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Abstract

The problem of isochronicity is discussed from the historical and dynamical systems point of view.
The model of Huygen’s cycloidal chops is mathematically explained. We consider two dynamical
systems arising from a three-dimensional system with a centre manifold. Based on the period func-
tion approach we find necessary and sufficient criteria on the coefficients of the system to distin-
guish between the cases of isochronous and non-isochronous oscillations.

Povzetek

Problem izohronosti je obravnavan s staliS¢a dinamicnih sistemov ter iz zgodovinskega stalis¢a.
Matemati¢no je razloZzen Huygensov model ure s cikloidnim nihalom. Na osnovi analize funkcije
periode obravnavamo dva dinamicna podsistema tridimenzionalnega sistema s centralno mnogo-
terostjo in pois¢emo potrebne in zadostne pogoje za izohronost centra na raznoterosti doloceni s
koeficienti sistema.
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1 INTRODUCTION

A simple pendulum is a bob of mass m on a massless rigid wire of length | (see Fig. 1). Assuming
no damping (i.e. the only force acting on the system is the weight of the bob), the differential
equation governing a simple pendulum is

e g
F+T-smcp—0 (1.1)

Figure 1: A simple pendulum of length [ driven by the weight F = —mg of the bob.

There are several approximations for a period of a simple pendulum (see Fig.1) of length L. One
of them (see [1]) is

3
8 1
o =22 [ .

where @, is the initial angle displacement (amplitude) of the bob.

Note that substituting x = i—‘f ,2y=@andt = \/% -tinto (1.1) one can easily derive the following
system

dx N y3 dy

qr . MY E Y TR S d ¢ (1.3)

The qualitative behaviour of this system is determined by how x(t) and y(t) behave with the
change of T. It is convenient to indicate how a solution behaves in the phase plane, that is in the
X,y —plane. The qualitative behavior is represented by a family of curves, directed with increasing
1. These phase curves are called trajectories or orbits of system (1.1.3). The geometrical
representation of the qualitative picture of orbits of system (1.1.3) is called its phase portrait.
System (1.1.3) admits a centre at (0,0), that is, all the orbits close to the origin are closed or, in
other words, the origin is enclosed with simple closed curves (solutions are periodic). Obviously,
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because of (1.1.2) the centre of (1.1.3) is not isochronous, i.e. not all periodic solutions have the
same period. Isochronicity, as will be stated in the next section (see Definition 2), was not known
at the time of the great Dutch astronomer, physicist and mathematician Christian Huygens.
However, he was aware that if the amplitude of the pendulum’s swing changed, the time of swing
would also change, which means that the pendulum was not isochronous, [2]. In the limit of small

amplitudes, the period (1.1.2) is approximated by T(l) = 211-\/2. The following system is

obtained from the equation of a mathematical pendulum (1.1) (again using the change of time

T=\E't)

dx dy
et oA © (1.4)

However, for larger amplitudes, the period T is a function of the amplitude. The approximation
formula (1.1.2) is just one of many existing [1]. Huygens’ ingenious idea, which he put into
practice, was to vary the effective length of the pendulum by allowing its cord to wrap partially
around an obstruction as it swings. What should the shape of this obstruction be in order to
ensure that the period is strictly independent of the amplitude?

In the middle of the 17t century, the accuracy of clocks was not measured in minutes; even the
best of them gained or lost several minutes per day because they were driven by falling weights
or springs. Galileo Galilei was probably the first who wanted to design a pendulum driven clock
in order to achieve better accuracy. He believed that he had mathematically proven that a
(simple) pendulum is isochronous. As already stated, for the case of the pendulum this simply
means that the time it takes to complete one full swing is independent of the size of the swing.
Nowadays, it is well-known that this is not the case, and that Galileo was mistaken (see
approximation formula (1.1.2)). The first scientist who produced a pendulum-driven clock to keep
time errors to within one minute per day was Christian Huygens in 1656; within two years the
clocks with accuracy of about 10 seconds per day were produced (by Huygens and others).

y §
(xg. ¥0)
(x(e). ¥(t)) s(t)

(0,0) -

Figure 2: A bead on a wire of shape (X(t), y(t)).
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In order to solve the problem of an “isochronous pendulum”, a generalization of the simple
pendulum in the sense depicted in Fig. 2 was considered. Thus, if we allow the shape connecting
(X0, Vo) with (0,0) to be different from a semicircle (i.e. a general shape (x(t),y(t))), then
Huygens’s question (of isochronous swing) becomes for what shape will the bead descend to the
origin in the same time regardless of its starting point (Xq, ¥o)?

