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Abstract

A connected dominating set in a graph is a dominating set of vertices that induces a
connected subgraph. Following analogous studies in the literature related to independent
sets, dominating sets, and total dominating sets, we study in this paper the class of graphs
in which the connected dominating sets can be separated from the other vertex subsets
by a linear weight function. More precisely, we say that a graph is connected-domishold
if it admits non-negative real weights associated to its vertices such that a set of
vertices is a connected dominating set if and only if the sum of the corresponding weights
exceeds a certain threshold. We characterize the graphs in this non-hereditary class in
terms of a property of the set of minimal cutsets of the graph. We give several char-
acterizations for the hereditary case, that is, when each connected induced subgraph is
required to be connected-domishold. The characterization by forbidden induced subgraphs
implies that the class properly generalizes two well known classes of chordal graphs,
the block graphs and the trivially perfect graphs. Finally, we study certain algorithmic
aspects of connected-domishold graphs. Building on connections with minimal cutsets and
properties of the derived hypergraphs and Boolean functions, we show that our
approach leads to new polynomially solvable cases of the weighted connected dominating
set problem.
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1 Introduction
1.1 Background

Threshold concepts have been a subject of investigation for various discrete structures,
including graphs [18,20,48], Boolean functions [19,22,29,32,53,55], and hypergraphs [34,
58]. A common theme of these studies is a quest for necessary and sufficient conditions
for the property that a given combinatorial structure defined over some finite ground set
U admits non-negative real weights associated to elements of U such that a subset of U
satisfies a certain property, say π, if and only if the sum of the corresponding weights
exceeds a certain threshold. A more general framework has also been proposed, where
the requirement is that a subset of U satisfies property π if and only if the sum of the
corresponding weights belongs to a set T of thresholds given by a membership oracle [50].

Having the set U equipped with weights as above can have useful algorithmic impli-
cations. Consider for example the optimization problem of finding a subset of U with
property π that has either maximum or minimum cost (according to a given linear cost
function on the elements of the ground set). It was shown in [50] that if the weights as
above are known and integer, then the problem can be solved by a dynamic programming
approach in time O(|U |M) and with M calls of the membership oracle, where M is a
given upper bound for T . The pseudo-polynomial running time should be expected, since
the problem is very general and captures also the well-known knapsack problem [41]. Note,
however, that the problem admits a much simpler, polynomial-time solution in the special
case when the costs are unit and if we assume the monotone framework, where a set satisfies
property π as soon as its total weight exceeds a certain threshold. Under these assumptions,
a minimum-sized subset of U satisfying property π can be found by a simple greedy algo-
rithm starting with the empty set and adding the elements in order of non-increasing weight
until the threshold is exceeded.

Many interesting graph classes can be defined within the above framework, including
threshold graphs [20, 42, 48], domishold graphs [1], total domishold graphs [16, 18], equi-
stable graphs [54], and equidominating graphs [54]. In general, the properties of the result-
ing graph classes depend both on the choice of property π and on the constraints imposed
on the structure of the set T of thresholds. For example, if U is the vertex set of a graph,
property π denotes the property of being an independent (stable) set in a graph, and T is
restricted to be an interval unbounded from below, we obtain the class of threshold graphs,
which is a very well understood class of graphs, admitting many characterizations and
linear-time algorithms for recognition and various optimization problems (see, e.g., [48]).
If π denotes the property of being a dominating set and T is an interval unbounded from
above, we obtain the class of domishold graphs, which enjoys similar properties as the class
of threshold graphs. On the other hand, if π is the property of being a maximal stable set
and T is restricted to consist of a single number, we obtain the class of equistable graphs,
for which the recognition complexity is open (see, e.g., [47]), no structural characterization
is known, and several NP-hard optimization problems remain intractable [50].

Notions and results from the theory of Boolean functions [22] and hypergraphs [2] can
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be useful for the study of graph classes defined within the above framework. For instance,
the characterization of hereditarily total domishold graphs in terms of forbidden induced
subgraphs given in [18] is based on the facts that every threshold Boolean function is
2-asummable [19] and that every dually Sperner hypergraph is threshold [16].1 Moreover,
the fact that threshold Boolean functions are closed under dualization and (when given by
their complete DNF) can be recognized in polynomial time [55] leads to efficient algo-
rithms for recognizing total domishold graphs and for finding a minimum total dominating
set in a given total domishold graph [16]. The relationship also goes the other way around.
For instance, total domishold graphs can be used to characterize threshold hypergraphs and
threshold Boolean functions [18].

1.2 Aims and motivation

The aim of this paper is to further explore and exploit this fruitful interplay between
threshold concepts in graphs, hypergraphs, and Boolean functions. We do this by studying
the class of connected-domishold graphs, a new class of graphs that can be defined in the
above framework, as follows. A connected dominating set (CD set for short) in a connected
graph G is a set S of vertices of G that is dominating, that is, every vertex of G is either
in S or has a neighbor in S, and connected, that is, the subgraph of G induced by S is
connected. The ground set U is the vertex set of a connected graphG = (V,E), property π
is the property of being a connected dominating set in G, and T is any interval unbounded
from above.

Our motivations for studying the notion of connected domination in the above threshold
framework are twofold. First, connected domination is one of the most basic of the many
variants of domination, with applications in modeling wireless networks, see, e.g., [6, 11,
12, 26, 27, 31, 35, 36, 60–62, 66]. The connected dominating set problem is the problem
of finding a minimum connected dominating set in a given connected graph. This prob-
lem is NP-hard (and hard to approximate) for general graphs and remains intractable even
under significant restrictions, for instance, for the class of split graphs (see Section 6.2).
On the other hand, as outlined above, the problem is polynomially solvable in the class
of connected-domishold graphs equipped with weights as in the definition. This moti-
vates the study of connected-domishold graphs. In particular, identification of subclasses
of connected-domishold graphs might lead to new classes of graphs where the connected
dominating set problem (or its weighted version) is polynomially solvable.

Second, despite the increasingly large variety of graph domination concepts studied
in the literature (see, e.g., [35, 36]), so far a relatively small number of “threshold-like”
graph classes was studied with respect to notions of domination: the classes of domishold
and equidominating graphs (corresponding to the usual domination), the class of equistable
graphs (corresponding to independent domination), and the class of total domishold graphs
(corresponding to total domination). These graph classes differ significantly with respect
to their structural and algorithmic properties. For instance, while the class of domishold
graphs is a highly structured hereditary subclass of cographs, the classes of equistable and
of total domishold graphs are not contained in any nontrivial hereditary class of graphs and
are not structurally understood.2 In particular, the class of total domishold graphs is as rich
in its combinatorial structure as the class of threshold hypergraphs [18], for which (despite

1In [16,18], the hereditarily total domishold graphs were named hereditary total domishold graphs. We prefer
to adopt the grammatically correct term “hereditarily total domishold”.

2A class of graphs is said to be hereditary if it is closed under vertex deletion.
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being recognizable in polynomial time via linear programming [22, 55]) the existence of
a “purely combinatorial” polynomial-time recognition algorithm is an open problem [22].
These results, differences, and challenges provide further motivation for the study of struc-
tural and algorithmic properties of connected-domishold graphs.

1.3 The definition

Since a disconnected graphG does not have any connected dominating sets, we restrict our
attention to connected graphs in the following definition.

Definition 1.1. A connected graph G = (V,E) is said to be connected-domishold (CD for
short) if there exists a pair (w, t) where w : V → R+ is a weight function and t ∈ R+ is
a threshold such that for every subset S ⊆ V , w(S) :=

∑
x∈S w(x) ≥ t if and only if S

is a connected dominating set in G. Such a pair (w, t) will be referred to as a connected-
domishold (CD) structure of G.

We emphasize that the class of connected-domishold graphs is not the intersection of
the classes of connected and domishold graphs. In fact, the two classes are incomparable:
the 4-vertex cycle is connected and domishold [1] but not connected-domishold, see Exam-
ple 1.3 below; the 4-vertex path is connected-domishold but not domishold. The hyphen in
the name is meant to indicate this fact.

Example 1.2. The complete graph of order n is connected-domishold. Indeed, any non-
empty subset S ⊆ V (Kn) is a connected dominating set of Kn, and the pair (w, 1) where
w(x) = 1 for all x ∈ V (Kn) is a CD structure of Kn.

Example 1.3. The 4-cycle C4 is not connected-domishold. Denoting its vertices by v1, v2,
v3, v4 in a cyclic order, we see that a subset S ⊆ V (C4) is CD if and only if it contains
an edge. Therefore, if (w, t) is a CD structure of C4, then w(vi) + w(vi+1) ≥ t for all
i ∈ {1, 2, 3, 4} (indices modulo 4), which implies w(V (C4)) ≥ 2t. On the other hand,
w(v1) + w(v3) < t and w(v2) + w(v4) < t, implying w(V (C4)) < 2t.

1.4 Overview of results

Our results can be divided into four interrelated parts and can be summarized as follows:

1) Characterizations in terms of derived hypergraphs (resp., derived Boolean func-
tions); a necessary and a sufficient condition.
In a previous work [18, Proposition 4.1 and Theorem 4.5], total domishold graphs were
characterized in terms of thresholdness of a derived hypergraph and a derived Boolean
function. We give similar characterizations of connected-domishold graphs (Proposi-
tion 3.4). The characterizations lead to a necessary and a sufficient condition for a
graph to be connected-domishold, respectively, expressed in terms of properties of the
derived hypergraph (equivalently: of the derived Boolean function; Corollary 3.5).

2) The case of split graphs. A characterization of threshold hypergraphs.
While the classes of connected-domishold and total domishold graphs are in general
incomparable, we show that they coincide within the class of connected split graphs
(Theorem 4.3). Building on this equivalence, we characterize threshold hypergraphs in
terms of the connected-domisholdness property of a derived split graph (Theorem 4.4).



N. Chiarelli and M. Milanič: Linear separation of connected dominating sets in graphs 491

We also give examples of connected split graphs showing that neither of the two condi-
tions for a graph to be connected-domishold mentioned above (one necessary and one
sufficient) characterizes this property.

3) The hereditary case.
We observe that, contrary to the classes of threshold and domishold graphs, the class
of connected-domishold graphs is not hereditary. This motivates the study of so-called
hereditarily connected-domishold graphs, defined as graphs every connected induced
subgraph of which is connected-domishold. As our main result (Theorem 5.4), we
give several characterizations of the class of hereditarily connected-domishold graphs.
The characterizations in terms of forbidden induced subgraphs implies that the class
of hereditarily connected-domishold graphs is a subclass of the class of chordal graphs
properly containing two well known classes of chordal graphs, the class of block graphs
and the class of trivially perfect graphs.

4) Algorithmic aspects via vertex separators.
Finally, we build on all these results, together with some known results from the liter-
ature on connected dominating sets and minimal vertex separators in graphs, to study
certain algorithmic aspects of the class of connected-domishold graphs and their heredi-
tary variant. We identify a sufficient condition, capturing a large number of known graph
classes, under which the CD property can be recognized efficiently (Theorem 6.1). We
also show that the same condition, when applied to classes of connected-domishold
graphs, results in classes of graphs for which the weighted connected dominating set
problem (which is NP-hard even on split graphs) is polynomial-time solvable (The-
orem 6.5). This includes the classes of hereditarily connected-domishold graphs and
F2-free split graphs (see Figure 1), leading to new polynomially solvable cases of the
problem.

Figure 1: Graph F2.

Structure of the paper. In Section 2, we state the necessary definitions and preliminary
results on graphs, hypergraphs, and Boolean functions. In Section 3, we give characteri-
zations of connected-domishold graphs in terms of thresholdness of derived hypergraphs
and Boolean functions. Connected-domishold split graphs are studied in Section 4, where
their relation to threshold hypergraphs is also observed. The main result of the paper, The-
orem 5.4, is stated in Section 5, where some of its consequences are also derived. Section 6
discusses some algorithmic aspects of connected-domishold graphs. Our proof of Theo-
rem 5.4 relies on a technical lemma, which is proved in Section 7.

2 Preliminaries
2.1 Graphs

All graphs in this paper will be finite, simple and undirected. The (open) neighborhood of
a vertex v is the set of vertices in a graph G adjacent to v, denoted by NG(v) (or simply
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N(v) if the graph is clear from the context); the closed neighborhood of v is denoted by
NG[v] and defined as NG(v)∪{v}. The degree of a vertex v in a graph G is the cardinality
of its neighborhood. The complete graph, the path and the cycle of order n are denoted by
Kn, Pn and Cn, respectively. A clique in a graph is a subset of pairwise adjacent vertices,
and an independent (or stable) set is a subset of pairwise non-adjacent vertices. A universal
vertex in a graph G is a vertex adjacent to all other vertices. For a set S of vertices in a
graphG, we denote byG[S] the subgraph ofG induced by S. For a setF of graphs, we say
that a graph is F-free if it does not contain any induced subgraph isomorphic to a member
of F . Given a graph G, a vertex v ∈ V (G), and a set U ⊆ V (G) \ {v}, we say that v
dominates U if v is adjacent to every vertex in U .

The main notion that will provide the link between threshold Boolean functions and
hypergraphs is that of cutsets in graphs. A cutset in a graph G is a set S ⊆ V (G) such that
G − S is disconnected. A cutset is minimal if it does not contain any other cutset. For a
pair of disjoint vertex sets A and B in a graph G such that no vertex in A has a neighbor
in B, an A,B-separator is a set of vertices S ⊆ V (G) \ (A ∪ B) such that A and B are
in different components of G − S. An A,B-separator is said to be minimal if it does not
contain any other A,B-separator. When sets A and B are singletons, say A = {u} and
B = {v}, we will refer to a (minimal)A,B-separator simply as a (minimal) u, v-separator.
A minimal vertex separator in G is a minimal u, v-separator for some non-adjacent vertex
pair u, v. Note that every minimal cutset of G is a minimal vertex separator, but not vice
versa. The minimal cutsets are exactly the minimal u, v-separators that do not contain any
other x, y-separator. The connection between the CD graphs and the derived hypergraphs
and Boolean functions will be developed in Section 3 using the following characterization
of CD sets due to Kanté et al. [38].

