the graph without
edges on the vertices of G1.

The NEPS operation generalizes a number of known graph products, all of which have
in common that the vertex set of the resulting graph is the Cartesian product of the input
vertex sets. For example, NEPS(G1, . . . , Gn; {(1, 1, . . . , 1)}) = G1 ⊗ . . . ⊗ Gn is the

E-mail addresses: klotz@math.tu-clausthal.de (Walter Klotz), t.sander@ostfalia.de (Torsten Sander)

Copyright c© 2013 DMFA Slovenije



290 Ars Math. Contemp. 6 (2013) 289–299

product of G1, . . . , Gn (cf. [10], “direct product” in [15]). As can be seen, unfortunately,
the naming of graph products is not standardized at all. The “Cartesian product” of graphs
in [15] is even known as the “sum” of graphs in [10]. With respect to this seemingly ar-
bitrary mixing of sum and product terminology, let us point out that here the term “sum”
(and also the “p-sum” contained in the NEPS acronym) indicates that the adjacency matrix
of the constructed product graph arises from a certain sum of matrices (involving the adja-
cency matrices of the input graphs). Refer to [10] or [11] for the history of the notion of
NEPS. We remark that the NEPS operation can be generalized even further, see e.g. [12]
and [21].

Next, we consider the important class of Cayley graphs [13]. These graphs have been
and still are studied intensively because of their symmetry properties and their connections
to communication networks, quantum physics and other areas [8], [13]. Let Γ be a finite,
additive group. A subset S ⊆ Γ is called a symbol (also: connection set, shift set) of Γ if
−S = {−s : s ∈ S} = S, 0 6∈ S. The undirected Cayley graph over Γ with symbol S,
denoted by Cay(Γ, S), has vertex set Γ; two vertices a, b ∈ Γ are adjacent if and only if
a− b ∈ S.

Let us now construct the class of gcd-graphs. The greatest common divisor of non-
negative integers a and b is denoted by gcd(a, b), gcd(0, b) = gcd(b, 0) = b. If x =
(x1, . . . , xr) and m = (m1, ...,mr) are tuples of nonnegative integers, then we set

gcd(x,m) = (d1, . . . , dr) = d, di = gcd(xi,mi) for i = 1, . . . , r.

For an integer n ≥ 1 we denote by Zn the additive group of integers modulo n, the ring of
integers modulo n, or simply the set {0, 1, . . . , n− 1}. The particular choice will be clear
from the context. Let Γ be an (additive) finite abelian group represented as a direct sum of
cyclic groups,

Γ = Zm1
⊕ . . .⊕ Zmr , mi ≥ 1 for i = 1, . . . , r.

Suppose that di is a divisor of mi, 1 ≤ di ≤ mi, for i = 1, . . . , r. For the divisor tuple
d = (d1, . . . , dr) of m = (m1, . . . ,mr) we define

SΓ(d) = {x = (x1, . . . , xr) ∈ Γ : gcd(x,m) = d}.

Let D = {d(1), . . . , d(k)} be a set of distinct divisor tuples of m and define

SΓ(D) =

k⋃
j=1

SΓ(d(j)).

Observe that the union is actually disjoint. The sets SΓ(D) shall be called gcd-sets of Γ. We
define the class of gcd-graphs as the Cayley graphs Cay(Γ, S) over a finite abelian group
Γ with symbol S a gcd-set of Γ. The most prominent members of this class are perhaps
the unitary Cayley graphs Xn = Cay(Zn, Un), where Un = SZn(1) is the multiplicative
group of units of Zn (cf. [16], [17], [22]).

The main goal of this paper is to show in Section 2 that every gcd-graph is isomorphic
to a NEPS of complete graphs. Conversely, every NEPS of complete graphs is isomorphic
to a gcd-graph over some abelian group. This relation is remarkable since it allows us to
define gcd-graphs either algebraically (via Cayley graphs) or purely combinatorially (via
NEPS). The characterization of gcd-graphs as NEPS of complete graphs reveals some new
access to structural properties of gcd-graphs. As a first application, we show in Section
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3 that every gcd-graph has simply structured eigenspace bases for all of its eigenvalues.
This means that for every eigenspace a basis can be found whose vectors only have entries
from the set {0, 1,−1}. It is known that other graph classes exhibit a similar eigenspace
structure, although not necessarily for all of their eigenspaces [9], [20], [25]. Finally, we
present some open problems in Section 4.

2 Isomorphisms between NEPS of complete graphs and gcd-graphs
We are going to show in several steps that gcd-graphs and NEPS of complete graphs are
the same.

Lemma 2.1. Let Γ = Zm1 ⊕ · · · ⊕ Zmr and d = (d1, . . . , dr) a tuple of positive divisors
of m = (m1, . . . ,mr). Define b = (bi) ∈ {0, 1}r by

bi =

{
1 if di < mi,

0 if di = mi.

Then we have

Cay(Γ, SΓ(d)) = NEPS(Cay(Zm1 , SZm1
(d1)), . . . ,Cay(Zmr , SZmr (dr)); {b}).

Proof. Both Cay(Γ, SΓ(d)) and the above NEPS have the same vertex set Γ. It remains to
show that they have the same edge set.

Let x, y ∈ Γ with x = (x1, . . . , xr), y = (y1, . . . , yr) and suppose that x 6= y. Now x
and y are adjacent in Cay(Γ, SΓ(d)) if and only if gcd(xi − yi,mi) = di for i = 1, . . . , r.
The latter condition means that in case di < mi the vertices xi and yi are adjacent in
Gi = Cay(Zmi , SZmi (di)), and in case di = mi we have xi = yi. But this is exactly the
condition for adjacency of x and y in NEPS(G1, . . . , Gr; {b}).

The following lemma allows us to break down the Cayley graphs that form the factors
of the NEPS mentioned in Lemma 2.1. Each factor can be transformed into a gcd-graph
over a product of cyclic groups of prime power order. Using Lemma 2.1 once again, we
obtain a representation of the original graph as a NEPS of NEPS of gcd-graphs over cyclic
groups of prime power order.

Lemma 2.2. Let the integer m ≥ 2 and a proper divisor d ≥ 1 of m be given as products
of powers of distinct primes,

m =

r∏
i=1

mi, mi = pαii , αi > 0 for i = 1, . . . , r,

d =

r∏
i=1

di, di = pβii , 0 ≤ βi ≤ αi for i = 1, . . . , r.

If we set Γ = Zm1 ⊕ · · · ⊕ Zmr and d̃ = (d1, . . . , dr), then there exists an isomorphism

Cay(Zm, SZm(d)) ' Cay(Γ, SΓ(d̃)).
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Proof. By the Chinese remainder theorem [23] we know that every z ∈ Zm is uniquely
determined by the congruences

z ≡ zi mod mi, zi ∈ Zmi for i = 1, . . . , r.

This gives rise to a bijection Zm → Γ by virtue of z 7→ (z1, . . . , zr) =: z̃. We show that
this bijection induces an isomorphism between Cay(Zm, SZm(d)) and Cay(Γ, SΓ(d̃)).

Let x, y ∈ Zm, x 6= y. Note that x̃ and ỹ are vertices of Cay(Γ, SΓ(d̃)). The vertices x
and y are adjacent in Cay(Zm, SZm(d)) if and only if gcd(x−y,m) = d. This is equivalent
to gcd(xi − yi,mi) = di for every i = 1, . . . , r. Now this means gcd(x̃− ỹ, m̃) = d̃, with
m̃ = (m1, . . . ,mr), which is the condition for adjacency of x̃ and ỹ in Cay(Γ, SΓ(d̃)).

Next we shall prove a lemma that helps us consolidate the nesting of NEPS operations
into a single NEPS operation. As a result, we then know that every single-divisor tuple
gcd-graph is isomorphic to a NEPS of gcd-graphs over cyclic groups of prime power order.

Lemma 2.3. Let
H = NEPS(H(1), . . . ,H(t);B) (2.1)

be a NEPS of graphs H(j) with respect to basis B such that each graph H(j) is itself a
NEPS of graphs G(j)

i with respect to basis B(j),

H(j) = NEPS(G
(j)
1 , . . . , G(j)

rj ;B(j)) for j = 1, . . . , t. (2.2)

Then there exists a set B′ ⊆ {0, 1}r, r = r1 + . . .+ rt, such that

H ' NEPS(G
(1)
1 , . . . , G(1)

r1 , . . . , G
(t)
1 , . . . , G(t)

rt ;B′). (2.3)

Proof. We show that in (2.1) the graph H(1) can be replaced by G(1)
1 , . . . , G

(1)
r1 . More

precisely, we construct a set B̃ such that

H ' NEPS(G
(1)
1 , . . . , G(1)

r1 , H
(2), . . . ,H(t); B̃), B̃ ⊆ {0, 1}r1+t−1 . (2.4)

An analogous procedure can be repeated for H(2), . . . ,H(t) until we end up with the rep-
resentation (2.3) of H .

In the original representation (2.1) every vertex x of the vertex set V (H) has the form

x = (x(1), . . . , x(t)), x(j) ∈ V (H(j)) for j = 1, . . . , t. (2.5)

By (2.2) each coordinate x(j) is itself an rj-tuple, in particular

x(1) = (x
(1)
1 , . . . , x(1)

r1 ), x
(1)
i ∈ V (G

(1)
i ) for i = 1, . . . , r1 .

Expansion of x(1) in (2.5) yields

x̃ = (x
(1)
1 , . . . , x(1)

r1 , x
(2), . . . , x(t)),

x
(1)
i ∈ V (G

(1)
i ) for i = 1, . . . , r1, x

(j) ∈ V (H(j)) for j = 2, . . . , t.
(2.6)

This is the representation of vertices for (2.4).
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Now we adapt the basis set B to the new representation of vertices of H such that
adjacencies remain unchanged. Let the distinct vertices x and y of H be given in their
original representation according to (2.5) and in their new representation x̃, ỹ according to
(2.6).

x = (x(1), . . . , x(t)), y = (y(1), . . . , y(t)),

x̃ = (x
(1)
1 , . . . , x

(1)
r1 , x

(2), . . . , x(t)), ỹ = (y
(1)
1 , . . . , y

(1)
r1 , y

(2), . . . , y(t)).

For each b = (b1, . . . , bt) ∈ B we define a set B̃(b) ⊆ {0, 1}r1+t−1 such that

x, y adjacent with respect to b ⇔ x̃, ỹ adjacent with respect to B̃(b). (2.7)

Case 1: b1 = 0.
For x and y to be adjacent with respect to b we must have x(1) = y(1). If this is satisfied,
then x and y are adjacent, if and only if (x(2), . . . , x(t)) and (y(2), . . . , y(t)) are adjacent
with respect to (b2, . . . , bt). We achieve (2.7) by setting b̃ = (0, . . . , 0, b2, . . . , bt) (first r1

entries equal to zero) and B̃(b) = {b̃}.
Case 2: b1 = 1.
Now x and y are adjacent with respect to b, if and only if x(1) and y(1) are adjacent in
H(1) and x(2), . . . , x(t) and y(2), . . . , y(t) are equal or adjacent with respect to b2, . . . , bt,
respectively. By (2.2) vertices x(1) and y(1) of H(1) are adjacent, if and only if they are
adjacent with respect to some b(1) = (b

(1)
1 , . . . , b

(1)
r1 ) ∈ B(1). In this case we satisfy (2.7)

by setting

B̃(b) = {(b(1)
1 , . . . , b(1)

r1 , b
(2), . . . , b(t)) : b(1) ∈ B(1)}.

Finally, we collect the new basis tuples in B̃ = ∪{B̃(b) : b ∈ B} and thus achieve
(2.4).

The next step towards our goal is to show that a single-divisor gcd-graph over a cyclic
group of prime power order is actually isomorphic to a NEPS of complete graphs.

We denote the complete graph on n vertices by Kn. For our purposes, we assume that
the vertex set of Kn is Zn = {0, 1, . . . , n− 1}.

Lemma 2.4. Let m = pα be a prime power, d = pβ a divisor of m, 0 ≤ β ≤ α. Then the
gcd-graph over Zm with respect to d is isomorphic to a NEPS of α copies of the complete
graph Kp, i.e.

Cay(Zm, SZm(d)) ' NEPS(Kp, . . . ,Kp;B) for some B ⊆ {0, 1}α.

Proof. In case β = α we have Cay(Zm, SZm(m)) ' NEPS(Kp, . . . ,Kp; {(0, . . . , 0)}).
So we may now assume β < α.

Let us denote G = Cay(Zm, SZm(d)) and H = NEPS(Kp, . . . ,Kp;B) (where the
basis B is not yet fixed). For every x ∈ Zm let (x0, . . . , xα−1) be defined by the p-adic
representation of x,

x =

α−1∑
i=0

xip
i, 0 ≤ xi < p for i = 0, . . . , α− 1.
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We shall assume that the vertex set ofKp is Zp. Define the bijection ϕ : Zm → Zp⊕· · ·⊕
Zp = Zαp by ϕ(x) = (x0, . . . , xα−1). We now construct a basis set B ⊆ {0, 1}α such that
ϕ induces an isomorphism between G and H . Observe that for every z ∈ Zm,

gcd(z,m) = d⇔ zi = 0 for every i < β and zβ 6= 0.

This leads to the definition of B as follows:

B = {(b0, . . . , bα−1) ∈ {0, 1}α : bi = 0 for every i < β, bβ = 1}.

Let x, y ∈ Zm, x 6= y, ϕ(x) = (x0, . . . , xα−1), ϕ(y) = (y0, . . . , yα−1). Now x and y are
adjacent in G if and only if gcd(x− y,m) = d, which means xi − yi = 0 for every i < β
and xβ − yβ 6= 0. Thanks to our choice of B, this is exactly the condition for ϕ(x) and
ϕ(y) being adjacent in H .

Theorem 2.5. Let G be an arbitrary gcd-graph, G = Cay(Γ, SΓ(D)), Γ = Zm1
⊕ · · · ⊕

Zmr , D = {d(1), . . . , d(k)} a set of divisor tuples of m = (m1, . . . ,mr). If n = p1 · · · pt
is the prime factorization of n = m1 · · ·mr, then

G ' NEPS(Kp1 , . . . ,Kpt ;B) = H for some B ⊆ {0, 1}t.

Proof. Each divisor tuple in D gives rise to a graph G(j) = Cay(Γ, SΓ(d(j))), j =
1, . . . , k. By application of the preceding lemmas of this section we know that

G(j) ' NEPS(Kp1 , . . . ,Kpt ;B
(j)) = H(j) for some B(j) ⊆ {0, 1}t.

The graphs G(j) constitute an edge disjoint decomposition of G. Now, for every divisor
tuple d(1), . . . , d(k) ∈ D, we perform the decomposition process outlined by the lemmas in
exactly the same way, in the sense that the vertex numberings of the resulting graphs H(j)

are coherent. Then the graphs H(j) also constitute an edge disjoint decomposition of G:

E(G) =

k⋃
j=1

E(G(j)), E(H) =

k⋃
j=1

E(H(j))

The binary sets B(j), 1 ≤ j ≤ k, are also pairwise disjoint. The disjoint union of the edge
sets E(H(j)), 1 ≤ j ≤ k, is generated in the NEPS of Kp1 , . . . ,Kpt by

B =

k⋃
j=1

B(j).

With this choice of B the isomorphisms between the subgraphs G(j) and H(j), 1 ≤ j ≤ k,
extend to an isomorphism between G and H .

Theorem 2.6. Let G be a NEPS of complete graphs, G = NEPS(Km1
, . . . ,Kmr ;B).

Then G is isomorphic to a gcd-graph over Γ = Zm1
⊕ · · · ⊕ Zmr .

Proof. The vertex set of G can be represented by Γ = Zm1
⊕ · · · ⊕ Zmr . Edges of G are

generated by the binary r-tuples b = (bi) of the basis set B. Vertices x = (x1, . . . , xr) 6=
y = (y1, . . . , yr) are adjacent in G with respect to b, if xi = yi, whenever bi = 0, and
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xi 6= yi, whenever bi = 1. Let the set D(b) consist of all positive divisor tuples d =
(d1, . . . , dr) of m = (m1, . . . ,mr) such that di = mi, whenever bi = 0, and di a proper
divisor of mi, whenever bi = 1. Then x and y are adjacent with respect to b, if and only
if gcd(x − y,m) ∈ D(b). If we define D = ∪{D(b) : b ∈ B}, then the gcd-graph
Cay(Γ, SΓ(D)) is isomorphic to G.

Theorems 2.5 and 2.6 imply the following corollary.

Corollary 2.7. Let n = p1 · · · pt be the prime factorization of the integer n ≥ 2. Every
gcd-graph with n vertices is isomorphic to a gcd-graph over Γ = Zp1 ⊕ · · · ⊕ Zpt .

We conclude this section with some examples.

Example 2.8. We generalize the definition of a Hamming graph given in [15]. The Ham-
ming graph G = Ham(m1, . . . ,mr;D) has vertex set V (G) = Zm1

⊕ . . .⊕Zmr . Distinct
vertices are adjacent in G, if their Hamming distance is in D. It can be easily shown that
G is a NEPS of the complete graphs Km1 , . . . ,Kmr .

Example 2.9. Sudoku graphs arise from the popular game of Sudoku. The Sudoku graph
Sud(n) models the number restrictions imposed when filling out an n2⊗n2 Sudoku puzzle.
Each vertex represents a cell of the Sudoku puzzle. Two vertices are adjacent if the two
corresponding cells are required to contain different numbers (which is the case when they
lie in the same row, column or block of the puzzle). It has been shown that Sudoku graphs
are NEPS of complete graphs [25].

Example 2.10. This is an example that demonstrates the application of Theorem 2.5.
Let Γ = Z4 ⊕ Z18 and D = {(1, 6), (4, 2), (2, 9)}. We want to represent the graph
Cay(Γ, SΓ(D)) as a NEPS of complete graphs. To start with, let us consider the graph
Cay(Γ, SΓ((1, 6))). Application of Lemma 2.1, Lemma 2.2, once again Lemma 2.1, then
Lemma 2.3, Lemma 2.4, and finally once again Lemma 2.3 gives us:

Cay(Z4 ⊕ Z18, S((1, 6)))

' NEPS(Cay(Z4, S(1)),Cay(Z18, S(6)); {(1, 1)})
' NEPS(Cay(Z4, S(1)),Cay(Z2 ⊕ Z9, S((2, 3))); {(1, 1)})
' NEPS(Cay(Z4, S(1)),NEPS(Cay(Z2, S(2)),Cay(Z9, S(3)); {(0, 1)}); {(1, 1)})
' NEPS(Cay(Z4, S(1)),Cay(Z2, S(2)),Cay(Z9, S(3)); {(1, 0, 1)})
' NEPS(NEPS(K2,K2; {(1, 0), (1, 1)}),NEPS(K2; {(0)}),

NEPS(K3,K3; {(0, 1)}); {(1, 0, 1)})
' NEPS(K2,K2,K2,K3,K3; {(1, 0, 0, 0, 1), (1, 1, 0, 0, 1)}).

Note that for the sake of simplicity we have dropped the subscripts of the symbol sets since
the respective groups are clear from the context. Regarding the application of Lemma 2.3
note that, trivially, G ' NEPS(G; {(1)}).

Cay(Z4 ⊕ Z18, S((4, 2))) ' NEPS(K2,K2,K2,K3,K3;

{(0, 0, 0, 1, 0), (0, 0, 0, 1, 1)}),
Cay(Z4 ⊕ Z18, S((2, 9))) ' NEPS(K2,K2,K2,K3,K3; {(0, 1, 1, 0, 0)}).
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The graph Cay(Γ, SΓ(D)) is the disjoint union of the graphs Cay(Γ, SΓ(d)) with d ∈
D which we have considered above, so we arrive at:

Cay(Γ, SΓ(D)) ' NEPS(K2,K2,K2,K3,K3;

{(1, 0, 0, 0, 1), (1, 1, 0, 0, 1), (0, 0, 0, 1, 0),

(0, 0, 0, 1, 1), (0, 1, 1, 0, 0)}).

3 Eigenspace bases of gcd-graphs
The eigenvalues and eigenspaces of an undirected graph G are the eigenvalues and eigen-
spaces, respectively, of any adjacency matrix of G. The multiset of all eigenvalues of a
graph is called its spectrum. According to HARARY and SCHWENK [14], a graph G is de-
fined to be integral if all of its eigenvalues are integers. Integral graphs have been a focus
of research for some time; see [4] for a survey.

In particular, many notable results on integrality of Cayley graphs have been obtained.
Integral cubic and quartic Cayley graphs on abelian groups have been characterized in [1]
and [2], respectively. Circulant graphs are the Cayley graphs over Zn, n ≥ 1. SO [26]
showed that the integral circulant graphs with n vertices are exactly the gcd-graphs over
Zn. This result was extended in [18] to groups of the form Z2 ⊕ . . .⊕ Z2 ⊕ Zn, n ≥ 2. A
complete characterization of integral Cayley graphs over abelian groups has recently been
achieved by ALPERIN and PETERSON [3].

The eigenvalues of G = NEPS(G1, . . . , Gn;B) are certain sums of products of the
eigenvalues of the Gi, cf. [10]:

Theorem 3.1. Let G1, . . . , Gn be graphs with n1, . . . , nr vertices, respectively. Further,
for i = 1, . . . , r let λi1, . . . , λini be the eigenvalues of Gi. Then, the spectrum of the graph
G = NEPS(G1, . . . , Gn;B) with respect to basis B consist of all possible values

µi1,...,in =
∑

(β1,...,βn)∈B

λβ1

1i1
· . . . · λβnnin

with 1 ≤ ik ≤ nk for 1 ≤ k ≤ n.

A first consequence is that every NEPS of integral graphs is integral. It is easily checked
that the complete graph Kn on n ≥ 2 vertices has the simple eigenvalue n − 1 and the
eigenvalue −1 with multiplicity n − 1. Hence NEPS of complete graphs are integral.
Using Theorem 2.5, we now readily confirm the following result of [18]:

Proposition 3.2. Every gcd-graph is integral.

An interesting property of a graph is the ability to choose an eigenspace basis such that
its vectors have entries from a very small set only. This may be possible only for certain
or for all of its eigenvalues. For example, in [9] a construction is given for a basis of the
eigenspace of eigenvalue−2 of a generalized line graph whose vectors contain only entries
from {0,±1,±2}.

Imposing an even greater restriction on the admissible entries, we call an eigenspace
basis simply structured if it consists of vectors containing only entries from {0, 1,−1}.
Accordingly, an eigenspace is considered as simply structured if it has a simply structured
basis. Observe that the eigenvalue belonging to a simply structured eigenspace is necessar-
ily integral.
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For a trivial example of a simply structured eigenspace basis, consider a connected r-
regular graph. Here the all ones vector constitutes a basis of the eigenspace corresponding
to the eigenvalue r. Moreover, for several graph classes, the eigenspaces corresponding to
the eigenvalues 0 or −1 are simply structured, cf. [5],[20],[24].

It is somewhat remarkable if all of the eigenspaces of a graph are simply structured. In
[25] is has been shown that Sudoku graphs are NEPS of complete graphs (recall Example
2.9) and admit simply structured eigenspace bases for all eigenvalues. As we shall see, this
is true for any NEPS of complete graphs. For this we require the following theorem [11]:

Theorem 3.3. If X and Y are graphs of orders n and m with linearly independent eigen-
vectors x(1), . . . , x(n) and y(1), . . . , y(m), respectively, then the nm tensor products

x(i) ⊗ y(j) (i = 1, . . . , n; j = 1, . . . ,m)

form a set of linearly independent eigenvectors of any NEPS of X and Y . This fact readily
extends to NEPS with more factors.

Corollary 3.4. Any NEPS of graphs for which all eigenspaces are simply structured inher-
its that very property.

Proof. Using the notation of the previous theorem, it is obvious that x(i) ⊗ y(j) has only
entries from {0, 1,−1} if the same holds for x(i) and y(j). This remains true for an arbitrary
number of factors.

We can now prove the following result:

Proposition 3.5. All eigenspaces of a gcd-graph are simply structured.

Proof. Consider the complete graph Kn, n ≥ 2. The all-ones vector (1, 1, . . . , 1) forms a
basis of the eigenspace of eigenvalue n− 1. A basis of the eigenspace of eigenvalue −1 is
formed by the vectors

x(1) = (−1, 1, 0, 0, . . . , 0, 0),
x(2) = (−1, 0, 1, 0, . . . , 0, 0),
...

...
x(n−1) = (−1, 0, 0, 0, . . . , 0, 1).

Thus the result follows from Corollary 3.4 and Theorem 2.5.

4 Open problems
Let us conclude with a number of open problems we think are worth investigating in the
future:

1. Does every integral Cayley graph over a finite abelian group have a simply structured
eigenspace basis for every eigenvalue?

2. Find a small class of integral graphs such that every integral Cayley graph over an
abelian group is a NEPS of some graphs of this class.

3. It has been shown by SO [26] that integral Cayley graphs over Zpα , p prime, are
uniquely determined by their spectrum. Find more groups Γ such that cospectral
integral Cayley graphs Cay(Γ, S1), Cay(Γ, S2) are necessarily isomorphic.
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4. Try to determine or estimate the number %(n) of nonisomorphic gcd-graphs on n
vertices. In [18] we showed that for a prime p ≥ 5 we have %(p2) = 6. Observe that
%(2α) is the number of nonisomorphic cubelike graphs on 2α vertices, cf. [19].

5. Determine graph invariants for gcd-graphs such as connectivity, clique number, and
chromatic number, cf. [6], [7].
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[21] M. Petrić, Connectedness of the generalized direct product of digraphs, Univ. Beograd. Publ.
Elektrotehn. Fak. (Ser. Mat.) 6 (1995), 30–38.

[22] H. N. Ramaswamy, C. R. Veena, On the Energy of Unitary Cayley Graphs, Electron. J. Comb.
16 (2009), N24, 1–8.

[23] H. E. Rose, A course in number theory, Oxford Science Publications, Oxford University Press,
1994.

[24] J. W. Sander and T. Sander, On the Kernel of the Coprime Graph of Integers, Integers 9 (2009),
569–579.

[25] T. Sander, Sudoku graphs are integral, Electron. J. Comb. 16 (2009), N25, 1–7.

[26] W. So, Integral circulant graphs, Discrete Math. 306 (2005), 153–158.





Also available at http://amc-journal.eu
ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 6 (2013) 301–304

The bipartite graphs of abelian dessins d’enfants

Rubén A. Hidalgo ∗
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Abstract

Let S be a closed Riemann surface and let β : S → Ĉ be a regular branched holomor-
phic covering, with an abelian group as deck group, whose branch values are contained
in the set {∞, 0, 1}. Three dessins d’enfants are provided by β−1([0, 1]), β−1([1,∞]) and
β−1([0,∞]). In this paper we provide a description of the bipartite graphs associated to
these dessins d’enfants using simple arguments.

Keywords: Dessins d’enfants, Belyi curves, Algebraic curves, Riemann Surfaces.

Math. Subj. Class.: 11G32, 14H37, 30F10

1 Introduction
As a consequence of the Riemann-Roch theorem, there is a bijective correspondence be-
tween isomorphism classes of closed Riemann surfaces and isomorphism classes of com-
plex algebraic curves. A closed Riemann surface S is called a Belyi curve if there is a
non-constant meromorphic function β : S → Ĉ whose branch values are contained in
{∞, 0, 1}. The function β is called a Belyi function for S and (S , β) is called a Belyi pair. If
the branch orders of β at 0, 1 and∞ are p, q and r, respectively, then we say that the Belyi
pair (S , β) is of type (p, q, r).

If (S , β) is a Bely pair, then the pre-image D1 = β−1([0, 1]) (D2 = β−1([1,∞]) and
D3 = β−1([0,∞]), respectively) defines a dessin d’enfant on S (see [7]), that is, a bipartite
map on S (the pre-image of 0 are the white vertices and the pre-image of 1 are the black
vertices of D1). Conversely, by the Uniformization Theorem, each dessin d’enfant D on a
closed orientable surface induces a unique (up to isomorphisms) Riemann surface structure
S on it and a Belyi map β : S → Ĉ so that D and β−1([0, 1]) are equivalent bipartite maps
on S . A famous result due to Belyi [1, 2] states that a closed Riemann surface S is a Belyi
curve if and only if S can be defined by an algebraic curve over Q. This relationship was
∗Partially supported by Projects Fondecyt 1110001 and UTFSM 12.11.01.
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observed by Grothendieck in his famous Esquisse d’un programme [3] to propose a study of
the structure of the absolute Galois group Gal(Q/Q) by its action on the dessins d’enfants.
As a consequence, a natural link between Galois theory, Belyi pairs and dessins d’enfants
appears and, moreover, Galois invariants should be expressed in a purely combinatorial
form. Unfortunately, the action of Gal(Q/Q) on dessins d’enfants is not well understood.

A particular class of dessins d’enfants are those produced by Belyi pairs (S , β) for which
β is a regular branched holomorphic cover; in which case we say that S is a quasiplatonic
curve. Wolfart [8] noticed that quasiplatonic curves (and also the corresponding regular
dessins d’enfants) are definable over their field of moduli. In the particular case when
the deck group of β is an abelian group, we say that S is an abelian quasiplatonic curve,
that (S , β) is an abelian Belyi pair (the corresponding dessins d’enfants are called abelian
dessins d’enfants). In this case, if (p, q, r) is the type of (S , β), then we say that signature
(0; p, q, r) is an abelian triangular signature. In [4] it was noticed that every abelian Belyi
pair (and the corresponding abelian dessins d’enfants) can be defined over Q, that is, they
are fixed points for the action of Gal(Q/Q). In this paper we describe, using simple argu-
ments, the underlying bipartite graphs of the abelian dessins d’enfants (see Theorem 1).
Next, we proceed to describe a couple of classical examples.

If n,m, d are positive integers, then we denote by Kd
n,m the bipartite graph obtained

from the complete bipartite graph Kn,m by replacing each edge by d edges. In this way,
K1

n,m = Kn,m.
(1) If (S , β) is an abelian Belyi pair of type (k, k, k), where k ≥ 2 is an integer, and

whose deck group of β is Z2
k , then (S , β) is isomorphic to (Fk, βk), where Fk is the classical

Fermat curve {xk + yk + zk = 0} ⊂ P2, βk([x : y : z]) = −(y/x)k and the deck group of βk is
the abelian group generated by a([x : y : z]) = [ωk x : y : z] and b([x : y : z]) = [x : ωky : z],
where ωk = e2πi/k. The fixed points of a (respectively, b and ab) are given by the k points
in β−1

k (∞) (respectively, β−1
k (0) and β−1

k (1)). The abelian dessins d’enfants D1 = β−1
k ([0, 1]),

D2 = β−1
k ([1,∞]) and D3 = β−1

k ([0,∞]) have as bipartite graph the complete bipartite graph
K1

k,k [5, 6].

(2) If (Ĉ, β) is an abelian Belyi pair, with deck group H, then either H � Zn or H � Z2
2.

The associated bipartite graphs of the corresponding abelian dessins d’enfants are in the
first case equal to K1

1,n and Kn
1,1 and in the second case equal to K1

2,2.

Theorem 1 below generalizes the above to the case of abelian dessins d’enfants of any
type.

Theorem 1. Let (S , β) be an abelian Belyi pair of type (p, q, r) and let d be the degree of
β. Then the bipartite graphs associated to the three abelian dessins d’enfants are given by

G1 = K pq/d
d/p,d/q, G2 = Kqr/d

d/q,d/r, G3 = K pr/d
d/p,d/r.

Remark 2. Particular classes of abelian dessins d’enfants are those provided by the max-
imal ones with respect to its type (as the case provided by classical Fermat curves). An
abelian dessin d’enfant associated to an abelian Belyi pair (S , β), with abelian group H as
deck group of β, is called an homology dessin d’enfant (and (S , β) is called an homology
Belyi pair) if there is no an abelian Belyi pair (R, η), with abelian group G as deck group of
η, so that S = R/L for some non-trivial subgroup L < G acting freely on R with H = G/L.
If (S , β) is an homology Belyi pair, then equations over Q for S and β were found in [4].
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Clearly every abelian dessin d’enfant is covered by an homology dessin d’enfant of the
same type. If the genus of S is at least two, then a homology Belyi pair (S , β) of type
(p, q, r) can be uniformized as follows. Let Γ be a Fuchsian group of signature (0; p, q, r)
and let Γ′ be its derivative subgroup. Then (S , β) is equivalent to (H2/Γ′, βΓ), where βΓ is
the natural quotient map H2/Γ′ → H2/Γ. In this way, not only the bipartite graphs may be
described, but also the corresponding dessins d’enfants.

2 Proof of Theorem 1
Let (S , β) be an abelian Belyi pair of type (p, q, r) and let H be the abelian group being the
deck group of β (so d = |H|, the order of H).

Let D1 be the dessin d’enfant whose edges are the pre-images under β of the arc [0, 1],
the black vertices are the pre-images of 0 and the white vertices are the pre-images of 1.
The number of black vertices is equal to |H|/p, the number of white vertices is equal to
|H|/q and the number of faces is |H|/r. The degree of a black vertex is p, the degree of a
white vertex is q and the degree of a face is r.

Let x1 ∈ S (respectively, y1 ∈ S ) be such that β(x1) = 0 (respectively, β(y1) = 1). Let
Zp � 〈a〉 < H (respectively, Zq � 〈b〉 < H) be the H-stabilizer of x1 (respectively, the
H-stabilizer of y1). As H acts transitively on β−1(0) (respectively, β−1(1)) and H is abelian,
we may see that:

1. the H-stabilizer of every point in β−1(0) (respectively, β−1(1)) is 〈a〉 (respectively,
〈b〉);

2. H = 〈a, b〉;

3. 〈b〉 (respectively, 〈a〉) acts transitively on β−1(0) (respectively, β−1(1)).

As there is a black vertex and a white vertex connected with an edge, condition (3)
above ensures that every black vertex and every white vertex is connected by an edge.

Again from (3), the 〈b〉-stabilizer of x1 (respectively, the 〈a〉-stabilizer of y1) is its cyclic
subgroup of 〈b〉 (respectively, 〈a〉) of order pq/|H|. It follows that every pair of black and
white vertices are connected with pq/|H| edges.

All the above information permits to obtain that the graph associated to D1 is the bipar-
tite graph

G1 = K pq/|H|
|H|/p,|H|/q.

Similarly, let D2 (respectively, D3) be the dessin d’enfant obtained as the pre-image
of the arc [1,∞] (respectively, [∞, 0]) and the corresponding graph G2 (respectively, G3).
Then, working in the same way as for D1 one obtains that

G2 = Kqr/|H|
|H|/q,|H|/r, G3 = K pr/|H|

|H|/p,|H|/r.

Remark 3. It is well know that a signature (0; p, q, r) is an abelian triangular signature if
and only if lcm(p, q, r) = lcm(p, q) = lcm(p, r) = lcm(q, r), where lcm stands for the least
common multiple. In that case we may write

p = AA12A13, q = AA12A23, r = AA13A23,

where gcd(A12, A13) = gcd(A12, A23) = gcd(A13, A23) = 1 and A = gcd(p, q, r), where gcd
stands for the greatest common divisor.
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In [4] we proved that if (S , β) is an homology Belyi pair, then H � ZA × Zµ, where
µ = lcm(p, q, r) = AA12A13A23. In particular, the bipartite graphs in Theorem 1 are given
by

G1 = KA12
AA23,AA13

, G2 = KA23
AA13,AA12

, G3 = KA13
AA23,AA12

.

In the general situation, that is, for any abelian Bely pair of type (p, q, r) with β of
degree d, the bipartite graphs of the three dessins d’enfants are given by

G1 = KlA12
AA23/l,AA13/l

, G2 = KlA23
AA13/l,AA12/l

, G3 = KlA13
AA23/l,AA12/l

,

where l = A2A12A13A23/d.

Acknowledgments
The author would like to thank the referee for his/her careful reading and the suggested
corrections to the first version.

References
[1] G. V. Belyi, Galois extensions of a maximal cyclotomic field, Izv. Akad. Nauk SSSR Ser. Mat. 43

(1979), 267–276.

[2] G. V. Belyi, A new proof of the three-point theorem, Mat. Sb. 193 (2002), 21–24.

[3] A. Grothendieck, Esquisse d’un programme, in: L. Schneps and P. Lochak (eds.), Geometric
Galois actions 1. The Inverse Galois Problem, Moduli Spaces and Mapping Class Groups, Lon-
don Math. Soc. Lecture Note Ser. 242, pages 5–48, with an English translation on pp. 243–283,
Cambridge Univ. Press, Cambridge, 1997.

[4] R.A. Hidalgo, Homology closed Riemann surfaces, Quarterly Journal of Math. (2011), doi:
10.1093/qmath/har026

[5] G. A. Jones and M. Streit, Galois groups, monodromy groups and cartographic groups, in: L.
Schneps and P. Lochak (eds.), Geometric Galois Actions 2. The Inverse Galois Problem, Moduli
Spaces and Mapping Class Groups. London Math. Soc. Lecture Note Ser. 243, pages 25–65.
Cambridge Univ. Press, Cambridge, 1997.

[6] G. Ringel and J. W. T. Youngs, Das Geschlecht des vollständigen dreifärbbaren Graphen, Comm.
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Abstract

In this paper we discuss several results about the structure of the configuration space
of two-dimensional tensegrities with a small number of points. We briefly describe the
technique of surgeries that is used to find geometric conditions for tensegrities. Further we
introduce a new surgery for three-dimensional tensegrities. Within this paper we formulate
additional open problems related to the stratified space of tensegrities.
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1 Introduction
In this paper we study the stratified spaces of tensegrities with a small number of points.
We work mostly with planar tensegrities. In the case of 4 and 5 point configurations we
give an explicit description of all the strata and present a visualization of the entire stratified
space. Further we give a geometric description of the strata for 6 and 7 points and use the
technique of surgeries to find new geometric conditions adding to the list of already known
ones. In particular, we introduce a new surgery for tensegrities in R3.
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1.1 Configuration space of tensegrities

The first steps in the study of rigidity and flexibility of tensegrities were made by B. Roth
and W. Whiteley in [9] and further developed by R. Connelly and W. Whiteley in [3], see
also the survey about rigidity in [13]. N. L. White and W. Whiteley in [12] started the
investigation of geometric conditions for a tensegrity with prescribed bars and cables. In
the preprint [7] M. de Guzmán describes several other examples of geometric conditions
for tensegrities.

Let us recall standard definitions of tensegrities (as in [2], [4], etc.). See also [10] for a
collection of open problems and a good bibliography.

Definition 1.1. Fix a positive integer d. Let G = (V,E) be an arbitrary graph without
loops and multiple edges. Let it have n vertices v1, . . . , vn.

• A configuration is a finite collection P of n labeled points (p1, p2, . . . , pn), where
each point pi (also called a vertex) is in a fixed Euclidean space Rd.

• The embedding of G with straight edges, induced by mapping vj to pj is called a
tensegrity framework and it is denoted as G(P ).

• We say that a load or force F acting on a framework G(P ) in Rd is an assignment
of a vector fi in Rd to each vertex i of G.

• We say that a stressw for a frameworkG(P ) in Rd is an assignment of a real number
wi,j = wj,i (we call it an edge-stress) to each edge pipj of G. An edge-stress is
regarded as a tension or a compression in the edge pipj . For simplicity reasons we
put wi,j = 0 if there is no edge between the corresponding vertices. We say that w
resolves a load F if the following vector equation holds for each vertex i of G:

fi +
∑
{j|j 6=i}

wi,j(pj − pi) = 0.

By pj−pi we denote the vector from the point pi to the point pj .

• A stress w is called a self-stress if, the following equilibrium condition is fulfilled at
every vertex pi: ∑

{j|j 6=i}

wi,j(pj − pi) = 0.

• A couple (G(P ), w) is called a tensegrity if w is a self-stress for the framework
G(P ).

• If wi,j < 0 then we call the edge pipj a cable, if wi,j > 0 we call it a strut.

Let W (n) denote the linear space of dimension n2 of all edge-stresses wi,j . Consider a
framework G(P ) and denote by W (G,P ) the subset of W (n) of all possible self-stresses
for G(P ). By definition the set W (G,P ) is a linear subspace of W (n).

Definition 1.2. The configuration space of tensegrities corresponding to the graph G is the
set

Ωd(G) :=
{

(G(P ), w) |P ∈ (Rd)n, w ∈W (G,P )
}
.

The set {G(P ) |P ∈ (Rd)n} is said to be the base of the configuration space, we denote it
by Bd(G).
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1.2 Stratification of the base of a configuration space of tensegrities

Suppose we have some framework G(P ) and we want to find a cable-strut construction on
it. Then which edges can be replaced by cables, and which by struts? What is the geometric
position of points for which given edges may be replaced by cables and the others by struts?
These questions lead to the following definition.

Definition 1.3. A set W (G,P1) is said to be equivalent to a set W (G,P2) if there exists
a homeomorphism ξ between W (G,P1) and W (G,P2), such that for any self-stress w in
W (G,P1) the self-stress ξ(w) satisfies

sgn
(
ξ(w)

)
= sgn

(
w
)
.

Henceforth we call a set W (G,P ) a linear fiber. The described equivalence relation
on linear fibers gives us a stratification of the base Bd(G) = (Rd)n. A stratum is by
definition a maximal connected set of points with equivalent linear fibers. In the paper [4]
we prove that all strata are semialgebraic sets (which implies for instance that they are path
connected).

The idea of this paper is to make the first steps in the study of particular configuration
spaces of tensegrities. We present the techniques to find geometric conditions and open
problems for further study that already arise in very simple situations of 9 point configura-
tions.

Let us, first, make the following three general remarks.

GR1. The majority of the strata of codimension k can be defined by algebraic equations
and inequalities that define the strata of codimension 1. The exceptions here are mostly in
high codimension (the simplest one is as follows: for two points connected by an edge
there is no codimension 1 stratum, but there is one codimension 2 stratum corresponding
to coinciding points; actually it is interesting to find the complete list of such exceptions).
So the most important case to study is the codimension 1 case.

GR2. A stratification of a subgraph is a substratification of the original graph (i.e., each
stratum for a subgraph is the union of certain strata for the original graph), hence below we
skip the description of B2(G) for graphs with 5 vertices other than K5.

GR3. For any stratum there exists a certain subgraph that locally identifies the stratum
(i.e., for any point x of the stratum there exists a neighborhood B(x) such that any config-
uration in B(x) has a nonzero self-stress for the subgraph if and only if this point is on the
stratum).

According to general remarks GR1 and GR2 the most interesting case is to study the
strata of codimension 1 for the complete graph on n vertices (denoted further by Kn). It is
possible to find some of the strata of Kn directly. For the other strata one, first, should find
an appropriate subgraph that locally identifies the stratum, and then find appropriate surg-
eries (explained in Section 3) to reduce the complexity of the subgraph to find geometric
conditions.

