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Research in privacy-preserving data publishing has revealed the necessity of accounting for an adversary’s
background knowledge when reasoning about the protection afforded by various anonymization schemes.
Most existing work models the background knowledge of one individual adversary or privacy attacker, or
makes a worst-case assumption that attackers will act as one: colluding through sharing of background
information. We propose a framework for modeling multiple attackers with heterogeneous background
knowledge, supporting analysis of their strategic incentives for sharing information prior to attack. The
framework posits a decentralized mechanism by which agents decide whether and how much information
to share, and defines a normal-form game representing their strategic choice setting. Through a simple
example, we show that the efficacy of database generalization operations depends on the information-
sharing strategies adopted by the attackers. Through analysis of the underlying game model, a database
publisher can adopt a generalization level geared to the level of sharing expected among rational attackers.

Povzetek: Predstavljen je model napadov na privatnost s heterogenim ozadjem.

1 Introduction

Many organizations publish non-aggregate personal data,
for research purposes including social science, public
health, and marketing. At the same time, high-profile in-
cidents have underscored the importance of taking steps to
protect individual privacy. In one compelling demonstra-
tion, Sweeney (17) showed that by cross-referencing a pub-
lic voter registration list and a published database of health
insurance information, using the combination of birth date,
gender, and zip code attributes, an attacker could locate the
medical record of the Governor of Massachusetts.

Over the past several years, research in data privacy has
sought to provide tools to guard against identity disclosure
and attribute disclosure under this so-called record linkage
attack model, while preserving the utility of the resulting
data. Informally, identity disclosure refers to the ability
of an attacker to locate a target individual in the published
data, and attribute disclosure refers to the attacker’s ability
to determine the value of some sensitive attribute associ-
ated with a target individual.

One of the principal approaches employed for this pur-
pose is generalization, which is best illustrated with a sim-
ple example. Consider the input data set shown in Fig-
ure 1(a), and consider an attacker who is interested in learn-
ing information about Alan. Suppose that the attacker al-
ready knows Alan’s age, gender, and zip code. Even if
the name identifiers are removed from the published data
set, the attacker can identify Alan’s record (assuming that
Alan is included) using this combination of attributes (com-

monly called quasi-identifiers). In the generalized data set
of Figure 1(b), however, attribute values are abstracted into
coarser-grained equivalence classes. In this instance, the
attacker cannot tell which of the first two records is Alan’s.
Thus, the attacker is also unable to determine whether
Alan’s disease is AIDS or flu.

In addition to quasi-identifier information, it is also com-
mon for an attacker to have access to other instance-level
background knowledge. In our simple example, suppose
that, in addition to Alan’s age, gender, and zip code, the
attacker also knows that Alan does not have the flu. Using
this additional knowledge, in combination with the gener-
alized database, the attacker can determine that Alan has
AIDS.

Recent work has proposed incorporating an attacker’s
background knowledge into the data publication scheme,
adopting worst case assumptions (3; 15). This is motivated
by the practical difficulty for the person deciding what in-
formation to publish (the database publisher) of modeling
the exact information available to an attacker (e.g., “Alan
does not have flu”). Further, there may be multiple at-
tackers, each with different background knowledge. Thus,
these protocols instead seek to publish generalized data sets
that are robust to a certain amount of structured background
knowledge of a certain form, in the worst case, regardless
of the specific content of the knowledge.

This perspective also provides an understandable and ob-
jective measure of privacy for the published database—the
number of “pieces” of background knowledge that are nec-
essary in order to breach it. However, the database pub-
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Name Age Gender Zipcode Disease
Alan 20 M 12345 AIDS
Bob 24 M 12344 flu

Carol 32 F 12455 flu
Dana 35 F 12411 cancer
Erin 30 F 12455 AIDS

(a) Original data set

Age Gender Zipcode Disease
(Alan) 2* M 1234* AIDS
(Bob) 2* M 1234* flu

(Carol) 3* F 124** flu
(Dana) 3* F 124** cancer
(Erin) 3* F 124** AIDS

(b) Generalized data set

Figure 1: Simple attribute disclosure example

lisher often knows very little about potential attackers, so
even estimating these background knowledge parameters
can be challenging. (This problem is analogous to the task
of setting parameter k in k-anonymity (17), a related data
privacy requirement.)

