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Using Canonical Correlations in Testing for
Common Nonlinear Components

Alenka Kavkler1 and Bernhard Böhm2

Abstract

The paper discusses the use of canonical correlations for modelling multiple
equation systems with common nonlinear components of a smooth transition type.
The coefficients in a smooth transition regression model are assumed to be nonlinear
continuous functions of a properly chosen transition variable. The obtained model
thus captures structural changes in the relationship between the observed economic
variables. With the help of the canonical correlations technique a simple test for test-
ing for common nonlinear components helps us interpret the relationships between
different economic variables and also simplifies the specification and estimation of
the equation system, since in this case a reduction in the dimension of nonlinear
components is possible. It was shown by Anderson and Vahid (1998) that the test for
common nonlinearities is related to the test statistic for the overidentifying restric-
tions in the generalized method of moments framework and that both tests have the
same asymptotic distribution.

As an application of the described modelling approach, a three-variable linear
vector autoregressive (VAR) model of the consumer price index for Slovenia and
Austria and the nominal exchange rate between the currencies of both countries is
investigated. A single common nonlinear component is detected in all 3 equations
and the estimated multivariate logistic smooth transition autoregressive model is dis-
cussed.

1 Introduction
This paper is devoted to an investigation of small nonlinear dynamic systems. An impor-
tant problem in the identification process of economic systems is usually related to the
question whether the model can be kept linear or whether nonlinear features are so dom-
inant that they must be considered in the specification. From recent studies of univariate
models one has learned that there is much to be gained by exploring such nonlinear fea-
tures. Representation of asymmetric reactions, structural changes and other phenomena of
economic developments can be fruitfully investigated by nonlinear modelling techniques.
As many issues in economics require the specification of several relationships, techniques
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to handle nonlinear features in systems are required. During the recent years such meth-
ods have appeared in the literature. We shall discuss the use of canonical correlations for
modelling multiple equation systems with common nonlinear components of a smooth
transition type. The coefficients in a smooth transition regression model are assumed to
be nonlinear continuous functions of a properly chosen transition variable. The obtained
model thus captures structural changes in the relationship between the observed economic
variables. The current investigation attempts to apply these techniques to a small model
of the real exchange rate, decomposed into its three components, domestic prices, foreign
prices and the nominal exchange rate. The procedure to explore the appropriate speci-
fication starts with testing for common nonlinearities. Section two shortly describes the
approach going back to Anderson and Vahid (1998). Given the results of this test, we
continue to attempt estimation of the vector autoregressive system considering the im-
plied restrictions not only from nonlinearity testing but also from possible cointegration.
In section three we shall apply this model to the data of the Slovenian Tolar versus the
Austrian Schilling, respectively Euro. Finally, we shortly reflect on similar approaches
for other countries.

2 Test for common nonlinearities

Anderson and Vahid (1998) describe a generalized method of moments test for common
nonlinear components in multiple time series. The number of nonlinear functions that
need to be estimated can be reduced if the system contains common nonlinear compo-
nents. The basic idea behind their work is to detect all linear combinations of the (pos-
sibly nonlinear) variables that do not exhibit nonlinear properties. The number of such
linear combinations determines the number of common nonlinear components. The usual
statistic and econometric tests are adapted to meet the needs of multivariate systems. The
canonical correlation procedure is used to obtain the estimates of the linear combinations
without the nonlinear properties.

2.1 Definition of common nonlinearity

Suppose that the conditional mean of the i-th component of an n-dimensional vector yt

given a k-dimensional vector xt can be written as

E(yit|xt) = β
′

ixt + ψi(xt, θi), i = 1, . . . , n, (2.1)

where the function ψi is nonlinear in xt and possibly also in the parameter θi. If one can
find s < n linearly independent linear combinations of the components of the vector yt

with a linear conditional mean, then there exists an n × s matrix A with a full column
rank for which the equation

A
′
ψ(xt, θ) = 0

holds. ψ and θ stand for the vectors (ψ1, ψ2, . . . , ψn)
′ and (θ1, θ2, . . . , θn)

′ , respectively.
Obviously, A is not unique. As the matrix A · H , where H is any s × s nonsingular
matrix, also satisfies the previous equation, the matrix A can be normalized without loss
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of generality. A particularly useful normalization contains an s× s identity matrix as the
first block. The matrix ψ is partitioned analogously:

A =

[
Is
A∗∗

]
, ψ(xt, θ) =

[
ψ∗(xt, θ)
ψ∗∗(xt, θ)

]
.