Denoting by s(t) the distance along the string that the bead has traveled at time t and by v(t) =
ds _ dx 2 dy

i (dt) + (dt) the velocity of the bead (at time t) which is (in contrast) equal to v(t) =
—/2g(yo — y(t)), where g is the acceleration of a freely falling body due to gravity. Furthermore,
assume that the functorial dependence of s(t) in terms of y(t) is s = f(y). Then the time taken

by a bead to descend from (X, y,) to (X(t),y(t)) becomes:

0dt ds

T(y; = — f'(y)dy.

Substituting a dimensionless variable z = yl into (1.1.5) and rearranging we obtain
0

g
T(z) = \/_f (ZYO)*/_ (1.6)

which is independent of y,, (i.e. a constant function of y,) for0 < z < 1, if f’(zyo)\/% is a function
only of z (and not of y). This is equivalent to Oiy (f’(zy)ﬁ) = 0 or explicitly

2f"(Wu+f'(wW) =0; 0 <u<y,,
(1.7)

where u = zy.

Obviously, the solution to (1.1.7) expressed in terms of y as independent variable is f(y) = C; +
Czﬁ. This implies

C
f'(y)= |-, C>o0. 1.8
() ﬂ > (1.8)

(5 oy () vielas (5) =

2
Recall that s = f(y), yielding Z—; = f'(y). Dividing (%) = (%)

2
f(y)? = (g—;) + 1 and finally from (1.1.8) we obtain

Y [C—y
= —dy. 1.9
fyof y (1.9)
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The solution to (1.1.9) containing (x,y) = (0,0) can be parametrized (using y = C sin? %, for0 <
@ < m, and the “half angle identities”) by

C C
x(@) =5 (@ +sing),  y(@)=-(1—cosq), (1.10)
. _ _15 . . Yo _ 1-cos g _ 2yp
which passes through (x,,y,) for @ = @, < tan - (satisfying o —%Jrsin%) and C = Toeos g

The shape of the curve (x(t), y(t)) from (1.10) is called an (inverted) cycloid (see Fig. 3).

Definition 1. The cycloid (studied and named by Galileo in 1599) is the locus of a point on the rim
of a circle of radius a rolling along a straight line. If the point considered on a circumference of
the rolling circle is initially in the origin (0,0), the cycloid has a cusp at the origin and its humps
are oriented upward. Its parametric equation is

x() = a(t — sint), y(©) = a(1 — cost) (1.11)

—2ma 0 2na

Figure 3: Cycloid: The path followed by a point on the circumference of a circle as that circle rolls
along a straight line.

An involute is a curve obtained from another given curve by attaching an imaginary taut string to
the given curve and tracing its free end as it is (un)wound onto that given curve. The evolute of a
curve is the locus of all its centres of curvature. That is to say that when the centre of curvature
of each point on a curve is drawn, the resultant shape will be the evolute of that curve. For
instance: the evolute of a circle is a single point at its centre, the evolute of a quadratic parabola
y = x2 is a semicubical parabola y = % +%W . The only curve for which the evolute (and
involute) is “of the same size” (neglecting translation) as the original curve is the cycloid (see Fig.
3 and Fig. 4). The evolute of an involute is the original curve (fewer portions of zero or
undefined curvature). Alternatively, another way to construct the involute of a curve is to replace
the taut string by a line segment that is tangent to the curve on one end, while the other end
traces out the involute (Fig. 3).
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Figure 4: Inverted cycloid (black) with its involute (red) which is a (inverted) cycloid with the
same parameter a, just translated for a vector (a, —2a).

The above results led Huygens to invent a pendulum with cycloidal chops (Fig. 5).

~—

Figure 5: The cycloidal chops pendulum invented by C. Huygens.