This paper is organized as follows. In Section 2 we study the stratification of configu-
ration spaces of tensegrities in the plane with a small number of vertices. In Subsections 2.1
and 2.2 we briefly describe the trivial cases of two and three point configurations. Further
in Subsections 2.3 and 2.4 we study the four and the five point cases. In each of the cases
we describe the geometry and the number of strata. In addition we introduce the adjacency
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diagram of full dimension and codimension 1 strata. In Subsections 2.5 and 2.6 we de-
scribe geometric conditions for the codimension 1 strata of 6, 7, and 8 point tensegrities. In
Section 3 we present the technique of surgeries to find geometric descriptions for the strata.
In Subsection 3.1 we describe surgeries that do not change graphs, and in Subsection 3.2
we show a couple of surgeries in the two-dimensional case. We introduce a new three-
dimensional surgery in Subsection 3.3. In conclusion, we formulate several open questions
in Subsection 3.4.

2 Stratification of the space B2(Kn) for small n
In this section we study the geometry of tensegrity stratifications for graphs with a small
number of vertices. The cases of n = 2, 3, 4, 5 are studied in full detail. Starting from
n = 6 there are some gaps in the understanding of tensegrities. Still for n = 6, 7, 8 the
complete description of the geometric conditions for the strata is known, we briefly describe
several results on them here (see [4] for more information).

2.1 Case of two points

Consider, first, the case of two points (n = 2). There are only two graphs on two points: a
complete one K2 and a graph without edges (denote it by G0,2).

All the fibers of the base B2(G0,2) = R4 are of dimension 0, and, therefore, they are
equivalent. Hence the stratification is trivial.

The complete graph K2 here has only one edge. If two points of the graph do not
coincide then the stress at this edge should be zero. When two points coincide then the
stress at the edge can be arbitrary, and we have a one-dimensional set of solutions (i.e., a
fiber). So the base B2(K2) = R4 has a codimension 2 stratum (a 2-dimensional plane).
The complement to this stratum is a stratum of codimension 0.

2.2 Three point configurations

There are four different types of graphs here: let Gi,3 be the graph with i edges for i =
0, 1, 2, 3.

In cases G0,3 and G1,3 the base stratifications are the following direct products:

B2(G0,3) = B2(G0,2)× R2 and B2(G1,3) = B2(K2)× R2.

So B2(G0,3) is trivial and B2(G1,3) has a 4-dimensional subspace and its complement as
strata.

The base B2(G2,3) contains five strata. One of them corresponds to the configuration
where three points coincide: the fiber here is 2-dimensional, this stratum is isometric to R2.
There are three strata where one of the edges of the graph vanishes: they are isometric to
R4\R2. Finally, the complement to the union of these strata is the only stratum of maximal
dimension. There are no nonzero tensegrities for a configuration in this stratum.

For the complete graph on three vertices we have, for the first time, codimension 1
strata. There are three codimension 1 strata, all of them correspond to the following config-
uration: three points are in one line. Different strata correspond to having a different point
between the two others.

Let us briefly describe one of such strata. Let Pi = (xi, yi) be the points of the graph
(i = 1, 2, 3). Then the condition that the three points are in a line is defined by a quadratic
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equation:
(x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1) = 0

This quadric divides the space into two connected components: corresponding to positively
and negatively oriented triangles.

To sum up we present for B2(K3) the following table.

Dimension of a stratum 0 1 2 3 4 5 6
Number of such strata 0 0 1 0 3 3 2

2.3 Stratification of B2(K4)

In this subsection we restrict ourselves to the complete graph K4 (for its subgraphs we
apply the reasoning of GR2 above). A plane configuration of four points in general position
admits a unique tensegrity (up to a multiplicative constant), which is called an atom. In [8]
it was proved that any self-stress for Kn is a sum of self-stressed atoms in Kn (i.e., a sum
of certain K4 ⊂ Kn with scalars). For K4 there are exactly 14 strata of general position.

The strata of codimension 1 correspond to three of four points of the graph lying in a
line. Actually in this case there is no jump of dimension of the fiber: there is also a unique
(up to scalar) solution corresponding to the three points in a line. But the stresses on the
edges from the fourth point are all zero, and hence a fiber of this stratum is not equivalent
to general fibers. The number of such strata is 24.

In codimension 2 we have two different types of strata corresponding to

• four points in a line: the dimension of a fiber is 2 (twelve strata);
• two points coincide: the dimension of a fiber is 1 (twelve strata).

In codimension 3 there is one type of strata with configurations of four points in a line,
two of which coincide. Six of them with the double point in the middle and twelve of them
with the double point not in the middle.

In codimension 4, there are two types of strata:

• three points coincide (4 strata);
• two pairs of points coincide (3 strata).

And, finally, there is a codimension 6 stratum when all four points coincide. We remark
that for none of the strata the fiber is 3-dimensional.

The cardinalities of strata are shown in the following table.

Dimension of a stratum 0 1 2 3 4 5 6 7 8
Number of strata 0 0 1 0 7 18 24 24 14

2.3.1 The space of formal configurations

Let us draw schematically the adjacency of the strata of maximal dimension via strata
of codimension 1. The dimension of the stratified space is 8, let us reduce it to two via
factoring by proper affine transformations. We will use the following simple proposition.

Proposition 2.1. Invertible affine transformations of the plane do not change the equiva-
lence class of a fiber W (G,P ). In other words if P is a configuration and T an invertible
affine transformation of the plane then

W (G,P ) 'W (G,T (P )).
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So instead of studying the stratification itself we restrict to the set of formal configura-
tions with respect to proper affine transformations of the plane.

Definition 2.2. We say that a four point configuration v1, v2, v3, v4 is formal in one of the
following cases:

i) nondegenerate case: a configuration Px,y,+ with vertices v1 = (0, 0), v2 = (1, 0),
v3 = (x, y), v4 = (x, y+1) for arbitrary (x, y).

ii) nondegenerate case: a configuration Px,y,− with v1 = (0, 0), v2 = (1, 0), v3 =
(x, y), v4 = (x, y−1) for arbitrary (x, y).

iii) degenerate case: a configuration P∆,+ with v1 = (0, 0), v2 = (1, 0), v3 = (0, 1),
v4 = (∆, 1) for an arbitrary ∆.

iv) degenerate case: a configuration P∆,− with v1 = (0, 0), v2 = (1, 0), v3 = (0,−1),
v4 = (∆,−1) for an arbitrary ∆.

v) closure: we add two formal configurations P±∞ with vertices v1 = (0, 0), v2 =
(1, 0), v3 = (1, 0), v4 = (1,±∞).

We denote the set of all formal configurations by Λ4.

In some sense the space Λ4 is the space of all codimension 0 and codimension 1 con-
figurations factored by the group of proper affine transformations.

Proposition 2.3. For any codimension 0 and codimension 1 configuration there exists a
unique formal configuration to which the first configuration can be affinely deformed.

The space Λ4 is endowed with a natural topology of a quotient space.

Proposition 2.4. There is a natural topology of a sphere S2 for the set Λ4.

Proof. Let us introduce a topology of the unit sphere S2 for Λ4. Consider the configura-
tions of case i) on the plane z = 1: we identify the point Px,y,+ with the point (x, y, 1).
Consider the projection of this plane to the upper unit hemisphere S2 from the origin. So
we have a one to one correspondence between the configurations of case i) and the upper
hemisphere.

Similarly we take the plane z = −1 for the case ii) identifying the point (−x,−y,−1)
with the configuration Px,y,− and projecting it to the lower hemisphere.

For the equator of the unit sphere we use all the other cases as asymptotic directions.
First, we associate the configuration P∆,+ with the point

(cos(π − arccotan ∆), sin(π − arccotan ∆), 0).

Let us explain the topology at one of such points of the equator. Suppose we start with
Px,y,+. The transformation sending the first three points to (0, 0), (1, 0), and (0, 1) is
linear with matrix (

1 −x/y
0 1/y

)
.

Then the image of the fourth point of Px,y,+ is (−x/y, 1+1/y). While x tends to infinity
and x/y tends to ∆ the last point tends to (−∆, 1), and hence the configuration Px,y,+
tends to P−∆,+, as in the above formula.
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Figure 1: Stratification of B2(K4).

Secondly, we associate P∆,− with the point

(cos(− arccotan ∆), sin(− arccotan ∆), 0)

in a similar way.
Finally, we glue P+∞ and P−∞ to the points (1, 0, 0) and (−1, 0, 0) respectively.

So, the codimension 0 and 1 stratification of B2(K4) can be derived from the stratifi-
cation of the sphere. We show the stereographic projection of Λ4 from the point (0, 0,−1)
to the plane z = 1 on Figure 1. There are four types of strata of codimension 1, they
correspond to the fact that certain three points are in a line. They separate the plane into
14 connected components. In each of the connected components we draw a typical type of
configuration: (v1, v2, v3, v4). Here v1 is blue, v2 is purple, v3 is red and v4 is green.

Remark 2.5. Different geometric conditions are represented by different colors in the pic-
ture, the correspondence is as follows.

• Light blue strata (6 strata forming a circle) correspond to configurations with v1, v2,
and v3 in a line.
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• Dark blue strata (6 strata) contain configurations with v1, v2, and v4 in a line.
• Light green strata (6 strata) contain configurations with v1, v3, and v4 in a line.
• Dark green strata (6 strata) correspond to configurations with v2, v3, and v4 in a line.

We have 24 strata of codimension 1 in total.
• The dashed black line is the projection of the equator. It corresponds to the degenerate

case of parallel segments. The dashed line is not a stratum, it has the same fiber as
all the points in its neighborhood. While one passes the dashed line the red-green
segment ”rotates” around the blue-purple segment.

Remark 2.6. The 14 connected components of the plane are in one-to-one correspondence
with the 14 faces of a cuboctahedron (accordingly, the 12 points on these circles correspond
to its vertices). Thus, the four circles are those circumscribed around the equatorial reg-
ular hexagons of the cuboctahedron. The vertices of this polytope lie on a sphere, hence,
through stereographic projection the four circumcircles in question project in fact to circles
in the image plane.

2.4 Stratification of B2(K5)

2.4.1 General description of the strata

We have 264 strata of general position.
As in the two previous cases the strata of codimension 1 correspond to three points of

the graph lying in a line. The number of such strata is 600.
The following strata are of codimension 2:
• twice three points in a line: 270 strata;
• four points in a line: 120 strata;
• two points coincide: 420 strata.
In codimension 3 we have the following cases:
• three points in a line and one double point: 60 strata;
• four points in a line two of which coincide: 180 strata;
• five points in a line: 60 strata.
For codimension 4 we have the following list:
• one triple point: 20 strata;
• five points in a line two of which coincide: 120 strata;
• two double points: 30 strata.
In codimension 5 we get:
• five points in a line three of which coincide: 30 strata;
• five points in a line with two pairs of points coinciding: 45 strata.
In codimension 6 there are the following strata:
• a triple point and a double point: 10 strata;
• one point and one point of multiplicity four: 5 strata.
And, finally, there is a codimension 8 stratum when all five points coincide.
The cardinalities of the strata are shown in the following table.

Dimension of a stratum 0 1 2 3 4 5 6 7 8 9 10
Number of strata 0 0 1 0 15 75 170 300 810 600 264
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2.4.2 Visualization of B2(K5)

Let us now describe the structure of the stratification B2(K5). Like in case of B2(K4)
we introduce a set Λ5 which represents the adjacency of strata of full dimension and of
codimension 1. By definition we put

Λ5 = Λ4 × R2,

i.e., we consider all the four point configurations of Λ4, and to each configuration we add
the fifth point. We take the product topology for Λ5.

So at each point of Λ4 we attach an R2-fiber. It will soon become clear that for any full
dimension stratum of Λ4 the corresponding fibration is trivial, but the adjacency is not.

On Figures 2 and 3 we show Λ5 in the following way. We draw the stratification of
Λ4 and inside each connected component we show the typical fiber of the component. The
first four points are represented by purple, blue, green, and red points. The lines passing
through any pair of them divide the fiber into 18 connected components, that correspond
to strata of full dimension. At each such component we write a letter of the Latin alphabet
(we consider capital and small letters as distinct).

• Two regions denoted by the same letter and lying in neighboring connected compo-
nents of Λ4 separated by light red, dark red, and black strata are in the same stratum.

• Two regions denoted by the same letter and lying in neighboring connected compo-
nents of Λ4 separated by light blue, dark blue, light green, and dark green strata are
in distinct strata which are adjacent to the same codimension 1 stratum.

• Two regions denoted by a distinct letter and lying in neighboring connected compo-
nents of Λ4 are not in one stratum and are not adjacent to the same codimension 1
stratum.

The light blue, dark blue, light green, and dark green strata represent the same geomet-
ric conditions as in Remark 2.5 above. For the remaining strata we have:

• The dark red stratum symbolizes that the line through the red and blue points is par-
allel to the line through the green and purple points.

• The light red stratum symbolizes that the line through the red and purple points is
parallel to the line through the green and blue points.

• The black stratum symbolizes that the line through the red and green points is parallel
to the line through the purple and blue points.

Remark 2.7. The configuration spaceB2(K5) has several obvious symmetries. First, there
is the group of permutations S5 that acts on the points of B2(K5); these symmetries are
hardly seen from Figures 2 and 3 since the representation is not S5-symmetric. Secondly,
there is a symmetry about the origin that sends configurations from B2(K5) to themselves,
on Figures 2 and 3 we used capital and small letters to indicate this symmetry (for instance,
the strata of ”a” contain centrally symmetric configurations to the configurations of the
strata ”A”).

As in the case of 4 point configurations we skip the subgraphs of K5, see the second
general remark above (GR2).
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Figure 2: Stratification of B2(K5) (Left part).
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Figure 3: Stratification of B2(K5) (Right part).
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2.5 Essentially new strata in B2(K6)

The stratification of B2(K6) is much more complicated, at this moment we do not even
know how many strata of distinct dimension are present in the stratification.

According to GR1 the first step in studying the stratification of B2(K6) is to study all
possible distinct types of strata of codimension 1. In the examples of Kn for n < 6 we
only have strata corresponding to the following geometric condition: three points are in a
line. For the case of 6 points we get two additional types of strata: six points on a conic,
and three lines passing through three pairs of points have a unique point of intersection.

So the following are three codimension 1 strata (appeared in [12] by N. L. White and
W. Whiteley):

• three points in a line;
• the lines v1v2, v3v4, and v5v6 meet in one point (or all parallel);
• all the six points are on a conic.

We conclude this subsection with the following problems.

Problem 2.8. Find a description of B2(K6), B3(K4) and B3(K5) similar to the ones for
B2(K4) and B2(K5) shown in the previous subsections.

2.6 A few words about the case n > 6

In [4] we have studied strata of the 7 and 8 point configurations. There are 4 distinct types
of codimension 1 strata for 7 points and 17 types for 8 points.

The 4 types of codimension 1 strata for 7 points are defined by the following geometric
conditions:

• three points in a line;
• the lines v1v2, v3v4, and v5v6 meet in one point (or all parallel);
• the lines v1v2, v3v4, and v5p (where p is the intersection of the lines v2v6 and v3v7)

have a common nonempty intersection;
• the six points v1, v2, v3, v4, v5, and p (where p is the intersection of the lines v1v6

and v3v7) are on a conic.

For the list of strata of 8 point configurations we refer to [4].
It turns out that the geometric conditions of any codimension 1 stratum can be obtained

by the following procedure. Consider the points of configuration P ; for each two pairs
of points (vi, vj) and (vk, vl) of this configuration consider the point of intersection of
the lines vivj and vkvl. This leads to a bigger configuration of points including P and
the above intersections, we denote it by U(P ). This operation can be iteratively applied
infinitely many times, which results in a universal set

U∞(P ) =

∞⋃
m=0

Um(P ).

Any condition for a codimension 1 stratum is always as follows: three certain points of
U∞(P ) are in a line (for the details, see for instance [9] and [4]).

Example 2.9. The condition the lines v1v2, v3v4, and v5v6 meet in one point in terms of
points of U1(P ) = U(P ) is as follows. The points v1, v2, and p = v3v4 ∩ v5v6 are in a
line.
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Remark 2.10. For simplicity reasons we omit discussions of cases where certain lines vivj
and vkvl are parallel, due to the fact that this situation is never generic for codimension 1
strata. In general one may think that if the lines vivj and vkvl are parallel, then their
intersection point is in the line at infinity in the projectivization of R2.

Remark 2.11. At first glance, the condition six points are on a conic is of different nature.
Nevertheless, it is a relation on the points of the configuration in U1(P ) described by
Pascal’s theorem: The intersections of the extended opposite sides of a hexagon inscribed
in a conic lie on the Pascal line. See also Example 2.15 below.

Problem 2.12. Describe all the possible different types of strata for 9 points.

Problem 2.13. How to calculate the number of different types of strata for n points with
arbitrary n?

It is also interesting to have an answer for the following question: how many iterations
does one need to perform (i.e., find the minimal m for Um(P )) to describe all conditions
for the codimension 1 strata of n-point configurations P?

Problem 2.14. Which configurations of Um(P ) define the same geometric condition?

This problem is a kind of question of finding generators and relations for the set of all
conditions. Let us show one type of such ”relations” in the following example.

Example 2.15. Consider the condition: six points v1, v2, . . . , v6 are on a conic. This
condition is described by configurations contained in U1(P ) via Pascal’s theorem:

The points p, q, r are in a line for

 p = vσ(1)vσ(2) ∩ vσ(4)vσ(5)

q = vσ(2)vσ(3) ∩ vσ(5)vσ(6)

r = vσ(3)vσ(4) ∩ vσ(6)vσ(1)

,

where σ is an arbitrary permutation of the set of six elements. So, there are 60 different
configurations of U1(P ) defining the same geometric condition.

3 Further study of strata: surgeries
We now look into subgraphs contained in a particular stratum and ask the basic question
on the dimension of the fiber.

Even graphs of very low connectivity admit non-zero tensegrities, for disconnected or
one-connected graphs we may simply examine the connected or 2-connected components.
Also 2-connected graphs may be decomposed via the 2-sum, see [11]: Consider graphs G1

and G2, their configurations P1 and P2 admitting tensegrities with p1q1 a cable in G1(P1)
and p2q2 a strut in G2(P2). We form the 2-sum G1

⊕
G2 by identifying p1 with p2 and q1

with q2 and removing the identified edge. We can inherit a configuration P from P1 and
P2 by fixing P1 and properly dilating, rotating and translating P2. It is clear that

dimW (G1

⊕
G2, P ) = dimW (G1, P1) + dimW (G2, P2)− 1.

Since 2-sum decomposition is canonical, we can describe geometric conditions for 2-
connected graphs by geometric conditions on their 3-blocks. For example the geometric
condition for G in Figure 4 is that the lines v1v2, v3v4, and v5v6 meet in one point.
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Figure 4: The 2-sum of a triangular prism with K4
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Figure 5: Examples of subgraphs of K6 admitting tensegrities at codimension 1 strata of
B2(K6).

3.1 Subgraphs related to codimension 1 strata

As we have already mentioned in GR3, for any codimension 1 stratum there exists at least
one subgraph of Kn that generically does not admit tensegrities but at this stratum admits
a one-dimensional family of tensegrities. Let us show such subgraphs for the codimension
one strata of B2(K6) and B2(K7).

Example 3.1. In the case of K6 we have three strata of different geometrical nature. The
first triangular subgraph (Figure 5, left) is related to the strata with three points in a line.
The second (Figure 5, middle) corresponds to the strata whose three pairs of points gen-
erate lines passing through one point. The last one (Figure 5, right) corresponds to the
configurations of six points on a conic.

Example 3.2. In the case of K7 there are the following new examples of subgraphs, cor-
responding to the main 4 different types of strata.

From the left to the right we have the following geometric conditions

• v1, v2, and v3 are in a line;
• the lines v1v2, v3v4, and v5v6 meet in one point;
• the lines v1v2, v3v4, and v5p (where p = v2v6 ∩ v3v7) have a common point;
• the six points v1, v2, v3, v4, v5, and p (where p = v1v6 ∩ v3v7) are on a conic.

Note that the example for three points in a line is actually the 2-sum of a triangle with
two atoms, so the only way for a non-zero self-stress on the edges is to have v1, v2, and v3,

v1 v2

v3 v4v5

v6 v7
v1 v2

v3v4
v5 v6

v7
v1 v2

v3v4
v5

v6

v7

v1 v2

v3v4
v5

v6

v7

Figure 6: Examples of subgraphs of K7 admitting tensegrities at codimension 1 strata of
B2(K7).
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the vertices of the triangle, in a line.

Remark 3.3. Geometric conditions for the graphs with 8 and fewer vertices are given
in [4]. Several of those geometric conditions were described before in terms of bracket
polynomials in [12] by N. L. White and W. Whiteley. We also refer to the paper [1] by
E. D. Bolker and H. Crapo for the relation of bipartite graphs with rectangular bar con-
structions.

3.2 Surgeries on subgraphs that change geometric conditions in a predictable way

In this subsection we present several surgeries that allow to guess the geometric conditions
for new strata (characterized by certain subgraphs) via other strata (characterized by these
graphs modified in a certain way). We call such modifications of graphs surgeries.

3.2.1 Surgeries that do not change geometric conditions

Let G be a graph, denote by Ge the graph with an edge e removed.

Proposition 3.4. (Edge exchange) Consider a graph G and a subgraph H , and let e1 and
e2 be two edges of H . Let P be a configuration for which dimW (H,P ) = 1. Suppose
also that the self-stresses of H do not vanish at the edges e1 and e2. Then we have

dimW (Ge1 , P ) = dimW (Ge2 , P ).

In the situation of Proposition 3.4 the strata of Ge1(P ) and Ge2(P ) are defined by the
same geometrical conditions.

3.2.2 Two two-dimensional surgeries that change geometric conditions

The first surgery is described in the following proposition.

Proposition 3.5. Consider the frameworks G(P ), GI1(P I1 ), and GI2(P I2 ) as on the figure:

v1
v2 v3

v4

p
q

G(P )

v1

v4

p
q

GI
1(P

I
1 )

v2 v3

v4

p
q

GI
2(P

I
2 )

If none of the triples of points (p, v2, v3), (q, v2, v3), (p, v2, v4), (q, v3, v4) and (v2, v3, v4)
are on a line then we have

dimW (GI1, P
I
1 ) = dimW (GI2, P

I
2 ).

Example 3.6. Let us consider a simple example of how to get a geometric condition for
the graph

v1 v2

v3v4
v5

v6

v7
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to admit a tensegrity knowing all geometric conditions for 6-point graphs. Let us apply
Surgery I to the points v5, v6, v7. We have:

v1 v2

v3v4
v5

v6

v7

v1 v2

v3v4
v5 p

.

The geometric condition to admit a tensegrity for the graph on the right is:
the lines v1v2, v3v4 and v5p intersect in a point.

Hence the geometric condition for the original graph is:
the lines v1v2, v3v4 and v5p intersect in a point, where p = v2v6 ∩ v3v7.

Now let us show the second surgery.

Proposition 3.7. Consider the frameworks G(P ), GII1 (P II1 ), and GII2 (P II2 ) as on the
following figure:

v1
v2 v3

v4

p
q

rs

G(P )

v2 v3

p
q

rs

GII
1 (P II

1 )

v1

v4

p
q

rs

GII
2 (P II

2 )

If none of the triples of points (p, q, v1), (p, v1, v4), (r, v1, v4), (q, v1, v4), (s, v1, v4), or
(r, s, v4) lie on a line then we have

dimW (GII1 , P
II
1 ) = dimW (GII2 , P

II
2 ).

Remark 3.8. Both surgeries were shown in [4]. There is a certain analogy of the first
surgery to ∆Y exchange in matroid theory (see for instance [13] and [5] for the connections
between matroids and rigidity theory), but it is not exactly the same.

Remark 3.9. Actually these surgeries are valid in the multidimensional case as well under
the condition that certain points are in one plane.

3.3 A new tensegrity surgery in R3

We conclude this paper with a single surgery for tensegrities in R3.

Proposition 3.10. Consider a graph G and frameworks G(P ), G1(P1), and G2(P2) as
follows:

v1
v2 v3

v4

e1
e2

e3
e4

e5 e6

G(P )

v2 v3

v4

e1
e2

e3
e4

e5 e6

G1(P1)

v1
v2 v3

v4

e1
e2

e3
e4

e5 e6

G2(P2)
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Denote the plane v2v3v4 by π1. Suppose that the couples of edges e1 and e2, e3 and e4, e5

and e6 define planes π2, π3, and π4, different from π1. Assume that π2 ∩ π3 ∩ π4 is a one
point intersection.

If G1(P1) and G2(P2) have nonzero stress on the edges connecting v1, v2, v3, and v4

then
π1 ∩ π2 ∩ π3 ∩ π4 = v1.

In this case we additionally have

dimW (G1, P1) = dimW (G2, P2).

Proof. The first statement follows since v1 only has valency 3 in G2(P2), so v1, v2, v3,
and v4 need to be coplanar to have a nonzero edge-stress. Now we explain how to map
W (G1, P1) to W (G2, P2). The inverse map is simply given by the reverse construction.
By the conditions v1 is the intersection point of the planes π1, π2, and π3. We add the
uniquely defined plane atom on v1, v2, v3, v4 to G1(P1) that cancels the edge-stress on
v2v3. Since the plane π1 does not coincide with the plane π2 spanned by the forces on e1

and e2, the edge-stress on v2v4 is also canceled. By the same reasons the edge-stress on
v3v4 is canceled as well. This uniquely defines a self-stress on G2(P2).

3.4 Some related open problems

The next goal in this approach is to continue to study the geometry of the strata. Ideally
one would like to find techniques that will give geometric conditions for a graph via its
combinatorics. This question seems to be a very hard open problem. The study of surgeries
is the first step to solve it at least in codimension 1.

For a start we propose the following open question.

Problem 3.11. Find all geometric conditions for the strata of 9 point tensegrities.

The surgeries introduced in this section were extremely useful for the study of 8 point
configurations (see in [4]). We think that it is not enough to know only these surgeries to
find all the geometric conditions. This gives rise to another question.

Problem 3.12. Find other surgeries on graphs that predictably change the geometric con-
ditions.

As far as we know there is no systematic study of strata for tensegrities in R3 or higher
dimensions: these cases are much more complicated than the planar case. At least the
stratification of B3(K5) should have a description similar to that of B2(K4), since 5 points
in general position in R3 admit a unique non-zero self-stress.

Additionally one should examine the rigidity properties of subgraphs in a stratum. For
K4 we have 14 strata of full dimension. For 8 of them the convex hull is a triangle, in 5 of
the strata the points are in convex position. A tensegrity for the convex position has 4 struts
(cables) and two cables (struts), while in the non-convex case there are three cables and
three struts. All of these tensegrities are (infinitesimally) rigid and struts and cables may
be exchanged without destroying rigidity. However, when viewed as graphs embedded in
R3 only half of them are rigid. For the convex case, there must be cables on the convex
hull and two struts. In the non-convex case there must be a triangle of struts on the convex
hull and three cables in the interior, termed a spider web by R. Connelly. None of these
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are proper forms in the sense of B. Grünbaum. They are minimally rigid, but in the convex
case they have members intersecting in a vertex other than a vertex of the graph, in the
non-convex case there is a vertex without a strut. B. Grünbaum in his lectures on lost
mathematics [6] asks about the number of proper forms given n struts. On 3 struts, there
is only one tensegrity which is minimally rigid with edges only intersecting at vertices and
such that every vertex is endpoint of at least one strut. For 4 struts there are at least 20
forms, but it is not known how many there are. The number of forms on n struts is bounded
by the number of strata on B3(Kn). For the hierarchies of the various kinds of rigidity
see [3].
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Abstract

Given two graphs G = (VG, EG) and H = (VH , EH), we ask under which conditions
there is a relation R ⊆ VG × VH that generates the edges of H given the structure of the
graph G. This construction can be seen as a form of multihomomorphism. It generalizes
surjective homomorphisms of graphs and naturally leads to notions of R-retractions, R-
cores, and R-cocores of graphs. Both R-cores and R-cocores of graphs are unique up to
isomorphism and can be computed in polynomial time.

Keywords: Generalized surjective graph homomorphism, R-reduced graph, R-retraction, binary re-
lation, multihomomorphism, R-core, cocore.

Math. Subj. Class.: 05C60, 05C76

1 Introduction
1.1 Motivation

Graphs are frequently employed to model natural or artificial systems [3, 11]. In many
applications separate graph models have been constructed for distinct, but at least concep-
tually related systems. One might think, e.g., of traffic networks for different means of
transportation (air, ship, road, railroad, bus). In the life sciences, elaborate network models
are considered for gene expression and the metabolic pathways regulated by these genes,
or for the co-occurrence of protein domains within proteins and the physical interactions of
proteins among each other.

Let us consider an example. Most proteins contain several functional domains, that
is, parts with well-characterized sequence and structure features that can be understood as
functional units. Protein domains for instance mediate the catalytic activity of an enzyme
and they are responsible for specific binding to small molecules, nucleic acids, or other
proteins. Databases such as SuperFamily compile the domain composition of a large
number of proteins. We can think of these data as a relation R ⊂ D × P between the set
D of domains and the set of P proteins which contain them. Protein-protein interaction
networks (PPIs) have been empirically determined for several species and are among the
best-studied biological networks [16]. From this graph, which has P as its vertex set, and
the relation R we can obtain a new graph whose vertex set are the protein domains D, with
edges connecting domains that are found in physically interacting proteins. This “domain
interaction graph” conveys information e.g. on the functional versatility of protein com-
plexes. On the other hand, we can use R to construct the domain-cooccurrence networks
(DCNs) [14] as simple relational composition R ◦R+. In examples like these, the detailed
connections between the various graphs have remained unexplored. In fact, there may not
be a meaningful connection between some of them, e.g. between PPIs and DCNs, while
in other cases there is a close connection: the domain interaction graph, for example, is
determined by the PPI and R.

A second setting in which graph structures are clearly related to each other is coarse-
graining. Here, sets of vertices are connected to a single coarse-grained vertex, with coarse-
grained edges inherited from the original graph. In the simplest case, we deal with quotient
graphs [15], although other, less stringent constructions are conceivable. Similarly, we
would expect that networks that are related by some evolutionary process retain some sort
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p1 p2

p3p4

d1 d2 d3 d4

d1

d2

d3

d4

p1

p2

p3

p4

Graph G Relation R Graph G ∗R

Figure 1: The graph G ∗R is determined by the graph G and the relation R.

of structural relationship.

1.2 Main definitions

A well-defined mathematical problem is hidden in this setting: Given two networks, can we
identify whether they are related in meaningful ways? The usual mathematical approach to
this question, namely to ask for the existence of structure-preserving maps, appears to be
much too restrictive. Instead, we set out here to ask if there is a relation between the two
networks that preserves structures in a less restrained sense.

The idea is to transfer edges from a graph G to a graph H with the help of a relation
R between the vertex set V of G and the vertex set B of H . In this context, R is simply a
set of pairs (v, b), with v ∈ V, b ∈ B. Since graphs can be regarded as representations of
binary relations, we can also consider G as a relation on its vertex set, with (x, y) ∈ G if
and only if x and y are connected by an edge of G. We then have the composition G ◦ R
given by all pairs (x, b) for which there exists a vertex y ∈ V connected by an edge of G
to x and (y, b) ∈ R. This, however, like R is a relation between elements of different sets.
In order to equip the target set B with a graph structure, we simply connect elements u and
v in B if they stand in relation to connected elements of G. In the following, we give a
formal definition, and we shall then relate it to the composition of relations just described.

A directed graph G is a pair G = (VG, EG) such that EG is a subset of VG × VG. We
denote by VG the set of vertices of G and by EG the set of edges of G. We consider only
finite graphs and allow loops on vertices.

An undirected graph (or simply a graph)G is any directed graph such that (u, v) ∈ EG
if and only if (v, u) ∈ EG. We thus consider undirected graphs to be special case of
directed graphs and we still allow loops on vertices. A simple graph is an undirected graph
without loops.

Definition 1.1. Let G = (VG, EG) be a graph, B a finite set, and R ⊆ V × B a binary
relation, where for every element b ∈ B, we can find an element v ∈ VG such that (v, b) ∈
R. Then the graph G ∗R has vertex set B and edge set

EG∗R = {(u, v) ∈ B ×B| there is (x, y) ∈ EG and (x, u), (y, v) ∈ R} . (1.1)

An example of the ∗ operation is depicted in Fig. 1.
Graphs with loops are not always a natural model, however, so that it may appear more

appealing to consider the slightly modified definition.
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Definition 1.2. Let G = (VG, EG) be a simple graph, B a finite set, R a binary relation,
where for every element b ∈ B, we can find an element v ∈ VG such that (v, b) ∈ R. Then
the (simple) graph G ? R has vertex set B and edge set

EG?R = {(u, v) ∈ B ×B|u 6= v and there is (x, y) ∈ EG and (x, u), (y, v) ∈ R} .
(1.2)

We shall remark that these definitions remain meaningful for directed graphs, weighted
graphs (where the weight of edge is a sum of weights of its pre-images) as well as relational
structures. For simplicity, we restrict ourselves to undirected graphs (with loops). Most of
the results can be directly generalized.

Graphs can be regarded as representations of symmetric binary relations. Using the
same symbol for the graph and the relation it represents, we may re-interpret definition 1.1
as a conjugation of relations. R+ is the transpose of R, i.e., (u, x) ∈ R+ if and only if
(x, u) ∈ R. The double composition R+ ◦G ◦ R contains the pair (u, v) in B × B if and
only if there are x and y such that (u, x) ∈ R+, (y, v) ∈ R, and (x, y) ∈ EG. Thus

G ∗R = R+ ◦G ◦R. (1.3)

Simple graphs, analogously, correspond to the irreflexive symmetric relations. For any
relation R, let Rι denote its irreflexive part, also known as the reflexive reduction of R.
Since definition 1.2 explicitly excludes the diagonals, it can be written in the form

G ? R = (R+ ◦G ◦R)ι. (1.4)

We have G ? R = (G ∗ R)ι, and hence EG?R ⊆ EG∗R. The composition G ∗ R is of
particular interest when G is also a simple graph, i.e., G = Gι.

The main part of this contribution will be concerned with the solutions of the equation
G ∗ R = H . The weak version, G ? R = H , will turn out to have much less convenient
properties, and will be discussed only briefly in section 7.

Throughout this paper we use the following standard notations and terms.
For relation R ⊆ X × Y we define by R(x) = {p ∈ Y |(x, p) ∈ R} the image of x

under R and R−1(p) = {x ∈ X|(x, p) ∈ R} the pre-image of p under R.
The domain of R is defined by domR = {x ∈ X|∃p ∈ Y s.t. (x, p) ∈ R}, and the

image of R is defined by imgR = {p ∈ Y |∃x ∈ X s.t. (x, p) ∈ R}. We say that the
domain of R is full if for any x ∈ X we have R(x) 6= ∅. Analogously, the image is full if
for any p ∈ Y we have R−1(p) 6= ∅.

Let R ⊆ X × Y is a binary relation, then R is injective, if for all x and z in X and y in
Y it holds that if (x, y) ∈ R and (z, y) ∈ R then x = z. R is functional, if for all x in X ,
and y and z in Y it holds that if (x, y) ∈ R and (x, z) ∈ R then y = z.

We denote by IG the identity map on G, i.e., {(x, x)|x ∈ VG}.
Let G = (VG, EG) be a graph and let W ⊆ VG. The induced subgraph G[W ] has

vertex set W and (x, y) is an edge of G[W ] if x, y ∈W and (x, y) ∈ EG.
A graph Pk is a path of length k. Similarly, Ck is an (elementary) cycle of length k with

vertex set {0, 1, . . . , k − 1}. Finally, Kk is the complete (loopless) graph with k vertices.
An isolated vertex is a vertex with degree 0. Note that the vertex with a loop is not

isolated in this sense.
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1.3 Matrix multiplication

The operation ∗ can also be formulated in terms of matrix multiplication. To see this,
consider the following variant of the operation on weighted graphs.

Definition 1.3. If G is a weighted graph, we use w(x, y) to denote the weight between x
and y. Given a finite setB and a binary relationR ⊆ VG×B,G~R is defined as a weighted
graph H with vertex set B, for any u, v ∈ B, w(u, v) =

∑
(x,u)∈R,(y,v)∈R w(x, y).

Ignoring the weights, operations ∗ and ~ are equivalent.
Using the language of matrices,G~R = H can be interpreted as matrix multiplication:

WG~R = R+WGR (1.5)

where R is the matrix representation of the relation R, i.e., Rxu = 1 if and only if (x, u) ∈
R, otherwise Rxu = 0, R+ denotes the transpose of R, and WG is the matrix of edge
weights of G.

1.4 Graph homomorphisms and multihomomorphisms

The notion of relations between graphs is in many ways similar (but not equivalent) to the
well studied notion of graph homomorphisms. The majority of our results focus on similar-
ities and differences between those two concepts. We give here only the basic definitions
of graph homomorphisms. For more details see [7].

A homomorphism from a graph G to a graph H is a mapping f : VG → VH such
that for every edge (x, y) of G, (f(x), f(y)) is an edge of H . Note that homomorphisms
require loops in H whenever (x, y) ∈ EG and f(x) = f(y). In contrast, f is a weak ho-
momorphism if (x, y) ∈ EG implies that either f(x) = f(y) or (f(x), f(y)) ∈ EH . Every
homomorphism from G to H induces also a weak homomorphism, but not conversely [9].

Since every homomorphism preserves adjacency, it naturally defines a mapping f1 :
EG → EH by setting f1((x, y)) = (f(x), f(y)) for all (x, y) ∈ EG. If f is surjective, we
call f a vertex surjective homomorphism, and if f1 is surjective, we call f an edge surjective
homomorphism. f is surjective homomorphism if it is both vertex- and edge-surjective [7].

A map f : VG → VH is, of course, a special case of a relation. This is seen by setting
F = {(x, f(x))|x ∈ VG}. Hence, there is a surjective homomorphism from G to H if and
only if there is a functional relation F such that G∗F = H . Another important connection
to the graph homomorphisms is the following simple lemma.

Lemma 1.4. If G ∗R = H , and the domain of R is full, then there is a homomorphism f
from G to H contained in R.

Proof. If G ∗R = H , then take any functional relation f ⊆ R, we have G ∗ f ⊆ H , where
f is a homomorphism from G to H .

Analogously, there is a weak surjective homomorphism fromG toH if and only if there
is a functional relation F such that G ? F = H , and there is a weak homomorphism from
G to H if there is a functional relation F ⊆ VG × VH such that G ? F is a subgraph of
H . The existence of relations between graphs thus can be seen as a proper generalization
of graph homomorphisms or weak graph homomorphisms, respectively.
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Finally, a full homomorphism from a graph G to a graph H is a vertex mapping f
such that for distinct vertices u and v of G, we have (u, v) an edge of G if and only if
(f(u), f(v)) is an edge of H , see [4].

Relation between graphs can be regarded also as a variant of multihomomorphisms.
Multihomomorphisms are building blocks of Hom-complexes, introduced by Lovász, and
are related to recent exciting developments in topological combinatorics [10], in particular
to deep results involved in proof of the Lovász hypothesis [1].

A multihomomorphism G → H is a mapping f : VG → 2VH \ {∅} (i.e., associating a
nonempty subset of vertices of H with every vertex of G) such that whenever {u1, u2} is
an edge of G, we have (v1, v2) ∈ EH for every v1 ∈ f(u1) and every v2 ∈ f(u2).

The functions from vertices to sets can be seen as representation of relations. A relation
with full domain thus can be regarded as surjective multihomomorphism, a multihomomor-
phism such that pre-image of every vertex in H is non-empty and for every edge (u, v) in
H we can find an edge (x, y) in G satisfying u ∈ f(x), v ∈ f(y).

1.5 Examples

Similarly to graph homomorphisms, the equation G ∗ R = H (or G ? R = H respec-
tively) may have multiple solutions for some pairs of graphs (G,H), while there may be
no solution at all for other pairs.

As an example, consider K2 (two vertices x, y connected by an edge) and C3 (a cycle
of three vertices u, v, w). Denote R1 = {(u, x), (v, y)}, R2 = {(v, x), (w, y)}, R3 =
{(w, x), (u, y)}, then it is easily seen that C3 ∗ Ri = K2 for each 1 ≤ i ≤ 3, i.e. the
equation C3 ∗R = K2 has more than one solution.

On the other hand, there is no relation R such that K2 ∗ R = C3. Otherwise, each
vertex of C3 is related to at most one vertex of K2, since C3 is loop free; hence there exists
a vertex in K2 which has no relation to at least two vertices in C3, w.l.o.g., one can assume
(x, u), (x, v) /∈ R; then the definition of ∗ implies that there is no edge between u and v,
which causes a contradiction.

Because relations do not need to have full domain (unlike graph homomorphisms),
there is always an relation from a graph G to its induced subgraph G[W ].

Relations with full domain are not restricted to surjective homomorphisms. As a simple
example, consider paths P1 with vertex set {x, y} and P2 with vertex set {u, v, w}, respec-
tively, and set R = {(x, u), (x,w), (y, v)}. One can easily verify P1 ∗ R = P2 by direct
computation. Here, R is not functional since x has two images.

1.6 Outline and main results

This paper is organized as follows.
In section 2 the basic properties of the strong relations between graphs are compiled.

It is shown that relations compose and every relation can be decomposed in a standard
way into a surjective and an injective relation (Corollary 2.3). We discuss some structural
properties of graph preserved by the relations.

Equivalence on the class of graphs induced by the existence of relations between graphs
is the topic of section 3. We consider two forms: the strong relational equivalence, where
relations are required to be reversible, and weak relational equivalence. Equivalence classes
of strong relational equivalence are characterized in Theorem 3.8. To describe equivalence
classes of the weak relational equivalence we introduce the notion of an R-core of a graph
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and show that it is in many ways similar to the more familiar construction of the graph core
(Theorem 3.17). We explore in particular the differences between core and R-core and an
effective algorithm to compute the R-core of given graph is provided.

Section 4 is concerned with the partial order induced on relations between two fixed
graphs G and H . Focusing on the special case G = H the minimal elements of this partial
order are described. In Theorem 4.7 we give a, perhaps surprisingly simple, characteriza-
tion of those graphs G for which all relations of G to itself are automorphisms.

R-retraction is defined in section 5 in analogy to retractions. It naturally gives rise to a
notion of R-reduced graphs that we show to coincide with the concept of graph cores. By
reversing the direction of relations, however, we obtain the concept of a cocore of a graph,
which does not have a non-trivial counterpart in the world of ordinary graph homomor-
phisms, and explore its properties.

The computational complexity of testing for the existence of a relation between two
graphs is briefly discussed in section 6. In Theorem 6.1 we describe the reduction of this
problem to the surjective homomorphism problem.

Finally, in section 7 we briefly summarize the most important similarities and differ-
ences between weak and strong relational composition.

2 Basic properties
2.1 Composition

Recall that the composition of binary relations is associative, i.e., suppose R ⊆ W × X ,
S ⊆ X × Y , and T ⊆ Y × Z. Then R ◦ (S ◦ T ) = (R ◦ S) ◦ T . Furthermore, the
transposition of relations satisfies (R ◦ S)+ = S+ ◦ R+. Interpreting the graph G as a
relation on its vertex set, we easily derive the following identities:

Lemma 2.1 (Composition law). (G ∗R) ∗ S = G ∗ (R ◦ S).
Proof. (G ∗R) ∗ S = S+ ◦ (R+ ◦G ◦R) ◦ S = (S+ ◦R+) ◦G ◦ (R ◦ S)
= (R ◦ S)+ ◦G ◦ (R ◦ S) = G ∗ (R ◦ S).