When considering the quantities of background knowl-
edge available to an individual attacker, it is helpful for
the database publisher to consider two categories of knowl-
edge. First, there are some background facts that are known
individually to the attacker. However, the attacker may ob-
tain additional information by colluding (sharing informa-
tion) with other attackers. At one extreme, the database
publisher might optimistically assume that the attackers do
not share information, in which case the amount of infor-
mation available to any particular attacker is relatively low.
At the opposite pessimistic extreme, the publisher might
assume that attackers share all of their information with one
another; thus each has available the collective information
originally possessed by individual attackers.

The purpose of this paper is to initiate a study of how
information is shared among strategic attackers, which in-
fluences how a database publisher should select a data set
for publication. In particular, we investigate several possi-
ble scenarios of information sharing, and observe that the
model of information sharing significantly influences the
privacy-preserving data publishing problem.

Paper overview
– We review the idea of generalization-based privacy-

preserving data publishing in Section 3. This section
illustrates in particular the importance of accounting
for attackers’ background knowledge when reasoning
about privacy.

– We present the motivation and observations support-
ing our approach to strategic modeling of data privacy
attacks in Sections 4 and 5.

– Our empirical study in Section 6 illustrates how to
construct and analyze the strategic model as a way of
evaluating a database publisher’s decision about gen-
eralizing and publishing sensitive data.

– This pilot study illustrates how the optimal data gen-
eralization policy depends on the attacker model em-
ployed, and how strategic analysis can inform the pub-
lication decision process.

2 Related work
Recent work has proposed using game theory to model
attacker behavior in a variety of security-related applica-
tions. In network security, Xu and Lee (18) use game the-
ory to model the network of botnet attackers and defend-
ers for analyzing the performance of a proposed defense
system and guiding its design. Kunreuther and Heal (12)
define a generic model of interdependent security games,
where players make individual decisions to invest in secu-
rity measures, but the resultant security risks depend on in-
vestments by all the players. Kearns and Ortiz (9) develop
algorithms tailored to solving such games, and apply them
to a scenario about the airline adoption of baggage screen-
ing technology (8). Perhaps the most prominent example is
the ARMOR system deployed at Los Angeles International
Airport (16), which models security resource scheduling
and terrorist attack decisions as a Stackelberg game. Com-
putational advances in game solving are facilitating the ap-
plication of this approach to increasingly complex models
(10).

A second relevant body of research addresses the prob-
lem of modeling information sharing activities and the
associated incentives and disincentives in these multia-
gent systems. Kleinberg et al. (11) examine different
information-exchange scenarios and measure the partici-
pants’ willingness to share information using solution con-
cepts of the coalition games. Agrawal and Terzi (1) in-
troduce a database-related information sharing scenario, in
which private database owners reveal information to others
in order to improve their query-answer capability.

Economics has become an increasingly important tool
for information security analysis, as attackers have become
increasingly motivated by financial profits over the years
(5). This has led to research relying on the observation that
economic incentives play a significant role in the strategies
of attackers and potential victims. For example, the study
by Grossklags et al. (6) focuses on economic outcomes in
modeling security investment decision-making by potential
victims to protect themselves against malicious Internet at-
tacks.

3 Data generalization background
Consider a data set D that a publisher would like to make
available to the public. The publisher applies some data
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generalization method A to D, obtaining a generalized ver-
sion DA, which it publishes instead of D in order to protect
the privacy of people whose information is contained in the
data set. Figure 1 illustrates an example original data set
and its generalized version. As explained above, despite
generalization, privacy attackers may be able to derive sen-
sitive information from DA if they possess sufficient back-
ground knowledge (3; 15; 14).

We denote by t some target individual whose sensitive
value σt ∈ Σt is of interest to attackers. Chen et al. (3)
propose to classify background knowledge regarding a par-
ticular target t into three categories of facts, represented
by sets L, K, and M . Each fact is a stylized ground ex-
pression. L comprises information about sensitive values
σ′
t 6= σt that target t does not have, for instance “Alan does

not have flu”. K is a set of facts about sensitive values for
other individuals t′ 6= t, for example “Bob has flu”. Facts
in M specify the relationships between t and other individ-
uals, such as “if Erin has AIDS then Alan has AIDS”.