However, it is not possible to determine the centre of oscillation for pendula suspended between
cycloids, as seen in Fig. 4, since the motion of a pendulum with cycloidal chops is not planar (which
was known by Huygens; such a pendulum is a multiple system, i.e. a system having two degrees
of freedom). Therefore, the next step of improvements of the pendulum clocks was the so-called
escapement mechanism (which was driven primarily by the gravity force and later by the force of
a spring).

2 ISOCHRONICITY OF PLANAR SYSTEMS OF ORDINARY
DIFFERENTIAL EQUATIONS

We discuss differential systems with analytical right sides

dx = o dy = s
prini A Z piX' Y g =X+ Z 9%y, (2.1)

i+j=2 i+j=2
where pj; and qj; are real constants. There has been a longstanding problem, [3], called the
Poincaré centre-focus problem; for the system (2.1) to find explicit conditions under which (2.1)

has a centre at the origin. The problem is equivalent to an analogue for a corresponding periodic
equation
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dr 32 Aer™! <
de  1+52, Bi(@)r ZR(‘p)r (2.2)

to have periodic solutions. To see this let us note that the phase curves of (2.1) near the origin in
polar coordinates x = rcos ¢, y = rsin ¢ are determined by (2.2), where A;(¢) and B;(¢) are
polynomials in cos ¢ and sin ¢ and R;(¢) are 21 —periodic functions of ¢ and the series on the
right-hand side of (2.2) is convergent for all ¢ and all sufficiently small r, [4].

Since the closed orbits of (2.1) correspond to periodic solutions of (2.2), the planar analytic vector
field (2.1) has a centre at (0,0) if and only if (2.2) has a centre at r = 0 ; that is, all the solutions
nearby are periodic.

All methods for determining the nature of the critical point of (2.1) theoretically require
determining infinitely many coefficients of some function or as we will see later the
corresponding ideal of the infinitely many polynomials, [4,5,6,7]. The most widely used method
to resolve the Poincare centre-focus problem are the so-called Lyapunov method (combined with
the Bautin method) and Mironenko's method, [8]. Solving the Poincaré centre-focus problem for
a given system (2.1) may be a tedious job. However, once we know the origin of (2.1) is a centre,
the problem of isochronicity becomes sensible, and the definition of the period function makes
sense.

Definition 2 ([4]). Suppose r* > 0 is so small that it lies in the so-called period annulus (the
maximal neighbourhood of the origin that is enclosed with simple closed curves). Let us consider
the line segment Y, = {(x,¥): 0 < x < r*,y = 0}. Forany x = (r,0) € X satisfying 0 <r < r* let
T(r) denote the least period of the corresponding trajectory (through (x,y) = (r,0) € Z). The
function T(r) is the period function of the centre. If the function T(r) is constant, then the centre
(0,0) of (2.1) is said to be isochronous.

In (2.2), the corresponding time-dependent equations are of the form

E = Zw A.((_p)ri+1
dt =1 (2.3)

and

deo © ;
T 1+ i=1Bi(<p)r . (2.4)

For a sufficiently small (fixed) ry a solution to (2.3) satisfying the initial condition (r, @) = (r,,0)
has a unique solution r(¢) = f(@; ry). Inserting f(@; ry) into (2.4) yields
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a =1 +Z Fy(@)r!
1l
d(p 1+Z M((p)ro =1 ®To-
After integration, we obtain
t—@ = 0; i
© Zi:l l((p)r() (2.5)

where 0;(¢p) = fo(‘o F;(p)do and the series on the right-hand side of (2.5) is convergent (for small
enough 0 <ry <r*)and 0 < @ < 2m. For any (1, 0) € X for ¢ = 21 we write t = T and obtain

T(ry) = 21 (1 + Z:lTir(i)>' (2.6)

0;(2m)

where T; = ‘—n No, we can finally state the condition for isochronicity of the centre.

Suppose system (2.1) has a centre at the origin, then (0,0) is isochronous if and only if T; = 0 for
alli € N. Thus, the set of all systems (2.1) with isochronous centre on the centre manifold is the
set of common zeros of polynomials Tj(pj;, q;). Thus, we have to consider the ideal I =
(Tl(pij,qij),Tz (pij,qij),T3 (pij, qi]-), ...). According to the Hilbert Basis Theorem (see [9]), every
ideal in the polynomial ring over a field is finitely generated, and then the direct consequence of
this theorem is that the ascending chain of ideals I; =(Ti(p;;q;)), 1=
(Tl(pij, qij),T2 (pij, qi]-), ...), stabilizes. That is, there exists m > 1 such that ideal I with infinitely
many polynomials Tj(pjj, q;;) is the same as I;,.