Now we show that every relation R can be decomposed, in a standard way, to a relation
RD duplicating vertices and a relation RC contracting vertices.

Lemma 2.2. Let R ⊆ X × Y be a relation. Then there exists a subset A of X , a set B, an
injective relation with full domain RD ⊆ A × B and a functional relation RC ⊆ B × Y ,
such that R = IA ◦RD ◦RC , where IA is the identity on X restricted to A.

Proof. Put A = domR. Then the relation IA removes vertices in X \ domR. It remains
to show, therefore, that any relation R ⊆ X × Y with full domain can be decomposed into
an injective relation RD ⊆ X × B and a functional relation RC ⊆ B × Y . To see this,
set B = R and declare (x, α) ∈ RD if and only if α = (x, p) ∈ R for some p ∈ Y ,
and (β, q) ∈ RC if and only if β = (y, q) ∈ R for some y ∈ X . By construction RD
is injective and RC is functional. Furthermore, (x0, p0) ∈ RD ◦ RC if and only if there
is α ∈ R that is simultaneously of the form (x0, p) and (x, p0), i.e., x = x0 and p = p0.
Hence (x0, p0) ∈ R.

Note that this decomposition is not unique. For instance, we could construct B from
multiple copies of R. More precisely, let B = R × {1, 2, · · · , k}, then we would set(
x, (α, i)

)
∈ RD (1 ≤ i ≤ k) if and only if α = (x, p) ∈ R for some p ∈ Y , etc.
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The set B as constructed in the proof of Lemma 2.2 has minimal size. To see this, it
suffices to show that, givenB there is a mapping fromB ontoR. SinceRD is injective and
RC is functional we may set

α ∈ B 7→ (R−1D (α), RC(α)).

SinceR = IA ◦RD ◦RC we conclude that the mapping is surjective, and hence |B| ≥ |R|.
According to Lemma 2.1, the decomposition of R in Lemma 2.2 can be restated as

follows:

Corollary 2.3. Suppose G ∗ R = H . Then there is a set B, an injective relation RD ⊆
domR × B with full domain, and a surjective relation RC ⊆ B × imgR such that
G[domR] ∗RD ∗RC = H .

In diagram form, this is expressed as

G

RD ##

R=RD◦RC // H

G ∗RD
RC

;; (2.1)

We shall remark that from the fact the relations compose it follows that the existence of
a relation implies a quasi-order on graphs that is related to the homomorphism order. This
order is studied more deeply in [8].

2.2 Structural properties preserved by relations

In this subsection we investigate structural properties ofH that can be derived from knowl-
edge about certain properties of G and the fact that there is some relation R such that
G ∗R = H .

2.2.1 Connected components

Proposition 2.4. Let G∗R = H and denote by H1, · · · , Hk the connected components of
H . Then there are relations Ri ⊆ VG×VHi

for each 1 ≤ i ≤ k such that G ∗Ri = Hi and
R =

⋃k
i=1Ri. Furthermore, set Gi = G[R−1(VHi

)]. Then there are no edges between Gi
and Gj for arbitrary i 6= j.

Proof. Define the restriction of R to the connected components of H as Ri = {(x, y) ∈
R|y ∈ VHi}. Clearly, R is the disjoint union of the Ri and G ∗Ri ⊆ Hi. The definition of
∗ implies H = G∗R = (

⋃
iRi)

+ ◦G◦
(⋃

j Rj

)
=
⋃
i

⋃
j R

+
i ◦G◦Rj . Since Ri and Rj

relate vertices of G to different connected components of H , we have R+
i ◦G ◦Rj = ∅. It

follows thatH =
⋃
i

⋃
j R

+
i ◦G◦Rj =

⋃
iR

+
i ◦G◦Ri =

⋃
iG∗Ri. HenceG∗Ri = Hi.

Any edge between Gi and Gj would generate edges between Hi and Hj , thus causing
a contradiction to our assumptions.

Denote by b0(G) the number of connected components ofG, then from Proposition 2.4
we arrive at:
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Corollary 2.5. Suppose both G and H do not have isolated vertices. If G ∗R = H and R
has full domain, then b0(G) ≥ b0(H).

Proof. Our notations is the same as in Proposition 2.4. We claim for arbitrary connected
component C of graph G, there exists a unique i, such that C is a connected component of
Gi. Otherwise one can find two vertices x, y ∈ C, x and y adjacent, such that x ∈ VGi

and y ∈ VGj
, since G has no isolated vertices, which contradicts E(Gi, Gj) = ∅. Thus

b0(G) ≥ b0(H) is easily followed.

From corollary 2.5, we know that H is connected whenever G is connected. The con-
nectedness of G, however, cannot be deduced from the connectedness of H . For example,
consider G = P1 ∪ P1 with vertex set {x1, x2, x3, x4} and edges {x1, x2} and {x3, x4},
and H = P2 with vertex set {v1, v2, v3}. Set R = {(x1, v1), (x2, v2), (x3, v2), (x4, v3)}.
One can easily verify that G ∗ R = H . On the other hand, H is connected but G has 2
connected components. The point here is, of course, that R is not injective.

2.2.2 Colorings

Graph homomorphisms of simple graphs can be seen as generalizations of colorings: A
(vertex) k-coloring of G is a mapping c : VG → {1, 2, . . . , k} such that adjacent vertices
have distinct colors, i.e., c(u) 6= c(v) whenever (u, v) ∈ EG. Every k-coloring c can be
also seen as a homomorphism c : G→ Kk.

The chromatic number χ is defined as the minimal of colors needed for a coloring, see
e.g. [7]. Thus, if R is a functional relation describing a vertex coloring, then G ∗R ⊆ Kk.
Conversely, G ∗ R ⊆ Kk, where R has full domain, then from Lemma 1.4, there exists a
homomorphism from G to Kk, which is a coloring of G.

Lemma 2.6. If G is a simple graph and R has full domain, then χ(G) ≤ χ(G ∗R).

Proof. SupposeG∗R = H and the domain ofR is full, from Lemma 1.4 we knowG→ H ,
so χ(G) ≤ χ(G ∗R).

2.2.3 Distances

Observation 2.7. If Pk ∗R = G, G is a simple graph and the domain of R is full, Pk with
the vertex set 0, 1, · · · , k, then there is a walk [v0, v1, . . . , vk] in G, where (i, vi) ∈ R for
0 ≤ i ≤ k.

Observation 2.8. If Ck ∗ R = G, G is a simple graph and the domain of R is full, then
there is a closed walk [v0, v1, . . . , vk−1] in G, where (i, vi) ∈ R for 0 ≤ i ≤ k − 1.

Let dG(x, y) denote the canonical distance on graph G, i.e., dG(x, y) is the minimal
length of a path in graph G that connects vertices x and y; if there is no path connects
vertices x and y, then the distance is infinite.

Lemma 2.9. Suppose there exists a relationR with full domain s.t.G∗R = H , x, y ∈ VG,
u, v ∈ VH and (x, u) ∈ R, (y, v) ∈ R. If x 6= y, then dH(u, v) ≤ dG(x, y); If x = y and
x is not an isolated vertex, then dH(u, v) ≤ 2.
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Proof. If x = y and x is not isolated, pick a vertex z of graph G which is adjacent to
vertex x, and find a vertex w ∈ H satisfying (z, w) ∈ R. Then (w, u) ∈ EH and similarly
(w, v) ∈ EH . So dH(u, v) ≤ 2.

If x 6= y, choose the shortest path P = x, x1, x2, · · · , xk, y between x and y, and find
corresponding vertices u1, u2, · · · , uk ∈ H such that(xi, ui) ∈ R for any 1 ≤ i ≤ k − 1
it is easily seen that (u, u1) ∈ EH , (ui, ui+1) ∈ EH and (uk, v) ∈ EH , then d(u, v) ≤
d(x, y).

The eccentricity ε of a vertex v is the greatest distance between v and any other vertex.
The radius of a graph G, denoted by rad(G), is the minimum eccentricity of any vertex.
The diameter of a graph G, denoted by diam(G), is the maximum eccentricity of any
vertex in the graph, i.e., the largest distance between any pair of vertices.

Corollary 2.10. Suppose G ∗ R = H , G and H are connected graphs, and R has full
domain, then rad(H) ≤ max{rad(G), 2}.

An analogous result holds for the diameters. In particular, if G is not a complete graph,
then diam(G) ≥ diam(G ∗R).
Corollary 2.11. There is a relation from the path of length k, Pk, to the path of length l,
Pl, if and only if either k ≥ l or k = 1, l = 2.

Proof. For k ≥ l there is a surjective homomorphism f from Pk to Pl and hence by Lemma
1.4 there is also a relation from Pk to Pl. In Section 1.5 we already showed a relation from
P1 to P2.

To show that P1 ∗R = P2 is the only case with k < l we first observe that Lemma 2.9
excludes the existence of relation from Pk to Pl for 1 < k < l. Now suppose R satisfies
P1 ∗R = Pk for k > 2. Since Pk has at least 4 vertices, either one of the vertices of P1 has
at least 3 images so that P1 ∗ R has a vertex with degree at least 3, or both of the vertices
in P1 have at least 2 images, in which case all vertices of P1 ∗R have degree at least 2. In
both cases P1 ∗R cannot be a path.

In particular, {P1, P2} is the only pair of paths such that there is a relation between
them in both directions.

2.2.4 Complete graphs

The complement graph H of a simple graph H has the same vertex set as H , and two
vertices are connected in H if and only if they are not connected in H .

Note that in this subsection we do not require that the domain of R is full.

Proposition 2.12. Let H be a simple graph. Then there exists a relation R such that
Kk ∗R = H if and only if H is the disjoint union of at most k complete graphs.

Proof. Denote the connected components of H by H1, . . . ,Hm. If m ≤ k and every
connected component of H is a complete graph, let R = {(i, u)|i = 1, · · · ,m, u ∈ VHi

}
and by the definition of complement graph, for any i = 1, · · · ,m, all the vertices in Hi are
independent in H , and u is adjacent to v whenever u ∈ VHi and v ∈ VHj for distinct i, j.
Hence it is easily seen that Kk ∗R = H .

Conversely, if Kk ∗ R = H , denote the vertices in Kk by 1, · · · , k, s.t. domR =
{1, · · · ,m}. We claim that R is injective, otherwise H would have loops. Thus VH is
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the disjoint union of R(1), · · · , R(m). For any two distinct vertices u, v in R(i), u and v
are independent in H and for distinct i and j every vertex in R(i) are adjacent with every
vertex in R(j) whenever R(i) 6= ∅. Therefore for any i, R(i) is the vertex set of a connect
component of H , which is a complete graph.

2.2.5 Subgraphs

Relations between graphs intuitively imply relations between local subgraphs. In this sec-
tion we make this concept more precise. Denote by

NG[x] := {z ∈ VG|z = x ∨ (x, z) ∈ EG} (2.2)

the closed neighborhood of x in G. Furthermore, we let NG[x] := VG \NG[x] be the set
of vertices that are not adjacent (or identical) to x in G and denote by Gx := G[NG[x]] the
induced subgraph of G that is obtained by removing the closed neighborhood of a vertex
x.

Analogously, for a subset S ⊆ VG we define

S = G

[
VG \

⋃
x∈S

NG[x]

]
(2.3)

as the induced subgraph obtained by removing all vertices in S and their neighbors.
Then we have the following result about relations between local subgraphs.

Proposition 2.13. SupposeG∗R = H and S andD are subsets of VG and VH , respectively,
such that G[S] ∗R|(S×D) = H[D], R|(S×D) has full domain on S, and there is no isolated
vertex in D. Then S ∗ R̃ = D, where R̃ = R|(S×D) is the corresponding restriction of R.

Proof. Obviously, S ∗ R̃ is an induced subgraph of D. We have to show the reverse inclu-
sion. Given u ∈ VD and x ∈ R−1(u), we first show that there are two possibilities:

1. x is a vertex of S.

2. x is an isolated vertex of S.

Assume that is not the case, i.e., that x /∈ VS and that x is either a non-isolated vertex of S
or x is in the neighborhood of some vertex of S. In either case there is y ∈ S connected by
an edge to x. Consequently there is also v ∈ D, such that v ∈ R(y), connected by an edge
to u. It follows u /∈ VD, a contradiction.

Now consider an arbitrary edge (u, v) ∈ ED. We have (x, y) ∈ EG such that u ∈ R(x)
and v ∈ R(y). It follows that x and y are not isolated and thus x, y are vertices of S.
Consequently S ∗ R̃ has precisely the same edges as D. Because D has no isolated vertices
and thus every vertex is an endpoint of some edge, we know that the vertex set of S ∗ R̃ is
same as the vertex set of D.

This result is of particular practical use in the special case where S and D consist of
a single vertex. When looking for a relation R such that G ∗ R = H one can remove a
vertex including its neighborhood from G as well as the prospective image including the
neighborhood from H and solve the problem on the subgraphs.
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3 Relational equivalence
Graphs G and H are homomorphism equivalent (or hom-equivalent) if there exists homo-
morphisms G → H and H → G. It is well known that every equivalence class of the
homomorphism order contains a minimal representative that is unique up to isomorphism:
the graph core [7].

We define similar equivalences implied by the existence of (special) relations between
graphs. In this section, we require all relations to have full domain unless explicitly stated
otherwise. With this condition we will show that these equivalences produce a rich structure
closely related to but distinct from the structure of homomorphism equivalences.

This may come as a surprise: the equivalence implied by the existence of surjective
homomorphisms is not interesting. Consider two graphs G and H and suppose there are
surjective homomorphisms f : G → H and g : H → G. Since every vertex in VG has
at most one image under f , we have |VG| ≥ |VH |. Analogously |VH | ≥ |VG|, and hence
|VG| = |VH |. Thus f and g are both bijective, and G is isomorphic to H .

3.1 Reversible relations

Definition 3.1. A relation R is reversible with respect to graph G if (G ∗R) ∗R+ = G.

We write NG(x) := {z ∈ VG|(x, z) ∈ EG} for the open neighborhood of vertex x in
graph G.

Proposition 3.2. Suppose R = RD ◦ RC , where RD and RC are constructed as in the
proof of Proposition 2.2. Then R is reversible with respect G if and only if for every α and
β satisfying RC(α) = RC(β) we have NG∗RD

(α) = NG∗RD
(β).

Proof. We set G1 = G ∗ RD, then from Lemma 2.1 we have G1 ∗ RC = H . If RC(α) =
RC(β) implies NG1(α) = NG1(β), then H ∗ R+

C = G1. Since G1 ∗ R+
D = H , we have

H ∗R+
C ∗R+

D = H ∗R+ = G, i.e., R is reversible.
Conversely, since R is reversible, i.e., H ∗ R+ = G, setting G2 = H ∗ R+

C gives
G2∗R+

D = G. HenceG1∗RC ∗R+
C = G2 andG2∗R+

D ∗RD = G1. From IG1
⊆ RC ∗R+

C

we conclude G1 ⊆ G2, and similarly IG2
⊆ R+

D ∗RD yields G1 ⊇ G2. Hence G1 = G2.
R+
C is injective, hence α, β ∈ VG2

= VG1
has the same open neighborhood whenever the

pre-image of α and β under R+
C coincide, i.e. RC(α) = RC(β).

RD is an injective relation, hence one can easily get NG∗RD
(α) = RD(NG(x)) pro-

vided that (x, α) ∈ RD. On the other hand, if we define R to be the image of RD as in
the proof of Proposition 2.2, then RC(α) = RC(β) implies there are two distinct vertices
x, y ∈ VG, s.t. (x, u), (y, u) ∈ R, where u = RC(α) = RC(β), and verse visa. Using
Proposition 3.2 we thus obtain

Proposition 3.3. A relation R is reversible with respect to G if and only if for every two
vertices x and y such that R(x) ∩R(y) 6= ∅ we have NG(x) = NG(y).

3.2 Strong relational equivalence

Definition 3.4. Two graphs G and H are (strongly) relationally equivalent, G v H , if
there is a relation R such that G ∗R = H and H ∗R+ = G.

Lemma 3.5. Relational equivalence is an equivalence relation on graphs.
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G H Gthin = Hthin

Figure 2: Non-isomorphic graphs G and H with isomorphic thin graphs.

Proof. The relation v is reflexive since G ∗ IG = G. Symmetry also follows directly
from the definition. Suppose G ∗ R = H and H ∗ R+ = G and H ∗ Q = K and
K ∗Q+ = H , i.e., (G ∗R) ∗Q = K and (K ∗Q+) ∗R+ = G, i.e., G ∗ (R ◦Q) = K and
K ∗ (Q+ ◦R+) = K ∗ (R ◦Q)+ = G, i.e., v is also transitive.

Definition 3.6. The thinness relation S of G is the equivalence relation on VG defined by
(x, y) ∈ S if and only if NG(x) = NG(y). A graph G is called thin if every vertex forms
its own class in S.

Thin graphs are also known as “point determining graphs” [13].
We denote by S the corresponding partition of VG, and write RS ⊆ VG × S for the

relation that associates each vertex with its S-equivalence class, i.e., (x, β) ∈ RS if and
only if x ∈ β.

Definition 3.7. The thin graph ofG, denoted byGthin, is the quotient graphG/S, i.e.,Gthin
has vertex set S and two equivalence classes σ and τ of S are adjacent in Gthin if and only
if (x, y) is an edge of G with x ∈ σ and y ∈ τ .

As noted e.g. in [6, p.81], Gthin is itself a thin graph. Furthermore, RS is a full homo-
morphism of G to Gthin, see [4].

Thinness and the quotients w.r.t. the thinness relation play an important role in particu-
lar in the context of product graphs, see [9]. In this context it is well known that G can be
reconstructed from Gthin and the knowledge of the S-equivalence classes. In fact, we have

Gthin ∗RS+ = G. (3.1)

Theorem 3.8. G and H are in the same equivalence class w.r.t. v if and only if their thin
graphs are isomorphic.

Proof. Assume G v H . From Equation(3.1) we know that G v Gthin, H v Hthin, so
Gthin v Hthin. Now we claim thatGthin andHthin are isomorphic. SupposeGthin∗R = Hthin,
then the pre-image ofR is unique. Otherwise, there exist distinct vertices x, y ∈ VGthin such
that R(x) = R(y), then NGthin(x) = NGthin(y), contradicting thinness. Likewise, the pre-
image of R−1 is unique, i.e., the image of R is unique. Hence R is one-to-one.

The example in Fig. 2 shows that thin graphs can be isomorphic while G and H them-
selves are not isomorphic. Relational equivalence thus is coarser than graph isomorphism
(surjective homomorphic equivalence) but stronger than homomorphic equivalence.
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Figure 3: G andH are weakly relationally equivalent but have non-isomorphic thin graphs.

3.3 Weak relational equivalence

Definition 3.9. Two graphs G and H are weak relationally equivalent, G vw H , if there
are relations R and S such that G ∗R = H and H ∗ S = G.

Lemma 3.10. Weak relational equivalence is an equivalence relation on graphs.

Proof. By definition vw is symmetric. Because G ∗ IG = G, relation vw is reflexive.
Suppose G vw G′ and G′ vw G′′. Thus there are relations R, S, R′, and S′, such that
G′ = G ∗ R, G′′ = G′ ∗ R′, G = G′ ∗ S, and G′ = G′′ ∗ S′. By the composition law
(Lemma 2.1) it follows that G′′ = G ∗ (R ◦ R′) and G = G′′ ∗ (S′ ◦ S), i.e, G vw G′′.
Hence vw is transitive.

Strong relational equivalence implies weak relational equivalence. To see this, simply
observe that the definition of the weak form is obtained from the strong one by setting
S = R+.

The converse is not true, as shown by the graphsG andH in Fig. 3: It is easy to see that
their thin graphs are different and thus G and H are not strongly relationally equivalent.
However, are relationally equivalent. To get relation from G to H contract vertices 2 and 3
and keep other vertices on place, i.e.,

R = {(1, 1), (2, 2), (3, 2), (4, 4), (5, 5), (6, 6), (7, 7)}.

To get relation from H to G, duplicate 5 and 7 and contract them together to 3,

S = {(1, 1), (2, 2), (4, 4), (5, 5), (6, 6), (7, 7), (5, 3), (7, 3)}.

Consequently, weak relational equivalence is coarser than strong relational equivalence.

3.4 R-cores

A graph is an R-core, if it is the smallest graph (in the number of vertices) in its equivalence
of vw.

This notion is analogous to the definition of graph cores. In this section we show
properties of R-cores that are similar to the properties of graph cores. To this end we first
need to develop a simple characterization of R-cores.

Again we start from a decomposition of relations. Consider a relation R such that
G ∗ R = H . We seek for pair of relations R1 and R2 such that R = R1 ◦ R2. In contrast
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to Lemma 2.2, however, we now look for a decomposition so that the graph G′ = G ∗ R1

is smaller (in the number of vertices) than G.

G

R1   

R=R1◦R2 // H

G′
R2

>> (3.2)

The existence of such a decomposition follows from a translation of the well-known Hall
Marriage Theorem [12] to the language of relations. We say that the relation R ⊆ A × B
satisfies the Hall condition, if for every S ⊆ A we have |S| ≤ |R(S)|.

Theorem 3.11 (Hall’s theorem). If G ∗R = H and R satisfies the Hall condition, then R
contains a monomorphism f : G→ H .

Proof. The Hall Marriage Theorem is usually described on set systems. For set systems
satisfying the Hall condition, the theorem guarantees the existence of a system of distinct
representatives, see i.e. [12]. Relations can be seen as set systems (defined by the images
of individual vertices). Furthermore, in our setting the system of distinct representatives
directly corresponds to a monomorphism contained in the relation R.

Lemma 3.12. If G ∗R = H and relation R does not satisfy the Hall condition, then there
are relations R1 and R2 such that R = R1 ◦ R2, and the number of vertices of graph
G′ = G ∗R1 is strictly smaller than the number of vertices of G.

Proof. Without loss of generality assume that VG ∩ VH = ∅. If R does not satisfy the Hall
condition, then there exists a vertex set S ⊂ VG such that |S| > |R(S)|. Now we define
relations R1 and R2 as follows:

R1(x) =

{
R(x) for x ∈ S,
x otherwise,

R2(x) =

{
x for x ∈ R(S),
R(x) otherwise.

(3.3)

Obviously R1 ◦R2 = R and |VG′ | = |VG| − (|S| − |R(S)|) < |VG|.

This immediately gives a necessary, but in general not sufficient, condition for a graph
to be an R-core.

Corollary 3.13. If G is an R-core, then every relation R such that G ∗R = G satisfies the
Hall condition and thus contains a monomorphism.

Proof. Assume that there is a relation R that does not satisfy the Hall condition. Then
there is a graph G′, |VG′ | < |VG|, and relations R1 and R2 such that G ∗ R1 = G′ and
G′ ∗R2 = G. Consequently G′ is a smaller representative of the equivalence class of vw,
a contradiction with G being R-core.

To see that the condition of Corollary 3.13 is not sufficient consider a graph consisting
of two independent vertices.

Next we show that R-cores are, up to isomorphism, unique representatives of the equiv-
alence classes of vw.
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GR-core

Figure 4: Construction of an embedding from GR-core to G.

Proposition 3.14. If both G and H are R-cores in the same equivalence class of vw, then
G and H are isomorphic.

Proof. Because both G and H are R-cores, we know that |VG| = |VH |.
Consider relationsR1 andR2 such thatG∗R1 = H andH∗R2 = G. Applying Lemma

3.12 we know that R1 satisfies the Hall condition. Otherwise there would be a graph G′

with |VG′ | < |VG| so that G′ is relationally equivalent to both G and H contradicting
the fact that G and H are R-cores. Similarly, we can show that R2 also satisfies the Hall
condition.

From Theorem 3.11 we know that there is a monomorphism f from G to H , and
monomorphism g from H to G. It follows that number of edges of G is not larger than
the number of edges of H and vice versa. Because G and H have the same number of
edges and same number of vertices, G and H must be isomorphisms.

It thus makes sense to define a construction analogous to the core of a graph.

Definition 3.15. H is an R-core of graph G if H is an R-core and H vw G.

All R-cores of graph G are isomorphic as an immediate consequence of Prop. 3.14. We
denote the (up to isomorphism) unique R-core of graph G by GR-core.

Lemma 3.16. GR-core is isomorphic to a (not necessarily induced) subgraph of G.

Proof. Take any relationR such thatGR-core∗R = G. By the same argument as in Corollary
3.13, there is a monomorphism f : GR-core → G contained in R. Consider the image of f
on G.

Theorem 3.17. GR-core is isomorphic to an induced subgraph of G.

Proof. Fix R1 and R2 such that GR-core ∗R1 = G and G ∗R2 = GR-core.
R = R1◦R2 is a relation such thatGR-core∗R = GR-core. By Corollary 3.13,R contains

a monomorphism f : GR-core → GR-core. Because such a monomorphism is a permutation,
there exists n such that fn, the n-fold composition of f with itself, is the identity.
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Put R′1 = Rn−1 ◦R1. Because Rn contains the identity and Rn = R′1 ◦R2, it follows
that for every x ∈ VGR-core , there is a vertex I(x) ∈ VG such that I(x) ∈ R′1(x) and
x ∈ R2(I(x)).

We show that for two vertices x 6= y, we have I(x) 6= I(y) and thus both I and I−1

are monomorphisms. Assume, that is not the case, i.e., that there are two vertices x 6= y
such that I(x) = I(y). Consider an arbitrary vertex z in the neighborhood of x. It follows
that I(z) must be in the neighborhood of I(x) and consequently z is in the neighborhood
of y. Thus the neighborhoods of x and y are the same. By Theorem 3.8, however, we know
that the R-core is a thin graph (because weak relational equivalence is coarser than strong
relational equivalence), a contradiction.

Finally observe that I is an embedding from GR-core to G. For every edge (x, y) ∈
EGR-core we also have edge (I(x), I(y)) ∈ EG because I is contained in relation R′1. Sim-
ilarly because I−1 is contained in relation R2, every edge (I(x), I(y)) ∈ EG corresponds
to an edge (x, y) ∈ EGR-core .

We close the section with an algorithm computing the R-core of a graph. In contrast
to graph cores, where the computation is known to be NP-complete, there is a simple
polynomial algorithm for R-cores.

Observe that the R-core of a graph containing isolated vertices is isomorphic to the
disjoint union of the R-core of the same graph with the isolated vertices removed and a
single isolated vertex. The R-core of a graph without isolated vertices can be computed by
Algorithm 1.

Algorithm 1 The R-core of a graph
Input:

Graph G with loops allowed and without isolated vertices, vertex set denoted by V ,
neighborhoods NG(i), i ∈ V .

1: for i ∈ V do
2: W (i) = ∅
3: found = FALSE
4: for j ∈ V \ {i} do
5: if N(j) ⊆ N(i) then
6: W (i) :=W (i) ∪N(j)
7: end if
8: if N(i) ⊆ N(j) then
9: found = TRUE

10: end if
11: end for
12: if W (i) = N(i) ∧ found then
13: delete i from V
14: N(i) = ∅
15: end if
16: end for
17: return The R-core G[V ] of G.

The algorithm removes all vertices v ∈ G such that (1) the neighborhood of v is union
of neighborhood of some other vertices v1, v2, . . . , vn and (2) there is vertex u such that



340 Ars Math. Contemp. 6 (2013) 323–350

NG(v) ⊆ NG(u).
It is easy to see that the resulting graph H is relationally equivalent to G. Condition

(1) ensures the existence of a relation R1 such that H ∗ R1 = G, while the condition (2)
ensures the existence of a relation R2 such that G ∗R2 = H .

We need to show that H is isomorphic to GR-core. By Theorem 3.17 we can assume that
GR-core is an induced subgraph of H that is constructed as an induced subgraph of G.

We also know that there are relations R1 and R2 such that GR-core ∗ R1 = H and
G ∗ R2 = GR-core. By the same argument as in the proof of Theorem 3.17 we can assume
both R1 and R2 to contain an (restriction of) identity.

Now assume that there is a vertex v ∈ VH \VGR-core . We can put u = R2(v) and because
R2 contains an identity we have NG(v) ⊆ NG(u). We can also put {v1, v2 . . . vn} to be
set of all vertices such that v ∈ R1(vi). It follows that the neighborhood of v is the union
of neighborhoods of v1, v2, . . . , vn and consequently we have v /∈ VH , a contradiction.

4 The partial order Rel(G,H)

4.1 Basic properties

For fixed graphs G and H we consider partial order Rel(G,H). The vertices of this partial
order are all relations R such that G ∗R = H . We put R1 ≤ R2 if and only if R1 ⊆ R2.

This definition is motivated by Hom-complexes, see [10]. In this section we show the
basic properties of this partial order and concentrate on minimal elements in the special
case of Rel(G,G).

Proposition 4.1. Suppose G ∗ R′ = H , G ∗ R′′ = H and R′ ⊆ R′′, then any relation R
with R′ ⊆ R ⊆ R′′ also satisfies G ∗R = H .

Proof. FromR′ ⊆ R ⊆ R′′ we concludeG∗R′ ⊆ G∗R ⊆ G∗R′′. HenceG∗R′ = G∗R′′
implies G ∗R = H .

Hence it is possible to describe the partial order Rel(G,H) by listing minimal and
maximal solutions R of G ∗R = H w.r.t. set inclusion.

For example, if G is P3 with vertices v0, v1, v2, v3 and H is P1 with vertices x0, x1,
it is easily seen that R′′ = {(v0, x0), (v2, x0), (v1, x1), (v3, x1)} is a maximal solution of
G∗R = H andR′ = {(v0, x0), (v1, x1)} is a minimal solution, becauseR′ ⊂ R′′, then all
the relations R with R′ ⊆ R ⊆ R′′ satisfy G ∗R = H . We note that minimal and maximal
solutions need not be unique.

4.2 Solutions of G ∗ R = G

For simplicity, we say that a relation R is an automorphism of G if it is of the form R =
{(x, f(x))|x ∈ VG} and f : VG → VG is an automorphism of G.

We shall see that conditions related to thinness again play a major role in this context.
Recall that G is thin if no two vertices have the same neighborhood, i.e., NG(x) = NG(y)
implies x = y. Here we need an even stronger condition:

Definition 4.2. A graph G satisfies condition N if NG(x) ⊆ NG(y) implies x = y.

In particular, graph satisfying condition N is thin.
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Proposition 4.3. For a given graphG, the set Rel(G,G) of all relations satisfyingG∗R =
G forms a monoid.

Proof. Firstly, because G is a finite graph, the set Rel(G,G) is also finite. Furthermore,
R,S ∈ Rel(G,G) implies G ∗ R = G and G ∗ S = G and thus G ∗ (R ◦ S) = G, so that
R◦S ∈ Rel(G,G). Finally, the identity relation IG is a left and right identity for relational
composition: IG ◦R = R ◦ IG = R.

A relation R ⊂ VG × VG can be interpreted as a directed graph ~R with vertex set
VG and a directed edge u → v if and only if (u, v) ∈ R. Note that ~R may have loops.
We say that v ∈ VG is recurrent if and only if there exists a walk (of length at least 1)
from v to itself. Let SG be the set of all the recurrent vertices. Furthermore, we define an
equivalence relation ξ on SG by setting (u, v) ∈ ξ if there is a walk in ~R from u to v and
vice versa. The equivalence classes w.r.t. ξ are denoted by ~R/ξ = {D1, D2, · · · , Dm}.
We furthermore define a binary relation ≥ over ~R/ξ as follows: if there is a walk from a
vertex u in Di to a vertex v in Dj , then we say u ≥ v. It is easily seen that ≥ is reflexive,
antisymmetric, and transitive, hence (~R/ξ,≥) is a partially ordered set. W.l.o.g. we can
assume {D1, D2, . . . , Ds} are the maximal elements w.r.t. ≥. Now let Gr = G[D1 ∪ · · · ∪
Ds] be the subgraph of G induced by these maximal elements.

In the following we write Rl for the l-fold composition of R with itself.

Lemma 4.4. For arbitrary x ∈ VG, there exists l ∈ N and a recurrent vertex v such that
(v, x) ∈ Rl.

Proof. Set x0 = x and choose xi ∈ R−1(xi−1) for all i ≥ 1. Since |VG| < ∞, there are
indices j, k ∈ N, j < k, xj = xk. Then xj is recurrent vertex. The lemma follows by
setting l = j and v = xi.

Lemma 4.5. For every v ∈ VGr , R−1(v) ⊆ VGr .

Proof. Suppose x ∈ R−1(v) is not recurrent. Lemma 4.4 implies that there is l ∈ N
and a recurrent vertex w such that (w, x) ∈ Rl. Hence the definitions of E and ≥ imply
[w] ≥ [v], where [v] denotes the equivalent class (w.r.t. E) containing the vertex v. Since
[v] is maximal w.r.t. ≥, we have [v] = [w]. Consequently, there exists an index k ∈ N such
that (v, w) ∈ Rk. On the other hand, we have (x, x) = (x, v) ◦ (v, w) ◦ (w, x) ∈ Rk+l+1.
Thus, x is recurrent, a contradiction.

Therefore, every vertex x ∈ R−1(v) is recurrent. Hence [x] ≥ [v] together with the
maximality of [v] gives [x] = [v], and thus x ∈ VGr

.

Lemma 4.6. For every x ∈ VG, there is l ∈ N such that, for arbitrary i ≥ l, there exists
u ∈ VGr

satisfying (u, x) ∈ Ri.

Proof. From Lemma 4.4 and Lemma 4.5 we conclude that it is sufficient to show that for
an arbitrary recurrent vertex v there is a k ∈ N and w ∈ VGr

such that (w, v) ∈ Rk. The
lemma now follows easily from the finiteness of VG.

From these three lemmata we can deduce

Theorem 4.7. All solutions of G∗R = G are automorphisms if and only ifG has property
N.
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Proof. Suppose there are distinct vertices x, y ∈ VG such that NG(x) ⊆ NG(y). Then
R = IG ∪ (x, y), which is not functional, satisfies G ∗ R = G. Thus G ∗ R = G is also
solved by relations that are not automorphisms of G. This proves the “only if” part.

Conversely, supposeG has property N. Claim: There is a k ∈ N such thatRk∩(VGr
×

VGr
) = IGr

.
For each vi ∈ VGr

there is a walk of length si ≥ 1 from vi to itself. Hence (vi, vi) ∈
Rsi . Let s be the least common multiple of the si. Then (vi, vi) ∈ Rs for all vi ∈ VGr

.
Define Q := Rs ∩ (VGr × VGr ). Thus IGr ⊆ Q and moreover Qj ⊆ Qj+1 for all j ∈ N.
Since VGr is finite there is an n ∈ N such that Qn+1 = Qn, and hence Q2n = Qn. Let
us write R−i(v) := {u ∈ VG : (u, v) ∈ Ri}. For v ∈ VGr

we have R−i(v) ∈ VGr

(from Lemma 4.5) and hence Q−n(v) = R−sn(v) for all v ∈ VGr
. If Qn 6= IGr

, then
there are two distinct vertices u, v ∈ VGr

, such that (u, v) ∈ Qn. NG(u) * NG(v) and
G = G ∗ Rsn allows us to conclude that R−sn(u) * R−sn(v) and R−sn(v) * R−sn(u).
Hence, there is a vertex w, such that (w, u) ∈ Qn and (w, v) /∈ Qn. From (u, v) ∈ Qn
and (w, u) ∈ Qn we conclude (w, v) ∈ Qn ◦ Qn = Q2n, contradicting to Q2n = Qn.
Therefore Qn = IGr

. Setting k = sn now implies the claim.
Finally, we show VGr

= VG. For any v ∈ VG\VGr
, Lemma 4.6 implies the existence of

w ∈ VGr
andm ∈ N such that (w, v) ∈ Rmk. However, we have claimedR−k(w) = {w},

hence R−mk(w) = {w}. This, however, implies NG(w) ⊆ NG(v) and thus contradicts
property N. Therefore, VG = VGr and moreover Rk = IG. This R is an automorphism.

5 R-retraction
A particularly important special case of ordinary graph homomorphisms are homomor-
phisms to subgraphs, and in particular so-called retractions: Let H be a subgraph of G, a
retraction of G to H is a homomorphism r : VG → VH such that r(x) = x for all x ∈ VH .

We introduced the graph cores in section 3 as minimal representatives of the homo-
morphism equivalence classes. The classical and equivalent definition is the following: A
(graph) core is a graph that does not retract to a proper subgraph. Every graph G has a
unique core H (up to isomorphism), hence one can speak of H as the core of G, see [7].

Here, we introduce a similar concept based on relations between graphs. Again to
obtain a structure related to graph homomorphisms, in this section we require all relations
to have full domain unless explicitly stated otherwise.

Definition 5.1. Let H be a subgraph of G. An R-retraction of G to H is a relation R such
that G ∗ R = H and (x, x) ∈ R for all x ∈ VH . If there is an R-retraction of G to H we
say that H is a retract of G.

Lemma 5.2. If H is an R-retract of G and K is an R-retract of H , then K is an R-retract
of G.

Proof. Suppose T is an R-retraction of H to K and S is an R-retraction of G to H . Then
(G ∗ S) ∗ T = G ∗ (S ◦ T ) = K. Furthermore (x, x) ∈ T for all x ∈ VK ⊆ VH , and
(u, u) ∈ S for all u ∈ VH , hence (x, x) ∈ S ◦ T for all x ∈ Vk. Therefore S ◦ T is an
R-retraction from G to K.

Hence, the following definition is meaningful.
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Definition 5.3. A graph is R-reduced if there is no R-retraction to a proper subgraph.

Thus, we can also speak about “the R-reduced graph of a graph G” as the smallest
subgraph on which it can be retracted. We shall see below that the R-reduced graph of a
graph is always unique up to isomorphism.

We shall remark that R-reduced graphs differs from R-cores introduced in section 3,
thus we choose an alternative name used also in homomorphism setting (cores are also
called reduced graphs).

Lemma 5.4. Let G be a graph with loops and o a vertex of G with a loop on it. Then the
R-reduced graph of G is the subgraph induced by {o}.
Proof. Let O be the graph induced by {o}, and R = {(x, o)|x ∈ VG}, then it is easily
seen R is a R-retraction of G to O. Moreover, since O has only one vertex, thus there is no
R-retraction to its subgraphs. So O is a R-reduced graph of G.

Conversely, let H be a R-reduced graph of G and denote by R the R-retraction from
G to H . Then a loop of G must generate a loop of H via R, denote it by O. Similarly
to above, we see O is a R-retract of H , hence it is also a R-retract of G (by Lemma 5.2).
Therefore the definition of R-reduced graph implies H = O.

In the remainder of this section, therefore, we will only consider graphs without loops.

Lemma 5.5. If G is R-reduced, then G has property N.

Proof. Suppose there are two distinct vertices x, y ∈ VG with NG(x) ⊆ NG(y) and con-
sider the induced graph G/x := G[VG \ {x}] obtained from G by deleting the vertex x
and all edges incident with x. The relation R = {(z, z)|z ∈ VG \ {x}} ∪ {(x, y)} satisfies
G∗R = G/x: the first part is the identity onG/x and already generates all necessary edges
in G/x. The second part transforms edges of the form (x, z) ∈ EG to edges (y, z). Since
R has full domain and contains the identity relation restricted to G/x, it is an R-retraction
of graph G, and hence G is not R-reduced.

Proposition 5.6. A graph G is R-reduced if and only if it has no relation to a proper
subgraph.

Proof. The “if” part is trivial. Now we suppose that H is a proper induced subgraph of
graph G with the minimal number of vertices such that there is a relation R satisfying
G ∗R = H . Then H does not have a relation to a proper subgraph of itself. We claim that
H has property N; otherwise, one can find a vertex u ∈ VH and construct a retraction from
H to H/u as in Lemma 5.5, which causes a contradiction. Denote R̃ = R ∩ (VH × VH),
then K = H ∗ R̃ is a subgraph of H . From our assumptions on H we obtain K = H . By
virtue of Theorem 4.7, R̃ is induced by an automorphism of H . Hence R ◦ R̃+ is again a
relation of G to H that contains the identity on H , i.e., it is an R-retraction.

Since graph cores are induced subgraphs and retractions are surjective they also imply
relations. Proposition 5.6 is also a consequence of this fact. We refer to [7] for a formal
proof.

We callR a minimal R-retraction if there is no R-retractionR′ such thatR ⊃ R′ ⊃ IH .

Lemma 5.7. Let H be an R-retract of G. Then any minimal R-retraction of G to H is
functional.
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Figure 5: A graph G and its core.

Proof. Suppose R is a minimal R-retraction of G to H . If R is not functional, then there
exist distinct x, y ∈ VH such that (u, x), (u, y) ∈ R. Hence we could always pick a
vertex from {x, y} which is different of u, w.l.o.g. suppose it is x. Then R/(u, x) is an
R-retraction, which contradicts minimality. To see this, setR′ = R/(u, x), thenR ⊃ R′ ⊃
IH and moreover H = G ∗ IH ⊆ G ∗R′ ⊆ G ∗R = H , and thus G ∗R′ = H .

Proposition 5.8. A graph is R-reduced if and only if it is a graph core.

Proof. If H is R-reduced from G there is an R-retraction from G to H which can be
chosen minimal and hence by Lemma 5.7 is functional and hence is a homomorphism
retraction. Conversely, a homomorphism retraction is also an R-retraction. Hence the R-
reduced graphs coincide with the graph cores.

Proposition 5.9. Suppose H is the core of graph G. If H ∗R = K then there is a relation
R′ such that G ∗R′ = K. If K ∗ S = G, then there is a relation S′ such that K ∗ S′ = H .

Proof. Since H is the core of graph G, there is a relation R1 such that G ∗ R1 = H . If
H ∗R = K we haveG∗R1 ∗R = K andR′ = R1 ◦R satisfiesG∗R′ = K. IfK ∗S = G
we have K ∗ S ∗R1 = H and S′ = S ◦R1 satisfies K ◦ S′ = G.

5.1 Cocores

In the classical setting of maps between graphs, one can only consider retractions from a
graph to its subgraphs, since graph homomorphisms of an induced subgraph to the original
graph are just the identity maps. In the setting of relations between graphs, however, it
appears natural to consider relations with identity restriction between a graph and an in-
duced subgraph. This gives rise to notions of R-coretraction and R-cocore in analogy with
R-retractions and R-reduced graphs.

Definition 5.10. LetH be a subgraph of graphG. An R-coretraction ofH toG is a relation
R such that H ∗R = G and (x, x) ∈ R for all x ∈ VH . We say that H is an R-coretract of
G.

Lemma 5.11. If H is an R-coretract of graph G and K is an R-coretract of H , then K is
an R-coretract of G.

Proof. Suppose T is an R-coretraction of K to H and S is an R-coretraction of H to G.
Then (K ∗ T ) ∗ S = K ∗ (T ◦ S) = G. Furthermore (x, x) ∈ T for all x ∈ VK ⊆ VH ,
and (v, v) ∈ S for all v ∈ VH , hence (x, x) ∈ T ◦ S for all x ∈ VK . Therefore T ◦ S is an
R-coretraction from K to G.
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Hence, the following definition is meaningful.