From A
′
ψ(xt, θ) = 0 follows ψ∗(xt, θ) = −A∗∗′

ψ∗∗(xt, θ) and

ψ(xt, θ) =

[
−A∗∗′

In−s

]
ψ∗∗(xt, θ).

Finally, we can eliminate s nonlinear components and therefore write the conditional
expectation of the vector yt in terms of only n− s nonlinear components:

E(yt|xt) = Bxt + A⊥ψ∗∗(xt, θ), (2.2)

withA⊥ =

[
−A∗∗′

In−s

]
andB equal to the n×k matrix of stacked vectors β ′

i , i = 1, . . . , n.

Definition 2.1 We say that system (2.1) has n− s common nonlinear components, if it is
possible to rewrite (2.1) in the form (2.2) and if s is the largest integer with this property.

2.2 Smooth transition regression models
Since we would like to study common nonlinear components of a smooth transition type,
we shall start with a short description of smooth transition regression (STR) models.

2.2.1 Univariate smooth transition regression models and the linearity test

Many elements of economic theory mention the idea that the economy behaves differently
if values of certain variables lie in one region rather than in another, or, in other words,
follow different regimes. The first attempt at modelling such phenomena is represented
by discrete switching models, where a finite number of different regimes is assumed. The
central tool of this class of models is the so-called switching variable that can be either ob-
servable or unobservable. As smooth transition between regimes is often more convenient
and realistic than just the sudden switches, several scientists proposed a generalisation of
discrete switching models of the form

yt = x′tϕ+ (x′tθ) ·G(γ, c; st) + ut, t = 1, 2, . . . , T, (2.3)

where
xt = (1, xt1, xt2, . . . , xtk)

′ = (1, yt−1, . . . , yt−m, zt1, . . . , ztl)
′

is the vector of explanatory variables containing lags of the endogenous variable yt and
the exogenous variables zt1, . . . , ztl, ϕ = (ϕ0, ϕ1, . . . , ϕk)

′ and θ = (θ0, θ1, . . . , θk)
′ are

the parameter vectors and ut is a sequence of independent identically distributed errors.
G denotes a continuous transition function, usually bounded between 0 and 1. Because
of this property not only the two extreme states can be explained by the model, but also
a continuum of states that lie between those two extremes. The slope parameter γ is an
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indicator of the speed of transition between 0 and 1, whereas the threshold parameter c
points to where the transition takes place. The transition variable st is usually one of the
explanatory variables or the time trend. One of the most popular functional forms of the
transition function is the logistic function

G1(γ, c; st) =
1

1 + e−γ(st−c)
, γ > 0. (2.4)

In this case, we refer to model (2.3) as the logistic smooth transition regression model,
shortly LSTR model.

To test the null hypothesis of linearity against the alternative of an LSTR model, we
first redefine the logistic transition function as G∗

1 = G1 − 1
2
. The advantage of G∗

1 over
G1 lies in the fact that G∗

1 takes the value zero when γ = 0, while the functional form
of the STR model stays the same (only the parameter vectors ϕ and θ change). The null
hypothesis of linearity for model (2.3) with G1 replaced by G∗

1 can be expressed as

H0 : γ = 0 against H1 : γ > 0 (2.5)

or as
H ′

0 : θ = 0 against H ′
1 : θ 6= 0. (2.6)