Given this classification, the tuple B = (L,K,M) fully
describes an attacker’s background knowledge and thus in-
directly specifies her ability to successfully breach a pub-
lished data set. We say that DA has been breached if an
attacker can deduce the target’s sensitive value σt.1

For many applications, it may be advantageous to adopt
a more abstract and compact specification of background
knowledge, rather than enumerating it explicitly. Chen
et al. (3) propose a summary representation that replaces
the specific instances with counts of the number of facts
in the respective categories. In this scheme, background
knowledge B = (L,K,M) is summarized by the tuple
of quantities b = (|L|, |K|, |M |). This abstraction relaxes
the requirement to reason about instance-specific knowl-
edge of attackers, and is exponentially more compact. Al-
though it discards instance-specific information, the sum-
mary still enables a designer to reason about the degree of
generalization required to thwart breach of the data set in
the worst case. Given our examination of small examples
in this study, however, we retain the full specification of
background knowledge, B, for the remainder of this paper.

4 Information sharing among
attackers

We examine a network of n attackers who seek to discover
the target individual t’s sensitive value σt in the data set
DA. These attackers may exchange background informa-
tion with one another prior to launching their attacks, in or-
der to improve their prospects for compromising DA. The

1The concept of breach could be treated more generally. Past work has
sought to model an attacker’s uncertainty about sensitive facts (for exam-
ple, using a distribution over possible worlds (3; 15)), and then defined
the idea of breach incorporating this uncertainty. For example, we might
instead say that DA has been breached if an attacker can determine σt

with certainty exceeding some threshold c. However, in the interest of
simplicity, we fix c = 1.

attacker faces a fundamental tradeoff in its incentives for
sharing information:

– Acquiring relevant background facts generally im-
proves the ability of an individual attacker to breach
the target data set, which in turn generates value for
the attacker.

– Revealing relevant information also improves the like-
lihood that other attackers will successfully breach the
data set. As more attackers succeed, the value of the
breached information typically declines for each at-
tacker. For example, the price an attacker could obtain
by selling the sensitive information would decrease to
the extent it is commonly available.

Each attacker i starts with some prior knowledge, Bi =
(Li,Ki,Mi). From the perspective of the database pub-
lisher and other attackers, the background knowledge of
attacker i is uncertain, drawn from some distribution β,
which can be modeled using various approaches (13).

4.1 Information sharing mechanism
We describe a simple mechanism by which the attackers
share information. Although in practice we cannot man-
date the process whereby attackers will coordinate in this
way, defining some specific process is necessary to frame
the strategic environment in which the attackers operate.
The sharing mechanism we assume relies on a principle of
reciprocity to induce mutually beneficial sharing. That is,
one attacker provides information to a neighbor on the at-
tacker network only to the extent that this neighbor pro-
vides information in return. Specifically, the number of
facts in each category transferred between two attackers is
the same in each direction. For simplicity, we also assume
that information exchanged among the attackers is accu-
rate; that is, attackers do not distort information that they
share with others.

The basic decision made by each attacker is which facts
to offer to share. That is, given prior knowledge Bi =
(Li,Ki,Mi), the set of available information-sharing ac-
tions Si for attacker i comprises all si = (sl,i, sk,i, sm,i)
such that sl,i ⊆ Li, sk,i ⊆ Ki, and sm,i ⊆ Mi. Given
the category L sharing offers sl,i and sl,j of two neighbor-
ing attackers, the number of facts shared in that category
is therefore min(|sl,i|, |sl,j |). Category K and M sharing
operates identically. The sharing mechanism thus deter-
mines the quantities of facts to be shared for each pair of
connected attackers, for each category. In each case, when
the number of facts to be shared is fewer than the number
offered by one party, the subset of offered facts actually
transmitted to the other is selected randomly.

4.2 Attacker utility
Our model of attackers’ utility presumes their primary ob-
jective is to discover the target individual’s sensitive infor-
mation. Let rt be the reward obtained from discovering
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(e.g., by selling) the sensitive information σt. The more
attackers who have this piece of information, the less valu-
able it is to each attacker. As a result, the reward each at-
tacker receives decreases with the number of attackers suc-
cessfully compromising the target data set. Specifically, if
there are µ successful attackers, we assume that each at-
tacker who obtains t’s sensitive value receives reward rt

µ2 .
According to this utility function, a successful attacker’s
reward deteriorates faster as µ increases.