Definition 5.12. An R-coretract H of a graph G is an R-cocore of G if H does not have a
proper subgraph that is an R-coretract of H (and hence of G).

G cocore(G)

Figure 6: A graph and its cocore

Clearly, the reference to G is irrelevant: A graph G is an R-cocore if there is no
proper subgraph of G that is an R-coretract of G. Similarly, we call R to be a minimal
R-coretraction of H to G if there exists no R-coretraction R′, such that R′ ⊂ R.

Lemma 5.13. Let H be an R-coretract of graph G, and let R be a minimal R-coretraction
of H to G. Then the restriction of R to H equals IH .

Proof. Suppose R∩ (VH × VH) 6= IH and define R1 = R \ {(x, y) ∈ R : x, y ∈ VH , x 6=
y}. Then H ∗ R1 ⊆ H ∗ R = G. We claim that H ∗ R1 = H ∗ R and thus R1 is an
R-coretraction of H to R, contradicting the minimality of R.

To prove this claim, it is sufficient to show that any edge e ∈ EG is contained in
H ∗R1. If e is not incident with any vertex in VH or e ∈ EH , the conclusion is trivial. So
we only need to consider e = (z, u) with z ∈ EH and u ∈ VG \ VH . Since G = H ∗ R,
one can find x1, x2 ∈ VH such that (x1, z), (x2, u) ∈ R and (x1, x2) ∈ EH . Because
H ⊆ H ∗

(
IH ∪ (x1, z)

)
⊂ H ∗

(
R ∩ (VH × VH)

)
= H , we get NH(x1) ⊆ NH(z). It

follows that (z, x2) ∈ EH and hence e = (z, u) ∈ G ∗R1.

Like R-reduced graphs, R-cocores satisfy a stringent condition on their neighborhood
structure.

Definition 5.14. A graph G satisfies property N* if, for every vertex x ∈ VG, there is no
subset Ux ⊆ VG \ {x} such that

NG(x) =
⋃
y∈Ux

NG(y) (5.1)

In other words, no neighborhood can be represented as the union of neighborhoods of
other vertices of graph G.

Proposition 5.15. G is an R-cocore if and only if G has property N*.

Proof. Consider a vertex set Ux as in Definition 5.14 and suppose that there is a vertex
x ∈ VG such that NG(x) =

⋃
y∈Ux

NG(y). Then the relation R := I \ (x, x) ∪ {(y, x) :
y ∈ Ux} is an R-coretraction from G/x to G. Thus G is not a R-cocore.

Conversely, suppose that G is not an R-cocore, let H be a coretract of G, and denote
by R a minimal R-coretraction of H to G. Then, by Lemma 5.13, R ∩ (VH × VH) = IH .
Consider a vertex v ∈ VG \ VH and set R−1(v) = {x1, · · · , xi}. Then N(v) =

⋃
iN(xi),

contradicting property N*.
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Proposition 5.16. The R-cocore of G is unique up to isomorphism.

Proof. We denote by N the collection of all open neighborhoods of vertices in G, i.e.,
N = {NG(x1), NG(x2), · · · , NG(xk)}, where VG = {x1, x2, · · · , xk}. From the defi-
nition of the R-cocore we know that the subcollectionM of N consisting of all the open
neighborhoods of vertices in R-cocore is a basis of N , i.e., any set in N can be expressed
by the union of some sets in M. W.l.o.g., we denote the vertex set in a R-cocore C of
G is {x1, x2, · · · , xm} where m ≤ k, then M = {NG(x1), NG(x2), · · · , NG(xm)}.
We claim that any element in {NG(x1), NG(x2), · · · , NG(xm)} cannot be expressed as
the union of other elements, i.e., M is a minimal basis. Otherwise, w.l.o.g., suppose
NG(x1) = ∪xk

NG(xk), xk ∈ {x2, . . . , xm}. For any 1 ≤ k ≤ m, NG(xk) = NC(xk)
or NG(xk) = NC(xk) ∪ {xi|(xi, xk) ∈ EG,m + 1 ≤ i ≤ n}, so either NC(x1) =
∪xk

NC(xk), xk ∈ {x2, . . . , xm} orNC(x1) = ∪xk
NC(xk)∪{xi|(xi, xk) ∈ EG,m+1 ≤

i ≤ n, xk ∈ {x2, . . . , xm}}, the former contradicts to Proposition 5.15, which implies any
element in {NC(x1), NC(x2), · · · , NC(xm)} cannot be expressed as the union of other
elements, the latter is impossible because {xi|(xi, xk) ∈ EG,m + 1 ≤ i ≤ n, xk ∈
{x2, . . . , xm}} * C.

Now we prove that this minimal basis is unique. Note that in N we view any vertex
with the same neighborhood as the same, since any vertex in R-cocore has different neigh-
borhoods. Let us consider two minimal sub-collectionsA,B. Neither contains the other by
their minimality. Since everything is finite, let A ∈ A/B be an element of minimal size.
Now A can be expressed as a union of elements of B, which all need to be of smaller cardi-
nality than A (or same but A /∈ B), but A then contains all of them, letting A be expressed
by a union of elements of A contradicting the minimality of A.

These results allow us to construct an algorithm that computes the cocore of given graph
G in polynomial time. First observe that the cocore of a graph G that contains isolated
vertices is the disjoint union of cocore of the graph G′ obtained from G by removing
isolated vertices and the graph consisting of a single isolated vertex. It is thus sufficient to
compute cocores for graphs without isolated vertices in Algorithm 2.

Proposition 5.17. Suppose H is a cocore of G. If K ∗ R = H , then there is a relation R′

such that K ∗R′ = G. If G ∗ S = K, then there is a relation S′ such that H ∗ S′ = K.

Proof. Since H is a cocore of G, there exists an R-coretraction R1 such that H ∗R1 = G.
If K ∗ R = H , then letting R′ = R ◦ R1 implies K ∗ R′ = G. If G ∗ S = K, we have
H ∗R1 ∗ S = K. Let S′ = R1 ◦ S, then H ∗ S′ = K.

6 Computational complexity
In this section we briefly consider the complexity of computational problems related to
graph homomorphisms. The homomorphism problem HOM(H) takes as input some finite
G and asks whether there is a homomorphism fromG toH . The computational complexity
of the homomorphism problem is fully characterized. It is known that HOM(H) is NP-
complete if and only if H has no loops and contains odd cycles. All the other cases are
polynomial, see [7].

The analogous problem for relations between graphs can be phrased as follows: The
full relation problem FUL-REL(H) takes as input some finite G and asks whether there is
a relation with full domain from G and asks whether there is a relation from G to H . We
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Algorithm 2 The cocore of a graph
Input:

Graph G with loops and without isolated vertices specified by its vertex set V and the
neighborhoods NG(i), i ∈ V .

1: for i ∈ V do
2: W (i) = ∅
3: for j ∈ V \ {i} do
4: if N(j) ⊆ N(i) then
5: W (i) :=W (i) ∪N(j)
6: end if
7: end for
8: if W (i) = N(i) then
9: delete i from V

10: N(i) = ∅
11: end if
12: end for
13: return G[V ], the cocore of G.

show that this problem can be easily converted to a related problem on surjective homo-
morphisms. The surjective homomorphism problem SUR-HOM(H) takes as input some
finite G and asks whether there is a surjective homomorphism from G to H .

Let ≤Tur
P indicate polynomial time Turing reduction.

Theorem 6.1. For finite H our relation problem sits in the following relationship.

HOM(H) ≤Tur
P FUL-REL(H) ≤Tur

P SUR-HOM(H) . (6.1)

Proof. First we show that HOM(H) is polynomially reducible to FUL-REL(H). If there is
a homomorphism from G to H , then there is also a surjective homomorphism from G+H
to H . On the other hand, suppose G has no homomorphism to H . From Lemma 1.4 we
conclude that G+H has no relation to H since G has no relation to H .

The relation problem FUL-REL(H) is polynomially reducible to SUR-HOM(H). From
Corollary 2.3 we know G ∗R = H if and only if there is a graph G′ = G ∗RD which has
a full homomorphism to G and has a surjective homomorphism to H .

We construct G′′, by duplicating all the vertices of G precisely |VH | times. It is easy to
see that if G′ exists, we can also put G′ = G′′ because the surjective homomorphism can
easily undo the redundant duplications.

It remains to check whether there is surjective homomorphism from G′′ to H . This
gives the polynomial reduction from FUL-REL(H) to SUR-HOM(H).

To our knowledge, SUR-HOM(H) is not fully classified. A recent survey of the closely
related complexity problem concerning the existence of vertex surjective homomorphisms
[2] provides some arguments why the characterization of complexity is likely to be hard,
see also [5]. We observe that the existence of a homomorphism from G to H is equivalent
to the existence of a surjective homomorphism from G + H to H . Thus SUR-HOM(H)
is clearly hard for all graphs for which HOM(H) is hard, i.e., for all loop-less graphs with
odd cycles.
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Testing the existence of a homomorphism from a fixed G to H is polynomial (there is
only a polynomial number |VH ||VG| of possible functions from G to H). Similarly the ex-
istence of a relation from a fixed G to H is also polynomial. In fact, an effective algorithm
exists. For fixed G there are finitely many thin graphs T which G has relation to. The al-
gorithm thus first constructs the thin graph of H and then, using a decision tree recognizes
all isomorphic copies of all thin graphs G has relation to.

7 Weak relational composition
In this section we will briefly discuss the “loop-free” version, i.e., equations of the form
G ? R = H .

Most importantly, there is no simple composition law analogous to Lemma 2.1. The
expression

(G ? R) ? S = (S+ ◦ (R+ ◦G ◦R)ι ◦ S)ι (7.1)

does not reduce to relational composition in general. For example, let G = K3 with vertex
set V = {x, y, z} and consider the relations R = {(x, 1), (z, 1), (y, 2)} ⊆ {x, y, z} ×
{1, 2} and S = {(1, x′)(1, z′)(2, y′)} ⊆ {1, 2} × {x′, y′, z′}. One can easily verify

(G ? R) ? S = P2 6= G ? (R ◦ S) = K3 (7.2)

The most important consequence of the lack of a composition law is that R-retractions
cannot be meaningfully defined for the weak composition. Similarly, the results related to
R-equivalence heavily rely on the composition law.

Nevertheless, many of the results, in particular basis properties derived in section 2, re-
main valid for the weak composition operation. As the proofs are in many cases analogous,
we focus here mostly on those results where strong and weak composition differ, or where
we need different proofs. In particular, Lemma 2.2 also holds for the weak composition.
Thus, we still have a result similar to corollary 2.3, but the proof is slightly different.

Corollary 7.1. Suppose G ? R = H . Then there is a set C, an injective relation RD ⊆
domR×C, and a surjective relation RC ⊆ C× imgR such that G[domR] ?RD ?RC =
H[imgR].

Proof. From Proposition 2.2 we know R = I ′ ◦RD ◦RC ◦ I ′′. And we know G[domR] ?
RD = G[domR] ∗RD. From the properties of ?, we have

G[domR] ? R = (R+ ◦G[domR] ◦R)l

= ((RD ◦RC)+ ◦G[domR] ◦RD ◦RC)l

= (R+
C ◦R+

D ◦G[domR] ◦RD ◦RC)l

= (R+
C ◦ (R+

D ◦G[domR] ◦RD) ◦RC)l

= (R+
C ◦G[domR] ∗RD ◦RC)l

= (R+
C ◦G[domR] ? RD ◦RC)l

= G[domR] ? RD ? RC

= H[imgR]

.
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Assume G ? R = H and let H1, · · · , Hk the connected components of H . From the
definition of ? and ∗, if we denote H̃ = G∗R, then H̃ could be decomposed into the union
of connected components H̃i(1 ≤ i ≤ k), such that (H̃i)

ι = Hi. Hence the conclusion of
the proposition 2.4 also holds true for weak relations.

Lemma 2.6 does not hold for weak relations. For example, there is a weak relation of
K5 to K3, but χ(K5) = 5 > χ(K3) = 3.

Lemma 2.7 and Lemma 2.8 do not hold for weak relations. For example, ifG is a graph
consisting of a single isolated vertex, then P3 ? R = G and C3 ? R = G, but there are no
walk in G.

With respect to complete graphs, weak relational composition also behaves different
from strong composition. If Kk ? R = H then R(i) can contain more that one vertex in
VH . Compared to Proposition 2.12, we also obtain a different result:

Theorem 7.2. There is a relation R such that Kk ? R = H if and only if every connected
component of H is a complete graph, and the number of connected components of H
containing at least 2 vertices is at most k.

Proof. If every connected component of H is a complete graph, denoted the vertex sets of
the connected components containing at least 2 vertices by H1, . . . ,Hm, m ≤ k and the
vertices of Kk by 1, · · · , k. Let R = {(i, u)|i = 1, · · · , k, u ∈ VHi} ∪ {(j, v) : 1 ≤ j ≤
k, v ∈ VH \

⋃m
i=1 VHi

}. One easily checks that Kk ? R = H .
Conversely, let R be a relation satisfying Kk ? R = H . Consider the set Ui = {u ∈

VH |R−1(u) = {i}}. Then u and v are not adjacent for arbitrary u, v ∈ Ui, while u is
adjacent to w for every w ∈ VH \Ui. Hence H(Ui) is a connected component of H , which
is also a complete graph. Given w ∈ VH \

⋃m
i=1 Ui,R

−1(w) must have at least 2 vertices in
Kk, hence w is adjacent to every vertex in H except itself; in other words, w is an isolated
vertex in H . Therefore the number of connected components of H containing at least 2
vertices is no more than k.

The results in subsection 3.1 also remain true for weak relations.
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[6] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs, Discrete Mathematics
and Its Applications, CRC Press, Boca Raton, FL, 2011.
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Abstract

We find a sufficient condition to establish that certain abelian groups are not CI-groups
with respect to ternary relational structures, and then show that the groups Z3×Z2

2, Z7×Z3
2,

and Z5 ×Z4
2 satisfy this condition. Then we completely determine which groups Z3

2 ×Zp,
p a prime, are CI-groups with respect to color binary and ternary relational structures.
Finally, we show that Z5

2 is not a CI-group with respect to ternary relational structures.
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1 Introduction
In recent years, there has been considerable interest in which groups G have the property
that any two Cayley graphs of G are isomorphic if and only if they are isomorphic by a
group automorphism of G. Such a group is a called a CI-group with respect to graphs,
and this problem is often referred to as the Cayley isomorphism problem. The interested
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reader is referred to [11] for a survey on CI-groups with respect to graphs. Of course,
the Cayley isomorphism problem can and has been considered for other types of objects
(see, for example, [9, 14, 16] for work on this problem on codes and on designs). Before
proceeding we give the relevant definitions. (There are several equivalent definitions of
combinatorial object [1, 15], here we follow [13].)

Definition 1.1. A k-ary relational structure is an ordered pair X = (V,E), with V a set
and E a subset of V k. Furthermore, a color k-ary relational structure is an ordered pair
X = (V, (E1, . . . , Ec)), with V a set and E1, . . . , Ec pairwise disjoint subsets of V k. If
k = 2, 3, or 4, we simply say that X is a (color) binary, ternary, or quaternary relational
structure. A combinatorial object is a pair X = (V,E), with V a set and E a subset of⋃∞
i=1 V

i.

The following two definitions are due to Babai [1].

Definition 1.2. For a group G, define gL : G → G by gL(h) = gh, and let GL = {gL :
g ∈ G}. Then GL is a permutation group on G, called the left regular representation of G.
We will say that a (color) k-ary relational structure X is a Cayley (color) k-ary relational
structure ofG ifGL ≤ Aut(X) (note that this implies V = G). In general, a combinatorial
object X will be called a Cayley object of G if GL ≤ Aut(X).

Definition 1.3. For a class C of Cayley objects of G, we say that G is a CI-group with
respect to C if whenever X,Y ∈ C, then X and Y are isomorphic if and only if they are
isomorphic by a group automorphism of G.

It is clear that if G is a CI-group with respect to color k-ary relational structures, then
G is a CI-group with respect to k-ary relational structures.

Perhaps the most significant result in this area is a well-known theorem of Pálfy [15]
which states that a groupG of order n is a CI-group with respect to every class of combina-
torial objects if and only if n = 4 or gcd(n, ϕ(n)) = 1, where ϕ is the Euler phi function.
In fact, in proving this result, Pálfy showed that if a group G is not a CI-group with respect
to some class of combinatorial objects, then G is not a CI-group with respect to quater-
nary relational structures. As much work has been done on the case of binary relational
structures (i.e., digraphs), until recently there was a “gap” in our knowledge of the Cayley
isomorphism problem for k-ary relational structures with k = 3. As additional motivation
to study this problem, we remark that a group G that is a CI-group with respect to ternary
relational structures is necessarily a CI-group with respect to binary relational structures,
see [5, page 227].

Although Babai [1] showed in 1977 that the dihedral group of order 2p is a CI-group
with respect to ternary relational structures, no additional work was done on this problem
until the first author considered the problem in 2003 [5]. Indeed, in [5] a relatively short
list of groups is given and it is proved that every CI-group with respect to ternary relational
structures lies in this list (although not every group in this list is necessarily a CI-group
with respect to ternary relational structures). Additionally, several groups in the list were
shown to be CI-groups with respect to ternary relational structures. Recently, the second
author [17] has shown that two groups given in [5] are not CI-groups with respect to ternary
relational structures, namely Z3 n Q8 and Z3 × Q8. In this paper, we give a sufficient
condition to ensure that certain abelian groups are not CI-groups with respect to ternary
relational structures (Theorem 2.1), and then show that Z2

2 × Z3, Z3
2 × Z7, and Z4

2 × Z5
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satisfy this condition in Corollary 2.4 (and so are not CI-groups with respect to ternary
relational structures). We then show that Z3

2 × Z5 is a CI-group with respect to ternary
relational structures. As the first author has shown [6] that Z3

2 × Zp is a CI-group with
respect to ternary relational structures provided that p ≥ 11, we then have a complete
determination of which groups Z3

2 × Zp, p a prime, are CI-groups with respect to ternary
relational structures.

Theorem A. The group Z3
2 × Zp is a CI-group with respect to color ternary relational

structures if and only if p /∈ {3, 7}.

We will show that both Z3
2×Z3 and Z3

2×Z7 are CI-groups with respect to color binary
relational structures. As it is already known that Z4

2 is a CI-group with respect to binary
relational structures [11], we have the following result.

Corollary A. The group Z3
2 × Zp is a CI-group with respect to color binary relational

structures for all primes p.

We are then left in the situation of knowing whether or not any subgroup of Z3
2 ×Zp is

a CI-group with respect to color binary or ternary relational structures, with the exception
of Z2

2×Z7 with respect to color ternary relational structures (as Z2
2×Z7 is a CI-group with

respect to color binary relational structures [10]). We show that Z2
2×Z7 is a CI-group with

respect to color ternary relational structures (which generalizes a special case of the main
result of [10]) and we prove the following.

Corollary B. The group Z2
2 × Zp is a CI-group with respect to color ternary relational

structures if and only if p 6= 3.

Finally, using Magma [2] and GAP [8], we show that Z5
2 is not a CI-group with respect

to ternary relational structures. We conclude this introductory section by recalling the
following.

Definition 1.4. For g, h in G, we denote the commutator g−1h−1gh of g and h by [g, h].

2 The main ingredient and Theorem A
We start by proving the main ingredient for our proof of Theorem A.

Theorem 2.1. Let G be an abelian group and p an odd prime. Assume that there exists
an automorphism α of G of order p fixing only the zero element of G. Then Zp ×G is not
a CI-group with respect to color ternary relational structures. Moreover, if there exists a
ternary relational structureZ onG with Aut(Z) = 〈GL, α〉, then Zp×G is not a CI-group
with respect to ternary relational structures.

Proof. Since α fixes only the zero element of G, we have |G| ≡ 1 (mod p) and so
gcd(p, |G|) = 1.

For each g ∈ G, define ĝ : Zp × G → Zp × G by ĝ(i, j) = (i, j + g). Additionally,
define τ, γ, ᾱ : Zp × G → Zp × G by τ(i, j) = (i + 1, j), γ(i, j) = (i, αi(j)), and
ᾱ(i, j) = (i, α(j)). Then (Zp ×G)L = 〈τ, ĝ : g ∈ G〉.

Clearly, 〈GL, α〉 = GL o 〈α〉 is a subgroup of Sym(G) (where GL acts on G by left
multiplication and α acts as an automorphism). Note that the stabilizer of 0 in 〈GL, α〉
is 〈α〉. As α fixes only 0, we conclude that for every g ∈ G with g 6= 0, the point-wise
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stabilizer of 0 and g in 〈GL, α〉 is 1. Therefore, by [18, Theorem 5.12], there exists a color
Cayley ternary relational structure Z of G such that Aut(Z) = 〈GL, α〉. If there exists
also a ternary relational structure with automorphism group 〈GL, α〉, then we let Z be one
such ternary relational structure.

Let

U = {((0Zp
, g), (0Zp

, h)) : (0G, g, h) ∈ E(Z)}, and

S = {([ĝ, γ](1, 0G), [ĝ, γ](2, 0G)) : g ∈ G} ∪ U

and define a (color) ternary relational structure X by

V (X) = Zp ×G and E(X) = {k(0Zp×G, s1, s2) : (s1, s2) ∈ S, k ∈ (Zp ×G)L}.

If Z is a color ternary relational structure, then we assign to the edge k(0Zp×G, s1, s2) the
color of the edge (0G, g, h) in Z if (s1, s2) ∈ U and (s1, s2) = ((0Zp

, g), (0Zp
, h)), and

otherwise we assign a fixed color distinct from those used in Z. By definition ofX we have
(Zp×G)L ≤ Aut(X) and so X is a (color) Cayley ternary relational structure of Zp×G.

We claim that ᾱ ∈ Aut(X). As ᾱ is an automorphism of Zp × G, we see that ᾱ ∈
Aut(X) if and only if ᾱ(S) = S and ᾱ preserves colors (if X is a color ternary relational
structure). By definition of Z and U , we have ᾱ(U) = U and ᾱ preserves colors (if X is a
color ternary relational structure). So, it suffices to consider the case s ∈ S − U , i.e., s =
([ĝ, γ](1, 0), [ĝ, γ](2, 0)) for some g ∈ G. Note that now we need not consider colors as all
the edges in S−U are of the same color. Then ᾱĝ(i, j) = (i, α(j) +α(g)) = α̂(g)ᾱ(i, j).

Thus ᾱĝ = α̂(g)ᾱ. Similarly, ᾱĝ−1 = α̂(g)
−1
ᾱ. Clearly ᾱ commutes with γ, and so

ᾱ[ĝ, γ] = [α̂(g), γ]ᾱ. As ᾱ fixes (1, 0) and (2, 0), we see that

ᾱ(s) = ᾱ([ĝ, γ](1, 0), [ĝ, γ](2, 0)) = (ᾱ[ĝ, γ](1, 0), ᾱ[ĝ, γ](2, 0))

= ([α̂(g), γ]ᾱ(1, 0), [α̂(g), γ]ᾱ(2, 0))

= ([α̂(g), γ](1, 0), [α̂(g), γ](2, 0)) ∈ (S − U).

Thus ᾱ(S) = S, ᾱ preserves colors (if X is a color ternary relational structure) and ᾱ ∈
Aut(X).

We claim that γ−1(Zp × G)Lγ is a subgroup of Aut(X). We set τ ′ = γ−1τγ and
g′ = γ−1ĝγ, for g ∈ G. Note that τ ′ = τᾱ−1. As ᾱ ∈ Aut(X), we have τ ′ ∈ Aut(X).
Therefore it remains to prove that 〈g′ : g ∈ G〉 is a subgroup of Aut(X). Let e ∈ E(X)

and g ∈ G. Then e = k((0, 0), s), where s ∈ S and k = τa l̂, for some a ∈ Zp, l ∈ G.
We have to prove that g′(e) ∈ E(X) and has the same color as e (if X is a color ternary
relational structure).

Assume that s ∈ U . As g′(i, j) = (i, j + α−i(g)), by definition of U , we have
g′[k((0, 0), s)] ∈ E(X) and has the same color of e (ifX is a color ternary relational struc-
ture). So, it remains to consider the case s ∈ S − U , i.e., s = ([x̂, γ](1, 0), [x̂, γ](2, 0)) for
some x ∈ G. As before, we need not concern ourselves with colors because all the edges
in S − U are of the same color.

Set m = kα̂−a(g). Since ᾱĝ = α̂(g)ᾱ and ᾱ, γ commute, we get ᾱg′ = (α(g))′ᾱ.
Also observe that as G is abelian, g′ commutes with ĥ for every g, h ∈ G. Hence
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g′k = γ−1ĝγτa l̂ = γ−1ĝτaγᾱa l̂ = γ−1τaĝᾱaγl̂

= τaγ−1ᾱ−aĝᾱaγl̂ = τa(α−a(g))′ l̂ = τa l̂(α−a(g))′

= kα̂−a(g)α̂−a(g)
−1
γ−1α̂−a(g)γ = m[α̂−a(g), γ]

and

g′[k((0, 0), s)] = g′k((0, 0), [x̂, γ](1, 0), [x̂, γ](2, 0))

= m[α̂−a(g), γ]((0, 0), [x̂, γ](1, 0), [x̂, γ](2, 0))

= m((0, 0), [α̂−a(g), γ][x̂, γ](1, 0), [α̂−a(g), γ][x̂, γ](2, 0))

= m((0, 0), [ ̂α−a(g)x, γ](1, 0), [ ̂α−a(g)x, γ](2, 0)) ∈ E(X).

This proves that g′ ∈ Aut(X). Since g is an arbitrary element of G, we have γ−1GLγ ⊆
Aut(X). As claimed, γ−1(Zp × G)Lγ is a regular subgroup of Aut(X) conjugate in
Sym(Zp ×G) to (Zp ×G)L.

We now see that Y = γ(X) is a Cayley (color) ternary relational structure of Zp ×
G as Aut(Y ) = γAut(X)γ−1. We will next show that Y 6= X . Assume by way of
contradiction that Y = X . As γ(0, g) = (0, g) for every g ∈ G, the permutation γ
must map edges of U to themselves, so that γ(S − U) = S − U . We will show that
γ(S − U) 6= S − U . Note that we need not concern ourselves with colors as all the edges
derived from S − U via translations of (Zp ×G)L have the same color. Observing that

([ĝ, γ](1, 0), [ĝ, γ](2, 0)) = (ĝ−1γ−1ĝγ(1, 0), ĝ−1γ−1ĝγ(2, 0))

= (ĝ−1γ−1ĝ(1, 0), ĝ−1γ−1ĝ(2, 0))

= (ĝ−1γ−1(1, g), ĝ−1γ−1(2, g))

= (ĝ−1(1, α−1(g), ĝ−1(2, α−2(g))

= ((1, α−1(g)− g), (2, α−2(g)− g)),

we see that γ(S−U) = {((1, g−α(g)), (2, g−α2(g))) : g ∈ G}. Moreover, as S−U =
{(1, α−1(g)− g), (2, α−2(g)− g) : g ∈ G}, we conclude that for each g ∈ G, there exists
hg ∈ G such that

g − α(g) = α−1(hg)− hg and g − α2(g) = α−2(hg)− hg.

Setting ι : G→ G to be the identity permutation, we may rewrite the above equations as

(ι− α)(g) = (α−1 − ι)(hg) and (ι− α2)(g) = (α−2 − ι)(hg).

Computing in the endomorphism ring of the abelian group G, we see that (α−2 − ι) =
(α−1 + ι)(α−1 − ι). Applying the endomorphism (α−1 + ι) to the first equation above,
we then have

(α−1 + ι)(ι− α)(g) = (α−1 + ι)(α−1 − ι)(hg) = (α−2 − ι)(hg) = (ι− α2)(g).
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Hence (α−1 + ι)(ι− α) = ι− α2, and so

0 = (α−1 + ι)(ι− α)− (ι− α2) = ((α−1 + ι)− (ι+ α))(ι− α) = (α−1 − α)(ι− α),

(here 0 is the endomorphism of G that maps each element of G to 0). As α fixes only 0,
the endomorphism ι − α is invertible, and so we see that α−1 − α = 0, and α = α−1.
However, this implies that p = |α| = 2, a contradiction. Thus γ(S − U) 6= S − U and so
Y 6= X .

We set T = γ(S), so that ((0, 0), t) ∈ E(Y ) for every t ∈ T , where if X is a color
ternary relational structure we assume that γ preserves colors. Now suppose that there
exists β ∈ Aut(Zp×G) such that β(X) = Y . Since gcd(p, |G|) = 1, we obtain that Zp×
1G and 1Zp

×G are characteristic subgroups of Zp×G. Therefore β(i, j) = (β1(i), β2(j)),
where β1 ∈ Aut(Zp) and β2 ∈ Aut(G).

As β fixes (0, 0), we must have β(S) = T . Observe that every element of S and of T
is of the form ((0, g), (0, h)) or ((1, g), (2, h)), for some g, h ∈ G. In particular, we must
have β1(1) = 1 and hence β1 = 1. As ᾱ ∈ Aut(X) and X 6= Y , we have β2 6∈ 〈α〉. Now
observe that β(U) = U . Thus β2 ∈ Aut(Z) = 〈GL, α〉. We conclude that β2 ∈ 〈α〉, a
contradiction. Thus X,Y are not isomorphic by a group automorphism of Zp×G, and the
result follows.

The following two lemmas, which in our opinion are of independent interest, will be
used (together with Theorem 2.1) in the proof of Corollary 2.4.

Lemma 2.2. Let G be a transitive permutation group on Ω. If x ∈ Ω and StabG(x) in its
action on Ω − {x} is the automorphism group of a k-ary relational structure with vertex
set Ω− {x}, then G is the automorphism group of a (k + 1)-ary relational structure.

Proof. Let Y be a k-ary relational structure with vertex set Ω − {x} and automorphism
group StabG(x) in its action on Ω − {x}. Let W = {(x, v1, . . . , vk) : (v1, . . . , vk) ∈
E(Y )}, and define a (k + 1)-ary relational structure X by V (X) = Ω and E(X) =
{g(w) : w ∈ W and g ∈ G}. We claim that Aut(X) = G. First, observe that StabG(x)
maps W to W . Also, if e ∈ E(X) and e = (x, v1, . . . , vk) for some v1, . . . , vk ∈ Ω,
then there exists (x, u1, . . . , uk) ∈ W and g ∈ G with g(x, u1, . . . , uk) = (x, v1, . . . , vk).
We conclude that g(x) = x and g(u1, . . . , uk) = (v1, . . . , vk). Hence g ∈ StabG(x) and
(v1, . . . , vk) ∈ E(Y ). Then W is the set of all edges of X with first coordinate x.

By construction, G ≤ Aut(X). For the reverse inclusion, let h ∈ Aut(X). As G is
transitive, there exists g ∈ G such that g−1h ∈ StabAut(X)(x). Note that as g ∈ G, the
element g−1h ∈ G if and only if h ∈ G. We may thus assume without loss of generality
that h(x) = x. Then h stabilizes set-wise the set of all edges of X with first coordinate x,
and so h(W ) = W and h induces an automorphism of Y . As Aut(Y ) = StabG(x) ≤ G,
the result follows.

Lemma 2.3. Let m ≥ 2 be an integer and ρ ∈ Sym(Zms) be a semiregular element
of order m with s orbits. Then there exists a digraph Γ with vertex set Zms and with
Aut(Γ) = 〈ρ〉.

Proof. For each i ∈ Zs, set

ρi = (0, 1, . . . ,m−1) · · · (im, im+1, . . . , im+m−1) and Vi = {im+j : j ∈ Zm}.
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We inductively define a sequence of graphs Γ0, . . . ,Γs−1 = Γ such that the subgraph of Γ
induced by Z(i+1)m is Γi, the indegree in Γ of a vertex in Vi is i+ 1, and Aut(Γi) = 〈ρi〉,
for each i ∈ Zs.

We set Γ0 to be the directed cycle of length m with edges {(j, j + 1) : j ∈ Zm} and
with automorphism group 〈ρ0〉. Inductively assume that Γs−2, with the above properties,
has been constructed. We construct Γs−1 as follows. First, the subgraph of Γs−1 induced
by Z(s−1)m is Γs−2. Then we place the directedm cycle {((s−1)m+j, (s−1)m+j+1) :
j ∈ Zm} whose automorphism group is 〈((s−1)m, (s−1)m+1, . . . , (s−1)m+m−1)〉
on the vertices in Vs−1. Additionally, we declare the vertex (s− 1)m to be outadjacent to
(s− 2)m and to every vertex that (s− 2)m is outadjacent to that is not contained in Vs−2.
Finally, we add to Γs−1 every image of one of these edges under an element of 〈ρs−1〉.

By construction, ρs−1 is an automorphism of Γs−1 and the subgraph of Γs−1 induced
by Z(s−1)m is Γs−2. Then each vertex in Γs−1 ∩ Vi has indegree i+ 1 for 0 ≤ i ≤ s− 2,
while it is easy to see that each vertex of Vs−1 has indegree s. Finally, if δ ∈ Aut(Γs−1),
then δ maps vertices of indegree i + 1 to vertices of indegree i + 1, and so δ fixes set-
wise Vi, for every i ∈ Zs. Additionally, the action induced by 〈δ〉 on Vs−1 is necessarily
〈((s−1)m, (s−1)m+1, . . . , (s−1)m+m−1)〉 as this is the automorphism group of the
subgraph of Γs−1 induced by Vs−1. Moreover, arguing by induction, we may assume that
the action induced by δ on V (Γs−1)−Vs−1 is given by an element of 〈ρs−2〉. If δ 6∈ 〈ρs−1〉,
then Aut(Γs−1) has order at least m2, and there is some element of Aut(Γs−1) that is the
identity on V (Γs−2) but not on Vs−1 and vice versa. This however is not possible as each
vertex of Vs−2 is inadjacent to exactly one vertex of Vs−1. Then Aut(Γs−1) = 〈ρs−1〉 and
the result follows.

Corollary 2.4. None of the groups Z3 × Z2
2, Z7 × Z3

2, or Z5 × Z4
2 are CI-groups with

respect to ternary relational structures.

Proof. Observe that Z2
2 has an automorphism α3 of order 3 that fixes 0 and acts regularly

on the remaining 3 elements, and similarly, Z3
2 has an automorphism α7 of order 7 that

fixes 0 and acts regularly on the remaining 7 elements. As a regular cyclic group is the
automorphism group of a directed cycle, we see that 〈(Z3×Z2

2)L, α3〉 and 〈(Z7×Z3
2)L, α7〉

are the automorphism groups of ternary relational structures by Lemma 2.2. The result then
follows by Theorem 2.1.

Now Z4
2 has an automorphism α5 of order 5 that fixes 0 and acts semiregularly on the

remaining 15 points. Then 〈α5〉 in its action on Z4
2 − {0} is the automorphism group of

a binary relational structure by Lemma 2.3. By Lemma 2.2, there exists a ternary rela-
tional structure with automorphism group 〈(Z5 × Z4

2)L, α5〉. The result then follows by
Theorem 2.1.

Before proceeding, we will need terms and notation concerning complete block sys-
tems.

Let G ≤ Sym(n) be a transitive permutation group (acting on Zn, say). A subset
B ⊆ Zn is a block for G if g(B) = B or g(B) ∩ B = ∅ for every g ∈ G. Clearly Zn and
its singleton subsets are always blocks for G, and are called trivial blocks. If B is a block,
then g(B) is a block for every g ∈ G, and the set B = {g(B) : g ∈ G} is called a complete
block system for G, and we say that G admits B. A complete block system is nontrivial if
its blocks are nontrivial. Observe that a complete block system is a partition of Zn, and any
two blocks have the same size. If G admits B as a complete block system, then each g ∈ G
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induces a permutation of B, which we denote by g/B. We set G/B = {g/B : g ∈ G}.
The kernel of the action of G on B, denoted by fixG(B), is then the subgroup of G which
fixes each block of B set-wise. That is, fixG(B) = {g ∈ G : g(B) = B for all B ∈ B}.
For fixed B ∈ B, we denote the set-wise stabilizer of B in G by StabG(B). That is
StabG(B) = {g ∈ G : g(B) = B}. Note that fixG(B) = ∩B∈BStabG(B). Finally, for
g ∈ StabG(B), we denote by g|B the action induced by g on B ∈ B.

Note that Corollary 2.4, together with the fact that Z3
2 × Zp, p ≥ 11, is a CI-group

with respect to color ternary relational structures [6], settles the question of which groups
Z3

2 × Zp are CI-groups with respect to color ternary relational structures except for p = 5.
Our next goal is to show that Z3

2 ×Z5 is a CI-group with respect to color ternary relational
structures. From a computational point of view, the number of points is too large to enable
a computer to determine the answer without some additional information. Lemma 6.1
in [6] is the only result that uses the hypothesis p ≥ 11. For convenience, we report [6,
Lemma 6.1].

Lemma 2.5. Let p ≥ 11 be a prime and write H = Z3
2 × Zp. For every φ ∈ Sym(H),

there exists δ ∈ 〈HL, φ
−1HLφ〉 such that 〈HL, δ

−1φ−1HLφδ〉 admits a complete block
system consisting of 8 blocks of size p.

In particular, to prove that Z3
2×Z5 is a CI-group with respect to color ternary relational

structures, it suffices to prove that Lemma 2.5 holds true also for the prime p = 5. We begin
with some intermediate results which accidentally will also help us to prove that Z3

2 × Z7

is a CI-group with respect to color binary relational structures. (Here we denote by Alt(X)
the alternating group on the set X and by Alt(n) the alternating group on {1, . . . , n}.)

Lemma 2.6. Let p be an arbitrary divisor of n with p 6= 1 and let P1 and P2 be partitions
of Zn where each block in P1 and P2 has size p. Then there exists φ ∈ Alt(Zn) such that
φ(P1) = P2.

Proof. Let P1 = {∆1, . . . ,∆n/p} and P2 = {Ω1, . . . ,Ωn/p}. As Alt(n) is (n − 2)-
transitive, there exists φ ∈ Alt(n) such that φ(∆i) = Ωi, for i ∈ {1, . . . , n/p − 1}. As
both P1 and P2 are partitions, we see that φ(∆n/p) = Ωn/p as well.

Lemma 2.7. Let p be a prime, let G = Z3
2 × Zp and let δ ∈ Sym(G). Suppose that

〈GL, δ−1GLδ〉 admits a complete block system C with p blocks of size 8 such that Alt(C) ≤
Stab〈GL,δ−1GLδ〉(C)|C , where C ∈ C. Then there exists γ ∈ 〈GL, δ−1GLδ〉 such that
〈GL, γ−1δ−1GLδγ〉 admits a complete block system B with 4p blocks of size 2.

Proof. Write H = 〈GL, δ−1GLδ〉, N = fixH(C) and M = [N,N ]. Clearly both GL and
δ−1GLδ are regular, and so both fixGL

(C) and fixδ−1GLδ(C) are semiregular of order 8.
Moreover, as fixGL

(C)|C and fixδ−1GLδ(C)|C have exponent 2, we see that they are both
consist of even permutations and hence they are contained in Alt(C), for each C ∈ C.

From the previous paragraph, as Alt(8) is simple and 1 6= N |C / Stab〈G,δ−1Gδ〉(C)|C ,
we have Alt(C) = M |C , for every C ∈ C. In particular, M is isomorphic to a subgroup of
Alt(8)p.

Denote by M(C) the pointwise stabilizer of C ∈ C. Define an equivalence relation ≡
on C by C ≡ C ′ if and only if M(C) = M(C′). Clearly, ≡ is an H-invariant equivalence
relation because M /H . As |C| = p, we see that ≡ is either the identity or the universal
relation. From this, we infer that either M ∼= Alt(8) (when ≡ is the identity relation) or
M ∼= Alt(8)p (when ≡ is the universal relation). Observe further that, when M ∼= Alt(8),
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since Alt(8) has only one permutation representation of degree 8 [3, Theorem 5.3], the
groupM induces equivalent actions on C and on C ′, for every C and C ′ in C. In particular,
in both cases, given a subgroup I of GL and J of δ−1GLδ both of order 2, there exists
γ ∈M with I = γ−1Jγ.

Write K = 〈GL, γ−1δ−1GLδγ〉. Clearly, I is centralized by GL and by γ−1δ−1GLδγ
because I ≤ GL and I ≤ γ−1δ−1GLδγ. So I is centralized by K. As I /K, the orbits of
I form a complete block system for K with 4p blocks of size 2.

The proof of the following result is similar to the proof of [6, Lemma 6.1], and gener-
alizes it.

Lemma 2.8. Let H be an abelian group of order `p, where ` < p and p is prime. Let
φ ∈ Sym(H). Then there exists δ ∈ 〈HL, φ

−1HLφ〉 such that 〈HL, δ
−1φ−1HLφδ〉 admits

a complete block system with blocks of size p.

Proof. Let ρ ∈ H be of order p. Then HL admits a complete block system B of `
blocks of size p formed by the orbits of 〈ρ〉. Note that as ` < p, a Sylow p-subgroup
of Sym(H) has order p`. In particular, 〈ρ|B : B ∈ B〉 is a Sylow p-subgroup of Sym(H)
isomorphic to Z`p, an elementary abelian p-group of order p`. Let P and P1 be Sylow
p-subgroups of 〈HL, φ

−1HLφ〉 containing ρ and φ−1ρφ, respectively. Then there exists
δ ∈ 〈HL, φ

−1HLφ〉 such that δ−1P1δ = P . Now, every element of HL normalizes 〈ρ〉,
and so normalizes 〈ρ|B : B ∈ B〉. This then implies that HL normalizes P because
P = 〈ρ|B : B ∈ B〉 ∩ 〈HL, φ

−1HLφ〉.
Let B′ be the complete block system of δ−1φ−1HLφδ formed by the orbits of the

cyclic group δ−1φ−1〈ρ〉φδ. Arguing as above, we see that δ−1φ−1HLφδ normalizes
M = 〈(δ−1φ−1ρφδ)|B′ : B′ ∈ B′〉 ∩ 〈HL, δ

−1φ−1HLφδ〉. However, M is the Sylow
p-subgroup of 〈HL, δ

−1φ−1HLφδ〉 containing δ−1φ−1〈ρ〉δφ, which is P . Thus we have
P / 〈HL, δ

−1φ−1HLφδ〉, and the orbits of P form the required complete block system.

Lemma 2.9. Let p ≥ 5, H = Z3
2 × Zp, and φ ∈ Sym(H). Then either there exists

δ ∈ 〈HL, φ
−1HLφ〉 such that 〈HL, δ

−1φ−1HLφδ〉 admits a complete block system with
blocks of size p or 〈HL, φ

−1HLφ〉 admits a complete block system B with blocks of size 8
and fix〈HL,φ−1HLφ〉(B)|B is isomorphic to a primitive subgroup of AGL(3, 2), for B ∈ B.

Proof. Set K = 〈HL, φ
−1HLφ〉. As H has a cyclic Sylow p-subgroup, we have by [4,

Theorem 3.5A] that K is doubly-transitive or imprimitive. If K is doubly-transitive, then
by [12, Theorem 1.1] we have Alt(H) ≤ K. Now Lemma 2.6 reduces this case to the
imprimitive case. Thus we may assume thatK is imprimitive with a complete block system
C.