Proposition 2.1 (Kanté et al. [38]). In every connected graph G that is not complete, a
subset D ⊆ V (G) is a CD set if and only if D ∩ S 6= ∅ for every minimal cutset S in G.

In other words, unless a connected graph G is complete, its CD sets are exactly the
transversals of the cutset hypergraph ofG (see Section 2.3 and Definition 3.2 for definitions
of these notions).

A graphG is chordal if it does not contain any induced cycle of order at least 4, and split
if it has a split partition, that is, a partition of its vertex set into a clique and an independent
set. One of our proofs (the proof of Theorem 5.4) will rely on the following property of
chordal graphs.

Lemma 2.2 (Kumar and Veni Madhavan [45]). If S is a minimal cutset of a chordal graph
G, then each connected component of G−S has a vertex that is adjacent to all the vertices
of S.

For graph theoretic notions not defined above, see, e.g., [65].

2.2 Boolean functions

Let n be a positive integer. Given two vectors x, y ∈ {0, 1}n, we write x ≤ y if xi ≤ yi
for all i ∈ [n] := {1, . . . , n}. A Boolean function f : {0, 1}n → {0, 1} is positive (or:
monotone) if f(x) ≤ f(y) holds for every two vectors x, y ∈ {0, 1}n such that x ≤ y.
A literal of f is either a variable, xi, or the negation of a variable, denoted by xi. An
elementary conjunction is an expression of the form C =

(∧
i∈A xi

)
∧
(∧

j∈B xj
)

where
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A ∩ B = ∅. An implicant of a Boolean function f is an elementary conjunction C such
that f(x) = 1 for all x ∈ {0, 1}n for which C takes value 1 (we also say that C implies f ).
An implicant is said to be prime if it is not implied by any other implicant. If f is positive,
then none of the variables appearing in any of its prime implicants appears negated. Every
n-variable positive Boolean function f can be expressed with its complete DNF (disjunctive
normal form), defined as the disjunction of all prime implicants of f .

A positive Boolean function f is said to be threshold if there exist non-negative real
weights w = (w1, . . . , wn) and a non-negative real number t such that for every
x ∈ {0, 1}n, f(x) = 0 if and only if

∑n
i=1 wixi ≤ t. Such a pair (w, t) is called a

separating structure of f . Every threshold Boolean function admits an integral separating
structure (see [22, Theorem 9.5]). A positive Boolean function f(x1, . . . , xn) is threshold
if and only if its dual function fd(x) = f(x) is threshold [22]; moreover, if (w1, . . . , wn, t)
is an integral separating structure of f , then (w1, . . . , wn,

∑n
i=1 wi− t− 1) is a separating

structure of fd.
Threshold Boolean functions have been characterized in [19] and [29], as follows. A

false point of f is an input vector x ∈ {0, 1}n such that f(x) = 0; a true point is de-
fined analogously. For k ≥ 2, a positive Boolean function f : {0, 1}n → {0, 1} is said
to be k-summable if, for some r ∈ {2, . . . , k}, there exist r (not necessarily distinct)
false points of f , say, x1, x2, . . . , xr, and r (not necessarily distinct) true points of f , say
y1, y2, . . . , yr, such that

∑r
i=1 x

i =
∑r

i=1 y
i (note that the sums are in Zn and not in Zn

2 ,
the n-dimensional vector space over GF(2)). Function f is said to be k-asummable if it is
not k-summable, and it is asummable if it is k-asummable for all k ≥ 2.

Theorem 2.3 (Chow [19], Elgot [29], see also [22, Theorem 9.14]). A positive Boolean
function f is threshold if and only if it is asummable.

The problem of determining whether a positive Boolean function given by its complete
DNF is threshold is solvable in polynomial time, using dualization and linear programming
(see [55] and [22, Theorem 9.16]). The algorithm tests if a polynomially sized derived
linear program has a feasible solution, and in case of a yes instance, the solution found
yields a separating structure of the given function. Using, e.g., Karmarkar’s interior point
method for linear programming [39], one can assure that a rational solution is found. This
results in a rational separating structure, which can be easily turned into an integral one.
We summarize this result as follows.

Theorem 2.4. There exists a polynomial-time algorithm for recognizing threshold Boolean
functions given by the complete DNF. In case of a yes instance, the algorithm also computes
an integral separating structure of the given function.

Remark 2.5. The existence of a “purely combinatorial” polynomial-time recognition al-
gorithm for threshold Boolean functions (that is, one not relying on solving an auxiliary
linear program) is an open problem [22].

A similar approach as the one outlined above shows that every connected-domishold
graph has an integral CD structure; we will often use this fact in the paper. For further
background on Boolean functions, we refer to the comprehensive monograph by Crama
and Hammer [22].
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2.3 Hypergraphs

A hypergraph is a pair H = (V,E) where V is a finite set of vertices and E is a set of
subsets of V , called hyperedges [2]. When the vertex set or the hyperedge set ofH will not
be explicitly given, we will refer to them by V (H) and E(H), respectively. A transversal
(or: hitting set) of H is a set S ⊆ V such that S ∩ e 6= ∅ for all e ∈ E. A hypergraph
H = (V,E) is threshold if there exist a weight function w : V → R+ and a threshold
t ∈ R+ such that for all subsets X ⊆ V , it holds that w(X) ≤ t if and only if X contains
no hyperedge ofH [34]. Such a pair (w, t) is said to be a separating structure ofH.

To every hypergraph H = (V,E), we can naturally associate a positive Boolean func-
tion fH : {0, 1}V → {0, 1}, defined by the positive DNF expression

fH(x) =
∨
e∈E

∧
u∈e

xu

for all x ∈ {0, 1}V . Conversely, to every positive Boolean function f : {0, 1}n → {0, 1}
given by a positive DNF φ =

∨m
j=1

∧
i∈Cj

xi, we can associate a hypergraph H(φ) =

(V,E) as follows: V = [n] andE = {C1, . . . , Cm}. It follows directly from the definitions
that the thresholdness of hypergraphs and of Boolean functions are related as follows.

Proposition 2.6. A hypergraphH = (V,E) is threshold if and only if the positive Boolean
function fH is threshold. A positive Boolean function given by a positive DNF
φ =

∨m
j=1

∧
i∈Cj

xi is threshold if and only if the hypergraphH(φ) is threshold.

Applying Theorem 2.3 to the language of hypergraphs gives the following character-
ization of threshold hypergraphs. For k ≥ 2, a hypergraph H = (V,E) is said to be
k-summable if, for some r ∈ {2, . . . , k}, there exist r (not necessarily distinct) subsets
A1, . . . , Ar of V such that each Ai contains a hyperedge of H, and r (not necessarily dis-
tinct) subsets B1, . . . , Br of V such that each Bi does not contain a hyperedge of H and
such that for every vertex v ∈ V , we have:

|{i : v ∈ Ai}| = |{i : v ∈ Bi}|. (2.1)

We say that a hypergraphH is k-asummable if it is not k-summable and it is asummable if
it is k-asummable for all k ≥ 2.

Corollary 2.7. A hypergraphH is threshold if and only if it is asummable.

A hypergraph H = (V,E) is said to be Sperner (or: a clutter) if no hyperedge of H
contains another hyperedge, that is, if for every two distinct hyperedges e and f of H, it
holds that min{|e \ f |, |f \ e|} ≥ 1 . Chiarelli and Milanič defined in [16, 18] the notion
of dually Sperner hypergraphs as the hypergraphs such that the inequality
min{|e \ f |, |f \ e|} ≤ 1 holds for every pair of distinct hyperedges e and f of H. It
was proved in [16, 18] that dually Sperner hypergraphs are threshold; they were applied
in the characterizations of total domishold graphs and their hereditary variant. Boros et
al. introduced in [8] the following restriction of dually Sperner hypergraphs.

Definition 2.8 (Boros et al. [8]). A hypergraph H = (V,E) is said to be 1-Sperner if for
every two distinct hyperedges e and f ofH, it holds that min{|e \ f |, |f \ e|} = 1.
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Note that a hypergraph is 1-Sperner if and only if it is both Sperner and dually Sperner.
In particular, for Sperner hypergraphs the notions of dually Sperner and 1-Sperner hyper-
graphs coincide. Since a hypergraph H is threshold if and only if the Sperner hypergraph
obtained from H by keeping only its inclusion-wise minimal hyperedges is threshold, the
fact that dually Sperner hypergraphs are threshold is equivalent to the following fact, proved
constructively by Boros et al. in [8] using a composition result for 1-Sperner hypergraphs
developed therein.

Theorem 2.9 (Chiarelli and Milanič [18], Boros et al. [8]). Every 1-Sperner hypergraph is
threshold.

3 Connected-domishold graphs via hypergraphs and Boolean func-
tions

In a previous work [18, Proposition 4.1 and Theorem 4.5], total domishold graphs were
characterized in terms of thresholdness of a derived hypergraph and a derived Boolean
function. In this section we give similar characterizations of connected-domishold graphs.

We first recall some relevant definitions and a result from [18]. A total dominating set
in a graph G is a set S ⊆ V (G) such that every vertex of G has a neighbor in S. Note that
only graphs without isolated vertices have total dominating sets. A graph G = (V,E) is
said to be total domishold (TD for short) if there exists a pair (w, t) where w : V → R+

is a weight function and t ∈ R+ is a threshold such that for every subset S ⊆ V ,
w(S) :=

∑
x∈S w(x) ≥ t if and only if S is a total dominating set in G. A pair (w, t)

as above will be referred to as a total domishold (TD) structure of G. The neighborhood
hypergraph of a graph G is the hypergraph denoted by N (G) and defined as follows: the
vertex set ofN (G) is V (G) and the hyperedge set consists precisely of the minimal neigh-
borhoods in G, that is, of the inclusion-wise minimal sets in the family of neighborhoods
{N(v) : v ∈ V (G)}.3 Note that a set S ⊆ V (G) is a total dominating set in G if and only
if it is a transversal of N (G).

Proposition 3.1 (Chiarelli and Milanič [18]). For a graph G = (V,E), the following are
equivalent:

1. G is total domishold.

2. Its neighborhood hypergraph N (G) is threshold.

The constructions of the derived hypergraph and the derived Boolean function used in
our characterizations of connected-domishold graphs in terms of their thresholdness are
specified by Definitions 3.2 and 3.3.

Definition 3.2. Given a graph G, the cutset hypergraph of G is the hypergraph C(G) with
vertex set V (G) whose hyperedges are precisely the minimal cutsets in G.

Given a finite non-empty set V , we denote by {0, 1}V the set of all binary vectors with
coordinates indexed by V . Given a graph G = (V,E) and a binary vector x ∈ {0, 1}V ,
its support set is the set denoted by S(x) and defined by S(x) = {v ∈ V : xv = 1}. In

3In [18], the neighborhood hypergraph of G was named reduced neighborhood hypergraph (of G) and denoted
by RN (G). We changed the terminology in analogy with the term “cutset hypergraph”, which will be introduced
shortly.
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the following definition, we associate a Boolean function to a given n-vertex graph G. In
order to avoid fixing a bijection between its vertex set and the set [n], we will consider the
corresponding Boolean function as being defined on the set {0, 1}V , where V = V (G).
Accordingly, a separating structure of such a Boolean function can be seen as a pair (w, t)
where w : V → R+ and t ∈ R+ such that for every x ∈ {0, 1}V , we have f(x) = 0 if and
only if

∑
v∈S(x) w(v) ≤ t.

Definition 3.3. Given a graph G = (V,E), its cutset function is the positive Boolean
function f cut

G : {0, 1}V → {0, 1} that takes value 1 precisely on vectors x ∈ {0, 1}V whose
support set contains some minimal cutset of G.

The announced characterizations of connected-domishold graphs in terms of their cut-
set hypergraphs and cutset functions are given in the following proposition. The proof
is based on two ingredients: the characterization of the connected dominating sets of a
given connected (non-complete) graph given by Proposition 2.1 and the fact that threshold
Boolean functions are closed under dualization.

Proposition 3.4. For a connected graph G = (V,E), the following are equivalent:

1. G is connected-domishold.

2. Its cutset hypergraph C(G) is threshold.

3. Its cutset function f cut
G is threshold.

Moreover, ifG is not a complete graph and (w, t) is an integral separating structure of f cut
G

or of C(G), then (w,w(V )− t) is a CD structure of G.

Proof. We consider two cases, depending on whether G is a complete graph or not.

Case 1: G is complete.
In this case all the three statements hold. Recall that every complete graph is CD

(see Example 1.2). Since complete graphs have no cutsets, the set of hyperedges of the
cutset hypergraph C(G) is empty. Hence the hypergraph C(G) is threshold. The absence
of (minimal) cutsets also implies that the cutset function f cut

G is constantly equal to 0 and
hence threshold.

Case 2: G is not complete.
First we will show the equivalence between statements 1 and 3. Since a positive

Boolean function f is threshold if and only if its dual function fd(x) = f(x) is threshold,
it suffices to argue that G is connected-domishold if and only if (f cut

G )d is threshold.
We claim that for every x ∈ {0, 1}V , we have (f cut

G )d(x) = 1 if and only if S(x), the
support set of x, is a connected dominating set of G. Let x ∈ {0, 1}V and let S be the
support set of x. By definition, (f cut

G )d(x) = 1 if and only if f cut
G (x) = 0, which is the case

if and only if V \ S does not contain any minimal cutset of G. This is in turn equivalent to
the condition that S is a transversal of the cutset hypergraph of G, and, by Proposition 2.1,
to the condition that S is a connected dominating set of G. Therefore, (f cut

G )d(x) = 1 if
and only if S is a connected dominating set of G, as claimed.