Note that some of the parameters are not identified under the null hypothesis. In case of
(2.5), this goes for the parameters c and θ, while in case of null hypothesis (2.6), neither c
nor γ is identified. These nuisance parameters are not present in the model under H0 and
their values do not influence the value of the log-likelihood. Consequently, the standard
statistical theory with the battery of likelihood ratio, Lagrange multiplier and Wald test is
not applicable, since the asymptotic distributions are nonstandard. Critical values could
only be determined with the help of the simulation methods. To overcome this problem,
Luukkonen, Saikkonen and Teräsvirta (1998b) replaced the transition function in equation
(2.3) with its third-order Taylor approximation around γ = 0. After rearranging the terms
one obtains

yt = x′tη0 + (x̃′tst)η1 + (x̃′ts
2
t )η2 + (x̃′ts

3
t )η3 + u∗t , (2.7)

with x̃t = (xt1, xt2, . . . , xtk)
′. Since the transition variable is usually one of the explana-

tory variables, the constant was dropped from the vector xt to avoid duplicating the vari-
able st on the right-hand side of auxiliary regression (2.7). The procedure is explained
in detail in Teräsvirta (1998). Thus, the former null hypothesis of linearity H0 : γ = 0
implies

H ′′
0 : ηj = 0,∀j ∈ {1, 2, 3} and H ′′

1 : ∃j 3: ηj 6= 0, (2.8)

which can be tested by performing a Lagrange multiplier (LM) test. Under the null hy-
pothesis, the statistic has an asymptotic χ2-distribution with 3k degrees of freedom, when
the so-called regularity conditions are fulfilled. Basically, the moments used in the LM
test statistic have to exist (see White (2001) for details). The test has the advantage that
the estimation of the nonlinear model under the alternative hypothesis is not necessary.
Nevertheless, Teräsvirta (1998) recommends using the F-statistic instead. He argues that
the F-statistic has better small sample properties, since its empirical size is close to the
nominal size.
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2.2.2 Multivariate STAR models

Whereas there has been extensive research in the field of univariate nonlinear modelling,
the statistical theory of multivariate nonlinear models has yet to be developed. The first
attempts at extending nonlinear smooth transition regression techniques to a multivari-
ate setting can be found in Weise (1999), van Dijk (1999) and Camacho (2004). Simi-
larly, multivariate Markov switching models are treated in Krolzig (1997) and multivariate
threshold models in Tsay (1998). Most of the work has been done with the multivariate
autoregressive models.

Definition 2.2 (Anderson and Vahid) A multivariate smooth transition autoregressive
model, or a STAR(p) model, is a model of the form

yt = A0 + A1(L)yt + F (zt)[B0 +B1(L)yt] + εt, (2.9)

where yt is an n-vector time series, A0 and B0 are n-vectors of constants, A1(L) and
B1(L) are p-th order matrix polynomials in the lag operator with A1(0) = B1(0) = 0, εt

is an n× 1 i.i.d. (0,Σ) sequence, F is an n× n diagonal transition matrix with a typical
diagonal entry Fi(zit), and the transition variable zit is one of the np lagged regressors
from the vector

ỹt = (y
′

t−1, y
′

t−2, . . . , y
′

t−p)
′
.

The specification that each transition function Fi(zit) is a logistic function of the form

Fi(zit) = (1 + exp[−γi(zit − ci)])
−1,

where γ > 0, leads to a multivariate LSTAR model.

In the study of univariate LSTAR models by Lukkonen, Saikkonen and Teräsvirta
(1998b) and Teräsvirta (1994), the models with zit = yit−d are discussed. As already
explained, the linearity test is developed with the help of the Taylor approximation of
the transition function. The procedure is similar in the multivariate framework. The null
hypothesis of linearity, i.e.

H0 : β2j = β3j = β4j = 0, j = 1, . . . , np,

based on the auxiliary regression

yit = β0 + β
′

1(ỹt) + β
′

2(ỹt · zit) + β
′

3(ỹt · z2
it) + β

′

4(ỹt · z3
it) + vit, (2.10)

is tested against the alternative hypothesis of a multivariate STAR model. An LM-type
test can be used, as before.