Suppose that the blocks of C have size `p, where ` = 2 or 4. Notice that p > `. As H is
abelian, fixHL

(C) is a semiregular group of order `p and fixφ−1HLφ(C) is also a semiregular
group of order `p. Then, for C ∈ C, both fixHL

(C)|C and fixφ−1HLφ(C)|C are regular
groups of order `p. Let C ∈ C. By Lemma 2.8, there exists δ ∈ 〈fixHL

(C),fixφ−1HLφ(C)〉
such that 〈fixHL

(C),fixδ−1φ−1HLφδ(C)〉|C admits a complete block system BC consisting
of blocks of size p. Let C ′ ∈ C with C ′ 6= C. Arguing as above, there exists δ′ ∈
〈fixHL

(C),fixδ−1φ−1HLφδ(C)〉 such that 〈fixHL
(C),fixδ′−1δ−1φ−1HLφδδ′(C)〉|C′ admits a

complete block system BC′ consisting of blocks of size p. Note that the restriction δ′|C is
in 〈fixHL

(C),fixδ−1φ−1HLφδ(C)〉|C and so 〈fixHL
(C),fixδ′−1δ−1φ−1HLφδδ′(C)〉|C admits

BC as a complete block system. Repeating this argument for every block in C, we find
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that there exists δ ∈ 〈fixHL
(C),fixφ−1HLφ(C)〉 such that 〈fixHL

(C),fixδ−1φ−1HLφδ(C)〉|C
admits a complete block system BC consisting of blocks of size p. Let B = ∪CBC . We
claim that B is a complete block system for 〈HL, δ

−1φ−1HLφδ〉, which will complete the
argument in this case.

Let ρ ∈ HL be of order p. By construction, ρ ∈ fixHL
(B). AsH is abelian, fixHL

(C)|C
is abelian, for every C ∈ C. Then BC is formed by the orbits of some subgroup of
fixHL

(C)|C of order p, and as 〈ρ〉|C is the unique subgroup of fixHL
(C)|C of order p, we

obtain that BC is formed by the orbits of 〈ρ〉|C . Then B is formed by the orbits of 〈ρ〉 /HL

and B is a complete block system for HL. An analogous argument for δ−1φ−1〈ρ〉φδ gives
that B is a complete block system for δ−1φ−1HLφδ. Then B is a complete block system
for 〈HL, δ

−1φ−1HLφδ〉 with blocks of size p, as required.
Suppose that the blocks of C have size 8. NowHL/C and φ−1HLφ/C are cyclic of order

p, and as Zp is a CI-group [1, Theorem 2.3], replacing φ−1HLφ by a suitable conjugate,
we may assume that 〈HL, φ

−1HLφ〉/C = HL/C. Then K/C is regular and StabK(C) =
fixK(C), for every C ∈ C.

Suppose that StabK(C)|C is imprimitive, for C ∈ C. By [4, Exercise 1.5.10], the group
K admits a complete block system D with blocks of size 2 or 4. Then K/D has degree 2p
or 4p and, by Lemma 2.8, there exists δ ∈ K such that 〈HL, δ

−1φ−1HLφδ〉/D admits a
complete block system B′ with blocks of size p. In particular, B′ induces a complete block
system B′′ for 〈HL, δ

−1φ−1HLφδ〉 with blocks of size 2p or 4p, and we conclude by the
case previously considered applied with C = B′′. Suppose that StabK(C)|C is primitive,
forC ∈ C. If StabK(C)|C ≥ Alt(C), then the result follows by Lemma 2.7, and so we may
assume this is not the case. By [12, Theorem 1.1], we see that StabK(C)|C ≤ AGL(3, 2).
The result now follows with B = C.

Corollary 2.10. LetH = Z3
2×Z5 and φ ∈ Sym(H). Then there exists δ ∈ 〈HL, φ

−1HLφ〉
such that 〈HL, δ

−1φ−1HLφδ〉 admits a complete block system with blocks of size 5.

Proof. Set K = 〈HL, φ
−1HLφ〉. By Lemma 2.9, we may assume that K admits a com-

plete block system B with blocks of size 8 and with StabK(B)|B ≤ AGL(3, 2), forB ∈ B.
As |AGL(3, 2)| = 8 · 7 · 6 · 4, we see that a Sylow 5-subgroup of K has order 5. Let 〈ρ〉
be the subgroup of HL of order 5. So 〈ρ〉 is a Sylow 5-subgroup of K. Then φ−1〈ρ〉φ
is also a Sylow 5-subgroup of K, and by a Sylow theorem there exists δ ∈ K such
that δ−1φ−1〈ρ〉φδ = 〈ρ〉. We then see that 〈HL, δ

−1φ−1HLφδ〉 has a unique Sylow 5-
subgroup, whose orbits form the required complete block system B.

We are finally ready to prove Theorem A.

Proof of Theorem A. If p is odd, then the paragraph following the proof of Corollary 2.4
shows that it suffices to prove that Lemma 2.5 holds for the prime p = 5. This is done in
Corollary 2.10. If p = 2, then the result can be verified using GAP or Magma.

3 Proof of Corollaries A and B
Before proceeding to our next result we will need the following definitions.

Definition 3.1. LetG be a permutation group on Ω and k ≥ 1. A permutation σ ∈ Sym(Ω)
lies in the k-closure G(k) of G if for every k-tuple t ∈ Ωk there exists gt ∈ G (depending
on t) such that σ(t) = gt(t). We say that G is k-closed if the permutations lying in the
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k-closure of G are the elements of G, that is, G(k) = G. The group G is k-closed if and
only if there exists a color k-ary relational structure X on Ω with G = Aut(X), see [18].

Definition 3.2. For color digraphs Γ1 and Γ2, we define the wreath product of Γ1 and
Γ2, denoted Γ1 o Γ2, to be the color digraph with vertex set V (Γ1) × V (Γ2) and edge
set E1 ∪ E2, where E1 = {((x1, y1), (x1, y2)) : x1 ∈ V (Γ1), (y1, y2) ∈ E(Γ2)} and
E2 = {((x1, y1), (x2, y2)) : (x1, x2) ∈ E(Γ1), y1, y2 ∈ V (Γ2)}.

The edge ((x1, y1), (x1, y2)) ∈ E1 is colored with the same color as (y1, y2) in Γ2 and
the edge ((x1, y1), (x2, y2)) ∈ E2 is colored with the same color as (x1, x2) in Γ1.

Definition 3.3. Let G ≤ Sym(X) and let H ≤ Sym(Y ). We define the wreath product
of G and H , denoted by G o H , to be the semidirect product G n HX , where HX is the
direct product of |X| copies of H (labeled by the elements of X) and where G acts on
HX as a group of automorphisms by permuting the coordinates according to its action on
X . The group G o H has a natural faithful action on X × Y , where for (x, y) ∈ X × Y
the element g ∈ G acts via (x, y) 7→ (g(x), y) and the element (hz)z∈X ∈ HX acts
via (x, y) 7→ (x, hx(y)). We refer the reader to [4, page 46] for more details on this
construction.

The following very useful result (see [1, Lemma 3.1]) characterizes CI-groups with
respect to a class of combinatorial objects.

Lemma 3.4. LetH be a group and letK be a class of combinatorial objects. The following
are equivalent.

1. H is a CI-group with respect to K,

2. whenever X is a Cayley object of H in K and φ ∈ Sym(H) such that φ−1HLφ ≤
Aut(X), then HL and φ−1HLφ are conjugate in Aut(X).

Proof of Corollary A. From Theorem A, it suffices to show that Z3
2 × Z3 and Z3

2 × Z7 are
CI-groups with respect to color binary relational structures. As the transitive permutation
groups of degree 24 are readily available in GAP or Magma, it can be shown using a
computer that Z3

2 × Z3 is a CI-group with respect to color binary relational structures. It
remains to consider H = Z3

2 × Z7.
Fix φ ∈ Sym(H) and set K = 〈HL, φ

−1HLφ〉. Assume that there exists δ ∈ K such
that 〈HL, δ

−1φ−1HLφδ〉 admits a complete block system with blocks of size 7. Now, it
follows by [6] (see the two paragraphs following the proof of Corollary 2.4) that HL and
δ−1φ−1HLφδ are conjugate in 〈HL, δ

−1φ−1HLφδ〉(3). Since 〈HL, δ
−1φ−1HLφδ〉(3) ≤

〈HL, δ
−1φ−1HLφδ〉(2), the corollary follows from Lemma 3.4 (and from Definition 3.1).

Assume that there exists no δ ∈ K such that 〈HL, δ
−1φ−1HLφδ〉 admits a complete

block system with blocks of size 7. By Lemma 2.9, the group K admits a complete block
system C with blocks of size 8 and fixK(C)|C is isomorphic to a primitive subgroup of
AGL(3, 2), for C ∈ C. Suppose that 7 and |fixK(C)| are relatively prime. So, a Sylow 7-
subgroup of K has order 7. We are now in the position to apply the argument in the proof
of Corollary 2.10. Let 〈ρ〉 be the subgroup of HL of order 7. Then φ−1〈ρ〉φ is a Sylow 7-
subgroup of K, and by a Sylow theorem there exists δ ∈ K such that δ−1φ−1〈ρ〉φδ = 〈ρ〉.
We then see that 〈HL, δ

−1φ−1HLφδ〉 has a unique Sylow 7-subgroup, whose orbits form
a complete block system with blocks of size 7, contradicting our hypothesis on K. We thus
assume that 7 divides |fixK(C)| and so fixK(C) acts doubly-transitively on C, for C ∈ C.
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Fix C ∈ C and let L be the point-wise stabilizer of C in fixK(C). Assume that
L 6= 1. Now, we compute K(2) and we deduce that HL and φ−1HLφ are conjugate in
K(2), from which the corollary will follow from Lemma 3.4. As L/fixK(C), we have
L|C′ / fixK(C)|C′ , for every C ′ ∈ C. As a nontrivial normal subgroup of a primitive
group is transitive [19, Theorem 8.8], either L|C′ is transitive or L|C′ = 1. Let Γ be
a Cayley color digraph on H with K(2) = Aut(Γ). Let C = {Ci : i ∈ Z7} where
Ci = {(x1, x2, x3, i) : x1, x2, x3 ∈ Z2}, and assume without loss of generality that
C = C0. Suppose that there is an edge of color κ from some vertex of Ci to some vertex
of Cj , where i 6= j. Then there is an edge of color κ from some vertex of C0 to some
vertex of Cj−i. Additionally, j − i generates Z7, so there is a smallest integer s such
that L|Cs(j−i)

= 1 while L|C(s+1)(j−i)
is transitive. As there is an edge of color κ from

some vertex of Cs(j−i) to some vertex of C(s+1)(j−i), we conclude that there is an edge
of color κ from every vertex of Cs(j−i) to every vertex of C(s+1)(j−i). This implies that
there is an edge of color κ from every vertex of Ci to every vertex of Cj , and then Γ is
the wreath product of a Cayley color digraph Γ1 on Z7 and a Cayley color digraph Γ2 on
Z3

2. Since fixK(C) is doubly-transitive on C, we have Aut(Γ2) ∼= Sym(8). Therefore
K(2) = Aut(Γ1) o Aut(Γ2) ∼= Aut(Γ1) o Sym(8). By [7, Corollary 6.8] and Lemma 3.4
HL and φ−1HLφ are conjugate inK(2). We henceforth assume that L = 1, that is, fixK(C)
acts faithfully on C, for each C ∈ C.

Define an equivalence relation on H by h ≡ k if and only if it holds StabfixK(C)(h) =
StabfixK(C)(k). The equivalence classes of ≡ form a complete block system D for K. As
fixK(C)|C is primitive and not regular, each equivalence class of ≡ contains at most one
element from each block of C. We conclude that D either consists of 8 blocks of size 7 or
each block is a singleton. Since we are assuming that K has no block system with blocks
of size 7, we see that each block of D is a singleton.

Fix C and D in C with C 6= D and h ∈ C. Now, StabfixK(C)(h) is isomorphic to a
subgroup of GL(3, 2) and acts with no fixed points on D. From [4, Appendix B]), we see
that AGL(3, 2) is the only doubly-transitive permutation group of degree 8 whose point
stabilizer admits a fixed-point-free action of degree 8. Therefore fixK(C) ∼= AGL(3, 2).
Additionally, StabfixK(C)(h)|D is transitive on D.

Suppose that Γ is a color digraph with K(2) = Aut(Γ) and suppose that there is an
edge of color κ from h to ` ∈ E, with E ∈ C and E 6= D. Then StabfixK(C)(h)|E is
transitive, and so there is an edge of color κ from h to every vertex of E. As fixK(C) is
transitive on both C and E, we see that there is an edge of color κ from every vertex of C
to every vertex of D. We conclude that Γ is a wreath product of two color digraphs Γ1 and
Γ2, where Γ1 is a Cayley color digraph on Z7 and Γ2 is either complete or the complement
of a complete graph, and K(2) = Aut(Γ1) o Sym(8). The result then follows by the same
arguments as above.

Proof of Corollary B. From Corollary 2.4 and Theorem A, it suffices to show that Z2
2×Z7

is a CI-group with respect to color ternary relational structures. As the transitive permuta-
tion groups of degree 28 are readily available in GAP or Magma, it can be shown using a
computer that Z2

2×Z7 is a CI-group with respect to color ternary relational structures. (We
note that a detailed analysis similar to the proof of Corollary A for the group Z3

2 × Z7 also
gives a proof of this theorem.)
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4 Concluding remarks
In the rest of this paper, we discuss the relevance of Theorem A to the study of CI-groups
with respect to ternary relational structures. Using the software packages [2] and [8], we
have determined that Z5

2 is not a CI-group with respect to ternary relational structures. Here
we report an example witnessing this fact: the group G has order 2048, V and W are two
nonconjugate elementary abelian regular subgroups of G, and X = ({1, . . . , 32}, E) is a
ternary relational structure with G = Aut(X). The group V is generated by

(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32),

(1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13, 15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32),

(1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32),

(1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32),

(1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32),

the group W is generated by

(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32),

(1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13, 15)(14,16)(17,20)(18,19)(21,24)(22,23)(25,28)(26,27)(29,32)(30,31),

(1,5)(2,6)(3,7)(4,8)(9,14)(10,13)(11,16)(12,15)(17,22)(18,21)(19,24)(20, 23)(25,29)(26,30)(27,31)(28,32),

(1,9)(2,10)(3,11)(4,12)(5,14)(6,13)(7,16)(8,15)(17,27)(18,28)(19,25)(20,26)(21,32)(22,31)(23,30)(24,29),

(1,17)(2,18)(3,20)(4,19)(5,22)(6,21)(7,23)(8,24)(9,27)(10,28)(11,26)(12,25)(13,32)(14,31)(15,29)(16,30),

the group G is generated by

V,W, (25,26)(27,28)(29,30)(31,32),(1,11)(2,12)(3,9)(4,10)(5,13)(6, 14)(7,15)(8,16)(17,19)(18,20)(25,27)(26,28),

the set E is defined by

{g((1, 3, 9)), g((1, 5, 25)) : g ∈ G}.

Definition 4.1. For a cyclic group M = 〈g〉 of order m and a cyclic group 〈z〉 of order 2d,
d ≥ 1, we denote by D(m, 2d) the group 〈z〉nM with gz = g−1.

Combining Theorem A with [5, Theorem 9], [5, Lemma 6], the construction given
in [17] and the previous paragraph, we have the following result which lists every group
that can be a CI-group with respect to ternary relational structures (although not every
group on the list needs to be a CI-group with respect to ternary relational structures).

Theorem 4.2. If G is a CI-group with respect to ternary relational structures, then all Sy-
low subgroups of G are of prime order or isomorphic to Z4, Zd2, 1 ≤ d ≤ 4, or Q8. More-
over, G = U ×V , where gcd(|U |, |V |) = 1, U is cyclic of order n, with gcd(n, ϕ(n)) = 1,
and V is one of the following:

1. Zd2, 1 ≤ d ≤ 4, D(m, 2), or D(m, 4), where m is odd and gcd(nm,ϕ(nm)) = 1,

2. Z4, Q8.

Furthermore,
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(a) if V = Z4, Q8, or D(m, 4) and p | n is prime, then 4 6 | (p− 1),

(b) if V = Zd2, d ≥ 2, or Q8, then 3 6 | n,

(c) if V = Zd2, d ≥ 3, then 7 6 | n,

(d) if V = Z4
2, then 5 6 | n.
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Abstract

We determine all firm and residually connected rank 2 geometries on which PSL(2, q)
acts flag-transitively, residually weakly primitively and locally two-transitively, in which
one of the maximal parabolic subgroups is isomorphic toA4, S4,A5, PSL(2, q′) or PGL(2,
q′), where q′ divides q, for some prime-power q.
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1 Introduction
In [5], we started the classification of the residually weakly primitive and locally two-
transitive coset geometries of rank two for the groups PSL(2, q). The aim of this paper
is to finish this classification. It remains to focus on the cases in which one of the max-
imal parabolic subgroups is isomorphic to A4, S4, A5, PSL(2, q′) or PGL(2, q′) where
q′ divides q. For motivation, basic definitions, notations and context of the work we refer
to [5].

In Section 3, we sketch the proof of our main result:

Theorem 1.1. LetG ∼= PSL(2, q) and Γ(G; {G0, G1, G0∩G1}) be a locally two-transitive
RWPRI coset geometry of rank two. If G0 is isomorphic to one of A4, S4, A5, PSL(2, q′)
or PGL(2, q′), where q′ divides q, then Γ is isomorphic to one of the geometries appearing
in Table 1, Table 2, Table 3, Table 4, Table 5, and Table 6.
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G0
∼= A5 q = 4r with r prime

G0 ∩G1 G1 ] Geom. ] Geom. Extra conditions loc. (G, s)-
up to conj. up to isom. on q arc-trans. g.

Γ1 D10 D30 1 1 q±1
15

odd s = 3
Γ2 A4 E16 :3 1 1 q = 16 s = 3
Γ3 A4 E16 :3 5 2 q = 64 s = 3

Γ4 A4 E16 :3 4r−1−1
3

2(4r−2−1)+3.2r−2

3r
r > 3, r odd prime s = 3

G0
∼= A5 q = p = ±1(5)

with p odd prime
G0 ∩G1 G1 ] Geom. ] Geom. Extra conditions loc. (G, s)-

up to conj. up to isom. on q arc-trans. g.
Γ5 D10 D20 2 1 q = ±1(20) s = 3
Γ6 D10 D30 2 1 q = ±1(30) s = 3
Γ7 D10 A5 2 1 q±1

10
even s = 2

Γ8 D10 A5 1 1 q±1
10

odd s = 2
Γ9 A4 S4 2 1 q = ±1(40) or q = ±9(40) s = 3
Γ10 A4 A5 2 1 q = ±1(40) or q = ±9(40) s = 2
Γ11 A4 A5 1 1 q = ±11(40) or q = ±19(40) s = 2

G0
∼= A5 q = p2 = −1(5)

with p odd prime
G0 ∩G1 G1 ] Geom. ] Geom. Extra conditions loc. (G, s)-

up to conj. up to isom. on q arc-trans. g.
Γ12 D10 D20 2 1 q = −1(20) s = 3
Γ13 D10 D30 2 1 q = −1(30) s = 3
Γ14 D10 A5 2 1 q+1

10
even s = 2

Γ15 D10 A5 1 1 q+1
10

odd s = 2
Γ16 A4 S4 2 1 q = −1(40) or q = 9(40) s = 3
Γ17 A4 A5 2 1 q = −1(40) or q = 9(40) s = 2
Γ18 A4 A5 1 1 q = −11(40) or q = 19(40) s = 2

Table 1: The RWPRI and (2T )1 geometries with G0
∼= A5.

G0
∼= A4 q = p > 3 and

q = 3, 13, 27, 37(40) or q = 5

G0 ∩G1 G1 ] Geom. ] Geom. Extra conditions locally(G, s)-arc-
up to conj. up to isom. on q transitive graphs

Γ1 3 Z6 1 1 q = 13, 37, 83, 107(120) s = 3

Γ2 3 D6
q+1
6

q+1
6

+1

2
q+1
6

odd s = 3

Γ3 3 D6
q−1
6

q−1
6

+1

2
q−1
6

odd s = 3
Γ4 3 D6

q+1
6

q+1
12

q+1
6

even s = 3
Γ5 3 D6

q−1
6

q−1
12

q−1
6

even s = 3
Γ6 3 A4

q+1
3
− 1 q+1

6
3 | q + 1 s = 2

Γ7 3 A4
q−1
3
− 1 q−1

6
3 | q − 1 s = 2

Table 2: The RWPRI and (2T )1 geometries with G0
∼= A4
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G0
∼= S4 q = p > 2 and q = ±1(8)

G0 ∩G1 G1 ] Geom. ] Geom. Extra conditions locally(G, s)-arc-
up to conj. up to isom. on q transitive graphs

Γ1 D6 D12 2 1 q = ±1(24) s = 3
Γ2 D6 D18 2 1 q = ±1(72) or q = ±17(72) s = 3
Γ3 D6 S4 2 1 q±1

6
even s = 2

Γ4 D6 S4 1 1 q±1
6

odd s = 2
Γ5 D8 D16 2 1 q = ±1(16) s = 7
Γ6 D8 D24 2 1 q = ±1(24) s = 3
Γ7 D8 S4 2 1 q±1

8
even s = 4

Γ8 D8 S4 1 1 q±1
8

odd s = 4
Γ9 A4 A5 2 1 q = ±1(40) or q = ±9(40) s = 3

Table 3: The RWPRI and (2T )1 geometries with G0
∼= S4.

G0
∼= PSL(2, 2n) q = 2nm,

with m prime
G0 ∩G1 G1 ] Geom. ] Geom. Extra conditions loc.(G, s)-arc-

up to up to on q trans.
conj. isom. graphs

Γ1 E2n : (2n − 1) E2mn : (2n − 1) 1 1 m = 2, n 6= 1 s = 3
Γ2 2 D6 1 1 q = 4; n = 1, m = 2 s = 2
Γ3 2 22 1 1 q = 4; n = 1, m = 2 s = 3
Γ4 3 A4 1 1 q = 4; n = 1, m = 2 s = 3
Γ5 D10 D30 1 1 q = 4m; n = 2; q±1

15
odd s = 3

Table 4: The RWPRI and (2T )1 geometries with G0
∼= PSL(2, 2n).

G0
∼= q = pnm, p and

PSL(2, pn) m odd primes
G0 ∩G1 G1 ] Geom. ] Geom. Extra conditions locally(G, s)-arc-

up to conj. up to isom. on q transitive graphs
Γ1 3 A4 3m−1 − 1 3m−1−1

2m
q = 3m; n = 1, m 6= 3 s = 2

Γ2 3 A4 8 2 q = 27; n = 1, m = 3 s = 2

Table 5: The RWPRI and (2T )1 geometries with G0
∼= PSL(2, q′), q′ odd.

G0
∼= PGL(2, pn) q = p2n, with

p odd prime
G0 ∩G1 G1 ] Geom. ] Geom. Extra conditions loc. (G, s)-arc-

up to conj. up to isom. on q transitive graphs
Γ1 Epn : (pn − 1) Ep2n : (pn − 1) 2 1 none s = 3
Γ2 PSL(2, pn) A5 2 1 q = 9 s = 3
Γ3 D8 PGL(2, 3) 1 1 q = 9 s = 4

Table 6: The RWPRI and (2T )1 geometries with G0
∼= PGL(2, q′).
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Observe that, geometry Γ5 in Table 4 is exactly geometry Γ1 in Table 1.

In Section 4, we recall the subgroup lattice of PSL(2, q), and we give the two-transitive
representations of the maximal subgroups. In Section 5, we prove Theorem 1.1, which is
based on the proof of Propositions 5.5, 5.6, 5.10, 5.12, 5.16 and 5.21. For that purpose, we
determine the rank two RWPRI and (2T )1 geometries of PSL(2, q) and their number, up
to isomorphism and up to conjugacy. The existence of such geometries is equivalent to the
existence of a locally 2-arc transitive bipartite graph for which the action of G is primitive
on one of the bipartite halves (see [8]). Our result is also a part of the program initiated
in [8].

These graphs are interesting in their own right because of the numerous connections
they have with other fields of mathematics (see [8] for more details). We also refer to
the classification of these graphs for almost simple groups with socle a Ree simple group
Ree(q) (see [7]). In terms of locally 2-arc-transitive graphs, we obtain here the classifica-
tion of these graphs with one vertex-stabilizer maximal in PSL(2, q) and isomorphic toA4,
S4, A5, PSL(2, q′) or PGL(2, q′). The last column of Table 1, Table 2, Table 3, Table 4,
Table 5 and Table 6 gives, for each geometry Γ, the value of s such that Γ is a locally
s-arc-transitive but not a locally (s + 1)-arc-transitive graph. In section 6, we determine
the exact value of s in all cases that are not current by the method of Leemans.

In Tables 1, 2, 3, 4, 5, 6 and 9 most values are s = 2 or s = 3, but there are some
spectacular examples with larger values of s. Indeed we obtain a locally 4-arc transitive
graph and a locally 7-arc transitive graph. As one of the referees pointed out, the (G, 2)-arc
transitive graphs with L2(q) ≤ G ≤ PΓL2(q) were classified by Hassani, Nochefranca
and Praeger in [9]. Therefore, they already classified the geometries of Theorem 1.1 in
which G0 ∩ G1 is of index two in one of G0 or G1. Our proof of Theorem 1.1 uses a
completely different approach. In cases where our work overlaps with [9], the results are
the same.

Also, in Table 3, geometry Γ5 is due to Wong in [22] and geometries Γ7 and Γ8 are the
Biggs-Hoare graphs in [1] (see also [14], Table 1).

1.1 Aknowledgement

The authors warmly thank the referees for many corrections and improvements to the initial
text.

2 Definitions and notation

For basic notions on coset geometries and locally s-arc-transitive graphs needed to under-
stand this paper we shall freely use the definitions from Section 2 in [5].

Let us nevertheless recall concepts related to isomorphism. Let G be a group and
Aut(G) be its automorphism group. The coset geometries Γ(G; {G0, G1}) and Γ(G;
{G′0, G′1}) are conjugate (resp. isomorphic) provided there exists an element g ∈ G (resp.
g ∈ Aut(G)) such that {Gg0, G

g
1} = {G′0, G′1} (resp. {g(G0), g(G1)} = {G′0, G′1}).

We classify geometries up to conjugacy and up to isomorphism. That is, for each triple
{G0, G1, G0 ∩ G1}, we give the number of corresponding classes of geometries with re-
spect to conjugacy and isomorphism.
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3 Sketch of the proof of Theorem 1.1
Let G ∼= PSL(2, q). Let G0 and G1 be subgroups of G and let G01 = G0 ∩ G1. The
RWPRI condition in rank two requires that either G0 or G1 is a maximal subgroup of G
and that G01 is a maximal subgroup of G0 and G1. The (2T )1 condition requires that both
G0 and G1 act two-transitively on the respective cosets of G01.

We break down the task by classifying those geometries with a fixed subgroup G0.
Since we may assume without loss of generality that G0 is maximal in G, we follow Ta-
bles 7 and 8 that give all maximal subgroups of PSL(2, q). The number of RWPRI and
(2T )1 geometries of rank 2 depends on the value of q = pn. More precisely, it usually
depends on whether p = 2 or p 6= 2. Knowing that q = pn with p a prime, the two cases
are q = 2n or q odd.

The way we work to determine the RWPRI and (2T )1 geometries of rank two always
follows the same path. To achieve our goal we first choose a subgroup G0, which is a
maximal subgroup of G ∼= PSL(2, q). Then, using the results obtained in Proposition 4.6,
we determine the possibilities for G01 := G0 ∩ G1. They are the two-transitive pairs
(G0, G01). At last, in Section 5 we determine the possible subgroupsG1 of PSL(2, q) such
that (G1, G01) is a two-transitive pair. Finally, we determine for each triple (G0, G1, G01)
the number of geometries it gives rise to, up to conjugacy and up to isomorphism.

4 Structure of subgroups of PSL(2, q)

To follow the approach described above, we first recall the list of subgroups of the pro-
jective special linear groups PSL(2, q). We then give the list of maximal subgroups of
PSL(2, q). Finally we determine the two-transitive representations of the maximal sub-
groups of PSL(2, q) in order to be able to check the (2T )1 property easily.

4.1 The subgroups of PSL(2, q)

We recall the complete subgroup structure of PSL(2, q) for which we refer to Dickson [6],
Moore [15], Huppert [10] and Suzuki [16]. In the statement of Lemma 4.1, we make use
of the phrasing due to O. H. King [11].

Lemma 4.1. [Dickson-Moore] The group PSL(2, q) of order q(q2−1)
(2,q−1) , where q = pn (p

prime), contains exactly the following subgroups:

1. The identity subgroup.

2. A single class of q + 1 conjugate elementary abelian subgroups of order q, denoted
by Eq .

3. A single class of q(q+1)
2 conjugate cyclic subgroups of order d, denoted by either Zd

or d; for every divisor d of q − 1 for q even and q−1
2 for q odd, with d > 1.

4. A single class of q(q−1)
2 conjugate cyclic subgroups of order d,denoted by either Zd

or d; for every divisor d of q + 1 for q even and q+1
2 for q odd, with d > 1.

5. • For q odd, a single class of q(q2−1)
4d dihedral groups of order 2d, denoted by

D2d, for every divisor d of q−1
2 with q−1

2d odd, with d > 1;
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• For q odd, two classes each of q(q
2−1)
8d dihedral groups of order 2d, denoted by

D2d, for every divisor d > 2 of q−1
2 with q−1

2d even;

• For q even, a single class of q(q
2−1)
2d dihedral groups of order 2d, denoted by

D2d, for every divisor d of q − 1, with d > 1;

• For q odd, a single class of q(q2−1)
4d dihedral groups of order 2d, denoted by

D2d, for every divisor d of q+1
2 with q+1

2d odd, with d > 1;

• For q odd, two classes each of q(q
2−1)
8d dihedral groups of order 2d, denoted by

D2d, for every divisor d > 2 of q+1
2 with q+1

2d even;

• For q even, a single class of q(q
2−1)
2d dihedral groups of order 2d, denoted by

D2d, for every divisor d of q + 1, with d > 1.

6. • A single class of q(q
2−1)
24 conjugate dihedral groups of order 4 denoted by 22

when q = ±3(8);

• Two classes each of q(q
2−1)
48 conjugate dihedral groups of order 4 denoted by

22 when q = ±1(8);
• When q is even, the groups 22 are in the case 7.

7. A number of classes of q2−1
(2,1,1)(pk−1)

conjugate elementary abelian subgroups of or-
der pm, denoted by Epm for every natural number m, such that 1 ≤ m ≤ n − 1,
where k is a common divisor of n and m and (2, 1, 1) is equal to 2 (resp. 1, 1) if
p > 2 and n

k is even (resp. p > 2 and n
k is odd, p = 2).

8. A number of classes of (q2−1)pn−m

(2,1,1)(pk−1)
conjugate subgroups Epm :d which are semidi-

rect products of an elementary abelian group Epm and a cyclic group of order d,
d > 1, for every natural number m such that 1 ≤ m ≤ n and every natural number
d dividing pk−1

(1,2,1) , where k is a common divisor of n and m and (1, 2, 1) is one of

• 1 for p > 2 and n
k is even

• 2 for p > 2 and n
k is odd

• 1 for p = 2

These subgroups are Frobenius groups.

9. • Two classes each of q(q
2−1)
48 conjugates of A4 when q = ±1(8);

• A single class of q(q
2−1)
24 conjugates of A4 when q = ±3(8);

• A single class of q(q
2−1)
12 conjugates of A4 when q is an even power of 2.

10. Two classes each of q(q
2−1)
48 conjugates of S4 when q = ±1(8).

11. Two classes each of q(q
2−1)

120 conjugate alternating groups A5 when q = ±1(10).

12. • Two classes each of q(q2−1)
2q′(q′2−1) groups PSL(2, q′), where q is an even power of

q′, for q odd;

• A single class of q(q2−1)
q′(q′2−1) groups PSL(2, q′), where q is an odd power of q′,

for q odd;
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• A single class of q(q2−1)
q′(q′2−1) groups PSL(2, q′), where q is a power of q′, for q

even.

13. Two classes each of q(q2−1)
2q′(q′2−1) groups PGL(2, q′), where q is an even power of q′,

for q odd.

14. PSL(2, q) itself.

Remark 4.2. Subgroups A5 are given either by case 11 (when q = ±1(5) ) or by case 12
(when q = 0(5) and q = 4m) of Lemma 4.1. Also, if q is even, the PGL(2, q′) are given
by case 12, since PGL(2, q′) ∼= PSL(2, q′) provided q is even.

Remark 4.3. Let us mention that in the cases 7 and 8 of Lemma 4.1, the number of con-
jugacy classes is not given. The number of conjugacy classes of the elementary abelian
subgroups Epm given by Dickson (see [6], §260) is incorrect. For an example we refer
to [5] Remark 7.

Notice that Dickson does not give the number of conjugacy classes of the subgroups
Epm : d, except in the particular case where m = n and d = pn−1

(2,q−1) . There are q + 1

subgroups Eq : q−1
(2,q−1) , all conjugate.

4.2 Maximal subgroups of PSL(2, q)

In this section, we list the maximal subgroups of PSL(2, q). As the classification of ge-
ometries usually depends on whether q is even or odd, we give in Table 7 and Table 8
the maximal subgroups of PSL(2, q) in these two cases. We borrowed this result from
Suzuki [16], page 417. Notice that the subgroups A5 appear both as A5 and PSL(2, q′) for
q′ = 5.

Let us mention that a little error in Suzuki [16] was detected and corrected by Patricia
Vanden Cruyce [19] in her thesis: Indeed the subgroup A5 is maximal if r is an odd prime.
Because if r = 2 we have that A5 < PGL(2, 5) < PSL(2, 25). However there remains a
missing case in Suzuki [16] because, A4 is maximal if q = 5. We include it in Table 8.

4.3 Two-transitive representations of the maximal subgroups of PSL(2, q)

The first lemma is obvious but used often in the next section as a necessary condition to
have a two-transitive action.

Lemma 4.4. Let G be a group and let H be a subgroup of G. If G acts two-transitively on
the cosets of H in G, then |G| must be divisible by [G :H]([G :H]− 1).

A group G is said to act regularly on a set Ω if G is transitive on Ω and the stabilizer in
G of a point x ∈ Ω is the identity.

Lemma 4.5. [21] Let (G,Ω) be a permutation group which is transitive over Ω and let G
be abelian. Then G is regular. Moreover, if G is two-transitive then |Ω| = 2.

In order to simplify notation used throughout this section and the following one, we
need another basic definition (borrowed from [2]). In a group G, an ordered pair of sub-
groups (A,B) is called two-transitive provided thatB is a maximal subgroup ofA and that
the action of A on the left cosets of B is two-transitive.
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Structure Order Index
Eq : (q − 1) q(q − 1) q + 1

D2(q+1) 2(q + 1) q(q−1)
2

q 6= 2

D2(q−1) 2(q − 1) q(q+1)
2

A5 60 q(q2−1)
60

q = 4r r is prime

PSL(2, q′) ∼= PGL(2, q′) q′(q′2 − 1) q(q2−1)
q′(q′2−1)

q′ > 4, q = q′m, m is prime
or q′ = 2, q = q′2

Table 7: The maximal subgroups of PSL(2, q), for q even

Structure Order Index
Eq : q−1

2
q(q−1)

2 q + 1

D(q+1) q + 1 q(q−1)
2

q 6= 7, 9

D(q−1) q − 1 q(q+1)
2

q 6= 3, 5, 7, 9, 11

A4 12 q(q2−1)
12×2

if q = p > 3 and
q = 3, 13, 27, 37(40) or q = 5

S4 24 q(q2−1)
24×2

if q = p > 2 and
q = ±1(8)

A5 60 q(q2−1)
60×2

if

 q = 5r r odd prime or
p = q = ±1(5) p prime or
q = p2 = −1(5) p prime or

PSL(2, q′) q′(q′2−1)
2

q(q2−1)
q′(q′2−1)

q′ 6= 5, q = q′m

m odd prime

PGL(2, q′) q′(q′2 − 1) q(q2−1)
q′(q′2−1)

q = q′2

Table 8: The maximal subgroups of PSL(2, q), for q odd
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We now provide the classification (existence and uniqueness) of all two-transitive rep-
resentations of every maximal subgroup of PSL(2, q), a result borrowed from [2].

For the time being, let U be a group acting 2-transitively on a set Ω. Let Ker U be
the kernel of the representation, namely, the set of all u ∈ U such that u(x) = x for every
x ∈ Ω. Let U0 be the stabilizer in U of some element 0 in Ω.

Proposition 4.6. [2] Let G ∼= PSL(2, q) for some power q of a prime p. Let (U,U0) be a
2-transitive pair of subgroups of G with U maximal in G. Then one of the following holds:

1. U ∼= Eq : q−1
2 , q = 1(4), Ker U is the unique subgroup of index 2 of U , |Ω| = 2,

U0 = Ker U (unique up to conjugacy);

2. U ∼= Eq : (q − 1), q even, |Ω| = q, Ker U = 1, U0 is a cyclic subgroup of order
(q − 1) (unique up to conjugacy);

3. U ∼= PSL(2, 2) ∼= S3, |Ω| = 2, Ker U = Z3 = U0 (unique up to conjugacy);

4. U ∼= PSL(2, 2) ∼= S3, |Ω| = 3, Ker U = 1 , U0
∼= Z2 (unique up to conjugacy);

5. U ∼= PSL(2, 3) ∼= A4, |Ω| = 4, Ker U = 1 , U0
∼= Z3 (unique up to conjugacy);

6. U ∼= A5
∼= PSL(2, 5) ∼= PSL(2, 4), p 6= 2, p 6= 5, either q = p = ±1(5) or

q = p2 = −1(5). Here |Ω| = 5, Ker U = 1, U0
∼= A4; (two such representations,

up to conjugacy; they are fused in PGL(2, q)); or |Ω| = 6, Ker U = 1, U0
∼= D10.

7. U ∼= PSL(2, 11), |Ω| = 11, Ker U = 1, U0
∼= A5 (two such representations, up to

conjugacy; they are fused in PGL(2, 11) = Aut(U));

8. U ∼= PSL(2, 9) ∼= A6, |Ω| = 6, Ker U = 1, U0
∼= A5 (two such representations, up

to conjugacy; they are fused in PGL(2, 9));

9. U ∼= PSL(2, 7) ∼= PSL(3, 2), |Ω| = 7, Ker U = 1, U0
∼= S4 (two such representa-

tions, up to conjugacy; they are fused in PGL(2, 7));

10. U ∼= PSL(2, r) for every r = ps, s ≥ 1, r > 3 with q = rm andm prime. Moreover,
for p > 2 we also require m > 2. Here |Ω| = r+ 1, Ker U = 1, U0

∼= Er : r−1
(2,r−1)

(unique up to conjugacy for given r);

11. U ∼= PGL(2, r), r odd, r = ps, q = r2, |Ω| = 2, Ker U = U0
∼= PSL(2, r) (unique

up to conjugacy);

12. U ∼= PGL(2, r), r odd, r = ps, s ≥ 1 with q = r2. Here |Ω| = r + 1, Ker U = 1,
U0
∼= Er : (r − 1) (unique up to conjugacy);

13. U ∼= PGL(2, 3) ∼= S4, q = ±1(8), |Ω| = 3, Ker U = E4, U/Ker U ∼= S3,
U0
∼= D8 (two such representations, up to conjugacy; they are fused in PGL(2, q));

14. U is dihedral of order 2(q − 1) or 2(q + 1), q even. |Ω| = 2, Ker U = U+ = U0

where U+ is the cyclic subgroup of index 2 of U , (unique up to conjugacy for each
of the two possible values of |U |);

15. U is dihedral of order (q− 1) or (q+ 1), q odd. |Ω| = 2, Ker U = U+ = U0 where
U+ is the cyclic subgroup of index 2 of U , (unique up to conjugacy for each of the
two possible values of |U |). In the particular case where q = 3, the case of (q + 1)
provides U = E4 , |Ω| = 2. Then U0 is one of the three subgroups of order 2 in U
(unique up to conjugacy);
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16. U is dihedral of order either 2(q − 1) or 2(q + 1), q even, and 3 | |U |; |Ω| = 3,
Ker U is the unique cyclic subgroup of index 6 in U . Then U0 is one of the three
dihedral subgroups of index 3 in U , U/Ker U ∼= S3 (unique up to conjugacy);

17. U is dihedral of order either (q − 1) or (q + 1), q odd, and 3 | |U |. Here |Ω| = 3,
Ker U is the unique cyclic subgroup of index 6 in U . Then U0 is one of the three
dihedral subgroups of index 3 in U , U/Ker U ∼= S3 (unique up to conjugacy);

18. U is dihedral of order either (q − 1) or (q + 1), q odd, q > 5, and 4 | |U |. Here
|Ω| = 2,Ker U = U0 is one of the two dihedral subgroups of index 2 in U (two such
representations, up to conjugacy; they are fused in PGL(2, q)); Ker U is dihedral,
U0 is dihedral of index 2;

19. U is dihedral of order 4, q is one of 3,5; |Ω| = 2, Ker U = U0 is one of the three
dihedral subgroups of index 2 in U (unique up to conjugacy);

20. U ∼= PGL(2, 5) ∼= S5, |Ω| = 5, Ker U = 1, U0
∼= S4 (unique up to conjugacy).

4.4 Some other useful results

An observation used in our proofs is that PGL(2, q) can be viewed as a subgroup of
PSL(2, q2) and also that PGL(2, q) has a unique subgroup isomorphic to PSL(2, q). This
lets us extract the list of subgroups of PGL(2, q) from the list of subgroups of PSL(2, q2).
Therefore we require the properties of the subgroup lattice of PGL(2, q) for which we refer
to [4] (see also [13] and [15]). The next lemma is often used to count the geometries up to
isomorphism.

Lemma 4.7. • Assume that q±1
d(2,q−1) is even. In this case both conjugacy classes of

D2d for every d > 2 dividing q±1
(2,q−1) fuse in PGL(2, q) and thus also in PΓL(2, q).

• Assume that q = ±1(8). In this case both conjugacy classes of S4 and A4 fuse in
PGL(2, q) and thus also in PΓL(2, q).

• Assume that q = ±1(5). In this case both conjugacy classes ofA5 fuse in PGL(2, q)
and thus also in PΓL(2, q).

• Assume that q = p2n is odd. In this case both conjugacy classes of PGL(2, pn) fuse
in PGL(2, p2n) and thus also in PΓL(2, q).

5 Proof of Theorem 1.1
In this section, we prove the Classification Theorem 1.1 by a case analysis. We determine
the rank 2 RWPRI and (2T )1 geometries of PSL(2, q).