Now, if G is connected-domishold, then it has an integral connected-domishold struc-
ture, say (w, t), and (w, t− 1) is a separating structure of the dual function (f cut

G )d, which
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implies that (f cut
G )d is threshold. Conversely, if the dual function is threshold, with an in-

tegral separating structure (w, t), then (w, t+ 1) is a connected-domishold structure of G.
This establishes the equivalence between statements 1 and 3.

Next, we show the equivalence between statements 2 and 3. Note that the complete
DNF of f cut

G , the cutset function of G, is given by the expression
∨

S∈C(G)

∧
u∈S xu. It

now follows directly from the definitions of threshold Boolean functions and threshold
hypergraphs that function f cut

G (x) is threshold if and only if cutset hypergraph C(G) is
threshold.

Finally, if (w, t) is an integral separating structure of f cut
G , then (w,w(V )− t− 1) is a

separating structure of (f cut
G )d and hence (w,w(V )− t) is a connected-domishold structure

of G.

Recall that every 1-Sperner hypergraph is threshold (Theorem 2.9) and every threshold
hypergraph is asummable (Corollary 2.7). Thus, in particular, every threshold hypergraph
is 2-asummable. Applying these relations to the specific case of the minimal cutset hyper-
graphs, Proposition 3.4 leads to the following.

Corollary 3.5. For every connected graph G, the following holds:

1. If the cutset hypergraph C(G) is 1-Sperner, then G is connected-domishold.

2. If G is connected-domishold, then its cutset hypergraph C(G) is 2-asummable.

We will show in Section 4.1 that neither of the two statements in Corollary 3.5 can be
reversed. On the other hand, in Section 5 we will prove that all the three properties become
equivalent in the hereditary setting.

4 Connected-domishold split graphs
The following examples show that for general connected graphs, the CD and TD properties
are incomparable:

• The path P6 is connected-domishold (it has a unique minimal connected dominating
set, formed by its internal vertices) but it is not total domishold (see, e.g., [18]).

• The graph in Figure 2 is TD but not CD.

v1 v2 v3

v6v7v8

v4

v5

Figure 2: A TD graph that is not CD.

The graph is total domishold: it has a unique minimal total dominating set, namely
{v1, v4, v5, v8}. On the other hand, the graph is not connected-domishold. This can
be shown by observing that its cutset hypergraph is not 2-asummable and applying
Corollary 3.5. To see that the cutset hypergraph of G is 2-summable, note that con-
dition (2.1) is satisfied if we take k = r = 2 and A1 = {v2, v7}, A2 = {v3, v6},
B1 = {v2, v3}, and B2 = {v6, v7}.
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Interestingly, we will show in Section 5 that if the CD and TD properties are required
also for all connected induced subgraphs, then the corresponding graph classes become
comparable (see Corollary 5.9). In the rest of this section, we will prove that the two
properties coincide in the class of connected split graphs and examine some consequences
of this result. Recall that a graph is split if and only if its vertex set has a partition into a
clique and an independent set. Foldes and Hammer characterized split graphs as exactly
the graphs that are {2K2, C4, C5}-free [30]. In particular, this implies that a split graph
can be disconnected only if it has an isolated vertex.

Lemma 4.1. Let G be a connected graph and let G′ be the graph obtained from G by
adding to it a universal vertex. Then, G is connected-domishold if and only if G′ is
connected-domishold.

Proof. Let V (G′) = V (G) ∪ {u}, where u is the added vertex. Suppose that G is
connected-domishold and let (w, t) be a CD structure of G. Since the set of connected
dominating sets of G′ consists of all connected dominating sets of G together with all sub-
sets of V (G′) containing u, we can obtain a CD structure, say (w′, t′), of G′ by setting
w′(x) = w(x) for all x ∈ V (G), w′(u) = t, and t′ = t. Therefore, G′ is connected-
domishold.

Conversely, if (w′, t′) is a CD structure of G′, then (w, t) where t = t′ and w is the
restriction of w′ to V (G) is a CD structure of G. This is because a set X ⊆ V (G) is
a connected dominating set of G if and only if it is a connected dominating set of G′.
Therefore, if G′ is connected-domishold then so is G.

Recall that given a connected graph G, we denote by C(G) (resp., N (G)) its cutset
(resp., neighborhood) hypergraph.

Lemma 4.2. Let G be a connected split graph without universal vertices. Then

C(G) = N (G).

Proof. Fix a split partition of V (G), say V (G) = K ∪ I where K is a clique, I is an
independent set, and K ∩ I = ∅. Clearly, the hypergraphs C(G) and N (G) have the same
vertex set. We show that the hyperedge sets are also the same in two steps.

First, we show that E(C(G)) ⊆ E(N (G)), that is, that every minimal cutset is a
minimal neighborhood. To this end, it suffices to show that every minimal cutset S in
G is a neighborhood, that is, a set of the form S = N(v) for some v ∈ V (G). This is
indeed enough, because if a minimal cutset S inG satisfies S = N(v) for some v ∈ V (G),
but N(v) properly contains some other neighborhood, say N(u), then the fact that N(u) is
a cutset inG (for instance, it is a u, v-separator) would imply that S is not a minimal cutset.

Let S be a minimal cutset in G. Then, S is a minimal u, v-separator for some non-
adjacent vertex pair u, v; in particular, S ⊆ V (G) \ {u, v}. We claim that N(u) ⊆ S or
N(v) ⊆ S. Suppose that this is not the case. Then, there exist a neighbor of u, say u′, such
that u′ 6∈ S, and a neighbor of v, say v′, such that v′ 6∈ S. Since {u, v, u′, v′} ⊆ V (G) \ S
and u and v are in different components of G− S, vertices u′ and v′ are distinct and non-
adjacent. Thus, at least one of u′ and v′, say u′, is in I . This implies that u ∈ K and
therefore v ∈ I , which implies that v′ ∈ K and hence (u, v′, v) is a u, v-path in G − S,
a contradiction. This shows that N(u) ⊆ S or N(v) ⊆ S, as claimed. Since each of
N(u) and N(v) is a u, v-separator, the fact that S is a minimal u, v-separator implies that
S ∈ {N(u), N(v)}. This completes the proof of the inclusion E(C(G)) ⊆ E(N (G)).
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It remains to show that E(N (G)) ⊆ E(C(G)). Let S be a minimal neighborhood in
G. Then S = N(v) for some v ∈ V (G). Since v is not universal, the set V (G) \ N [v]
is non-empty. Therefore S is a v, w-separator for any w ∈ V (G) \ N [v]; in particular, S
is a cutset in G. Suppose for a contradiction that S is not a minimal cutset in G. Then S
properly contains some minimal cutset, say S′, in G. By the first part of the proof, S′ is of
the form S′ = N(z) for some z ∈ V (G). However, sinceN(z) is a neighborhood properly
contained in S = N(v), this contradicts the fact that S is a minimal neighborhood.

Theorem 4.3. A connected split graph is connected-domishold if and only if it is total
domishold.

Proof. If G is complete, then G is both connected-domishold and total domishold. So we
may assume that G is not complete. More generally, we show next that we may assume
that G does not have any universal vertices. Suppose that G has a universal vertex, say u,
and let G′ = G − u. By [18, Proposition 3.3], G is TD if and only if G′ is TD. If G′ is
not connected, then {u} is the only minimal connected dominating set of G and hence G
is connected-domishold in this case. Furthermore, G is also total domishold: since G′ is a
disconnected 2K2-free graph, G′ has an isolated vertex. Therefore, by [18], G′ is TD, and
hence so is G. If G′ is connected, then by Lemma 4.1, G is CD if and only if G′ is CD.
Therefore, the problem of verifying whether the CD and the TD properties are equivalent
for G reduces to the same problem for G′. An iterative application of the above argument
eventually reduces the graph to either a graph where both properties hold or to a connected
graph without universal vertices.

Now, let G be a connected split graph without universal vertices. By Proposition 3.4,
G is connected-domishold if and only if its cutset hypergraph C(G) is threshold. By
Proposition 3.1, G is total domishold if and only if its neighborhood hypergraph N (G)
is threshold. Therefore, to prove the theorem it suffices to show that C(G) = N (G). But
this was established in Lemma 4.2.

Theorem 4.3 implies another relation between connected-domishold (split) graphs and
threshold hypergraphs, one that in a sense reverses the one stated in Proposition 3.4. Given
a hypergraphH = (V,E), the split-incidence graph ofH (see, e.g., [38]) is the split graph
G such that V (G) = V ∪ E, V is a clique, E is an independent set, and v ∈ V is adjacent
to e ∈ E if and only if v ∈ e.

Theorem 4.4. Let H = (V,E) be a hypergraph with ∅ 6∈ E. Then H is threshold if and
only if its split-incidence graph is connected-domishold.

Proof. Since ∅ 6∈ E, the split-incidence graph ofH is connected. It was shown in [18] that
a hypergraph is threshold if and only if its split-incidence graph is total domishold. The
statement of the theorem now follows from Theorem 4.3.

It might be worth pointing out that in view of Remark 2.5 and Theorem 4.4, it is an
open problem of whether there is a “purely combinatorial” polynomial-time algorithm for
recognizing connected-domishold split graphs. Further issues regarding the recognition
problem of CD graphs will be discussed in Section 6.1.
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4.1 Examples related to Corollary 3.5

We now show that neither of the two statements in Corollary 3.5 can be reversed. First we
exhibit an infinite family of CD split graphs whose cutset hypergraphs are not 1-Sperner.

Example 4.5. Let n ≥ 4 and let G = K∗n be the graph obtained from the complete graph
Kn by gluing a triangle on every edge. Formally,

V (G) = {u1, . . . , un} ∪ {vij : 1 ≤ i < j ≤ n} and
E(G) = {uiuj : 1 ≤ i < j ≤ n} ∪ {uivjk : 1 ≤ j < k ≤ n and i ∈ {j, k}}.

The graph G is a CD graph: setting

w(x) =

{
1, if x ∈ {u1, . . . , un};
0, otherwise.

and t = n − 1 results in a CD structure of G. On the other hand, the cutset hypergraph
of G is not 1-Sperner. Since every pair of the form {ui, uj} with 1 ≤ i < j ≤ n is a
minimal cutset of G, the cutset hypergraph contains {u1, u2} and {u3, u4} as hyperedges
and is therefore not 1-Sperner.

Next, we argue that there exists a split graphGwhose cutset hypergraph is 2-asummable
but G is not CD. As observed already in [18], the fact that not every 2-asummable positive
Boolean function is threshold can be used to construct split graphs G such that N (G) is
2-asummable and G is not total domishold. The existence of split graphs with claimed
properties now follows from Theorem 4.3 and its proof. For the sake of self-containment,
we describe an example of such a construction in Appendix A.

5 The hereditary case
In this section we present the main result of this paper, Theorem 5.4, which gives several
characterizations of graphs all connected induced subgraphs of which are CD, and derive
some of its consequences. The proof of Theorem 5.4 relies on a technical lemma about
chordal graphs, which will be proved in Section 7.

We start with an example showing that, contrary to the classes of threshold and
domishold graphs, the class of connected-domishold graphs is not hereditary. We assume
notation from Example 1.3.

Example 5.1. The graph G obtained from C4 by adding to it a new vertex, say v5, and
making it adjacent exactly to one vertex of the C4, say to v4, is CD: the (inclusion-wise)
minimal CD sets of G are {v1, v4} and {v3, v4}, hence a CD structure of G is given by
w(v2) = w(v5) = 0, w(v1) = w(v3) = 1, w(v4) = 2, and t = 3.

This motivates the following definition.

Definition 5.2. A graph G is said to be hereditarily connected-domishold (hereditarily CD
for short) if every connected induced subgraph of G is connected-domishold.

In general, for a property Π of connected graphs, a graph is said to be hereditarily Π if
every connected induced subgraph of it satisfies Π. Characterizations of classes of heredi-
tarily Π graphs where Π denotes the property that the graph has a connected dominating set
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inducing a graph with a certain property Π′ were given, for various choices of property Π′,
by Michalak in [49]. In [57], Pržulj et al. gave characterizations of hereditarily Π graphs
where Π denotes the property that the graph has a dominating pair of vertices (that is, a
pair of vertices such that every path between them is dominating). The class of hereditar-
ily connected-domishold graphs corresponds to the case when Π is the property of being
connected-domishold.

In order to state the technical lemma to be used in the proof of Theorem 5.4, we need
some terminology. A diamond is a graph obtained from K4 by deleting an edge. Given a
diamondD, we will refer to its vertices of degree two as its tips and denote them as t and t′,
and to its vertices of degree three as its centers and denote them as c and c′. The respective
vertex sets will be denoted by T and C. Similar notation will be used for diamonds denoted
by D1 or D2.

Lemma 5.3 (Diamond Lemma). Let G be a connected chordal graph. Suppose that G
contains two induced diamonds D1 = (V1, E1) and D2 = (V2, E2) such that:

(i) C1 ∩ C2 = ∅.

(ii) If no vertex in C1 is adjacent to a vertex in C2, then there exists a C1, C2-separator
in G of size one.

(iii) For each j ∈ {1, 2} the tips (i.e., tj , t′j) of Dj belong to different components of
G− Cj .

(iv) For j ∈ {1, 2} every component of G− Cj has a vertex that dominates Cj .

Then G has an induced subgraph isomorphic to F1, F2, or Hi for some i ≥ 1, where the
graphs F1, F2, and a general member of the family {Hi} are depicted in Figure 3.

F2F1 Hi (i ≥ 1)

1 2 i3

Figure 3: Graphs F1, F2, and Hi.

