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Bled’11

This issue of Ars Mathematica Contemporanea contains a selection of articles presented at
the 7th Slovenian Graph Theory Conference (Bled’11), held from June 19 to June 25, 2011,
by tradition at Lake Bled, Slovenia. This conference (held every four years) has progressed
a long way since the first one in 1991. The number of participants has grown, from just 30
in 1991, to 270 at Bled’11, representing 40 countries and all six continents. The Bled’11
conference was attended by some of the leading researchers in graph theory, as well as
many postdocs and talented PhD students. There were nine keynote speakers (Jonathan
L. Gross, Wilfried Imrich, Alexander A. Ivanov, László Lovász, Jaroslav Nešetřil, Egon
Schulte, Tamás Szőnyi, Martin Škoviera, and Asia Ivić Weiss), plus 213 contributed talks
presented within 16 minisymposia, and a general session. The minisymposia brought to-
gether researchers from specific fields, ranging across algebraic, algorithmic, geometric,
topological, and other aspects of graph theory, and enabled them to present their work and
exchange ideas. We know that this led to progress on many open problems, and catalysed
many new collaborations. The algebraic minisymposia were dedicated to Henry H. Glover,
a very dear and strong collaborator of the Slovenian Algebraic Graph Theory group, who
sadly passed away just a few weeks before the conference.

Many special and satellite events were organised during and after the conference. We
celebrated the 70th birthdays of Jonathan L. Gross and Wilfried Imrich. A meeting of the
International Academy of Mathematical Chemistry was held, as well as the first meeting
of the team from the ESF EuroGiGA GReGAS research project, led by Tomaž Pisanski
(University of Primorska). Another highlight was the ‘Milestones’ exhibition, due to Bošt-
jan Kuzman, which presented many important steps in the development of graph theory
in Slovenia — from the first lecture notes, scientific results, published papers and doctoral
theses, to international collaborations, celebrated publications, editorial positions, estab-
lishments of new institutions, scientific journals, and further projects. Immediately after
the conference, about 80 participants attended a satellite PhD Summer School — the Al-
gebraic Graph Theory Summer School, held in Rogla, and organised by the University of
Primorska, and some participants attended a ‘Mathematics meets Art’ event in Ljubljana.

In the past, many papers from each Bled conference were published in a special issue
of the Discrete Mathematics journal. In 2007 however, when Ars Mathematica Contempo-
ranea was established, the participants of the 6th Bled conference were given the option
of publishing their contributions in a special issue of this new journal. The organisers of
the 2011 conference decided that the contributions related to Bled’11 would be published
exclusively by Ars Mathematica Contemporanea. This is the first such special issue, and
contains 15 articles, accepted for publication after a thorough refereeing process. In pro-
ducing it, we are able to present to the readers of this journal a selected number of the
Bled’11 conference contributions, containing high quality results, and establishing starting
points for future research. More of these will be published in another special issue in 2014.

Klavdija Kutnar and Primož Šparl
Guest Editors
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Abstract

A Leonardo polyhedron is a 2-manifold without boundary, embedded in Euclidean 3-
space E3, built up of convex polygons and with the geometric symmetry (or rotation) group
of a Platonic solid and of genus g ≥ 2. The polyhedra are named in honour of Leonardo’s
famous illustrations in [19] (cf. also [12]). Only six combinatorially regular Leonardo poly-
hedra are known: Coxeter’s four regular skew polyhedra, and the polyhedral realizations
of the regular maps by Klein of genus 3 and by Fricke and Klein of genus 5. In this paper
we construct infinite series of equivelar (i.e. locally regular) Leonardo polyhedra, which
share some properties with the regular ones, namely the same Schläfli symbols and related
topological structure. So the weaker condition of local regularity allows a much greater
variety of symmetric polyhedra.

Keywords: Equivelar polyhedron, Leonardo polyhedron, regular polyhedron, genus, Schläfli symbol,
symmetry group.

Math. Subj. Class.: 52B15, 52B70

1 Introduction
A polyhedron is a compact 2-manifold without boundary embedded in Euclidean 3-space
E3, hence oriented. It is built up of finitely many (planar) convex polygons, any two of
which meet, if at all, in a single edge or a single vertex.

If v, e and f denote the number of vertices, edges and faces, respectively, of the poly-
hedron, then one has the basic Euler-Poincaré equation

v − e+ f = 2− 2g = χ,

E-mail addresses: gevay@math.u-szeged.hu (Gábor Gévay), wills@mathematik.uni-siegen.de (Jörg M.
Wills)
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where g ≥ 0 denotes the genus and χ the Euler characteristic. In this paper we do not
consider the case of tori (g = 1), but only the polyhedra with g ≥ 2. If all faces of a
polyhedron are p-gons, p ≥ 3, and all vertices q-valent, q ≥ 3, then the polyhedron is called
locally regular or equivelar and is denoted by its Schläfli symbol {p, q} (cf. [3, 15]). We
note that the extended Schläfli symbol {p, q; g} is also used. A much stronger condition is
(global combinatorial) regularity: a polyhedron is called regular if its automorphism group
acts transitively on its flags (incidence triples of vertex, edge and face).

Regular maps and their groups play a central role in classical complex analysis and al-
gebraic geometry (e.g. Riemann surfaces, automorphic functions, Poincaré model). Hence
regular polyhedra can be interpreted as 3D geometric models or visualizations of regular
maps, and they are closely related to the Platonic solids.

The geometric (or Euclidean) symmetry group of the polyhedron is the group of isome-
tries of E3 stabilizing the polyhedron. It is a subgroup of the automorphism group; to be
precise, the automorphism group has a (proper, or improper) subgroup that is isomorphic
to the geometric symmetry group. For a combinatorially regular polyhedron the geometric
symmetry group is, in general, much smaller than the automorphism group; they coincide
only in the case of Platonic solids. For any polyhedron with given combinatorial structure
we tacitly assume that it has maximal geometric symmetry.

Polyhedra which have the geometric rotation or full symmetry group of a Platonic solid
deserve particular interest. They are called Leonardo polyhedra, because Leonardo was
the first to draw such polyhedra in Luca Pacioli’s book [19] in 1500-1503 (see also [6]
and [12]). It is easy to check that the polyhedra in this book are neither equivelar nor
regular. Leonardo also drew some polyhedra with lower symmetry groups (e.g. dihedral),
but we only use the name for Platonic symmetries.

Obviously there are no Leonardo polyhedra of genus g = 1, because tori can have at
most dihedral symmetry. For similar reasons there are no Leonardo polyhedra with g = 2.
For g = 3 there are some with tetrahedral symmetry.

2 Regular and equivelar Leonardo polyhedra
Regular Leonardo polyhedra seem to be very rare. Only six are known yet. The first four
are Coxeter’s regular skew polyhedra [5], first discovered by Coxeter in 1937 and partially
by Alicia Boole Stott already in 1913 [1]. There is one dual pair of genus g = 6, with
tetrahedral symmetry and of type {4, 6} and {6, 4}, and one dual pair of genus g = 73,
with octahedral symmetry and of type {4, 8} and {8, 4}. (In standard notation: {4, 6|3},
{6, 4|3}, {4, 8|3} and {8, 4|3}, cf. [5, 15, 21].) The spines of Coxeter’s regular skew poly-
hedra are isomorphic to the 1-skeletons of the regular 4-simplex or the regular 24-cell, i.e.
the only self-dual regular 4-polytopes. We note that the term spine, borrowed from topol-
ogy, is meant here as a graph, embedded in E3, such that its regular neighbourhood [18] is
a 3-manifold with boundary, and the boundary of this manifold is just our polyhedron.

Furthermore, there is the polyhedral realization [20] of Felix Klein’s regular map of
genus 3 with tetrahedral rotation group and of type {3, 7}. Its dual with non-convex hep-
tagons was recently discovered [13], but here we only consider polyhedra with convex
faces.

The sixth regular polyhedron is the realization of the regular map of Fricke and Klein
from 1890. This polyhedron was found by Grünbaum and Shephard in 1984 [11], because
of its vertex-transitivity. But its regularity was only recently discovered [2]. It is of type
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{3, 8}, with genus 5, and it has octahedral rotation symmetry.
The spines of these last two polyhedra are isomorphic to the 1-skeleton of the tetrahe-

dron or the cube, hence of convex 3-polytopes in both cases. No other regular Leonardo
polyhedra are known yet.

In this paper we construct series of equivelar polyhedra, which are related to the previ-
ous 6 regular polyhedra:

Theorem 2.1. There are infinite series of equivelar Leonardo polyhedra with tetrahedral,
octahedral and dodecahedral symmetry group and of Schläfli type {3, 7}, {3, 8}, {3, 9},
{4, 6} and {6, 4}, and whose spine is isomorphic to the 1-skeleton of a convex 3- or 4-
polytope.

Remark 2.2. The result shows that there are infinite series of equivelar polyhedra, which
are closely related to the regular Leonardo polyhedra. Only the types {4, 8} and {8, 4} are
missing.

Remark 2.3. In the previous papers [9] and [23] the authors provided infinite series of
equivelar Leonardo polyhedra of type {4, 6} and {6, 4}. But these were of very different
spatial structure than the six known regular ones, as they are built up of connected shells
(like an onion). The search for closer equivelar analogues was one motivation for this pa-
per. The other one was the recently discovered regularity [2] of the Grünbaum-Shephard
polyhedron.

Among the polyhedra of “small” Schläfli-type (i.e. those with p+q < 12) the equivelar
polyhedra of type {4, 5} and {5, 4} differ from the others, as follows. The only known
regular polyhedra of these types have genus 5 and a small symmetry group of order 4,
namely (Z2 × Z2) (cf. [17] and [14]).

The equivelar Leonardo polyhedra of this type also differ from the others as the follow-
ing result shows.

Theorem 2.4. a) Type {4, 5}: There exist four infinite series of equivelar Leonardo
polyhedra with the following genera and symmetry groups:

• g = 1 + 6k with tetrahedral symmetry group, in two non-isomorphic versions;
• g = 1 + 12k with octahedral symmetry group;
• g = 1 + 30k with icosahedral symmetry group (k = 1, 2, . . . ).

b) Type {5, 4}: There exist equivelar Leonardo polyhedra with the following genera
and symmetry groups:

• g = 13, 31 with tetrahedral symmetry group;
• g = 7, 13, 25, 97, 289 with octahedral symmetry group;
• g = 31, 61, 3601 with icosahedral symmetry group.

In [22] there is a pair of equivelar Leonardo polyhedra of type {4, 5} and {5, 4} with
g = 7 and octahedral symmetry, and in Figure 1 we show a new example of type {4, 5}
with g = 19 and icosahedral (rotation) symmetry. This polyhedron consists of an outer and
an inner shell, homothetic to each other and positioned concentrically. Both of them are
composed of 60 quadrangular faces; besides, there are 20 triangular holes in each. The two
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Figure 1: The Leonardo polyhedron of type {4, 5; 19}; f = 36(4, 10, 5).

shells are joined by triangular prismatic tubes along these holes. Since this polyhedron has
shortest non-0-homotopic paths of length 3 and 4, it is not regular. It follows from Conder’s
list of regular maps [4] that for g = 19 there is precisely one regular map of type {4, 5}.
So the only possible Leonardo polyhedron of such type would be a realization of this map,
and it is an open question if it exists or not.

We note also that the polyhedron of type {5, 4; 7} with octahedral symmetry group was
found already in 1983 (see [22], Figure 2). In [9] it is constructed in a slightly different
way. The other related types are new and here we show in Figure 2 the example with genus
13.

3 Proof for the existence of equivelar series
In this section we prove Theorems 2.1 and 2.4 by constructing the polyhedra in question.

Proof of Theorem 2.1

CONSTRUCTION for Schläfli type {3, 7}.

The construction was already done in [16], but without any symmetry assumptions. We
split our proof into three parts.

First we show that there are infinitely many simple convex 3-polytopes, i.e. such that all
their vertices are 3-valent, for each of the required symmetry groups. The first polytopes
of this type are the tetrahedron, the cube and the dodecahedron. They have 4, 8 and 20
3-valent vertices, respectively. We now continue by induction.
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Figure 2: The Leonardo polyhedron of type {5, 4; 13}; f = 24(5, 10, 4).

For a simple convex polytope with v vertices we cut off these vertices by a plane each,
such that no cuts intersect and that the global symmetry is preserved. We obtain a new
convex 3-polytope with the same symmetry group and with 3v vertices, all of them 3-
valent. Clearly this polytope is not equivelar, because it contains faces of different type.

The second step is to construct from each of these polytopes a new one with 5-valent
vertices.

For each of the convex polytopes with 3v vertices we make the following operation.
We shrink all faces by the same factor, such that each face remains in its given affine
hull. Hence they are disjoint. Now we take the convex hull of the system of these new
polygons, so that we obtain a new convex polytope with 4-valent vertices. Each vertex of
the former polytope corresponds to a triangle, so does each edge to a quadrangle, and the
vertex-number of the new polytope is 9v.

We now split the new quadrangles by a diagonal into two triangles in the right order,
such that the global symmetry is preserved. More precisely, by this operation the full
symmetry group is lost and reduced to the rotation subgroup of index two. We now have a
convex 3-polytope with 5-valent vertices and the required symmetry.

The third step leads us to the construction of tunnels and the required polyhedron of
type {3, 7}. First we take the boundary complex of our polytope, and put a smaller copy of
this complex into the former one with the same centre and orientation. Then we delete in
both objects the shrinked polygons. The remaining faces are all triangles. We now connect
any two corresponding holes by tunnels, built up of quadrangles. Again we split each of
these quadrangles by a diagonal in the right order, so that the symmetry is preserved. We
obtain a polyhedron of Schläfli type {3, 7} with the required symmetry. Finally, by a slight
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rotation of the holes (originating from the shrinked faces), each within its affine hull and to
different extent in the two spherical complexes, it is ensured that no adjacent triangles are
coplanar (this can also be done in symmetry-preserving way).

CONSTRUCTION for Schläfli types {4, 6} and {6, 4}.

The construction was already described in [16], although without any symmetry con-
siderations. In order to make the paper self-contained, we sketch the proof for the {6, 4}
series. The dual {4, 6} series are constructed similarly. Let P be one of the simple 3-
polytopes with Platonic symmetry group obtained in the first step of our former proof and
let SD be the Schlegel diagram of the 4-prism with base P such that it is in one of the
Platonic bases of the prism. All vertices of SD are 4-valent. We take the midpoints of
all edges of SD, and then the convex hull of the midpoints of any four edges which are
incident to a vertex of SD. Thus to each vertex of SD corresponds a 3-simplex and each
vertex of a simplex is shared with a vertex of a neighboring simplex. Now we enlarge each
simplex by the same factor 1 + ε, ε > 0 sufficiently small. We delete those parts of the
simplices which lie inside another simplex and obtain a polyhedron of type {6, 4} with the
required symmetry properties.

CONSTRUCTION for Schläfli-types {3, 8} and {3, 9}.

From each polyhedron of type {6, 4} we obtain one of type {3, 8} as follows. In each
hexagon one connects a triplet of non-consecutive vertices by segments and obtains a tiling
of the hexagon into 4 triangles. If one does this in the right order on the whole {6, 4}
polyhedron, one obtains the required {3, 8} polyhedron.

The {3, 9} series is obtained from the {4, 6} series as follows. Each quadrangle can be
divided into two triangles by a diagonal. If one does this in the right order on the whole
polyhedron, one obtains the required {3, 9} polyhedron. The crucial point for this proce-
dure (which was already described in [16]) is the fact that, when applied to any polyhedron
of type {p, q}, the valency q of the vertices is even. �

Proof of Theorem 2.4

CONSTRUCTION for Schläfli-type {4, 5}.

Start from two distinct types of Archimedean polyhedra, P1 and P2. P1 is the truncated
octahedron with six square faces and eight hexagonal faces. P2 is the rhombicuboctahe-
dron, which has 6+12 square faces and eight triangular faces. For the following construc-
tion it is crucial that P1 has only 3-valent vertices, and P2 only 4-valent vertices. Note that
both the octuple of the hexagonal faces of P1 and the octuple of the triangular faces of P2

decomposes to two disjoint classes. In each case such a class is a quadruple forming an
orbit under the action of the tetrahedral symmetry group (a subgroup of the octahedral sym-
metry group of these polyhedra). Delete these hexagonal and triangular faces, and denote
the complexes obtained in this way by P ′

1 and P ′
2, respectively. Take 2k (k ≥ 2) concentric

and homothetic copies of P ′
1. We call them shells of our polyhedron under construction.

Now join the holes of the neighbouring shells by hexagonal prismatic tubes. The tubes are
arranged so that each intermediate shell is joined to its outer or inner neighbour, in both
cases using four tubes and using holes that belong to the same class (but different in the two
cases). The innermost shell is joined to the outermost shell. To avoid undesirable contacts,
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the holes of the outermost shell are shrinked to a suitable size with respect to those of the
intermediate shells, while keeping the symmetry. For P ′

2, the construction is the same with
the only difference that here one uses triangular tubes. We obtain two different infinite se-
ries of polyhedra, both of the desired Schläfli type, and with the (full) tetrahedral symmetry
group and genus g = 1 + 6k (k = 1, 2, . . . ).

Consider again the four orbits of faces of the rhombicuboctahedron with respect to the
action of the tetrahedral group. Clearly, analogous polyhedra can be constructed, likewise
with four orbits of faces with respect to the octahedral and the icosahedral group. In the
octahedral case these orbits are 6 squares, 8 regular triangles, 12 rhombi and 24 rectan-
gles, while in the icosahedral case there are 12 regular pentagons, 20 regular triangles, 30
squares and 60 symmetric trapezia. In both cases all the vertices are 4-valent (and the po-
lar dual is such that all the faces are kite-shaped and form two orbits). Now deleting the
square and triangular faces in the the octahedral case, and the non-quadrangular faces in the
icosahedral case, and applying an analogous construction as above, one obtains the desired
infinite series of polyhedra with genus g = 1 + 12k and g = 1 + 30k, respectively. The
starting member of the icosahedral series is shown in Figure 3.

Figure 3: The Leonardo polyhedron of type {4, 5; 31}; f = 60(4, 10, 5).

CONSTRUCTION for Schläfli-type {5, 4}.

Let P be a polyhedron satisfying the following conditions:

(1) the symmetry group G(P ) of P is equal to the full symmetry group of one of the
Platonic solids;
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(2) G(P ) is transitive on the faces of P ;

(3) the faces of P are quadrangles;

(4) each edge of P is contained in one of the mirror planes determined by G(P ).

It is easy to see that P is combinatorially equivalent to one of the following five polyhedra
(cf. [8]):

• cube;

• rhombic dodecahedron;

• rhombic triacontahedron;

• deltoidal icositetrahedron (dual of the rhombicuboctahedron) (see e.g. Figure 3 in
[9];

• deltoidal hexecontahedron (dual of the Archimedean polyhedron called rhombicosi-
dodecahedron) (see e.g. Figure 5 in [9] or Figure 9 in [7]).

Put on each of the quadrangular faces of P a bipyramid, each pairwise congruent, such that
the midpoints of the edges of the face form the basal vertices of the bipyramid. Then enlarge
each bipyramid from the centre of its own base by the same factor 1 + ε, ε > 0 sufficiently
small. Delete now those parts of the bipyramids which lie inside another bipyramid (along
with the original faces of P ). One obtains a polyhedron of the desired Schläfli type such
that its symmetry group remains the same as that of the example of P we started from. The
genus of this polyhedron is g = f2(P ) + 1, where f2(P ) is the number of the faces of P ;
hence the genera in the five cases above are 7, 13, 31, 25 and 61, respectively. Finally, we
note that there is a polyhedron called deltoidal dodecahedron, combinatorially equivalent
to the rhombic dodecahedron but with tetrahedral symmetry (a well-known figure in geo-
metric crystallography, see e.g. [10]). It also satisfies the conditions above. Hence starting
from it, our construction provides the tetrahedrally symmetric polyhedron with g = 13.

The conditions (1–4) above can be suitably modified such that they are satisfied by
equivelar polyhedra with quadrangular faces and with spine isomorphic to the 1-skeleton
of a regular 4-polytope Q. (Two of these polyhedra are even regular, namely that of type
{4, 6; 6} and {4, 8; 73} [21].) Thus, performing the construction in E4, then taking a suit-
able projection to E3, one obtains Leonardo polyhedra of the following genera: g = 31 (Q
is the regular 4-simplex), g = 97 (Q is either the 4-cube or the regular 16-cell), g = 289
(Q is the regular 24-cell) and g = 3601 (Q is either the regular 120-cell or the 600-cell).

In conclusion, we present a sporadic example of a polyhedron of type {3, 8; 7}, which
differs in its structure from those in Theorem 2.1. It is constructed from two solids P and
P ′, such that P ′ is a non-convex version of the convex 3-polytope P ; their boundary are
combinatorially equivalent to each other, and have the f -vector f = (30, 84, 56). The size
and shape of the bounding polyhedra is adjusted so that deleting a whole 8-element orbit of
faces from both, the complexes obtained in this way can be glued together along the holes,
thus forming the outer and inner shell of a new polyhedron. This polyhedron has octahedral
rotation symmetry; it is shown in Figure 4a, and its inner shell in Figure 4b.
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(a) The whole polyhedron.

(b) The inner shell of the polyhedron.

Figure 4: The Leonardo polyhedron of type {3, 8; 7}; f = 12(3, 12, 8).
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Abstract

For a graph Γ, a positive integer s and a subgroup G ≤ Aut(Γ), we prove that G
is transitive on the set of s-arcs of Γ if and only if Γ has girth at least 2(s − 1) and G
is transitive on the set of (s − 1)-geodesics of its line graph. As applications, we first
classify 2-geodesic transitive graphs of valency 4 and girth 3, and determine which of them
are geodesic transitive. Secondly we prove that the only non-complete locally cyclic 2-
geodesic transitive graphs are the octahedron and the icosahedron.

Keywords: Line graphs, s-geodesic transitive graphs, s-arc transitive graphs.

Math. Subj. Class.: 05E18, 20B25

1 Introduction
A geodesic from a vertex u to a vertex v in a graph is a path of shortest length from u to
v. In the infinite setting geodesics play an important role, for example, in the classification
of infinite distance transitive graphs [11], and in studying locally finite graphs, see for
example, [17]. They are also used to model, in a finite network, the notion of visibility in
Euclidean space [22]. Here we study transitivity properties on geodesics in finite graphs.
Throughout this paper, we assume that all graphs are finite simple and undirected.

Let Γ be a connected graph with vertex set V (Γ), edge set E(Γ) and automorphism
group Aut(Γ). For a positive integer s, an s-arc of Γ is an (s+ 1)-tuple (v0, v1, . . . , vs) of
vertices such that vi, vi+1 are adjacent and vj−1 6= vj+1 for 0 ≤ i ≤ s− 1, 1 ≤ j ≤ s− 1;
it is an s-geodesic if in addition v0, vs are at distance s. For G ≤ Aut(Γ), Γ is said to
be (G, s)-arc transitive or (G, s)-geodesic transitive, if Γ contains an s-arc or s-geodesic,

∗This paper forms part of Australian Research Council Federation Fellowship FF0776186 held by the fourth
author. The first author is supported by UWA as part of the Federation Fellowship project during most of the
work for this paper. The second author is supported by the Scholarships for International Research Fees (SIRF)
at UWA.

E-mail addresses: alice.devillers@uwa.edu.au (Alice Devillers), 20535692@student.uwa.edu.au (Wei Jin),
cai.heng.li@uwa.edu.au (Cai Heng Li), cheryl.praeger@uwa.edu.au (Cheryl E. Praeger)

Copyright c© 2013 DMFA Slovenije



14 Ars Math. Contemp. 6 (2013) 13–20

and G is transitive on the set of t-arcs or t-geodesics respectively for all t ≤ s. Moreover,
if G = Aut(Γ), then G is usually omitted in the previous notation. The study of (G, s)-arc
transitive graphs goes back to Tutte’s papers [18, 19] which showed that if Γ is a (G, s)-arc
transitive cubic graph then s ≤ 5. About twenty years later, relying on the classification of
finite simple groups, Weiss [21] proved that there are no (G, 8)-arc transitive graphs with
valency at least three. The family of s-arc transitive graphs has been studied extensively,
see [2, 9, 15, 16, 20]. Here we consider these properties for line graphs.

The line graph L(Γ) of a graph Γ is the graph whose vertices are the edges of Γ, with
two edges adjacent in L(Γ) if they have a vertex in common. Our first aim in the paper
is to investigate connections between the s-arc transitivity of a connected graph Γ and the
(s − 1)-geodesic transitivity of its line graph L(Γ) where s ≥ 2. A key ingredient in this
study is a collection of injective maps Ls, where Ls maps the s-arcs of Γ to certain s-tuples
of edges of Γ (vertices of L(Γ)) as defined in Definition 2.3. The major properties of Ls

are derived in Theorem 2.4 and the main consequence linking the symmetry of Γ and L(Γ)
is given in Theorem 1.1, which is proved in Subsection 2.2.

We denote by Γ(u) the set of vertices adjacent to the vertex u in Γ. If |Γ(u)| is indepen-
dent of u ∈ V (Γ), then Γ is said to be regular. The girth of Γ is the length of the shortest
cycle; the diameter diam(Γ) of Γ is the maximum distance between two vertices.

Theorem 1.1. Let Γ be a connected regular, non-complete graph of girth g and valency at
least 3. LetG ≤ Aut(Γ) and let s be a positive integer such that 2 ≤ s ≤ diam(L(Γ))+1.
Then G is transitive on the set of s-arcs of Γ if and only if s ≤ g/2 + 1 and G is transitive
on the set of (s− 1)-geodesics of L(Γ).

It follows from a deep theorem of Richard Weiss in [21] that if Γ is a connected s-arc
transitive graph of valency at least 3, then s ≤ 7. This observation yields the following
corollary, and its proof can be found in Subsection 2.2.

Corollary 1.2. Let Γ and g be as in Theorem 1.1 . Let s be a positive integer such that
2 ≤ s ≤ diam(L(Γ)) + 1. If L(Γ) is (s− 1)-geodesic transitive, then either 2 ≤ s ≤ 7 or
s > max{7, g/2 + 1}.

Note that in a graph, 1-arcs and 1-geodesics are the same, and are called arcs. For
graphs of girth at least 4, each 2-arc is a 2-geodesic so the sets of 2-arc transitive graphs
and 2-geodesic transitive graphs are the same. However, there are also 2-geodesic transitive
graphs of girth 3. For such a graph Γ, the subgraph [Γ(u)] induced on the set Γ(u) is vertex
transitive and contains edges. Moreover, if [Γ(u)] is complete, then so is Γ. A vertex
transitive, non-complete, non-empty graph must have at least 4 vertices and thus valency 4
is the first interesting case.

As an application of Theorem 1.1, we characterise connected non-complete 2-geodesic
transitive graphs of girth 3 and valency 4. In this case, [Γ(u)] ∼= C4 or 2K2 for each
u ∈ V (Γ). If Γ is s-geodesic transitive with s = diam(Γ), then Γ is called geodesic
transitive. A graph Γ is said to be distance transitive if its automorphism group is transitive
on the ordered pairs of vertices at any given distance.

Theorem 1.3. Let Γ be a connected non-complete graph of girth 3 and valency 4. Then Γ
is 2-geodesic transitive if and only if Γ is either L(K4) ∼= O or L(Σ) for a connected 3-arc
transitive cubic graph Σ.
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Moreover, Γ is geodesic transitive if and only if Γ = L(Σ) for a cubic distance tran-
sitive graph Σ, namely Σ = K4, K3,3, the Petersen graph, the Heawood graph or Tutte’s
8-cage.

Since there are infinitely many 3-arc transitive cubic graphs, there are therefore in-
finitely many 2-geodesic transitive graphs with girth 3 and valency 4. Theorem 1.3 is
proved in Section 3, and it provides a useful method for constructing 2-geodesic transitive
graphs of girth 3 and valency 4 which are not geodesic transitive, an example being the line
graph of a triple cover of Tutte’s 8-cage constructed in [14]. The line graphs mentioned in
the second part of Theorem 1.3 are precisely the distance transitive graphs of valency 4 and
girth 3 given, for example, in [4, Theorem 7.5.3 (i)].

A graph Γ is said to be locally cyclic if [Γ(u)] is a cycle for every vertex u. In particular,
the girth of a locally cyclic graph is 3. It was shown in [8, Theorem 1.1] that for 2-geodesic
transitive graphs Γ of girth 3, the subgraph [Γ(u)] is either a connected graph of diameter
2, or isomorphic to the disjoint union mKr of m copies of a complete graph Kr with
m ≥ 2, r ≥ 2. Thus one consequence of Theorem 1.3 is a classification of connected,
locally cyclic, 2-geodesic transitive graphs in Corollary 1.4: for [Γ(u)] ∼= Cn has diameter
2 only for valencies n = 4 or 5, and the valency 5, girth 3, 2-geodesic transitive graphs
were classified in [7]. Its proof can be found at the end of Section 3. We note that locally
cyclic graphs are important for studying embeddings of graphs in surfaces, see for example
[10, 12, 13].

Corollary 1.4. Let Γ be a connected, non-complete, locally cyclic graph. Then Γ is 2-
geodesic transitive if and only if Γ is the octahedron or the icosahedron.

2 Line graphs
We begin by citing a well-known result about line graphs.

Lemma 2.1. [1, p.1455] Let Γ be a connected graph. If Γ has at least 5 vertices, then
Aut(Γ) ∼= Aut(L(Γ)).

The subdivision graph S(Γ) of a graph Γ is the graph with vertex set V (Γ) ∪ E(Γ)
and edge set {{u, e}|u ∈ V (Γ), e ∈ E(Γ), u ∈ e}. The link between the diameters of
Γ and S(Γ) was determined in [6, Remark 3.1 (b)]: diam(S(Γ)) = 2 diam(Γ) + δ for
some δ ∈ {0, 1, 2}. Here, based on this result, we will show the connection between the
diameters of Γ and L(Γ) in the following lemma.

Lemma 2.2. Let Γ be a connected graph with |V (Γ)| ≥ 2. Then it holds diam(L(Γ)) =
diam(Γ) + x for some x ∈ {−1, 0, 1}. Moreover, all three values occur, for example, if
Γ = K3+x, then diam(L(Γ)) = diam(Γ) + x = 1 + x for each x.