3  CENTRE MANIFOLDS

The theory of centre manifolds, which originates from the works of V. A. Pliss, [10,11], and was
then further developed by many others (see, e.g. [12,13] and references therein) is an extremely
effective tool for studying the behaviour of trajectories of high-dimensional systems of ordinary
differential equations. Note that one of the important applications of centre manifolds (also
called the Pliss reduction principle, [11]) is that it allows the reduction of the system and
consequently the study of the stability in lower dimensional phase space (thus, instead of
analysing the original high-dimensional phase space we can consider the lower-dimensional
subsystem).

Consider an m + n-dimensional system of ordinary differential equations of the form

X =Ax+ u(x,y)
y = By + v(x,y), (3.1)

where x € R™,y € R*, Re(c(A)) = 0, Re(c(B)) # 0, 6(A) and o(A) are spectrums of A and
B, respectively, and u, v are CK- functions, k = 1 which vanish together with their first derivatives
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at the origin. By definitio, a CX- manifold W€ = W~¢(0, U) in a neighbourhood U of 0 is said to be
a centre manifold of (3.1) if W€ is invariant under the flow as long as the solution remains in U nd
WE is the graph of a CX- function y = h(x) which is tangent at (0,0) € R™ x R" to the x-space.

The following fundamental result shows that for the system (3.1), there is always a centre
manifold in a neighbourhood of the origin.

Theorem 1 ([12]). There exists a neighbourhood U of (0,0) € R™ X R" such that there exists a
local centre manifold W¢ of (3.1) which is the graph of a C*- function y = h(x).

The simplest examples of the centre manifolds can be seen in low dimensions. For instance,
consider two-dimensional system

(3.2)

For any constants ¢4, ¢, the curve h(x; ¢;, c;), where

_1

—cie 2x%, x<0
y =h(x;,cq,¢) = 0, x=0
1
ce 2x2, x>0,

consists of orbits of (3.2) and is therefore invariant. Furthermore, this curve is tangent to the x-
axis at the origin, which implies that it is a centre manifold. From this example, we can also see
that the centre manifold is not necessaily unique. Another simple two-dimensional system with
a centre manifold is

3

x=-x3, y=-y+x°

Similar as in the previous case, we see that although the system is analytic, it is not difficult to
verify that the centre manifold is not analytic.

In three dimension, a family of systems with a centre manifold is

u=-v+P(uv,w)
v=u+Q(uv,w) (3.3)
w = —Aw + R(u, v, w),

where A is a positive real number and P, Q, R are polynomials without constant and linear terms.
By Theorem 1, this system has a centre manifold w = f(u, v). There are many systems arising
from physics (for instance, the Rikitake system [14], for Earth's magnetic field or the Hide-
Acheson Dynamo, [15]) that possess a fixed point at which the linear part has one negative and
two purely imaginary eigenvalues and are therefore of the form (3.3). Since system (3.3) has a
centre manifold W€ and A > 0, the trajectories in a small neighbourhood of the origin tend to the
trajectories to the centre manifold as time increases. In systems (3.3), the phase portrait in a
neighbourhood of the origin on W€ can be, depending on the added nonlinear terms P and Q,
either a centre in which case every trajectory (other than the origin itself) is an oval surrounding
the origin, or a focus, in which case every trajectory spirals towards the origin or every trajectory
spirals away from the origin as the time increases. The problem of determining the dynamical
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behaviour on W€, that is, distinguishing between a centre and a focus on the centre manifold for
a quadratic polynomial system of the form (3.3) was studied in [16].

4 THE STUDY OF TWO EXAMPLES
In [16], the authors studied the dynamics of trajectories at the centre manifolds for the system

U= —v+au?+av? + cuw + dvw
Vv =u+ bu? + bv? + euw + fvw (4.1)
W = —w + Su? + Sv? + Tuw + Uvw,

where the coefficients a, b, c,d, e,f, S, T, U are real. They found five conditions for the existence
of a centre on the centre manifold:

1. S=0;

2. a=b=c+f=8c+T?-U?=4(e—d)—T?U?2=2(e+d)+TUandS =1;
3. a=b=c=f=d+e=0andS=1;

4, d+e=c=f=T—-2a=U—-2b=0andS=1;

5. c=d=e=f=0andS=1.