The proof of Lemma 5.3 is postponed to Section 7.

Theorem 5.4. For every graph G, the following are equivalent:

1. G is hereditarily connected-domishold.

2. The cutset hypergraph of every connected induced subgraph of G is 1-Sperner.

3. The cutset hypergraph of every connected induced subgraph of G is threshold.

4. The cutset hypergraph of every connected induced subgraph of G is 2-asummable.

5. G is an {F1, F2, H1, H2, . . .}-free chordal graph.
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Proof. The equivalence between items 1 and 3 follows from Proposition 3.4.
The implications 2⇒ 1⇒ 4 follow from Corollary 3.5.
For the implication 4 ⇒ 5, we only need to verify that the cutset hypergraph of none

of the graphs in the set F := {Ck : k ≥ 4} ∪ {F1, F2} ∪ {Hi : i ≥ 1} is 2-asummable.
Let F ∈ F . Suppose first that F is a cycle Ck for some k ≥ 4, let u1, u2, u3, u4 be four
consecutive vertices on the cycle. Let A1 = {u1, u3}, A2 = {u2, u4}, B1 = {u1, u2}
and B2 = {u3, u4}. Then, A1 and A2 are minimal cutsets of F and thus hyperedges
of the hypergraph C(F ), while B1 and B2 do not contain any minimal cutset of F and
are consequently independent sets in the hypergraph C(F ). Since the sets A1, A2, B1 and
B2 satisfy condition (2.1), this implies that the hypergraph C(F ) is 2-summable. If F ∈
{F1, F2} ∪ {Hi : i ≥ 1}, then let a and b be the two vertices of degree 2 in F , let
N(a) = {a1, a2}, N(b) = {b1, b2}, let A1 = N(a), A2 = N(b), B1 = {a1, b1} and
B2 = {a2, b2}. The rest of the proof is the same as above.

It remains to show the implication 5 ⇒ 2. Suppose that the implication fails and
let G be a minimal counterexample. That is, G is an {F1, F2, H1, H2, . . .}-free chordal
graph such that its cutset hypergraph is not 1-Sperner, but the cutset hypergraph of every
{F1, F2, H1, H2, . . .}-free chordal graph with fewer vertices than G is 1-Sperner. Since
C(G) is not 1-Sperner, G has two minimal cutsets, say S and S′, such that
min{|S \ S′|, |S′ \ S|} ≥ 2. The minimality of G implies that the empty set is not a
minimal cutset, hence G is connected. Furthermore, the minimality ensures that S and S′

are disjoint sets (otherwise one can remove S∩S′ fromG and have a smaller counterexam-
ple). Thus, min{|S|, |S′|} ≥ 2. The minimality also ensures that |S| = |S′| = 2. Indeed,
removing a third vertex z, if present, from S does not affect the minimal cutset status of
S. Since every minimal cutset in a chordal graph is a clique [25], removing a third vertex
z, if present, from S will also not affect the minimal cutset status of S′ since the entire S
(which is a clique) is present in one component of G− S′.

The minimality also ensures that if there are no edges between S and S′, then every
minimal S, S′-separator T is of size one. Indeed, if this is not the case, then |T | ≥ 2 since
G is connected. Let X be a component of G − S containing S′ and let Y be any other
component of G − S. The fact that T separates S from S′ implies that T contains all
vertices in N(S)∩ V (X), which is a non-empty set due to the minimality of S. Since T is
a minimal cutset in a chordal graph, it is a clique; in particular, it is fully contained in X .
However, this implies that the sets S′ and T are minimal cutsets in the graph G − V (Y )
such that min{|S′ \ T |, |T \ S′|} ≥ 2, contrary to the minimality of G.

Let X , Y be two distinct components of G− S and X ′, Y ′ two distinct components of
G − S′. By Lemma 2.2, there exist vertices x ∈ X and y ∈ Y such that each of x and y
dominates S and x′ ∈ X ′ and y′ ∈ Y ′ such that each of x′ and y′ dominates S′. Let D1

be the subgraph of G induced by S ∪ {x, y} and let D2 be the subgraph of G induced by
S′ ∪ {x′, y′}. The definitions of D1 and D2 and Lemma 2.2 imply that D1 and D2 are two
induced diamonds in G satisfying the hypotheses of the Diamond Lemma (Lemma 5.3).
Consequently, G has an induced subgraph isomorphic to F1, F2, or Hi for some i ≥ 1, a
contradiction. This completes the proof of the theorem.

Remark 5.5. The cutset hypergraph of a disconnected graph H is equal to (V (H), {∅})
and is clearly 1-Sperner (and therefore also threshold and 2-asummable). It follows that
conditions from items 2–4 in Theorem 5.4 are equivalent to the analogous conditions in
which the respective properties are imposed on cutset hypergraphs of all induced subgraphs
of G (and not only of connected ones).
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In the rest of this section, we examine some of the consequences of the forbidden
induced subgraph characterization of hereditarily CD graphs given by Theorem 5.4. The
kite (also known as the co-fork or the co-chair) is the graph depicted in Figure 4.

Figure 4: The kite.

The equivalence between items 1 and 5 in Theorem 5.4 implies that the class of hered-
itarily CD graphs is a proper generalization of the class of kite-free chordal graphs.

Corollary 5.6. Every kite-free chordal graph is hereditarily CD.

Corollary 5.6 further implies that the class of hereditarily CD graphs generalizes two
well known classes of chordal graphs, the class of block graphs and the class of trivially
perfect graphs. A graph is said to be a block graph if every block (maximal connected
subgraph without cut vertices) of it is complete. The block graphs are well known to
coincide with the diamond-free chordal graphs. A graphG is said to be trivially perfect [33]
if for every induced subgraph H of G, it holds α(H) = |K(H)|, where α(H) denotes the
independence number of H (that is, the maximum size of an independent set in H) and
K(H) denotes the set of all maximal cliques of H . Trivially perfect graphs coincide with
the so-called quasi-threshold graphs [67], and are exactly the {P4, C4}-free graphs [33].

Corollary 5.7. Every block graph is hereditarily CD. Every trivially perfect graph is hered-
itarily CD.

Another class of graphs contained in the class of hereditarily CD graphs is the class
of graphs defined similarly as the hereditarily CD graphs but with respect to total domi-
nating sets. These so-called hereditarily total domishold graphs (abbreviated hereditarily
TD graphs) were studied in [18], where characterizations analogous to those given by The-
orem 5.4 were obtained, including the following characterization in terms of forbidden
induced subgraphs.

Theorem 5.8 (Chiarelli and Milanič [18]). For every graph G, the following are equiva-
lent:

1. G is hereditarily total domishold.

2. No induced subgraph of G is isomorphic to a graph in Figure 5.

Theorems 5.4 and 5.8 imply the following.

Corollary 5.9. Every hereditarily TD graph is hereditarily CD.

Proof. It suffices to verify that each of the forbidden induced subgraphs for the class of
hereditarily connected-domishold graphs contains one of the graphs from Figure 5 as in-
duced subgraph. A cycle Ck with k ≥ 4 contains (or is equal to) one of C4, C5, C6, P6.
The graphs F1 and F2 are contained in both sets of forbidden induced subgraphs. Finally,
each graph of the form Hi where i ≥ 1 contains 2K3 as induced subgraph.
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C4 C5 C6 P6 F1 F2 2K3

F3 F4 F5 F6 F7 F8

Figure 5: The set of forbidden induced subgraphs for the class of hereditarily total
domishold graphs.

Since a graph is split if and only if it is {2K2, C4, C5}-free and each of the forbid-
den induced subgraphs for the class of hereditarily total domishold graphs other than F2

contains either 2K2, C4, or C5 as induced subgraph, Corollary 5.9 implies the following.

Corollary 5.10. Every F2-free split graph is hereditarily CD.

Figure 6 shows a Hasse diagram depicting the inclusion relations among the class of
hereditarily connected-domishold graphs and several other, well studied graph classes. All
definitions of graph classes depicted in Figure 6 and the relations between them can be
found in [23], with the exception of hereditarily CD and hereditarily TD graphs. The fact
that every co-domishold graph is hereditarily TD and that every hereditarily TD graph
is (1, 2)-polar chordal was proved in [18]. The remaining inclusion and non-inclusion
relations can be easily verified using the forbidden induced subgraph characterizations of
the depicted graph classes, see [10, 23, 34].

6 Algorithmic aspects via vertex separators
In this section, we build on the above results, together with some known results from the
literature on connected dominating sets and minimal vertex separators in graphs, to study
certain algorithmic aspects of the class of connected-domishold graphs and its hereditary
variant.

6.1 The recognition problems

We start with computational complexity aspects of the problems of recognizing whether a
given graph is CD, resp. hereditarily CD. For general graphs, the computational complexity
of recognizing connected-domishold graphs is not known. However, we will now show that
the hypergraph approach outlined in Section 3 leads to a sufficient condition for the problem
to be polynomially solvable, capturing a large number of graph classes. The condition is
expressed using the notion of minimal vertex separators. Recall that a u, v-separator (for
a pair of non-adjacent vertices u, v) is a set S ⊆ V (G) \ {u, v} such that u and v are in
different components of G − S and that a u, v-separator is minimal if it does not contain
any other u, v-separator. Recall also that a minimal vertex separator in G is a minimal
u, v-separator for some non-adjacent vertex pair u, v.
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perfect

bipartite chordal
(1,2)-polar

domishold

(1,2)-polar chordal

split

block

forests
trivially perfect
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Figure 6: A Hasse diagram depicting the inclusion relations within several families of
perfect graphs, focused around the class of hereditarily connected-domishold graphs.
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A sufficient condition for the polynomial-time solvability of the recognition problem
for CD graphs in a class of graphs G is that there exists a polynomial p such that every
connected graph G ∈ G has at most p(|V (G)|) minimal vertex separators. This is the case
for chordal graphs, which have at most |V (G)| minimal vertex separators [59], as well
as for many other classes of graphs, including permutation graphs, circle graphs, circular-
arc graphs, chordal bipartite graphs, trapezoid graphs, cocomparability graphs of bounded
dimension, distance-hereditary graphs, and weakly chordal graphs (see, e.g., [9, 43, 51]).
For a polynomial p, let Gp be the class of graphs with at most p(|V (G)|) minimal vertex
separators. Since every minimal cutset is a minimal vertex separator, every connected graph
G ∈ Gp has at most p(|V (G)|) minimal cutsets.

It is known that the set of all minimal vertex separators of a given connected n-vertex
graph can be enumerated in output-polynomial time. More precisely, Berry et al. [3] have
developed an algorithm solving this problem in time O(n3|Σ|) where Σ is the set of all
minimal vertex separators of G, improving on earlier (independently achieved) running
times ofO(n5|Σ|) due to Shen and Liang [63] and Kloks and Kratsch [44]. Based on these
results, we derive the following.

Theorem 6.1. For every polynomial p there is a polynomial-time algorithm to determine
whether a given connected graph G ∈ Gp is connected-domishold. In case of a yes in-
stance, the algorithm also computes an integral CD structure of G.

Proof. Let G = (V,E) ∈ Gp be a connected graph that is the input to the algorithm.
The algorithm proceeds as follows. If G is complete, then G is connected-domishold

and an integral CD structure of G is returned, say (w, t) with w(x) = 1 for all x ∈ V (G)
and t = 1. Assume now that G is not complete. First, using the algorithm of Berry et
al. [3], we compute in time O(|V (G)|3p(|V (G)|)) the set Σ of all minimal vertex sepa-
rators of G. Next, the cutset hypergraph, C(G), is computed by comparing each pair of
sets in Σ and discarding the non-minimal ones. Since C(G) is Sperner, there is a bijective
correspondence between the hyperedges of C(G) and the prime implicants of the cutset
function f cut

G ; this yields the complete DNF of f cut
G . Finally, we run the algorithm given by

Theorem 2.4 on the complete DNF of f cut
G . If f cut

G is not threshold, then we conclude that
G is not connected-domishold. Otherwise, the algorithm returned an integral separating
structure, say (w, t), of f cut

G . In this case we return (w,w(V )− t) as a CD structure of G.
It is clear that the algorithm runs in polynomial time. Its correctness follows from

Proposition 3.4.

Let G̃ be the largest hereditary graph class such that a connected graph G ∈ G̃ is
connected-domishold if and only if it is total domishold. By Theorem 4.3, class G̃ is a
generalization of the class of split graphs. Since there is a polynomial-time algorithm
for recognizing total domishold graphs [16, 18], there is a polynomial-time algorithm to
determine whether a given connected graphG ∈ G̃ is connected-domishold. This motivates
the following question (which we leave open).

Question. What is the largest hereditary graph class G̃ such that a connected graphG ∈ G̃
is connected-domishold if and only if it is total domishold?

A polynomial-time recognition algorithm for the class of hereditarily CD graphs can be
derived from the characterization of hereditarily CD graphs in terms of forbidden induced
subgraphs given by Theorem 5.4.
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Proposition 6.2. There exists a polynomial-time algorithm to determine whether a given
graph G is hereditarily CD. In the case of a yes instance, an integral CD structure of G
can be computed in polynomial time.

Proof. One can verify in linear time that G is chordal [34] and verifying that G is also
{F1, F2, H1, H2}-free can be done in time O(|V (G)|8). Therefore, we only have to show
that we can check in polynomial time that G does not contain an induced subgraph of the
form Hi for each i > 2. Observe that for all i > 2 the graph Hi contains an induced
subgraph isomorphic to 2D, the union of two diamonds (see Figure 3 and Figure 4). In
O(|V (G)8|) time, we can enumerate all induced subgraphs F of G isomorphic to 2D. For
each such subgraph F we have to verify whether it can be extended to an induced subgraph
of the form Hi, for some i > 2. We do this as follows. Let D1 and D2 be the connected
components (diamonds) of F . Furthermore, let u1, u2 be the two vertices of degree 2 inD1

and similarly let v1, v2 be the two vertices of degree 2 in D2. Now we can verify that F is
not contained in any induced subgraph ofG isomorphic toHi (for some i > 2) by checking
for each pair ui, vj , with i, j ∈ {1, 2}, that ui and vj belong to different components of
G − (NG−ui [V (D1) \ {ui}] ∪ NG−vj [V (D2) \ {vj}]). This can be done in polynomial
time and consequently the recognition of hereditarily CD graphs is a polynomially solvable
problem.