In order to structure this work we introduce a subsection for each type of G0. There are
5 such subsections left to consider, which are the different types of maximal subgroups of
G ∼= PSL(2, q), listed in section 4.2. The cases Eq : (q−1)

(2,q−1) , D
2

(q−1)
(2,q−1)

and D
2

(q+1)
(2,q−1)

have

been treated in [5].
The various cases for the two-transitive pairs (G0, G01) with G0 maximal in G are

provided by Proposition 4.6. Those situations are analysed in order to detect the admissible
G1 in a series of Lemmas. During this analysis, candidates for G1 are represented by the
symbol H . They become G1 only when they resist the analysis.
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5.1 The case where G0 = A5

Recall that following Table 7 and Table 8, the subgroup A5 is maximal in PSL(2, q) if
q = 5r r odd prime or
q = 4r r prime or
q = p = ±1(5) p odd prime or
q = p2 = −1(5) p odd prime .

In this section we assume these conditions on q. Observe that if q = 0(5) the group A5 is
isomorphic to PSL(2, 5) which is a particular case of the family PSL(2, 5n) with q = 5nm

for m an odd prime. In this section we treat this particular situation. The general situation
is treated in Proposition 5.16. If q = 0(4) the group A5 is isomorphic to PSL(2, 4) which
is a particular case of the family PSL(2, 4n) with q = 4nm for m prime. In this section we
analyse this particular situation. The general situation is treated in Proposition 5.12.

In view of (6) in Proposition 4.6 there are two cases for G01, namely the case of D10

and A4. For each of these G01 we look for the various possible groups H in one of the
two following Lemmas. Remember that H is any subgroup of G such that (H,G01) is
a two-transitive pair. In order to determine all H candidates we scan the list of maximal
subgroups. For each maximal subgroup we analyse its subgroup lattice.

Lemma 5.1. Let G ∼= PSL(2, q) with q as required in this section. If H is a subgroup
of G such that (H,D10) is a two-transitive pair then one of the three following statements
holds:

• H ∼= D20 provided 10 | q±1
(2,q−1) ;

• H ∼= D30 provided 15 | q±1
(2,q−1) ;

• H ∼= PSL(2, 5) ∼= A5.

Proof. Left to the reader. See Appendix pg 1. (The Appendix contains details for this and
several other results to follow.)

Lemma 5.2. LetG ∼= PSL(2, q) with q as required in this section. IfH is a subgroup of G
such that (H,A4) is a two-transitive pair then one of the five following statements holds:

• H ∼= E16 :3 provided q = 4r;

• H ∼= PSL(2, 4) ∼= A5 provided q = 4r;

• H ∼= PSL(2, 5) provided q = 5r;

• H ∼= S4 provided q = ±1(5) and q = ±1(8);

• H ∼= A5.

Proof. Left to the reader. See Appendix pg 2.

In Remark 4.3 of section 4.1. we mention that the number of conjugacy classes of
cases 7 and 8 are not given in Lemma 4.1. To prove the following Proposition we need the
number of conjugacy classes of a particular situation, treated in the next two Lemmas.
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Lemma 5.3. The number of conjugacy classes of E16 : 3 in PSL(2, 4r), for an odd prime
r, is equal to 4r−1−1

15 .

Proof. Step 1: We must count the number of conjugacy classes of subgroups E16 : 3 in
PSL(2, 4r). Therefore we first count the total number of subgroups E16 : 3 in PSL(2, 4r)
and divide this number by the length of the conjugacy classes. We shall indeed see that this
number is constant.

Step 2: We consider G ∼= PSL(2, 4r) as a permutation group acting on the projective
line PG(1, 4r). This group is sharply 3-transitive on 4r + 1 points. Given a point∞, its
stabilizer is E4r : 4r − 1 ∼= AGL(1, 4r). The latter contains our E16 : 3. Let H be any
subgroup E4 : 3 ∼= A4

∼= AGL(1, 4). It is contained in a subgroupK := PGL(2, 4) ∼= A5

which has an orbit of length five namely PG(1, 4).
Step 3: Let us see AG(1, 4r) = PG(1, 4r)\{∞} as an affine space V of dimension r

over the field GF (4). The subgroup H stabilizes a line l of V namely AG(1, 4). Hence,
l contains the points 0 and 1. The space V endowed with the point 0 is a vector space of
dimension r on GF (4).

Observe that H fixes a unique point namely ∞. In A5 there are four conjugate sub-
groups E4 : 3 say X1, X2, X3, X4 other than H , each fixing a unique point which belongs
to l. Moreover, H stabilizes no other line l′ in V since otherwise l′ ∪ {∞} is an orbit of
length five of A5 and so each of X1, X2, X3, X4 fixes a point on l′ while this point is on l
implying l = l′. Therefore, H stabilizes a unique line of V which is l.

Step 4: Observe that AG(1, 4r) is transitive on the lines of V . There are 4r(4r−1)
12 lines

in V and, taking the point ∞ into account, we see that the conjugacy class of H in G
consists of 4r(4r−1)

12 subgroups E16 :3.
Step 5: Coming back to the beginning of Step 3, the multiplicative group of GF (4) is

a cyclic group Z3 which is a subgroup of H and so also a subgroup of A5 namely E16 :3.
Step 6: The group Z3 stabilizes the point 0 and every line on 0 in the space V . There-

fore, it also stabilizes every plane on 0 in this space, in particular every plane containing l.
There are 4r−4

16−4 = 4r−1−1
3 such planes on l.

Step 7: Let π be a plane of V containing l. It is invariant under 16 translations and Z3.
Thus π is invariant under a subgroupE16 :3 containingH . Conversely, everyE16 :3, say L,
containingH also contains Z3 which fixes the point 0. The orbit of 0 under L is its orbit un-
der E16. And Z3 acts on this orbit, hence this orbit is a plane. In conclusion, the subgroups
E16 : 3 containing H and the planes containing l are in one-to-one correspondence.

Step 8: Combining Steps 3, 6 and 7 we see that the number of conjugacy classes of
subgroups E16 :3 containing H and fixing∞ is 4r−1−1

3 . 15 as required.

For the particular situation of Lemma 5.3, we count the number of geometries up to
conjugacy and up to isomorphism in the following Lemma.

Lemma 5.4. Let r be an odd prime. Let αC(r) (resp. αI(r)) be the number of geometries
of type Γ(PSL(2, 4r), A5, A4, E16 : 3) up to conjugacy (resp. isomorphism). Then the
following hold:

1. αC(3) = 5;

2. αI(3) = 2;

3. if r > 3, then αC(r) = 4r−1−1
3 ;
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4. if r > 3, then αI(r) = 2(4r−2−1)+3.2r−2

3r .

Proof. Step 1: Lemma 5.3 gives the number of conjugacy classes of E16 : 3 for a given
PSL(2, 4r). Every E16 : 3 has five conjugacy classes of subgroups E4 : 3. Moreover, each
E4 : 3 is contained in a unique A5. Therefore, we get the number of triples consisting
of a representative G1 of every conjugacy class of E16 : 3, a representative G01 of every
conjugacy class of E4 : 3 in G1 and the unique subgroup G0

∼= A5 containing G01. Hence
αC(r) = 4r−1−1

15 · 5 · 1. In particular αC(3) = 5. This is proving respectively (3) and (1).
Step 2: Let ∞, V , H and l be defined as in the proof of Lemma 5.3, Steps 2 and 3.

Recall that l contains 0 and 1. To get αI(r), we still have to figure out how NPΓL(2,4r)(H)
acts on the subgroups E16 : 3 containing H . In other words, how does NPΓL(2,4r)(H) act
on the planes of V containing l ?

Step 3: To answer the question of Step 2 we shall show that NPΓL(2,4r)(H) = H : K,
where K is the group of field automorphisms of GF (4r). Recall the fact that the group
PΓL(2, 4r) is PSL(2, 4r) : K. Recall also thatK is a cyclic group of order 2r. The group
K leaves every subfield of GF (4r) invariant. Hence K leaves GF (4) invariant, thus also
the line l, and it normalizes H . Applying Lemma 4.1 we see that NPSL(2,4r)(H) = H
in view of the fact that H ∼= A4 and of the restrictions on the values taken by q. We get
that NPΓL(2,4r)(H) is a group of order H.K.ε and we want now to show that ε = 1. Let
N1 (resp. N2) be the number of conjugate subgroups of H in G (resp. PΓL(2, 4r)).
Then N1 ≤ N2, N1 = |G|

|H| , N2 = |PΓL(2,4r)|
|H|.|K|.ε = |G|

|H|.ε and so ε = 1. Therefore
NPΓL(2,4r)(H) = H : K.

Step 4: In our count of triples, we may assume thatG0 andG01 are fixed because, up to
isomorphism, the chain of subgroups PSL(2, 4r)−A5−A4 is unique. Moreover, without
loss of generality, we suppose that G01 is H .

Step 5: We consider G ∼= PSL(2, 4r) and H in it. We recall the 4r−1−1
15 conjugacy

classes of subgroupsE16 : 3 containingH as found in Lemma 5.3. Let Ω be the set of these
4r−1−1

15 conjugacy classes. Recall that NPSL(2,4r)(H) = H and so the action of H on Ω
is the identity. Next we consider the action of K on Ω which is also the action of H : K.
The number of orbits of this K-action on Ω is the number αI(r) we have to determine.

Step 6: As in the proof of Lemma 5.3, Step 2 we consider G ∼= PSL(2, 4r) as a triply
transitive permutation group acting on the projective line PG(1, 4r). For every t dividing
2r there is a subfield GF (2t) of GF (4r). It fixes 2t + 1 points on PG(1, 4r). This set
of points is called a circle as well as all of its transforms under G. Every triple of distinct
points on PG(1, 4r) is contained in one and only circle of 2t + 1 points.

Step 7: Given three points ∞, 0 and 1, there is a unique circle C5 of five points,
namely PG(1, 4) = {∞} ∪ l and there is a unique circle of 2r + 1 points C2r+1, namely
PG(1, 2r). The involution β ∈ K fixes all the points of C2r+1. On C5, it fixes∞, 0 and 1,
and it permutes the remaining 2 points that we call a and β(a). The group induced on C5

by the stabilizer of C5 in PSL(2, 4r) is A5
∼= PSL(2, 4) extended by β, that is, S5.

The unique subgroupK+ ofK, of order r fixes all points ofC5 and splits the remaining
points of PG(1, 4r) in orbits of length r. Therefore, (22r + 1)− 5 must be divisible by r.
Indeed, (22r + 1) − 5 = 4r − 4 = 4(4r−1 − 1), the latter being divisible by r thanks to
Fermat’s little theorem.

The subgroup H ∼= E4 : 3 fixes∞. Every cyclic subgroup of order 3 of H fixes two
points of C5. This gives ten conjugate subgroups of order 3 in A5.
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The group K+ fixes C5 point-wise. Suppose K+ stabilizes a plane π of V containing
l. Then it must decompose the 16− 4 = 12 points of π\l in orbits of length r.

If r = 3, this may occur and K+ indeed stabilizes two of the five planes containing l,
hence it normalizes two of the E16 :3 containingH . Moreover, it fuses the other three. The
two E16 :3 normalized by K+ are swapped by β, giving αI(3) = 2. This is proving (2).

If r > 3, no plane of V that contains l can be stabilized by K+. Hence K+ fuses the
4r−1−1

3 subgroups E16 :3 in 4r−1−1
3r orbits of length r.

Step 8: It remains to look at the action of β on these orbits. In GF (4r), there are
three proper subfields, namely GF (2), GF (4) and GF (2r). The involution β fixes all the
elements of GF (2r). Let us show that β stabilizes 2r−2

2 planes containing l. Given an
element x ∈ GF (2r), the plane π containing 0, 1 and x is stabilized since 0, 1 and x are
fixed by β. Moreover, π contains the point x+ 1 ∈ GF (2r). Hence, there are at least four
points fixed in π by β. If there are more, there must be at least 8 points fixed and the whole
plane π is fixed point-wise, a contradiction with the fact that a ∈ π and a is not fixed by β.
Therefore, the elements of GF (2r) give 2r−2

2 distinct planes that are stabilized by β.
Step 9: We claim that the remaining planes of V that contain l are fused in pairs by β.

Indeed, suppose that there exists a plane π containing l and no other element of GF (2r)
in V , and such that β(π) = π. In π, the only fixed points are thus 0 and 1. For every
x ∈ π\C5, the line xβ(x) is stabilized by β. It is either secant or parallel to l. Suppose
first that it is secant. Then, it intersects l in either 0 or 1 and the fourth point of xβ(x) must
be fixed, a contradiction. Suppose then that it is parallel. The other two points of xβ(x)
may be written as y and β(y) . Let us recall that we denote the points of l as 0, 1, a and
β(a). The lines ax and β(a)β(x) are swapped and parallel. One of the lines 1y or 1β(y)
must also be parallel to ax. Its image by β is not parallel to ax. This is a contradiction.
Therefore, no other plane of V containing l can be stabilized by β.

Step 10: In conclusion, we get 2r−1−1
r sets of r isomorphic geometries and 1

2r ( 4r−1−1
3 −

(2r−1 − 1)) sets of 2r isomorphic geometries. Finally, we obtain αI(r) = 2r−1−1
r +

1
2r ( 4r−1−1

3 − (2r−1− 1)) and the formula given in the Lemma is obtained by a straightfor-
ward simplification. This is proving (4).

Proposition 5.5. Let G ∼= PSL(2, q) with q as required in this section. Every RWPRI and
(2T )1 geometry of rank two Γ(G;G0, G1, G0 ∩ G1) in which G0

∼= A5 is isomorphic to
one of the geometries appearing in Table 1.

Proof. Let G0
∼= A5.

We subdivide our discussion in two cases, namely the two G01-candidates in view of (6) in
Proposition 4.6 which are: D10 and A4. In each of these two cases we review all possibil-
ities for G1 given in the previous Lemmas 5.1 and 5.2, as well as the number of classes of
geometries with respect to conjugacy (resp. isomorphism).

Subcase 1: G01 = G0 ∩G1
∼= D10.

This is dealt with in the appendix, (pg 2-6).

Subcase 2: G01 = G0 ∩G1
∼= A4.

By Lemma 5.2 the possibilities for G1 are E16 : 3 if q = 4r, PSL(2, 4) ∼= A5 if q = 4r,
PSL(2, 5) ∼= A5 if q = 5r, S4 if q = ±1(5) as well as q = ±1(8) and A5.



F. Buekenhout et. al.: On the rank two geometries of the groups PSL(2, q): part II 379

2.1 We consider the case where G1
∼= E16 :3.

The condition on q is q = 4r with r prime. In this situation there is only one conjugacy
class of A5 and one of A4 in PSL(2, q). Notice that there are 5 conjugacy classes of A4 in
E16 :3. Since PSL(2, 16) is simple and A5 maximal, A5 is self-normalized. Moreover, A4

is self-normalized in PSL(2, 4r). The normalizer of E16 : 3 depends on whether r = 2 or
not. We distinguish three cases namely: r = 2, r = 3 and r > 3. In the latter two, notice
that since r 6= 2, E16 :3 is self-normalized in PSL(2, 4r).
• Let us first consider the particular case where r = 2. In this situation there exists only

one conjugacy class of E16 : 3 in PSL(2, 16). We also have that NPSL(2,16)(E16 : 3) =
E16 : 15. Therefore the number of subgroups E16 : 3 containing a given subgroup A4 in
PSL(2, 16) is equal to

| PSL(2, 16) |
| E16 :15 |

· | E16 :3 |
| A4 |

· 5 · | A4 |
| PSL(2, 16) |

= 1.

Thus the RWPRI and (2T )1 geometry Γ2 = Γ (PSL(2, 16);A5, E16 :3, A4) exists and is
unique up to conjugacy and also up to isomorphism.
• In view of Lemma 5.3 and Lemma 5.4 we know that if r = 3 there exist up to

conjugacy exactly five RWPRI and (2T )1 geometries Γ3 := Γ(PSL(2, 64), A5, A4, E16 :3)
and exactly two up to isomorphism.
• In view of Lemma 5.3 and Lemma 5.4 we know that if r > 3 there exist up to

conjugacy exactly 4r−1−1
3 RWPRI and (2T )1 geometries Γ4 := Γ(PSL(2, q), A5, A4, E16 :

3) and exactly 2(4r−2−1)+3.2r−2

3r up to isomorphism.
This geometry is new and the number of classes up to conjugacy (resp. isomorphism)

is confirmed by MAGMA for q = 16, 64. For q = 16, it is also confirmed by [20].

2.2 We consider the case where G1
∼= S4.

The conditions given on q are q = ±1(5) and q = ±1(8). They imply that there are
two conjugacy classes of S4, two of A5 and also two of A4 in PSL(2, q). Therefore we
consider two situations: either q = p = ±1(5) or q = p2 = −1(5), with p an odd prime.
We distinguish these two cases in the discussion below.
• Assume q = p = ±1(5) with p prime. All conditions given on q imply that either

q = ±1(40) or q = ±9(40). In both situations we know that S4 is a maximal subgroup
of PSL(2, q). Therefore NPSL(2,q)(A4) = S4 = NS4

(A4) and NA5
(A4) = A4. Now all

A4 in an S4 are conjugate and this is also the case for all A4 in an A5. The number of
subgroups A5 containing a given subgroup A4 in PSL(2, q) is equal to

| PSL(2, q) |
| A5 |

· | A5 |
| A4 |

· | S4 |
| PSL(2, q) |

= 2.

To count the geometries up to conjugacy we need to know whether the S4 normalizes
each of the A5. This is not the case because |NPSL(2,q)(A4) ∩ NPSL(2,q)(S4)| = |S4| =
2|A4|. Hence, there exist exactly two RWPRI and (2T )1 geometries Γ9 = Γ(PSL(2, q);
A5, S4, A4) up to conjugacy, provided q = ±1(40) or q = ±9(40).

Let us deal with the fusion of non-conjugate classes. Following Lemma 4.7 the two
classes of S4, A4 and A5 are fused under the action of PGL(2, q) and thus also under
the action of PΓL(2, q). Therefore, there exists exactly one RWPRI and (2T )1 geometry
Γ9 = Γ (PSL(2, q);A5, S4, A4) up to isomorphism provided q = ±1(40) or q = ±9(40).
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• Assume q = p2 = −1(5) with p prime. All conditions given on q imply that either
q = −1(40) or q = 9(40). All A4 in an S4 are conjugate and NPSL(2,q)(A4) = S4 =
NS4

(A4) and NA5
(A4) = A4. We also know that NPSL(2,q)(S4) = S4. Therefore the

number of S4 containing a given A4 is one.
To count the geometries up to conjugacy we need to know whether the S4 normalizes

each of the A5. This is not the case because |NPSL(2,q)(A4) ∩ NPSL(2,q)(S4)| = |S4| =
2|A4|. Therefore, up to conjugacy there exist exactly two RWPRI and (2T )1 geometries
Γ16 = Γ (PSL(2, q);A5, S4, A4) provided either q = −1(40) or q = 9(40), with q = p2.

Let us deal with the fusion of non-conjugate classes. Following Lemma 4.7 the two
classes of A4, S4 and A5 are fused under the action of PGL(2, q) and thus also under
the action of PΓL(2, q). Therefore, there exists exactly one RWPRI and (2T )1 geometry
Γ16 = Γ (PSL(2, q);A5, S4, A4) up to isomorphism, provided either q = −1(40) or q =
9(40), with q = p2.

This geometry is new and the number of classes up to conjugacy (resp. isomorphism)
is confirmed by MAGMA for q = 9, 31, 41, 49. For q = 9, it is also confirmed by [3].

2.3 Consider the case where G0
∼= G1

∼= A5.
With the given conditions on q there are three cases to consider:
• If q = 4r with r prime, there is only one conjugacy class of A5 and also one of A4.

Since every A4 is contained in only one A5, there is no such geometry.
• Assume q = 5r with r an odd prime. The number of conjugacy classes of A4 in

PSL(2, q) depends on whether q = ±1(8) or q = ±3(8). If q = ±1(8) there is a contra-
diction with r odd in q = 5r. Now q = ±3(8) implies that there is one conjugacy class of
A4 and also one of A5. Since every A4 is contained in only one A5, there exists no such
geometry.
• Assume q = p = ±1(5) or q = p2 = −1(5) with p an odd prime.
There are two conjugacy classes of A5 in PSL(2, q). The number of conjugacy classes of
A4 in PSL(2, q) depends on whether q = ±1(8) or q = ±3(8). We distinguish these two
cases.

If q = ±1(8) there are two classes of A4, all A4 in an A5 are conjugate, and the
normalizer of A4 in PSL(2, q) is S4. All conditions on q imply that if q = p = ±1(5)
either q = ±1(40) or q = ±9(40); and if q = p2 = −1(5) either q = −1(40) or
q = +9(40).
The number of subgroups A5 containing a given subgroup A4 in PSL(2, q) is equal to

| PSL(2, q) |
| A5 |

· | A5 |
| A4 |

· | S4 |
| PSL(2, q) |

= 2.

Therefore, there exist exactly two RWPRI and (2T )1 geometries Γ10 = Γ(PSL(2, q);
A5, A5, A4) up to conjugacy, provided either q = ±1(40) or q = ±9(40), with q prime,
one for each class ofA5. Also, there exist exactly two RWPRI and (2T )1 geometries Γ17 =
Γ (PSL(2, q);A5, A5, A4) up to conjugacy, provided either q = −1(40) or q = +9(40),
with q = p2, one for each class of A5.

Let us deal with the fusion of non-conjugate classes. Following Lemma 4.7 the two
classes of A5 are fused under the action of PGL(2, q) and thus also under the action
of PΓL(2, q). Therefore there exists exactly one RWPRI and (2T )1 geometry Γ10 =
Γ (PSL(2, q);A5, A5, A4) up to isomorphism provided either q = ±1(40) or q = ±9(40).
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Also, there exists exactly one RWPRI and (2T )1 geometry Γ17 = Γ (PSL(2, q);A5, A5, A4)
up to isomorphism provided either q = −1(40) or q = +9(40).

If q = ±3(8), there is one conjugacy class of A4 in PSL(2, q). All conditions on q
imply that if q = p = ±1(5) either q = ±11(40) or q = ±19(40); and if q = p2 = −1(5)
either q = −11(40) or q = +19(40). Every A4 is contained in exactly one A5, and there
are two conjugacy classes of A5 in PSL(2, q).
Hence, there exists exactly one RWPRI and (2T )1 geometry Γ11 = Γ(PSL(2, q);A5, A5,
A4) up to conjugacy and thus also exactly one up to isomorphism provided either q =
±11(40) or q = ±19(40), with q prime.
This geometry is new and the number of classes up to conjugacy (resp. isomorphism) is
confirmed by MAGMA for q = 11, 19, 29, 31, 41, 61. For q = 11, 19, it is also confirmed
by [20].
Also, there exists exactly one RWPRI and (2T )1 geometry Γ18 = Γ(PSL(2, q);A5, A5,
A4) up to conjugacy and thus also exactly one up to isomorphism provided either q =
−11(40) or q = +19(40), with q = p2. This geometry is new and the number of classes
up to conjugacy (resp. isomorphism) is confirmed by MAGMA for q = 9, 49.

5.2 The case where G0 = A4

Recall that following Table 8, the subgroup A4 is maximal in PSL(2, q) provided q is
prime, q > 3 and either q = 3, 13, 27, 37(40) or q = 5. Therefore q = ±3(8) and
there exists only one conjugacy class of subgroups isomorphic to A4. In view of (5) in
Proposition 4.6 there is only one case for G01, namely the cyclic subgroup of order 3.

The proof of all following propositions are very similar to that of Proposition 5.5.
Therefore we do not give the details and we refer to the Appendix. The proof of proposi-
tion 5.6 may be found in the Appendix (pg. 6-9).

Proposition 5.6. Let G ∼= PSL(2, q) with q prime, q > 3 and either q = 3, 13, 27, 37(40)
or q = 5. Every RWPRI and (2T )1 geometry of rank two Γ(G;G0, G1, G0 ∩G1) in which
G0
∼= A4 is isomorphic to one of the geometries appearing in Table 2.

5.3 The case where G0 = S4

Recall that following Table 7 and Table 8, the subgroup S4 is maximal in PSL(2, q) if q is
an odd prime and q = ±1(8). In this section we assume these conditions on q. Moreover,
there are two conjugacy classes of subgroups isomorphic to S4 in G.

In view of (11), (12) and (13) in Proposition 4.6 there are three cases for G01, namely
the case of D6

∼= E3 : 2, the case of D8 and the case of A4. For each of these G01 we look
for the various possible groups H in one of the three following Lemmas, whose proofs are
left to the reader. The proof of proposition 5.10 may be found in the Appendix (pg. 8-12).

Lemma 5.7. Let G ∼= PSL(2, q) with q an odd prime and q = ±1(8) as required in this
section. If H is a subgroup of G such that (H,D6) is a two-transitive pair then one of the
three following statements holds: H ∼= D12 provided 6 | q±1

2 ; H ∼= D18 provided 9 | q±1
2 ;

or H ∼= S4.

Lemma 5.8. Let G ∼= PSL(2, q) with q an odd prime and q = ±1(8) as required in this
section. Then the following statement holds: If H is a subgroup of G such that (H,D8)
is a two-transitive pair then H ∼= D16 provided 8 | q±1

2 , H ∼= D24 provided 12 | q±1
2 ;

orH ∼= S4.
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Lemma 5.9. Let G ∼= PSL(2, q) with q an odd prime and q = ±1(8) as required in this
section. Then the following statement holds: If H is a subgroup of G such that (H,A4) is
a two-transitive pair then H ∼= S4; or H ∼= A5 provided q = ±1(5).

Proposition 5.10. Let G ∼= PSL(2, q) with q an odd prime and q = ±1(8). Every RWPRI
and (2T )1 geometry of rank two Γ(G;G0, G1, G0 ∩G1) in which G0

∼= S4 is isomorphic
to one of the geometries appearing in Table 3.

5.4 The case where G0 = PSL(2, q′)

In this section we make a distinction between the cases q odd and q even with q = pnm.
The subgroups PSL(2, q′) and PGL(2, q′) with q′ = pn are isomorphic provided q is even
and they are distinct provided q is odd.

5.4.1 The case q even

Since q is even, PSL(2, q′) ∼= PGL(2, q′). Recall that following Table 7, the subgroup
PSL(2, q′) ∼= PGL(2, q′) is maximal in PSL(2, q) provided q′ = 2n and q = q′m = 2n.m

for m prime; moreover for n = 1 we need m = 2. In this section we assume these
conditions on q.

In view of (3), (4), (6) and (10) in Proposition 4.6 there are three cases forG01, namely:
the case of the cyclic subgroup of order 3 provided q′ = 2, the case of D10 provided q′ = 4
and the case of E2n : (2n − 1).

For each of these G01 we look for the various possible groups H; the case of E2n :
(2n − 1) is treated in the following Lemma, whose proof is left to the reader. The proof of
proposition 5.12 may be found in the Appendix (pg. 13-14).

Lemma 5.11. Assume q = 2nm with m prime and n 6= 1 and let G ∼= PSL(2, q). If H
is a subgroup of G such that (H,E2n :2n − 1) is a two-transitive pair then one of the two
following statements holds: H ∼= E22n :2n − 1 provided m = 2 or H ∼= PSL(2, 2n).

Notice that if n = 2, PSL(2, 2n) ∼= A5.

Proposition 5.12. Assume q′ = 2n and q = q′m = 2n.m form prime ; moreover for n = 1
we need m = 2. Let G ∼= PSL(2, 2n.m). Every RWPRI and (2T )1 geometry of rank two
Γ(G;G0, G1, G0 ∩G1) in which G0

∼= PSL(2, q′) is isomorphic to one of the geometries
appearing in Table 4.

5.4.2 The case q odd

Since q is odd we need to consider two distinct maximal subgroups which are PSL(2, pn)
provided q = pmn wherem and p are odd primes and PGL(2, pn) provided q = p2n where
p is an odd prime. The latter will be treated in section 5.5.

Recall that following Table 8, the subgroup PSL(2, pn) is maximal in PSL(2, q) pro-
vided q = pmn with m and p odd primes. In this section we assume these conditions on
q.

In view of (5)-(10) in Proposition 4.6 there are four possibilities for G01, namely: A4

provided q′ = 5, S4 provided q′ = 7, A5 provided q′ = 9, 11 and Eq′ : q
′−1
2 . For each of

theseG01 we look for the various possible groupsH in the three following Lemmas, whose
proofs are left to the reader. The proof of proposition 5.16 may be found in the Appendix
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(pg. 14-17). The case of A4 provided q′ = 5, will be treated directly in the proof of the
Proposition.

Lemma 5.13. Assume q odd, q = pnm with m prime and let G ∼= PSL(2, q); then the

following statement holds: If H is a subgroup of G such that
(
H,Epn : p

n−1
2

)
is a two-

transitive pair then H ∼= PSL(2, pn).

Notice that if pn = 3, PSL(2, pn) ∼= A4 and if pn = 5, PSL(2, pn) ∼= A5. They are
particular cases of PSL(2, pn).

Lemma 5.14. Assume q is either 11m or 9m, withm an odd prime and letG ∼= PSL(2, q).
Then the following statement holds: If H is a subgroup of G such that (H,A5) is a two-
transitive pair then H ∼= PSL(2, q′) provided q′ = 9 or 11.

Lemma 5.15. Assume q = 7m, with m odd prime and let G ∼= PSL(2, 7m). Then the
following statement holds: If H is a subgroup of G such that (H,S4) is a two-transitive
pair then H ∼= PSL(2, 7).

Proposition 5.16. Assume q = pnm with p and m odd primes and let G ∼= PSL(2, q).
Every RWPRI and (2T )1 geometry of rank two Γ(G;G0, G1, G0 ∩ G1) in which G0

∼=
PSL(2, pn) is isomorphic to one of the geometries appearing in Table 5.

5.5 The case where G0 = PGL(2, q′)

If q is even, PGL(2, q′) ∼= PSL(2, q′) and this situation has been treated in Section 5.4.
Therefore, we assume in this section that q is odd. Recall that following Table 8, the
subgroup PGL(2, q′) is maximal in PSL(2, q) provided q′ = pn and q = q′2 = p2n with p
an odd prime.

In view of (11), (12), (13) and (20) in Proposition 4.6 there are four cases for G01,
namely the case of Epn : (pn − 1), the case of PSL(2, q′), the case of D8 provided q = 32

and the case of S4 provided q = 52.
For each of these four G01 we look for the various possible groups H in one of the four

following Lemmas, whose proofs are left to the reader. The proof of proposition 5.21 may
be found in the Appendix (pg. 17-19).

Lemma 5.17. Let G ∼= PSL(2, 32). Then the following statement holds:
If H is a subgroup of G such that (H,D8) is a two-transitive pair then H ∼= PGL(2, 3).

Lemma 5.18. Assume q is odd and let G ∼= PSL(2, p2n). Then the following statement
holds:
If H is a subgroup of G such that (H,Epn : (pn − 1)) is a two-transitive pair then H ∼=
Ep2n : (pn − 1) or H ∼= PGL(2, pn).

Lemma 5.19. Assume q is odd and let G ∼= PSL(2, p2n). Then the following statement
holds:
If H is a subgroup of G such that (H,PSL(2, pn)) is a two-transitive pair then H ∼= A5

provided pn = 3; or H ∼= PGL(2, pn).

Notice that if pn = 3, PGL(2, pn) ∼= S4.

Lemma 5.20. Let G ∼= PSL(2, 52). Then the following statement holds:
If H is a subgroup of G such that (H,S4) is a two-transitive pair then H ∼= PGL(2, 5).
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Proposition 5.21. Assume q′ = pn and q = q′2 = p2n with p an odd prime. Let G ∼=
PSL(2, q). Every RWPRI and (2T )1 geometry of rank two Γ(G;G0, G1, G0 ∩ G1) in
which G0

∼= PGL(2, q′) is isomorphic to one of the geometries appearing in Table 6.

The proof of Theorem 1.1 readily follows from Propositions 5.6, 5.10, 5.5, 5.12, 5.16
and 5.21.

The main Theorem of [5] and Theorem 1.1 complete the classification of rank two resid-
ually weakly primitive and locally two-transitive coset geometries for the groups PSL(2, q).
We also give the number of classes of all such geometries with respect to conjugacy and
isomorphism.

This classification includes infinite classes of geometries up to conjugacy and up to
isomorphism. This number is dependent on the prime power q = pn; it is a function of n
and p.

6 Locally s-arc-transitive graphs
The construction of the (G, 2)-arc-transitive graphs, using Tits’ Theorem, is studied in full
detail in Leemans [12]. This construction shows that the rank two incidence structures are
also locally-2-arc-transitive graphs in the sense of [8].

All the RWPRI and (2T )1 geometries we have obtained are bipartite graphs and also
locally 2-arc-transitive graphs. Now we want the value of s such that the incidence graph
of Γ is a locally s-arc-transitive but not a locally (s + 1)-arc-transitive graph. We mainly
use the method of D. Leemans [12] (Lemma 5.1). This provides the value of s in all cases
given in Tables 1, 2, 3, 4, 5 and 6 (in the introduction) except those listed in Table 9. We
don’t give the details in the cases for which the Leemans’ method works.

We now discuss the nine cases left over in Table 9. In every case if p is a vertex of the
graph, we write p⊥ for the set of neighbours of p which is also the residue of p.
We give the details for four of them, the other five are dealt with in the Appendix (pg. 19-
20).

Case of Table 1, geometry Γ1, case of Table 1, geometries Γ6 and Γ13 and case of
Table 4, geometry Γ5.

We know that s ≥ 2. Consider a path (a, b, c) such that a is of type 0, b is of type 1, c is
of type 0. Here, Gabc = Z5. This acts on the five 1-elements d1, ..., d5 other than b in c⊥.
The action is transitive since otherwise Z5 would be in the kernel of the action of Gc on c⊥

contradicting the simplicity of G0 = A5 = Gc. This provides s ≥ 3 for paths starting at a
0− element.

Next consider a path (h, i, j) such that h is of type 0, i is of type 1, j is of type 0.
Here, Ghij = Z2. This acts on the two 0-elements k1, k2 other than i in j⊥. The action is
transitive since otherwise Z2 would be in the kernel of the action of Gj on j⊥. This kernel
for the action of D30 on the cosets of D10 is a group Z5, a contradiction. Hence s ≥ 3.

Applying Leemans’ method we get s = 2 or 3. Thus s = 3.

Case of Table 3, geometry Γ6.
We know that s ≥ 2. Consider a path (a, b, c) as in the preceding case. Here, Gabc =

Z4. This acts on the two 1-elements d1, d2 other than b in c⊥. The action is transitive since
otherwise Z4 would be in the kernel of the action of Gc on c⊥. This kernel for the action
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G0
∼= A5

G01 G1

D10 D30 Table 1, Γ1

D10 D30 Table 1, Γ6 and Γ13

G0
∼= S4

G01 G1

D6 D18 Table 3, Γ2

D8 D16 Table 3, Γ5

D8 D24 Table 3, Γ6

D8 S4 Table 3, Γ7 and Γ8

G0
∼= PSL(2, 2n)

G01 G1

E2n : (2n − 1) E2mn : (2n − 1) Table 4, Γ1

D10 D30 Table 4, Γ5

G0
∼= PGL(2, pn)

G01 G1

Epn : (pn − 1) Ep2n : (pn − 1) Table 6, Γ1

Table 9: Cases in which s cannot be decided by Leemans’ method.
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of S4 on the cosets of D8 is 22, a contradiction. This provides s ≥ 3 for paths starting at a
0− element.

Next consider a path (h, i, j) as in the preceding case. Here, Ghij = 22. This acts on
the two 0-elements k1, k2 other than i in j⊥. The action is transitive since otherwise 22

would be in the kernel of the action of Gj on j⊥. This kernel for the action D18 on the
cosets of D8 is a group Z4, a contradiction. Hence s ≥ 3. Applying Leemans’ method we
get that s equals 3 or 4.

We now prove that s cannot be equal to 4 thanks to the following argument due to
an unknown referee: Given the path (a, b, c) starting at a 0-element we have shown that
Gabc = Z4 and that this is transitive on the two elements adjacent to c other than b. Thus
Gabcd = Z2 = 〈x〉, where x is the square of an element of order 4 in Gabc < Ga ∼= S4.
Thus x lies in the normal subgroup of Ga of order 4 and so acts trivially on the set of
neighbours of a. Thus Gdcba is not transitive on the set of 4-arcs starting with (d, c, b, a)
and so the graph is not locally 4-arc transitive. Hence s = 3.

Let us make some observations on the results: In Tables 1, 2, 3, 4, 5, 6 and 9 most
values are s = 2 or s = 3. There are some spectacular examples with larger values of s.
Indeed we obtain a locally 4-arc transitive graph and a locally 7-arc transitive graph which
are respectively

Γ (PSL(2, q);S4, S4, D8) due to Biggs-Hoare [1]

and Γ (PSL(2, q);D16, S4, D8) due to Wong [22]

These examples also appear in Li [14].
However, let us pay more attention to the case q = 9. Here we are dealing with a

geometry whose Buekenhout diagram is given by

i i4

2 2
15 15
S4 S4

B = D8

RPRI

(2T )1, s = 4

This is the smallest thick generalised quadrangle. Its origin is the symplectic group
Sp4(2); in that context it is known at least from [17]. It is also famous as Tutte’s 8-
cage [18]. Its incidence graph admits an automorphism group four times as big as group
PSL(2, 9) which is PΓL(2, 9). Under the action of this group we check that the graph is
actually 5-arc-transitive and this is also provided by Tutte.

Moreover, for the cases in which q = 17, 23, 31, 41, 47, 71, 73, 79, 89 the full automor-
phism group of the incidence graph is the group PGL(2, q). This group has a unique con-
jugacy class of subgroups S4, according to E.H. Moore as we see in [4]. Thus PGL(2, q)
fuses the two classes of S4 in PSL(2, q) and so it cannot provide 5-arc-transitivity. Finally,
for the case Γ (PSL(2, q);D16, S4, D8) for q = 17, 31, 79, 97, there are two classes of S4

in PSL(2, q) that are fused in PGL(2, q). There are two such geometries for each value of
q and so the full automorphism group of Γ is PSL(2, q). (see Proposition 5.10).
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7 Appendix
The Appendix contains details for several results of this paper, except the proofs of Lem-
mas 5.7, 5.8, 5.9, 5.11, 5.13, 5.14, 5.15, 5.17, 5.18, 5.19, 5.20 which are left to the
reader. Appendix is available on-line at: http://amc-journal.eu/index.php/
amc/issue/view/17.
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elles, 1985.

[20] K. Vanmeerbeek, Rwpri meetkunden voor kleine bijna enkelvoudige groepen met als sokkel
PSL(2, q). deel ii: de atlas, Master’s thesis, Vrije Universiteit Brussel, 1999.

[21] H. Wielandt, Finite permutation groups, translated from the German by R. Bercov, Academic
Press, New York, 1964.

[22] W. J. Wong, Determination of a Class of Primitive Permutation Groups, Math. Zeitschr. 99
(1967), 235–246.



Also available at http://amc.imfm.si
ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 6 (2013) 389–392

A note on a conjecture on consistent cycles
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Abstract

Let Γ denote a finite digraph and let G be a subgroup of its automorphism group. A
directed cycle ~C of Γ is called G-consistent whenever there is an element of G whose
restriction to ~C is the 1-step rotation of ~C. In this short note we prove a conjecture on
G-consistent directed cycles stated by Steve Wilson.

Keywords: Digraphs, consistent directed cycles.

Math. Subj. Class.: 05C20, 05C38, 05E18

1 Introduction
Let Γ denote a finite digraph (without loops and multiple arcs). By a directed cycle in Γ
we mean a cyclically ordered set ~C = {v0, v1, v2, . . . , vr−1}, r ≥ 3, of pairwise distinct
vertices of Γ such that (vi, vi+1) is an arc of Γ for every i ∈ Zr (the addition being mod
r). Let G be a subgroup of the automorphism group of Γ. Directed cycle ~C is called G-
consistent, if there exists g ∈ G such that vgi = vi+1 for each i ∈ Zr. In this case g is
called a shunt for ~C. Clearly, G acts on the set of G-consistent directed cycles: for h ∈ G,
~Ch = {vh0 , vh1 , vh2 , . . . , vhr−1} is G-consistent with a shunt h−1gh.

Consistent cycles in finite arc-transitive graphs were introduced by J. H. Conway in one
of his public lectures [3]. Since then a number of papers on consistent cycles and their
applications appeared, see [1, 2, 4, 5, 6, 7, 8, 9, 10, 11].

Observe that if (u, v) is an arc of Γ and g ∈ G is such that ug = v, then the orbit of u under
g induces a G-consistent directed cycle {u, v = ug, ug

2

, . . .} (provided that ug
2 6= u).

Steve Wilson [12] stated the following conjecture on consistent cycles.

∗This work is supported in part by “Agencija za raziskovalno dejavnost Republike Slovenije”, research pro-
gram P1-0285 and research project J1-4010.
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Conjecture 1.1. Let Γ denote a finite digraph (without loops and multiple arcs) and let
G be an arc-transitive subgroup of its automorphism group. Pick vertices u, v of Γ, such
that (u, v) is an arc of Γ. For a G-orbit A of G-consistent directed cycles, let BA denote
the set of all automorphisms g ∈ G, such that ug = v, and the orbit of u under g is in A.
Let G(u,v) denote the G-stabilizer of the arc (u, v). Then the number of elements in BA is
independent of A, and is equal to the order of G(u,v).

In this short note we prove the above conjecture.

2 Proof of the conjecture
In this section we prove Conjecture 1.1. We prove Conjecture 1.1 in two steps. In Propo-
sition 2.1 we prove that |G(u,v)| ≤ |BA|, and in Proposition 2.2 we prove that |BA| ≤
|G(u,v)|.

Proposition 2.1. With the notation of Conjecture 1.1, we have |G(u,v)| ≤ |BA|.

Proof. Since G is arc-transitive, there exists a G-consistent directed cycle ~C in A, which
contains the arc (u, v). Let g denote a shunt for ~C. Let G~C denote the pointwise stabiliser
of ~C and let k be the index of G~C in G(u,v). Let g1, . . . , gk be representatives of cosets of
G~C in G(u,v).

Observe that for each 1 ≤ i ≤ k and each h ∈ G~C , the automorphism g−1i ghgi sends u to
v. Furthermore, the orbit of u under g−1i ghgi is the directed cycle ~Cgi . Namely, since g is
a shunt for ~C and h ∈ G~C , the image of vg

jgi under g−1i ghgi is vg
j+1gi . Moreover, ~Cgi is

clearly in A. Therefore, g−1i ghgi ∈ BA.
We claim that if either i 6= j or h1 6= h2 (h1, h2 ∈ G~C), then α = g−1i gh1gi and
β = g−1j gh2gj are distinct. Indeed, assume first that i 6= j. Note that ~Cgi 6= ~Cgj since gi
and gj are from different cosets of G~C in G(u,v). Moreover, α is a shunt for ~Cgi and β is
a shunt for ~Cgj . Since ~Cgi 6= ~Cgj (and since ~Cgi and ~Cgj have at least the arc (u, v) in
common), it follows that also α 6= β. On the other hand, if i = j and α = β, then h1 = h2.
Therefore, if h1 6= h2 and i = j, then α 6= β. This proves the claim.
It follows that |BA| ≥ k|G~C | = |G(u,v)|.