Proof. Let d = diam(Γ), dl = diam(L(Γ)) and ds = diam(S(Γ)). Let (x0, x2, . . . , x2dl
)

be a dl-geodesic of L(Γ). Then by definition of L(Γ), each edge intersection x2i ∩ x2i+2

is a vertex v2i+1 of Γ and (x0, v1, x2, . . . , v2dl−1, x2dl
) is a 2dl-path in S(Γ). Suppose that

(x0, v1, x2, . . . , v2dl−1, x2dl
) is not a 2dl-geodesic of S(Γ). Then there is an r-geodesic

from x0 to x2dl
, say (y0, y1, y2, . . . , yr) with y0 = x0 and yr = x2dl

, such that r < 2dl.
Since both x0, x2dl

are in V (L(Γ)), it follows that r is even, and hence dL(Γ)(x0, x2dl
) =

r
2 < dl which contradicts the fact that (x0, x2, . . . , x2dl

) is a dl-geodesic of L(Γ). Thus
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(x0, v1, x2, . . . , v2dl−1, x2dl
) is a 2dl-geodesic in S(Γ). It follows from [6, Remark 3.1

(b)] that dl ≤ ds/2 ≤ d+ 1.
Now take a ds-geodesic (x0, x1, . . . , xds

) in S(Γ). If x0 ∈ E(Γ), then (x0, x2, x4, . . . ,
x2bds/2c) is a bds/2c-geodesic in L(Γ), so dl ≥ bds/2c ≥ d. Similarly we see that dl ≥ d
if xds

∈ E(Γ). Finally if both x0, xds
∈ V (Γ), then ds is even and dΓ(x0, xds

) = ds/2.
Moreover (x1, x3, . . . , xds−1) is a (ds−2

2 )-geodesic in L(Γ). By [6, Remark 3.1 (b)], ds =

2d, so dl ≥ ds−2
2 = d− 1.

2.1 The map Ls

Let Γ be a finite connected graph. For each integer s ≥ 2, we define a map from the set of
s-arcs of Γ to the set of s-tuples of V (L(Γ)).

Definition 2.3. Let a = (v0, v1, . . . , vs) be an s-arc of Γ where s ≥ 2, and for 0 ≤ i < s,
let ei := {vi, vi+1} ∈ E(Γ). Define Ls(a) := (e0, e1, . . . , es−1).

The following theorem gives some important properties of Ls.

Theorem 2.4. Let s ≥ 2, let Γ be a connected graph containing at least one s-arc, and let
Ls be as in Definition 2.3. Then the following statements hold.

(1) Ls is an injective map from the set of s-arcs of Γ to the set of (s− 1)-arcs of L(Γ).
Further, Ls is a bijection if and only if either s = 2, or s ≥ 3 and Γ ∼= Cm or Pn for some
m ≥ 3, n ≥ s.

(2) Ls maps s-geodesics of Γ to (s− 1)-geodesics of L(Γ).
(3) If s ≤ diam(L(Γ)) + 1, then the image Im(Ls) contains the set Gs−1 of all (s−1)-

geodesics of L(Γ). Moreover, Im(Ls) = Gs−1 if and only if girth(Γ) ≥ 2s− 2.
(4) Ls is Aut(Γ)-equivariant, that is, Ls(a)g = Ls(ag) for all g ∈ Aut(Γ) and all

s-arcs a of Γ.

Proof. (1) Let a = (v0, v1, . . . , vs) be an s-arc of Γ and let Ls(a) := (e0, e1, . . . , es−1)
with the ei as in Definition 2.3. Then each of the ei lies inE(Γ) = V (L(Γ)) and ek 6= ek+1

for 0 ≤ k ≤ s−2. Further, since vj 6= vj+1, vj+2 for 1 ≤ j ≤ s−2, we have ej−1 6= ej+1.
Thus Ls(a) is an (s− 1)-arc of L(Γ).

Let b = (u0, u1, . . . , us) and c = (w0, w1, . . . , ws) be two s-arcs of Γ. Then Ls(b) =
(f0, f1, . . . , fs−1) and Ls(c) = (g0, g1, . . . , gs−1) are two (s − 1)-arcs of L(Γ), where
fi = {ui, ui+1} and gi = {wi, wi+1} for 0 ≤ i < s. Suppose that Ls(b) = Ls(c). Then
fi = gi for each i ≥ 0, and hence fi ∩ fi+1 = gi ∩ gi+1, that is, ui+1 = wi+1 for each
0 ≤ i ≤ s− 2. So also u0 = w0 and us = ws, and hence b = c. Thus Ls is injective.

Now we prove the second part. Each arc of L(Γ) is of the form h = (e, f) where
e = {u0, u1} and f = {u1, u2} are distinct edges of Γ. Thus u0 6= u2, so k = (u0, u1, u2)
is a 2-arc of Γ and L2(k) = h. It follows that L2 is onto and hence is a bijection. If s ≥ 3
and Γ ∼= Cm or Pn for some m ≥ 3, n ≥ s, then L(Γ) ∼= Cm or Pn−1 respectively, and
hence for every (s−1)-arc x of L(Γ), we can find an s-arc y of Γ such that Ls(y) = x, that
is, Ls is onto. Thus Ls is a bijection. Conversely, suppose that Ls is onto, and that s ≥ 3.
Assume that some vertex u of Γ has valency greater than 2 and let e1 = {u, v1}, e2 =
{u, v2}, e3 = {u, v3} be distinct edges. Then x = (e1, e2, e3) is a 2-arc in L(Γ) and there
is no 3-arc y of Γ such that Ls(y) = x. In general, for s = 3a + b ≥ 4 with a ≥ 1 and
b ∈ {0, 1, 2}, we concatenate a copies of x to form an (s − 1)-arc of L(Γ): namely (xa)
if b = 0; (xa, e1) if b = 1; (xa, e1, e2) if b = 2. This (s− 1)-arc does not lie in the image
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of Ls. Thus each vertex of Γ has valency at most 2. If all vertices have valency 2 then
Γ ∼= Cm for some m ≥ 3, since Γ is connected. So suppose that some vertex u of Γ has
valency 1. Since Γ is connected and each other vertex has valency at most 2, it follows that
Γ ∼= Pn for some n ≥ s.

(2) Let a = (v0, . . . , vs) be an s-geodesic of Γ and let Ls(a) = (e0, . . . , es−1) as
above. If s = 2, then Ls(a) is a 1-arc, and hence a 1-geodesic of L(Γ). Suppose that
s ≥ 3 and Ls(a) is not an (s − 1)-geodesic. Then dL(Γ)(e0, es−1) = r < s − 1 and
there exists an r-geodesic r = (f0, f1, . . . , fr−1, fr) with f0 = e0 and fr = es−1. Since
s ≥ 3 and a is an s-geodesic, it follows that {v0, v1} ∩ {vs−1, vs} = ∅, that is, e0 and
es−1 are not adjacent in L(Γ). Thus r ≥ 2. Since r is an r-geodesic, it follows that the
consecutive edges fi−1, fi, fi+1 do not share a common vertex for any 1 ≤ i ≤ r − 1,
otherwise (f0, . . . , fi−1, fi+1, . . . , fr) would be a shorter path than r, which is impossible.
Hence we have fh = {uh, uh+1} for 0 ≤ h ≤ r. Then (u1, u2, . . . , ur) is an (r − 1)-path
in Γ, {u1} = e0 ∩ f1 ⊆ {v0, v1} and {ur} = fr−1 ∩ es−1 ⊆ {vs−1, vs}. It follows that
dΓ(v0, vs) ≤ dΓ(u1, ur) + 2 ≤ r + 1 < s, contradicting the fact that a is an s-geodesic.
Therefore, Ls(a) is an (s− 1)-geodesic of L(Γ).

(3) Let 2 ≤ s ≤ diam(L(Γ)) + 1 and Gs−1 be the set of all (s− 1)-geodesics of L(Γ).
If s = 2, then by part (1), each 1-geodesic of L(Γ) lies in the image Im(L2), and hence
G1 ⊆ Im(L2). Now suppose inductively that 2 ≤ s ≤ diam(L(Γ)) and Gs−1 ⊆ Im(Ls).
Let e = (e0, e1, e2, . . . , es) be an s-geodesic of L(Γ). Then e′ = (e0, e1, e2, . . . , es−1)
is an (s − 1)-geodesic of L(Γ). Thus there exists an s-arc a of Γ such that Ls(a) = e′,
say a = (v0, v1, . . . , vs). Since es is adjacent to es−1 = {vs−1, vs} but not to es−2 =
{vs−2, vs−1} in L(Γ), it follows that es = {vs, x} where x /∈ {vs−2, vs−1}. Hence b =
(v0, v1, . . . , vs, x) is an (s + 1)-arc of Γ. Further, Ls+1(b) = e. Thus Im(Ls+1) contains
all s-geodesics of L(Γ), that is, Gs ⊆ Im(Ls+1). Hence the first part of (3) is proved by
induction.

Now we prove the second part. Suppose first that for every s-arc a of Γ, Ls(a) is an
(s − 1)-geodesic of L(Γ). Let g := girth(Γ). If s = 2, as g ≥ 3, then g ≥ 2s − 2. Now
let s ≥ 3. Assume that g ≤ 2s − 3. Then Γ has a g-cycle b = (u0, u1, u2, . . . , ug−1, ug)
with ug = u0. It follows that Lg(b) forms a g-cycle of L(Γ). Thus the sequence b′ =
(u0, u1, . . . , us) (where we take subscripts modulo g if necessary) is an s-arc of Γ and
Ls(b′) = (e0, e1, . . . , es−1) involves only the vertices of Ls(b). This implies that
dL(Γ)(e0, es−1) ≤ g

2 ≤
2s−3

2 < s− 1, that is, Ls(b′) is not an (s− 1)-geodesic, which is
a contradiction. Thus, g ≥ 2s− 2.

Conversely, suppose that g ≥ 2s − 2. Let a := (v0, v1, v2, . . . , vs) be an s-arc of
Γ. Then Ls(a) = (e0, e1, e2, . . . , es−1) is an (s − 1)-arc of L(Γ) by part (1). Let a′ :=
(v0, v1, v2, . . . , vs−1). Since g ≥ 2s − 2, it follows that a′ is an (s − 1)-geodesic, and
hence by (2), Ls−1(a′) = (e0, e1, e2, . . . , es−2) is an (s − 2)-geodesic of L(Γ). Thus
z = dL(Γ)(e0, es−1) satisfies s−3 ≤ z ≤ s−1. There is a z-geodesic from e0 to es−1, say
f = (e0, f1, f2, . . . , fz−1, es−1). Further, by the first part of (3), there is a (z + 1)-arc b =
(u0, u1, . . . , uz, uz+1) of Γ such that Lz+1(b) = f and we have e0 = {u0, u1} = {v0, v1}
and es−1 = {uz, uz+1} = {vs−1, vs}. There are 4 cases, in columns 2 and 3 of Table 1: in
each case there is a given nondegenerate closed walk x of length l(x) as in Table 1. Thus
l(x) ≥ g ≥ 2s− 2 and in each case l(x) ≤ s+ z − 1. It follows that z ≥ s− 1, and hence
z = s− 1. Thus Ls(a) = (e0, e1, e2, . . . , es−1) is an (s− 1)-geodesic of L(Γ).

(4) This property follows from the definition of Ls.
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Table 1: Four cases of x
Case (u0, u1) (uz, uz+1) x l(x)

1 (v0, v1) (vs−1, vs) (vs−1, vs−2, . . . , v2, v1, u2, . . . , s+ z − 3
uz−1, vs−1)

2 (v0, v1) (vs, vs−1) (vs, vs−1, . . . , v2, v1, u2, . . . , s+ z − 2
uz−1, vs)

3 (v1, v0) (vs−1, vs) (vs−1, vs−2, . . . , v2, v1, u1, u2, . . . , s+ z − 2
uz−1, vs−1)

4 (v1, v0) (vs, vs−1) (vs, vs−1, . . . , v2, v1, u1, u2, . . . , s+ z − 1
uz−1, vs)

Remark 2.5. (i) The map Ls is usually not surjective on the set of (s − 1)-arcs of L(Γ).
In the proof of Theorem 2.4 (1), we constructed an (s − 1)-arc of L(Γ) not in Im(Ls) for
any Γ with at least one vertex of valency at least 3.

(ii) Theorem 2.4 (1) and (3) imply that, for each (s − 1)-geodesic e of L(Γ), there is
a unique s-arc a of Γ such that Ls(a) = e. The s-arc a is not always an s-geodesic. For
example, if Γ has girth 3 and (v0, v1, v2, v0) is a 3-cycle, then a = (v0, v1, v2) is not a
2-geodesic but L2(a) is the 1-geodesic (e0, e1) where e0 = {v0, v1} and e1 = {v1, v2}.

2.2 Proofs of Theorem 1.1 and Corollary 1.2

Proof of Theorem 1.1. Let Γ be a connected, regular, non-complete graph of girth g
and valency at least 3. Then in particular |V (Γ)| ≥ 5, and by Lemma 2.1, Aut(Γ) ∼=
Aut(L(Γ)). Let G ≤ Aut(Γ) and let 2 ≤ s ≤ diam(L(Γ)) + 1.

Suppose first thatG is transitive on the set of s-arcs of Γ. Then by [3, Proposition 17.2],
s ≤ g/2 + 1. Since s − 1 ≤ diam(L(Γ)), it follows that L(Γ) has (s − 1)-geodesics and
by Theorem 2.4 (3), Im(Ls) is the set of (s − 1)-geodesics of L(Γ). On the other hand,
by Theorem 2.4 (4), G acts transitively on Im(Ls), and hence G is transitive on the set of
(s− 1)-geodesics of L(Γ).

Conversely, suppose that s ≤ g/2 + 1 and G is transitive on the (s − 1)-geodesics of
L(Γ). Then by the last assertion of Theorem 2.4 (3), Im(Ls) is the set of (s−1)-geodesics,
and since Ls is injective, it follows from Theorem 2.4 (1) and (4) that G is transitive on the
set of s-arcs of Γ. �

Proof of Corollary 1.2. Let Γ, g, s be as in Theorem 1.1. Assume that Aut(Γ) is transitive
on the (s − 1)-geodesics of L(Γ). If s > 7, then by [21], Aut(Γ) is not transitive on the
s-arcs of Γ and so by Theorem 1.1, s > g

2 + 1. �

3 2-geodesic transitive graphs that are locally cyclic or locally 2K2

In this section, we prove Theorem 1.3. The proof uses the notion of a clique graph. A
maximum clique of a graph Γ is a clique (complete subgraph) which is not contained in a
larger clique. The clique graph C(Γ) of Γ is the graph with vertices the maximum cliques
of Γ, and two maximum cliques are adjacent if and only if they have at least one common
vertex in Γ.
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Proof of Theorem 1.3. Let Γ be a connected non-complete graph of girth 3 and valency 4,
and let A = Aut(Γ) and v ∈ V (Γ). Suppose first that Γ is 2-geodesic transitive. Then Γ
is arc transitive, and so Av is transitive on Γ(v). Since Γ is non-complete of girth 3, [Γ(v)]
is neither complete nor edgeless, and so, as discussed before the statement of Theorem
1.3, [Γ(v)] = C4 or 2K2. If [Γ(v)] ∼= C4, then it is easy to see that Γ ∼= O (or see [4,
p.5] or [5]). So we may assume that [Γ(v)] ∼= 2K2. It follows from [8, Theorem 1.4]
that Γ is isomorphic to the clique graph C(Σ) of a connected graph Σ such that, for each
u ∈ V (Σ), the induced subgraph [Σ(u)] ∼= 3K1, that is to say, Σ is a cubic graph of girth
at least 4 and C(Σ) is in this case the line graph L(Σ). Moreover, [8, Theorem 1.4] gives
that Σ ∼= C(Γ). A cubic graph with girth at least 4 has |V (Σ)| ≥ 5, so by Lemma 2.1,
A ∼= Aut(Σ). Now we apply Theorem 1.1 to the graph Σ of girth g ≥ 4. Since Γ = L(Σ)
is 2-geodesic transitive and 3 ≤ g/2 + 1, it follows from Theorem 1.1 that Σ is 3-arc
transitive. Therefore, Γ is the line graph of a 3-arc transitive cubic graph.

Conversely, if Γ ∼= O, then it is 2-geodesic transitive, and hence is geodesic transitive
as diam(O) = 2. If Γ = L(Σ) where Σ is a 3-arc transitive cubic graph, then by Theorem
1.1 applied to Σ with s = 3, L(Σ) is 2-geodesic transitive. This proves the first assertion
of Theorem 1.3.

To prove the second assertion, suppose first that Γ is geodesic transitive. Then Γ is
distance transitive, and so by Theorems 7.5.2 and 7.5.3 (i) of [4], Γ is one of the following
graphs: O = L(K4), H(2, 3) = L(K3,3), or the line graph of the Petersen graph, the
Heawood graph or Tutte’s 8-cage. We complete the proof by showing that all these graphs
are geodesic transitive. As noted above, O is geodesic transitive; by [7, Proposition 3.2],
H(2, 3) is geodesic transitive. It remains to consider the last three graphs.

Let Σ be the Petersen graph and Γ = L(Σ). Then Σ is 3-arc transitive, and it follows
from Theorem 1.1 that Γ is 2-geodesic transitive. By [4, Theorem 7.5.3 (i)], diam(Γ) = 3
and |Γ(w)∩Γ3(u)| = 1 for each 2-geodesic (u, v, w) of Γ. Thus Γ is 3-geodesic transitive,
and hence is geodesic transitive.

Let Σ1 be the Heawood graph and Σ2 be Tutte’s 8-cage. Then Σ1 is 4-arc transitive and
Σ2 is 5-arc transitive, and hence by Theorem 1.1, L(Σ1) is 3-geodesic transitive and L(Σ2)
is 4-geodesic transitive. By [4, Theorem 7.5.3 (i)], diam(L(Σ1)) = 3 and diam(L(Σ2)) =
4, and hence both L(Σ1) and L(Σ2) are geodesic transitive. �

Finally, we prove Corollary 1.4.

Proof of Corollary 1.4. Let Γ be a connected non-complete locally cyclic graph. If Γ is
2-geodesic transitive, then it is regular of valency n say. As discussed in the introduction,
n = 4 or 5. If n = 4, then we proved in Theorem 1.3, that Γ is isomorphic to the octahedron
and that the octahedron is indeed 2-geodesic transitive. If n = 5, then by [7, Theorem 1.2],
Γ is isomorphic to the icosahedron, and this graph is 2-geodesic transitive. �
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Abstract

We prove that the Johnson graphs are Hamilton-connected and apply this to obtain that
another family of graphs is Hamilton-connected.

Keywords: Hamilton path, Johnson graph, Hamilton-connected.
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1 Main Result
The Johnson graph J(n, k), 0 ≤ k ≤ n, is defined by letting the vertices correspond to
the k-subsets of an n-set, where two vertices are adjacent if and only if the corresponding
k-subsets have exactly k − 1 elements in common. A graph is Hamilton-connected if for
any pair of distinct vertices u, v there is a Hamilton path whose terminal vertices are u and
v. The graph with a single vertex is trivially Hamilton-connected.

In a recent paper [1], I needed a certain graph to be Hamilton-connected. This graph,
defined below, contains vertex-disjoint Johnson graphs. The result I needed is embodied in
the corollary below.

Theorem 1.1. The Johnson graph J(n, k) is Hamilton-connected for all n ≥ 1.

Proof. For ease of exposition, instead of talking about the vertex corresponding to a subset,
we shall simply treat the subsets as if they are vertices so that we use equality notation
between vertices and sets. The graphs J(n, k) and J(n, n − k) are isomorphic via the
mapping that takes a k-subset to its complement.

The graphs J(n, 0) and J(n, n), n ≥ 1, are isomorphic to the single vertex K1 and
trivially Hamilton-connected. The graphs J(n, 1) and J(n, n− 1), n ≥ 1, are isomorphic
to the complete graph Kn. Complete graphs certainly are Hamilton-connected.

We proceed by double induction and when considering J(n, k), the induction hypothe-
ses are: J(m, k′) is Hamilton-connected whenever k′ < k and m ≥ k′, or J(m, k) is
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Hamilton-connected whenever m < n and m ≥ k. As noted above, J(n, 1) is Hamilton-
connected for all n ≥ 1. For a fixed k we start with J(k, k) and then proceed by going
from J(n− 1, k) to J(n, k). Thus, the induction hypotheses make sense.

If k ≤ n ≤ 2k − 1, then n − k < k so that J(n, n − k) is Hamilton-connected by
hypothesis. This, in turn, implies that J(n, k) is Hamilton-connected because J(n, k) and
J(n, n − k) are isomorphic. Thus, it follows that J(n, k) is Hamilton-connected for all n
satisfying k ≤ n ≤ 2k − 1.

For the remaining cases we need to actually show how to find appropriate Hamilton
paths. The symmetric group Sn acts in the obvious way on the vertex set of J(n, k).
This action is transitive so that it suffices to find a Hamilton path from the vertex u =
{1, 2, 3, . . . , k} to any other vertex. Let v = {a1, a2, . . . , ak} be an arbitrary vertex.

If there is an element x of {1, 2, . . . , n} belonging to neither of the sets, we may relabel
elements so that n is missing from both sets. Thus, both k-sets are subsets of {1, 2, . . . , n−
1}. By induction there is a Hamilton path from u to v in J(n− 1, k). Because the vertices
that are adjacent along that path also are adjacent in J(n, k), let P ′ be the corresponding
path from u to v in J(n, k). The path P ′ contains all the vertices corresponding to k-subsets
that do not contain n.

Let w1 = {y1, y2, . . . , yk−1, yk} and w2 = {y1, y2, . . . , yk−1, zk} be two adjacent
vertices on P ′. The vertex w1 is adjacent to the vertex w3 = {y2, . . . , yk−1, yk, n}, and the
vertex w2 is adjacent to the vertex w4 = {y2, . . . , yk−1, zk, n}.

The subgraph X induced by J(n, k) on all the subsets containing n clearly is isomor-
phic to J(n− 1, k− 1). Thus, there is a path from w3 to w4 spanning all the vertices of X .
Thus, remove the edge of P ′ between w1 and w2, add the edges w1w3 and w2w4, and then
add the path from w3 to w4 spanning X . The resulting path is a Hamilton path in J(n, k)
with u and v as terminal vertices.

If n > 2k, then there always is an element x missing both subsets and the preceding
argument establishes that J(n, k) is Hamilton-connected. If n = 2k, there is exactly one
subset that fails the criterion, namely, the complement of {1, 2, . . . , k}. So we need to find
a Hamilton path in J(2k, k) from u to its complement.

Consider the k-subsets of {1, 2, . . . , 2k} not containing the element 2k. The subgraph
induced by J(2k, k) on this collection of subsets is isomorphic to the graph J(2k − 1, k).
It is Hamilton-connected by induction so that there is a Hamilton path from u to w =
{1, 2, . . . , k − 1, 2k − 1}. Let P be the copy of this path in J(2k, k).

Now consider all the k-subsets of {1, 2, . . . , 2k} that contain the element 2k. The
subgraph Y ′ induced on this collection of sets is isomorphic to J(2k − 1, k − 1) so that
it has a spanning path from {1, 2, . . . , k − 1, 2k} to {k + 1, k + 2, . . . , 2k}. Because the
intermediate terminal vertices on the two paths are adjacent, we have a Hamilton path in
J(2k, k) from u to its complement. This completes the proof.

The corollary below is the real target of this short paper. We need to define a particular
graph first. Let A = {a1, a2, . . . , am} be a non-empty subset of {0, 1, 2, . . . , n} such that
the elements are listed in the order a1 < a2 < · · · < am. We define the graph QJ(n,A)
in the following way. For each ai ∈ A, we include a copy of the Johnson graph J(n, ai).
Thus far the Johnson graphs are vertex-disjoint. We then insert edges between J(n, ai) and
J(n, ai+1), for each i, using set inclusion, that is, we join an ai-subset S1 and an ai+1-
subset S2 if S1 is contained in S2. The graph QJ(n,A) can be pictured as having levels
made up of Johnson graphs with edges between successive levels based on set inclusion.
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Corollary 1.2. The graph QJ(n,A) is Hamilton-connected for all n ≥ 1.

Proof. If A is a singleton set, then QJ(n,A) is a Johnson graph and the result follows
from Theorem 1.1. Hence, we assume that A has at least two elements. Suppose that u and
v are two vertices of QJ(n,A) lying at different levels, where u has cardinality ai, v has
cardinality aj , and ai < aj . Construct a path starting at u that spans the vertices at level ai
and terminates at an arbitrary vertex ui at level ai.

Choose a neighbor ui+1 of ui at level ai+1 making certain it is distinct from v if j =
i+ 1. Then add the edge from ui to ui+1 followed by a path spanning the vertices at level
ai+1. If v happens to lie at this level make certain the path terminates at v. Otherwise, the
path can terminate at any vertex at level ai+1.

It is obvious how to continue this until we have a path starting at u, terminating at v,
and spanning all the vertices at levels ai, ai+1 up through level aj . If this happens to be
all the levels of QJ(n,A), then we have found a Hamilton path joining u and v. If we are
missing levels, we then continue as follows.

If there are missing levels above level aj , then remove an edge xy of the current path at
level aj and take distinct neighbors x′ and y′ of x and y, respectively, at level aj+1. Then
extend to a larger path by taking a path joining x′ and y′ spanning all the vertices at level
aj+1. If x and y don’t have distinct neighbors at level aj+1, then aj+1 = n and the level is
the singleton vertex w = {1, 2, 3, . . . , n} which is adjacent to everything at level aj so that
we replace the edge xy of the path with the 2-path xwy.

It is obvious how to continue adding the vertices one level at a time until we finish with
the top level. We also can do the analogous extension with the levels below ai until we
achieve a Hamilton path in Q(n,A) that has u and v as terminal vertices.

If u and v are at the same level. Then we start with a path spanning level ai that has u
and v as terminal vertices. We then extend the path through the other levels as above. This
completes the proof.

Corollary 1.2 allows us to process a variety of collections of sets of different cardinal-
ities where we can move from one set to another either by a revolving door operation or
restricted inclusions. This is what was required in [1].
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Abstract

It is well known that for any given hyperbolic pair (k,m) there exist infinitely many
regular maps of valence k and face length m on an orientable surface, with automorphism
group isomorphic to a linear fractional group. A nonorientable analogue of this result was
known to be true for all pairs (k,m) as above with at least one even entry. In this paper we
establish the existence of such regular maps on nonorientable surfaces for all hyperbolic
pairs.

Keywords: Regular map, linear fractional group.
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1 Introduction
A map on a compact, orientable surface is orientably regular if the group of all orientation
preserving automorphisms of the map is transitive, and hence regular, on darts of the map.
A map on a compact, nonorientable surface is regular if its automorphism group is transi-
tive, and hence regular, on flags of the map. In either case, such maps have all vertices of
the same degree and all faces of the same length; if these quantities are k and m we speak
of a map of type {m, k}. The type is said to be hyperbolic if 1/k+ 1/m < 1/2. Regarding
type, the following basic fact was rediscovered a number of times in the past.
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Theorem 1.1. For every hyperbolic pair (k,m) there exist infinitely many orientably reg-
ular maps of type {m, k}.

A brief history of the development around this result together with a list of various
proofs can be found in [9]. A particularly important way of proving Theorem 1.1 follows
from [8] and implies that all such maps can be chosen to have the orientation preserving
automorphism group isomorphic to a linear fractional group over a finite field.

It is quite surprising that a nonorientable analogue of Theorem 1.1 has not been con-
sidered. A proof might follow from the study of generation of symmetric and alternating
groups by pairs of permutations of given order in [6], but this work does not appear to
have a corresponding follow-up and it is not our intention to do so. Instead, motivated by
the result of [8] mentioned above, we will be interested in possibilities to prove a stronger
form of a nonorientable analogue of Theorem 1.1 for maps with automorphism group iso-
morphic to a linear fractional group over a finite field. In fact, this has already been done
for three quarters of the cases by the third author in [11] where it is shown that for any
hyperbolic pair (k,m) with at least one even entry there are infinitely many nonorientable
regular maps of type {m, k} with automorphism group isomorphic to PGL(2, F ) for suit-
able finite fields F , but the case when both k and m are odd was left untouched.

In this note we fill in this gap, establishing thus the existence of an infinite number of
nonorientable regular maps of type {m, k}with automorphism group isomorphic to a linear
fractional group for any given hyperbolic type {m, k}. The main results are presented in
Section 4, preceded by background information summed up in Section 2 and auxiliary
number theoretic results in Section 3.

2 Preliminaries
Foundations of the theory of regular maps have been laid in [4] and [2] and in what follows
we just briefly review a few basic facts; for surveys we recommend [7] and [10].

Orientably regular maps of type {m, k} can be identified with their orientation pre-
serving automorphism groups and these are in a one-to-one correspondence with the finite
groups G presented in the form

G = 〈r, s; rk = sm = (rs)2 = . . . = 1〉 (2.1)

where r and s represent a k-fold rotation about a fixed vertex of the map and an m-fold
rotation about the centre of a face incident with the vertex. In particular, we require that k,
m and 2 are the true orders of r, s, and rs, respectively. Vertices, faces and edges of the
orientably regular map Mor(G) corresponding to a presentation of a group G as in (2.1)
can be identified with left cosets of the cyclic subgroups 〈r〉, 〈s〉 and 〈rs〉, with incidence
determined by non-empty intersection; the group G then acts as the orientation preserving
automorphism group of Mor(G) by left multiplication.

Regular maps on nonorientable surfaces are also in a one-to-one correspondence with
presentations of finite groups as in (2.1) but satisfying the extra condition that G contains
an involution t such that trt = r−1 and tst = s−1. This time, the nonorientable regular
map Mnor(G) corresponding to such a group G has vertices, faces and edges identified
with the left cosets of the dihedral subgroups 〈r, t〉, 〈s, t〉 and 〈rt, ts〉. Incidence is again
determined by non-empty intersection and G acts as the automorphism group of Mnor(G)
by left multiplication.
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Thus, if a group G with presentation (2.1) admits an inner automorphism induced by
an involution and inverting r and s, the above correspondences allow one to associate
two maps with G, namely, Mor(G) and Mnor(G). To remove this ambiguity in what
follows, for a group G as in (2.1) we define the map M(G) by letting M(G) = Mnor(G)
if G has an inner automorphism induced by an involution, inverting both r and s, and
M(G) = Mor(G) if G has no such inner automorphism.