The second part of the theorem follows from Theorem 6.1, since every hereditarily CD
graph is chordal and chordal graphs are a subclass of Gp for the polynomial
p(n) = n [59].

It might seem conceivable that a similar approach as the one used in Theorem 6.1 could
be used to develop an efficient algorithm for recognizing connected-domishold graphs in
classes of graphs with only polynomially many minimal connected dominating sets. How-
ever, it is not known whether there exists an output-polynomial-time algorithm for the
problem of enumerating minimal connected dominating sets. In fact, as shown by Kanté et
al. [38], even when restricted to split graphs, this problem is equivalent to the well-known
TRANS-ENUM problem in hypergraphs, the problem of enumerating the inclusion-minimal
transversals of a given hypergraph. The TRANS-ENUM problem has been intensively stud-
ied but it is still open whether there exists an output-polynomial-time algorithm for the
problem (see, e.g., the survey [28]).

6.2 The weighted connected dominating set problem

The WEIGHTED CONNECTED DOMINATING SET (WCDS) problem takes as input a con-
nected graph G together with a cost function c : V (G) → R+, and the task is to compute
a connected dominating set of minimum total cost, where the cost of a set S ⊆ V (G) is
defined, as usual, as c(S) =

∑
v∈S c(v). The WCDS problem has been studied exten-

sively due to its many applications in networking (see, e.g., [6, 26, 66]). The problem is
NP-hard not only for general graphs [36] but also for split graphs [46], chordal bipartite
graphs [52], circle graphs [40], and cocomparability graphs [14]. Polynomial-time algo-
rithms for the problem were developed for interval graphs [15] and more generally for
trapezoid graphs [64] and circular-arc graphs [15, 37], as well as for distance-hereditary
graphs [68].

In this section, we will identify further graph classes where the WCDS problem is
polynomially solvable, including the class of F2-free split graphs (see Figure 1). This result
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is interesting in view of the fact that for split graphs, the WCDS problem is not only NP-
hard but also hard to approximate, even in the unweighted case. This can be seen as follows:
Let H = (V,E) be a Sperner hypergraph with ∅, V /∈ E and let G be its split-incidence
graph. Then G is a connected split graph without universal vertices, hence C(G) = N (G)
by Lemma 4.2. It can be seen that the hyperedge set of N (G) is exactly E, and therefore
Proposition 2.1 implies that the problem of finding a minimum connected dominating set
in G is equivalent to the HITTING SET problem in hypergraphs, the problem of finding a
minimum transversal of a given hypergraph. This latter problem is known to be equivalent
to the well-known SET COVER problem and hence inapproximable in polynomial time to
within a factor of (1 − ε) log |V |, for any ε > 0, unless P = NP [24]. It follows that the
WCDS problem is hard to approximate to within a factor of (1− ε) log |V (G)| in the class
of split graphs.

We will show that the WCDS problem is polynomially solvable in the class of
hereditarily CD graphs; the result for F2-free split graphs will then follow. Our approach
is based on connections with vertex separators and Boolean functions. First, we recall the
following known results about: (i) the relation between the numbers of prime implicants
of a threshold Boolean function and its dual, and (ii) the complexity of dualizing thresh-
old Boolean functions. These results were proved in the more general context of regular
Boolean functions (as well as for other generalizations, see, e.g., [7]).

Theorem 6.3. Let f be an n-variable threshold Boolean function having exactly q prime
implicants. Then:

1. (Bertolazzi and Sassano [5], Crama [21], see also [22, Theorem 8.29]) The dual
function fd has at mostN prime implicants, whereN is the total number of variables
in the complete DNF of f .

2. (Crama and Hammer [22, Theorem 8.28] and Peled and Simeone [56]) There is an
algorithm running in time O(n2q) that, given the complete DNF of f , computes the
complete DNF of the dual function fd.

The algorithm by Crama and Hammer [22] is already presented as having time com-
plexity O(n2q), while the one by Peled and Simeone [56] is claimed to run in time O(nq).
However, since fd can have O(nq) prime implicants, the total size of the output is of the
order O(n2q). The time complexity O(nq) of the algorithm by Peled and Simeone relies
on the assumption that the algorithm outputs the prime implicants of the dual function one
by one, each time overwriting the previous prime implicant (with a constant number of
operations per implicant on average).

The relation between the numbers of prime implicants of a threshold Boolean function
and its dual given by Theorem 6.3 implies that classes of connected-domishold graphs with
only polynomially many minimal cutsets are exactly the same as the classes of connected-
domishold graphs with only polynomially many minimal connected dominating sets. More
precisely:

Lemma 6.4. Let G = (V,E) be an n-vertex connected-domishold graph that is not com-
plete. Let νc (resp. νs) denote the number of minimal connected dominating sets (resp. of
minimal cutsets) of G. Then νs ≤ (n− 2)νc and νc ≤ (n− 2)νs.

Proof. By Proposition 3.4, the cutset function f cut
G is threshold. Function f cut

G is an n-
variable function with exactly νs prime implicants in its complete DNF. Recall from the
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proof of Proposition 3.4 that the dual function (f cut
G )d takes value 1 precisely on the vectors

x ∈ {0, 1}V whose support is a connected dominating set of G. Therefore, the prime im-
plicants of (f cut

G )d are in bijective correspondence with the minimal connected dominating
sets of G and the number of prime implicants of (f cut

G )d is exactly νc. Since every minimal
cutset ofG has at most n−2 vertices, Theorem 6.3 implies that νc ≤ (n−2)νs, as claimed.

Conversely, since f cut
G = ((f cut

G )d)d, the inequality νs ≤ (n − 2)νc can be proved by a
similar approach, provided we show that every minimal connected dominating set of G has
at most n−2 vertices. But this is true since if D is a connected dominating set of G with at
least n− 1 vertices, with V (G) \ {u} ⊆ D for some u ∈ V (G), then a smaller connected
dominating set D′ of G could be obtained by fixing an arbitrary spanning tree T of G[D]
and deleting from D an arbitrary leaf v of T such that NG(u) 6= {v}. (Note that since G is
connected but not complete, it has at least three vertices, hence T has at least two leaves.)
This completes the proof.

We now have everything ready to derive the main result of this section. Recall that for a
polynomial p, we denote by Gp the class of graphs with at most p(|V (G)|) minimal vertex
separators.

Theorem 6.5. For every nonzero polynomial p, the set of minimal connected dominating
sets of an n-vertex connected-domishold graph from Gp has size at most O(n · p(n)) and
can be computed in time O(n · p(n) · (n2 + p(n))). In particular, the WCDS problem is
solvable in polynomial time in the class of connected-domishold graphs from Gp.

Proof. Let p and G be as in the statement of the theorem and let CD(G) be the set of
minimal connected dominating sets of G. If G is complete, then

CD(G) = {{v} : v ∈ V (G)}

and thus |CD(G)| = n = O(n · p(n)) (since the polynomial is nonzero). Otherwise, we
can apply Lemma 6.4 to derive |CD(G)| ≤ (n− 2) · p(n).

A polynomial-time algorithm to solve the WCDS problem for a given connected-
domishold graph G ∈ Gp with respect to a cost function c : V (G) → R+ can be obtained
as follows. First, we may assume that G is not complete, since otherwise we can return
a set {v} where v is a vertex minimizing c(v). We use a similar approach as in the proof
of Theorem 6.1. Using the algorithm of Berry et al. [3], we compute in time O(n3p(n))
the set Σ of all minimal vertex separators of G. We can assume that each minimal vertex
separator has its elements listed according to some fixed order of V (G) (otherwise, we can
sort them in time O(n · p(n)) using, e.g., bucket sort). The cutset hypergraph, C(G), is
then computed by comparing each pair of sets in Σ and discarding the non-minimal ones;
this can be done in time O(n · (p(n))2). The cutset hypergraph directly corresponds to the
complete DNF of the cutset function f cut

G .
The next step is to compute the complete DNF of the dual function (f cut

G )d. By The-
orem 6.3, this can be done in time O(n2 · p(n)). Since each term of the DNF is a prime
implicant of (f cut

G )d and the prime implicants of (f cut
G )d are in bijective correspondence

with the minimal connected dominating sets of G, we can read off from the DNF all the
minimal connected dominating sets of G. The claimed time complexity follows.

Once the list of all minimal connected dominating sets is available, a polynomial-time
algorithm for the WCDS problem on (G, c) follows immediately.
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In the case of chordal graphs, we can improve the running time by using one of the
known linear-time algorithms for listing the minimal vertex separators of a given chordal
graph due to Kumar and Veni Madhavan [45], Chandran and Grandoni [13], and Berry and
Pogorelcnik [4].

Theorem 6.6. Every n-vertex connected-domishold chordal graph has at most O(n2)
minimal connected dominating sets, which can be enumerated in time O(n3). In par-
ticular, the WCDS problem is solvable in time O(n3) in the class of connected-domishold
chordal graphs.

Proof. Let G be an n-vertex connected-domishold chordal graph. The theorem clearly
holds for complete graphs, so we may assume that G is not complete. Since G is chordal,
it has at most n minimal vertex separators [59]; consequently, G has at most n minimal
cutsets. Since G is connected-domishold, it has at most n(n − 2) minimal connected
dominating sets, by Lemma 6.4.

The minimal connected dominating sets of G can be enumerated as follows. First,
we compute all the O(n) minimal vertex separators of G in time O(n + m) (where
m = |E(G)|) using one of the known algorithms for this problem on chordal graphs [4,13,
45]. Assuming again that each minimal vertex separator has its elements listed according
to some fixed order of V (G), we then eliminate those that are not minimal cutsets in time
O(n3), by directly comparing each of the O(n2) pairs for inclusion.

The list ofO(n) minimal cutsets ofG yields its cutset function, fms
G . The list of minimal

connected dominating sets of G can be obtained in time O(n3) by dualizing fms
G using one

of the algorithms given by Theorem 6.3. The WCDS problem can now be solved in time
O(n3) by evaluating the cost of each of theO(n2) minimal connected dominating sets and
outputting one of minimum cost.

From Theorem 6.6 we derive two new polynomially solvable cases of the WCDS prob-
lem. Recall that the graphs F1, F2, and a general member of the family {Hi} are depicted
in Figure 3.

Corollary 6.7. The WCDS problem is solvable in time O(n3) in the class of {F1, F2, H1,
H2, . . .}-free chordal graphs and in particular in the class of F2-free split graphs.

Proof. By Theorem 5.4, every {F1, F2, H1, H2, . . .}-free chordal graphs is (hereditarily)
CD so Theorem 6.6 applies. The statement for F2-free split graphs follows from Corol-
lary 5.10.

We conclude this section with two remarks, one related to Theorem 6.6 and one related
to Theorems 6.1 and 6.5.

Remark 6.8. The boundO(n2) given by Theorem 6.6 on the number of minimal connected
dominating sets in an n-vertex connected-domishold chordal graph is sharp. There exist
n-vertex connected-domishold chordal graphs with Θ(n2) minimal connected dominating
sets. For instance, let Sn be the split graph with V (Sn) = K ∪ I where K = {u1, . . . , un}
is a clique, I = {v1, . . . , vn} is an independent set, K ∩ I = ∅, and for each i ∈ [n],
vertex ui is adjacent to all vertices of I except vi. Since every vertex in I has a unique
non-neighbor in K, we infer that Sn is F2-free. Therefore, by Corollary 5.10 graph Sn is a
(hereditarily) connected-domishold graph. Note that every set of the form {ui, uj} where
1 ≤ i < j ≤ n is a minimal connected dominating set of Sn. It follows that Sn has at least(
n
2

)
= Θ(|V (Sn)|2) minimal connected dominating sets.
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Remark 6.9. Theorems 6.1 and 6.5 motivate the question of whether there is a polynomial
p such that every connected CD graph G has at most p(|V (G)|) minimal vertex separators.
As shown by the following family of graphs, this is not the case. For n ≥ 2, let Gn be
the graph obtained from the disjoint union of n copies of the P4, say (xi, ai, bi, yi) for
i = 1, . . . , n, by identifying all vertices xi into a single vertex x, all vertices yi into a
single vertex y, and for each vertex z other than x or y, adding a new vertex z′ and making
it adjacent only to z. It is not difficult to see that Gn has exactly two minimal CD sets,
namely {a1, . . . , an} ∪ {b1, . . . , bn} ∪ {v} for v ∈ {x, y}. A CD structure of Gn is given
by (w, t) where t = 4n+ 1, w(x) = w(y) = 1, w(ai) = w(bi) = 2 for all i ∈ {1, . . . , n}
and w(z) = 0 for all other vertices z. Therefore, Gn is CD. However, Gn has 4n + 2
vertices and 2n minimal x, y-separators, namely all sets of the form {c1, . . . , cn} where
ci ∈ {ai, bi} for all i.