2.3 The common nonlinearities test
Since the common nonlinearities test is deduced from the test of overidentifying restric-
tions in the generalized method of moments (GMM) framework, it has an asymptotic
χ2-distribution provided that some regularity conditions described below hold. A thor-
ough discussion of the necessary and sufficient conditions is given in Wooldridge (1994).
Regularity conditions are:
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1. The variables are essentially stationary and weekly dependent.

2. The assumptions GMM.1 to GMM.10 (as defined in Wooldridge) hold.
These conditions guarantee that the GMM estimator exists, is consistent and asymp-
totically normally distributed.

Suppose that the null hypothesis of linearity is rejected for every component of the
n-dimensional vector yt. In this case, the conditional mean of yit, i = 1, . . . , n, is of the
form (2.1). If there is a linear combination α′

1yt of the components of the vector yt with
a linear conditional mean, then the number of nonlinear components in the system can be
reduced. A reduction of this kind requires that

E
(
(α

′

1y
†
t )⊗ w†t

)
= 0, (2.11)

where ⊗ denotes the Kronecker product. Note that y†t was obtained from yt by removing
the part that is linear in xt. w

†
t stands for the m-dimensional vector of nonlinear regres-

sors in the corresponding univariate linearity test. In case of a STAR model under the
alternative, w†t is the vector of nonlinear regressors in auxiliary regression (2.10), namely
((ỹt · zt)

′
, (ỹt · z2

t )
′
, (ỹt · z3

t )
′
)

′ . Because of the structure of equation (2.11), we can use
the generalized method of moments (GMM) to estimate the vector α1. By replacing the
moment condition with the corresponding sample mean 1

T

∑T
t=1

(
(α

′
1y
†
t ) ⊗ w†t

)
, we can

construct an objective function from the class of minimum distance estimators, see Greene
(2003):

Q =
1

T

T∑
t=1

(
(α

′

1y
†
t )⊗ w†t

)′

× V̂ −1
1T × 1

T

T∑
t=1

(
(α

′

1y
†
t )⊗ w†t

)
(2.12)

=
1

T 2
α

′

1Y
′
WV̂ −1

1T W
′
Y α1

While Y and W denote the matrices with stacked vectors y†t and w†t as rows, V̂1T stands
for a matrix that complies with the condition

plim
T→∞

V̂1T = lim
T→∞

E(T−1(W
′
Y α1α

′

1Y
′
W )). (2.13)

The notation plim is used in econometrics to denote the probability limit. Recall that a
sequence of random variables {xn} converges in probability to a random variable x, if
limn→∞ P (|xn − x| ≥ ε) = 0 for every ε > 0.

The question we have to answer is how to estimate the rank and the basis of the
space of vectors that satisfy equation (2.11). Let the matrix α consist of s such vectors,
α1, α2, . . . , αs, written as columns. If the operator vec(A) concatenates the columns of
the given matrix A into one column vector, then the objective function for estimating the
matrix α with the generalized method of moments is of the form

Q =
1

T 2
vec

′
(Y α)(Is ⊗W )V̂ −1

T (Is ⊗W
′
)vec(Y α),

where

plim
T→∞

V̂T = lim
T→∞

E

[
1

T
(Is ⊗W

′
)vec(Y α)vec

′
(Y α)(Is ⊗W )

]
.
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Under the assumption that there is no serial correlation and no heteroscedasticity,

V̂T = Σ̂⊗ W
′
W

T

turns out to be a suitable choice, with Σ̂ equal to a consistent estimate of E(α
′
y†ty

†′
t α).

The common nonlinearities test is performed in several steps:

1. Calculate Σ̂;

2. Determine the rank of α in a loop. Set s to 0. While overidentifying restrictions are
not rejected, do the following:

a. increase s by 1,

b. perform the GMM estimation,

c. test the overidentifying restrictions.

The number of common nonlinear components is equal to n− s. The identifying restric-
tions are carried out by setting Σ̂ equal to the identity matrix, which also simplifies the
procedure, as shown by the next lemma.