As stated in the Introduction we will be interested in regular maps of a given type with
automorphism group isomorphic to a linear fractional group. We begin by recalling the
characterisation of such automorphism groups from [8]; for a much more detailed proof
we refer to [3].

Proposition 2.1. Let (k,m) be a hyperbolic pair and letK be an algebraically closed field
of a prime characteristic p coprime to km. Let ξ and η be primitive (δk)th and (δm)th roots
of unity in K, where δ = 1 if p = 2 and δ = 2 if p > 2. Let D = −(ξ2 + ξ−2 + η2 + η−2)
and let

R = ±
[
ξ 0
0 ξ−1

]
and S = ±(ξ − ξ−1)−1

[
−(η + η−1)ξ−1 D

1 (η + η−1)ξ

]
be elements of PSL(2,K). Then,

(a) the orders of R, S, and RS in PSL(2,K) are k, m, and 2, respectively, and

(b) if G is a subgroup of PSL(2,K) with presentation (2.1), then there exist primitive
(δk)th and (δm)th roots of unity such that G is conjugate to the subgroup generated
by the matrices R and S as above.

It is therefore sufficient to study the groups G(ξ, η) = 〈R,S〉 with R and S as above.
Necessary and sufficient conditions for G(ξ, η) to give rise to a nonorientable regular map
were given in [3]. Here we present an excerpt sufficient for our purposes.

Theorem 2.2. Let (k,m) be a hyperbolic pair and letK be an algebraically closed field of
a prime characteristic p relatively prime to both k and m. Let ξ and η be primitive (δk)th

and (δm)th roots of unity in K, where δ = 1 if p = 2 and δ = 2 if p > 2. Let e = e(k,m)
be the smallest positive integer j such that n | (pj − εn)/δ for each n ∈ {k,m} and some
εn ∈ {+1,−1}. Then:

(1) if e is even, e = 2f , then G(ξ, η) is isomorphic to PGL(2, pf ) if and only if the
quantity D = −(ξ2 + ξ−2 + η2 + η−2) is not equal to zero, and either (a) there is
an even entry n ∈ {k,m} and an ε ∈ {+1,−1} such that n divides (pf − ε) but 2n
does not, while the other entry divides (pf − ε′)/2 for some ε′ ∈ {+1,−1}, or (b)
both k and m are even and for any n ∈ {k,m} there exists an ε′n such that n is a
divisor of (pf − ε′n) but 2n is not;

(2) G(ξ, η) is isomorphic to PSL(2, pe) if and only if D 6= 0 and either e is odd, or the
pair (k,m) together with an even e do not satisfy any of the above conditions (a) and
(b); and

(3) if D 6= 0, the map M(G(ξ, η)) is nonorientable if and only if either e = 2f and
G(ξ, η) ∼= PGL(2, pf ), or if G(ξ, η) ∼= PSL(2, pe) and D is a square in GF (pe);
in particular, in the last case M(G(ξ, η)) is always nonorientable if p = 2 and both
k and m are odd.
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From the last part of this result one sees that to obtain nonorientable regular maps it is,
for example, sufficient to make sure that e = 2f , D 6= 0 and G(ξ, η) ∼= PGL(2, pf ). In
[11] it is shown that this can be guaranteed whenever at least one of k and m is even:

Theorem 2.3. Let (k,m) be a hyperbolic pair with at least one even entry. Then, there is
an infinite number of finite, nonorientable, regular maps of type {m, k} with automorphism
group isomorphic to PGL(2, F ) for suitable finite fields F .

To be able to extend this result to the case when both k and m are odd, by Theorem
2.2 one can only hope to establish the existence of infinitely many regular maps of type
{m, k} with automorphism group isomorphic to PSL(2, F ) for suitable finite fields F . In
particular, by part (3) of Theorem 2.2, to achieve this we need to make sure that for an
infinite number of primes p one can select primitive 2k-th and 2m-th roots of unity ξ and
η in GF (pe) in such a way that the quantity D = −(ξ2 + ξ−2 + η2 + η−2) is a square
in GF (pe), where e = e(k,m); note that e depends on p as well but this dependence is
not shown in our notation. Observe that if k and m are odd, ξ2 and η2 are primitive k-th
and m-th roots of unity, respectively. Thus, in this case D has the form D = −(ωk + ωm)
where ωn denotes the sum of an n-th primitive root of unity and its reciprocal in GF (pe).
In what follows we will investigate such quantities in general, first over the field of complex
numbers and subsequently over finite fields by considering factor fields of rings of algebraic
integers.

3 Auxiliary results involving complex roots of unity
Let ζn denote any primitive n-th root of unity, but this time taken in the field C of complex
numbers unless stated otherwise. It is known that all the primitive n-th roots of unity are
conjugate over the rationals Q and their common minimal polynomial is the n-th cyclo-
tomic polynomial Φn of degree ϕ(n), the value of the Euler totient function at n. By ωn
we denote any number of the form ζn + ζ−1n ; these quantities are again conjugate over Q
and their common minimal polynomial will be denoted by Ψn(x). It is well known that if
n > 2, then

xϕ(n)/2Ψn(x+ x−1) = Φn(x). (3.1)

Finally, let Un denote the set of all primitive n-th roots of unity in C and let Un stand for
the set of all the corresponding quantities ωn.

We continue with some observations. From the fact that Φ1(x) = x − 1, Φp(x) =
1 +x+ · · ·+xp−1 and Φpn(x) = Φn(xp) if p|n and Φpn(x) = Φn(xp)/Φn(x) otherwise,
we obtain the following auxiliary result by easy calculations.

Lemma 3.1. Let Φn(x) be the n-th cyclotomic polynomial. Then, Φ1(1) = 0, Φpk(1) = p
for p prime and k > 0, and Φn(1) = 1 otherwise. Also, Φ1(−1) = −2, Φ2(−1) = 0,
Φ2pk(−1) = p for p prime and k > 0, and Φn(−1) = 1 otherwise.

With the help of these facts we obtain our basic result on products of the quantities
−(ωk + ωm) for any ωk ∈ Uk and ωm ∈ Um.

Proposition 3.2. Let k,m be odd positive integers and let

P (k,m) =
∏

ωk∈Uk

∏
ωm∈Um

−(ωk + ωm) .

Then, P (1, 1) = −4, P (k, k)2 = (−2)ϕ(k) for k ≥ 3, and P (k,m)2 = 1 otherwise.
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Proof. Obviously P (k,m) = P (m, k) and we will therefore assume that k ≥ m in what
follows. The values of P (k,m) for k,m ≤ 2 are trivial. If k ≥ 3 and m = 1, then
P (k, 1) =

∏
ωk∈Uk

−(2 + ωk) = Ψk(−2) = (−1)−ϕ(k)/2Φk(−1) = (−1)ϕ(k)/2 and so
P (k, 1)2 = 1. For the remaining part of the proof we assume that k ≥ m > 1.

By the properties of the polynomials

Ψm(x) =
∏

ωm∈Um

(x− ωm)

we obtain, for any ωk = ζk + ζ−1k ∈ Uk, the equality∏
ωm∈Um

−(ωk + ωm) = Ψm(−ωk) = (−ζk)−ϕ(m)/2Φm(−ζk) .

Let U ′k be a subset of Uk of cardinality ϕ(k)/2 such that Uk = {ζk + ζ−1k ; ζk ∈ U ′k}. The
previous computation then implies that

P (k,m) =
∏
ζk∈U ′

k

(−ζk)−ϕ(m)/2Φm(−ζk) .

Extending the product above from U ′k to Uk means squaring the last equation; combining
this with the fact that the product of all the (even number of) k-th primitive roots of unity
is equal to 1 we obtain

P (k,m)2 =
∏
ζk∈Uk

(−ζk)−ϕ(m)/2Φm(−ζk) =
∏
ζk∈Uk

Φm(−ζk).

Invoking the well known identity Φm(x) =
∏
d|m(xd − 1)µ(m/d), where µ is the Moebius

function, we have
Φm(−ζk) =

∏
d|m

(−ζdk − 1)µ(m/d) .

This product is non-zero since both k and m, and hence all the divisors d, are odd and so
(−ζk)d 6= 1; note also that the divisors satisfy d ≤ k because of the assumption m ≤ k.

Let us analyze the system of powers U = (ζdk ; ζk ∈ Uk) appearing in the last equality.
For any positive divisor d of m let n(d) = k/(d, k) and r(d) = ϕ(k)/ϕ(n(d)); of course,
both quantities depend on k as well. It can now be seen that the system U is a collection,
for any d dividing m, of primitive n(d)-th roots of unity, each repeated r(d) times. With
the help of all these facts together with Φt(x) =

∏
ζt∈Ut

(x− ζt) evaluated at x = −1 we
successively obtain

P (k,m)2 =
∏
ζk∈Uk

∏
d|m

(−ζdk − 1)µ(m/d) =
∏
d|m

∏
ζk∈Uk

(−1− ζdk)µ(m/d)

=
∏
d|m

∏
ζn(d)∈Un(d)

(−1− ζn(d))r(d)µ(m/d) =
∏
d|m

(Φn(d)(−1))r(d)µ(m/d) .

As all the values of n(d) are odd here, we have Φn(d)(−1) = 1 if d < k and Φn(d)(−1) =
−2 if d = k, where the second possibility occurs if and only ifm = k and then r(d) = ϕ(k)
and µ(m/d) = 1. We conclude that for k ≥ 3 we have P (k, k)2 = (−2)ϕ(k), and
P (k,m)2 = 1 if 1 < m < k. This completes the proof.
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A different and more powerful approach to the investigation of the quantity D from
Theorem 2.2 relies on some known facts on algebraic integers in algebraic number fields.
We refer to [1] as a suitable introductory reference and recall here just a few basic concepts
and results.

Let K be an algebraic number field, that is, an extension of Q of a finite degree. Let
O = OK be the ring of algebraic integers in K. The ring O is known to be a Dedekind
domain, but apart from a few facts the theory of such domains will not be needed. A basic
property of O is that every non-zero ideal J ⊂ O has a finite index [O : J ]. Without
going into too much detail we recall that the the index [O : J ] is the norm N(J) of J .
Another important property of O is that any prime ideal J ⊂ O is maximal. Thus, for
any such J the quotient ring O/J is a finite field and so there exists a unique rational
prime p such that N(J) = pj for some j ∈ {1, 2, . . . , d}, where d = [K : Q] is the
degree of the extension. Further, it is known that K admits exactly d distinct injective
homomorphisms σ1, . . . , σd into C. The norm N(z) of any element z ∈ K is defined as
the product N(z) = σ1(z) . . . σd(z); the elements σt(z), 1 ≤ t ≤ d, are the conjugates of
z over K. The norm is multiplicative, that is, N(z1z2) = N(z1)N(z2) for any z1, z2 ∈ K.
Norms of elements of O and ideals in O are known to be related by the fact that, for every
non-zero algebraic integer z ∈ O, the absolute value of N(z) is equal to the norm of the
ideal (z) ⊂ O generated by z. In particular, the norm of every non-zero element z ∈ O is
a non-zero integer, and it is well known that |N(z)| = 1 if and only if z is a unit, that is,
an invertible element in the ring O. We will also repeatedly use the fact that if an element
z ∈ O belongs to an ideal I of O, then N(I) divides N(z).

For illustration we present some of the consequences of Proposition 3.2 in the language
of algebraic number theory. Let α = ζ2k and β = ζ2m be complex primitive 2k-th and 2m-
th roots of unity, respectively, and letA = −(α2+α−2+β2+β−2). In what follows, letK
denote the algebraic number field Q[α, β]. Since the generators α and β of K are roots of
unity in C, every injective homomorphism σ : K → C is uniquely determined by positive
integers i and j, relatively prime to k andm, such that σ(α) = αi and σ(β) = βj . Observe,
however, that whether particular i and j give rise to such an injective homomorphism may
also depend on α and β and not just on k and m. As before, let O = OK be the ring of
algebraic integers of K. Since α and β themselves are algebraic integers in K, we have
A ∈ O; in particular, the norm N(A) in O is an integer.

Lemma 3.3. If α 6= β, then A is a unit in O, and if α = β, then |N(A)| is a power of 2.

Proof. Observe that all factors in the product P (k,m) in Proposition 3.2 are algebraic
integers, with all conjugates of A being among the factors. By the same Proposition we
have P (k,m) = ±1 if k 6= m, while P (k, k)2 = (−2)ϕ(k) for k ≥ 3. Since algebraic
integers have integral norm, it follows that A is a unit in O if k 6= m. In the case when
k = m and α = β, the absolute value of the norm of−2(α2 +α−2) is equal to (−2)ϕ(k)/2,
and therefore for α 6= β the absolute value of the norm of A must be 1.

Returning to our main theme, until the end of this section we will assume that (k,m) is
a fixed hyperbolic pair with no restriction on the parity of the two entries. We begin by an
elementary observation that will turn out to be crucial later.

Lemma 3.4. The quantity A− n2 is never a unit in O for any integer n > 2.

Proof. We recall the known fact that K is isomorphic to the cyclotomic field Q[γ], where
γ = cos( 2π

` ) + i sin( 2π
` ) is a primitive `-th root of unity for ` = lcm{2, k,m}. The
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conjugates of γ over K have the form cos( 2π
` j) + i sin( 2π

` j), where 1 ≤ j < ` and
(j, `) = 1. All the ϕ(`) distinct injective homomorphisms σt : K → C preserve the
rationals pointwise. Since the explicit form of the conjugates of γ over K implies that
|σt(A)| < 4, we have |σt(A − n2)| = |σt(A) − n2| ≥ n2 − |σt(A)| > n2 − 4 for
any t such that 1 ≤ t ≤ ϕ(`). Thus, by the definition of the norm, for n > 2 we have
|N(A− n2)| > 1, which means that A− n2 is not invertible in O.

It is useful to realise that our considerations before Lemma 3.1 did not depend on the
parity of k and m and hence we may use them in what follows. Observe that in the general
case we want to deal with, the value of A could be equal to zero in K, which happens
precisely if iβ ∈ {±α,±α−1}. If, however, {k,m} is a hyperbolic pair, it is easy to see
that we can choose α and β avoiding this condition. Keeping to the notation introduced
above, for any n ≥ 3 let I = In be a maximal ideal in O containing the element A − n2
and let p = pn be the characteristic of the field F = O/I . Letting ξ = α + I , η = β + I ,
and D = A+ I , we have:

Lemma 3.5. If n is relatively prime toN(A), then the elementD = −(ξ2+ξ−2+η2+η−2)
is a non-zero square in F and p does not divide n. Moreover, if p is not a divisor of 2km,
then ξ and η are primitive 2k-th and 2m-th root of unity in F .

Proof. Since A− n2 ∈ I , that is, A+ I = n2 + I , the element D = A+ I is a square in
F . As p ∈ I and I is a prime ideal, by our earlier remarks on norms of elements and ideals
of the Dedekind ring O the condition A ∈ I is equivalent to each of the conditions n2 ∈ I ,
n ∈ I , and p|n. Hence p divides both n and N(A), contrary to our assumption on their
relative primeness.

It is obvious that ξ is a 2k-th root of unity in F . Assume that αu− 1 ∈ I , where αu is a
primitive c-th root of unity in C for a proper divisor c of 2k. As the ideal generated by the
algebraic integer αu− 1 is contained in I , the norm of I divides the norm of αu− 1, which
implies that the norm of αu − 1 is divisible by p. On the other hand, all conjugates of αu

are c-th primitive roots of unity in C. Arguments analogous to those used in the proof of
Proposition 3.2 imply that, up to sign, the norm of αu − 1 is a power of Φc(1). Thus, by
Lemma 3.1, c is a power of p, contrary to the assumption that p - 2k. It follows that ξ is a
primitive 2k-th root of unity in F . By the same token, η is a primitive 2m-th root of unity
in F .

By suitably varying the parameter n one obtains an infinite sequence of primes as in
Lemma 3.5.

Lemma 3.6. If A 6= 0, then there exists an infinite set of values n and an infinite sequence
of prime ideals In of O containing the element A − n2 such that the fields O/In have
pairwise distinct prime characteristic pn.

Proof. Referring to the way the primes pn have been introduced for any n > 2, let us
define an infinite sequence nj of integers by letting n1 = 2|N(A)|+ 1 and nj =

∏j−1
i=1 pni

for j > 1. Applying Lemma 3.5 inductively we deduce that pnj
does not divide nj for

any j ≥ 1. By our construction, for any j ≥ 2 the prime pnj differs from all the previous
primes pni for i < j.
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4 Results
Two immediate consequences in the direction of our interest can be obtained by exploring
earlier results. Firstly, there is a much more general version of Theorem 2.2 in which the
prime p is not necessarily coprime to k and m, in particular, covering the case when both
k and m are equal to p and G ∼= PSL(2, p); see Propositions 3.1, 3.2, 4.6 and 6.1 of [3].
In order to avoid a rather long re-statement of these facts we invite the reader to check that
part (2) of Proposition 6.1 combined with Proposition 3.1 of [3] imply:

Theorem 4.1. If p is a prime congruent to 1 mod 4, then there exists a nonorientable
regular map of type (p, p) with automorphism group isomorphic to PSL(2, p). 2

Secondly, if both k and m are odd and p = 2, part (3) of Theorem 2.2 directly yields
the following result, where e = e(k,m) is as introduced in the statement of Theorem 2.2.

Theorem 4.2. Let (k,m) be a hyperbolic pair consisting of odd entries. Then there
is a nonorientable regular map of type {m, k} with automorphism group isomorphic to
PSL(2, 2e) for e = e(k,m). 2

Together with the earlier findings this gives at least an existence result of the sought
kind on regular maps over linear fractional groups.

Corollary 4.3. For any hyperbolic pair (k,m) there exists a nonorientable regular map of
type {m, k} with automorphism group isomorphic to a linear fractional group over a finite
field. 2

In the light of Theorem 2.3, the question of existence of an infinite number of such
maps of any given type hyperbolic type is settled by the following result. Although we are
interested mainly in the case when k and m are odd, we give a more general formulation
which yields an alternative proof of Theorem 2 of [11].

Theorem 4.4. For every hyperbolic pair (k,m) there is an infinite number of finite, nonori-
entable, regular maps of type {m, k} with automorphism group isomorphic to PSL(2, F )
or PGL(2, F ) for suitable finite fields F .

Proof. We will refer to the notation introduced in Section 3. For a fixed hyperbolic pair
(k,m) and a non-zero A = −(α2 + α−2 + β2 + β−2) with let p = pn be any prime from
Lemma 3.6 relatively prime to 2km, and let G = G(ξ, η) be the corresponding group.
By Theorem 2.2, G is isomorphic to PSL(2, F ) or PGL(2, F ′). As D is a square, the
corresponding regular map M(G) is nonorientable in both cases.

We also present two more results based on residue techniques which, although appli-
cable only to a very restricted infinite set of types with both entries odd, may be useful in
future investigations.

Theorem 4.5. Let k and m be prime powers congruent to 3 mod 4. Then, there exist
infinitely many nonorientable regular maps of type {m, k} with automorphism group iso-
morphic to PSL(2, F ) for suitable finite fields F .

Proof. Let p be a prime congruent to 1 mod 8 and let e = min{n; k|pn ± 1 and m|pn ±
1}. Then, p does not divide 2km and the equality from Proposition 3.2 holds also in
GF (pe), with appropriate interpretation of the primitive roots. Since p ≡ 1 mod 8, the four
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elements ±1 and ±2 are all quadratic residues in GF (p) and hence also in GF (pe). By
Proposition 3.2, the element P (k,m) is a quadratic residue inGF (pe); note that in the case
k 6= m it would have been sufficient to assume p ≡ 1 mod 4 to obtain the same conclusion.
By our assumptions, both ϕ(k)/2 and ϕ(m)/2 are odd. The product P (k,m) has therefore
an odd number of factors and so at least one of them must be a quadratic residue inGF (pe).
That is, there exist ωk ∈ Uk and ωm ∈ Um such that the valueD = −(ωk+ωm) is a square
in GF (pe). This gives, by Theorem 2.2 and the remark after Theorem 2.3, a nonorientable
regular map of type {m, k}. Since there are infinitely many primes p as above, our result
follows.

Theorem 4.6. Let k andm be odd integers forming a hyperbolic pair such that the number
ϕ(k)ϕ(m)/4 is even, that is, at least one of k, m is not a prime power congruent to 3 mod
4. If P (k,m) < 0, then there are infinitely many finite, nonorientable, regular maps of type
{m, k} with automorphism group isomorphic to PGL(2, F ) for suitable finite fields F .

Proof. Let p ≡ 3 mod 4 be a prime such that e is odd (e.g., any p ≡ ±1 mod km). If
k 6= m, then P (k,m) = −1 not only in C but also in GF (pe). Similarly if k = m, then
we have P (k,m) = (−2)ϕ(k)/2 both in C and inGF (pe). Note that if k = m, then ϕ(k)/2
is even and 2ϕ(k)/2 is a quadratic residue in GF (p). As p ≡ 3 mod 4 and e is odd, the
product P (k,m) is a quadratic nonresidue in both GF (p) and GF (pe). On the other hand,
P (k,m) has an even number of factors, and therefore at least one of them is a quadratic
residue in GF (pe).

5 Remarks
By Theorem 4.4, for any given hyperbolic pair (k,m) there exists an infinite number of
nonorientable regular maps of type {m, k} with automorphism group isomorphic to linear
fractional groups over finite fields. Our approach was based on developing some results
obtained in [3] in the course of analysing regular maps over linear fractional groups. The
scope of [3] is, however, broader and covers regular hypermaps. For a general theory of
hypermaps and their surface representations we recommend [5]. Here we just recall that
a finite regular hypermap of type (k,m, l) can be identified with a finite quotient group of
the triangle group T (k,m, l) = 〈r, s, t; rk = sm = (rs)l = 1〉. Thus, regular hyper-
maps are a natural generalisation of regular maps (corresponding to the case when l = 2).
Facts collected in [8, 3] imply that for any hyperbolic triple (k,m, l), that is, such that
1/k + 1/m + 1/l < 1, there exist infinitely many regular hypermaps of type (k,m, l) on
orientable surfaces, with automorphism group isomorphic to a linear fractional group over
a finite field. By the theory developed in [3] combined with the findings in this paper, to
establish a nonorientable analogue of this result requires analysing conditions under which
the quantityA′ = 4+(α+α−1)(β+β−1)(γ+γ−1)−(α+α−1)2−(β+β−1)2−(γ+γ−1)2,
where α, β and γ are primitive 2k-th, 2m-th, and 2l-th roots of unity in C, projects onto a
non-zero square in a quotient field of the ring of algebraic integers of Q[α, β, γ] generated
by a suitable prime ideal; note that for l = 2 we have γ2 = 1 and γ+ γ−1 = 0 and then A′

reduces to the quantity A introduced earlier. In fact, methods of Section 3 can be adapted
in an obvious way to construct, for any hyperbolic triple (k,m, l) and for suitable triples
(α, β, γ) of primitive roots of unity as above, an infinite number of nonorientable regular
hypermaps of type (k, l,m) over linear fractional groups.

A comparison of Theorems 4.4, 4.5 and 4.6 reveals their different nature. Theorem 4.4
is more universal since it applies to all hyperbolic pairs and it is, in essence, constructive,
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but it yields no information on the corresponding set of primes. On the other hand, The-
orems 4.5 and 4.6 apply to a very restricted set of hyperbolic pairs and are, in essence,
existential, but the sets of primes for which they guarantee the existence of nonorientable
regular maps have positive density in the set of all primes. This leaves the intriguing ques-
tion of whether it is possible, for any given hyperbolic pair (k,m), to determine all primes
p such that there exists a nonorientable regular map of type {m, k} with its automorphism
group isomorphic to a linear fractional group over a field of characteristic p.

For possible further interest we present a table of values of the product P (k,m) for
odd k,m such that 3 ≤ k,m ≤ 41. Observe that for k 6= m the table shows negative
entries only if both k and m are powers of primes congruent to 3 mod 4. If this observation
carries through to all odd k and m, Theorem 4.6 would be applicable only in the case when
k = m, and the values 5, 13, 25, 29 and 37 show that this Theorem is not void.

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

2 1 −1 −1 −1 1 1 1 −1 1 −1 1 −1 1 −1 1 1 1 1 1
1 −22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
−1 1 −23 −1 −1 1 1 1 −1 1 −1 1 −1 1 −1 1 1 1 1 1
−1 1 −1 23 −1 1 1 1 −1 1 −1 1 −1 1 −1 1 1 1 1 1
−1 1 −1 −1 25 1 1 1 −1 1 −1 1 −1 1 −1 1 1 1 1 1
1 1 1 1 1 −26 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 24 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 28 1 1 1 1 1 1 1 1 1 1 1 1
−1 1 −1 −1 −1 1 1 1 29 1 −1 1 −1 1 −1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 26 1 1 1 1 1 1 1 1 1 1
−1 1 −1 −1 −1 1 1 1 −1 1 −211 1 −1 1 −1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 −210 1 1 1 1 1 1 1 1
−1 1 −1 −1 −1 1 1 1 −1 1 −1 1 29 1 −1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 −214 1 1 1 1 1 1
−1 1 −1 −1 −1 1 1 1 −1 1 −1 1 −1 1 −215 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 210 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 212 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 −218 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 212 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 220

Acknowledgement
Research of the second author was supported by the APVV Research Grants 0111-07 and
0223-10, and the VEGA Research Grants 1/0588/09 and 1/0406/09. The third author ac-
knowledges support by the APVV Research Grants 0104-07 and 0223-10, and the VEGA
Research Grants 1/0280/10 and 1/0781/11. Both the second and the third authors also
acknowledge the APVV support as part of the EUROCORES Programme EUROGIGA
(project GREGAS, ESF-EC-0009-10) of the European Science Foundation.



G. A. Jones et al.: Nonorientable regular maps over linear fractional groups 35

References
[1] S. Alaca and K. S. Williams, Introductory Algebraic Number Theory, Cambridge University

Press, Cambridge, 2004.

[2] R. P. Bryant and D. Singerman, Foundations of the theory of maps on surfaces with boundary,
Quart. J. Math. Oxford Ser. 141 (1985), 17–41.

[3] M. Conder, P. Potočnik and J. Širáň, Regular hypermaps over projective linear groups, J. Aus-
tralian Math. Soc. 85 (2008), 155–175.

[4] G. A. Jones and D. Singerman, Theory of maps on orientable surfaces, Proc. London Math.
Soc. 37 (1978), 273–307.

[5] G. A. Jones and D. Singerman, Belyı̆functions, hypermaps, and Galois groups, Bull. London
Math. Soc. 28 (1996), 561–590.

[6] Q. Mushtaq and H. Servatius, Permutation representations of the symmetry groups of regular
hyperbolic tessellations, J. London Math. Soc. 48 (1993), 77–86.

[7] R.Nedela, Regular maps – combinatorial objects relating different fields of mathematics, J.
Korean Math. Soc. 38 (2001), 1069–1105.

[8] Ch.-H. Sah, Groups related to compact Riemann surfaces, Acta Math. 123 (1969), 13–42.
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Abstract

We derive an O(n2)-time algorithm for calculating the genus distribution of a given
3-regular Halin graph G; that is, we calculate the sequence of numbers g0(G), g1(G),
g2(G), . . . on the respective orientable surfaces S0, S1, S2, . . . . Key topological features
are a quadrangular decomposition of plane Halin graphs and a new recombinant-strands
reassembly process that fits pieces together three-at-a-vertex. Key algorithmic features are
reassembly along a post-order traversal, with just-in-time dynamic assignment of roots for
quadrangular pieces encountered along the tour.

Keywords: Genus distribution, Halin graph, partitioned genus distribution, gram embedding, outer-
planar graph, topological graph theory.

Math. Subj. Class.: 05C10

1 Introduction
A Halin graph [20] is constructed from a plane tree T with at least four vertices and no 2-
valent vertices by drawing a cycle thru the leaves of T in the order they occur in a preorder
traversal of T . Any wheel graph Wn (for n ≥ 3) is a Halin graph. Every Halin graph can
be obtained by iterative splitting of the hub of a wheel and of some of the resulting vertices.
Although some of the graphs obtained by splitting the hub of a wheel are non-planar, every
planar graph so obtained is a Halin graph, since splitting a vertex of a tree yields a tree.

The outer cycle of a Halin graph is the cycle corresponding to the traversal of the leaves
of the inscribed tree. [Since a Halin graph is 3-connected, its planar embedding is unique
up to reversal of orientation, as per Whitney’s theorem.] In the Halin graph of Figure 1, the
outer cycle has length eight.
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Figure 1: A Halin graph for a 14-vertex tree with 8 leaves.

Genus distributions

DEF. The genus distribution for graph G is the sequence
γdist(G) : g0(G), g1(G), g2(G), · · ·

where gi(G) denotes the number of embeddings of G in the orientable surface Si of genus
i. In reckoning the number of embeddings of the graph G in the surface S, we regard two
embeddings ι : G → S and ι′ : G → S as the same if there is an extension of the identity
automorphism 1G : G → G to an orientation-preserving autohomeomorphism h : S → S
such that ι ◦ h = ι′ or, equivalently, if the two embeddings of G correspond to the same
rotation system (see [19]).

Calculating the genus distribution of a graph requires determining not only its minimum
genus and its maximum genus, but also the number of embeddings of every possible genus.
Table 1 gives the genus distributions of some familiar graphs, each of which is small enough
that its genus distribution can be calculated by hand using ad hoc methods.

Table 1: Genus distributions of some familiar graphs.

graph G g0(G) g1(G) g2(G) g3(G) g4(G) · · ·
K4 2 14 0 0 0 . . .

bouquet B2 4 2 0 0 0 . . .
dipole D3 2 2 0 0 0 . . .
K3,3 0 40 24 0 0 . . .

K2 × C3 2 38 24 0 0 . . .

The study of genus distributions began with [16]. Some of the early papers, such as [9]
and [18], were devoted to calculating genus distributions for all the graphs in a recursively
constructible sequence. Other early papers, such as [33] and [7], were concerned with sta-
tistical properties of the distribution. A solution to a genus distribution calculation problem
can be either a formula or a polynomial-time algorithm.

Lists of some previous papers on genus distributions have appeared in [10], [15], [17],
and [29]. Papers published (or written) subsequently include the following: [4], [6], [5],
[11], [12], [22], [23], [30], and [31].

Graph amalgamations and bar-amalgamations

In general, amalgamating two graphs means identifying a subgraph in one of them to
an isomorphic subgraph in the other. Figures 2 and 3 illustrate vertex-amalgamation and
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edge-amalgamation, respectively, which are the two simplest kinds of amalgamation of
two graphs.