7 Proof of Lemma 5.3 (Diamond Lemma)
In the proof of the Diamond Lemma, we use the following notation. We write u ∼ v
(resp. u � v) to denote the fact that two vertices u and v are adjacent (resp. non-adjacent).
Given two vertex sets A and B in a graph G, we denote by e(A,B) the number of edges
with one endpoint in A and one endpoint in B. A pattern is a triple (V,E, F ) where
G = (V,E) is a graph and F is a subset of non-adjacent vertex pairs of G. We say that a
graph G′ realizes a pattern (V,E, F ) if V (G′) = V and E ⊆ E(G′) ⊆ E ∪ F .

t1

t′1

c′1 c1

c2

c′2

t′2

t1

t′1

c′1 c1

t2

t′2

c2
c′2

(a) (b)

Figure 7: Two patterns (V,E, F ) used in the proofs. Graphs (V,E) are depicted with solid
lines. Possible additional edges (elements of F ) are depicted with dotted lines.

We start with a lemma.

Lemma 7.1. Let G be a connected chordal graph and let H be an induced subgraph of G
that realizes the pattern in Figure 7(a). Moreover, suppose that:

(1) vertices t1 and t′1 are in different components of G− {c1, c′1}, and

(2) the component ofG−{c1, c′1} containing {c2, c′2, t′2} has a vertex dominating {c1, c′1}.

Then G contains F1 or F2 as an induced subgraph.

Proof. By contradiction. Suppose that G and H satisfy the assumptions of the lemma, but
G is {F1, F2}-free. We first show that none of the dotted edges can be present in H . We
infer that c′1 � c2 and c′1 � c′2, for otherwise an induced F1 or F2 arises on the vertex set
V (H) \ {t1}, depending on whether one or both edges are present. Next, t1 � t′2, since
otherwise a 4-cycle arises on the vertex set {t1, c1, c′2, t′2} (if t1 � c′2) or an induced F1
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arises on the vertex set V (H)\{c2} (otherwise). Finally, we infer that t1 � c2 and t1 � c′2,
for otherwise an induced F1 or F2 arises on the vertex set V (H)\{t′1}, depending whether
one or both edges are present.

Let K be the component of G − {c1, c′1} such that V ′2 = {c2, c′2, t′2} ⊆ V (K), and
let w ∈ V (K) be a vertex dominating {c1, c′1} that is closest to V ′2 in K. The preceding
paragraph implies that w /∈ V ′2 . We will now show that w � v for any v ∈ V ′2 . Suppose
for a contradiction that w ∼ v for some v ∈ V ′2 . Note that w /∈ {t1, t′1} since there are no
edges between the sets {t1, t′1} and V ′2 . Furthermore, property (1) implies that there exists
some t ∈ {t1, t′1} such that w � t. Suppose that w ∼ t′2. Then w ∼ c2, since otherwise a
4-cycle arises on the vertex set {w, c1, c2, t′2}. But now the vertex set {t′2, c2, w, c1, c′1, t}
induces a copy of F1 in G. Therefore w � t′2, and an induced F1 or F2 arises on the vertex
set V ′2 ∪{w, c1, c′1}, depending on whether w is adjacent to one or both vertices in {c2, c′2}.
This contradiction shows that w has no neighbor in V ′2 .

Let P = (w = w1, . . . , wk) with wk ∈ V ′2 be a shortest w, V ′2 -path in K. Note
that k ≥ 3 and the choice of P implies that for all i ∈ {1, . . . , k − 2} vertex wi is not
adjacent to any vertex in V ′2 . In order to avoid an induced cycle of length at least 4 within
V (P ) ∪ V ′2 ∪ {c1}, we infer that vertex c1 must be adjacent to all the internal vertices of
P (that is, to w2, . . . , wk−1). Next we infer that wk−1 ∼ t′2, since otherwise the vertex
set V ′2 ∪ {c1, wk−1, wk−2} induces a copy of F1 or F2 (depending on the number of edges
between wk−1 and {c2, c′2}). Moreover, to avoid an induced 4-cycle on the vertex set
{t′2, wk−1, c1, c2}, we infer thatwk−1 ∼ c2. But now an induced F1 arises on the vertex set
{t′2, c2, c1, wk−1, wk−2, wk−3} (where if k = 3 we definew0 = c′1). This last contradiction
completes the proof of Lemma 7.1.

Let us now recall Lemma 5.3.

Lemma 5.3 (Diamond Lemma). Let G be a connected chordal graph. Suppose that G
contains two induced diamonds D1 = (V1, E1) and D2 = (V2, E2) such that:

(i) C1 ∩ C2 = ∅.

(ii) If no vertex in C1 is adjacent to a vertex in C2, then there exists a C1, C2-separator
in G of size one.

(iii) For each j ∈ {1, 2} the tips (i.e., tj , t′j) of Dj belong to different components of
G− Cj .

(iv) For j ∈ {1, 2} every component of G− Cj has a vertex that dominates Cj .

Then G has an induced subgraph isomorphic to F1, F2, or Hi for some i ≥ 1, where the
graphs F1, F2, and a general member of the family {Hi} are depicted in Figure 3.

Proof. We will prove the Diamond Lemma by contradiction through a series of claims.
Let G be a connected chordal graph and let D1 and D2 be two induced diamonds with
properties (i) – (iv) in G. Suppose for a contradiction that G is {F1, F2, H1, H2, . . . }-free.

Claim 1. For each j ∈ {1, 2}, there exists some t ∈ Tj such that N [t] ∩ C3−j = ∅ (that
is, each diamond has a tip that is not adjacent to any center of the other diamond).

Proof. Suppose that each tip of Dj is adjacent to at least one vertex in C3−j . Then Tj
belongs to one component of G− Cj , contradicting property (iii).
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Claim 2. If there exists some t ∈ T1 ∩ T2, then T1 ∩ T2 = {t} and Tj ∩ C3−j = ∅ for
j ∈ {1, 2}.

Proof. Follows immediately from Claim 1 and property (iii).

Claim 3. |V1 ∩ V2| ≤ 1.

Proof. First note that we have |T1 ∩ V2| ≤ 1, since otherwise T1 = T2, contradicting
property (iii). Observe also that by property (i) we have C1 ∩ V2 ⊆ C1 ∩ T2, implying that
|C1 ∩ V2| ≤ 1. Consequently |V1 ∩ V2| ≤ 2.

Now suppose for a contradiction that |V1 ∩ V2| = 2. By property (i) and Claim 2 we
may assume without loss of generality that c1 = t2 and t′1 = c′2. To avoid an induced
4-cycle on the set T1 ∪ T2 we infer that t1 � t′2. Furthermore, property (iii) implies that
c′1 � t′2 and c2 � t1. But now the set V1 ∪ V2 induces a copy of F1 (if c′1 � c2) or a copy
of F2 (otherwise).

Claim 4. If V1 ∩ V2 = {v} then v ∈ T1 ∩ T2.

Proof. Suppose for a contradiction that V1 ∩ V2 = {v}, and v /∈ T1 ∩ T2. Property (i)
implies that v ∈ Tj ∩ C3−j for some j ∈ {1, 2}, say v = c1 = t2. Claim 1 implies
(without loss of generality) that t′1 � c2 and t′1 � c′2. Property (iii) implies that c′1 � t′2.
Note that t′1 � t′2, for otherwise a 4-cycle arises on the vertex set {t′1, c1, c2, t′2}. Now the
subgraph ofG induced by V1∪V2 realizes the pattern depicted in Figure 7(a) and we apply
Lemma 7.1 to derive a contradiction.

Claim 5. V1 ∩ V2 = ∅.

Proof. Suppose for a contradiction that V1 ∩ V2 6= ∅. Claim 3 implies that V1 ∩ V2 = {v}
and by Claim 4, v ∈ T1 ∩ T2. Without loss of generality we may assume that t1 = t2.
Claim 1 implies that there is no edge between t′1 and C2 and between t′2 and C1. Further-
more, we must have t′1 � t′2 since otherwise G contains an induced 4-cycle on the vertex
set {t′1, c1, c2, t′2} (if c1 ∼ c2) or an induced 5-cycle on the vertex set {t′1, c1, t1, c2, t′2}
(otherwise).

It remains to analyze the edges betweenC1 andC2. Clearly, e(C1, C2) ∈ {0, 1, . . . , 4}.
Notice that

e(C1, C2) =


0 implies an induced H1 on the set V1 ∪ V2;

1 implies an induced F1 on the vertex set (V1 ∪ V2) \ {t′1};
3 implies an induced F1 on the vertex set (V1 ∪ V2) \ {t1};
4 implies an induced F2 on the vertex set (V1 ∪ V2) \ {t1}.

Consequently e(C1, C2) = 2, and without loss of generality, to avoid an induced 4-cycle,
we may assume that c1 ∼ c2 and c1 ∼ c′2. But now an induced F2 arises on the vertex set
(V1 ∪ V2) \ {t′1}.

In the rest of the proof of the Diamond Lemma we consider the edges between V1 and
V2. By Claim 1 and property (iii) we may assume without loss of generality the following.

Assumption 1. e({t′1}, V2) = e({t′2}, V1) = 0.



514 Ars Math. Contemp. 16 (2019) 487–525

Therefore, it remains to consider only the (non-)edges between {t1} and C2, between
{t2} and C1, between C1 and C2, and between {t1} and {t2}.

Claim 6. e(C1, C2) ≤ 1.

Proof. Clearly, e(C1, C2) ≤ 4. Note that if e(C1, C2) ∈ {3, 4}, then the vertex set
(V1 ∪ V2) \ {t1, t2} induces either a copy of F1 or a copy of F2. Furthermore, if
e(C1, C2) = 2, then, to avoid an induced 4-cycle, we may assume without loss of generality
that c1 ∼ c2 and c1 ∼ c′2. Now the subgraph of G induced by (V1 ∪ V2) \ {t2} realizes the
pattern depicted in Figure 7(a) and we apply Lemma 7.1 to derive a contradiction.

By Claim 6 we may assume without loss of generality the following.

Assumption 2. c′1 � c2, c′1 � c′2, and c1 � c′2.

Claim 7. e({tj}, C3−j) ≤ 1 for j ∈ {1, 2}.

Proof. Suppose for a contradiction that e(tj , C3−j) = 2. To avoid an induced H1 on the
vertex set (V1 ∪ V2) \ {t3−j}, we must have an edge between C1 and C2. By Claim 6
and Assumption 2, we have c1 ∼ c2, but now an induced F1 arises on the vertex set
Vj ∪ C3−j .

Claim 8. We may assume without loss of generality that tj � c′3−j for j ∈ {1, 2}.

Proof. Let j ∈ {1, 2}. By Claim 7, we have that either tj � c3−j or tj � c′3−j . If both
edges are missing, then there is nothing to show. Suppose now that e(tj , C3−j) = 1. To
see that we may assume that tj ∼ c3−j , note that this can be achieved by swapping c3−j
and c′3−j (if necessary) when c1 � c2, while if c1 ∼ c2, then tj ∼ c3−j , since otherwise
the vertex set {tj , c1, c2, c′3−j} induces a 4-cycle in G.

Claim 8 yields the following.

Assumption 3. t1 � c′2 and t2 � c′1.

Claim 9. t1 � t2.

Proof. Suppose for a contradiction that t1 ∼ t2. First we will show that c1 ∼ t2 or c2 ∼ t1.
Suppose for a contradiction that c1 � t2, and c2 � t1. Then an induced H2 arises on the
set V1 ∪ V2 (if c1 � c2) or an induced 4-cycle on the vertex set {c1, t1, t2, c2} (otherwise).

Without loss of generality we may assume that c1 ∼ t2. By Assumption 3 we have
t2 � c′1, and to avoid an induced H1 on the vertex set (V1 ∪ V2) \ {t′1}, we must have an
edge between t1 and C2 or c1 ∼ c2. If t1 ∼ c2, then the vertex set C1 ∪ C2 ∪ {t1, t2}
induces a copy of F1 or F2 (depending on whether c1 ∼ c2 or not). Consequently t1 � c2.
Therefore the only edge we can have is c1 ∼ c2, but now an induced F1 arises on the vertex
set C1 ∪ C2 ∪ {t1, t2}.

Claim 10. t1 � c2 and t2 � c1.
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Proof. By symmetry, it suffices to show that c1 � t2. Suppose for a contradiction that
c1 ∼ t2. Claim 9 implies that t1 � t2. Recall that by Assumption 1 we have t2 � t′1.
Furthermore e({t1}, C2) = 0, since otherwise t1 ∼ c2 (by Assumption 3) and either the
vertex set {t1, c1, t2, c2} induces a 4-cycle (if c1 � c2) or the vertex set C1 ∪C2 ∪ {t1, t2}
induces an F1 (otherwise).

Let K be the component of G − C1 such that V2 ⊆ V (K). By property (iv) there
exists a vertex in V (K) that dominates C1. Let w ∈ V (K) be a vertex that dominates C1

and is closest to V2 in K. Clearly, w /∈ V2. Property (iii) implies that there exists some
t ∈ T1 such that w 6= t and w � t. Note that c1 � c2, since otherwise the subgraph of G
induced by C1 ∪ C2 ∪ {w, t, t2} realizes the pattern depicted in Figure 7(a) and we apply
Lemma 7.1 to derive a contradiction. Furthermore,w � t′2, since otherwise t2 and t′2 would
belong to the same component of G− C2, contradicting property (iii). Next, we have that
w � c2, since otherwise either the vertex set {w, c1, t2, c2} induces a 4-cycle (if w � t2)
or the vertex set C1 ∪ {t, w, t2, c2} induces an F1 (otherwise). By symmetry, w � c′2.
Consequently, w � t2, for otherwise a copy of H1 arises on the vertex set C1 ∪ V2 ∪ {w}.