The common nonlinearities test is performed with the help of the canonical corre-
lations approach. Recall that given an n1-dimensional random vector z1 and an n2-
dimensional random vector z2, the first pair of canonical variables is defined as the pair of
linear combinations u1 = δ

′
1z1 and v1 = η

′
1z2 of unit variance, for which the correlation

Corr(u1, v1) is maximal. Analogously, the k-th pair of canonical variables is the pair od
linear combinations uk = δ

′

kz1 and vk = η
′

kz2 with unit variance and uncorrelated with
the first k−1 pairs of canonical variables, which maximizes the correlation Corr(uk, vk).
If n1 ≤ n2, then there exist n1 pairs of canonical variables. The correlation Corr(uk, vk)
is the k-th canonical correlation and the vectors δk and ηk are called the k-th canonical
coefficient vectors of the random vectors z1 and z2, respectively.

Let us denote the estimated canonical correlations between the n-dimensional random
vectors y†t and w†t by

{λi, i = 1, . . . , n},

where {λi} are assumed to be ordered from the smallest to the largest.

Lemma 2.3 (Anderson and Vahid, 1998) Under the normalization
(1/T )α

′
Y

′
Y α = Is, the following holds:

1. The generalized method of moments estimators of the columns of the matrix α are
the canonical coefficient vectors of y†t corresponding to

{λi, i = 1, . . . , s},

the s smallest estimated canonical correlations between y†t and w†t .

2. The test statistic for the overidentifying restrictions can be computed as J = T
∑s

i=1 λ
2
i .
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The proof is a straightforward application of the Lagrange multiplier technique (see
Anderson and Vahid (1998) for details). As already mentioned, the regularity conditions
guarantee the asymptotic χ2-distribution of the test statistic J . The degree of freedom is
equal to the number of overidentifying restrictions, in our case (m − n)s + s2. Observe
that the number of moment conditions in

E
(
(α

′

jy
†
t )⊗ w†t

)
= 0, j = 1, 2, . . . , s, (2.14)

is equal to ms, whereas the number of parameters (i.e. components of the matrix α) to be
estimated is ns− s2, since s2 parameters are determined by normalization. Therefore, the
number of overidentifying restrictions is equal to ms− (ns− s2).

2.4 Testing for common STAR nonlinearities
Suppose that in the multivariate STAR setting the univariate LSTAR test is applied to
y1, y2, . . . , yn, every time with the same transition variable zt. If the test rejects the null
hypothesis of linearity for at least two variables, say yi and yj , it is possible that the vari-
ables share a common nonlinearity. In this case one can find at least one n-dimensional
vector α1 for which the condition (2.11) is fulfilled:

E
(
(α

′

1y
†
t )⊗ w†t

)
= 0, (2.15)

with wt equal to ((ỹt · zt)
′
, (ỹt · z2

t )
′
, (ỹt · z3

t )
′
)

′ . The sign † indicates that the influence of
the linear terms, namely the constant and the ỹt, has been removed from the vectors wt

and yt by regressing them on the constant and the components of the vector ỹt. Taking
into account the results from Lemma 2.3, the test statistic for the null hypothesis that there
are at least s linearly independent linear combinations of the components of the vector yt

with a linear conditional mean is of the form

J = T
s∑

i=1

λ2
i . (2.16)

The λi‘s are the estimated canonical correlations between the random vectors y†t and w†t .
Obviously, if there are s independent linear combinations with a linear mean in a model
where all n dependent variables are nonlinear in mean, then there are n − s common
nonlinear components. The null hypothesis is rejected when there are more than n − s
common nonlinear components. Provided that the described regularity conditions hold,
the test statistic J has an asymptotic χ2-distribution with (3p − 1)ns + s2 degrees of
freedom.