Attackers need to make decisions about how much infor-
mation they would like to share with others in order to max-
imize their rewards. Since we consider scenarios with only
one target, without loss of generality we can set rt = 1.

Given a strategy profile (sharing decision for each at-
tacker) s = (s1, . . . , sn), we can calculate the amount of
knowledge each attacker obtains from sharing information.
From this information and the specifications of the general-
ized database and distribution of prior knowledge, we can
evaluate each attacker’s prospects for compromising the
target database, and consequently their expected reward, or
utility. The utility to attacker i playing strategy si when
other agents play their strategies collectively denoted s−i

is given by ui(si, s−i).

Example 1. Consider the scenario specified in Figure
1. Three privacy attackers X, Y, and Z would like to
know Alan’s disease, denoted as Disease[Alan]. X knows
Disease[Alan] 6= cancer and Disease[Dana] = cancer.
Y knows Disease[Bob] = flu and Disease[Carol] = flu.
Z knows if Disease[Erin] = AIDS then Disease[Alan] =
AIDS, and Disease[Erin] 6= cancer. Suppose that X wants
to share Disease[Dana] = cancer and Y wants to share
that Disease[Bob] = flu. After sharing information with
X, Y now knows Disease[Dana] = cancer, in addition to
her initial background knowledge. Y therefore can infer
Disease[Alan] and consequently collect a reward of 1 if
she is the only attacker capable of discovering his disease.
If X, Y, and Z succeed in discovering Disease[Alan], each
would then collect a reward of 1

9 instead.

4.3 Database publisher
In privacy-preserving data publishing, the database pub-
lisher typically strives to strike a balance between protect-
ing individual privacy and maintaining the published data’s
value (minimizing information loss) when choosing her
generalization strategy (3; 15; 14). We incorporate both
information loss and privacy breach risk when computing
the publisher’s utility ud.

We denote by sd the publisher’s strategy for anonymiz-
ing the released data set. Formally, sd fully describes the
resulting generalized data set, which we denote Dsd . Thus
sd can be of different formats, depending on the chosen
generalization method. In our example in Figure 1, the
publisher’s data generalization action that transforms that
original data set to the generalized data set can be fully
specified by sd = (sd,1, . . . , sd,|D|) = (1, 1, 2, 2, 2). In
this particular representation, sd,i = sd,j for i, j ∈ [1, |D|]

indicates that the two records i and j are “generalized" so
that in Dsd they are indistinguishable based on other non-
sensitive attributes.

We first quantify the generalization-induced information
loss of the generalized data set Dsd , given the publisher’s
action sd. For simplicity, out of many previously proposed
measures of information loss, we adopt a variation of the
“discernibility penalty" proposed by Bayardo and Agrawal
(2). For each record e in generalized data set Dsd, we de-
fine the equivalence class π(e,Dsd), which is the set of
records in Dsd that are indistinguishable from e on quasi-
identifier attributes due to generalization. The intuition is to
assign each record a penalty based on the size of its equiv-
alence class. Thus, the information loss is quantified as

il(sd) =
1

ZD

∑

e∈Dsd

|π(e,Dsd)|,

where ZD is the largest information loss possible for any
data set of D’s size, and thus is constant for a fixed-size
data set. This normalization factor allows us to discount the
effect of the data set’s size on our measure of information
loss.

The second factor in the publisher’s utility is the prospect
for data privacy breach. We capture this in a random
variable br , whose probability distribution depends on the
strategies of attackers as well as the publisher. The vari-
able takes value one if the sensitive data is breached, zero
otherwise.

We formulate the publisher’s payoff ud(sd, s) such that
it is normalized on [0,1], decreasing with privacy breach
and information loss. There are many possible ways to in-
tegrate these factors in an overall utility function. The sim-
plest is to linearly combine information loss and privacy
breach, weighted by parameter w:

ud(sd, s) = 1− [w × il(sd) + (1− w)× br(sd, s)]. (1)

4.4 Privacy breach

Suppose that the database publisher chooses action sd,
the attackers’ initial background knowledge is B =
(B1, . . . , Bn), and their strategy profile is s. As de-
scribed in Section 4.1, s determines the attackers’ result-
ing posterior knowledge, collectively denoted as B′ =
(B′

1, . . . , B
′
n). In order to calculate their final reward, we

need estimate the likelihood that each can breach the data
set Dsd given their posterior knowledge B′.