=*V

Figure 2: Vertex-amalgamation of two graphs.

=*E

Figure 3: Edge-amalgamation of two graphs.

A bar-amalgamation of two (disjoint) graphs G and H is obtained by joining a vertex
u of G to a vertex v of H with a new edge. It is denoted here by G ∗̄H . Figure 4 shows a
bar-amalgamation.

=
u v

*

Figure 4: Bar-amalgamation of two graphs.

Proposition 1.1 ([16]). Let G and H be (disjoint) connected graphs, and let u and v be
vertices of G and H , respectively. Then

γdist(G ∗̄H) = deg(u) · deg(v) · γdist(G) ◦ γdist(H)
where ◦ means the operation of convolution on two sequences.

Seeking a useful algorithm

The objective herein is to derive a quadratic-time algorithm for calculating the genus
distribution of any 3-regular Halin graph. The focus is not merely on proving the existence
of such an algorithm, but on developing an algorithm that can by executed (albeit tediously)
by hand for graphs with 10-20 vertices and rather quickly by a computer for graphs with a
significantly larger number of vertices.

The terminology used here is consistent with [19] and [1]. For additional background
(with some terminological differences), see [3], [28], or [37]. All of our graph embeddings
here are cellular and orientable. A graph is taken to be connected, unless one can infer
otherwise from the immediate context. Here we refer to a face-boundary walk as an fb-
walk.

Thanks to Imran Khan for creating the genus-distribution computer program (based on
the Heffter-Edmonds algorithm) used in the course of this research.

2 Known results concerning genus distributions
Although calculating the maximum genus γmax(G) of a graph G is possible in polynomial
time [8], calculating the minimum genus γmin(G) is NP-hard [36], and calculating the
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genus distribution γdist(G) is clearly at least as hard as calculating the minimum genus.
Accordingly, rather few genus distributions are known. A survey of genus distributions,
including average genus, is given by [10].

The most familiar such kinds of ladder graphs whose genus distribution formulas are
known are as follows:

closed-end ladders [9] (derived 1984) See Figure 5.

circular ladders and Möbius ladders [26] See Figure 6.

Ringel ladders [35] See Figure 7.
By systematic use of iterated amalgamations [29] of double-edge-rooted graphs, self-edge-
amalgamations [30], and edge-addition surgery [11], the calculation of formulas for these
ladder graphs has been substantially simplified. Moreover, these recently developed tech-
niques have produced quadratic-time algorithms for various generalizations of ladders, in
which arbitrary graphs of known partitioned genus distribution (see §4) lie between the
rungs.

Figure 5: The closed-end ladder L4.

Figure 6: Circular ladder CL4; and Möbius ladder ML4.

Figure 7: Ringel ladder RL4.

A recent paper [13] presents a quadratic-time algorithm for the calculation of the genus
distribution of any 3-regular outerplanar graph (see Figure 8). It uses a post-order traversal
(see §3) and edge-amalgamations [29]. A subsequent paper [30] uses vertex-amalgamations
[17] to derive a quadratic-time algorithm for 4-regular outerplanar graphs. Whereas out-
erplanar graphs are of tree-width 2, Halin graphs are of tree-width 3 (see [2]), which is
intuitively a reason for anticipating the necessity for a more complicated analysis. Restric-
tions to 3-regularity or 4-regularity generally simplify the analysis of a genus distribution
problem.

Some genus-distribution deriviations use a formula of Jackson [21] based on the theory of
group representations. Bouquets, which are graphs with a single vertex and a number of
self-loops (see Figure 10) were the first class to be so derived [18] .
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Figure 8: A 3-regular outerplanar graph.

Figure 9: A 4-regular outerplanar graph.

Figure 10: Bouquets B1, B2, and B3.

Another such class is dipoles, which are graphs with two vertices and a number of edges
joining them (see Figure 11). Their genus distributions are given by [32] and [24]. Yet
another is fans, which are graphs obtained by joining a path graph to a single new vertex
(see Figure 12). Their genus distributions were derived by [6].

Figure 11: Dipoles D1, D2, and D3.

Figure 12: Fans F3 and F5.
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3 Quadrangulating a plane Halin graph
In deriving the genus distribution of Halin graphs, the critical problem was to invent a
new form of decomposition of a plane Halin graph into “atomic” fragments whose genus
distributions are known, a new form of amalgamation, and an order of reassembly that
reconstructs the Halin graph from the atomic fragments. In this section, we concentrate on
the decomposition and the reassembly.

Taking the inscribed tree of a Halin graph as a spanning tree, an edge of a Halin graph
is a tree-edge if it lies in the inscribed tree and a cycle-edge if it lies on the outer cycle. A
leaf-edge is a tree-edge that is incident at a vertex of the outer cycle. A vertex is called a
cycle vertex if it lies on the outer cycle, or an interior tree-vertex otherwise.

We regard the vertices and the edges of the given plane Halin graph as black. We
observe that since H is a Halin graph, there is exactly one cycle edge on each polygonal
face of the plane embedding. The decomposition is a 4-step process.

Step 1. In each cycle edge of the Halin graph, insert a red midpoint. This is illustrated in
Figure 13.

Figure 13: Halin graph plus red midpoints on the exterior cycle.

Step 2. Join each red vertex v to all of the non-leaf vertices on the boundary of the face in
whose boundary v lies, as illustrated in Figure 14.

Figure 14: Halin graph plus all of the red edges.

Proposition 3.1. The red and black edges together triangulate the region inside the exterior
cycle of a plane Halin graph G.
Proof. The black edges create a set of polygons (whose number equals the cycle rank
β(G)). Each of these polygons is triangulated by the red edges.
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Proposition 3.2. Every black tree edge lies on two of the triangles formed by Steps 1 and 2.

Proof. Every tree edge lies on two of the polygonal faces of the plane Halin graph (by the
Jordan curve theorem). In each of those polygonal faces, it lies on one and only one of the
triangles.

Step 3a. For each black tree edge, we pair the two incident triangles into a quadrangle.

Step 3b. We assign (unseen) colors blue, green, and brown to the tree edges, so as to
form a proper edge 3-coloring. This is possible because any tree of maximum degree 3 is
edge-3-colorable (via greedy algorithm).

Step 3c. We visibly color each quadrangle with the unseen color of the tree edge that
bisects it. The coloring of the quadrangles is a proper 3-coloring of the part of the plane
inside the exterior cycle of the Halin graph, because of the way it is induced by the proper 3-
edge-coloring of the tree. (This property will not be used, but it is interesting nonetheless.)

Figure 15: Quadrangulation of a plane Halin graph.

Step 4. Separate the quadrangulated map into quadrangles, and label the interior tree-
vertices.

u

w

v x

z

y

Figure 16: Separated quadrangles of a plane Halin graph.
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Reassembling a Halin graph from its quadrangles: a puzzle

The success of our method of calculation the genus distribution in the subsequent sec-
tions depends on our ability to reassemble the plane Halin graph from its separated quad-
rangles in a manner consistent with a puzzle now to be described. The genus distributions
of the quadrangular fragments is known, and it will be shown that we can calculate the
genus distribution of any graph that can be constructed from quadrangular fragments, ac-
cording to the rules of this puzzle. After giving the rules for this puzzle, we consider the
outcome of three attempts at its solution.

Quadrangulation puzzle for a plane cubic Halin graph H → S0

1. Each quadrangle Q is regarded as an initial fragment.
2. An RR-path on a fragment boundary is a 2-path with two red edges, from a

red vertex through a black vertex to another red vertex.

3. Initially, all RR-paths are said to be live.

4. A legal move is initiated by choosing a vertex v such that v is previously
unchosen, at least one fragment at v is a quadrangle, and all three RR-paths
through v are live RR-paths.

If these three conditions are satisfied, then the three fragments that meet at
v are merged into a single (larger) fragment. If there is more than one live
RR-path on the boundary of the merged fragment, then all but one of the
live RR-paths are deemed to be dead.

5. You LOSE if you run out of legal moves before the map is fully reassem-
bled. This happens whenever there occurs an unmerged vertex w such that
either there is a dead RR-path through w, or none of the fragments meeting
at w is a quadrangle.

6. You WIN the game by reassembling the plane map.

Attempt 1. Start with a merger at v. There are three live RR-paths on the boundary of
the merged fragment. You LOSE, because RR-paths through two of the unmerged vertices
u,w, x become dead.

u

w

v
x

z

y

live RR-path

Figure 17: Attempt #1.
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Attempt 2. First choose u and then choose v. There are two live RR-paths on the boundary
of the merged fragment. You LOSE, because the RR-path through one of the unmerged
vertices w, x becomes dead.

u

w

v
x

z

y

live RR-path

Figure 18: Attempt #2.

Attempt 3. Start with u,w, y, z. You LOSE, since after there is a merger at v or x, there
will be no quadrangle at the remaining unmerged vertex.

u

w

v x

z

y

Figure 19: Attempt #3.

Solution: post-order traversal

The post-order for the vertices of a plane tree is the order produced when one traces
the boundary of the only region and calls out the name of a vertex only the last time it is
visited. For the tree in Figure 20, the post-order is z, y, x, u, v, w.

u y
v x

w z

Figure 20: Post-order traversal.
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Solution for the quadrangulation puzzle

1. As a root for the inscribed tree of the Halin graph, choose any leaf-vertex.
(Must be a leaf to win.)

2. Choose vertices in the order in which they occur on a post-order traversal
of the tree.

SOLUTION to puzzle in Figure 16: post-order as shown in Figure 20.

z y x u v w

u

w

v x

z

y u

w

v x

z

y

u

w

v x

z

y

u

w

v x

z

y

u

w

v x

z

y u

w

v x

z

y

Figure 21: Solving the puzzle with post-order traversal.
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Theorem 3.3. Using the post-order of the interior tree-vertices as the order of merger
solves the quadrangle puzzle for any plane cubic Halin graph.

Proof. When the post-order is used, every RR-path through every vertex that follows the
vertices of the fragment remains live. It also ensures that there is at least one quadrangle
incident on each of those subsequent vertices.

REMARK Quadrangulation and using the post-order solves the generalized puzzle for any
Halin graph. The generalized algorithm is not presented only because its details are far
lengthier than for the 3-regular case.

4 Partials and productions for Halin graphs
When a graph G has one or more of its vertices or edges designated as roots, its genus
distribution can be partitioned according to the ways in which face-boundary walks are
incident on the roots. The components of such partitions are called partials. A surface-
by-surface inventory of the values of the partials is called a partitioned genus distribution.
Such partitioning has been a crucial step in most of the calculations of genus distributions.

Here is a general paradigm for calculating of the genus distribution of the graphs in a
given graph family F by various kinds of graph amalgamation. The tricky part is that all
of these requirements must be satisfied in coordination with the others.

• Prescribe a set A of rooted graphs as atomic fragments and a set M of merging
operations, such that every member of F can be constructed by iterative application
of the merging operations to the atomic fragments. We denote the closure ofA under
M as A. Thus, F ⊆ A.

• A procedure is designed to determine, from any graph G in A, the sequence of ap-
plication of operations fromM to atomic fragments and to others constructed earlier
in the sequence, by which graph G can be obtained.

• An appropriate set of partials is developed for the rooted graphs in A.

• For each operation µ ∈M there is to be developed a set of rules, called productions,
is developed, that prescribe the values of the partials of any graph in A from the
values of the partials for the fragments that contribute to its construction under the
operation µ.

Example 4.1. For the closed-end ladders and for the other kinds as well, the atomic frag-
ments are doubly edge-rooted cycle graphs. The only operation for closed-end ladders is
edge-amalgamation, and the order of application is linear. For the circular ladders and the
Möbius ladders, there is an additional operation of self-edge-amalgamation, to be applied
last. For the Ringel ladders, the additional operation is edge-addition, to be applied last.

Example 4.2. For the cobblestone walks (see [9]), the atomic fragments are doubly vertex-
rooted cycle graphs. The only operation is vertex-amalgamation. The order of application
is linear.



48 Ars Math. Contemp. 6 (2013) 37–56

Example 4.3. For the 3-regular outerplanar graphs [12], the atomic fragments are doubly
edge-rooted cycles. The operations are edge-amalgamation and root-popping on a singly
edge-rooted graph. The order of operations is the post-order of a tree. For the 4-regular
outerplanar graphs, the atomic fragments are doubly vertex-rooted cycles. The operations
are vertex-amalgamation and root-popping. The order of operations is again the post-order
of a tree.

Atomic fragments and merging operations for Halin graphs

The atomic fragments for constructing cubic Halin graphs are the quadrangular frag-
ments obtained as in §3. We regard them here as doubly vertex-rooted. We denote this set
of atomic fragments by AH . The only operation is merging three fragments at an interior
vertex of the tree, in such a manner that either there is a surviving RR-path through the
vertex of the fragment that is last (among the vertices of the fragment) in the post-order, or
the Halin graph is fully reassembled.

Order of mergers for Halin graphs

The order of mergers of fragments is according to the post-order of the tree.

Partials for cubic Halin graphs

For a doubly vertex-rooted cubic Halin graph (G, u, v), with the roots u and v inserted
at the midpoints of adjacent edges, we split gi(G) into six partials. Here is what they count:
dd′ Each of the roots u and v lies on two distinct fb-walks. One and only one of these

fb-walks traverses both roots.
dd′′ Each of the roots u and v lies on two distinct fb-walks. Both of these fb-walks

traverse both roots.
ds′ Root u lies on two distinct fb-walks. One of these fb-walks traverses root v twice.
sd′ Root v lies on two distinct fb-walks. One of these fb-walks traverses root u twice.
ss1 A single fb-walks traverses roots u and v twice. The occurrences of each root are

consecutive.
ss2 A single fb-walks traverses roots u and v twice. The occurrences of the two roots

alternate.

These configurations are illustrated in Figure 22.

ss1 ss2sd'ds'dd"dd'

u uuuuu

v v vvvv

Figure 22: The 6 double-rooted partials for a 3-way pie-merge.
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Proposition 4.1. Let G be any graph that is homeomorphic to a cubic graph, and let its
vertex roots u and v be 2-valent endpoints of a pair of edges that are adjacent at a 3-valent
vertex. Then the six partials dd′, dd′′, ds′, sd′, ss1, and ss2 completely partition the genus
distribution of G.
Proof. In every embedding of G, since u and v lie on a pair of edges that are adjacent
at a 3-valent vertex, there is necessarily an fb-walk on which both of them occur. Thus,
if both roots lie on two different fb-walks, dd′ and dd′′ are the only possibilities. If one
lies on two different fb-walks and the other on only one fb-walk, then ds′ and sd′ are the
only possibilities. If both roots occur twice on the same fb-walk, then either (ss1) the
occurrences of each root are consecutive, or (ss2) they alternate.

Productions for cubic Halin graphs

For cubic Halin graphs, we merge three graphs at a time, exactly as for the puzzle, so
that one of them is a quadrangle Q = K4 − e, with its two roots inserted at the midpoints
of the two quadrangle boundary edges that meet at the vertex to be merged. Envisioning
this configuration at a small pie cut into three slices, we call the a 3-way π-merge. It is
illustrated in Figure 23.

A
Q

X

B
v
v

v v
r

s
z

y

s'

t'
t

r'

Figure 23: A 3-way π-merge ((A, r, s), (B, t, r′), (Q, s′, t′))→ (X, y, z) at vertex v.

Proposition 4.2. In a 3-way π-merge (A,B,Q) → X at vertex v, each rotation system ρ
for X is consistent with exactly two rotation systems for fragment A and exactly two for
fragment B.
Proof. If rotation system ρ is consistent with a given rotation system ρA of fragment A,
then it is also consistent with the rotation system of A obtained from ρA by reversing the
rotation at v. A similar observation holds for fragment B.

Suppose that p1, p2, . . . , ps is a set of partials or subpartials for a genus distribution. A
production for a given surgical operation that transforms either a graph embeddingX → Si

(or a tuple of graph embeddings) into a set of graph embeddings of the graph Y is a rule of
this form:

pji (X) −→ c1p
1
fj
1 (i)

(Y ) + · · ·+ ctp
s
fj
s (i)

(Y )

The left side is called the antecedent, and the right side is called the consequent. The
meaning is that the operation transforms a single embedding of graph X of type pj on the
surface Si into a set of embeddings of the graph Y , of which ck are of type pk on the surface
Sfj

k(i)
, for each i, j, and k. A drawing is usually used as an aid in deriving the production

and in proving its correctness. The names of the graphs and their roots can be suppressed
when there is in context no ambiguity.
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Example 4.4. One of the productions for the π-merge of doubly vertex-rooted graphs
(A, r, s), (B, t, r′) and (Q, s′, t′) into (X, y, z) is

dd′i(A, r, s) ∗ dd′′j (B, t, r′) −→ 2dd′i+j(X, y, z) + 2ss2i+j+1(X, y, z)

It means that a type-dd′ embedding (A, r, s)→ Si and a type-dd′′ embedding (B, t, r′)→
Sj combine into two type-dd′ embeddings (X, y, z)→ Si+j and two type-ss2 embeddings
(X, y, z)→ Si+j+1. The relevant drawing is shown in Figure 24.

Figure 24: Prod #2: dd′i ∗ dd′′j −→ 2dd′i+j + 2ss2i+j+1.

Theorem 4.3. The following 36 productions are a complete set of rules for calculating the
genus distribution of the graph that results from a π-merge of three graphs in AH .

1. dd′i ∗ dd′j −→ dd′i+j + 2dd′′i+j+1 + ss2i+j+1.

2. dd′i ∗ dd′′j −→ 2dd′i+j + 2ss2i+j+1.

3. dd′i ∗ ds′j −→ 2dd′i+j + 2ss2i+j+1.

4. dd′i ∗ sd′j −→ 2sd′i+j + 2ss1i+j+1.

5. dd′i ∗ ss1j −→ 4sd′i+j .

6. dd′i ∗ ss2j −→ 2ds′i+j + 2sd′i+j .

7. dd′′i ∗ dd′j −→ 2dd′i+j + 2ss2i+j+1.

8. dd′′i ∗ dd′′j −→ 4dd′′i+j .

9. dd′′i ∗ ds′j −→ 4ds′i+j .

10. dd′′i ∗ sd′j −→ 4sd′i+j .

11. dd′′i ∗ ss1j −→ 4ss1i+j .

12. dd′′i ∗ ss2j −→ 2dd′i+j−1 + 2ss2i+j .

13. ds′i ∗ dd′j −→ 2ds′i+j + 2ss1i+j+1.

14. ds′i ∗ dd′′j −→ 4ds′i+j .

15. ds′i ∗ ds′j −→ 4ds′i+j .

16. ds′i ∗ sd′j −→ 4ss1i+j .

17. ds′i ∗ ss1j −→ 4ss1i+j .

18. ds′i ∗ ss2j −→ 2ds′i+j−1 + 2ss1i+j .

19. sd′i ∗ dd′j −→ 2dd′i+j + 2ss2i+j+1.
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20. sd′i ∗ dd′′j −→ 4sd′i+j .

21. sd′i ∗ ds′j −→ 2dd′i+j−1 + 2ss2i+j .

22. sd′i ∗ sd′j −→ 4sd′i+j .

23. sd′i ∗ ss1j −→ 4sd′i+j−1.

24. sd′i ∗ ss2j −→ 2dd′i+j−1 + 2ss2i+j .

25. ss1i ∗ dd′j −→ 4ds′i+j .

26. ss1i ∗ dd′′j −→ 4ss1i+j .

27. ss1i ∗ ds′j −→ 4ds′i+j−1.

28. ss1i ∗ sd′j −→ 4ss1i+j .

29. ss1i ∗ ss1j −→ 4ss1i+j−1.

30. ss1i ∗ ss2j −→ 4ds′i+j−1.

31. ss2i ∗ dd′j −→ 2ds′i+j + 2sd′i+j .

32. ss2i ∗ dd′′j −→ 2dd′i+j−1 + 2ss2i+j .

33. ss2i ∗ ds′j −→ 2dd′i+j−1 + 2ss2i+j .

34. ss2i ∗ sd′j −→ 2sd′i+j−1 + 2ss1i+j .

35. ss2i ∗ ss1j −→ 4sd′i+j−1.

36. ss2i ∗ ss2j −→ 2dd′′i+j−1 + dd′i+j−2 + ss2i+j−1.

Proof. The correctness of each of these productions is a matter of recombining the strands
as prescribed by the π-merge. The 36 figures corresponding to these productions are given
by [14].

Computational Complexity

Theorem 4.4. For |VA| = k and |VB | = m, there is an O(km)-time algorithm for cal-
culating the partitioned genus distribution of the resulting graph X of a 3-way pie-merge
(A,B,Q)→ X of graphs whose maximum degree is 3.

Proof. The number of non-zero partials of a cubic graph G with p vertices is in O(p),
since the maximum genus cannot exceed β(G)/2. For each non-zero-valued partial of A
and each non-zero-valued partial of B, only one production is applied, and the time for the
application of a single production is in O(1).

Corollary 4.5. The post-order traversal using the 36 productions corresponding to the six
partials yields an O(n2) algorithm for the genus distribution of a cubic Halin graph with
n vertices.

Proof. Let H have quadrangular fragments Q1, . . . , Qf of respective cardinalities q1, . . . ,
qf . The number of non-zero-valued partials in the π-merge of a k-vertex fragment A with
an m-vertex fragment B and a quadrangular fragment Qi is at most a constant multiple
of k + m. Since each pair of initial quadrangular fragments is merged only once during
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the reassembly of the Halin graph, it follows that the number of steps is at most a constant
multiple of the sum ∑

i 6=j

qiqj

where qi is the number of non-zero partials of the quadrangular fragment Qi. However,∑
i6=j

qiqj < (q1 + q2 + · · ·+ qf )2

The conclusion follows.

5 Sample Calculation
In this section, we show the work needed to calculate the genus distribution of the Halin
graph of Figure 1.

Merger at z

Graph A (K4 − e):
i dd′i dd′′i ds′i sd′i ss1i ss2i gi
0 2 0 0 0 0 0 2
1 0 0 0 0 0 2 2

Graph B (K4 − e):
i dd′i dd′′i ds′i sd′i ss1i ss2i gi
0 2 0 0 0 0 0 2
1 0 0 0 0 0 2 2

Merged Graph K4: Use Productions 1, 6, 31, and 36.

i dd′i dd′′i ds′i sd′i ss1i ss2i gi
0 2 0 0 0 0 0 2
1 0 4 4 4 0 2 14

Merger at y

Merged Graph K4: Just like the merger at z.

i dd′i dd′′i ds′i sd′i ss1i ss2i gi
0 2 0 0 0 0 0 2
1 0 4 4 4 0 2 14

Merger at x

Graph A (result from merger at z):

i dd′i dd′′i ds′i sd′i ss1i ss2i gi
0 2 0 0 0 0 0 2
1 0 4 4 4 0 2 14
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Graph B (result from merger at y):

i dd′i dd′′i ds′i sd′i ss1i ss2i gi
0 2 0 0 0 0 0 2
1 0 4 4 4 0 2 14

Merged Graph: Use 25 productions (all those without the partial ss1).

i dd′i dd′′i ds′i sd′i ss1i ss2i gi
0 2 0 0 0 0 0 2
1 40 4 12 12 0 2 70
2 0 16 48 48 32 40 184

Merger at u

Merged Graph: K4: Just like the merger at z.

i dd′i dd′′i ds′i sd′i ss1i ss2i gi
0 2 0 0 0 0 0 2
1 0 4 4 4 0 2 14

Merger at v

Graph A (result from merger at x):

i dd′i dd′′i ds′i sd′i ss1i ss2i gi
0 2 0 0 0 0 0 2
1 40 4 12 12 0 2 70
2 0 16 48 48 32 40 184

Graph B (result from merger at u):

i dd′i dd′′i ds′i sd′i ss1i ss2i gi
0 2 0 0 0 0 0 2
1 0 4 4 4 0 2 14

Merged Graph: Use 30 productions.

i dd′i dd′′i ds′i sd′i ss1i ss2i gi
0 2 0 0 0 0 0 2
1 112 4 28 12 0 2 158
2 544 96 544 352 80 112 1728
3 0 64 448 448 704 544 2208
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Merger at w

Graph A (result from merger at v):

i dd′i dd′′i ds′i sd′i ss1i ss2i gi
0 2 0 0 0 0 0 2
1 112 4 28 12 0 2 158
2 544 96 544 352 80 112 1728
3 0 64 448 448 704 544 2208

Graph B (K4 − e):

i dd′i dd′′i ds′i sd′i ss1i ss2i gi
0 2 0 0 0 0 0 2
1 0 0 0 0 0 2 2

Merged Graph: final result

i dd′i dd′′i ds′i sd′i ss1i ss2i gi
0 2 0 0 0 0 0 2
1 144 4 60 4 0 2 214
2 1440 224 1632 224 56 144 3720
3 1024 1088 4800 1088 1088 1440 10528
4 0 0 0 0 896 1024 1920

6 Conclusions

We have demonstrated the usefulness of the paradigm given at the beginning of §4 in deriv-
ing a practical algorithm for the genus distribution of cubic Halin graphs. To be practical,
in the sense intended here, the number of partials needed should be relatively small.

To calculate the genus distribution of a family of graphs, under this paradigm, one first
designs a recursive specification of that family, that is, a finite set of base graphs and a
finite set of operations whose iterative application can construct any graph in the family.
One then derives a set of production rules for obtaining the partitioned genus distribution
of the result of the applying any operation from the partitioned genus distributions of the
operands.

There are problems whose general solution seems to require exponentially large effort,
but which can be solved in polynomial-time for cases in which something is bounded.
A familiar result in topological graph theory is that whereas Thomassen [36] proved that
determining the minimum genus of a graph is NP-hard, Mohar [27] proved that for every
possible orientable surface Si, there is a linear-time algorithm to decide whether a given
graph is embeddable in that surface.

Shortly after the presentation of this paper, the author derived, for any fixed treewidth
and maximum degree, a quadratic-time algorithm [15] to calculate the genus distribution
of any graph conforming to those bounds. This algorithm is less than practical, since
the numbers of partials and productions increase exponentially with the treewidth and the
maximum degree.



J. L. Gross: Embeddings of cubic Halin graphs: Genus distributions 55

References
[1] L. W. Beineke, R. J. Wilson, J. L. Gross and T. W. Tucker, Editors, Topics in Topological Graph

Theory, Cambridge Univ. Press, 2009.

[2] H. L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoretical
Comp. Sci. 209 (1998), 1–45.

[3] C. P. Bonnington and C. H. C. Little, The Foundations of Topological Graph Theory, Springer,
1995.

[4] Y. Chen, Lower bounds for the average genus of a CF-graph, Electronic J. Combin. 17 (2010),
#R150.

[5] Y Chen, J. L. Gross and T. Mansour, Genus distributions of star-ladders, Discrete Math. (2012),
to appear.

[6] Y. Chen, T. Mansour and Q. Zou, Embedding distributions of generalized fan graphs,
Canad. Math. Bull. (2011), online 31aug2011.

[7] J. Chen and J. L. Gross, Limit points for average genus (I): 3-connected and 2-connected sim-
plicial graphs, J. Combin. Theory (B) 55 (1992), 83–103.

[8] M. Furst, J. L. Gross and L. A. McGeoch, Finding a maximum-genus imbedding, J. ACM 35
(1988), 523–534.

[9] M. L. Furst, J. L. Gross and R. Statman, Genus distribution for two classes of graphs, J. Com-
bin. Theory (B) 46 (1989), 22–36.

[10] J. L. Gross, Distribution of embeddings, in: L. W. Beineke, R. J. Wilson, J. L. Gross and T. W.
Tucker (eds.), Chapter 3 of Topics in Topological Graph Theory, Cambridge Univ. Press, 2009.

[11] J. L. Gross, Genus distribution of graphs under surgery: adding edges and splitting vertices,
New York J. Math. 16 (2010), 161–178.

[12] J. L. Gross, Genus distribution of graph amalgamations: Self-pasting at root-vertices, Aus-
tralasian J. Combin. 49 (2011), 19–38.

[13] J. L. Gross, Genus distributions of cubic outerplanar graphs, J. of Graph Algorithms and Ap-
plications 15 (2011), 295–316.

[14] J. L. Gross, Productions for 3-way π-merges,
http://www.cs.columbia.edu/˜gross/supplementary.html.

[15] J. L. Gross, Embeddings of graphs of fixed treewidth and bounded degree, Abstract 1077-05-
1655, Boston Meeting of the Amer. Math. Soc. (Jan. 2012).

[16] J. L. Gross and M. L. Furst, Hierarchy for imbedding-distribution invariants of a graph,
J. Graph Theory 11 (1987), 205–220.

[17] J. L. Gross, I. F. Khan and M. I. Poshni, Genus distribution of graph amalgamations: pasting at
root-vertices, Ars Combinatoria 94 (2010), 33–53.

[18] J. L. Gross, D. P. Robbins and T. W. Tucker, Genus distributions for bouquets of circles, J.
Combin. Theory (B) 47 (1989), 292–306.

[19] J. L. Gross and T. W. Tucker, Topological Graph Theory, Dover, 2001; (original edn. Wiley,
1987).
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tive types of sets with n elements: transitive sets and weakly transitive sets, that is, transi-
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a Markov chain technique already given for acyclic digraphs. We thus propose Markov
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1 Introduction
Sets are basic mathematical and computational objects, and for this reason one is some-
times interested—in order to perform tests and evaluate benchmarks, collect statistical data,
(dis)prove conjectures, etc.—in generating uniformly at random a set of given size. In this
paper we tackle this problem by building on results originally given in the context of graphs.

The sets we consider belong to the standard Zermelo-Fraenkel set theory and thus con-
tain only other sets as elements. We focus on two archetypal sets: transitive sets and
weakly transitive sets, that is, sets s whose elements are also subsets of s, and sets s whose
elements, unless disjoint from s, are also subsets of s. A weakly transitive set s can be
simply seen as a transitive set with atoms (or ur-elements), the atoms of s constituting the
collection of elements of s disjoint from s. Zermelo-Fraenkel sets stand at the basis of
programming languages such as SETL [15], or the more recent {log} [3] and CLP(SET )
[5], and of the automatic proof-verifier Referee [14].

Since sets are nested structures, they are best represented by digraphs: vertices will
stand for sets, while the arc relation will correspond to the inverse of the membership
relation between them (→ ≡ 3). Such digraphs are acyclic, since membership is well-
founded, and weakly extensional, in the sense that distinct non-sink vertices have distinct
collections of out-neighbors. This digraph interpretation was exploited in [13] to give a
recurrence relation for the number of weakly transitive sets with n elements, generalizing
the result of [12] for transitive sets with n elements.