Proposition 2.2. With the notation of Conjecture 1.1, we have |BA| ≤ |G(u,v)|.

Proof. Let X denote the set of all G-consistent directed cycles in A, containing the arc
(u, v). Clearly, BA is exactly the set of all shunts of directed cycles from X . Since all
directed cycles from X have the arc (u, v) in common, every element of BA is a shunt for
exactly one directed cycle from X . Note also that X is nonempty as G is arc-transitive.
We now define a mapping Ψ from BA to G(u,v) as follows.

Fix ~C ∈ X and a shunt g~C of ~C. For each ~D ∈ X there exists an element of G which
sends ~D to ~C. Pick such an element and denote it by h( ~D). Composing h( ~D) with an
appropriate power of g~C , we could assume that h( ~D) ∈ G(u,v). For each g ∈ BA, let ~D(g)
denote the unique directed cycle in X , for which g is a shunt (see Figure 1). For g ∈ BA
define Ψ(g) = gh( ~D(g))g−1~C

and note that Ψ(g) ∈ G(u,v).

We now show that Ψ is an injection. Pick g1, g2 ∈ BA and assume that Ψ(g1) = Ψ(g2).
Let ~D(g1) = {u, v, v1, v2, . . . , vn−1} and ~D(g2) = {u, v, w1, w2, . . . , wn−1}. We first
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Figure 1: Directed consistent cycles ~C and ~D.

show that ~D(g1) = ~D(g2). Since Ψ(g1) = g1h( ~D(g1))g−1~C
= g2h( ~D(g2))g−1~C

= Ψ(g2),

we have g−12 g1 = h( ~D(g2))h( ~D(g1))−1. This implies that g−12 g1 is in G(u,v). We claim
that vn−i = wn−i for i = 0, 1, . . . n − 1, where vn = wn = u. We prove our claim
using induction on i. Note that our claim is true for i = 0. Assume that our claim is true
for i = 0, 1, . . . , t, where 0 ≤ t ≤ n − 2. Note that h( ~D(g2))h( ~D(g1))−1 fixes the arc
(vn−t, vn−t+1, . . . vn−1, u, v), and therefore also g−12 g1 fixes this arc. But since

vg1n−t−1 = vn−t = v
g−1
2 g1

n−t = wg1
n−t−1,

we have vn−t−1 = wn−t−1, verifying the claim. It follows that ~D(g1) = ~D(g2). But since
~D(g1) = ~D(g2), also h( ~D(g1)) = h( ~D(g2)). As g1h( ~D(g1))g−1~C

= g2h( ~D(g2))g−1~C
, it

follows that g1 = g2. Therefore Ψ is an injection and so |BA| ≤ |G(u,v)|.

Corollary 2.3. With the notation of Conjecture 1.1, we have |BA| = |G(u,v)|.

Proof. Immediately from Propositions 2.1 and 2.2.
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[1] M. Boben, Š. Miklavič and P. Potočnik, Consistent cycles in half-arc-transitive graphs, Elec-

tron. J. Combin. 16 (2009), R5.
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[11] Š. Miklavič, P. Potočnik and S. Wilson, Overlap in consistent cycles, J. Graph Theory 55
(2007), 55–71.

[12] S. Wilson, Personal communication (2009).



Also available at http://amc-journal.eu
ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 6 (2013) 393–408

Sectional split extensions arising from
lifts of groups

Rok Požar
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Abstract

Covering techniques have recently emerged as an effective tool used for classification
of several infinite families of connected symmetric graphs. One commonly encountered
technique is based on the concept of lifting groups of automorphisms along regular cover-
ing projections ℘ : X̃ → X . Efficient computational methods are known for regular covers
with cyclic or elementary abelian group of covering transformations CT(℘).

In this paper we consider the lifting problem with an additional condition on how a
group should lift: given a connected graph X and a group G of its automorphisms, find
all connected regular covering projections ℘ : X̃ → X along which G lifts as a sectional
split extension. By this we mean that there exists a complement G of CT(℘) within the
lifted group G̃ such that G has an orbit intersecting each fibre in at most one vertex. As an
application, all connected elementary abelian regular coverings of the complete graph K4

along which a cyclic group of order 4 lifts as a sectional split extension are constructed.

Keywords: Covering projection, graph, group extension, lifting automorphisms, voltage assignment.
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1 Introduction
Graph covers play a significant role when symmetry properties of graphs are investigated.
One of the commonly used techniques is based on the concept of lifting automorphisms
along regular covering projections. Applications of this technique have been used to clas-
sify families of graphs with given structural properties (see for instance [2, 11, 12, 19, 20]).
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In its most general form the problem of lifting automorphisms is well understood. Much
attention has been devoted to finding the necessary and sufficient lifting conditions in com-
binatorial terms, see [15, 16, 26, 27]. Nevertheless, these general results are rather hopeless
to apply when concrete examples and more detailed questions related to symmetry proper-
ties of graphs are considered.

In a more specific setting of regular covers in which the group of covering transforma-
tions is either cyclic or elementary abelian, the situation changes. For such covers, efficient
computational methods are known. For example, in the case of elementary abelian regu-
lar covers, the idea behind the approach developed in [19] is to reduce the general lifting
problem to that of finding invariant subspaces of matrix groups over prime fields, linearly
representing the action of automorphisms on the first homology group of the graph. Ap-
plying this method to a number of symmetric graphs – including the complete graphs K4

[20] and K5 [13], the Möbius-Kantor graph [18], the complete bipartite graph K3,3 [20],
the Petersen graph [21], the Pappus graph [25], the octahedron graph [14], and the Hea-
wood graph [19] – has resulted in the classification of connected elementary abelian regular
covers admitting various types of subgroups of automorphisms. A similar approach, also
based on linear criteria for lifting automorphisms, was proposed in [3], and has been used
in order to find connected regular coverings with cyclic or elementary abelian group of
covering transformation for the complete graph K4 [6], the 3-dimensional cube graph Q3

[7], the complete bipartite graph K3,3 [4], and the Petersen graph [5].
Assuming that a group G of automorphisms of X lifts along a regular covering projec-

tion ℘ : X̃ → X , the lifted group G̃ is an extension of the group of covering transformations
CT(℘) by G. Specific types of extensions have usually a strong impact on structural prop-
erties of the covering graph X̃ . In this context, the following two cases deserve special
attention: (i) G̃ is a split extension of CT(℘) by G, and in particular, (ii) G̃ is a direct split
extension of CT(℘) by G. For short we say that G lifts as a split extension or as a direct
split extension, respectively. In the former case there exists, by definition, a complement
G of CT(℘) within G̃, and a normal complement G of CT(℘) in the latter. This allows
us to compare actions of two isomorphic groups, G on X and G on X̃ , where G projects
isomorphically onto G along ℘. However, it can happen that the complement is not unique,
and what is more, different complements can exhibit different actions on X̃ . Therefore, the
analysis can be quite complicated. Certain algorithmic aspects related to the question of
how difficult is to test conditions (i) and (ii) are considered in [22].

According to particular kinds of actions that can arise from complements, two extremal
cases seem to stand out: (iii) there exists a complement G that acts transitively on the
covering graph X̃ , and (iv), there exists a complement G that is sectional. By this we mean
that there is a section of X̃ – a set of vertices containing at most one vertex from each fibre
– invariant under the action ofG. For short we say thatG lifts as a transitive split extension
or as a sectional split extension, respectively. Clearly, one might further restrict conditions
(iii) and (iv) to normal complements. Certain particular questions along these lines have
been addressed in [1, 8, 16, 17].

Motivated by the above discussion, the following problem is of interest. Given a con-
nected graph X and a group G of its automorphisms, find all connected regular covering
projections ℘ : X̃ → X along which G lifts in a prescribed way. In this paper we restrict
to case (iv) – we introduce a method for finding regular coverings along which G lifts as a
sectional split extension.

The basic idea behind our approach is the following. First, we take the cone X̂ over
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the graph X obtained by adding a new vertex ∗ joined to every vertex of X , together
with the group of automorphisms Ĝ of X̂ that fixes ∗ and acts on X as the group G.
Next, the condition for lifting G as a sectional split extension is reduced to the general
lifting problem of finding regular coverings of X̂ admitting the lift of Ĝ. Consequently,
the original problem can be solved as soon as the general lifting problem can be solved.
Our approach is illustrated on a concrete example: we construct all connected elementary
abelian regular coverings of the complete graph K4 along which a cyclic group of order 4
lifts as a sectional split extension.

The rest of the paper is organized as follows. In Section 2 we review some preliminary
concepts about regular graph covers and lifting automorphisms. In Section 3 we devise a
method for constructing connected regular covering projections along which G lifts as a
sectional split extension. A detailed example is provided in Section 4.

2 Preliminaries
A graph is an ordered quadruple X = (D,V ; beg,−1 ), where DX = D and VX = V are
disjoint sets of darts and vertices, respectively, beg is a mapping that assigns to each dart x
its initial vertex beg(x), and −1 is an involution interchanging every dart x and its inverse
dart x−1. For a dart x, its terminal vertex is the vertex end(x) = beg(x−1). The orbits of
−1 are called edges. An edge e = {x, x−1} is called a link whenever beg(x) 6= end(x). If
beg(x) = end(x), then the respective edge is either a loop or a semi-edge, depending on
whether x 6= x−1 or x = x−1, respectively. All graphs in this paper are assumed to be
finite, meaning that the sets of vertices and darts are finite.

A graph homomorphism f : Y → X is an adjacency preserving mapping taking darts
to darts and vertices to vertices, or more precisely, f(beg(x)) = beg(f(x)) and f(x−1) =
f(x)−1. An isomorphism is a bijective homomorphism. An isomorphism of a graph onto
itself is an automorphism. All automorphisms of a graph X together with composition of
automorphisms constitute the automorphism group Aut(X).

A surjective homomorphism ℘ : X̃ → X is called a regular covering projection if there
exists a semi-regular subgroup S℘ of Aut(X̃) such that its vertex orbits and dart orbits
coincide with vertex fibres ℘−1(v), v ∈ VX , and dart fibres ℘−1(x), x ∈ DX , respectively.
Two regular covering projections ℘ : X̃ → X and ℘′ : X̃ ′ → X are isomorphic if there
exist an automorphism g of X and an isomorphism g̃ : X̃ → X̃ ′ such that the following
diagram

X̃
g̃−−−−→ X̃ ′

℘
y y℘′
X −−−−→

g
X

commutes. In particular, if g = id then ℘ and ℘′ are equivalent. If, in the above setting,
X̃ = X̃ ′ and ℘ = ℘′, then we say that g lifts along ℘ or that g̃ is a lift of g along ℘.
A group G ≤ Aut(X) lifts if all g ∈ G lift. The collection of all lifts of all elements
in G forms a subgroup G̃ ≤ Aut(X̃), the lift of G. In particular, the lift of the trivial
group is known as the group of covering transformations and denoted by CT(℘). Observe
that G̃ is an extension of CT(℘) by G. Furthermore, if G lifts along a given projection
℘, then it lifts along any covering projection equivalent to ℘. This allows us to study lifts
of automorphisms combinatorially in terms of voltage assignments, a concept that we are
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going to describe now.
Let X be a graph and let N be an (abstract) group, called the voltage group. Assign

to each dart x of X a voltage ζx ∈ N in such a way that ζx−1 = ζ−1
x . Such a function

ζ : DX → N is called a voltage assignment on X . Further, construct the derived graph
Cov(ζ) with vertex set VX ×N and dart set DX ×N , where beg(x, n) = (beg(x), n) and
(x, n)−1 = (x−1, n ζx). The projection onto the first coordinate ℘ζ : Cov(ζ)→ X is then
the derived regular covering projection, where the required semi-regular subgroup S℘ζ of
Aut(Cov(ζ)) arises from the action of N on the second coordinate by left multiplication
on itself. Conversely, any regular covering projection ℘ : X̃ → X can be reconstructed by
a voltage assignment ζ on X such that the projection ℘ζ derived from ζ is equivalent to ℘.
Moreover, one can assume that the voltage assignment ζ is T -reduced for some arbitrarily
chosen spanning tree T of X , meaning that ζx = 1 for all darts x in T , see [9] for more
details.

Consider now a regular covering projection ℘ of connected graphs. Then we say that
℘ is connected. Further, the semi-regular group S℘ is equal to CT(℘), and the voltage
assignment ζ that reconstructs the projection ℘ is valued in the voltage group N ∼= CT(℘)
(viewed as an abstract group). Such a voltage assignment ζ is also called connected. It is
well known that ζ is connected if and only if each element of N appears as the voltage of
some closed walk. Furthermore, by the basic lifting lemma [15, 16], an automorphism g
of X lifts along ℘ζ if and only if each closed walk with trivial voltage is mapped by g to a
walk with trivial voltage.

Two assignments ζ and ζ ′ on X are equivalent whenever the respective derived regular
covering projections ℘ζ and ℘ζ′ are equivalent. Assuming that both assignments are con-
nected and valued inN , then they are equivalent if and only if there exists an automorphism
of N mapping ζW to ζ ′W for each closed walk W at u0 [27].

For a given connected graph X and subgroup G ≤ Aut(X), the problem of finding
regular covering projections ℘ along which G lifts is very difficult in general. However, in
the case of elementary abelian regular coverings ℘ – that is, when CT(℘) is isomorphic to
an elementary abelian group – the necessary and sufficient lifting condition can be stated
combinatorially by means of voltages as follows, see [19].

Let p be a prime. The first homology group H1(X;Zp) is generated by the (directed)
cycles of X and is isomorphic to the elementary abelian group Zrp, where r is the Betti
number of the graph X . The group H1(X;Zp) is usually viewed as a vector space over
Zp of dimension r. Since each automorphism α ∈ Aut(X) maps a cycle in X to a cycle
in X , there is a natural action of α on H1(X;Zp) which induces a linear transformation
α# of H1(X;Zp). Choose a spanning tree T of X and exactly one dart from each edge
{x, x−1} that is not contained in T . Then the sequence x1, x2, . . . , xr ∈ DX\DT of all
such darts naturally defines an (ordered) basis BT = {C1, C2, . . . , Cr} of H1(X;Zp),
where Ci is the cycle arising from the spanning tree T and the dart xi. Next, denote the
matrix representation of α# with respect to the basis BT by Mα ∈ Zr,rp . Thus, a subgroup
G ≤ Aut(X) induces a subgroup MG = {Mg | g ∈ G} ≤ GL(r,Zp). By M t

G we denote
the dual group consisting of all transposes of matrices in MG.

Theorem 2.1. ([19, Proposition 6.3, Corollary 6.5]) With the notation above, let ζ : DX →
Zd,1p be a T -reduced voltage assignment onX , and letZ ∈ Zd,rp be the matrix with columns

ζx1
, ζx2

, . . . , ζxr .

If Z has rank d, then the derived graph Cov(ζ) is connected and the following hold:
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(i) A group G ≤ Aut(X) lifts along ℘ζ : Cov(ζ)→ X if and only if the columns of Zt

form a basis of a M t
G-invariant d-dimensional subspace S(ζ) of Zr,1p ∼= H1(X;Zp).

(ii) If ζ ′ : DX → Zd,1p is another voltage assignment on X satisfying the above condi-
tions, then ℘ζ′ is equivalent to ℘ζ if and only if S(ζ ′) = S(ζ). Moreover, ℘ζ′ is
isomorphic to ℘ζ if and only if there exists an automorphism α ∈ Aut(X) such that
the matrix M t

α maps S(ζ ′) onto S(ζ).

By Theorem 2.1, we can find all pairwise nonequivalent connected elementary abelian
regular coverings of X along which G lifts – in terms of voltages – as follows. First find
a basis {u1, u2, . . . , ud} for each M t

G-invariant subspace U of Zr,1p . Next, for each basis
{u1, u2, . . . , ud} consider a matrix Z with rows ut1, u

t
2, . . . , u

t
d, and then define the voltage

assignment ζU : DX → Zd,1p , mapping dart xi to the i-th column of Z, i = 1, 2, . . . , r,
and mapping all darts of T to the trivial voltage. Observe that the choice of a spanning
tree together with a sequence x1, x2, . . . , xr as well as choosing a basis for an invariant
subspace is irrelevant as long as we consider regular coverings up to equivalence. Thus,
the problem of finding connected elementary abelian regular coverings along which a given
group of automorphisms lifts translates to a purely algebraic question of finding invariant
subspaces of finite linear groups.

In this context, let A ∈ Zn,np be an n×n matrix over a field Zp, acting as a linear trans-
formation on the column vector space Zn,1p . Next, let κA(x) = f1(x)n1f2(x)n2 · · · fk(x)nk

be the characteristic polynomial and mA(x) = f1(x)s1f2(x)s2 · · · fk(x)sk the minimal
polynomial of A where polynomials fi are pairwise distinct and irreducible over Zp. Then
Zn,1p can be written as a direct sum of the A-invariant subspaces

Fn,1 = Kerf1(A)s1 ⊕ Kerf2(A)s2 ⊕ · · · ⊕ Kerfk(A)sk .

Moreover, all A-invariant subspaces appear as direct sums of some A-invariant subspaces
of Kerfi(A)si .

As for finding common invariant subspaces of a finite linear group, we can often ex-
ploit Maschke’s theorem which states that if the characteristic of the field does not divide
the order of the group, then the representation is completely reducible. In this case one
essentially needs to find just the minimal common invariant subspaces. In particular, if the
order of the matrix A is not divisible by p, each A-invariant subspace of Zn,1p is a direct
sum of the minimal ones. For a more detailed description of finding invariant subspaces we
refer the reader to [10].

3 Sectional split extensions
We start by giving a more precise definition of a sectional split extension mentioned in
the Introduction. Let ℘ : X̃ → X be a regular covering projection of connected graphs,
and let Ω be a nonempty set of vertices of X . A section over Ω is a set of vertices Ω̄ of
X̃ containing exactly one vertex from each vertex fibre over Ω. Further, let G be a group
of automorphisms of X . Assuming that Ω is invariant under the action of G, we say that
G lifts along ℘ to G̃ as a sectional split extension over Ω if the following two conditions
are met: (a) G lifts along ℘ and (b) there exist a complement G to CT(℘) within G̃ and
a section Ω̄ over Ω that is invariant under the action of G. Such a complement is called
sectional over Ω. The necessary and sufficient conditions for G to lift as a sectional split
extension over Ω in terms of voltages were given by Malnič et al. This is summarized in
the following theorem.
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Theorem 3.1. ([16, Theorem 9.1, Theorem 9.3]) With the notation and assumptions above,
a group G lifts along ℘ as a sectional split extension over Ω if and only if ℘ can be recon-
structed by a voltage assignment ζ on X such that the following condition

ζW = 1⇒ ζgW = 1 (3.1)

holds for each automorphism g ∈ G and each walk W in X with both its endpoints in Ω .

Firstly, note that this theorem is an extended version of an old result of Biggs [1], retold
in a different language. Secondly, Malnič took this result further in [17], and used it to
sketch a method for testing whether G lifts along ℘ as a sectional split extension over Ω.
The approach is based on introducing a new vertex joined to every vertex of Ω, and then
converting condition (3.1) to the general lifting problem (but no proof is given). In order to
exploit this idea in another direction (see below), we introduce the following notation.

The cone X̂(Ω) over the graphX is the graph obtained by adding a new vertex ∗ joined
to every vertex of Ω. Assuming that Ω is invariant under the action of G, we denote by
Ĝ the group of automorphisms of X̂(Ω) that fixes ∗ and acts on X as the group G. Also,
for any voltage assignment ζ on X , we extend ζ to a voltage assignment ζ̂ on X̂(Ω) by
assigning the trivial voltage to the extra darts. More precisely,

ζ̂x =

{
ζx, x ∈ DX ;
1, x ∈ DX̂(Ω)\DX .

Conversely, for a voltage assignment ζ on X̂(Ω) being trivial on the set of extra darts we
denote by ζ̄ the restriction of ζ to X . Clearly, if ζ is not trivial on the set of extra darts,
then we can always find an equivalent assignment that is. For example, we may choose a
spanning tree T ∗ of X̂(Ω) such that all extra darts are included in T ∗, and then take an
equivalent T ∗-reduced voltage assignment. Moreover, the following holds.

Proposition 3.2. Let ζ and ζ ′ be two equivalent connected voltage assignments on X̂(Ω),
that are trivial on the set of extra darts DX̂(Ω)\DX . Then their restrictions ζ̄ and ζ̄ ′ to X
are also equivalent. Hence they are either both connected or both disconnected.

Proof. By definition of equivalence, there exists an isomorphism g̃ from the derived graph
Cov(ζ) to the derived graph Cov(ζ ′) such that ℘ζ = g̃℘ζ′ . Clearly, g̃ maps the vertex fibre
℘−1
ζ (∗) to the vertex fibre ℘−1

ζ′ (∗). Therefore, when restricting to X , the isomorphism g̃

induces an isomorphism from the derived graph Cov(ζ̄) to Cov(ζ̄ ′) that gives rise to an
equivalence of ζ̄ and ζ̄ ′. It is then obvious that isomorphic graphs are either both connected
or both disconnected, as required.

We are now ready to forge a link between connected regular coverings of X along
which G lifts as a sectional split extension over Ω, and connected regular coverings of
X̂(Ω) admitting the lift of Ĝ. For completeness, we explicitly record the following theorem
and provide the proof.

Theorem 3.3. Let ℘ : X̃ → X be a regular covering projection of connected graphs, and
let G be a group of automorphisms of X . Suppose that a nonempty subset Ω of vertices
of X is invariant under the action of G. Then the group G lifts along ℘ as a sectional split
extension over Ω if and only if ℘ can be reconstructed by a voltage assignment ζ onX such
that Ĝ lifts along the derived regular covering projection ℘ζ̂ : Cov(ζ̂ )→ X̂(Ω).
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Proof. Suppose that G lifts along ℘ as a sectional split extension over Ω. By Theorem 3.1,
there exists a voltage assignment ζ on X that reconstructs ℘ and satisfies condition (3.1).
Extend ζ to a voltage assignment ζ̂. We will show that Ĝ lifts along the projection ℘ζ̂
derived from ζ̂. Let W ∗ be a closed walk at ∗ in X̂(Ω) with ζ̂W∗ = 1, and let g∗ ∈ Ĝ.
In view of the basic lifting lemma we need to show that ζ̂g∗W∗ = 1. Write W ∗ as a
concatenation W ∗ = W ∗1W

∗
2 . . .W

∗
k of closed walks at ∗ such that W ∗i = PiWiQ

−1
i ,

whereWi : ui → vi is a walk inX with both its endpoints ui and vi in Ω, while Pi : ∗ → ui
and Qi : ∗ → vi are walks of length 1, for i = 1, 2, . . . , k. Observe that ζW1

ζW2
. . . ζWk

=
1. Now choose a vertex u0 ∈ Ω. Let Ri : u0 → ui and Si : u0 → vi be walks with
ζRi = ζSi = 1, for i = 1, 2, . . . , k (note that such walks always exist). Then the product
of walks W =

∏k
i=1RiWiS

−1
i is a closed walk at u0 with ζW = ζW1

ζW2
. . . ζWk

= 1.
By condition (3.1) we have that ζgW = 1 as well as ζgRj = ζgSj = 1, for i = 1, 2, . . . , k.
Thus ζgW1

ζgW2
. . . ζgWk

= 1 implies that ζ̂g∗W∗ = 1, as required.
Conversely, suppose that ℘ is reconstructed by a voltage assignment ζ on X such that

Ĝ lifts along the covering projection ℘ζ̂ . By Theorem 3.1, it is sufficient to prove that ζ
satisfies condition (3.1). Consider a walk W : u → v in X with both its endpoints u and
v in Ω such that ζW = 1. Let P : ∗ → u and Q : ∗ → v be the (unique) walks of length
1 in X̂(Ω). Then the closed walk W ∗ = PWQ−1 at ∗ has voltage ζ̂W∗ = 1. By the
basic lifting lemma we have ζ̂g∗W∗ = 1 for any automorphism g∗ ∈ Ĝ. Hence ζgW = 1,
completing the proof.

Coming back to methods for testing whether G lifts along ℘ as a sectional split exten-
sion over Ω, one possibility would be to use the latter theorem. However, from compu-
tational point of view that would be inefficient, since one has to seek for an appropriate
voltage assignment that reconstructs the cover. For a more adequate approach to this prob-
lem we refer the reader to [23].

As already mentioned, Theorem 3.3 can be efficiently exploited in another direction:
given a connected graph X , a group G of its automorphisms, and a nonempty subset
Ω ⊆ VX invariant under the action of G, find, up to equivalence, all connected regular
coverings ℘ : X̃ → X along which G lifts as a sectional split extension over Ω. As a
first step towards this aim we need to find, in view of Proposition 3.1 and Theorem 3.3,
all pairwise nonequivalent connected regular coverings of X̂(Ω) along which the group Ĝ
lifts – combinatorially reconstructed in terms of voltage assignments ζ being trivial on the
set of extra darts. Although each ζ is connected – as it reconstructs a connected cover – its
restriction ζ̄ to X , however, might be disconnected. Thus, additional testing whether ζ̄ is
connected is required. These remarks are formally gathered in the following theorem.

Theorem 3.4. Let X be a connected graph and Ω a nonempty subset of vertices of X that
is invariant under the action of a group of automorphisms G ≤ Aut(X). Further, let ζ
be a voltage assignment on X̂(Ω) that is trivial on the set of extra darts DX̂(Ω)\DX and

gives rise to a connected regular covering projection along which the group Ĝ lifts. If the
restriction ζ̄ to X is connected, then G lifts along the derived regular covering projection
℘ζ̄ as a sectional split extension over Ω. Moreover, any connected regular covering of X
along which G lifts as a sectional split extension over Ω arises in this way.

Remark 3.5. Even if ζ and ζ ′ are two nonequivalent connected assignments on X̂(Ω) such
that their restrictions ζ̄ and ζ̄ ′ to X are connected, it still might happened that ζ̄ and ζ̄ ′ are
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equivalent. Thus, additional testing is needed.

Now we can more precisely summarize our approach. First, construct all voltage as-
signments ζ on X̂(Ω) giving rise to pairwise nonequivalent connected regular covering
projections along which Ĝ lifts. Next, consider their restrictions ζ̄ to X and remove the
disconnected ones. Finally, do further reduction to obtain all voltage assignments on X
giving rise to pairwise nonequivalent connected regular covering projections along which
G lifts as a sectional split extension over Ω.

4 Elementary abelian regular covers of K4

In light of the discussion in Section 3 we now give an example to illustrate our approach.
Let X = K4 be the complete graph on the vertex set VX = {1, 2, 3, 4}, and let Ω = VX .
Further, denote by g = (1234) ∈ Aut(X) the automorphism of X . We compute all volt-
age assignments on X giving rise to pairwise nonequivalent connected elementary abelian
regular covering projections along which the cyclic group G = 〈g〉 lifts as a sectional split
extension over Ω.

To start with, we need to find all voltage assignments on X̂(Ω) giving rise to pairwise
nonequivalent connected elementary abelian regular coverings along which the group Ĝ =
〈g∗〉 lifts. Let T ∗ be the spanning tree of X̂(Ω) consisting of all extra darts, and let

x1 = (1, 2), x2 = (2, 3), x3 = (3, 4), x4 = (4, 1), x5 = (2, 4), x6 = (3, 1)

denote the six cotree darts of X̂(Ω). Denote by BT ∗ = {~xi | 1 ≤ i ≤ 6} the ordered basis
of the vector space H1(X̂(Ω);Zp), where ~xi is the cycle arising from the spanning tree T ∗
and the dart xi. Next, in view of the remarks given in Preliminaries, let (g∗)# be the linear
transformation of H1(X̂(Ω);Zp) induced by the natural action of g∗ on H1(X̂(Ω);Zp),
and let Mg∗ ∈ Z6,6

p be its matrix representation with respect to the basis BT ∗ . By compu-
tation we obtain that

A = M t
g∗ =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

 .

By Theorem 2.1, we need to find A-invariant subspaces of Z6,1
p . However, note that every

elementary abelian regular Zd,1p -cover ofX is disconnected if the dimension d is higher that
the Betti number of X . Since the Betti number of X is three, it is therefore enough to find
all A-invariant subspaces of dimension at most three. These subspaces define T ∗-reduced
voltage assignments

ζ : DX̂(Ω) → Zd,1p , d = 1, 2, 3

on X̂(Ω) that give rise to pairwise nonequivalent connected regular coverings of X̂(Ω)

along which Ĝ lifts. In addition, as already explained in the previous section, their restric-
tions ζ̄ to X might still be disconnected as well as connected but equivalent.

In order to test whether the restriction ζ̄ to X stays connected, let T be the spanning
tree ofX consisting of the edges {1, 2}, {1, 3} and {1, 4}. Denote byC1, C2 andC3 cycles
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arising from the spanning tree T and darts x2, x3 and x5, respectively. The connectedness
condition, relative to the ordered basis BT = {C1, C2, C3} of H1(X;Zp), translates to the
requirement that the voltages

ζ̄C1
= ζC1

= ζx1
+ ζx2

+ ζx6
,

ζ̄C2
= ζC2

= ζx3
+ ζx4

− ζx6
,

ζ̄C3
= ζC3

= ζx1
+ ζx4

+ ζx5

generate the voltage group Zd,1p . As for the test of equivalence, let ζ and ζ ′ be two T ∗-
reduced voltage assignments on X̂(Ω) arising from two different d-dimensional subspaces
U and U ′ of Z6,1

p , respectively. Suppose that their restrictions ζ̄ and ζ̄ ′ are connected. Then
ζ̄ and ζ̄ ′ are equivalent, in view of [27], if and only if there exists an automorphism of Zd,1p
mapping

ζC1
7→ ζ ′C1

, ζC2
7→ ζ ′C2

, and ζC3
7→ ζ ′C3

.

For the purpose of finding A-invariant subspaces, note that κA(x) = (x4 − 1)(x2 + 1)
is the characteristic polynomial of A, while

mA(x) = x4 − 1

is its minimal polynomial. Further, observe that the factorization ofmA(x) into irreducible
factors over Zp depends on the congruence class of p modulo 4, namely

mA(x) =


(x− 1)(x+ 1)(x2 + 1), p ≡ 3 (mod 4);

(x− 1)(x+ 1)(x− i)(x+ i), p ≡ 1 (mod 4), i2 = −1;

(x− 1)4, p = 2.

Therefore the analysis splits into three cases.

Case p ≡ 3 (mod 4).

In this case the representation of the group 〈A〉 is completely reducible, by Maschke’s
theorem. The eigenvalues are 1 and −1, both of multiplicity 1. The respective eigenspaces
are LA(1) = 〈v1〉 and LA(−1) = 〈v2〉, where

v1 = (1, 1, 1, 1, 0, 0)t and v2 = (1,−1, 1,−1, 0, 0)t.

The whole space splits into a direct sum of A-invariant subspaces

Z6,1
p = LA(1)⊕ LA(−1)⊕ Ker(A2 + I).

It is obvious that the 1-dimensionalA-invariant subspaces are LA(1) and LA(−1). The
respective lists of voltages for the base homology cycles C1, C2, C3 in X are 2, 2, 2 for the
one arising from LA(1), and 0, 0, 0 for the one arising from LA(−1). Thus, only LA(1)
gives rise to a connected cover of X , while LA(−1) does not.

Since the 2-dimensional A-invariant subspace arising from the direct sum LA(1) ⊕
LA(−1) does not give a connected cover of X , all others are necessarily contained in
Ker(A2 + I). These subspaces are of the form 〈v,Av〉, for v ∈ Ker(A2 + I). There are
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p2 + 1 distinct subspaces. To check which of these give rise to connected covers of X ,
choose a basis of Ker(A2 + I), for instance

b1 = (1, 0,−1, 0, 0, 0)t,

b2 = (0, 1, 0,−1, 0, 0)t,

b3 = (0, 0, 0, 0, 1, 0)t,

b4 = (0, 0, 0, 0, 0, 1)t.

An arbitrary vector v ∈ Ker(A2 + I) is then of the form v = (a, b,−a,−b, c, d)t, for some
a, b, c, d ∈ Zp, while Av = (b,−a,−b, a, d,−c)t. For convenience we denote

Wa,b,c,d = 〈(a, b,−a,−b, c, d)t, (b,−a,−b, a, d,−c)t〉.

Checking for connectedness gives that

(a, b)t+(b,−a)t+(d,−c)t, (−a,−b)t+(−b, a)t−(d,−c)t and (a, b)t+(−b, a)t+(c, d)t

should generate Z2,1
p . The condition is reduced to requiring that (a+b+d,−a+b−c)t and

(a−b+c, a+b+d)t are linearly independent in Z2,1
p . Let x = a+b+d and y = a−b+c.

The vectors (x, y)t and (−y, x)t are linearly dependent if and only if x2 + y2 ≡ 0 (mod p)
Since p ≡ 3 (mod 4), we must have x ≡ 0 (mod p) and y ≡ 0 (mod p). Thus a disconnected
cover of X is obtained if and only if c = −a + b and d = −a − b; in this case Wa,b,c,d is
generated by

va,b = a(1, 0,−1, 0,−1,−1)t + b(0,−1, 0, 1,−1, 1)t and Ava,b.

Observe that any va,b is contained in 〈v1,0, Av1,0〉. Hence 〈va,b, Ava,b〉 = 〈v1,0, Av1,0〉
for all a, b ∈ Zp. This is therefore the only A-invariant 2-dimensional subspace giving rise
to a disconnected cover of X . As for the remaining subspaces, these are Wa,b,c,d where
(c, d) 6= (−a+b,−a−b). Furthermore, these subspaces all give rise to equivalent coverings
of X . Indeed. Choose one of these subspaces, say

W1,1,0,0 = 〈(1, 1,−1,−1, 0, 0)t, (1,−1,−1, 1, 0, 0)t〉.

Let ζ and ζ ′ be two assignments arising from Wa,b,c,d and W1,1,0,0, respectively. The base
homology cycles C1, C2, C3 in X have the following voltages

ζC1
= (a+ b+ d,−a+ b− c)t, ζ ′C1

= (2, 0)t,

ζC2 = (−a− b− d, a− b+ c)t, ζ ′C2
= (−2, 0)t,

ζC3
= (a− b+ c, a+ b+ d)t, ζ ′C3

= (0, 2)t.

By computation one can check that there exists a matrix in GL(2,Zp) ∼= Aut(Z2,1
p ) taking

ζC1
, ζC2

, ζC3
to ζ ′C1

, ζ ′C2
, ζ ′C3

, respectively, if and only if (c, d) 6= (−a + b,−a − b), and
the claim is proved. As a representative of the above 2-dimensional subspaces we take
W1,1,0,0.

Any 3-dimensionalA-invariant subspace giving rise to a connected cover ofX is equiv-
alent to the homological cover ofX . So it is enough to find one such a subspace, if it exists.
For instance, we may take the subspace LA(1)⊕W1,1,0,0, as the reader can easily check.
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Case p ≡ 1 (mod 4).

The representation of the group 〈A〉 is again completely reducible, by Maschke’s theorem.
The matrix A is diagonalizable, having the diagonal form diagA(1,−1, i, i,−i,−i).

Clearly, the 1-dimensional eigenspaces LA(1) and LA(−1) are the same as before,
where only LA(1) gives rise to a connected cover of X . As for the eigenvalues i and −i
satisfying i2 ≡ −1 (mod p), the respective eigenspaces LA(i) = 〈ui, vi〉 and LA(−i) =
〈u−i, v−i〉 are 2-dimensional, where

ui = (1, i,−1,−i, 1, i)t, u−i = (1,−i,−1, i, 1,−i)t,
vi = (1, i,−1,−i, 0, 0)t, v−i = (1,−i,−1, i, 0, 0)t.

The 1-dimensional subspaces in LA(i) can be conveniently parametrized as

W∞(i) = 〈ui〉,
Ws(i) = 〈sui + vi〉 = 〈(s+ 1, (s+ 1)i,−(s+ 1),−(s+ 1)i, s, si)t〉, s ∈ Zp,

while those in LA(−i) can be parametrized as

W∞(−i) = 〈u−i〉,
Ws(−i) = 〈su−i + v−i〉 = 〈(s+ 1,−(s+ 1)i,−(s+ 1), (s+ 1)i, s,−si)t〉, s ∈ Zp.

The conditions for connectedness of covers ofX arising fromW∞(i),Ws(i),W∞(−i)
and Ws(−i) become i− 2 6≡ 0 (mod p), s(i− 2) 6≡ 1− i (mod p), −i− 2 6≡ 0 (mod p) and
s(−i − 2) 6≡ 1 + i (mod p), respectively. We need to consider subcases p 6= 5 and p = 5
separately.

Let p 6= 5. Then i,−i 6= 2, and there are (2p+ 1) 1-dimensional subspaces giving rise
to connected covers of X , namely the set

Wi = {Ws(i) | s ∈ (Zp\{(1− i)(i− 2)−1}) ∪ {∞}}

of p subspaces in LA(i), the set

W−i = {Ws(−i) | s ∈ (Zp\{(1 + i)(−i− 2)−1}) ∪ {∞}}

of p subspaces in LA(−i), and the subspace LA(1). However, all subspaces inWi give rise
to equivalent coverings of X . To show this, let ζ and ζ ′ be two assignments arising from
Ws(i) and W∞(i), respectively. By computation we have

ζC1
= (s+ 1)(1 + i) + si, ζ ′C1

= 1 + 2i,

ζC2
= − (s+ 1)(1 + i)− si = −ζC1

, ζ ′C2
= − 1− 2i = −ζ ′C1

,

ζC3
= (s+ 1)(1− i) + s = −iζC1

, ζ ′C3
= 2− i = −iζ ′C1

.

Clearly, there exists an automorphism of Zp taking ζC1
, ζC2

, ζC3
to ζ ′C1

, ζ ′C2
, ζ ′C3

, respec-
tively, if and only if ζC1

6= 0. In fact, we do have ζC1
6= 0 since s 6= (1 − i)(i − 2)−1.

Similarly, all subspaces inW−i give rise to equivalent coverings of X . As a representative
inWi we choose W0(i), while inW−i we choose W0(−i). In fact, there are exactly three
pairwise nonequivalent connected coverings ofX , namely the one arising from LA(1), and
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the two coverings arising from W0(i) and W0(−i). The respective lists of voltages for the
base homology cycles C1, C2, C3 in X are 2, 2, 2 for the one arising from LA(1), while
1 + i,−1− i, 1− i and 1− i,−1 + i, 1 + i for the other two covers. The reader may check
that there is no automorphism of Zp taking any of these triples to any other.

Let p = 5. Then for each s ∈ Z5 the subspace Ws(2) gives rise to a connected cover
of X , while the subspace W∞(2) does not. On the other hand, for each s 6= 3 we obtain
a connected cover of X arising from Ws(3), and one connected cover of X arising from
W∞(3). Together with the cover of X arising from LA(1) we therefore have 2p+ 1 = 11
connected covers. If ζ denotes an assignment arising from Ws(2), then the base homology
cycles in X have voltages ζC1 = 3(s + 1) + 2s = 3, ζC2 = −3(s + 1) − 2s = −ζC1 ,
ζC3 = −(s+ 1) + s = −2ζC1 . It is obvious that the subspaces Ws(2), s ∈ Z5, give rise to
equivalent coverings ofX . As a representative we takeW0(2). Let now ζ be an assignment
arising from Ws(3), where s ∈ Zp and s 6= 3. Further, let ζ ′ denote an assignment arising
from W∞(3). Then we have

ζC1
= 4(s+ 1) + 3s = 2s− 1, ζ ′C1

= 2,

ζC2
= − 4(s+ 1)− 3s = −ζC1

, ζ ′C2
= − 2 = −ζ ′C1

,

ζC3
= − 2(s+ 1) + s = −3ζC1

, ζ ′C3
= − 1 = −3ζ ′C1

.

Clearly, multiplication by s + 2 takes ζC1
, ζC2

, ζC3
to ζ ′C1

, ζ ′C2
, ζ ′C3

, respectively. As a
representative we take W0(3). The reader may check that LA(1),W0(2) and W0(3) give
rise to pairwise nonequivalent coverings of X .

Let us now consider the 2-dimensional subspaces. We shall need the following lemma.

Lemma 4.1. Let T ∗ be a spanning tree of X̂(Ω) such that all extra darts are included in T ∗,
and let the sequence x1, x2, . . . , xn contain exactly one dart from each edge not contained
in T ∗. Further, let U , U ′, W,W ′ be subspaces of Zn,1p such that U ∩W = {0} = U ′∩W ′,
and let ζU , ζU′ , ζW , ζW ′ , ζU⊕W , ζU′⊕W ′ denote T ∗-reduced voltage assignments on X̂(Ω),
where the voltages of darts xi arise from U , U ′, W,W ′, U ⊕W,U ′ ⊕W ′, respectively.
Suppose that all their restrictions to X are connected. If the restrictions of ζU and ζU′ are
equivalent and the restrictions of ζW and ζW ′ are equivalent, then the restrictions of ζU⊕W

and ζU′⊕W ′ are also equivalent.

Proof. Since U ∩ W = {0} = U ′ ∩ W ′ we may assume, up to equivalence of regular
covering projections, that

ζU⊕Wx =

[
ζUx
ζWx

]
and ζU

′⊕W ′

x =

[
ζU
′

x

ζW
′

x

]
,

for all darts x in X̂(Ω). Let r be the Betti number of X , and let C1, C2, . . . , Cr be an
ordered basis ofH1(X,Zp). Since the restrictions of ζU and ζU′ are equivalent, there exists
an invertible matrix A mapping voltages ζUCi to voltages ζU′Ci , i = 1, 2, . . . , r. Similarly,
there exists an invertible matrix B mapping voltages ζWCi to voltages ζW ′Ci , i = 1, 2, . . . , r.
Then the matrix [

A
B

]
is invertible and clearly takes voltages ζU⊕WCi

to voltages ζU
′⊕W ′

Ci
. Hence the restrictions of

ζU⊕W and ζU′⊕W ′ to X are equivalent.
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In order to test which 2-dimensional subspaces give rise to connected and possibly
equivalent coverings of X we only need to check, by Lemma 4.1, the subspaces LA(i),
LA(−i), and the following direct sums:

LA(1)⊕W0(i), LA(1)⊕W0(−i), W0(i)⊕W0(−i).

First note that the two subspaces LA(i) and LA(−i) give rise to disconnected covers of
X since each can be written as a direct sum of two 1-dimensional subspaces, of which one
gives rise to a disconnected cover of X . As for the remaining subspaces, they all give rise
to connected and pairwise nonequivalent coverings of X . We leave this to the reader.

Finally, any 3-dimensional subspace giving rise to a connected cover ofX is equivalent
to the homological cover over X . So it is enough to identify one such subspace. The
reader can check that LA(1) ⊕ W0(i) ⊕ W0(−i) satisfies the connectedness condition.
This completes the analysis when p is odd.

Case p = 2.