For each attacker i, with posterior knowledge B′
i, we can

reason logically about the sensitive values i can eliminate
when attempting to deduce t’s sensitive value from Dsd .
The payoff ui(s, sd) to this attacker is calculated as de-
scribed previously. Applying this reasoning to all attackers,
we can calculate the number µ that are successful for any
configuration of posterior knowledge among the attackers.
For this configuration, we then conclude br(sd, s) = 1 if
µ > 0 and 0 otherwise.
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Given a distribution β over attackers’ prior background
knowledge B, and a profile of attacker strategies s, we
can further compute a distribution over attackers’ posterior
background knowledge B′. These elements are therefore
sufficient to calculate expected utilities for all agents (pub-
lisher and attackers), using the definitions specified above.

5 Game-theoretic modeling
We model the strategic environment with n privacy attack-
ers plus the database publisher d as a game, employing the
strategy sets and utility functions defined above. The game
plays out in two stages:

1. The database publisher first chooses her action sd and
publishes the data set Dsd .

2. The attackers observe the publisher’s action. They
then choose their actions s, exchange background
knowledge, attack the data set, and collect reward if
they succeed.

Because the publisher moves first, we can characterize
her problem as optimizing the database design, subject to
the outcome of the information-sharing subgame played
among the attackers conditional on this design. We thus
focus on defining and analyzing this attacker subgame.

5.1 Information-sharing subgame
Technically, the information-sharing game among the at-
tackers is a game of incomplete information, with infor-
mation structure defined by the distribution β over prior
background knowledge. Each agent’s strategy in the
incomplete-information game is a mapping from its own
type (assignment of prior knowledge) to a sharing offer.
Here we simplify the model structure by translating to nor-
mal form, explicitly constructing the payoff for every com-
bination of attacker strategies.2

Recall our subgame is conditioned on the publisher’s
action sd selected in the first stage. A given sd and the
distribution β of background facts among privacy attack-
ers defines the expected payoff for any profile of attacker
strategies. We can calculate these payoffs by Monte Carlo
sampling, given a budget of H samples. To estimate the
expected payoff of attacker strategy profile s:

1. Draw a background knowledge configuration B =
(B1, . . . , Bn), according to the distribution β.

2. Calculate the distribution of privacy breach events
given sd, B, and s, based on the sharing mechanism
described in Section 4.1.

3. Tally the expected payoffs ui for each attacker as well
as the expected value of publisher’s privacy breach br
based on the results for this configuration.

2In practice, this will generally entail restrictions on the flexibility of
attacker strategies, particularly in how they are conditioned on the realiza-
tion of prior background knowledge.

4. Repeat steps 1–3 H times.

5. Average over the sampled ui and br values to con-
struct estimated expected values.

We can construct the complete expected payoff matrix
of the game by repeating the above procedure for each at-
tacker strategy profile s and each database publisher’s ac-
tion sd. In practice, we will not be able to do so exhaus-
tively, but instead would focus on a salient subset of strat-
egy combinations and induce a game model that best cap-
tures structure in the payoff function (7)

5.2 Solution concepts

Figure 2: Overview of the strategic model of privacy at-
tackers and database publisher.

Given a subgame form constructed as specified above,
we are interested in identifying the Nash equilibria (NE).

Definition 1. A strategy profile s∗ is a Nash equilibrium
if no unilateral deviation in strategy by any single player
is beneficial for that player given the others’ designated
strategies. That is, ∀i, s′i ∈ Si. ui(s

∗
i , s

∗
−i) ≥ ui(s

′
i, s

∗
−i).

If all agents play pure (non-probabilistic) strategies in
s∗, then s∗ is a pure-strategy NE (PSNE).

Definition 2. Player i’s regret, εi(s), represents the maxi-
mum gain in payoff i can obtain through unilaterally recon-
sidering its own strategy si given others’ strategies s−i.

εi(s) = max
s′i∈Si

ui(s
′
i, s−i)− ui(si, s−i).

A profile’s regret ε(s) is defined as

ε(s) = max
i

εi(s).