The next question that naturally arises is whether the centre at the centre manifold is
isochronous, that is, whether all oscillations have the same period. In this paper we study two
subfamilies of system (4.1) satisfying conditions 1 and 2 above. For each system, we compute the
period function as described in section 2 and use it to find conditions for the centre to be
isochronous.

System (4.1) satisfying condition 1 above is written as

U= —v+au?+ av? + cuw + dvw
v =u+bu? +bv? + euw + fvw (4.2)
w = —w + Tuw + Uvw.

It is proven (see [16]) that w = 0 isthe centre manifold for system (4.2). The corresponding 2D
system

U= —v+au? + av? (43)

v =u+ bu? + bv?
has a centre at the origin for alla,b € R (see [16]).

We now study the isochronicity problem for the above centre. Using the computer algebra
software MATHEMATIC, we first turn to the computation of the period function T of the form
(2.6). After introducing polar coordinates system, (4.3) becomes
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dr_ ) bsi

Fri r“(acos @ + bsin @) (4.4)
de .
e 1+ r(bcos @ — asin ).

Following the procedure described in the second section, we find that the first non-zero
coefficient of the period function is T, = 2m(a? + b?). Thus we see that the necessary condition
for the isochronicity of system (4.3) isa = b = 0, which, obviously is also the sufficient condition.

In the case of conditions 2, under the same renaming of parameters c,d, e, f, T, U and using a,
as in [16], the system (4.1) takes the form

. 1
u= —V——O(BUW—EBZVW

2 (4.5)

= U+ s otuw + o
v=utootuw 2(J(va
W =—-w+u?+v?+ (a+ Buw + (B — a)vw.

A search for invariant algebraic surfaces led to the explicit equation of centre manifold W€ given

2 2
by w = 1—(x:iﬁv' Inserting the expression for w into system (4.5), we obtain the system
B B(au + pv)(u? + v?)
u=-v 2(1—au—Bv)
a(au + Bv)(u? + v?)
2(1—au — pv)

Using Taylor series expansion up to the order five, we obtain the system

u=-v+ E Blau + Bv)(u? + v2) + lB((xu +Bv)2(u? +v23) +m
- 2 2 ! (4.6)

1 1
v=u-— Eot(otu + Bv)(u? + v?) — Ea(au + Bv)2(u? + v2) + m,,

where
1
m; = m(—60a3ﬁu5 — 180a2B%u*v + 10udv?(—6a3B — 18aB?)
+10u?v3(—18a?B2% — 6B*) — 180ap3uv? — 60B*v°)
and

1
m, = m(600¢“u5 + 180a3Bu*v + 10udv?(6a* + 18a2B?)
+10u?v3(18a3B + 6aB®) + 180a?B?uv* + 60ap3v®).

Further computation following the computational pattern described in section 2 yields T, =
g(az + B2), yielding the following result.

System (4.6) has an isochronous centre if and only if « = = 0.
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5 CONCLUSIONS

After more than 300 years, the isochronicity problem remains one of the central problems in the
theory of dynamical systems. In addition to the period function approach, there are some other
approaches. The analysis of the isochronicity problem leads us first to conditions for existence of
periodic solutions, i.e. the existence of centre and then the further study yields the conditions on
parameters of considered system for the cases of isochronous and non-isochronous oscillations.
The approach described in Section 2 requires an integration of trigonometric functions and might
be too complex for some systems. Therefore, in some cases, we need to find other ways to solve
the isochronicity problem. It turns out that the isochronicity problem for system (2.1) is
equivalent to the linearizability problem in which we look for an analytic change of coordinates
that reduces (2.1) to the canonical linear centre X = —y,y = x (see e.g. [4] for more details). The
theory of the linearizability of planar systems of ordinary differential equations was applied [17]
to system (4.1) corresponding to condition 4 above. In fact, for each of the five conditions above
we can find the conditions under which the corresponding system can be reduced to canonical
linear centre, and we see that they are the same as conditions obtained using the period function
approach.
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