In this case the representation of the group 〈A〉 is not completely reducible. First we need
an appropriate Jordan basis for the matrix A. Observe that the respective Jordan form has
two elementary Jordan matrices, one of size 4 and one of size 2. By computation, a Jordan
basis is, say,

v1 = (1, 1, 1, 1, 0, 0)t,

b1 = (0, 1, 0, 1, 0, 0)t,

b3 = (0, 0, 1, 1, 0, 0)t,

b4 = (0, 0, 0, 1, 0, 0)t,

v2 = (0, 0, 0, 0, 1, 1)t,

b2 = (0, 0, 0, 0, 1, 0)t,

where v1 and v2 are the eigenvectors, the 4-dimensional cyclic subspace is spanned by
v1, b1, b3, b4, and the 2-dimensional one by v2, b2.

There are exactly three 1-dimensional A-invariant subspaces, all contained in the 2-
dimensional eigenspace LA(1), namely W∞(1) = 〈v1〉, W0(1) = 〈v2〉 and W1(1) =
〈(1, 1, 1, 1, 1, 1)t〉. Only the latter two give rise to connected covers of X . Moreover, both
also give rise to equivalent coverings of X . As a representative we choose, say, W1(1).
The resulting cover is the canonical double cover.

As for the 2-dimensional A-invariant subspaces, there are exactly seven of them. One
is the eigenspace LA(1) = 〈v1, v2〉. The other six subspaces arise from vectors u ∈
Ker(A − I)2 \ LA(1). Such a 2-dimensional subspace consists of the following vectors:
0, u, Au, u+Au. ClearlyAu 6= u (since u is not an eigenvector), andAu ∈ Ker(A−I)2 \
LA(1) (as A2u = Au implies Au = u). Therefore the elements in Ker(A− I)2 \LA(1) in
the same 2-dimensional subspace come in pairs. As the set Ker(A− I)2 \ LA(1) contains
exactly 12 nontrivial vectors, there are exactly six subspaces of this kind. These can be
explicitly represented as 〈v1, b1〉, 〈v1, u1〉, 〈v2, b2〉, 〈v2, u2〉, 〈v1 + v2, u3〉, 〈v1 + v2, u4〉,
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where

u1 = (0, 1, 0, 1, 1, 1)t,

u1 = (1, 1, 1, 1, 1, 0)t,

u3 = (1, 0, 1, 0, 0, 1)t,

u4 = (1, 0, 1, 0, 1, 0)t.

The reader can check that the subspaces giving rise to connected covers of X are pairwise
equivalent. As a representative we choose, say, 〈v2, b2〉.

Consider now the 3-dimensional A-invariant subspaces. It is enough to find just one (if
it exists) giving rise to a connected cover ofX (which is then equivalent to the homological
cover of X). However, the reader can check that all 3-dimensional subspaces give rise to
disconnected covers of X . To this end we only provide a basis for each of them. Note
that there are seven 3-dimensional subspaces in all. Indeed, three such subspaces exist in
Ker(A− I)2, namely

〈v1, v2, b1〉, 〈v1, v2, b2〉, and 〈v1, v2, u4〉,

each containing LA(1). The other four arise as cyclic subspaces of the Jordan chains
of length 3 (note that there are 16 chains in all, and A acts semi-regularly on the set of
vectors in Ker(A− I)3 \Ker(A− I)2 with four orbits of size 4). The respective bases are
{v1, b1, b3}, {v1, b1, u5}, {v1, u6, u7}, {v1, u6, u8}, where

u5 = (0, 0, 1, 1, 1, 1)t,

u6 = (1, 0, 1, 0, 1, 1)t,

u7 = (1, 0, 0, 1, 0, 1)t,

u8 = (1, 0, 0, 1, 1, 0)t.

This completes the analysis for p = 2.

Remark 4.2. In order to further reduce these coverings up to isomorphism we can follow
(ii) of Theorem 2.1. The possibility that the projections in Table 1 are isomorphic is con-
verted to checking the pairs in rows 2, 3, 4 and those in rows 7, 8, 9. The reader can check
that rows 3 and 4 give rise to isomorphic covers as well as rows 7 and 8.

Remark 4.3. Consider the automorphism h = (12) ofX . Clearly, g and h generate the full
automorphism group Aut(X). Let (h∗)# be the linear transformation of H1(X̂(Ω);Zp)
induced by the natural action of h∗ on H1(X̂(Ω);Zp), and let Mh∗ ∈ Z6,6

p be its matrix
representation with respect to the basis BT ∗ . By computation we have that

M t
h∗ =


−1 0 0 0 0 0
0 0 0 0 0 −1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 −1 0 0
0 −1 0 0 0 0

 .

It is now easy to check that among subspaces in Table 1 only W1(1) is also M t
h∗ -invariant.

Thus, the canonical double cover of X is the only covering along which the full automor-
phism group Aut(X) lifts as a sectional split extension over Ω.
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Table 1: All voltage assignments on K4 giving rise to pairwise nonequivalent connected
elementary abelian regular covering projections along which the cyclic group 〈g〉 of auto-
morphisms of K4 lifts as a sectional split extension. Additionally, coverings in rows 3 and
4 are isomorphic, as well as those in rows 7 and 8.

n Inv. subsp. ζx1 ζx2 ζx3 ζx4 ζx5 ζx6 Condition

1 W1(1)
[
1
] [

1
] [

1
] [

1
] [

1
] [

1
]

p = 2

2 〈v1〉
[
1
] [

1
] [

1
] [

1
] [

0
] [

0
]

p 6= 2

3 〈vi〉
[
1
] [

i
] [

−1
] [

−i
] [

0
] [

0
] p ≡ 1 (mod 4),

i2 = −1

4 〈v−i〉
[
1
] [

−i
] [

−1
] [

i
] [

0
] [

0
] p ≡ 1 (mod 4),

i2 = −1

5 〈v2, b2〉
[
0
0

] [
0
0

] [
0
0

] [
0
0

] [
1
1

] [
1
0

]
p = 2

6 W1,1,0,0

[
1
1

] [
1
−1

] [
−1
−1

] [
−1
1

] [
0
0

] [
0
0

]
p ≡ 3 (mod 4)

7 〈v1, vi〉
[
1
1

] [
1
i

] [
1
−1

] [
1
−i

] [
0
0

] [
0
0

]
p ≡ 1 (mod 4),
i2 = −1

8 〈v1, v−i〉
[
1
1

] [
1
−i

] [
1
−1

] [
1
i

] [
0
0

] [
0
0

]
p ≡ 1 (mod 4),
i2 = −1

9 〈vi, v−i〉
[
1
1

] [
i
−i

] [
−1
−1

] [
−i
i

] [
0
0

] [
0
0

]
p ≡ 1 (mod 4),
i2 = −1

10 〈v1,W1,1,0,0〉

11
1

  1
1
−1

  1
−1
−1

  1
−1
1

 00
0

 00
0

 p ≡ 3 (mod 4)

11 〈v1, vi, v−i〉

11
1

  1
i
−i

  1
−1
−1

  1
−i
i

 00
0

 00
0

 p ≡ 1 (mod 4),
i2 = −1
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[27] M. Škoviera, A contribution to the theory of voltage graphs, Discrete Math. 61 (1986), 281–
292.



Also available at http://amc-journal.eu
ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 6 (2013) 409–417

Augmented down-up algebras and
uniform posets

Paul Terwilliger ∗, Chalermpong Worawannotai
Department of Mathematics, University of Wisconsin

480 Lincoln Drive, Madison, WI 53706-1388 USA

Received 9 July 2013, accepted 31 August 2013, published online 9 September 2013

Abstract

Motivated by the structure of the uniform posets we introduce the notion of an aug-
mented down-up (or ADU) algebra. We discuss how ADU algebras are related to the
down-up algebras defined by Benkart and Roby. For each ADU algebra we give two pre-
sentations by generators and relations. We also display a Z-grading and a linear basis. In
addition we show that the center is isomorphic to a polynomial algebra in two variables. We
display seven families of uniform posets and show that each gives an ADU algebra module
in a natural way. The main inspiration for the ADU algebra concept comes from the second
author’s thesis concerning a type of uniform poset constructed using a dual polar graph.

Keywords: Uniform poset, dual polar space, dual polar graph, down-up algebra.

Math. Subj. Class.: 06A07, 05E10, 17B37

1 Introduction
In [10] the first author introduced the notion of a uniform poset, and constructed eleven
families of examples from the classical geometries. Among the examples are the polar
spaces Polarb(N, ε) and the attenuated spaces Ab(N,M), as well as the posets Altb(N),
Herq(N), and Quadb(N) associated with the alternating, Hermitean, and quadratic forms.
Another example is Hemmeter’s poset Hemb(N). In [12, Proposition 26.4] the second
author constructed a new family of uniform posets using the dual polar graphs. We denote
these posets by Polartopb (N, ε) and describe them in Section 5 below.

In [2] Benkart and Roby introduced the down-up algebras, and obtained modules for these
algebras using Altb(N), Herq(N), Quadb(N), and Hemb(N). A down-up algebra mod-
ule is obtained from Polartopb (N, ε) in a similar way. However, it appears that the down-
up algebra concept is not sufficiently robust to handle Polarb(N, ε) or Ab(N,M). The
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same can be said for the generalized down-up algebras [5]. In the present paper we intro-
duce a family of algebras called augmented down-up algebras, or ADU algebras for short.
These algebras seem well suited to handle uniform posets. Indeed, we show that each of
the uniform posets Polarb(N, ε), Ab(N,M), Altb(N), Herq(N), Quadb(N), Hemb(N),
Polartopb (N, ε) gives an ADU algebra module in a natural way.

The ADU algebras are related to the down-up algebras as follows. Given scalars α, β, γ
the corresponding down-up algebra A(α, β, γ) is defined by generators e, f and relations

e2f = αefe+ βfe2 + γe,

ef2 = αfef + βf2e+ γf.

See [2, p. 308]. To turn this into an ADU algebra we make three adjustments as follows.
Let q denote a nonzero scalar that is not a root of unity. We first require

α = q−2s + q−2t, β = −q−2s−2t

where s, t are distinct integers. Secondly, we add two generators k±1 such that ke = q2ek
and kf = q−2fk. Finally we reinterpret γ as a Laurent polynomial in k for which the
coefficients of ks, kt are zero.

From the above description the ADU algebras are reminiscent of the quantum univeral
enveloping algebra Uq(sl2). To illuminate the difference between these algebras, consider
their center. By [6, p. 27] the center of Uq(sl2) is isomorphic to a polynomial algebra in
one variable. As we will see, the center of an ADU algebra is isomorphic to a polynomial
algebra in two variables.

The results of the present paper are summarized as follows. We define two algebras by
generators and relations, and show that they are isomorphic. We call the common resulting
algebra an ADU algebra. For each ADU algebra we display a Z-grading and a linear basis.
We also show that the center is isomorphic to a polynomial algebra in two variables. We
obtain ADU algebra modules from each of the above seven examples of uniform posets.

We have a remark about the place of down-up algebras and ADU algebras in ring theory.
A down-up algebra can be viewed as an ambiskew polynomial ring [7, Section 3], which in
turn can be viewed as a generalized Weyl algebra [1], [7, Prop. 2.1]. By a comment in [8,
p. 48] that cites a preprint version of the present paper, an ADU algebra can also be viewed
in this way. Hoping to keep our paper accessible to nonexperts in ring theory, we will avoid
this point of view and use only linear algebra.

Recall the natural numbers N = {0, 1, 2, . . .} and integers Z = {0,±1,±2, . . .}.

2 Augmented down-up algebras
Our conventions for the paper are as follows. An algebra is meant to be associative and
have a 1. A subalgebra has the same 1 as the parent algebra. Let F denote a field. Let
λ denote an indeterminate. Let F[λ, λ−1] denote the F-algebra of Laurent polynomials in
λ that have all coefficients in F. Pick ψ ∈ F[λ, λ−1] and write ψ =

∑
i∈Z αiλ

i. By the
support of ψ we mean the set {i ∈ Z|αi 6= 0}. This set is finite.

Fix distinct s, t ∈ Z. Define

F[λ, λ−1]s,t = Span{λi|i ∈ Z, i 6= s, i 6= t}.
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Note that

F[λ, λ−1] = F[λ, λ−1]s,t + Fλs + Fλt (direct sum).

For ψ ∈ F[λ, λ−1] the following are equivalent: (i) ψ ∈ F[λ, λ−1]s,t; (ii) the integers s, t
are not in the support of ψ.

Fix a nonzero q ∈ F that is not a root of unity.

Definition 2.1. For ϕ ∈ F[λ, λ−1]s,t the F-algebra A = Aq(s, t, ϕ) has generators e, f,
k±1 and relations

kk−1 = 1, k−1k = 1,

ke = q2ek, kf = q−2fk,

e2f − (q−2s + q−2t)efe+ q−2s−2tfe2 = eϕ(k), (2.1)
ef2 − (q−2s + q−2t)fef + q−2s−2tf2e = ϕ(k)f. (2.2)

Remark 2.2. Referring to Definition 2.1, consider the special case in which ϕ ∈ F. Then
the relations (2.1), (2.2) become the defining relations for the down-up algebra A(q−2s +
q−2t,−q−2s−2t, ϕ).

Definition 2.3. For φ ∈ F[λ, λ−1]s,t the F-algebra B = Bq(s, t, φ) has generators Cs, Ct,
E, F , K±1 and relations

Cs, Ct are central,
KK−1 = 1, K−1K = 1,

KE = q2EK, KF = q−2FK,

FE = Csq
sKs + Ctq

tKt + φ(qK), (2.3)
EF = Csq

−sKs + Ctq
−tKt + φ(q−1K). (2.4)

Next we describe how the algebras in Definition 2.1 and Definition 2.3 are related.

Definition 2.4. We define an F-linear map F[λ, λ−1] → F[λ, λ−1], ψ 7→ ψs,t as follows.
For ψ ∈ F[λ, λ−1],

ψs,t(λ) = ψ(q−1λ)− (q−2s + q−2t)ψ(qλ) + q−2s−2tψ(q3λ).

Recall the basis {λi}i∈Z for F[λ, λ−1].

Lemma 2.5. Consider the map ψ 7→ ψs,t from Definition 2.4. For i ∈ Z the vector λi is an
eigenvector for the map. The corresponding eigenvalue is q3i(q−2i − q−2s)(q−2i − q−2t).
This eigenvalue is zero if and only if i ∈ {s, t}.

Proof. Use Definition 2.4.

The following two lemmas are routine consequences of Lemma 2.5.

Lemma 2.6. For the map ψ 7→ ψs,t from Definition 2.4 the image is F[λ, λ−1]s,t and the
kernel is Fλs + Fλt.
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Lemma 2.7. For the map ψ 7→ ψs,t from Definition 2.4 the restriction to F[λ, λ−1]s,t is
invertible.

Let ϕ, φ ∈ F[λ, λ−1]s,t such that ϕ = φs,t. We are going to show that the algebras
Aq(s, t, ϕ) and Bq(s, t, φ) are isomorphic.

Lemma 2.8. For φ ∈ F[λ, λ−1]s,t the following hold in Bq(s, t, φ):

Cs =
q−tFE − qtEF + qtφ(q−1K)− q−tφ(qK)

qs−t − qt−s
K−s, (2.5)

Ct =
q−sFE − qsEF + qsφ(q−1K)− q−sφ(qK)

qt−s − qs−t
K−t. (2.6)

Moreover the algebra Bq(s, t, φ) is generated by E,F,K±1.

Proof. We first verify (2.5). In the expression on the right in (2.5), eliminate FE and EF
using (2.3) and (2.4). After a routine simplification (2.5) is verified. The equation (2.6) is
similarly verified. The last assertion follows from (2.5), (2.6).

Lemma 2.9. For φ ∈ F[λ, λ−1]s,t the following hold in Bq(s, t, φ):

E2F − (q−2s + q−2t)EFE + q−2s−2tFE2 = Eϕ(K), (2.7)
EF 2 − (q−2s + q−2t)FEF + q−2s−2tF 2E = ϕ(K)F. (2.8)

In the above lines ϕ = φs,t.

Proof. We first verify (2.7). In the expression on the left in (2.7), view E2F = E(EF ),
EFE = E(FE), FE2 = (FE)E and eliminate each parenthetical expression using (2.3)
and (2.4). Simplify the result using KE = q2EK along with ϕ = φs,t and Definition 2.4.
The equation (2.7) is now verified. The equation (2.8) is similarly verified.

The following definition is motivated by Lemma 2.8.

Definition 2.10. For ϕ ∈ F[λ, λ−1]s,t let cs, ct denote the following elements in Aq(s, t,
ϕ):

cs =
q−tfe− qtef + qtφ(q−1k)− q−tφ(qk)

qs−t − qt−s
k−s, (2.9)

ct =
q−sfe− qsef + qsφ(q−1k)− q−sφ(qk)

qt−s − qs−t
k−t. (2.10)

In the above lines φ denotes the unique element in F[λ, λ−1]s,t such that ϕ = φs,t.

Lemma 2.11. With the notation and assumptions of Definition 2.10, the elements cs, ct are
central in Aq(s, t, ϕ). Moreover

fe = csq
sks + ctq

tkt + φ(qk), (2.11)
ef = csq

−sks + ctq
−tkt + φ(q−1k). (2.12)
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Proof. We first show that cs is central in Aq(s, t, ϕ). To do this we show cse = ecs,
csf = fcs, csk = kcs. To verify these equations, eliminate each occurrence of cs using
(2.9), and simplify the result using the relations in Definition 2.1. We have shown that cs is
central in Aq(s, t, ϕ). One similarly shows that ct is central in Aq(s, t, ϕ). We now verify
(2.11). In the expression on the right in (2.11), eliminate cs, ct using (2.9), (2.10). After a
routine simplification (2.11) is verified. The equation (2.12) is similarly verified.

Theorem 2.12. Given ϕ, φ ∈ F[λ, λ−1]s,t such that ϕ = φs,t. Then there exists an F-
algebra isomorphism Aq(s, t, ϕ)→ Bq(s, t, φ) that sends

e 7→ E, f 7→ F, k±1 7→ K±1.

The inverse isomorphism sends

Cs 7→ cs, Ct 7→ ct, E 7→ e, F 7→ f, K±1 7→ k±1

where cs, ct are from Definition 2.10.

Proof. Combine Lemmas 2.8, 2.9, 2.11.

Definition 2.13. By an augmented down-up algebra we mean an algebra Aq(s, t, ϕ) from
Definition 2.1 or an algebra Bq(s, t, φ) from Definition 2.3.

Consider the algebra B = Bq(s, t, φ) from Definition 2.3. In Section 3 we are going to
show that the elements Cs, Ct generate the center Z(B), and that Z(B) is isomorphic to
a polynomial algebra in two variables. Because of this and following [6, p. 27], it seems
appropriate to call Cs, Ct the Casimir elements for Bq(s, t, φ).

3 A Z-grading and linear basis for Bq(s, t, φ)

Recall the algebra B = Bq(s, t, φ) from Definition 2.3. In this section we display a Z-
grading for B. We also display a basis for the F-vector space B.

LetA denote an F-algebra. By a Z-grading ofA we mean a sequence {An}n∈Z consisting
of subspaces of A such that

A =
∑
n∈Z
An (direct sum),

and AmAn ⊆ Am+n for all m,n ∈ Z. Let {An}n∈Z denote a Z-grading of A. For n ∈ Z
we call An the n-homogeneous component of A. We refer to n as the degree of An. An
element of A is said to be homogeneous of degree n whenever it is contained in An.

Theorem 3.1. The algebra B has a Z-grading {Bn}n∈Z with the following properties:

(i) The F-vector space B0 has a basis

KhCisC
j
t h ∈ Z, i, j ∈ N. (3.1)

(ii) For n ≥ 1, the F-vector space Bn has a basis

FnKhCisC
j
t h ∈ Z, i, j ∈ N. (3.2)
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(iii) For n ≥ 1, the F-vector space B−n has a basis

EnKhCisC
j
t h ∈ Z, i, j ∈ N. (3.3)

Moreover the union of (3.1)–(3.3) is a basis for the F-vector space B.

Proof. Routinely applying the Bergman diamond lemma [3, Theorem 1.2] one finds that
the union of (3.1)–(3.3) is a basis for the F-vector space B. Let B0 denote the subspace
of B spanned by (3.1). For n ≥ 1 let Bn and B−n denote the subspaces of B spanned by
(3.2) and (3.3), respectively. We show that {Bn}n∈Z is a Z-grading of B. By construction
the sum B =

∑
n∈Z Bn is direct. By construction and since Cs, Ct are central we have

CsBn ⊆ Bn and CtBn ⊆ Bn for n ∈ Z. Using KE = q2EK and KF = q−2FK we find
K±1Bn ⊆ Bn for n ∈ Z. Using (2.3) and (2.4) we find EBn ⊆ Bn−1 and FBn ⊆ Bn+1

for n ∈ Z. By these comments and the construction we see that BmBn ⊆ Bm+n for all
m,n ∈ Z. Therefore {Bn}∈Z is a Z-grading of B. The result follows.

We emphasize a few points from Theorem 3.1.

Corollary 3.2. With respect to the above Z-grading of B, the generatorsCs, Ct, E, F,K±1

are homogeneous with the following degrees:

v Cs Ct E F K±1

degree of v 0 0 −1 1 0

Corollary 3.3. The homogeneous component B0 is the subalgebra of B generated by
Cs, Ct,K

±1. The algebra B0 is commutative.

Let {λi}2i=0 denote mutually commuting indeterminates.

Corollary 3.4. There exists an F-algebra isomorphism B0 → F[λ±10 , λ1, λ2] that sends

K±1 7→ λ±10 , Cs 7→ λ1, Ct 7→ λ2.

The Z-grading {Bn}n∈Z has the following interpretation.

Lemma 3.5. Consider the F-linear map B → B, ξ 7→ K−1ξK. For n ∈ Z the n-
homogeneous component Bn is an eigenspace of this map. The corresponding eigenvalue
is q2n.

Proof. Use the basis for Bn given in Theorem 3.1, along with the relations KE = q2EK
and KF = q−2FK.

Corollary 3.6. The homogeneous component B0 consists of the elements in B that commute
with K.

Proof. Immediate from Lemma 3.5.
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4 The center of Bq(s, t, φ)

Recall the algebra B = Bq(s, t, φ) from Definition 2.3. In this section we describe the
center Z(B).

Theorem 4.1. The following is a basis for the F-vector space Z(B):

CisC
j
t i, j ∈ N. (4.1)

Proof. By Theorem 3.1 the elements (4.1) are linearly independent over F, so they form
a basis for a subspace of B which we denote by Z ′. We show Z ′ = Z(B). The elements
Cs, Ct are central in B so Z ′ ⊆ Z(B). To obtain the reverse inclusion, pick ξ ∈ Z(B).
The element ξ commutes with K, so ξ ∈ B0 by Corollary 3.6. Recall the basis (3.1) for
B0. Writing ξ in this basis, we find ξ =

∑
h∈ZK

hξh where ξh ∈ Z ′ for h ∈ Z. Using
KE = q2EK and ξE = Eξ we obtain 0 = E

∑
h∈ZK

hξh(q2h − 1). Combining this
with Theorem 3.1 we find ξh = 0 for all nonzero h ∈ Z. Therefore ξ = ξ0 ∈ Z ′. We have
shown Z ′ = Z(B) and the result follows.

Corollary 4.2. There exists an F-algebra isomorphism Z(B)→ F[λ1, λ2] that sends

Cs 7→ λ1, Ct 7→ λ2.

5 Uniform posets
Recall the algebras Aq(s, t, ϕ) from Definition 2.1. In this section we discuss how these
algebras are related to the uniform posets [10].

Throughout this section we assume that F is the complex number field C. Let P denote a
finite ranked poset with fibers {Pi}Ni=0 [10, p. 194]. Let CP denote the vector space over
C with basis P . Let End(CP ) denote the C-algebra consisting of all C-linear maps from
CP to CP . We now define three elements in End(CP ) called the lowering, raising, and
q-rank operators. For x ∈ P , the lowering operator sends x to the sum of the elements in
P that are covered by x. The raising operator sends x to the sum of the elements in P that
cover x. The q-rank operator sends x to qN−2ix where x ∈ Pi.

In [10] we introduced a class of finite ranked posets said to be uniform. We refer the reader
to that article for a detailed description of these posets. See also [2, p. 306] and [9], [11].
In [10, Section 3] we gave eleven examples of uniform posets. We are going to show
that six of these examples give an Aq(s, t, ϕ)-module. These six examples are listed in
the first six rows of the table below. The remaining row of the table contains an example
Polartopb (N, ε) which is defined as follows. Start with the poset Polarb(N, ε) which we
denote by P . Using P we define an undirected graph Γ as follows. The vertex set of Γ
consists of the top fiber PN of P . Vertices y, z ∈ PN are adjacent in Γ whenever they are
distinct and cover a common element of P . The graph Γ is often called a dual polar graph
[4, p. 274], [12, Section 16]. Fix a vertex x ∈ PN . Using x we define a partial order ≤
on PN as follows. For y, z ∈ PN let y ≤ z whenever ∂(x, y) + ∂(y, z) = ∂(x, z), where
∂ denotes path-length distance in Γ. We have turned PN into a poset. We call this poset
Polartopb (N, ε). Using [12, Proposition 26.4] one checks that Polartopb (N, ε) is uniform.

Theorem 5.1. In each row of the table below we give an example of a uniform poset P .
For each example we display integers s < t and a Laurent polynomial ϕ ∈ F[λ, λ−1]s,t.
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In each case the vector space CP becomes an Aq(s, t, ϕ)-module such that the generator
e (resp. f ) (resp. k) acts on CP as the lowering (resp. raising) (resp. q-rank) operator for
P . For convenience, for each example we display the element φ ∈ F[λ, λ−1]s,t such that
ϕ = φs,t.

example s t ϕ φ

Polarb(N, ε) 0 1 −(q + q−1)(q2N+1+2ελ2 + qN−3λ−1) − q
2N+2ελ2+qN−1λ−1

(q−q−1)2

Ab(N,M) −1 0 −(q + q−1)qN+2M+1λ − q
N+2M−1

(q−q−1)2 λ

Altb(N) −2 −1 −(q + q−1)q2N+1 − q2N−2

(q−q−1)2

Herq(N) −2 −1 −(q + q−1)q2N+2 − q2N−1

(q−q−1)2

Quadb(N) −2 −1 −(q + q−1)q2N+3 − q2N

(q−q−1)2

Hemb(N) −2 −1 −(q + q−1)q2N+1 − q2N−2

(q−q−1)2

Polartopb (N, ε) −2 −1 −(q + q−1)q2N+3+2ε − q2N+2ε

(q−q−1)2

In the above table b = q2.

Proof. For each example except the last, our assertions follow routinely from [10, The-
orem 3.2]. For the last example Polartopb (N, ε) our assertions follow from [12, Theo-
rem 1.10]. Note that the parameter denoted ε in [12, Theorem 1.10] is one more than the
parameter denoted ε in [10, p. 201].

6 Acknowledgement
The main inspiration for the ADU algebra concept comes from the second author’s thesis
[12] concerning the uniform poset Polartopb (N, ε). To be more precise, it was his discovery
of two central elements that he called C1, C2 [12, Section 28] that suggested to us how to
define an ADU algebra.
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Abstract

In connection with the publication of the catalogue [7] of known simplicial arrange-
ments of lines in the real projective plane, and the note [8] about small simplicial arrange-
ments of pseudolines, several developments of these topics deserve to be mentioned. The
present paper puts these results in perspective, and provides appropriate illustrations.

Keywords: Simplicial arrangement.
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1 Simplicial arrangements of pseudolines
Very significant new results on simplicial arrangements of pseudolines are contained in the
publications [1] by L. W. Berman and [3] by M. Cuntz. We recall that an arrangement of
pseudolines is a family of simple curves in the real projective plane such that each differs
from a straight line in a finite part only, and every two have a single point in common at
which they cross transversally. Throughout, we model or interpret the real projective plane
as the extended Euclidean plane, with added points “at infinity” and the line “at infinity”
(indicated by∞ if included in a diagram) consisting of all the points at infinity.

Developing an idea of Eppstein [4], Berman described a method of construction of
simplicial arrangements of pseudolines that has a very general applicability; moreover, it
is very easily adapted for investigation of linear simplicial arrangements (that is, consisting
of straight lines). To explain this approach, we start with the case of linear arrangements.
(It needs to be noted that our explanation differs somewhat from Berman’s; we shall return
to this later on.) Starting with the lines of mirror symmetry of a regular k-gon (k ≥ 2)
centered at the origin, we select one of the 2k wedges (angular regions) determined by a
pair of adjacent rays formed by these k lines. Considering these rays as mirrors, we shine a
(laser) ray (or several such rays) into the wedge, and let it (them) reflect on the two mirrors
according to the laws of reflection; this generates a beam (or several beams). As is easily
seen be elementary considerations, the laser ray will reflect only a finite number of times,
and the final fate of each beam will be one of the following:

E-mail address: grunbaum@math.washington.edu (Branko Grünbaum)

Copyright c© 2013 DMFA Slovenije
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(i) The final segment will be perpendicular to one of the reflecting rays; this includes
what can be considered a limiting case, where the starting laser ray is aimed at the
origin; in particular, it includes the case where the mirrors are part of the arrange-
ment.

(ii) The last part of the beam will be a ray shooting out of the wedge. In this case there
are two distinct portions of the beam — the incoming part and the outgoing part.
Each of these parts is simple (has no selfintersections) but the two parts may have
intersections. Such beams are called two-ended.

In case of pseudoline arrangements, the same conditions are assumed, except that:

• The reflections on the mirrors do not follow rules of optics but are simply endpoints
of pairs of segments or rays;

• Each segment or ray may be a pseudosegment or pseudoray (the purple line in Fig-
ure 1 is an example);

• The orthogonality in (i) is waived, and each of the two parts in (ii) is assumed to be
simple. See examples in Figures 1, 2, 3 and 4.

In any case, if the beam(s) satisfy some additional conditions, as detailed in [1], repeated
reflection in the 2k rays yields a linear or pseudoline simplicial arrangement. We call these
kaleido arrangements, to distinguish them from more general simplicial arrangements. Ex-
amples of the latter kind (non-kaleido) are A(14, 3), A(16, 7), and others, in the notation
of [7], as well as the linear arrangement in Figure 7.

In Berman’s paper [1], only beams satisfying (i) or its modification for pseudolines are
accepted. Detailed discussion of the conditions that lead to linear simplicial arrangements
(and of their pseudoline analogs) is presented in [1] for up to three beams other than the
mirrors. It may be assumed that analogous investigations may determine conditions under
which beams as defined here lead to simplicial arrangements, but I have not determined
these conditions.

The main reason for introducing condition (ii) in the definition of kaleido arrangements
is that it leads to the following result:

Theorem 1.1. Each simplicial arrangement, with k-fold dihedral symmetry such that all
mirrors are lines of the arrangement, is a kaleido arrangement.

The theorem is valid equally for linear arrangements and for pseudoline arrangements.

Proof. Let all the beams be marked as far as possible, starting with the incoming rays; the
claim is that there are no unmarked segments (of straight or pseudolines) or rays. If any
such segment were present, its continuation by reflection in the mirrors would have to close
on itself, which is impossible.

In [3], Cuntz first enumerates simplicial arrangements of at most 27 pseudolines, and
then investigates their stretchability, that is, the isomorphism to linear arrangements. The
bound 27 is due to limitations of the computing power available, but even with this bound
several notable results are obtained and several conjectures of the present writer are re-
solved.
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Figure 1: The simplicial pseudoline arrangement B1(15) (adapted from [7]) is a kaleido
arrangement with k = 2 and seven beams, one of which (red) is two-ended. The blue beam
and the black ones are aimed at the origin, the purple one is a pseudoray, and the green and
yellow ones are rays ending at mirrors. The mirrors are heavily drawn black lines.

The enumeration of simplicial arrangements of pseudolines in [3] shows that all sim-
plicial arrangements with at most 14 pseudolines are stretchable, thus confirming a con-
jecture made in [8]. The computer-assisted enumeration in [3] uses “wiring diagrams”
introduced Goodman in [5], and elaborated in Goodman and Pollack [6] and other publica-
tions, together with innovative arguments to reduce the computational effort. The results,
in particular, disprove another conjecture in [8]: Namely, that there is a single unstretchable
simplicial arrangement of 15 pseudolines and four of 16 pseudolines. In the paper [3] Cuntz
establishes that there are precisely two such arrangements with 15, and precisely seven with
16 pseudolines. The second 15-pseudoline arrangement is shown in Figures 7 and 8 in two
forms. Figure 7 shows a “wiring diagram” of this pseudoline arrangement, modified from
Figure 2 of [3]. The presentation in Figure 8 exhibits the 3-fold rotational symmetry of this
arrangement in the extended Euclidean model of the real projective plane. The colors of
the lines, and the labels, establish the isomorphism between the two diagrams in Figures 7
and 8. As no pseudolines in this example are mapped onto themselves by reflection, this is
not a kaleido arrangement.

2 Simplicial arrangements of straight lines
Another result of [3] is the discovery of four new simplicial arrangements of (straight lines.
A short review of the historical background seems appropriate to explain the significance
of Cuntz’s results.

The first introduction of the concept of simplicial arrangements of lines occurred in a
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Figure 2: A kaleido simplicial arrangement B2(16) of 16 pseudolines, with k = 3 and with
five beams, one of which (red) is two-ended.

paper by Melchior [11] in 1941, but the paper did not seem to have any immediate effect.
Close to thirty years later, the fact that Melchior found only few such arrangements piqued
my curiosity. Over time, I found that there are three infinite families of simplicial arrange-
ments, and a large number of nonsystematic, “sporadic” ones. Details were published in [9]
in 1971; however, the presentation there was very concise, and not “user friendly”. More
recently, a more detailed version was published [7]. Ninety sporadic arrangements were
shown in [9], and this number remained unchanged in [7] although one arrangement was a
duplicate and was deleted, and a new one was found. The presentation in [7] seems to have
attracted more attention; one of the results was the paper by Cuntz [3].

In this paper Cuntz disproves the present author’s longstanding conjecture, first stated
in [9] in 1971 and repeated in other publications, notably in [7], that the list of 90 sporadic
simplicial arrangements is complete. Cuntz found that the catalog [7] is complete regarding
simplicial arrangements with up to 27 lines, except for one missing arrangement for each
of 22, 23, 24, and 25 lines. These arrangements, missed in [7], form a “family” in the
sense that the one with the largest number of lines (25) leads to the other three by omitting
1, 2, or 3 lines. A version of this arrangement, denoted A(25, 8) by Cuntz, is shown in
Figure 9. This presentation is geometrically more symmetric than the one in Figure 1 of
[3]. The lines that may be omitted are shown heavily drawn, and it is obvious that they play
the same role in the arrangement. Therefore only a single additional arrangement arises on
omitting 1, 2, or 3 of them.

As a consequence, there are now 94 known sporadic simplicial arrangements of lines.
As a further consequence, it is now more open to question whether there exist additional
such arrangements with 28 or more lines? An inspection of the twenty known such ar-



B. Grünbaum: Simplicial arrangements revisited 423

 

  

Figure 3: A kaleido simplicial pseudoline arrangement B(22), with k = 3 and with six
beams, two of which are two-ended. It is the arrangement shown in Figure 22 of [1]

rangements (depicted in [7]) shows clearly that the experimental discovery becomes very
complicated with this range of the number of lines. Hence there is a real possibility that
some of these arrangements have not been found so far. It would seem very desirable —
but challenging — to find ways of ascertaining the completeness of the list in [7] of such
arrangements augmented by the four Cuntz arrangements, or the lack of it.

3 Additional remarks on simplicial arrangement of lines and pseudo-
lines

It is not clear how to decide from the combinatorial (or topological) description of a sim-
plicial arrangement of pseudolines what is the minimal number of non-straight ones. Nor
is it obvious how that number depends on the order of the automorphism group of the ar-
rangement. Another question is whether it is possible to have different numbers of beams
for the same arrangement; this possibility arises since the reflections are not strictly optical
ones.

A still different question is what are the restrictions on k, the number of single-ended,
and the number of two-ended beams. In particular, for a given number d of two-ended
beams, what is the minimal number s of single-ended ones – for linear arrangements, and
for pseudoline ones. Figure 3 shows that with k = 3, and d = 2, as few as b = 4
single-ended beams are possible; the new arrangement A(22, 5) shows the same for a linear
arrangement. As another example we have in Figure 11 a linear arrangement A(15, 1) with
three two-ended beams and two single-ended beams.

As shown by examples, a (linear) kaleido arrangement may have isomorphic realiza-
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Figure 4: The simplicial linear kaleido arrangement A(25, 5), in the notation of [7], with
k = 8 and with four beams (two black, one red and one green). It is isomorphic to the
second (pseudoline) arrangement in Figure 11 of [1]. Without the line at infinity it is the
arrangement A(24, 2) of [6]. With the eight additional pseudolines (only one shown, in
gray) generated by the gray beam it is a simplicial kaleido arrangement with 33 pseudolines.
It should be noted that the mirrors of a kaleido arrangement need not be parts of lines of
the arrangement. Examples of kaleido arrangements with such “virtual” mirrors are shown
in Figures 5 and 6.

tions with different geometric symmetry groups. The arrangement A(6, 1) shown in Fig-
ure 12 provides an example.

4 Additional remarks on simplicial arrangement of lines and pseudo-
lines

While it is not hard to show that the simplicial pseudoline arrangements shown in the above
figures are not stretchable, it is not clear to what extent they fail to be stretchable. More
precisely, at least how many non-straight pseudolines have to be used in every diagram of
these arrangements? In Figure 1 there are two such pseudolines, in Figure 2 there are three,
and in Figure 6 there are six. In all these cases this seems to be the minimal number of non-
straight pseudolines. The four non-stretchable simplicial arrangements of 16 pseudolines
described in Figures 5 and 6 of [8] have at least 2, 3, 3, resp. 1 non-straight pseudolines.
According to a private communication by Prof. Cuntz, the four non-stretchable simplicial
arrangements of 16 pseudolines described in Figures 5 and 6 of [7] have 2, 1, 1, resp. 1 non-
straight pseudolines; also, the three new non-stretchable arrangements of 16 pseudolines
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∞ 

Figure 5: The simplicial linear kaleido arrangement A(7, 1), with k = 3 and two beams,
reflected on two virtual mirrors.

mentioned in [3] but not described there, have each at least 2 non-straight pseudolines.
It is not clear how to decide from the combinatorial (or topological) description of a

simplicial arrangement of pseudolines what is the minimal number of non-straight ones.
Nor is it obvious how that number depends on the order of the automorphism group of the
arrangement.

The pseudoline arrangement B2(15) of 15 pseudolines is listed in Table 3 of 2] as
having 6-fold cyclic symmetry. This seems hard to reconcile with Figure 8 above.

There is a regrettable error in the catalog [7]. The arrangement shown there on page
14 and labeled A(16, 7) is, in fact, isomorphic with the arrangement A(16, 5) shown just
above it. A correct diagram of A(16, 7) is shown in Figure 13.

Simplicial arrangements of (straight) lines lead to a number of other problems. Not only
is the question of the completeness of the list in [6], as augmented in [3], debatable — but
it is conceivable that there are infinitely many arrangements missing. In fact, there seems
to be no known family of lines in the plane that could not be imbedded into a simplicial
arrangement of lines, or at least of pseudolines.

Even the belief that there are no additional infinite families of simplicial arrangements
of lines beyond the three families described in [9] and [7], has no credible supporting evi-
dence. On the other hand, it could be argued that the available facts concerning simplicial
pseudoline arrangements make the existence of additional infinite families of straight-line
simplicial arrangements more believable.

Here are these facts. Already in [10, p.51] it is mentioned that there are at least seven
infinite families of simplicial pseudoline arrangements. But this was rendered insignifi-
cant through the work of Berman. In [1] Berman described constructions of many infinite
families of simplicial arrangements of pseudolines, based on reflecting kaleidoscopically
suitable zigzags in an angle. It may well be that some of these lead to linear arrangements.

The difference between the definition of kaleido arrangements used here, and the one
proposed by Berman is not as large as might be thought. In most cases one could replace
one two-ended beam by two single-ended ones by accepting that the end-segment does not
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Figure 6: The simplicial linear kaleido arrangement A(15, 2), with k = 4 and three beams,
one of which is a mirror; one mirror is a virtual mirror.

meet the mirror perpendicularly. On the other hand, our definition of kaleido arrangements
could be extended to arrangements that are not simplicial. There seems to be no interesting
information available about such more general arrangements, but the concept may well be
worth investigating.

Finally, another result of Cuntz and collaborators should be mentioned. They investi-
gated a particular class of linear simplicial arrangements called “crystallographic arrange-
ments”; their definition is too involved to be repeated here and readers are referred to [2]
and the references given there. In contrast to the uncertainties discussed above, this class
has the notable property that its members have been completely determined and classified.
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Figure 7: A wiring diagram of the new simplicial arrangement B2(15) of 15 pseudolines
found by Cuntz. Adapted from Figure 2 of [3].
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Figure 8: A presentation of the simplicial arrangement B2(15) of 15 pseudolines in the
extended Euclidean model of the real projective plane. The colors and labels of the pseu-
dolines correspond to those in Figure 7.
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Figure 9: A version of the linear simplicial arrangement denoted A(25, 8) by Cuntz [3].
Any number of the three heavily drawn lines can be deleted, resulting in the simplicial
arrangements labeled A(22, 5), A(23, 2), and A(24, 4) in [3].



430 Ars Math. Contemp. 6 (2013) 419–433

 

  

Figure 10: Cuntz’s A(25, 8) simplicial arrangement of lines is a kaleido arrangement with
k = 3; it has two two-ended beams (red and green), and five other beams.
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Figure 11: The linear simplicial kaleido arrangement A(15, 1) with k = 2 has five beams,
three of which are two-ended.

 

  

Figure 12: Isomorphic realizations with different symmetries.
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Figure 13: A correct diagram of the simplicial arrangement A(16, 7); the diagram shown
in [7] and labeled A(16, 7) is not correct.
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27–35.

[6] J. E. Goodman and R. Pollack, Semispaces of configurations, cell complexes of arrangements.
J. Comb. Theory A 37(1984), 257 293.
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natorial identities; and more. Together with Doron Zeil-
berger, he was awarded the 1998 Leroy P. Steele Prize of
the AMS for a Seminal Contribution to Research. With
Donald Knuth he founded Journal of Algorithms in 1980;
served as Editor of The American Mathematical Monthly
1987–1991; founded The Electronic Journal of Combina-
torics with Neil Calkin in 1994, and served as its Editor-
In-Chief until 2001. Besides over 160 journal papers, he
published several well-known books, such as: Mathemat-
ics for the Physical Sciences in 1962; Combinatorial Algorithms with Albert Nijenhuis in
1975; Algorithms and Complexity in 1986; generatingfunctionology in 1990; and A = B
with Doron Zeilberger and Marko Petkovšek in 1996. All of these he made freely avail-
able for downloading from his web page. Together with his loving wife Ruth Tumen Wilf,
he visited Slovenia twice: in June 1995, he participated at the 3rd Slovenian International
Graph Theory Conference at Lake Bled; and in June 2010, at the Symbolic Computation
and its Applications Conference in Maribor. His next-but-last paper (with Vittorio Addona
and Stan Wagon) appeared in Ars Mathematica Contemporanea in 2011.
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