Under this graph-theoretic interpretation, we show in this paper how a Markov chain
based procedure for generating acyclic digraphs, first introduced in [9], can be transferred
to our set-theoretic universe. This Markov chain algorithm was already modified in [10]
to generate simply connected acyclic digraphs. The random generation of elements from
a particular class of acyclic digraphs modeling Bayesian networks was proposed in [6].
Finally, the same approach was used in [2] to generate deterministic acyclic automata.
Each of these examples can be seen as a less basic case than the one tackled here.

The idea behind this Markov chain technique is to start with an arbitrary weakly exten-
sional acyclic digraph (w.e.a. digraph, for short) on n vertices and apply a certain number
T of random local transformations which preserve weak extensionality and acyclicity. The
uniformity of the resulting distribution is basically proved by showing that any w.e.a. di-
graph on n vertices can be thus transformed into any other w.e.a. digraph on n vertices.
Like in the acyclic digraph case, we argue that the transformation rules are symmetric and
always allow reaching a specific digraph among the collection of w.e.a. digraphs with n
vertices. In our case, however, the most natural target digraph for this purpose turns out
to be an acyclic tournament on n vertices, that is, the digraph whose interpretation in the
universe of sets is the von Neumann numeral of n, the unique transitive set with n elements
well-ordered by the membership relation.

We prove here only ‘correctness’ and defer to future work computational aspects such
as estimations for the choice of T or an analysis of the mixing time of the Markov chain
[8]. As next research steps we also mention the random generation of hypersets, objects
for which the acyclicity requirement is dropped, and weak extensionality is accordingly
strengthened by an equality criterion based on the notion of bisimulation [1].

The paper is organized as follows. In Section 2 we give some notation and formally
introduce the above-mentioned notions. In Section 3 we put forward a Markov chain for
generating weakly extensional acyclic digraphs, while in Section 4 we propose a Markov
chain for generating simply connected weakly extensional acyclic digraphs. The latter can



A. Policriti and A. I. Tomescu: Markov chain algorithms for generating sets uniformly. . . 59

be easily adapted to generate extensional acyclic digraphs. Finally, in Section 5, we present
a Markov chain for generating w.e.a. digraphs on n vertices and m arcs, 0 6 m 6

(
n
2

)
,

which can also serve to generate acyclic digraphs with a given number of vertices and of
arcs.

2 Notation and preliminaries
We consider only finite simple digraphs, that is, without parallel arcs or self-loops. Given
a digraph D, we denote by V (D) its vertex set and by E(D) the set of its arcs. For any
v ∈ V (D), N+(v) stands for the set {u ∈ V (D) | (v, u) ∈ E(D)}, which is called the
out-neighborhood of v in D. Similarly, N−(v) = {u ∈ V (D) | (u, v) ∈ E(D)} is the
in-neighborhood of v. We will use d+(v) = |N+(v)| and d−(v) = |N−(v)|. A vertex
v ∈ V (D) such that d+(v) = 0 will be called a sink; if d−(v) = 0, it will be called a
source; we denote by I(D) the set of the sinks of D.

A digraph D is said to be simply connected if the underlying (undirected) graph of D
is connected. If (i, j) ∈ E(D), we will employ D − (i, j) as a shorthand for the digraph
obtained from D by removing the arc (i, j). Analogously, D+(i, j) is the digraph obtained
from D by the addition of the arc (i, j).

Definition 2.1. A digraph D is said to be

• extensional, if for any distinct u, v ∈ V (D) it holds that N+(u) 6= N+(v);

• weakly extensional, if for any distinct vertices u, v ∈ V (D) \ I(D), it holds that
N+(u) 6= N+(v).

If u, v are distinct vertices of a digraph D having N+(u) = N+(v), we say that u and v
collide. Note that this is not the case if D is acyclic and there is a directed path from u to
v. In particular, in an acyclic tournament there are no collisions (a tournament is a digraph
D such that for any distinct u, v ∈ V (D) either (u, v) ∈ E(D) or (v, u) ∈ E(D) holds,
but not both). Moreover, any e.a. digraph is simply connected.

Under the Zermelo-Fraenkel axioms, each set is uniquely characterized by its elements
(Extensionality Axiom), and the membership relation is well-founded (Foundation Axiom).
The standard universe of sets is von Neumann’s cumulative hierarchy, whose subset of
hereditarily finite sets is defined as the union, over all natural numbers i, of Vi, where
V0 = ∅, each level Vi+1 is P(Vi), and P(·) stands for the power-set operator. For example,
V1 = {∅}, V2 =

{
∅, {∅}

}
, V3 =

{
∅, {∅}, {{∅}}, {∅, {∅}}

}
.

∅

{∅}

{{∅}} {∅, {∅}}

{{{∅}}, {∅, {∅}}}

Figure 1: The digraph representation of a transitive set.

To faithfully represent a set x as a digraph, one considers the digraph Dx defined as
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Dx = (x, {(u, v) | u, v ∈ x, v ∈ u}).
See Figure 1 for an example. Since the membership relation between sets is well-founded,
such digraphs are acyclic. Moreover, if x is transitive, then Dx is also extensional, while
if x is weakly transitive, then Dx is weakly extensional. To see this, observe that if dis-
tinct non-sink vertices have the same out-neighborhood, then from the (weak) transitivity
assumption they correspond to the same set, contradicting the definition of Dx; see also
[13].

Given n > 1, we denote byWn the set of all w.e.a. digraphs with vertex set {1, . . . , n},
while Wc

n denotes its subset of simply connected w.e.a. digraphs. Analogously, Wn,m

denotes the set of all w.e.a. digraphs with vertex set {1, . . . , n} and m arcs.

Definition 2.2. A discrete time finite stochastic process is a sequence X = (Xt : t ∈ N),
where Xt are S-valued random variables and S is a finite set, called the state space of X .
We say that X is a Markov chain if

∀t ∈ N, Pr(Xt+1 = st+1 |Xt = st, . . . , X0 = s0) = Pr(Xt+1 = st+1 |Xt = st).

Moreover, a Markov chain X is said to be time-homogeneous if

∀s, s′ ∈ S, ∃pss′ , ∀t ∈ N, Pr(Xt+1 = s |Xt = s′) = pss′ .

Definition 2.3. A time-homogeneous Markov chain over the state space S is said to be:

• irreducible iff ∀s, s′ ∈ S, ∃t ∈ N, Pr(Xt = s′ |X0 = s) > 0;

• aperiodic iff ∀s ∈ S, gcd{t ∈ N | Pr(Xt = s |X0 = s) > 0} = 1;

• symmetric iff ∀s, s′ ∈ S, pss′ = ps′s.

A well-known result (see, e.g., [8]) states that any finite, irreducible, aperiodic and
symmetric time-homogeneous Markov chain converges toward the uniform distribution on
its state space. Therefore, all the Markov chains presented here will be shown to satisfy
these three properties.

3 A Markov chain algorithm for generating w.e.a. digraphs
Let M be a Markov chain overWn, defined in Figure 2. Observe that M differs from the
Markov chain of [9] for generating arbitrary acyclic digraphs in the fact that arc deletions
and additions are done only provided that the resulting digraph is w.e.a.

Notice that for any t ∈ N and any two distinct states s, s′ ∈ Wn, Pr(Xt+1 = s |Xt =
s′) > 0 if and only if Pr(Xt+1 = s′ | Xt = s) > 0. To be more precise, the probability
of passing from a state s ∈ Wn to any other state s′ 6= s is either 0 or 1/n2, hence M is
symmetric. Moreover, for every s ∈ Wn the probability of remaining in s at any t > 0 is
positive, for example by choosing diagonal pairs (i, i), with i ∈ {1, . . . , n}. Therefore, if
M turns out to be irreducible, then it will also be aperiodic.

The initial state of this Markov chain and of the ones given in the next section can be
taken to be a linear digraph consisting of a directed path (n, n − 1, . . . , 1). The acyclicity
of a digraph on n vertices and m arcs can be established by a depth-first visit, in time
O(n +m). To test whether a digraph is (weakly) extensional, the algorithm in [4, Sec. 4]
can be used, taking time O(n+m).
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Let Xt denote the state of the Markov chain at time t. Suppose a couple of
integers (i, j) has been drawn uniformly at random from the set
{1, . . . , n} × {1, . . . , n}.

(T1) if (i, j) ∈ E(Xt) and
Xt − (i, j) is w.e., then Xt+1 = Xt − (i, j)

else Xt+1 = Xt.
(T2) if (i, j) /∈ E(Xt) and

Xt + (i, j) is w.e.a., then Xt+1 = Xt + (i, j)
else Xt+1 = Xt.

Figure 2: A Markov chain algorithm for generating w.e.a. digraphs.

Lemma 3.1. Let D be a w.e.a. digraph with E(D) 6= ∅. There exists an arc (u, v) ∈ E(D)
such that the digraph D − (u, v) is w.e.a.

Proof. Observe first that there exists u ∈ V (D) such that ∅ 6= N+(u) ⊆ I(D). If this
were not the case, then for all u in V (D) with N+(u) 6= ∅, there would exist a vertex u′

in D with N+(u′) 6= ∅ such that (u, u′) ∈ E(D). Since the same property holds for u′

as well, and as the number of vertices of D is finite, we can find a finite directed cycle,
contradicting hence the acyclicity of D.

Let now U(D) be the set of vertices of D with the above property, that is, U(D)
def
=

{u ∈ V (D) | ∅ 6= N+(u) ⊆ I(D)}. Let u0 ∈ U(D) be a vertex of minimum out-degree,
i.e., d+(u0) = min{d+(u) : u ∈ U(D)}. Since N+(u0) 6= ∅, let v0 be an element
of N+(u0). The arc (u0, v0) can be removed and the resulting digraph remains w.e.a.
Indeed, since u0 is among the vertices of minimum out-degree in U(D), in D − (u0, v0)
it will either be a sink, or it will be the only vertex in U(D − (u0, v0)) with out-degree
d+(u) − 1, hence having its out-neighborhood different from that of any other vertex of
D − (u0, v0).

Theorem 3.2 (Irreducibility of M ). Let M be the Markov chain defined over the spaceWn

together with the transition rules T1 and T2. Given two distinct digraphs D and H inWn,
there exists in M a sequence of transitions D = D0 → D1 → · · · → Dp−1 → Dp = H ,
where p > 1 and Di ∈ Wn, for all 0 6 i 6 p. Such a sequence exists with length at most
n2 − n.

Proof. Since M is symmetric, it suffices to show that there exists a sequence of transitions
from any given w.e.a. digraph D ∈ Wn to a fixed element O inWn. For our purpose here,
we will choose O to be the unique totally disconnected digraph, that is, having E(O) = ∅.

From Lemma 3.1, we get that there exists an arc (u, v) ∈ E(D) such that D− (u, v) is
w.e.a. Using rule (T1), we can step from D to D − (u, v). Repeating the above argument
a finite number of steps, we arrive at O. The number of transitions from D to O is at most
n(n− 1)/2, and this is obtained when D is a tournament.

4 A Markov chain algorithm for generating e.a. digraphs
Instead of generating e.a. digraphs, we place ourselves in a more general setting, that of
generating simply connected w.e.a. digraphs. Afterwards, we will argue that, with minor
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changes, the proposed Markov chain can generate e.a. digraphs. Let M c be the Markov
chain overWc

n whose transitions between states are given in Figure 3. This Markov chain
is adapted from [10], with the difference that arc deletions, additions, or reversals are done
only if the resulting digraph is simply connected and w.e.a. This simple modification,
however, requires a totally new and more involved proof of irreducibility.

Just as in the previous section, the probability of passing from a state s ∈ Wc
n to any

other state s′ 6= s is either 0 or 1/n2, implying that M c is symmetric. Likewise, the
aperiodicity of M c will be implied by its irreducibility and by the fact that for every state
in Wc

n there is a positive probability to remain in that state (by choosing diagonal pairs
(i, i)). Even if the two transition rules of M c are not entirely specular, one can think of M c

as having three basic transitions: (1) removal of an arc, (2) reversal of an arc, (3) addition
of an arc. According to this view, M c is entirely symmetric.

Let Xt denote the state of the Markov chain at time t. Suppose a couple of
integers (i, j) has been drawn uniformly at random from the set
{1, . . . , n} × {1, . . . , n}.

(Tc
1) if (i, j) ∈ E(Xt) then

(a) if Xt − (i, j) is simply connected and w.e., then Xt+1 = Xt − (i, j),
else
(b) if Xt − (i, j) + (j, i) is w.e.a., then Xt+1 = Xt − (i, j) + (j, i),
(c) else Xt+1 = Xt.

(Tc
2) if (i, j) /∈ E(Xt), then

(a) if Xt + (i, j) is w.e.a., then Xt+1 = Xt + (i, j),
(b) else Xt+1 = Xt.

Figure 3: A Markov chain algorithm for generating simply connected w.e.a. digraphs.

To show the irreducibility of the Markov chain M c, it is useful to partition the vertices
of an acyclic digraph according to the maximum length of a directed path to a sink of the
digraph. Complying with standard set-theoretic notation, we will make use of the following
notion.

Definition 4.1. Given an acyclic digraph D, the rank of a vertex v ∈ V (D) is recursively
defined as

rk(v) = 1 +max{rk(u) : (v, u) ∈ E(D)},

where rk(v) = 0 if v is a sink.

Clearly, the following lemma holds.

Lemma 4.2. Given an acyclic digraph D, if v, u ∈ V (D) and rk(v) 6= rk(u), then
N+(v) 6= N+(u) holds.

Throughout the subsequent two proofs we employ the following notation: given an
acyclic digraph D and a vertex v of D,

R(v)
def
= {u ∈ V (D) | u 6= v and rk(u) 6 rk(v)}.
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Theorem 4.3 (Irreducibility of M c). Let M c be the Markov chain defined over the space
Wc

n together with the transition rules Tc
1 and Tc

2. Given two distinct digraphs D and H
inWc

n, there exists in M c a sequence of transitions D = D0 → D1 → · · · → Dp−1 →
Dp = H , where p > 1 and Di ∈ Wc

n, for all 0 6 i 6 p. Such a sequence exists with
length at most (3n2 − 7n+ 4)/2.

Proof. As before, first we will show that there exists a sequence of transitions from any
given w.e.a. digraph D ∈ Wc

n to an element T (D) in Wc
n, where T (D) is an acyclic

tournament, with the additional property that whenever rk(v) > rk(u) in D, rk(v) > rk(u)
also holds in T (D). Then, given any D and H inWc

n, we will show that there is a sequence
of transitions from T (D) to T (H), completing hence the proof.

To show the former claim, we proceed as follows. Pick a vertex v ∈ V (D), in decreas-
ing order of rank (when more vertices of the same maximum rank exist, pick an arbitrary
one). Apply rule (Tc

2) and add arcs from v to all the vertices u ∈ R(v) \ N+(v), in de-
creasing order on the rank of the elements of R(v) \ N+(v). Note that this is possible,
first of all, because the addition of an arc (v, u) does not create a cycle in the resulting
digraph. Second, observe that the subdigraph of D induced by the vertices V (D) \ R(v)
is an acyclic tournament. Therefore, an arc addition would create a collision only between
v and a vertex w ∈ R(v). This is however not the case, since after the first addition of
such an arc, rk(v) becomes strictly greater than rk(w), for all w ∈ R(v), and Lemma 4.2
guarantees the absence of collisions.

Denote by T (D) the acyclic tournament obtained at the end of this process. Since for
any vertex v we have added arcs only to those vertices of rank less than or equal to v, we
also have that whenever rk(v) > rk(u) in D, the same holds in T (D).1

Passing on to the latter point, observe that for any w.e.a. digraph D, since T (D) is a
tournament, there are no two distinct elements of the same rank in T (D), and thus {rk(v) :
v ∈ V (T (D))} = {0, . . . , n−1}. Hence, to each digraph T (D) we can uniquely associate
a linear order ≺T (D) on V (D) defined in the following way: for all u, v ∈ V (T (D))

u ≺T (D) v iff rk(u) < rk(v) in T (D).

We now show that given two orders x0 ≺T (D) x1 ≺T (D) · · · ≺T (D) xn−1 and
y0 ≺T (H) y1 ≺T (H) · · · ≺T (H) yn−1, where {xi : 0 6 i 6 n − 1} = {yi : 0 6
i 6 n− 1} = {1, . . . , n}, we can transform T (D) in T (H), applying rule (Tc

1).
Observe first that for any two consecutive elements xi ≺T (D) xi+1 (0 6 i < n− 1) it

holds that N+(xi+1) = N+(xi) ∪ {xi}. Therefore, applying rule (Tc
1) on T (D), the arc

(xi, xi+1) cannot be removed (by (a)), but can be reversed (by (b)). In the resulting acyclic
tournament T (D′), xi and xi+1 have swapped positions, i.e., xi+1 ≺T (D′) xi. Starting
from position i = 0 all the way to i = n − 1, apply the following procedure. If yi = xj ,
(i < j 6 n − 1), then bring xj to position i by iteratively reversing the arcs (xj , xj−1),
(xj , xj−2), . . . ,(xj , xi).

The maximum number of transitions to pass from D to T (D) is
(
n
2

)
− (n − 1) =

(n2 − 3n + 2)/2, number obtained when the underlying graph of D is a tree, thus having
n − 1 edges. To pass from T (D) to T (H),

(
n
2

)
transitions are required at most, when all

the arcs of T (D) have to be reversed. Hence, to pass between two arbitrary D and H in
Wc

n, we need at most (3n2 − 7n+ 4)/2 transitions.

1However, the converse in general does not hold.
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Let us denote by En the set of all e.a. digraphs with vertex set {1, . . . , n}. The Markov
chain illustrated in Figure 3 can be transformed into an irreducible, aperiodic and symmet-
ric Markov chain, Me, for the generation of digraphs from En. The transitions between
two states in Me are given in Figure 4. The analogue of Theorem 4.3 holds for Me as well.

Let Xt denote the state of the Markov chain at time t. Suppose a couple of
integers (i, j) has been drawn uniformly at random from the set
{1, . . . , n} × {1, . . . , n}.

(Te
1) if (i, j) ∈ E(Xt) then

(a) if Xt − (i, j) is extensional, then Xt+1 = Xt − (i, j),
else
(b) if Xt − (i, j) + (j, i) is e.a., then Xt+1 = Xt − (i, j) + (j, i),
(c) else Xt+1 = Xt.

(Te
2) if (i, j) /∈ E(Xt), then

(a) if Xt + (i, j) is e.a., then Xt+1 = Xt + (i, j),
(b) else Xt+1 = Xt.

Figure 4: A Markov chain algorithm for generating e.a. digraphs.

5 A Markov chain algorithm for generating w.e.a. digraphs with a
given number of arcs

A Markov chain Ma for generating w.e.a. digraphs with vertex set {1, . . . , n} and m arcs is
given in Figure 5. It will immediately follow from the proof of its irreducibility—Theorem
5.1 below—that Ma can also generate uniformly at random acyclic digraphs with a given
number of vertices and a fixed number of arcs, by simply swapping two arcs if the resulting
digraph is acyclic. Note that controlling the number of arcs was already considered in
the literature: [9] proposed generating acyclic digraphs with a bounded number of arcs,
or whose vertices have a bounded degree; [7] proposed generating acyclic digraphs with
bounded induced width, a complexity measure arising from artificial intelligence.

The probability of passing from a state s ∈ Wn,m to any other state s′ 6= s is either 0
or 1/n4, implying that Ma is symmetric. As previously, for any state s ∈ Wn,m there is a
positive probability to remain in s. Our next theorem shows that Ma is indeed irreducible.
If m < n − 1, the initial state of the Markov chain can be a digraph whose arcs form a
directed path of length m. Otherwise, the initial state can be a directed path (n, n−1, . . . , 1)
together with m− (n− 1) arbitrary arcs of the form (i, j), where i > j.

Theorem 5.1 (Irreducibility of Ma). The Markov chain Ma is irreducible.

Proof. First, if m = 0,Wn,m consists only of the totally disconnected digraph. Assuming
that m > 0, we show that any digraph D ∈ Wn,m can be transformed, by transitions of
Ma, into a digraph K(D) ∈ Wn,m, satisfying the following two properties:

i) for all v ∈ V (D) such that rk(v) > 1 in K(D), it holds that N+(v) = R(v) in
K(D);

ii) there is only one v ∈ V (D) such that rk(v) = 1 in K(D).
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Let Xt denote the state of Ma at time t. Suppose two pairs of integers
(i1, jj) and (i2, j2) have been drawn uniformly at random and independently
from the set {1, . . . , n} × {1, . . . , n}.

if (i1, j1) ∈ E(Xt) and (i2, j2) /∈ E(Xt), then
if Xt − (i1, j1) + (i2, j2) is w.e.a., then Xt+1 = Xt − (i1, j1) + (i2, j2),
else Xt+1 = Xt.

Figure 5: A Markov chain algorithm for generating w.e.a. digraphs on n vertices and
m arcs.

To show this, we argue as in the proof of Theorem 4.3, paying particular attention to
preserving m arcs at each intermediate step. Observe that if D fails to satisfy i) or ii), then
it must own a vertex v such that N+(v) ( R(v). Indeed, first note that N+(v) ⊆ R(v)
holds for any vertex v, since D is acyclic. If D does not satisfy i) and v ∈ V (D) is a vertex
with rk(v) > 1 and N+(v) 6= R(v), then N+(v) ( R(v) immediately follows. If D owns
two distinct vertices v′ and v′′ of rank 1, then v′′ ∈ R(v′) \N+(v′).

Therefore, as long as D fails to satisfy one of the above conditions i) or ii), apply
the following transformation to it. Pick a vertex v ∈ V (D) inclusion-maximal among the
vertices of maximum rank having N+(v) ( R(v), and consider all the elements u ∈ R(v)\
N+(v), in decreasing order on rank. Take t ∈ V (D) a vertex whose out-neighborhood is
inclusion-minimal among the vertices of rank 1. Arguing as in the proof of Lemma 3.1, any
arc (t, s) leading from t to an arbitrary sink s ∈ V (D) can be removed without disrupting
the weak extensionality of D. Replace arc (t, s) with arc (v, u) by a transition of Ma.

This is possible, since, on the one hand, the addition of the arc (v, u) does not create a
cycle in the resulting digraph. On the other hand, as before, the subdigraph of D induced
by the vertices V (D)\R(v) is an acyclic tournament. Therefore, one such arc addition can
create a collision only between v and some vertex w ∈ R(v). This is not the case, since
after the first addition of an arc from v to a maximum rank vertex in R(v), rk(v) becomes
strictly greater than rk(w), for all w ∈ R(v), and Lemma 4.2 guarantees the absence of
collisions. It should be clear that the above procedure stops after a finite number of steps,
and that the final digraph satisfies conditions i) and ii).

It remains to show that, given two digraphs D and H inWn,m, there exists a sequence
of transitions in Ma from K(D) to K(H). To any acyclic digraph K whose vertices
of positive rank have pairwise distinct ranks we can associate a partial order ≺K in the
following way: for all u, v ∈ V (K),

u ≺K v iff rk(u) < rk(v) in K.

For expository purposes, assume that we also order the sinks of K is an arbitrary way so
that ≺K is a linear order on the vertices of K. Therefore, we have to show that we can
transform any order x0 ≺K(D) x1 ≺K(D) · · · ≺K(D) xn−1 into y0 ≺K(H) y1 ≺K(H)

· · · ≺K(H) yn−1, where {xi : 0 6 i 6 n− 1} = {yi : 0 6 i 6 n− 1} = {1, . . . , n}.
Like in the proof of Theorem 4.3, given a digraph K(D) satisfying i) and ii), we show

that we can obtain, by transitions of Ma, a digraph K(D′), still satisfying i) and ii), and
in which a given pair of consecutive elements xi ≺K(D) xi+1, 0 6 i < n − 1, have
swapped positions. If such consecutive elements xi and xi+1 are both sinks, then since
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their order has been imposed arbitrarily, they can be swapped without changing the digraph.
Otherwise, we have to consider two cases.

If rk(xi+1) > 1, then N+(xi+1) = N+(xi)∪{xi}. The arc (xi+1, xi) can be reversed,
by the application of the transition of Ma on the arcs (xi+1, xi) and (xi, xi+1). Indeed,
the resulting digraph K ′ remains acyclic; K ′ is also w.e. since, on the one hand, vertices
xi, xi+1, . . . , xn−1 induce an acyclic tournament in K ′, by conditions i) and ii). On the
other hand, any non-sink xj , 0 ≤ j < i, is an out-neighbor of both xi and xi+1. Moreover,
if rk(xi+1) was equal to 2 in K(D) (and hence rk(xi) = 1), then in K ′ we may have
N+(xi) 6= R(xi). However, it suffices to swap arcs out-going from xi+1, the unique
vertex of rank 1 in K ′, to xi. The digraph obtained after these transformations satisfies
conditions i) and ii), thus is equal to some K(D′); the vertices of K(D′) have the same
ranks as in K(D), with the exception of xi and xi+1 which have swapped ranks.

When however rk(xi+1) = 1, we have that rk(xi) = 0. Since xi+1 is the unique vertex
of rank 1, there must be an arc from xi+1 to a sink s (s can even be xi) which can be
removed in order to add the arc (xi, xi+1). After this first arc swap, continue changing
all arcs (xi+1, s) into (xi, s), with s an arbitrary sink. The resulting digraph K ′ satisfies
conditions i) and ii) and is equal to some K(D′); moreover, the vertices of K(D′) have the
same ranks as in K(D), with the exception of xi and xi+1 which, as before, have swapped
ranks.

In order to transform K(D) into K(H), apply the following procedure, starting from
position i = 0 all the way to i = n − 1. If yi = xj , (i < j 6 n − 1), then bring xj

to position i by iteratively reversing the arcs (xj , xj−1), (xj , xj−2), . . . ,(xj , xi). Finally,
change the out-going arcs of the unique vertex of rank 1 so that it has precisely the same
out-neighborhood as it has in K(H).

Figure 6 illustrates the transitions indicated by the above proof in order to pass between
two digraphs inW5,6.

6 Critical remarks and future work
Although the Markov chains M , M c and Me are similar to the Markov chains of [9, 10],
the proofs of their irreducibility are different and more involved. In the case of M , the fixed
element which can be reached by a chain of transitions from every element D ofWn is the
same as in [9], namely the totally disconnected digraph. However, the arcs of D must be
removed in a particular order, respecting the weak extensionality of D. Second, on the one
hand, in [10] the fixed element is an arbitrary digraph having a path as underlying graph,
which cannot be the case for M c or Me since (weak) extensionality would be violated. On
the other hand, our proof takes this fixed element to be an acyclic tournament on n vertices,
ensuring that the proof proposed here can also show the irreducibility of (a slightly modified
version of) the chain of [10]. Lastly, as already noted, the Markov chain Ma can be easily
adapted to generate uniformly at random acyclic digraphs on a given number of labeled
vertices and a given number of arcs, a result which we have not found in the literature.

Given this dual usability of the Markov chains considered here, and the fact that the
acyclic tournament on n vertices (that is, the digraph isomorphic to the von Neumann
numeral of n) is a rich structure in which many types of digraphs can be embedded, it
would be interesting to give a general characterization of the classes of digraphs whose
elements can be generated uniformly at random by these Markov chains.

We regard the generation of digraphs on n vertices, possibly having directed cycles,
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(a) (4, 5)↔ (3, 5)

5

4

2

3

1

(b) (2, 4)↔ (3, 4)

5

4

2

3

1

(c) 2 ≺ 4 ≺ 5 ≺ 1 ≺ 3

(1, 5)↔ (5, 1)

(1, 4)↔ (5, 4)

5

4

2

3

1

(d) 1 ≺ 2 ≺ 4 ≺ 5 ≺ 3

(3, 5)↔ (5, 3)

(3, 2)↔ (5, 2)

5

4

2

3

1

(e) 1 ≺ 2 ≺ 4 ≺ 3 ≺ 5

(3, 4)↔ (4, 3)

(3, 1)↔ (4, 1)

5

4

2

3

1

(f) 1 ≺ 2 ≺ 3 ≺ 4 ≺ 5

Figure 6: The sequence of transitions of Ma that transforms D ∈ W5,6 (Fig. (a)) into
K(D) ∈ W5,6 (Fig. (c)), and then into a digraph K(H) ∈ W5,6 (Fig. (f))

but deprived of distinct bisimilar vertices (the standard interpretation of a hyperset [1]) as
the next natural step to take. It is interesting to study whether a Markov chain algorithm
consisting of three basic operations: addition of an arc, removal of an arc, move of an arc,
is irreducible for the class of such digraphs.

As already mentioned in the introduction, the problem of analyzing the mixing times [8]
of our proposed Markov chains remains open; this is important from a practical viewpoint.

Finally, since a peculiarity of the sets treated in this paper is to be sets whose elements
are themselves sets, it would be interesting to investigate what role our results can play
in the theory of random sets ([11], elements taking as values subsets of some space), for
example as a tool to generate such objects uniformly.
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Abstract

We consider here triangulations of oriented maps having a specified set S of vertices of
degree different from 6 and some other vertices of degree 6. Such map can be described by
specifying the relative positions between elements of S using Eisenstein integers. We first
consider the case of 1 parameter, which corresponds to the Goldberg-Coxeter construc-
tion. Then we develop the general theory, the special case of positive curvature studied by
Thurston and finally extend the theory to quadrangulations and some other cases. In the
last section we expose application of parameterizations to the study of zigzags.

Keywords: Maps, graphs, Groups, parameterizations.