Let P = (w = w1, . . . , wk) with wk ∈ V2 be a shortest w, V2-path in K. Note that
k ≥ 3 and that the choice of P implies that for all i ∈ {1, . . . , k − 2} vertex wi is not
adjacent to any vertex in V2. Furthermore, wk−1 � t′2, since otherwise t2 and t′2 would
belong to the same component of G−C2, contradicting property (iii). In order to avoid an
induced cycle of length at least 4 within V (P ) ∪ V2 ∪ {c1}, we infer that vertex c1 must
be adjacent to all the internal vertices of P (that is, w2, . . . , wk−1). If wk−1 � t2, then
wk ∈ C2, which yields an induced 4-cycle on the vertex set {c1, t2, wk, wk−1}. Therefore,
wk−1 ∼ t2. But now either an induced H1 arises on the vertex set V2 ∪ {wk−1, wk−2, c1}
(if e({wk−1}, C2) = 0) or an induced F1 or F2 arises on the vertex set V2 ∪ {wk−1, c1}
(otherwise).

Assumptions 1 – 3 and Claims 7, 9, and 10 imply the following.

Claim 11. The only possible edge between V1 and V2 is the edge c1c2.

Let H be the subgraph of G induced by V1 ∪ V2. By Claim 11, H realizes the pattern
in Figure 7(b). Let K−12 be the component of G − C1 containing V2 and let U−1 be the
set of vertices in K−12 that dominate C1. By property (iv), set U−1 is non-empty. Let u−1

be a vertex in U−1 that is closest in K−12 to C2. Graph K−21 and vertex u−2 are defined
analogously.

By property (iii) we may assume without loss of generality the following.

Assumption 4. t′1 /∈ V (K−12 ) and t′2 /∈ V (K−21 ).

Claim 12. {u−1, u−2} ∩ {t′1, t′2} = ∅ and e({u−1, u−2}, {t′1, t′2}) = 0.

Proof. Since u−1 ∈ V (K−12 ) and t′1 /∈ V (K−12 ), the definition of K−12 implies that
u−1 6= t′1 and u−1 � t′1. By symmetry, we also have u−2 6= t′2 and u−2 � t′2.

We next show that u−1 6= t′2 and u−1 � t′2 (and then the remaining inequality u−2 6= t′1
and non-adjacency u−2 � t′1 will follow by symmetry). First note that u−1 6= t′2 since u−1

dominates C1 and e({t′2}, C1) = 0 by Assumption 1. Suppose for a contradiction that
u−1 ∼ t′2. This implies that u−1 � t2, since otherwise t2 and t′2 would belong to the
same component of G − C2, contradicting property (iii). But now, either an induced H2

arises on the vertex set V2∪C1∪{u−1, t′1} (if e({u−1}, C2) = 0), or an induced H1 arises
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either on the vertex set C1 ∪ C2 ∪ {u−1, t′1, t′2} (if e({u−1}, C2) = 1) or on the vertex set
C1 ∪ C2 ∪ {u−1, t′1, t2} (otherwise).

Claim 13. Vertices u−1 and u−2 are distinct and non-adjacent, and at least one of the sets
N(u−1) ∩ V2, N(u−2) ∩ V1 is empty.

Proof. First we prove that u−1 � c2 or u−1 � c′2. Suppose for a contradiction that
e({u−1}, C2) = 2. Then either an induced F1 arises on the vertex set C1 ∪C2 ∪ {u−1, t′2}
(if c1 ∼ c2) or an induced H1 arises on the vertex set C1 ∪ C2 ∪ {u−1, t′1, t′2} (otherwise).
Therefore, u−1 � c2 or u−1 � c′2, as claimed.

Since u−2 dominates C2 but u−1 does not, we infer that u−1 6= u−2.
Next we prove that u−1 � u−2. Suppose for a contradiction that u−1 ∼ u−2. We claim

that u−1 ∼ c2 or u−2 ∼ c1. Suppose to the contrary that u−1 � c2 and u−2 � c1. Then
c1 � c2, since otherwise an induced 4-cycle arises on the vertex set {c1, c2, u−2, u−1}.
Furthermore, u−1 ∼ c′2 or u−2 ∼ c′1, since otherwise an induced H2 arises on the vertex
set C1 ∪ C2 ∪ {t′1, u−1, u−2, t′2}. If only one of the edges u−1c′2 and u−2c′1 is present,
say u−1c′2, then an induced H1 arises on the vertex set C1 ∪ C2 ∪ {t′1, u−1, u−2}. If
both edges u−1c′2 and u−2c′1 are present, then an induced F1 arises on the vertex set
C1 ∪ C2 ∪ {u−1, u−2}. Both cases lead to a contradiction, thus u−1 ∼ c2 or u−2 ∼ c1,
as claimed. We may assume without loss of generality that u−1 ∼ c2. Now we must
have c1 � c2 and c1 � u−2, since otherwise an induced F1 or F2 arises on the vertex set
C1 ∪ C2 ∪ {u−1, u−2}, depending on whether one or both edges are present. But now an
induced H1 arises on the vertex set C1 ∪ C2 ∪ {t′1, u−1, u−2}, a contradiction.

To complete the proof, we consider the two cases depending on whether c1 is adjacent
to c2 or not. Suppose first that c1 ∼ c2. Then u−1 � c′2, for otherwise u−1 � c2 and
G contains an induced 4-cycle on the vertex set {u−1, c′2, c2, c1}. By symmetry, we also
have u−2 � c′1. If u−1 ∼ c2 and u−2 ∼ c1, then an induced F1 arises on the vertex set
C1 ∪ C2 ∪ {u−1, u−2}. It follows that H contains at most one of the edges u−1c2 and
u−2c1. By symmetry, we may assume without loss of generality that u−1 � c2. We infer
that u−1 � t2, since otherwiseG contains an inducedC4 on the vertex set {u−1, c1, c2, t2}.
It follows that the set N(u−1) ∩ V2 is empty.

Finally, suppose that c1 � c2. Then either e({u−1}, C2) = 0 or e({u−2}, C1) = 0,
for otherwise G contains an induced 4-cycle on the vertex set {u−1, x, u−2, y} where
x ∈ N(u−1) ∩ C2 and y ∈ N(u−2) ∩ C1. By symmetry, we may assume without loss of
generality that e({u−1}, C2) = 0. We infer that u−1 � t2, since otherwise G contains an
induced H2 on the vertex set C1 ∪ V2 ∪ {u−1, t′1}. It follows that the set N(u−1) ∩ V2 is
empty.

By Claim 13 we may assume without loss of generality the following.

Assumption 5. e({u−1}, V2) = 0.

Claim 14. c1 � c2.

Proof. Suppose for a contradiction that c1 ∼ c2 and consider K−12 , u−1, K−21 , and u−2.
Clearly, u−1 6∈ C1 ∪ C2 ∪ {t′2}. Moreover, by Claim 12 we have we have u−1 6= t′1
and u−1 � t′1. Also, by symmetry, u−2 6∈ C1 ∪ C2 ∪ {t′1}, u−2 6= t′2 and u−2 � t′2.
Furthermore, by Assumption 5 we have N(u−1) ∩ V2 = ∅.

Let P−1 = (u−1 = u1, u2, . . . , uk), with uk ∈ V ′2 = C2 ∪ {t′2} be a shortest
u−1, V ′2 -path in K−12 , and similarly, let P−2 = (u−2 = v1, v2, . . . , v`), with v` ∈ V ′1 =
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C1 ∪ {u−1, t′1} be a shortest u−2, V ′1 -path in V (K−21 ). The fact that N(u−1) ∩ V2 = ∅
implies that k ≥ 3. Furthermore, Claims 11 and 13 imply that u−2 6∈ V1 ∪ {u−1}. There-
fore, ` ≥ 2.

Since u−1 � c2, we infer that vertex c1 must be adjacent to all the internal vertices of
P−1, for otherwise G would contain an induced cycle of length at least 4. Consequently,
the definition of u−1 implies that uj � c′1 for all j ∈ {2, . . . , k − 1}.

Suppose that uk−1 ∼ c′2. To avoid an induced 4-cycle on the vertex set
{c1, c′2, c2, uk−1}, we infer that uk−1 ∼ c2. We must have k = 3 since if k ≥ 4, then
the vertex set C2 ∪ {c1, uk−1, uk−2, uk−3} induces a copy of F1. But now, since c′1 � u2,
an induced copy of F1 arises on the vertex set C1 ∪C2 ∪ {u1, u2}, a contradiction. There-
fore, uk−1 � c′2.

Suppose that uk−1 ∼ t′2. To avoid an induced 4-cycle on the vertex set
{c1, c2, t′2, uk−1}, we must have uk−1 ∼ c2. But now, the vertex set V ′2 ∪{uk−1, uk−2, c1}
induces a copy of F1, a contradiction. Therefore, uk−1 � t′2. Consequently, uk = c2.

Suppose that u−2 ∼ c1. If in addition u−2 � uk−1, then also u−2 � uk−2 (since
otherwise the vertex set {uk−2, uk−1, c2, u−2} would induce a 4-cycle), but now, the
vertex set {uk−2, uk−1, c1, c2, c′2, u−2} induces a copy of F1, a contradiction. Therefore,
u−2 ∼ uk−1. Let ui be the neighbor of u−2 on P−1 minimizing i. Since u1 � u−2, we
have i ≥ 2. Moreover, since u−2 ∼ uk−1, we have i ≤ k − 1. But now, the vertex set
C2 ∪ {ui−1, c1, ui, u−2} induces either a copy of F1 (if ui � c2) or of F2 (otherwise), a
contradiction. Therefore, u−2 � c1.

Note that N(u−2) ∩ V1 = ∅, for otherwise if there is a vertex x ∈ N(u−2) ∩ V1, then
x 6= c1 and G contains an induced 4-cycle on the vertex set {u−2, c2, c1, x}, a contradic-
tion. Since N(u−2) ∩ V1 = ∅, we can now apply symmetric arguments as for P−1 to
deduce that ` ≥ 3, vertex c2 is adjacent to all the internal vertices of P−2, and v` = c1.

Suppose first that V (P−1) ∩ V (P−2) = ∅. To avoid an induced 4-cycle on the vertex
set {uk−2, c2, c1, v`−2}, we infer that uk−2 � v`−2. Suppose that uk−1 � v`−1. Then
also uk−1 � v`−2 (since otherwise we would have an induced 4-cycle on the vertex set
{uk−1, v`−2, v`−1, c1}) and by a symmetric argument also uk−2 � v`−1. But now, we
have an induced F1 on the vertex set {uk−2, c1, uk−1, c2, v`−1, v`−2}. Thus, uk−1 ∼ v`−1.
Moreover, we have either uk−2 ∼ v`−1 or v`−2 ∼ uk−1, since otherwise an induced F2

arises on the vertex set {c1, v`−1, v`−2, c2, uk−1, uk−2}. Without loss of generality, assume
that uk−2 ∼ v`−1. But now, setting v0 = c′2 if ` = 3, either an induced 4-cycle arises on the
vertex set {uk−2, v`−1, v`−2, v`−3} (if uk−2 ∼ v`−3) or an induced copy of F1 arises on
the vertex set {uk−2, c1, v`−1, v`−2, c2, v`−3} (otherwise). This contradiction shows that
V (P−1) ∩ V (P−2) 6= ∅.

Since v` = c1 and due to the minimality of P−2, we have N(c1)∩V (P−2) = {v`−1}.
On the other hand, since c1 dominates P−1, we have N(c1)∩V (P−1) = V (P−1). There-
fore

∅ 6= V (P−2) ∩ V (P−1) = V (P−2) ∩
(
N(c1) ∩ V (P−1)

)
=
(
N(c1) ∩ V (P−2)

)
∩ V (P−1) = {v`−1} ∩ V (P−1) ⊆ {v`−1},

which yields V (P−1) ∩ V (P−2) = {v`−1}. A symmetric argument implies that
V (P−1)∩V (P−2) = {uk−1}; in particular, v`−1 = uk−1. To avoid an induced 4-cycle on
the vertex set {uk−2, c1, c2, v`−2}, we infer that uk−2 � v`−2. But now, an induced copy
of F1 arises on the vertex set {uk−3, uk−2, c1, uk−1, c2, v`−2} (where if k = 3 we define
u0 = c′1). This contradiction completes the proof of Claim 14.
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By Claim 5, we have V1 ∩ V2 = ∅. By Assumptions 1 and 2 and Claims 9, 10, and 14
we have e(V1, V2) = 0. However, since G is connected, there exists a path connecting the
two diamonds D1 and D2. In particular, we will again consider K−12 , u−1, K−21 , and u−2,
and analyze the possible interrelations between two particular paths to produce a forbidden
induced subgraph.

Recall that by Assumption 4 we have t′1 /∈ V (K−12 ) and t′2 /∈ V (K−21 ). Furthermore,
since e(V1, V2) = 0, we have u−1 6∈ V2 and u−2 6∈ V1. Recall also that Claim 13 implies
that u−1 6= u−2, u−1 � u−2.

Let P−1 = (u−1 = u1, u2, . . . , uk), with uk ∈ C2, be a shortest u−1, C2-path inK−12 ,
and let P−2 = (u−2 = v1, v2, . . . , v`), with v` ∈ C1, be a shortest u−2, C1-path in K−21 .
We may assume that uk = c2 and v` = c1. The fact that N(u−1) ∩ V2 = ∅ implies that
k ≥ 3 and since u−2 6∈ C1, we have ` ≥ 2.

Claim 15. ` ≥ 3.

Proof. Suppose that ` = 2. Then, u−2 ∼ c1. Moreover, we have that u−2 � c′1 since
otherwise u−2 would be a vertex inU−1 closer inK−12 toC2 than u−1, which is impossible
due to the definition of u−1.

We first show that u−2 6= uk−1. Suppose that u−2 = uk−1. Then uk−1 ∼ c1
and uk−1 ∼ c′2. Hence, in order to avoid an induced cycle of length at least 4 within
V (P−1)∪{c1}, we infer that vertex c1 must be adjacent to all the internal vertices of P−1.
By Assumption 4, vertex t′2 has no neighbors in the set V (K−21 ); in particular, t′2 has no
neighbors in the set V (P−1) ∪ C1. Therefore, G contains an induced H1 on the vertex set
C2 ∪ {t′2, c1, uk−1, uk−2, uk−3} (where if k = 3 we define u0 = c′1), a contradiction.