156 Informatica 34 (2010) 151–158 Q. Duong et al.

By these definitions, if profile s∗ is an NE, strategy s∗i
is player i’s best response to others’ play s∗−i and therefore
induces zero regret (εi(s∗) = 0). All else equal, profiles
with zero (or small) regret are considered more likely to be
played by rational agents, as high-regret profiles offer some
agent a large incentive to deviate. Thus, a database pub-
lisher may wish to choose a design sd that performs well
when attackers follow equilibrium strategies conditional on
that design. Figure 2 summarizes the game-theoretic mod-
eling and analysis process as applied to our data privacy
attack scenario.

6 Illustrative example and analysis
In this section we present a toy example illustrating
how our game model can be used to analyze a privacy-
preserving publishing scenario.

6.1 Example
The original data set D for our example comprises the
records in Figure 1(a), plus the set of records specified in
Figure 3.

Name Age Gender Zipcode Disease
. . . . . . . . . . . . . . .

David 24 M 13344 heart
Daniel 32 M 13455 allergy
Frank 24 M 12334 AIDS
Grace 40 F 12445 cancer

Heather 45 F 13445 allergy

Figure 3: Additional records appended to Figure 1(a) to
define the original data set D for the example.

There are three attackers (n = 3) in this example who
are interested in identifying Alan’s disease. Moreover, it
is common knowledge that each person’s disease can be
either heart, allergy, AIDS, cancer, or flu. Although this
would never be the case for realistic data sets, our toy ex-
ample is sufficiently small that we can exactly account for
all possible background knowledge instances in all three
categories. In this case, there are four instances of type L,
and nine each of types K and M . We further restrict that
each attacker initially starts with only one instance of each
category, which means |Li| = |Ki| = |Mi| = 1. The dis-
tribution of prior background knowledge β draws a fact in
each category with equal probability for each attacker.

Given this configuration of prior knowledge, an attacker
needs to decide whether or not to share her available fact for
each knowledge category. We assume that attackers make
this decision unconditional on the particular fact drawn for
the respective categories, which results in a total of eight
possible strategies. For example, one possible strategy is to
share one’s L and K facts, but not the M fact.

The database publisher’s strategy sd can be represented
by a ten-element array of equivalence-class indices, follow-

ing the format described in Section 4.4. The strategy spec-
ifies to which class each record belongs as a result of the
publisher’s data generalization method.

Since there are too many possible publisher actions
(168,440 even for this small data set) to evaluate them all,
we identified a select set of ten candidate strategies, spread
out in the design space. We deliberately selected these ten
candidates from a set of more than a hundred designs sam-
pled from the publisher’s strategy space, to ensure that in-
formation loss is spread relatively uniformly over the possi-
ble range. For each design, we constructed the correspond-
ing normal-form information-sharing subgame, using the
procedure detailed in Section 5.1. Our Monte Carlo budget
was H = 5000, a sufficient number of samples to render
negligible the variance in expected payoff calculations for
the attackers.

For each profile of attacker strategies, we record the at-
tacker payoffs as well as the probability of privacy breach.
From this we can calculate database publisher’s utility us-
ing Equation (1). We set the publisher’s tradeoff weight
w = 0.25, implying that the publisher values lowering the
probability of privacy breach by a given increment three
times as much as lowering information loss by that same
increment on the specified scale.

6.2 Empirical results
For each publisher strategy, we evaluate the outcome
achieved under three different assumptions about attack-
ers’ behavior:

Scenario Assumption
No No attackers share any information.
NE Attackers play a PSNE profile.
All All attackers share all information.

The No scenario is a best-case assumption: attackers
are unable or unwilling to share information, for what-
ever reason, thus they attack based only on their individ-
ual information. All is the worst-case scenario for the pub-
lisher. Under NE, the attackers are treated as rational strate-
gic players, predicted to play an equilibrium profile of the
information-sharing subgame. In general these subgames
may have multiple equilibria. Our analysis identifies all
the PSNE, and defines the NE scenario as an equiprobable
selection among these.

Figure 4 presents the information loss and expected pri-
vacy breach for each of the ten selected publisher strate-
gies, under each of the attacker behavior assumptions No,
NE, and All. Since information loss does not depend on
the attackers’ actions, a given publisher action is repre-
sented by three points at the same y-axis level, associated
with the respective attackers’ behaviors. The separation of
these points on the x-axis confirms that attackers’ behavior
in equilibrium is generally different from all-or-none infor-
mation sharing.