Math. Subj. Class.: 05C10, 57M20

1 Triangulations of oriented maps
By a ({v1, . . . , vm}, k)-map we denote a map on an oriented surface with faces of size k, vi
vertices of degree i and “map” being “sphere” (genus g = 0), “torus” (g = 1) or “oriented
map of genus g”. For example, a ({v5 = 2, v7 = 2, v6}, 3)-torus denotes a triangulation
with 2 vertices of degree 5, 7 and an unspecified number of vertices of degree 6. We will be
mostly concerned with the description of (v, 3)-maps of genus g. Euler relation for them
reads as ∑

j≥3

vj(6− j) = 12(1− g). (1.1)

The dual of ({v5 = 12, v6}, 3)-spheres are 3-regular plane graphs, whose faces are 5- or
6-gonal. Such graphs, named fullerenes, occur in chemistry [13] following the discovery
of Buckminsterfullerene (also called truncated icosahedron, soccer ball) in 1985 [22].
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Formula (1.1) can be interpreted as a Gauss-Bonnet formula and 6− j as the curvature
of a vertex of degree j. A triangulation is said to be of positive curvature if all vertices have
non-negative curvature. This implies that the possible vertex degrees belong to {3, 4, 5, 6}
and the v-vector satisfies 3v3 + 2v4 + v5 = 12 with v6 unspecified. All 19 possibilities for
(v3, v4, v5) are given below:

(0, 0, 12) (0, 1, 10) (0, 2, 8) (0, 3, 6) (0, 4, 4) (0, 5, 2) (0, 6, 0)
(1, 0, 9) (1, 1, 7) (1, 2, 5) (1, 3, 3) (1, 4, 1) (2, 0, 6) (2, 1, 4)
(2, 2, 2) (2, 3, 0) (3, 0, 3) (3, 1, 1) (4, 0, 0)

For the enumeration of 3-regular plane graphs with a specified face vector (pi), i.e. number
pi of faces of size i the program CPF by T. Harmuth [2] is very efficient. Another little
known program by the same author is CGF [19], which can enumerate 3-regular oriented
maps of specified genus and face vector. The corresponding program for 4-regular plane
graphs is ENU by O. Heidemeier [2]. All above mentioned programs are available from [1]
and give by duality triangulations and quadrangulations.

The symmetry groups of fullerenes and other plane graphs of positive curvature were
determined in [13, 5, 12, 7, 8, 6]. For a given group G of symmetry of a map, denote by
Rot(G) the subgroup of index 1 or 2 of G formed by the orientation preserving transfor-
mation. The class of a group G is the set of groups G′ having Rot(G′) = G. In Table 1
we give the possible groups of (v, 3)-spheres of positive curvature by their class Rot(G),
where we used Schoenflies nomenclature for point groups. For any class the number of
vertices of positive curvature is finite and the number of vertices of degree 6 is unspec-
ified. Since there is essentially only one 6-regular plane triangulation, one sees that the
positions of the vertices of positive curvature allow to define the map. We want to encode
the positions by complex Eisenstein numbers z ∈ Z[ω] with ω = eiπ/3.

In Section 2 we describe the simple cases of 1 or 2 parameters. The case of 1 parameter
corresponds to the Goldberg-Coxeter construction [9]. In Section 3 we first explain the
general theory of complex parameterization of (v, 3)-maps on oriented surfaces. Then
we explain Thurston’s theory [28] which gives stronger results for the case of spheres of
positive curvature. Finally we explain the extension to (v, 4)-maps, self-dual spheres and
(v, 6)-spheres.

Applications to zigzags are considered in Section 4. A very basic application of param-
eterization is for generating maps efficiently provided that the number of parameters is not
too high. Another application considered in [11] is for eigenvalue estimation where it was
proved that for any interval [a, b] ⊂ [−3, 3] there is a finite number of graphs of positive
curvature having no eigenvalue in I .

We choose to emphasize Eisenstein parameter description but it is of course possible to
consider descriptions by integral parameters. This is done in [16, 15] for fullerenes and this
allows to write parameterizations for each group, not just rotation subgroup. Another real
parameter descriptions, by so called dihedral angles, is developed in [26], but it is more
suited for describing manifolds than graphs.

2 One and two parameter constructions
2.1 The Goldberg-Coxeter construction

The Goldberg-Coxeter construction takes a (v, 3)-mapM, two integers k, l ≥ 0 and returns
another ({v, v6}, 3)-map GCk,l(M) of the same genus by adding triangles and vertices of
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({v3 = 4, v6}, 3)-spheres

class all group # param
D2 D2, D2d, D2h 2
T T , Td 1

({v4 = 6, v6}, 3)-spheres

class all group # param
C1 C1, Cs, Ci 4
C2 C2, C2v , C2h 3
D2 D2, D2d, D2h 2
D3 D3, D3d, D3h 2
D6 D6, D6h 1
O O, Oh 1

({v5 = 12, v6}, 3)-spheres

class all group # param
C1 C1, Cs, Ci 10
C2 C2, C2h, C2v 6
C3 C3, C3h, C3v 4
D2 D2, D2h, D2d 4
D3 D3, D3h, D3d 3
D5 D5, D5h, D5d 2
D6 D6, D6h, D6d 2
T T , Th, Td 2
I I , Ih 1

Table 1: The classes of symmetry groups of ({va, v6}, 3)-sphere.

k=2

l=1

Figure 1: The construction of GC2,1(Octahedron).

degree 6. It works by breaking the triangles of M into smaller triangles and gluing the
pieces together in order to get another triangulation. See an example on Figure 1 and [9]
for more details.

IfM has nT triangles then GCk,l(M) has nT (k2 +kl+ l2) triangles. Since k2 +kl+
l2 = |k + lω|2 it makes sense to associate the Eisenstein integer z = k + lω to the pair
k, l. The parameter symmetry z 7→ zωr does not change the resulting map. All the cases
of 1 parameter in Table 1 are described by the Goldberg-Coxeter construction of one plane
graph. For example, if a ({v3 = 4, v6}, 3)-, ({v4 = 6, v6}, 3)-, ({v5 = 12, v6}, 3)-sphere
is of symmetry (I, Ih), (O,Oh) or (T, Td) then it is of the form GCk,l(Icosahedron),
GCk,l(Octahedron) or GCk,l(Tetrahedron) [14, 9]. Additionally, ({v4 = 6, v6}, 3)-
spheres of symmetry (D6, D6h) are obtained as GCk,l(Prism∗6).

2.2 One case of 2 parameters: ({v5 = 12, v6}, 3)-spheres of symmetry D5

The 5-fold axis of such a sphere has to pass through a vertex of degree 5. There are 5
vertices of degree 5 around it; so, by 5-fold symmetry, 1 complex parameter is needed to
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Figure 2: The parameterization of fullerenes of symmetry D5, D5d or D5h in term of
(z1, z2) ∈ Z[ω]2 and two parameter operations.

describe them. Around those 5 vertices, there are 5 more vertices, so one more parameter
is needed and then the last vertex is uniquely defined.

If one applies the following operations to parameters

• Operation 1: (z1, z2) 7→ (z1, z1 + z2)

• Operation 2: (z1, z2) 7→ (z1 + ω2z2, z1 − z2)

• Operation 3: (z1, z2) 7→ (z1, z2)ωr

then one obtains the same sphere as a result. The group generated by those operations
is named monodromy group. The number of triangles of S is expressed as q(z1, z2) =
10{z1z1 + z1z2−z1z2

ω−ω }. So, for a given pair (z1, z2) a sphere may not exist, for example, if
q(z1, z2) < 0.

2.3 Other two parameters descriptions

Of course what has been done for fullerene of class D5 applies just as well for fullerenes
of class D6 and similar simple description are possible for the remaining 2 parameter cases
of Table 1 (See Figure 3 for two such cases).

For the ({v3 = 4, v6}, 3)-spheres a very explicit two parameter description is given in
Figure 4. Geometrically this corresponds to the fact that any ({v3 = 4, v6}, 3)-sphere is
obtained as the quotient of a ({v6}, 3)-torus by a group of order 2 leaving invariant exactly
4 vertices. Clearly, the monodromy group is PSL(2,Z) and the number of triangles is ex-
pressed as 4

ω−ω (z1z2−z1z2). This description was used in [21] to compute the eigenvalues
of dual ({v3 = 4, v6}, 3)-spheres.



M. Dutour Sikirić: Complex parameterization of triangulations on oriented maps 73

120
z
1

z2

({v4 = 6, v6}, 3)-spheres of symmetry D2,
D2h, D2d
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2

({v5 = 12, v6}, 3)-spheres of symmetry T ,
Th and Td

Figure 3: Two parameters description of two classes of spheres with positive curvature
represented on the plane.

4 triangles in Z[ω] The triangulation

Figure 4: Description of ({v3 = 4, v6}, 3)-spheres.
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3 Parameterization of maps on oriented surfaces
3.1 The general case

The general Eberhard problem is for a given g ≥ 0 and vector (vi)3≤i≤m,i6=6 satisfying∑m
i=3(6 − i)vi = 12(1 − g) to determine the set P (v, g) of values of v6 for which there

exist a ({v, v6}, 3)-oriented map of genus g. It is proved in [20] that P (v, g) is empty only
in the case g = 1 and v = {v5 = 1, v7 = 1} and the exact determination of P (v, g) is an
active subject of research.

Thus for a given v-vector it is interesting to consider how one can parametrize the
({v, v6}, 3)-oriented maps of genus g. Let us callM such a map, M̃ its universal cover,
Γ its fundamental group and S the set of vertices of degree different from 6. By adding
edges one by one, we can build a triangulation T onM having S as vertex set. Note that
the degree of v in T is a priori not related to the degree of the corresponding vertex inM.
Naturally many triangulations are possible and they are mapped on the universal cover M̃
to Γ-invariant triangulations. We will see below that one can build a parameterization by
Eisenstein integers from a triangulation.

Let us a take a triangulation T and encode it combinatorially. A directed edge is an
edge from a vertex to another vertex. Every edge e is composed of a directed edge −→e and
its reversal r(−→e ). The next operator n maps a directed edge to the next one in clockwise
order around the vertex v in which it is contained. A triangulation T is described by the
operators n and r acting on the set of directed edges DE(T ). In particular the vertices,
edges and faces of T correspond to the orbits of n, r and nr. For a given vertex v of T
we denote by ṽ the corresponding vertex in the corresponding ({v, v6}, 3)-map. Edges and
faces of T will have no direct analogs but homology classes will be mapped to homology
classes.

We associate an Eisenstein integer z−→e ∈ Z[ω] to any directed edge −→e of T . For any
face f = {−→e1 ,−→e2 ,−→e3} we impose the relation

z−→e1 + z−→e2 + z−→e3 = 0.

If we have an edge e = {−→e1 ,−→e2} then we impose the consistency relation

ωα(
−→e1)z−→e1 + ωα(

−→e2)z−→e2 = 0.

For any vertex v containing the directed edges (−→ei )1≤i≤m we have the relation

6− deg(ṽ) ≡
m∑
i=1

α(−→ei )− α(r(−→ei )) (mod 6) (3.1)

with deg(ṽ) the degree of ṽ. We write D(v) = deg(ṽ). If the triangulation T is of genus g
then the first homology group H1(T ) is Z2g . For any cycle C composed of directed edges
{−→e1 , . . . ,−→em} with −→e i+1 = r(nr)±1(−→ei ) we define the cycle sum

I(C,α) =
∑
j

α(−→ej )− α(r(−→ej )). (3.2)

This sum depends on the chosen element of the homology class and defines how the ori-
entation is shifted after one moves along C. If one adds 1 to α(−→e ) and α(r(−→e )) then the
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Figure 5: A ({v3 = 1, v9 = 1, v6}, 3)-torus and its parameterization. The identifications
along A, B and C yields the equalities ωz12 + z6 = 0, ωz5 + z8 = 0 and z9 − z11 = 0.
We have deg(ṽ1) = 3 and deg(ṽ2) = 9.

resulting map M(T,D, I, α, z) does not change. The same happens if one adds 1 to α(−→e )
for −→e in a face F of the triangulation. In fact if we choose 2g basic cycles Ci of T then
any two vectors α, α′ satisfying Equation (3.1) and I(C,α) ≡ I(C,α′) (mod 6) differ by
repeated application of above two operations. Equation (3.1) and the cycle sums I allow to
find a corresponding function α if it exists, which is not always the case. Henceforth the
data of T , D and I determine the class of maps that one can obtain. In Figure 5 we give an
example of a parameterization for ({v3 = 1, v9 = 1, v6}, 3)-torus.

Theorem 3.1. The parameter spaces of ({v1, . . . , vm}, 3)-oriented maps of genus g have
dimension

∑
3≤i 6=6 vi−1 + 2g if all faces have size divisible by 6 and

∑
3≤i6=6 vi−2 + 2g

otherwise.

Proof. Let us take such a map and build a triangulation T on it. Let us write M =∑
3≤i 6=6 vi. We then construct a spanning tree of M − 1 edges on the set of vertices of

degree different from 6. Since the map is of genus g we have a basis of 2g cycles of the
group H1(G). We add 2g edges to the spanning tree and the remaining edges define a tree
in the dual map. Once we have defined the position of the M − 1 + 2g edges, we have
defined the triangulation uniquely because all other edges can be assigned iteratively. If one
of the vertices has a degree not divisible by 6 then its position is defined uniquely once all
its neighbors are known and so the dimension decreases by 1 in that case. No other relation
exists since one can perturb the remaining parameter and still obtain some corresponding
maps.

Let us call m(v, g) the dimension in the above theorem.
For a given parameterization (T,D, I) we denote by qT (z) the number of triangles of

the obtained triangulation. The number of triangles contained in a face defined by f =
{−→e1 ,−→e2 ,−→e3} is

qf (z) =
1

ω − ω
(z−→e1z−→e2 − z−→e1z−→e2).

The function qT counting the total number of triangles is thus qT =
∑
qf and it is an

Hermitian form. From this, one can deduce that for a fixed v the number of ({v, v6}, 3)-
oriented maps of genus g with at most n triangles grows like O

(
nm(v,g)

)
. Note that [27]

gives the more precise estimate O
(
n9
)

for the number of fullerenes with exactly n tri-



76 Ars Math. Contemp. 6 (2013) 69–81

angles. But we cannot have such a statement in the general case because for example
({v3 = 4, v6}, 6)-spheres exist only if n is divisible by 4.

Conjecture 3.2. If all vertices have degree divisible by 6 then the signature of qT is

(n+, n−, n0) =

(
g +

∑
i

viFr

(
6− i

6

)
, g,m(v, g)− n+ − n−

)
,

otherwise, the signature is

(n+, n−, n0) =

(
g − 1 +

∑
i

viFr

(
6− i

6

)
,m(v, g)− n+, 0

)

with Fr(x) = x− bxc.

The conjecture is proved in the case g = 0 in [24] and has been checked for the regular
maps of genus at most 15 from [3].

For a given triangulation T of a ({v, v6}, 3)-oriented map, we choose m independent
parameters z1, . . . , zm ∈ Z[ω]. The condition of existence of the map M(T,D, I, α, z)
is that qf (z) > 0 for all face f of T and this defines the realizability space. The limit
realizability space is the same space with Z[ω] replaced by C. The limit realizability space
defines a set S in the cone qT > 0. If one approach through a generic point of the boundary
of S, which is not in the boundary of qT > 0 then one can rearrange the triangulation and
get another triangulation T ′. The vertex degree v in T may change but the degree of ṽ
remain the same. Similarly the cycles C are mapped to cycles C ′ and I(C ′, α′) = I(C,α).
Hence D and I are intrinsic to the class of triangulations obtained by rearrangements.
Moreover, the parameter set (z′i) of (T ′, D, I, α′) can be expressed linearly in term of the
parameter set (zi) of (T,D, I, α).

For two quadruples (T,D, I, α) and (T ′, D, I, α′) of parameter set (zi), (z′i) we say
that they are equivalent if there is a mapping from T to T ′ preserving D and I such that
(z′i) can be expressed linearly from (zi). Such an equivalence preserve edge length, triangle
areas and can be extended to adjacent triangulations of T and correspondingly T ′. Note
that some non-trivial equivalence can have T = T ′; this is the case for the 2 parameter
description considered in Section 2 for which one triangulation suffices. The group of such
transformation is the monodromy group and is a subgroup of GLm(Z[ω]) leaving invariant
the form qT . It may be that any two triples (T,D, I), (T ′, D, I) are related by a sequence
of such transformation but we have no proof of it and we do not know a counter-example.

3.2 Thurston theory for maps of positive curvature

Let us take one triple (v3, v4, v5) among the 19 triples of possible curvature. By Theorem
3.1 the number of complex parameters needed to describe ({v3, v4, v5, v6}, 3)-spheres is

m = m({v3, v4, v5}, 0) = v3 + v4 + v5 − 2

The monodromy group is denoted by M({v3, v4, v5}, 3, 0) and it preserves the form q,
which is of signature (1,m− 1, 0). This class of monodromy groups was defined and enu-
merated in [4, 23, 28] and in particular they are discrete groups. The 19 possible (v3, v4, v5)
cases are part of the 94 cases determined there and the form q is the intersection form on
H1(S2 − V,L) with V a set of m+ 2 points and L a line bundle on S2 − V .
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Figure 7: Two representations of a ({6}, 3)-torus.

In [28] it is proved that if z ∈ Z[ω]m and q(z) > 0 then there exists f ∈M({v3, v4, v5},
3, 0) such that f(z) is realizable as a ({v3, v4, v5, v6}, 3)-sphere. Thus Hm ∩ Z[ω]m up
to the action of the monodromy group is a parameter space for the ({v3, v4, v5, v6}, 3)-
spheres. As a consequence, the quotient

Hm/(R>0 ×M3({v3, v4, v5}, 3, 0))

is of finite covolume because the number of ({v3, v4, v5, v6}, 3)-spheres is finite for any
fixed number of triangles.

In [28] a characterization of the manifolds admitting a cocompact quotient is given.
None of those corresponding to ({v3, v4, v5, v6}, 3)-spheres are compact. Each of the
direction of non-compacity correspond to a partition of the vertices of non-zero curva-
ture into two sets Si for i = 1, 2 each having viq vertices of degree q and satisfying to
3vi3 + 2vi4 + vi5 = 6. Geometrically those are nanotubes, that is we have two caps Ci with
(vi3, v

i
4, v

i
5) vertices separated by a number of rings of vertices of degree 6 (see Figure 6).

3.3 Extensions and other cases of parameter descriptions

One extension that can be done relatively simply is to consider vertices of degree 1 or 2.
For example, the ({v2 = 3, v6}, 3)-spheres are obtained by applying the Goldberg-Coxeter
construction to the sphere reduced to a cycle of length 3 [18].
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One example that does not fit exactly into the above scheme is the description of
({v6}, 3)-torus by two parameters. It is done by writing down a parallelogram on the
plane and identifying the sides. Since all vertices are equivalent in the torus, we have to
choose one vertices of degree 6 used in the construction. In Figure 7 we show two equiv-
alent representation of a ({v6}, 3)-torus. One of the representation has one horizontal line
in the fundamental domain; it is actually always possible to have such a representation and
this is the basis of a 3 integral parameters construction [25].

Goldberg-Coxeter construction and complex parameterizations for ({v1, v2, v3}, 6)-
spheres are derived in [6]. The method was to apply the truncation operation to each vertex
in order to get a ({v2, v4, v6}, 3)-sphere for which existing theory could be applied.

Yet another extension is for quadrangulations. The theory extends without difficulty,
we are still dealing with triples (T,D, I) but the ring of Eisenstein integers is replaced by
the ring of Gaussian integers. For example, for ({v3 = 8, v4}, 4)-sphere, the number of
Gaussian integer parameters is 6 and the number for the classes (O,Oh), (D4, D4d, D4h),
(D3, D3d, D3h), (D2, D2d, D2h), (C2, C2h, C2v), (C1, Cs, Ci), respectively is 1, 2, 2, 3,
4, and 6. As a byproduct of this parameterization, we also get a method for parametrizing
self-dual plane graphs with faces of size 3 or 4, see [10] for details.

Finally note that all of the above can be specialized to get parameter description of
families of maps having a specific symmetry group G provided that G contains only ori-
entation preserving mappings. This is because the symmetry conditions are translated into
linear equalities in the parameters.

4 Zigzag
In an oriented map a zigzag is a circuit of edges such that two consecutive share a face and
vertex but three do not share a face.

4.1 The Goldberg-Coxeter case

For a triangulationM we define in [9] a permutation group Mov(M) and two elements
L and R. If gcd(k, l) = 1 then the lengths of zigzags of GCk,l(M) is computed from the
cycle structure of the element L �k,l R of Mov(M). This element satisfies the defining
relations L�1,0 R = L, L�0,1 R = R and{

L�k,l R = L �k−ql , l RLq if k − ql ≥ 0,
L�k,l R = RqL �k , l−qk R if l − qk ≥ 0.

If gcd(k, l) = m > 1 then every zigzag of GCk/m,l/m(M) corresponds to m zigzags of
GCk,l(M) of length multiplied bym. The same method applies as well for 4-regular plane
graphs and their central circuit, see [9] for an exhaustive description.

4.2 The case of ({v3 = 4, v6}, 3)-spheres

All zigzags of ({v3 = 4, v6}, 3)-spheres are simple and the vector enumerating their
lengths is of the form

(4s1)m1 , (4s2)m2 , (4s3)m3 with si,mi ∈ N and simi =
n

4
.

This was first established in [17] but there is another way to establish it: Any ({v3 =
4, v6}, 3)-sphere is obtained as a quotient of a ({v6}, 3)-torus by a group of order 2 formed
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Figure 8: The parameter description of a family of ({v4 = 6, v6}, 3)-sphere with simple
zigzags, z1 = hω and z2 = h− 2k + kω and the case (h, k) = (4, 1).

by inversion. The four vertices of degree 3 come from the four invariant vertices of the
torus. All zigzags of a ({v6}, 3)-torus are partitioned into three parallel classes that cover
the vertex set. All the zigzags in a parallel class are of the same length and when passing
to the quotient the parallel classes are preserved hence the above result is proved.

The same argument applies for ({v2 = 4, v4}, 4)-spheres and their central circuits [8].

4.3 Other classes

For other classes of maps with more parameters the structure is more complicated and it
seems very difficult to obtain simple description of the zigzags of fullerenes. However, for
({v4 = 6, v6}, 3)-spheres we have a simple conjecture for the ones with simple zigzags:

Conjecture 4.1. All ({v4 = 6, v6}, 3)-spheres with only simple zigzags are:

• GCk,k(Octahedron) and

• the family of graphs with parameters (m, k) with n = 4h(2h− 3k) triangles whose
parameter description is given in Figure 8. The vector enumerating zigzag length is

z = (6h− 6k)3h−3k, (6h)h−2k, (12h− 18k)k

They have symmetry Oh if k = 0, D6h if h = 3k and D3d otherwise.
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Abstract

We consider the MINIMUM RAINBOW SUBGRAPH problem (MRS): Given a graph G
whose edges are coloured with p colours. Find a subgraph F ⊆ G of minimum order
and with p edges such that each colour occurs exactly once. This problem is NP-hard and
APX-hard.

For a given graph G and an edge colouring c with p colours we define the rainbow
subgraph number rs(G, c) to be the order of a minimum rainbow subgraph of G with size
p. In this paper we will show lower and upper bounds for the rainbow subgraph number of
a graph.

Keywords: Edge colouring, rainbow subgraph.

Math. Subj. Class.: 05C15, 05C35

1 Introduction and motivation
We use [2] for terminology and notation not defined here and consider finite and simple
graphs only.

Our research was motivated by the following problem from bioinformatics. The prob-
lem data consist in a set G of p genotypes g1 , g2 , . . . , gp corresponding to p individuals
in a population. Each genotype g is a vector with entries in {0, 1, 2}. Each position where
a 2 appears is called ambiguous position. For a genotype g we have to determine a pair
of haplotypes hP and hM (hP stands for the paternal haplotype and hM stands for the
maternal haplotype), which are binary vectors such that g = hP ⊕ hM .

Given two haplotypes h ′ and h ′′, their sum is defined as the vector g = h′ ⊕ h′′ with
g[i] = 0, if h′[i] = h′′[i] = 0, g[i] = 1, if h′[i] = h′′[i] = 1 and g[i] = 2, if h′[i] 6= h′′[i].

We say that a setH of haplotypes resolves G if for every g ∈ G there exist h1, h2 ∈ H
such that g = h1 ⊕ h2. Given a set G of genotypes, the haplotyping problem consists

E-mail address: Ingo.Schiermeyer@tu-freiberg.de (Ingo Schiermeyer)
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in finding a set H of haplotypes that resolves G. In the Pure Parsimony Haplotyping
problem (PPH problem) we are interested in finding a set H of smallest possible cardi-
nality. If each genotype has at most k ambiguous positions, then we denote this problem
by PPH(k). The PPH problem has been studied in ([3],[4],[7],[9]).

Matos Camacho et al. [8] have shown that the PPH(k) can be transformed to a graph
problem, the MINIMUM RAINBOW SUBGRAPH problem (MRS). Note that this edge-colou-
ring need not be proper.

Definition 1.1 (Rainbow subgraph).
Let G be a graph with an edge-colouring. A subgraph H of G is called rainbow subgraph
if H does not contain two edges of the same colour.

Definition 1.2 (Minimum Rainbow Subgraph problem (MRS)).
Given a graph G, whose edges are coloured with p colours, find a subgraph F ⊆ G of
minimum order and with p edges such that each colour occurs exactly once.

For a set G of p genotypes g1 , g2 , . . . , gp we will use p colours 1, 2, . . . , p. For each
haplotype we introduce a vertex. If two haplotypes h′ and h′′ resolve a genotype gi (gi =
h′ ⊕ h′′ ), then the corresponding vertices will be joined by an edge which receives colour
i. If a genotype is resolved by two identical haplotypes, then the corresponding vertex is
joined by an edge which is called a loop.

In this way we construct a graph G, whose edges are coloured with p colours. Note
that this is a proper edge colouring (no vertex is incident with two edges of the same
colour), since a haplotype h can be used at most once in a pair of haplotypes, which resolves
a genotype g. Furthermore, every set H of haplotypes that resolves G corresponds to a
rainbow subgraph F of G.

It has been shown in [8] that a graph G containing loops can be transformed into a
graph G′ without loops. Hence in the following we may assume that all graphs have no
loops.

Matos Camacho et al. [8] proved the MRS problem to be NP-hard and APX-hard.
In [5] it has been shown that the MRS problem remains NP-hard and APX-hard even for
graphs with maximum degree 2.

Remark: If we do not consider edge colourings, the analogous problem is known as the
(t, f(t)) dense subgraph problem ((t, f(t))-DSP), which asks whether there is a t-vertex
subgraph of a given graphGwhich has at least f(t) edges. When f(t) =

(
t
2

)
, (t, f(t))-DSP

is equivalent to the well-known t-clique problem (cf. [1]).

2 Lower bounds for the rainbow subgraph number
Definition 2.1. Let G be a graph and c be its edge colouring with p colours. The rainbow
subgraph number of G (with respect to the colouring c) is defined as the order of its mini-
mum rainbow subgraph of size p, and denoted by rs(G, c) (or rs(G), when the colouring
c is clear from the context).

Improved lower bounds for the rainbow subgraph number rs(G) will be of major
importance for the design of approximation algorithms with better approximation ratios
for the MRS problem (cf. [8, 5]). So far nothing better than the trivial lower bound
rs(G) ≥ 2p

∆(G) is known. We can improve this lower bound by counting the number of
distinct colours among all edges incident to a vertex.



I. Schiermeyer: On the minimum rainbow subgraph number of a graph 85

Definition 2.2. Given an edge colouring of a graph G with colours 1, 2, . . . , p, we define
c(e) = i, if the edge e has colour i for 1 ≤ i ≤ p.
Let cd(v) (colour degree) denote the number of distinct colours among all edges incident
to the vertex v and let cd(i) = max{cd(v) | v ∈ V (G) has an incident edge with colour i}
be the maximum colour degree for every colour i, 1 ≤ i ≤ p.

Using the maximum colour degrees for all colours we can show the following improved
lower bound.

Proposition 2.3. Let G be a graph, whose edges are coloured with p colours. Then

rs(G) ≥
p∑

i=1

2

cd(i)
≥ 2p

∆(G)
.

Proof. Let F be a minimum rainbow subgraph of order k = rs(G). Then

rs(G) = k =
∑

v∈V (F )

dF (v)

dF (v)
=

∑
e=uw,e∈E(F )

1

dF (u)
+

1

dF (w)
≥

p∑
i=1

2

cd(i)
≥ 2p

∆(G)
.

The following example shows that this bound is sharp and improves the lower bound
of 2p

∆(G) significantly.

Example 2.4. For p ≥ 4 and ∆ ≥ 2 let G = K1,∆ + Cp−1 (where G + H denotes the
disjoint union of two graphsG andH). All edges of the cycle Cp−1 are coloured distinctly,
say with colours 1, 2, . . . , p − 1, and all edges of K1,∆ are coloured with colour p. Then
rs(G) = p+ 1 = p− 1 + 2 =

∑p
i=1

2
cd(i) >

2p
∆(G) .

We can further improve this lower bound by counting the number of distinct colours
among all edges incident to the endvertices of an edge. For this purpose we define q(i) =
min{ 1

cd(u) + 1
cd(w) | uw ∈ E(G) and c(uw) = i}.

Proposition 2.5. Let G be a graph, whose edges are coloured with p colours. Then

rs(G) ≥
p∑

i=1

q(i) ≥
p∑

i=1

2

cd(i)
≥ 2p

∆(G)
.

Proof. Let F be a minimum rainbow subgraph of order k = rs(G). For every colour i, 1 ≤
i ≤ p, let uiwi be an edge such that 1

cd(ui)
+ 1

cd(wi)
= q(i). If uw ∈ E(F ) is an edge with

c(uw) = i, then 1
cd(u) + 1

cd(w) ≥
1

cd(ui)
+ 1

cd(wi)
= q(i) ≥ 2 · 1

max{cd(ui),cd(wi)} ≥
2

cd(i) .

Therefore,

rs(G) = k =
∑

v∈V (F )

dF (v)

dF (v)
=

∑
e=uw,e∈E(F )

1

dF (u)
+

1

dF (w)
≥

p∑
i=1

q(i) ≥
p∑

i=1

2

cd(i)
≥ 2p

∆(G)
.
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The following example shows that this bound is sharp and improves the previous two
lower bounds significantly.

Example 2.6. Let G ∼= K1,p for some p ≥ 2. Let the edges of G be coloured with p
colours. Then cd(i) = p and q(i) = 1 + 1

p for 1 ≤ i ≤ p. Thus rs(G) = p + 1 =

p · (1 + 1
p ) =

∑p
i=1 q(i) > 2 = p · 2

p =
∑p

i=1
2

cd(i) = 2p
∆(K1,p) .

3 Upper bounds for the rainbow subgraph number
First observe that the trivial upper bound rs(G) ≤ 2p is achieved if the rainbow subgraph
F is a matching. This upper bound has been improved towards rs(G) ≤ 2p + 1 −∆(G)
by Koch [6] for properly edge-coloured graphs and this bound is sharp. For instance, let
G = K1,∆ + (p −∆)K2, where p ≥ ∆, and all edges of G are coloured distinctly. Then
rs(G) = 2p+ 1−∆(G).