Suppose that uk−1 ∼ c1. In particular, uk−1 6= t′2. To avoid an induced 4-cycle on
the vertex set {c1, uk−1, c2, u−2}, we infer that uk−1 ∼ u−2. Moreover, uk−1 ∼ t′2 since
otherwise the vertex setC2∪{t′2, u−2, uk−1, c1} induces a copy of either F1 (if uk−1 � c′2)
or F2 (otherwise). But now u−2 and t′2 are in the same component ofG−C2, contradicting
the fact that u−2 ∈ V (K−21 ) and t′2 /∈ V (K−21 ). This contradiction implies that uk−1 � c1.

Let j ∈ {1, . . . , k} be the maximum index such that c1 ∼ uj . Then j ≤ k−2. To avoid
a long induced cycle, we infer that c1 ∼ uj′ for all j′ ∈ {1, . . . , j}. Let i ∈ {1, . . . , k} be
the minimum index such that u−2 ∼ ui. Note that i > 1 since u1 = u−1 � u−2. To avoid
a long induced cycle, we infer that i ≤ j and that u−2 ∼ ui′ for all i′ ∈ {i, . . . , k}. Note
that if i < j, then (u−1 = u1, u2, . . . , ui, u

−2, uk = c2) is a u−1, V ′2 -path in K−12 strictly
shorter than P−1, contradicting the minimality of P−1. Therefore, i = j. But now, the
vertex set {uj−1, uj , uj+1, uj+2, u

−2, c1} induces a copy of F1. This contradiction implies
that ` ≥ 3.

Claim 16. uk−1 6= v1 and v`−1 6= u1.

Proof. Suppose for a contradiction that uk−1 = v1. Recall that v1 = u−2. By the minimal-
ity of P−1, we have c2 � uj and c′2 � uj for every j ∈ {1, . . . , k−2}. Furthermore, since
u1 = u−1 � u−2 = uk−1, we have k ≥ 4. Since u−2 and t′2 are in different components
of G− C2, we infer that t′2 � uj for all j ∈ {1, . . . , k − 2}. If c1 ∼ u3, then we obtain an
induced copy of Hi for some i ≥ 1 on the vertex set

C2 ∪ {t′2, v1 = uk−1, uk−2, . . . , uj , uj−1, uj−2, c1},

where j ∈ {3, . . . , k} is the maximum index such that c1 ∼ uj . (Note that j ≤ k− 2 since
c1 � c2 = uk and c1 = v` � v1 = uk−1 by Claim 15.)
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Therefore, c1 � u3, and to avoid a long induced cycle, also c1 � uj for j ≥ 4. A
similar argument shows that c′1 � uj for j ≥ 3. If c1 � u2 and c′1 � u2, then we obtain
an induced copy of some Hi on the vertex set V (P−1) ∪ C1 ∪ C2 ∪ {t′1, t′2}. If c1 ∼ u2
and c′1 � u2 (or vice-versa), then an induced copy of some Hi arises on the vertex set
V (P−1) ∪C1 ∪C2 ∪ {t′2}, and if c1 ∼ u2 and c′1 ∼ u2, then an induced copy of some Hi

arises on the vertex set (V (P−1) \ {u1}) ∪ C1 ∪ C2 ∪ {t′1, t′2}. This contradiction shows
that uk−1 6= v1.

Similar arguments as above imply that v`−1 6= u1.

Property (ii) in the statement of the Diamond Lemma implies the following.

Claim 17. V (P−1) ∩ V (P−2) 6= ∅.

We are now ready to complete the proof of the Diamond Lemma. Let r ∈ {1, . . . , k}
be the minimum index such that ur ∈ V (P−2). Note that r < k, since uk ∈ C2 and
C2 ∩ V (P−2) = ∅. Let s ∈ {1, . . . , `} be the index such that ur = vs. If r = 1, then
u1 = v`−1, contradicting Claim 16. Therefore, r ≥ 2. Similarly, if s = 1, then v1 = uk−1,
again contradicting Claim 16. Therefore, s ≥ 2.

Consider the path Q = (u1, . . . , ur = vs, vs−1, . . . , v1). Let D and D′ be the sub-
graphs of G induced by {t′1, c1, c′1, u1} and {t′2, c2, c′2, v1}, respectively. Notice that D
and D′ are diamonds. We will refer to tips u1 and v1 as the roots of D and D′, respec-
tively. Then, Q is a path connecting the two roots. Moreover, by Assumption 4 we have
t′1 /∈ V (K−12 ) and V (Q) ⊆ V (K−12 ), we infer that t′1 has no neighbors on Q. Similarly, t′2
has no neighbors on Q.

We may also assume that Q is an induced path; otherwise, we replace Q with a shortest
u1, v1-path in G[V (Q)]. To complete the proof, we will show that G is not {F1, F2, H1,
H2, . . . }-free. We say that an induced subgraph H of G is a weakly induced Hn if H has a
spanning subgraph Hn with n ≥ 1 consisting of two diamonds and a path connecting them
such that, assuming notation from Figure 8, the following holds:

(i) each of the two diamonds is induced in G,

(ii) there are no edges in G connecting a vertex from one diamond with a vertex from
another diamond, except perhaps edges incident with their roots (if n = 1) or the
unique edge on the path connecting the two roots (if n = 2),

(iii) the path connecting the two diamonds is induced in G, and

(iv) vertices x1 and z1 do not have any neighbors on the path.

y1 yny2
x1

x2

x3

z1

z2

z3

rootroot

Figure 8: A weakly induced Hn.

Note, in particular, that for n ∈ {1, 2} every weakly induced Hn is isomorphic to Hn.
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The above considerations show that the subgraph of G induced by

V (D) ∪ V (D′) ∪ V (Q)

contains a weakly induced Hn. Choose one such induced subgraph, say H , with minimum
value of n, and let F be the corresponding spanning subgraph of H isomorphic to Hn. To
complete the proof, we will now show that either H equals F or G contains an induced F1

or F2. Suppose that this is not the case. The only possible edges that can be present in H
but not in F are those connecting one of the vertices x2, x3, z2, z3 with one of the vertices
in the set {y2, . . . , yn−1}.

Let us first show that for each i ∈ {2, . . . , n− 1}, at most one of x2 and x3 is adjacent
to yi. Suppose that x2 ∼ yi and x3 ∼ yi for some i ∈ {2, . . . , n − 1}. Then yi ∼ z2 or
yi ∼ z3, since otherwise the subgraph of G induced by {x1, x2, x3, yi, . . . , yn, z1, z2, z3}
would be a weakly induced Hn−i+1, contradicting the minimality of H . If yi ∼ z2 and
yi ∼ z3, then the vertex set {x1, x2, x3, yi, z1, z2, z3} induces an H1 in G. We may
thus assume that yi is adjacent only to one of z2, z3, say to z3. If i = n − 1, then
the vertex set {x1, x2, x3, yn−1, yn, z2, z3} induces an H1 in G. If i ≤ n − 2, then the
fact that G is chordal implies that z3 ∼ yj for all j ∈ {i, . . . , n}, and the vertex set
{x1, x2, x3, yi, yi+1, yi+2, z3} induces an H1 in G. This contradiction shows that for each
i ∈ {2, . . . , n− 1}, at most one of x2 and x3 is adjacent to yi.

Next, we argue that at least one of x2 and x3 is not adjacent to any vertex yi with
i ∈ {2, . . . , n − 1}. Indeed, if x2 ∼ yr and x3 ∼ ys, with 2 ≤ r ≤ s ≤ n − 1 (say), then
r < s and the fact that G is chordal implies that x3 ∼ yj for all j ∈ {2, . . . , s}, contra-
dicting the fact that at most one of x2 and x3 is adjacent to yr. Therefore, we may assume
without loss of generality that x2 has no neighbors in the set {y2, . . . , yn−1}. Similarly, we
may assume that z2 has no neighbors in the set {y2, . . . , yn−1}.

Let r ∈ {1, . . . , n − 1} be the maximum index such that x3 ∼ yr. Similarly, let
s ∈ {2, . . . , n} be the minimum index such that z3 ∼ ys. If r = 1 and s = n, then H = F
and we are done. Thus, we may assume without loss of generality that r ≥ 2. In particular,
this implies that x3 ∼ y2 (since G is chordal). If y2 � z3, then the subgraph of G induced
by {x2, x3, y1, . . . , yn, z1, z2, z3} is a weakly induced Hn−1, contradicting the minimality
of n. Therefore, y2 ∼ z3, or, equivalently, s = 2. A similar argument shows that r = n−1.
Now, if n = 3, then the vertex set {x2, x3, y1, y2, y3, z2, z3} induces an H1 in G, and if
n ≥ 4, then the vertex set {x2, x3, y1, y2, y3, z3} induces an F1 in G. This contradiction
completes the proof of the Diamond Lemma.
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N. Chiarelli and M. Milanič: Linear separation of connected dominating sets in graphs 521

[5] P. Bertolazzi and A. Sassano, An O(mn) algorithm for regular set-covering problems, Theoret.
Comput. Sci. 54 (1987), 237–247, doi:10.1016/0304-3975(87)90131-9.

[6] J. Blum, M. Ding, A. Thaeler and X. Cheng, Connected dominating set in sensor networks and
MANETs, in: D.-Z. Du and P. M. Pardalos (eds.), Handbook of Combinatorial Optimization,
Supplement Volume B, Springer, New York, pp. 329–369, 2005, doi:10.1007/0-387-23830-1 8.

[7] E. Boros, Dualization of Aligned Boolean Functions, RUTCOR Research Report 9-94, Rut-
gers Center for Operations Research, 1994, http://rutcor.rutgers.edu/pub/rrr/
reports94/09.ps.

[8] E. Boros, V. Gurvich and M. Milanič, Decomposing 1-Sperner hypergraphs, 2018,
arXiv:1510.02438 [math.CO].
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[52] H. Müller and A. Brandstädt, The NP-completeness of steiner tree and dominating set
for chordal bipartite graphs, Theoret. Comput. Sci. 53 (1987), 257–265, doi:10.1016/
0304-3975(87)90067-3.

[53] S. Muroga, Threshold Logic and its Applications, Wiley-Interscience (John Wiley & Sons),
New York–London–Sydney, 1971.

[54] C. Payan, A class of threshold and domishold graphs: equistable and equidominating graphs,
Discrete Math. 29 (1980), 47–52, doi:10.1016/0012-365x(90)90286-q.

[55] U. N. Peled and B. Simeone, Polynomial-time algorithms for regular set-covering and threshold
synthesis, Discrete Appl. Math. 12 (1985), 57–69, doi:10.1016/0166-218x(85)90040-x.



524 Ars Math. Contemp. 16 (2019) 487–525

[56] U. N. Peled and B. Simeone, An O(nm)-time algorithm for computing the dual of a regu-
lar Boolean function, Discrete Appl. Math. 49 (1994), 309–323, doi:10.1016/0166-218x(94)
90215-1.
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Appendix A A non-connected-domishold split graph whose cutset
hypergraph is 2-asummable

Based on an example due to Gabelman [32], Crama and Hammer proposed in the proof
of [22, Theorem 9.15] an example of a 9-variable 2-asummable positive Boolean function
f that is not threshold. From this function we can derive a split graph G = (V,E) on 71
vertices, as follows. Let V = K∪I whereK = {v1, . . . , v9} is a clique and I = V (G)−K
is an independent set. To define the edges between K and I , we first associate a non-
negative integer weight to each vertex, as follows: w(v1) = 14, w(v2) = 18, w(v3) = 24,
w(v4) = 26, w(v5) = 27, w(v6) = 30, w(v7) = 31, w(v8) = 36, w(v9) = 37, and
w(v) = 0 for all v ∈ I . Let S be the set of all subsets S of K such that w(S) ≥ 82 and
let S1 = {v1, v6, v9}, S2 = {v2, v5, v8}, and S3 = {v3, v4, v7}. (Note that w(Si) = 81
for all i ∈ [3].) Let H be the hypergraph with vertex set K and hyperedge set given by
the inclusion-wise minimal sets in S ∪ {S1, S2, S3}. It can be verified thatH has precisely
62 hyperedges (including S1, S2, and S3).4 The edges of G between vertices of I and K
are defined so that set of the neighborhoods of the 62 vertices of I is exactly the set of
hyperedges ofH.

To show that G is not CD, it suffices, by Proposition 3.4, to show that the cutset
hypergraph is not threshold. In the proof of Theorem 9.15 in [22] it is shown that the
function f is not threshold, by showing that f is 3-summable. This corresponds to the
fact that the cutset hypergraph of G is 3-summable, as can be observed by noticing that
condition (2.1) is satisfied for k = r = 3 and for the sets Ai = Si for all i ∈ [3] and
B1 = {v1, v7, v8}, B2 = {v2, v4, v9}, and B3 = {v3, v5, v6}. On the other hand, the fact
that f is 2-asummable implies that the cutset hypergraph of G is 2-asummable.

4The following is the list of sets (omitting commas and brackets) of indices of the elements of the 62 inclusion-
wise minimal hyperedges of H: 169, 179, 189, 258, 259, 268, 269, 278, 279, 289, 347, 348, 349, 357, 358, 359,
367, 368, 369, 378, 379, 389, 456, 457, 458, 459, 467, 468, 469, 478, 479, 489, 567, 568, 569, 578, 579, 589,
678, 679, 689, 789, 1234, 1235, 1236, 1237, 1238, 1239, 1245, 1246, 1247, 1248, 1249, 1256, 1257, 1267, 1345,
1346, 1356, 2345, 2346, 2356.