Inspection of Figure 4 allows us to identify and rule
out the dominated publisher actions, that is, any sd that
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Figure 4: Expected privacy breach and information loss un-
der various generalization actions and attacker behaviors.

is worse on both information loss and privacy breach than
some other available publisher strategy or convex combi-
nation of strategies, under the same assumption on attacker
behavior. Accordingly, in the figure we draw piecewise-
linear curves for each attacker scenario, connecting the
frontier of non-dominated publisher strategies. Given any
weight parameter for publisher utility (1), the optimal gen-
eralization design (among the ten evaluated here) lies on
this non-dominated frontier. We label the non-dominated
actions with roman numerals.

As expected, generalization actions that induce greater
information loss generally partition the original data set
into fewer groups and/or generalize more records in the
same group. For instance, action I partitions the original
ten records into two groups of three and seven, whereas
action V divides them into four smaller groups.

The distinction in composition and shape among the
frontiers for the three behavior scenarios confirms the pos-
sibility that the publisher’s optimal choice will be different
under the respective assumptions. For instance, a publisher
that pessimistically assumes that all attackers share infor-
mation (All) may pick action II. However, this strategy is
dominated under the NE or No assumptions.

Figure 5: Database publisher’s utility (w = 0.25) under
different generalization actions and scenarios for attackers’
behavior.

Given a particular weight for trading off information loss

and privacy risk, we can identify the publisher’s optimal
choices. Figure 5 plots the publisher’s utility for its non-
dominated actions, at tradeoff weight w = 0.25, under each
of the attacker behavior scenarios. This chart reveals that
the worst-case assumption (All) that all share everything in-
deed leads to choosing action IV, which is suboptimal un-
der the NE model.

Like in most multiagent-system models, the solutions
generated from our models are sensitive to the choice of
attackers’ utility function described in Section 4.2. In par-
ticular, higher powers of µ in the attacker’s utility function
(i.e., reward dropping off faster than the square of num-
ber of successful attackers) may lead to overoptimistic es-
timates of the risk of privacy breach. Further, the choice
of utility function can vary considerably with specific data
publication scenarios.

7 Conclusions and future work

Past research in privacy-preserving data publishing has
demonstrated the importance of accounting for an at-
tacker’s background knowledge. A variety of generaliza-
tion tools have been developed, but at a minimum these
still require the database publisher to know the amount of
background knowledge available to attackers (3; 15). The
presence of multiple attackers with capabilities for pooling
background knowledge significantly magnifies this uncer-
tainty, absent a model of how attackers will actually share
information.

This paper initiates a game-theoretic study of privacy at-
tackers as a knowledge-sharing network. Rather than sim-
ply guessing about attackers’ information-sharing behav-
ior, we propose a grounded framework for reasoning about
attackers’ interactions, which in turn assists the data pub-
lisher in choosing a generalized data set to publish. Our
empirical study demonstrates that attacker incentives (and
their resulting behavior) can influence the database pub-
lisher’s optimal strategy.

Whereas this paper illustrates the importance of reason-
ing about attackers’ incentives when choosing a data pub-
lishing strategy, our initial models by no means cover all
attack scenarios. Future work should refine these mod-
els based on behavioral observations to enrich the data
publisher’s limited information about attackers’ knowledge
and behavior.

In addition, representing the full content of attackers’
background knowledge as we did for this initial study will
not remain feasible as we scale the resulting model to larger
networks of attackers. Thus, it is also important to adopt
a more compact representation of background knowledge,
such as the quantified summaries of background knowledge
proposed by Chen et al. (3) and Martin et al. (15).

Game-theoretic analysis may provide useful grounds for
predicting attacker behavior, but it is by no means the only
source of evidence. Attackers may not be perfectly ratio-
nal, or their information and incentives may not be accu-
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rately captured by the model. Graphical multiagent mod-
els (GMMs) are designed to support integration of game-
theoretic and other sources of knowledge about multiagent
behavior (4). Like other graphical models, GMMs also take
advantage of locality in agent interactions (e.g., structure in
the information-sharing network), and provide a compact
representation for efficient computation of joint distribu-
tions over agent behavior.

Finally, we are interested in applying a similar frame-
work to study privacy protection mechanisms other than
generalization (e.g., input and output perturbation tech-
niques for statistical databases).
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