Similar to Brooks’ Theorem (cf. [2]) we can characterize all graphs achieving this
bound.

Theorem 3.1. Let G be a graph with maximum degree ∆ ≥ 2, whose edges are properly
coloured with p colours. If rs(G) = 2p+ 1−∆(G), then G has the following properties:

1. G contains a star K1,∆ with center vertex v0 and leaves v1, . . . , v∆ and G[N(v0)]
is edgeless. Let c(v0vi) = i for 1 ≤ i ≤ ∆ and H0

∼= G[N [v0]].

2. If p > ∆, then let Hi be the subgraph spanned by the edges with colour i for ∆ +
1 ≤ i ≤ p. The subgraphs H∆+1, H∆+2, . . . ,Hp are pairwise vertex-disjoint and
V (H0) ∩ V (Hi) = ∅ for ∆ + 1 ≤ i ≤ p.

3. E(Hi, Hj) = ∅ for ∆ + 1 ≤ i < j ≤ p (where E(Hi, Hj) is the set of all edges
having one vertex in V (Hi) and the other vertex in V (Hj)).

4. E(vi, Hj) = ∅ for 1 ≤ i ≤ ∆ and ∆ + 1 ≤ j ≤ p (where E(vi, Hj) is the set of all
edges incident with vi and a vertex in V (Hj)).

5. If uv ∈ E(Hi) for some ∆ + 1 ≤ i ≤ p, then N(u) ∩N(v) = ∅.
6. N(vi) ∩N(vj) = ∅ for vi ∈ V (Hi), vj ∈ V (Hj),∆ + 1 ≤ i < j ≤ p.

Proof. 1. Suppose there is an edge vivj for some 1 ≤ i < j ≤ ∆. If c(vivj) = k for
some k with 1 ≤ k ≤ ∆, k 6= i, j, then rs(G) ≤ (∆+1)−1+(2p−2∆) = 2p−∆ <
2p + 1 −∆, a contradiction. If c(vivj) = k for some k with ∆ + 1 ≤ k ≤ p, then
rs(G) ≤ (∆ + 1) + (2p− 2∆− 2) = 2p−∆− 1 < 2p+ 1−∆, a contradiction as
well.

2. Suppose there are integers i, j with ∆ + 1 ≤ i < j ≤ p and two adjacent edges
e, f with c(e) = i, c(f) = j. Then rs(G) ≤ (∆ + 1) + (2p − 2∆ − 1) = 2p −
∆ < 2p + 1 − ∆, a contradiction. Suppose there are integers i, j with 1 ≤ i ≤
∆,∆ + 1 ≤ j ≤ p and two adjacent edges e, f with c(e) = i, c(f) = j. Then
rs(G) ≤ (∆ + 1) + (2p−2∆−1) = 2p−∆ < 2p+ 1−∆, a contradiction as well.

3. Suppose there is an edge vivj with vi ∈ V (Hi), vj ∈ V (Hj),∆ + 1 ≤ i < j ≤ p.
Then c(vivj) = k for some 1 ≤ k ≤ ∆. Hence rs(G) ≤ (∆+1)−1+(2p−2∆) =
2p−∆ < 2p+ 1−∆, a contradiction.

4. Suppose there is an edge vivj for two vertices vi ∈ V (H0) and vj ∈ V (Hj),∆+1 ≤
j ≤ p. Then rs(G) ≤ (∆+1)+(2p−2∆−1) = 2p−∆ < 2p+1−∆, a contradiction.
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5. Suppose there is an edge uv ∈ E(Hi) for some ∆+1 ≤ i ≤ p with N(u)∩N(v) 6=
∅. By 3. and 4. we conclude that N(u) ∩ N(v) ∩ V (H0) = ∅. Furthermore, for a
vertex w ∈ N(u)∩N(v), we have c(uw) = j, c(vw) = k for some 1 ≤ j < k ≤ ∆.
Then rs(G) ≤ (∆+1)−2+(2p−2∆+1) = 2p−∆ < 2p+1−∆, a contradiction.

6. SupposeN(vi)∩N(vj) 6= ∅ for two vertices vi ∈ V (Hi), vj ∈ V (Hj),∆+1 ≤ i <
j ≤ p.By 3. and 4. we conclude thatN(vi)∩N(vj)∩V (H0) = ∅. Furthermore, for a
vertexw ∈ N(vi)∩N(vj),we have c(uw) = k, c(vw) = l for some 1 ≤ k < l ≤ ∆.
Then rs(G) ≤ (∆+1)−2+(2p−2∆+1) = 2p−∆ < 2p+1−∆, a contradiction.

Another upper bound for the rainbow subgraph number follows from an approach pre-
sented in [8]. Observe that two adjacent edges of different colours together have three
vertices, whereas two edges of different colours in a matching have four vertices. Based on
this obervation the following algorithm has been proposed in [8].

Algorithm
Input: A graph G of order n whose edges are coloured with p colours

1. Construct a graph G′ with V (G′) = {v1, v2, . . . , vp} (vi corresponds to colour i)
and vivj ∈ E(G′) if there exist two adjacent edges e, f ∈ E(G) with c(e) = i and
c(f) = j (c(x) denotes the colour of the edge x).

2. Now compute a maximum matching M of order β(G′) in G′. This can be done in
polynomial time.

3. Next construct a graph H with V (H) ⊆ V (G) as follows: For each matching edge
of M choose two adjacent edges in G with these two colours. For each vertex of
V (G′) not in M choose an edge in G with this colour. In this way we obtain a
rainbow subgraph H ⊆ G with |E(H)| = p.

Correctness of the algorithm: Edges of the matching correspond to pairs of adjacent edges
in the original graph. Colours that are left out by this procedure are added greedily at the
end.

Claim 3.2. |V (H)| ≤ 2p− β(G′)

Proof. For each matching edge of G′ three vertices appear in H. Hence

|V (H)| ≤ 3β(G′) + 2(p− 2β(G′)) = 2p− β(G′)

Corollary 3.3. rs(G) ≤ 2p− β(G′).
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Abstract

Vizing’s conjecture is true for graphs G satisfying γi(G) = γ(G), where γ(G) is
the domination number of a graph G and γi(G) is the independence-domination number
of G, that is, the maximum, over all independent sets I in G, of the minimum number of
vertices needed to dominate I . The equality γi(G) = γ(G) is known to hold for all chordal
graphs and for chordless cycles of length 0 (mod 3). We prove some results related to
graphs for which the above equality holds. More specifically, we show that the problems
of determining whether γi(G) = γ(G) = 2 and of verifying whether γi(G) ≥ 2 are NP-
complete, even if G is weakly chordal. We also initiate the study of the equality γi = γ in
the context of hereditary graph classes and exhibit two infinite families of graphs for which
γi < γ.

Keywords: Vizing’s conjecture, domination number, independence-domination number, weakly chor-
dal graph, NP-completeness, hereditary graph class, IDD-perfect graph.

Math. Subj. Class.: 05C69, 68Q17

1 Introduction
The closed neighborhood NG[v] of a vertex in a (finite, simple, undirected) graph G is the
set consisting of v itself and its neighbors in the graph. A set A of vertices is said to domi-
nate a set B if B ⊆ ∪{NG[a]: a ∈ A}. The minimum size of a set of vertices dominating
a set A is denoted by γG(A). A dominating set in a graph G is a set D of vertices that
dominates V (G). We write γ(G) for γG(V (G)). The concept of domination in graphs
has been extensively studied, both in structural and algorithmic graph theory, because of its
numerous applications to a variety of areas. Domination naturally arises in facility location
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problems, in problems involving finding sets of representatives, in monitoring communi-
cation or electrical networks, and in land surveying. The two books [14, 15] discuss the
main results and applications of domination in graphs. Many variants of the basic concepts
of domination have appeared in the literature. Again, we refer to [14, 15] for a survey of
the area, and to [4, 10, 11, 13, 16, 18, 19, 21, 22] for some recent papers on domination and
variants thereof.

The Cartesian product of two graphs G and H is the graph G�H with vertex set
V (G) × V (H) and edge set {(u, x)(v, y) : (u, x), (v, y) ∈ V (G) × V (H), u = v and
xy ∈ E(H), or x = y and uv ∈ E(G)}. In 1968 Vizing made the following conjecture,
according to Brešar et al. [8] “arguably the main open problem in the area of domination
theory”:

Conjecture 1. For every two graphs G and H , it holds that γ(G�H) ≥ γ(G)γ(H).

The conjecture is still open and was verified for several specific classes of graphs; see,
e.g., [8].

An independent set in a graph is a set of pairwise non-adjacent vertices. The
independence-domination number γi(G) is the maximum of γG(I) over all independent
sets I in G. The independence-domination number has arisen in the context of matching
theory, see, e.g., [2, 20], and was first introduced in the context of domination by Aharoni
and Szabó in 2009 [3]. Obviously, γi(G) ≤ γ(G), and in general the gap between the two
may be large [3]. However, equality holds for:

• cycles of length 0 (mod 3), and more generally, for graphs that have a set of γ(G)
vertices with pairwise disjoint closed neighborhoods [17];

• chordal graphs, as proved by Aharoni, Berger and Ziv [1] in a result on width and
matching width of families of trees.

Recall that a graphG is called chordal if it does not contain any induced cycle of length
at least 4, and weakly chordal if it does not contain any induced cycles of length at least 5
or their complements.

Theorem 2 ( [1]). For every chordal graph G, it holds that γi(G) = γ(G).

The independence-domination number is related to Vizing’s conjecture via the follow-
ing result proved by Aharoni and Szabó [3]:

Theorem 3 ( [3]). For every two graphs G and H , it holds that γ(G�H) ≥ γi(G)γ(H).

In particular, Vizing’s conjecture is true for chordal graphs. More generally, if G is a
graph with γi(G) = γ(G) then γ(G�H) ≥ γ(G)γ(H) for every graph H . In a recent
survey paper on Vizing’s conjecture [8], Brešar et al. asked what other classes of graphs
can be found for which γi(G) = γ(G) for every G in the class.

In this note, we prove some results related to graphs for which the independence-
domination number coincides with the domination number. First, using a relationship be-
tween the independence-domination number and the notion of a dominating clique, we
prove that determining whether γi(G) = γ(G) is NP-hard. More specifically, we show
that it is NP-complete to determine whether γi(G) ≥ 2, as well as to determine whether
γi(G) = γ(G) = 2. These results, obtained in Section 2, remain valid for weakly chordal
graphs.
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In Section 3, we turn our attention to graphs in which the equality γi = γ holds in
the hereditary sense. We show that this class, which properly contains the class of chordal
graphs, is properly contained in the class of graphs in which all induced cycles are of length
0 (mod 3). We do this by constructing an infinite family of graphs in which all induced
cycles are of length 0 (mod 3) but where the independence-domination number is strictly
smaller than the domination number. In conclusion, we propose three related problems.

2 The complexity of computing γi and testing γi = γ

In this section, we study some computational complexity aspects of computing the
indepedence-domination number and comparing it to the domination number. We first
recall some notions needed in our proofs. For a graph G = (V,E), we denote by G its
complement, that is, the graph with the same vertex set as G, in which two vertices are
adjacent if and only if they are not adjacent inG. A clique in a graph is a subset of pairwise
adjacent vertices. A dominating set that is also a clique is called a dominating clique. We
assume familiarity with basic notions of computational complexity (see, e.g., [12]).

Theorem 4. Given a weakly chordal graph G, it is NP-complete to determine whether
γi(G) ≥ 2.

Proof. To show membership in NP, observe that a short certificate for the fact that γi(G) ≥
2 is any independent set I such that for every vertex v ∈ V (G), it holds that I * NG[v].

To show hardness, we make a reduction from the problem of determining whether a
given weakly chordal graph contains a dominating clique. This is an NP-complete problem,
see, e.g., [6]. Clearly, the problem remains NP-complete if we assume that the input graph
G does not have a dominating vertex.

Suppose that we are given a weakly chordal graph G without dominating vertices. We
compute its complementary graph H = G. Since H is also weakly chordal, the theorem
follows immediately from the claim below.

Claim: G has a dominating clique if and only if γi(H) ≥ 2.
For the forward implication, suppose that G has a dominating clique K. We will show

that γi(H) ≥ 2 by showing that γH(K) ≥ 2. Suppose for a contradiction that γH(K) = 1.
Then, there exists a vertex v ∈ V (H) = V (G) such that K ⊆ NH [v]. In particular, v must
belong to K, since otherwise in G, vertex v would not have any neighbors in K, contrary
to the assumption that K is dominating in G. Since K is independent in H , that facts that
v ∈ K and K ⊆ NK [v] imply that K = {v}, that is, v is a dominating vertex in G, which
is impossible since we assumed that G has no dominating vertices. Hence, it holds that
γH(K) ≥ 2 and consequently γi(H) ≥ 2.

For the converse implication, suppose that γi(H) ≥ 2, and let I be an independent set
in H such that γH(I) ≥ 2. Clearly, I is a clique in G, and, in fact, a dominating clique: If
this were not the case, then there would exist a vertex v ∈ V (G) \ I such that in G, vertex
v is not adjacent to any vertex from I . Equivalently, for every u ∈ I , uv ∈ E(H). But then
{v} would dominate I in H , contrary to the assumption that γH(I) ≥ 2.

Corollary 5. Given a (weakly chordal) graphG and an integer k, it is NP-hard to determine
whether γi(G) ≥ k.

Corollary 6. Given a (weakly chordal) graphG and an integer k, it is NP-hard to determine
whether γi(G) ≤ k.
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How difficult it is to determine whether the values of γi and γ coincide? Since γi(G) ≤
γ(G) holds for every graph G, in order to show that

γi(G) = γ(G) = k , (2.1)

it suffices to argue that γi(G) ≥ k and γ(G) ≤ k. Clearly, for k = 1, whether (2.1) holds
can be determined in polynomial time: a necessary and sufficient condition for γi(G) =
γ(G) = 1 is that G has a dominating vertex.

We now show that already for k = 2, the problem becomes NP-complete, even for
weakly chordal graphs. The proof will also imply intractability of the problem of verifying
whether γi = γ.

Theorem 7. Given a weakly chordal graph G, it is NP-complete to determine whether
γi(G) = γ(G) = 2.

Proof. Membership in NP follows from the fact that a short certificate for γi(G) = γ(G) =
2 is given by a pair (I,D) where I is an independent set not dominated by any vertex (prov-
ing γi(G) ≥ 2) and D is a dominating set of size two (proving γ(G) ≤ 2).

To show hardness, we make a reduction from 3-SAT [12]. The reduction is an adap-
tation of the reduction by Brandstädt and Kratsch [6] used to prove that the dominating
clique problem is NP-complete for weakly chordal graphs.

Suppose that we are given an instance to 3-SAT, that is, a Boolean formula ϕ over
variables x1, . . . , xn, consisting of m clauses of length 3, say Ci = x

αi1
i1
∨ xαi2

i2
∨ xαi3

i3
for

i = 1, . . . ,m, where αij ∈ {0, 1}, with the usual interpretation that x1i = xi and x0i = xi.
Without loss of generality, we may assume the following properties of the formula:

Property 1: No clause contains both a literal and its negation. (This is because clauses
containing both a literal and its negation can be discarded as they will always be satisfied.)

Property 2: There exist two clauses, sayC1 andC2, that have no literals in common. (If
the given formula ϕ does not have this property, we simply add to it a new clause consisting
of three new variables. If necessary, we relabel the clauses.)

Consider the graph H defined as follows:
V (H) = {x1, x1, . . . , xn, xn} ∪ {C1, . . . , Cm} ,
E(H) = {xα1

i xα2
j | 1 ≤ i, j ≤ n, i 6= j, α1, α2 ∈ {0, 1}}∪

{xαi Cj | 1 ≤ i ≤ n, 1 ≤ j ≤ m, α ∈ {0, 1}, xαi is a literal in Cj} .
We complete the reduction by computing the complementary graph G = H .
Using Property 1, it is easy to verify that neither H nor G contain an induced cycle

of length at least 5, that is, G is weakly chordal. Moreover, the following properties are
equivalent:

(i) ϕ is satisfiable.

(ii) H has a dominating clique.

(iii) γi(G) = γ(G) = 2.

(iv) γi(G) = γ(G).

The equivalence between (i) and (ii) has been established in [6].
(ii) implies (iii): Suppose thatH has a dominating clique. SinceH has no dominating

vertex, similar arguments as in the proof of Theorem 4 allow us to conclude that γi(G) ≥ 2.
Furthermore, by Property 1 and by construction ofH , vertices C1 and C2 have no common
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neighbors in H . This implies that {C1, C2} is a dominating set in G. Therefore γ(G) ≤ 2,
and the conclusion follows since 2 ≤ γi(G) ≤ γ(G) ≤ 2.

Trivially, (iii) implies (iv).
(iv) implies (ii): Suppose that γi(G) = γ(G). Since H has no isolated vertices, G has

no dominating vertices. Therefore γi(G) = γ(G) ≥ 2, and it can be shown, similarly as in
the proof of Theorem 4, that H has a dominating clique.

This completes the proof.

Theorem 8. Given a weakly chordal graphG, it is NP-hard to determine whether γi(G) =
γ(G).

Proof. Perform the same reduction as in the proof of Theorem 7 and use the fact that the
formula is satisfiable if and only if γi(G) = γ(G).

3 A hereditary view on γi = γ

In this section, we initiate the study of the equality between the domination and
independence-domination number of graphs in the context of hereditary graph classes. A
graph class is said to be hereditary if it is closed under vertex deletions. The family of
hereditary graph classes is of particular interest, first of all, since many natural graph prop-
erties are hereditary, and second, since hereditary (and only hereditary) classes admit a
uniform description in terms of forbidden induced subgraphs. For a set F of graphs, we
say that a graph G is F-free if it does not contain an induced subgraph isomorphic to a
member of F . The set of all F-free graphs will be denoted by Free(F). Notice that for
two sets F1 and F2 of graphs, it holds that Free(F1 ∪ F2) = Free(F1) ∩ Free(F2).

Given a hereditary class G, denote by F the set of all graphs G with the property that
G 6∈ G but H ∈ G for every proper induced subgraph H of G. The set F is said to be
the set of (minimal) forbidden induced subgraphs for G, and G is precisely the class of
F-free graphs. The set F can be either finite or infinite, and many interesting classes of
graphs can be characterized as being F-free for some family F . Such characterizations
can be useful for establishing inclusion relations among hereditary graph classes, and were
obtained for numerous graph classes (see, e.g. [7]). The most famous such class is probably
the class of perfect graphs, for which the forbidden induced subgraph characterization is
given by the Strong Perfect Graph Theorem conjectured by Berge in 1961 [5] and proved
by Chudnovsky, Robertson, Seymour and Thomas in 2006 [9].

Since Vizing’s conjecture holds for graphs G such that γi(G) = γ(G), it would be
interesting to determine the largest hereditary class of graphs with this property. Moreover,
since recognizing graphs with γi = γ is NP-hard, it would also be interesting to determine
whether graphs in which the property γi = γ holds in the hereditary sense can be recog-
nized efficiently. With this motivation in mind, we introduce the class of independence-
domination-domination-perfect graphs, or shortly, IDD-perfect graphs, that is, graphs for
which the above equality holds in the hereditary sense:

IDD-perfect graphs = {G : γi(H) = γ(H) for every induced subgraph H of G} .

We now provide some partial results towards a characterization of IDD-perfect graphs.
By Theorem 2, we can immediately relate the class of IDD-perfect graphs to a well studied
hereditary subclass of perfect graphs, the class of chordal graphs:
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Theorem 9.
Chordal graphs ⊂ IDD-perfect graphs .

Proof. Since every induced subgraph of a chordal graph is chordal, Theorem 2 implies
that the class of IDD-perfect graphs contains the class of chordal graphs. This inclusion is
proper since chordless cycles of length congruent to 0 (mod 3) are IDD-perfect [17] (but
not chordal).

In the rest of this section, we bound the class of IDD-perfect graphs from above, by
exhibiting two infinite families of graphs that do not belong to class of IDD-perfect graphs:
the chordless cycles of length not congruent to 0 (mod 3) and another graph family, which
we describe now. For positive integers k1, k2, k3 > 1, let Fk1,k2,k3 denote the graph ob-
tained from the disjoint union of three cycles C1, C2 and C3 where |V (Cj)| = 3kj as
follows: denoting by (vj1, . . . , v

j
3kj

) a cyclic order of vertices of Cj , we identify vertex v21
with vertex v13k1 , vertex v31 with vertex v23k2 , and vertex v11 with vertex v33k3 . See Fig. 1 for
an example.

v16

v26

v12 v13

v14

v15

v22

v23v24

v25

v32

v33

v34 v35

C1C3

C2

v11

v21

v31

v36

Figure 1: The graph F2,2,2

Theorem 10.

IDD-perfect graphs ⊆ Free

( ⋃
k≥1

{
C3k+1, C3k+2

}
∪

⋃
k1,k2,k3>1

{
Fk1,k2,k3

})
.

Proof. First, we establish the inclusion IDD-perfect graphs ⊆
Free

(⋃
k≥1{C3k+1, C3k+2}

)
. To this end, we show that for every chordless cycle

C of order n = 3k + 1 or n = 3k + 2 (where k is a positive integer), it holds that
γi(C) = k and γ(C) = k + 1. Let (v1, . . . , vn) be a cyclic order of the vertices of such a
cycle C. Observe that for every set S ⊆ V (C) with |S| ≤ k, it holds that

| ∪v∈S NC(v)| ≤
∑
v∈S
|NC [v]| = 3|S| < n .

Thus, we immediately have γ(C) ≥ k + 1. On the other hand, the set

{v3j−2 : 1 ≤ j ≤ k + 1}
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is dominating, proving γ(C) = k + 1. Suppose now that I is an independent set in C.
We may assume w.l.og. that v1 6∈ I . In case that n = 3k + 2, we may also assume that
vn 6∈ I . In either case, the set {v3j : 1 ≤ j ≤ k} is a set of size k dominating I . This
shows that γi(C) ≤ k. Conversely, since the set I = {v3j : 1 ≤ j ≤ k} is a set of k
vertices with pairwise disjoint closed neighborhoods, we have γi(C) ≥ γC(I) = |I| = k.
Thus k = γi(C) < γ(C) = k + 1 and hence no IDD-perfect graph can contain C as an
induced subgraph.

It remains to show that IDD-perfect graphs ⊆ Free
(⋃

k1,k2,k3>1{Fk1,k2,k3}
)
. Equiv-

alently, we must show that for every three integers k1, k2, k3 > 1, it holds that
γi(Fk1,k2,k3) < γ(Fk1,k2,k3). We will show this in two steps, by computing the exact
values of γi(Fk1,k2,k3) and γ(Fk1,k2,k3).

Let F = Fk1,k2,k3 for some k1, k2, k3 > 1. First, we show that γ(F ) = k1+k2+k3−1.
Consider the set

D = {v13j−2 : 1 ≤ j ≤ k1} ∪ {v23j−1 : 1 ≤ j ≤ k2} ∪ {v33j : 1 ≤ j ≤ k3 − 1} .

Then,D is a dominating set of size k1+k2+k3−1, showing that γ(F ) ≤ k1+k2+k3−1 .
Now, we show that γ(F ) ≥ k1 + k2 + k3 − 1 . Suppose for a contradiction that D is a
dominating set in F with |D| ≤ k1+k2+k3− 2. Clearly, for every p ∈ {1, 2, 3}, we have
that |D ∩ V (Cp)| ≥ kp. Moreover, D must contain at least kp − 1 vertices from Cp other
than vp1 and vp3kp since otherwise not all vertices in the set {v13p−2 : 2 ≤ j ≤ kp} can be
dominated by D. This implies that |D ∩ {v11 , v21 , v31}| = 1. We may assume without loss
of generality that D ∩ {v11 , v21 , v31} = {v11}. But this implies that |D ∩ V (C2)| = k2 − 1, a
contradiction. Hence γ(F ) = k1 + k2 + k3 − 1.

In the rest of the proof, we show that γi(F ) = k1 + k2 + k3 − 2 . Consider the set

I = {v13j : 1 ≤ j ≤ k1} ∪ {v23j−2 : 1 ≤ j ≤ k2} ∪ {v33j : 1 ≤ j ≤ k3 − 1} .

This is is a set of k1 + k2 + k3 − 2 vertices with pairwise disjoint closed neighborhoods.
Therefore γi(F ) ≥ |I| = k1+k2+k3−2 . To see that γi(F ) ≤ k1+k2+k3−2 , we will
verify that γF (I) ≤ k1 + k2 + k3 − 2 for every independent set I in F . Up to symmetry, it
is sufficient to consider the following two cases:

• Case 1: v12 6∈ I .
In this case, the set

D = {v13j−2 : 2 ≤ j ≤ k1} ∪ {v23j : 1 ≤ j ≤ k2} ∪ {v33j−2 : 2 ≤ j ≤ k3}

is a set of size k1 + k2 + k3 − 2 dominating I .

• Case 2: {v12 , v13k1−1, v
2
2 , v

2
3k2−1, v

3
2 , v

3
3k3−1} ⊆ I .

In this case, the set

D = {v11 , v21 , v31} ∪ {v13j−1 : 2 ≤ j ≤ k1 − 1} ∪ {v23j−1 : 2 ≤ j ≤ k2 − 1}∪
{v33j−1 : 2 ≤ j ≤ k3 − 1}

is a set of size k1 + k2 + k3 − 3 dominating I .

This shows that k1 + k2 + k3 − 2 = γi(F ) < γ(F ) = k1 + k2 + k3 − 1 and hence no
IDD-perfect graph in can contain F = Fk1,k2,k3 as an induced subgraph.

This completes the proof.
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Remark. Theorem 10 shows that the class of IDD-perfect graphs is not comparable with
the class of perfect graphs. On the one hand, the 9-cycle is an IDD-perfect graph that is
not perfect. On the other hand, the 4-cycle is a (bipartite, hence) perfect graph that is not
IDD-perfect.

4 Conclusion
We conclude this note with three problems related to results from Section 3.

Problem 1. Determine whether every graph of the form Fk1,k2,k3 is a minimal forbidden
induced subgraph for the class of IDD-perfect graphs.

Problem 2. Determine the set of minimal forbidden induced subgraphs for the class of
IDD-perfect graphs.

Problem 3. Determine the computational complexity of recognizing IDD-perfect graphs.
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[3] R. Aharoni and T. Szabó, Vizing’s conjecture for chordal graphs, Discrete Math. 309 (2009),
1766–1768.
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Abstract

We introduce the notion of a t-graph and prove that regular 3-graphs are equivalent to
cyclic antipodal 3-fold covers of a complete graph. This generalizes the equivalence of
regular two-graphs and Taylor graphs. As a consequence, an equivalence between cyclic
antipodal distance regular graphs of diameter 3 and certain rank 6 commutative association
schemes is proved. New examples of regular 3-graphs are presented.

Keywords: Antipodal graph, association scheme, distance regular graph of diameter 3, Godsil-
Hensel matrix, group ring, Taylor graph, two-graph.
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1 Introduction
This paper is mainly a clarification of [6] — a short draft written by Donald Higman in
1994, entitled “A note on regular 3-graphs”.

The considered generalization of two-graphs was introduced by D. G. Higman in [5].
As in the famous correspondence between two-graphs and switching classes of simple
graphs, t-graphs are interpreted as equivalence classes of an appropriate switching relation
defined on weights, which play the role of simple graphs.

In his note Higman uses certain association schemes to characterize regular 3-graphs
and to obtain feasibility conditions for their parameters. Specifically, he provides a graph
theoretic interpretation of a weight and from the resulted graph he constructs a rank 4
symmetric association scheme and a rank 6 fission of it. Furthermore, he proves that rank
6 schemes with parameters as in his construction are equivalent to regular 3-graphs.

During our redetermination of the structure constants of the rank 6 scheme an error
in [6] was detected, this miscalculation led Higman to a false restriction on the parameters
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of regular 3-graphs. Our first contribution is the correction of this mistake (see Subsec-
tion 5.2). The second contribution is a proof (see Section 4) that in the case of regular
3-graphs, the graph defined by a weight in its switching class is a distance regular cover
of the complete graph. Moreover, it is a cyclic antipodal distance regular (ADRG) 3-fold
cover of the complete graph in the sense of Godsil and Hensel in [2]. This provides a
further restriction on the parameters of regular 3-graphs.

Altogether, in Section 4 and in Section 5 we establish a one-to-one correspondence
between regular 3-graphs, cyclic ADRGs of diameter 3 and certain rank 6 association
schemes. As a consequence, we provide a new characterization of cyclic antipodal dis-
tance regular 3-fold covers of the complete graph in terms of association schemes.

To keep the length of this paper reasonable we did not include all necessary prelimi-
naries. In particular, we assume some knowledge of distance regular graphs, specifically,
antipodal distance regular graphs of diameter 3. Also, we assume the reader is familiar with
association schemes, in particular, the intersection algebra of an association scheme and its
character-multiplicity table. An interested reader may find a more comprehensive consid-
eration of all the diverse links exposed below as well as suggestions for further research
in [7].

2 Two-graphs and t-graphs
2.1 Two-graphs and regular two-graphs

Two-graphs have roots originating in diverse areas of combinatorics, geometry and group
theory, thus leading to different manifestations in the literature, such as: switching classes
of graphs, sets of equidistant points in elliptic geometry, sets of equiangular lines in Eu-
clidean geometry, binary maps of triples with vanishing coboundary, and double coverings
of complete graphs (see the celebrated survey [12]). Our focus will be on the last two in-
terpretations and the connection between them. We start with the classical definition and
the classical viewpoint of two-graphs as switching classes of simple graphs.

Let X be a set of n elements called vertices. For m ∈ N denote by X{m} the set of all
m-subsets of X .

Definition 2.1. A set ∆ ⊆ X{3} is a two-graph if every 4-subset of X contains an even
(∈ {0, 2, 4}) number of members of ∆.

Typically we use the notation (X,∆) for a two-graph, and call ∆ the set of odd triples.

Definition 2.2. A two-graph (X,∆) is called regular if every 2-subset {x, y} ∈ X{2} is
contained in the same number of triples from ∆.

The most famous view of two-graphs is related to a special equivalence relation that is
defined on the set of simple (undirected, no loops) graphs. First we remind the reader how
to get a two-graph from a graph:

Let Γ = (V,E) be a simple graph. The set of triples {u, v, w} of vertices, such that the
induced subgraph Γ|{u,v,w} has an odd number of edges, forms a two-graph.