2.4.1 Finite sample properties of the test

Anderson and Vahid (1998) conducted several Monte Carlo experiments in order to eval-
uate the properties of the test when STAR nonlinearities are present. They restricted their
attention to the bivariate and trivariate case with 0, 1 or 2 and 0, 1, 2 or 3 nonlinearities
of the LSTAR type with the same known transition variable in the true data generating
process (DGP), respectively.
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The simulations with sample sizes of 100 and 300 were conducted in each case. The
bivariate LSTAR test performed well, especially in the sample size of 300, whereas the
trivariate LSTAR test had difficulty distinguishing between the cases of 1, 2 and 3 com-
mon nonlinear components. It must be emphasized that the chosen nonlinear data gen-
erating processes were close to linear because of the small values of the γ parameters.
When performed on DGPs with higher γ values, the tests performed substantially better.

3 An application to the real Tolar - Euro exchange rate
As an application of the described modelling approach, a three-variable vector autore-
gressive (VAR) models of the consumer price index for Slovenia, consumer price index
of another country and the nominal exchange rate between the currencies of both countries
are discussed. Therefore, this investigation applies the common nonlinearities techniques
to small models of the real exchange rate, decomposed into its three components, domes-
tic prices (Pt), foreign prices (P ∗

t ) and the nominal exchange rate (St). The models have
been applied to 5 most important foreign trade partners of Slovenia, namely Germany,
Italy, France, Austria and Croatia.

Monthly data for the period from January 1988 till December 2003 were obtained
from the Bank of Slovenia and from the Statistical Office of the Republic of Slovenia.
Due to the fact that Slovenia declared independence in June 1991 and introduced its own
currency (Tolar) in October of the same year, only the data for the period from January
1993 till December 2003, when Tolar was already an established currency, were used in
the study. In the case of Croatia, the period under investigation was shortened addition-
ally because of the war. Only the data from April 1995 till December 2003 were taken
into account. The econometric model employs variables expressed in growth rates with
the help of the logarithmic transformation, therefore small letters are used to denote the
transformed variables.

In a preliminary specification, all equations were modelled as linear relationships.
This simplifies the search for an appropriate nonlinear specification. Firstly, unit root
tests were applied to the variables pt, p∗t and st for each of the countries. All of the
variables turned out to be integrated of order 1, or I(1). Next, cointegration tests were
performed and the linear vector error correction models (VECM) were specified. The
null hypothesis of no cointegrating relations could not be rejected only in case of Croatia,
therefore a linear VAR model in the differenced variables ∆pt, ∆p∗t and ∆st was specified.
Orthogonal seasonal dummy variables, denoted by d1 to d12, were introduced into some
of the models to reduce the autocorrelation effects.

3.1 Linearity test results
In order to improve specification, we investigated the influence of nonlinearities, which
we assumed to be of the smooth transition kind. For this purpose, we tested the null
hypothesis of linearity against the alternative of a smooth transition autoregressive model
for each of the equations and each of the possible transition variables in turn. The values
of the F-statistic (and the corresponding p-values in brackets) are given in Table 1 below.
The cointegrating equations are denoted by ce1 and ce2.
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Table 1: F-values (and p-values) for testing linearity against STR.

Germany
transition variable ∆p equation ∆p∗ equation ∆s equation

ce1t 1.642 (0.039) 1.072 (0.393) 4.178 (0.000)
∆pt−1 1.135 (0.321) 1.251 (0.211) 1.819 (0.017)
∆p∗t−1 0.847 (0.699) 0.567 (0.965) 1.383 (0.124)
∆st−1 1.397 (0.117) 0.995 (0.492) 2.612 (0.000)
∆pt−2 1.936 (0.009) 0.554 (0.971) 2.566 (0.000)
∆p∗t−2 1.034 (0.440) 1.432 (0.101) 0.791 (0.772)
∆st−2 1.601 (0.047) 0.684 (0.889) 4.175 (0.000)
∆pt−3 0.711 (0.864) 1.022 (0.457) 2.037 (0.006)
∆p∗t−3 1.387 (0.122) 1.264 (0.200) 1.352 (0.141)
∆st−3 1.146 (0.309) 0.456 (0.993) 3.471 (0.000)

Italy
transition variable ∆p equation ∆p∗ equation ∆s equation

ce1t 1.480 (0.125) 0.898 (0.574) 3.104 (0.000)
∆pt−1 1.123 (0.347) 1.558 (0.098) 1.494 (0.120)
∆p∗t−1 2.797 (0.001) 2.757 (0.001) 1.809 (0.042)
∆st−1 1.681 (0.065) 1.022 (0.442) 2.248 (0.009)

France
transition variable ∆p equation ∆p∗ equation ∆s equation

ce1t 1.213 (0.250) 0.645 (0.917) 3.172 (0.000)
∆pt−1 0.878 (0.655) 0.935 (0.576) 1.334 (0.160)
∆p∗t−1 0.665 (0.901) 1.3710 (0.139) 0.642 (0.919)
∆st−1 1.210 (0.253) 0.790 (0.771) 2.527 (0.001)
∆pt−2 1.276 (0.199) 0.760 (0.806) 1.160 (0.300)
∆p∗t−2 1.022 (0.460) 0.829 (0.721) 0.682 (0.887)
∆st−2 1.857 (0.017) 0.939 (0.571) 3.609 (0.000)
∆pt−3 1.112 (0.351) 0.776 (0.787) 2.226 (0.003)
∆p∗t−3 0.861 (0.677) 0.973 (0.524) 1.249 (0.220)
∆st−3 1.150 (0.310) 0.843 (0.701) 2.045 (0.007)

Austria
transition variable ∆p equation ∆p∗ equation ∆s equation

ce1t 1.392 (0.153) 1.002 (0.468) 2.752 (0.001)
ce2t 2.619 (0.001) 1.712 (0.043) 3.423 (0.000)

∆pt−1 1.284 (0.216) 1.207 (0.272) 1.817 (0.034)
∆p∗t−1 1.356 (0.172) 1.146 (0.323) 1.655 (0.061)
∆st−1 1.765 (0.041) 1.355 (0.173) 4.024 (0.000)

Croatia
transition variable ∆p equation ∆p∗ equation ∆s equation

∆pt−1 1.222 (0.282) 1.432 (0.166) 0.840 (0.617)
∆p∗t−1 0.755 (0.704) 1.110 (0.365) 2.719 (0.004)
∆st−1 0.616 (0.834) 0.638 (0.814) 4.208 (0.000)
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Table 2: Common nonlinearities test for Italy and Austria.

Italy
tvar: ∆p∗t−1

s p-value df
1 0.230 10
2 0.033 22
3 0.000 36

Austria
tvar: ce2t

s p-value df
1 0.262 13
2 0.079 28
3 0.001 45

The goal of the study was to obtain a model with only one common nonlinear com-
ponent, because in this way a parsimonious specification is achieved. Obviously, the
necessary condition for the existence of such a model is a transition variable for which
the null hypothesis of linearity is rejected for every equation in the model. There are only
two variables that comply with this condition in our case, namely the variable ∆p∗t−1 in
the model for Italy and the variable ce2t in the model for Austria. The significance level
of 5 % is assumed. Table 2 shows the results of the common nonlinearities test for both
of the mentioned transition variables.

In accordance with the theory from the previous section, s is equal to 1 for Italy and 2
for Austria. The number of common nonlinear components, which is determined by the
formula n− s, takes the value of 2 for Italy and the value of 1 for Austria. Consequently,
we shall concentrate on the model for Austria from now on.

3.2 Estimated model for Austria

The full information maximum likelihood (FIML) estimator was employed to allow for
correlated residuals in different equations. Due to occasional problems with convergence
of the nonlinear optimization procedure some experimentation to find appropriate starting
values was required. The final set of estimates obtained for the parameters of the nonlinear
multivariate logistic smooth transition autoregressive model of the Slovenian Tolar versus
the Austrian Schilling, respectively Euro, can be found below. The estimated standard
errors are given in brackets.
Common nonlinear component:

comt =
1

1 + e−53.0123(ce2t+0.0993)
∗ (3.1)

(29.608) (0.016)

∗

(
−0.0315− 0.0717 · ce1t − 0.2177 · ce2t +

(0.0096) (0.0196) (0.0613)

+ 0.4792 ·∆p∗t−1 + 0.1063 ·∆st−1

)
(0.2486) (0.0573)
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First equation:

∆pt = 0.0384 + 0.0388 · ce1t + 0.1506 · ce2t − 0.6346 ·∆p∗t−1 + (3.2)
(0.0091) (0.0188) (0.0663) (0.2491)

+ 0.0086 · d1t + 0.0055 · d2t + 0.0053 ∗ d3t + 0.0053 · d4t +

(0.0015) (0.0020) (0.0018) (0.0015)

+ 0.0056 · d5t + 0.0033 · d7t + 0.0057 · d9t + 0.0036 · d10t +

(0.0015) (0.0019) (0.0016) (0.0025)

+ 0.0047 · d11t + 0.0025 · d12t + comt

(0.0015) (0.0018)

Second equation:

∆p∗t = 0.0031 + 0.0072 · ce2t + 0.0526 ·∆st−1 + 0.0016 · d2t + (3.3)
(0.0010) (0.0052) (0.0390) (0.0013)

+ 0.0013 · d7t − 0.0027 · d9t + 0.0620 · comt

(0.0009) (0.0009) (0.0147)

Third equation:

∆st = 0.0620 + 0.1642 · ce1t + 0.4629 · ce2t − 1.1531 ·∆p∗t−1 + (3.4)
(0.0147) (0.0305) (0.1055) (0.4513)

+ 0.5001 ·∆st−1 − 0.0024 · d5t − 0.0022 · d7t + 1.9444 · comt

(0.0905) (0.0017) (0.0020) (0.6469)

Note that both of the crucial parameters in the common nonlinear part, γ and c, are
significant at the 10 % level. The γ value of approximately 53 indicates rapid transition
between the two extreme regimes.

A comparison of single equations from the linear and nonlinear system (Table 3) re-
veals an increase in explanatory power for equations 1 and 3 (R2 increases from 0.62 to
0.65 and from 0.67 to 0.76, respectively) and a decrease in the standard error of regres-
sion from 0.0039 to 0.0038 and from 0.0051 to 0.0043, respectively. For equation 2, the
situation is just the opposite. There is a decrease in explanatory power, while the standard
error of regression stays the same. It should be emphasized that there are better ways to
analyze systems of equations than single-equation comparison. If we compare the value
of log-likelihood for both systems, we can observe that it is higher for the nonlinear sys-
tem (1668.52 as compared to 1649.64 for the linear system), indicating an improvement
in specification.

4 Conclusion
The obtained real exchange rate model of the Slovenian Tolar versus the Austrian Schilling,
respectively Euro, contains only one common nonlinear component, as desired. On the
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Table 3: Comparing equations in the linear and nonlinear system.

Linear system
∆p equation ∆p∗ equation ∆s equation

R2 0.62 0.22 0.67
S.E. 0.0039 0.0028 0.0051

Nonlinear system
∆p equation ∆p∗ equation ∆s equation

R2 0.65 0.17 0.76
S.E. 0.0038 0.0028 0.0043

other hand, the models for Germany, Italy, France and Croatia cannot be adequately de-
scribed with the help of only one type of nonlinearity. One of the possible explanations
for such results could be the late accession of Austria to the European Union. Austria
joined EU in the year 1995, whereas Germany, Italy and France were already member
states in the year 1993, when we started our investigation. The process of Austria’s EU
accession had a deep impact on its economic structure and the relation to its neighbour
states. In particular prices have been severely affected. These adjustments together with
those ongoing in neighbouring Slovenia seem to be captured by a common nonlinear fac-
tor in the components of the real exchange rate. It concerns especially the effects of the
lagged Austrian inflation rate and the nominal exchange rate, besides the cointegration
terms. This lends economic support to the specification of a multivariate logistic STAR
model with only one common nonlinear component.
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[9] Teräsvirta, T. (1998): Modelling economic relationships with smooth transition re-
gression. In A. Ullah and D.E. Giles (Eds): Handbook of Applied Economic Statis-
tics, 507–552. New York: Marcel Dekker.
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