Next, to define the equivalence relation we consider the operation of switching a graph
with respect to a set of vertices.

Definition 2.3. LetX ⊆ V be a subset of vertices of a simple graph Γ = (V,E). Switching
with respect toX means interchanging the adjacencies and non-adjacencies betweenX and
its complement V \X .
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As a more appropriate setting to work with the operation of switching, J. J. Seidel
proposed an alternative matrix representation of a simple graph:

Definition 2.4. The Seidel adjacency matrix S = (si,j) of a graph Γ = (V,E) is a
{0,−1, 1}-matrix having:

si,j =

 0 i = j,
−1 {i, j} ∈ E,
1 {i, j} /∈ E.

In this notation, if the graph Γ′ is obtained from Γ by switching with respect toX ⊆ V ,
then its Seidel adjacency matrix S′ is obtained from S via a similarity transformation by a
diagonal matrix having {−1, 1} on its diagonal. Explicitly:

S′ = DSD,

where Di,i = −1⇐⇒ i ∈ X .

As was implied above, switching is an equivalence relation on the set of all simple
graphs of order n sharing the same prescribed vertex set. Furthermore we note that switch-
ing equivalent graphs give rise to the same two-graph, and have the same Seidel spectrum,
thus allowing us to define the eigenvalues and their multiplicities of a two-graph. To sum
up we have:

Theorem 2.5. There is a 1-1 correspondence between two-graphs and switching classes
of graphs.

Theorem 2.6. A two-graph is regular if and only if it has two distinct (Seidel) eigenvalues
ρ1 > 0 > ρ2, such that ρ1ρ2 = 1− |X|.

The following is an alternative definition of a two-graph. We call it the cohomological
definition for reasons that will be clear soon.

Definition 2.7. Let U2 be the group of square roots of unity. A set ∆ ⊆ X{3} is a two-
graph if the function:

f : X{3} −→ U2

defined by
f(x) = −1⇐⇒ x ∈ ∆,

satisfies:
f({x, y, z}) · f({x, y, t}) · f({x, z, t}) · f({y, z, t}) = 1

for any {x, y, z, t} ∈ X{4}.

Functions satisfying the equation in the above definition are called 3-cocycles (see be-
low).

It is clear that the two definitions are equivalent. Furthermore, we may refer to either
(X,∆), ∆ or the function f as the two-graph.
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2.2 The connection with double covers of complete graphs

Two-graphs were originally introduced by Graham Higman to study 2-transitive represen-
tations of certain sporadic groups, in his description he used antipodal 2-fold covers of
complete graphs. In [16], Taylor and Levingston established a one-to-one correspondence
between two-graphs and antipodal 2-fold covers of complete graphs. This correspondence
will be described in a more general setting with all details in the next section. Meanwhile
we give an overview for the case of two-graphs.

Let Γ be a graph with n vertices in the switching class of the two-graph f and let SΓ

be the Seidel adjacency matrix of Γ. Then by inserting a 2× 2 matrix in the place of each
entry of SΓ according to the following rule:

0←→
(

0 0
0 0

)
1←→

(
1 0
0 1

)
− 1←→

(
0 1
1 0

)
we obtain a 2n×2n {0, 1}-matrix which is the usual adjacency matrix of the corresponding
2-fold cover of Kn. The converse construction is done in a similar manner: substituting
each 2 × 2 block of the adjacency matrix of a 2-fold cover of Kn (writing it in a suitable
ordering of the vertices) with an element of {0, 1,−1}.

A 2-fold cover of Kn, when it is also distance regular, is called a Taylor graph, these
are distance regular graphs with intersection array

{k, µ, 1; 1, µ, k} .

In the above mentioned correspondence, Taylor graphs correspond to regular two-
graphs. This will be a particular case of our more general result later on.

2.3 Generalizing two-graphs

Considering the cohomological definition of two-graphs, two very natural generalizations
arise:

• t-cocycles into U2

(functions f : X{t} −→ U2 with a similar property as for two-graphs);

• 3-cocycles into Ut
(functions f : X{3} −→ Ut, where Ut is the group of t-th roots of unity).

Historically, the first of these was indeed the first to be considered. The first appearance
of the term t-graph as a t-cocycle over U2 is due to D. Higman’s generalization (see [4])
of E. Shult’s graph extension theorem (see [13]). Other sources of this (design theoretical)
generalization can be found in Mielants [11] or in [1]. In this case, a regular t-graph is
a t-cocycle into U2 which is also a t-design. Here just few examples are known: regular
3-graphs on 8 and 12 points and a regular 5-graph on 12 points (see [10]). Our interest in
the current presentation is the second way to generalize two-graphs, i.e. 3-cocycles into Ut.
This direction was examined by D. Higman, and the main source of this is [5]. We begin
with introducing some very basic elements of cohomology theory, in which terms t-graphs
are defined.
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2.4 Some cohomology

Let X be a finite set with |X| = n. Let ζ be a primitive root of unity of order t, and let
Ut =< ζ > denote the cyclic group of tth roots of unity generated by ζ.

Let x = (x1, x2, . . . , xp) ∈ Xp. A function f : Xp −→ Ut is called a p-cochain if:

(i) f(x) = 1 (the identity element of Ut) for all x ∈ Xp such that xi = xj for some
1 ≤ i 6= j ≤ p,

(ii) if y results from x by interchanging xi and xj for some 1 ≤ i 6= j ≤ p then f(y) =
(f(x))−1.

The set of all p-cochains together with pointwise multiplication forms a group denoted by
Cp· (X,Ut). Define the coboundary operator:

δ : Cp· (X,Ut) −→ Cp+1
· (X,Ut)

by

δf(x) =

p∏
i=0

σi(f(x̂i))

where x̂i ∈ Xp is obtained from x ∈ Xp+1 by deleting the ith coordinate xi, and σ is the
inverse operation of Ut.

For e ∈ X and p ≥ 1 we have the group homomorphism

∆e : Cp· (X,Ut) −→ Cp−1
· (X,Ut)

defined by
∆ef(x) = f(e, x)

for x ∈ Xp−1.
Define the set of p-coboundaries:

Bp· (X,Ut) =
{
δf
∣∣ f ∈ Cp−1

· (X,Ut)
}
,

and the set of p-cocycles:

Zp· (X,Ut) = {f ∈ Cp· (X,Ut) | δf = 1} .

Here 1 is the identity cochain in Cp+1
· (X,Ut). It is routine to check that δ2f = 1 for any

(p − 1)-cochain f , and thus the coboundary of any (p − 1)-cochain is a p-cocycle. Two
(p−1)-cochains have the same p-cocycle as their coboundary if and only if their quotient is
a (p−1)-cocycle. Thus, p-cocycles correspond to cohomology classes of (p−1)-cochains,
as a generalization of Seidel switching we call the cohomology classes switching classes.

Along the considered generalization of two-graphs and regular two-graphs we define:

Definition 2.8. A t-graph is a 3-cocycle into Ut.

Definition 2.9. A t-graph is called regular if for every pair x, y ∈ X , the number of
z ∈ X \ {x, y} such that f(x, y, z) = α depends only on α ∈ Ut. This number is denoted
m(α).

It is easy to check that in case t = 2, the definition of a 3-cocycle into U2 is compatible
with the characterization given in Definition 2.7, and that the above definition of regularity
is compatible with Definition 2.2.
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2.5 Weights

According to Higman, a weight onX with values inUt is a 2-cochainw ∈ C2
· (X,Ut), from

this point onward we will call them simply weights. Thus t-graphs are the coboundaries of
weights. A weight w can be represented as a n× n matrix W with entries from Ut where:

(W )x,y = w(x, y).

Then W has 1 on its diagonal, and W ∗ = W , where W ∗ is obtained from W by
transposing and inverting each entry. We will investigate the matrix representation of a
weight with much more detail in the next section where we will focus on the case t = 3.

Another way to represent a weight is as an antipodal t-fold cover of Kn.

Definition 2.10. Let w : X2 −→ Ut be a weight on X . To each element x ∈ X we
associate t vertices x1, x2, ..., xt and define a graph Γw = (V,E) on the resulting set V of
t|X| vertices by

{xi, yj} ∈ E ⇐⇒ w(x, y) = ζj−i.

The resulting graph is a t-fold cover of the complete graphKn, and ifw(x, y) = ζi then
the set of edges between x1, x2, ..., xt and y1, y2, ..., yt forms a perfect matching which is
given by the ith power of the permutation matrix of (1, 2, ..., t). Permuting x1, x2, ..., xt
according to some power of the permutation (1, 2, ..., t) amounts to a change of w in its
switching class.

3 Regular 3-graphs
From now on we focus on the case t = 3. We will prove that the situation for regular
3-graphs generalizes the case of regular two-graphs. In particular, regular 3-graphs are in
1− 1 correspondence with regular (cyclic) (n, 3, c2)-covers.

3.1 Main conventions

Let w : X2 −→ U3 be a weight on X and |X| = n. The coboundary δw of w is a 3-graph
Φ ∈ Z3

. (X,U3) on X . Assume that Φ is regular. Recall that this means that for every pair
x, y of distinct elements of X and α ∈ U3, the number m(α) of z ∈ X \ {x, y} such that
Φ(x, y, z) = α is independent of the choice of x and y.

Denote

a := m(1),

b := m(ζ) = m(ζ2).

We call (n, a, b) the parameters of the regular 3-graph Φ. We obtain the first restriction
on the parameters by simple counting. Fix two vertices x, y ∈ X , then:

|X \ {x, y}| = |{z ∈ X | Φ(x, y, z) = 1}|
+ |{z ∈ X | Φ(x, y, z) = ζ}|+

∣∣{z ∈ X ∣∣ Φ(x, y, z) = ζ2
}∣∣ .

Thus we have
n− 2 = a+ 2b.
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The corresponding graph Γw is a 3-fold cover of Kn with exactly 3 types of matchings
between fibres:

y

• y3

• y2

• y1

x

•x3

•x2

•x1

w(x, y) = 1

y

• y3

• y2

• y1

x

•x3

•x2

•x1

w(x, y) = ζ

y

• y3

• y2

• y1

x

•x3

•x2

•x1

w(x, y) = ζ2

Figure 1: Matchings between fibres of Γw

The following subsection serves to remind and fix notation about matrices over the
integral group ring, which is the setting in which we characterize regular 3-graphs.

3.2 Matrices over group rings

Let T be a finite group. The elements of the integral group ring Z[T ] are expressions of
the form ∑

g∈T
agg

where ag ∈ Z. The ring operations are:∑
g∈T

agg

+

∑
g∈T

bgg

 =
∑
g∈T

(ag + bg)g,∑
g∈T

agg

 ·(∑
h∈T

bhh

)
=
∑
g,h∈T

(ag · bh)gh.

Following the notation of Klin and Pech in [8], for a subset M ⊆ T define the simple
quantity M ∈ Z[T ]:

M =
∑
m∈M

1 ·m.

When M = {g} we will slightly abuse notation and write g instead of {g}. The
multiplicative identity of Z[T ] is 1 where 1 is the identity of T . The adjoint of

∑
g∈T

agg is

∑
g∈T

agg

∗ =
∑
g∈T

agg
−1.

The set of n × n matrices with entries from Z[T ] is denoted by Z[T ]n×n. This set to-
gether with usual addition and multiplication of matrices forms a ring with identity. More-
over, Z[T ]n×n forms a Z[T ]-module, and for a matrix A = (ai,j) ∈ Z[T ]n×n we can
define the adjoint A∗ ∈ Z[T ]n×n, where

(ai,j)
∗ = a∗j,i.
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Recall, that a matrix A is called self-adjoint if A = A∗.

3.3 Godsil-Hensel matrices

Let Γ be a connected cover of some graph ∆ and consider the group T of all automorphisms
of Γ that fix each fibre of Γ setwise. Then T acts semi-regularly on V (Γ) (cf. [2, Sec. 7]),
and in particular on each fibre of Γ. The group T is called the voltage group of Γ. If T acts
regularly on each fibre, then Γ is called a regular cover of ∆.

In [2] Godsil and Hensel studied regular covers in general and in particular gave a
characterization of regular antipodal distance regular covers of complete graphs. For this
purpose they defined certain matrices over the integral group ring Z[T ], that we will intro-
duce below in the notation used by Klin and Pech in [8].

Let A = (ai,j) ∈ Z[T ]n×n be a matrix such that ai,j ∈ ({g | g ∈ T} ∪ {0}), all
elements on the diagonal are equal to 0, and such that A is self-adjoint. Then to A we can
associate two graphs:

1) the underlying graph ∆A with vertex set V (∆A) = {1, . . . , n} and edge set E(∆A) =
{{i, j} | ai,j 6= 0},

2) the derived graph ΓA with vertex set V (ΓA) = {1, 2, . . . , n}×T and edge setE(ΓA) =
{{(i, g), (j, h)} | ai,j 6= 0, and g · ai,j = h}.

Such matrices, when defining connected covers with voltage group T , are called cover-
ing matrices. When ∆A is a complete graph Kn, and ΓA is an (n, r, c2)-cover of ∆A then
the matrix A is called the Godsil-Hensel matrix of the cover.

Theorem 3.1. Let T be a finite group and let A be a covering matrix of order n over
T . Then A is the Godsil-Hensel matrix of a regular antipodal (n, r, c2)-cover of Kn with
voltage group T if and only if

A2 = (n− 1)I + (n− 2− rc2)A+ c2T (J − I). (3.1)

4 Main results

Throughout this section we let Φ denote a regular 3-graph, w a weight such that δw =
Φ. Let Γw be the antipodal 3-fold cover of Kn defined by w and let W be the matrix
representation of w.

Lemma 4.1. Let Φ be a regular 3-graph and let w be a weight with δw = Φ. Then W
satisfies:

W 2 = nI +
(
(a+ 2)1 + bζ, ζ2

)
(W − I) (4.1)

= nI + (a+ 2− b)1(W − I) + bU3(J − I). (4.2)
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Proof. We calculate (W 2)x,y . For x = y we have:

(W 2)x,x =
∑
z∈X

(W )x,z · (W )z,x

=
∑
z∈X

w(x, z) · w(z, x)

=
∑
z∈X

w(x, z) · w(x, z)−1

=
∑
z∈X

1 = n1.

For x 6= y we have:

(W 2)x,y =
∑
z∈X

(W )x,z · (W )z,y

=
∑
z∈X

w(x, z) · w(z, y)

=
∑
z∈X

δw(y, x, z) · w(x, y)

=

(∑
z∈X

δw(y, x, z)

)
· w(x, y)

=
(
(m(1) + 2)1 +m(ζ)ζ +m(ζ2)ζ2

)
· w(x, y)

= ((a+ 2)1 + bζ, ζ2) · w(x, y).

Summing up we get Equation (4.1).
Using:

bζ, ζ2(W − I) = bU3J − bU3I − b1(W − I)

we get Equation (4.2).

Proposition 4.2. Every regular 3-graph with parameters (n, a, b) defines a cyclic (n, 3, b)-
cover.

Proof. We prove that the matrix C = W − I is the Godsil-Hensel matrix of the cyclic
cover Γw. We use Equation (4.2) to prove that C satisfies the condition of Theorem 3.1.

C2 = (W − I)2 = W 2 − 2W + I

= W 2 − 2(W − I)− I
= nI + ((a+ 2)1 + bζ, ζ2)(W − I)− 2(W − I)− I
= (n− 1)I + (a1 + bζ, ζ2)(W − I)

= (n− 1)I + (a− b)1(W − I) + bU3(J − I)

= (n− 1)I + (a− b)1C + bU3(J − I).

Plugging in the values
c2 = b, a1 = a, r = 3

we obtain Equation (3.1) in Theorem 3.1.
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The converse is proved similarly:

Proposition 4.3. Every cyclic (n, 3, c2)-cover defines a regular 3-graph with parameters
(n, a1, c2).

Proof. Let A be the Godsil-Hensel matrix of a cyclic (n, 3, c2)-cover. We show that W =
A+ I is the matrix representation of a weight w in the switching class of a regular 3-graph.
We have:

W 2 = (A+ I)2 = A2 + 2A+ I

= (n− 1)I + (n− 2− rc2)A+ c2T (J − I) + 2A+ I

= nI + (n− rc2)A+ c2T (J − I)

= nI + (n− rc2)(W − I) + c2T (J − I).

For the values
b = c2, a = a1, r = 3

W satisfies Equation (4.2) in Lemma 4.1.

To complete the picture we prove:

Proposition 4.4. There is a 1 − 1 correspondence between regular 3-graphs and cyclic
(n, 3, c2)-covers.

Proof. Let w and w′ be weights into U3. All that needs to be shown is:

δw = δw′ ⇐⇒ Γw ∼= Γw′ .

As was explained after Definition 2.10, the switching of a weightw is interpreted as a cyclic
permutation within the fibres of the corresponding cover Γw, thus switching equivalent
weights yield isomorphic covers. The converse is straightforward.

As a consequence, using Theorem 9.2 of Godsil and Hensel in [2], we obtain a restric-
tion on the parameter set of a regular 3-graph.

Corollary 4.5. If (n, a, b) are the parameters of a regular 3-graph then 3|n.

Proof. Since Γw is a cyclic (n, 3, b)-cover, then by Theorem 9.2 in [2] we have 3|n.

5 Higman’s note: clarification and corrections
5.1 Regular 3-graphs and association schemes

Higman’s first step in [6] is to define Γw = (V,E), an antipodal 3-fold cover of Kn,
with fibre set X . He then constructs a rank 4 symmetric association scheme from Γw, this
association scheme is (in a different ordering than the one that appears in [6]) the metric
association scheme of the ADRG Γw. Higman’s key observation is the fact that this rank
4 association scheme admits a rank 6 fission by orienting all the non-edges of Γw. We
present this construction.
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Construction 5.1. Define:

R0 = IdV ,

R1 =
{(
xi, xi+1 (mod 3)

) ∣∣ i = 1, 2, 3, x ∈ X
}
,

R2 =
{(
xi, xi+2 (mod 3)

) ∣∣ i = 1, 2, 3, x ∈ X
}
,

R3 = E,

R4 =
{

(xi, yj)
∣∣ i = 1, 2, 3, {xi+1 (mod 3), yj} ∈ E

}
,

R5 =
{

(xi, yj)
∣∣ i = 1, 2, 3, {xi+2 (mod 3), yj} ∈ E

}
.

Remark 5.2. Notice that the relations R1, R2, R4, R5 are anti-symmetric, R1 = Rt2 and
R4 = Rt5; Also S1 = R1 ∪ R2 is the “distance 3” relation and S3 = R4 ∪ R5 is the
“distance 2” relation with respect to Γw = (V,E).

Proposition 5.3 (Higman). A6 (Γ) :=
(
V, {Ri}5i=0

)
is an association scheme.

Proof. We calculate the intersection matrices of A6 (Γ). For example, we compute p4
44:

let (xi, yj) ∈ R4 and suppose w(xi, yj) = ζ (we may assume so due to switching), thus
j = i + 1 (mod 3). We count the number of zk ∈ V such that (xi, zk) ∈ R4 and
(zk, yj) ∈ R4: there are 3 types of z ∈ X which contain such a zk:

• k = i =⇒ w(x, z) = ζ2

w(z, y) = ζ
=⇒ δw(x, y, z) = ζ · ζ · ζ2 = ζ,

• k = i+ 1 (mod 3) =⇒ w(x, z) = 1
w(z, y) = 1

=⇒ δw(x, y, z) = ζ · 1 · 1 = ζ,

• k = i− 1 (mod 3) =⇒ w(x, z) = ζ
w(z, y) = ζ2 =⇒ δw(x, y, z) = ζ · ζ2 · ζ = ζ.

Thus δw(x, y, z) = ζ ⇐⇒ z is one of the above 3 types, hence p4
44 = b.

In the same manner we obtain the intersection matrices {Bi}5i=0:

B0 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

, B1 =


0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

, B2 =


0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0

,

B3 =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

n− 1 0 0 a b b
0 n− 1 0 b a b
0 0 n− 1 b b a

, B4 =


0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 n− 1 0 b a b
0 0 n− 1 b b a

n− 1 0 0 a b b

,

B5 =


0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 n− 1 b b a

n− 1 0 0 a b b
0 n− 1 0 b a b

.
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It turns out that the existence of such a rank 6 association scheme is a sufficient condi-
tion:

Proposition 5.4 (Higman). Every rank 6 association scheme with parameters as in the
construction ofA6(Γw) arises from a regular 3-graph.

Proof. Let (V, {Ri}5i=0) be an association scheme with parameters (and notation) as in
Construction 5.1. Define T = R0 ∪ R1 ∪ R2, then T is an equivalence relation on V with
equivalence classes of size 3. Denote X = V/T . We give a labeling of the elements of V
as a 3-fold cover of K|X|, and then we verify that in this cover we only have matchings of
the 3 types shown in Figure 1. Let a ∈ X be any fibre, and label its elements by a1, a2, a3

so that (a1, a2) ∈ R1. Then (
ai, ai+1 (mod 3)

)
∈ R1

for i = 1, 2, 3. We now label the elements of each fibre x 6= a in X by x1, x2, x3 so that

(ai, xi) ∈ R3

for i = 1, 2, 3. To prove that (V,R3) is a 3-fold cover of K|X| with matchings of the 3
permitted types, we prove two things:

(1) (xi, xi+1 (mod 3)) ∈ R1 for all x ∈ X and i = 1, 2, 3,

(2) there is no matching such that (xi, yj) ∈ R3 and (xj , yi) ∈ R3, where i 6= j.

Proof of (1): Assume that (xi, xi+1) ∈ R2. Let k be such that (ai, xi+1) ∈ Rk. Then
we have:

(xi, ai) ∈ R3, (xi, xi+1) ∈ R2, (xi+1, ai) ∈ Rk′ .

Therefore:
p3

2k′ 6= 0.

Examining column 3 in the matrix B2, we deduce that k′ = 4, which means that k = 5.
Also, we have:

(ai, xi+1) ∈ Rk, (ai, ai+1) ∈ R1, (ai+1, xi+1) ∈ R3.

This implies that:
pk13 6= 0.

Examining row 3 in the matrix B1, we deduce that k = 4, which is a contradiction.
Proof of (2): Assume that (xi, yj) ∈ R3 and (xj , yi) ∈ R3 for some i 6= j. Let k be

such that (xi, yi) ∈ Rk. W.l.o.g we may assume that j = i+ 1 (mod 3). Then we have:

(xi, yi) ∈ Rk, (xi, xi+1) ∈ R1, (xi+1, yi) ∈ R3.

Therefore:
pk13 6= 0.

Examining row 3 in the matrix B1 we see k = 4. Also, we have:

(yi, xi) ∈ Rk′ , (yi, yi+1) ∈ R1, (yi+1, xi) ∈ R3.
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Thus we obtain:
pk
′

13 6= 0,

which implies that k′ = 4 and k = 5, a contradiction.
It follows that all the matchings of the graph (V,R3) are of the 3 types shown in Fig-

ure 1, and we can define a weight w on X by w(x, x) = 1 and w(x, y) = 1, ζ or ζ2 for
x 6= y according to as the matching is of the first, second or third type. It is straightforward
to verify that δw is regular.

5.2 Characterization and feasibility conditions

We now sum up the results of the previous sections with our characterization of regular 3-
graphs. Notice that the equivalence of (ii) and (iii) is a characterization of cyclic (n, 3, c2)-
covers in terms of association schemes.

Corollary 5.5. Let Γ be an antipodal 3-fold cover of Kn. The following are equivalent:

(i) Γ defines a regular 3-graph with parameters (n, a, b);

(ii) Γ is a cyclic (n, 3, b)-cover;

(iii) A6(Γ) is an association scheme.

Using this characterization we would like to obtain feasibility restrictions on the pa-
rameters (n, a, b) of regular 3-graphs. We begin by calculating the character-multiplicity
tables ofA4(Γw) andA6(Γw). We used the well-known computer software Mathematica
to calculate these tables, the program code is presented in [7].

The character-multiplicity table ofA4(Γw) is:
1 2 n− 1 2(n− 1)
1 2 −1 −2
1 −1 α −α
1 −1 β −β




1
n− 1
z1

z2

 .
Here:

• α and β are the roots of x2 − (a− b)x− (n− 1) = 0,

• z1 = 2nβ
β−α ,

• z2 = 2n− z1 = 2nα
α−β .

If z1 = z2 = n then we have α = −β, and α, β = ±
√
n− 1.

Otherwise, z2 − z1 is a non-zero integer, and we have:

z2 − z1 = 2n

(
α

α− β
− β

β − α

)
= 2n

(
α+ β

α− β

)
.

This means that α − β =
√

(a− b)2 + 4(n− 1) is rational, i.e. (a − b)2 + 4(n − 1) is a
square, which implies that α and β are rational algebraic integers, and thus are integers.
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The character-multiplicity table ofA6(Γw) is:
1 1 1 n− 1 n− 1 n− 1
1 ζ ζ2 α αζ αζ2

1 ζ2 ζ α αζ2 αζ
1 1 1 −1 −1 −1
1 ζ ζ2 β βζ βζ2

1 ζ2 ζ β βζ2 βζ




1

z1/2
z1/2
n− 1
z2/2
z2/2

 .

Here:

• αζ and αζ2 are the roots of x2 + αx+ α2 = 0,

• βζ and βζ2 are the roots of x2 + βx+ β2 = 0.

Remark 5.6. In Higman’s note appeared the equations:

• x2 − αx+
(

3(n−1)
2 + α2

)
= 0,

• x2 − βx+
(

3(n−1)
2 + β2

)
= 0,

which led him to the false conclusion that nmust be odd. These equations are the result of a
miscalculation of the intersection matrices B3 and B5 ofA6(Γw) (compare these matrices
from our paper with those from the note [6]).

Summing up all the considered restrictions we obtain:

Proposition 5.7. Necessary conditions for the set (n, a, b) of parameters of a regular 3-
graph are:

(i) n = a+ 2b+ 2,

(ii) 3|n,

(iii) The roots α and β of the equation x2 − (a− b)x− (n− 1) = 0 are integers,

(iv) α− β divides nα.

Proof. Item (i) appears in the beginning of Section 3. Item (ii) is Corollary 4.5. Item (iii)
comes from the latter analysis of the character-multiplicity table of A4(Γw), and (iv) is
just the integrality of the multiplicity z2

2 = nα
α−β ofA6(Γw).

These feasibility conditions provide a list of just 64 feasible parameter sets with n ≤
1000. We refer to [7] for the complete list and details about known constructions for some
of them.

5.3 The symplectic example

D. G. Higman provided an infinite family of regular 3-graphs which is described briefly
below.

In [5], Higman considers a more general cohomological setting, and presents several
group theoretic examples of regular 3-cocycles (here cochains are functions into a monoid
with the appropriate conditions). These examples are mainly extensions of examples by
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D. E. Taylor in [15]. We mention one of them. In this example, we consider weights with
values in the additive group of the field GF (q), thus we will use additive notation: C2

+

instead of C2
· , δ+ instead of δ· etc.

Let V be a 2m-dimensional vector space over GF (q). Let B be a non-degenerate
alternating bilinear form on V . Then B ∈ C2

+(V,GF (q)) is a weight on V with values in
GF (q). In case q is a prime, this 3-cocycle is a q-graph. To see that in this case Φ = δ+B
is a regular q-graph we consider the symplectic group Sp(2m, q). It acts transitively on
the non-zero vectors of V , thus the subgroup H := V Sp(2m, q) of the affine group on
V acts 2-transitively on the vectors of V . The coboundary Φ = δ+B is invariant under
translations and is therefore invariant under the action of H on V . This provides an infinite
family of regular q-graphs for every prime q.

6 New constructions

The equivalence of regular 3-graphs with parameters (n, a, b) and cyclic (n, 3, b)-covers
provides a rich source of new examples of regular 3-graphs.

In their recent paper [8], Klin and Pech present a construction of cyclic (m2, 3, m
2

3 )-
covers from generalized Hadamard matrices of orderm over the cyclic group of order 3; the
set of such matrices is denoted by gH(U3,m). Their method takes as input any generalized
Hadamard matrix H ∈ gH(U3,m) and produces a so-called skew generalized Hadamard
matrix W ∈ gH(U3,m

2) of order m2; such matrices correspond to cyclic (m2, 3, m
2

3 )-
covers, this is the Godsil-Hensel matrix of the cover.

We used classifications of generalized Hadamard matrices with suitable parameters
(see [3], [9] and [14]) to construct all the corresponding non-isomorphic cyclic covers
using the Klin-Pech method, which provide different regular 3-graphs. A summary of our
new constructions of regular 3-graphs:

• 1 new example with parameters (36, 10, 12),

• 1 new example with parameters (45, 19, 12) (exceptional),

• 1 new example with parameters (81, 25, 27),

• 1 new example with parameters (144, 46, 48),

• 28 new examples with parameters (324, 106, 108).

For the complete list of feasible parameter sets with n ≤ 1000, and details about the
above examples see [7].

7 Extension to regular t-graphs with t ≥ 4

The theory outlined in this paper can be extended to regular t-graphs with any t ≥ 4 only if
we impose certain restrictions on the parameters of the regular t-graph. For example, when
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t is odd, the parameters of a regular t-graph are:

n,

m(1),

m(ζ) = m(ζt−1),

...

m(ζ
t−1/2) = m(ζ

t+1/2).

A graph Γw defined by a regular t-graph will be distance regular only if most parameters
of the regular t-graph are equal. Explicitly, in the case that t is odd we demand:

m(ζ) = m(ζ2) = · · · = m(ζ
t−1/2).

In this case, these will also be cyclic covers since for any t we have

CSt
(Ct) ∼= Ct.

Here we use the notation Ct ≤ St for the cyclic group Ct = 〈(1, 2, . . . , t)〉.
Higman’s theory also extends to regular t-graphs with t ≥ 4 in the case of equal pa-

rameters (as described above). The construction of A4(Γw) is exactly the same, and it has
a rank 2t refinement which completely determines the weight w (analogously to A6(Γw)
in the case of regular 3-graphs). Thus, the extension of our theory to t ≥ 4 is described
schematically in Figure 2:

Regular
t-graph

with equal
parameters

ks +3

_g

�'

(n, t, c2)-cover with
cyclic matchingsKS

��

+3 The metric association
scheme of the cover

u}
Association scheme
with 2t− 1 classes

and particular
parameters

Figure 2: Extension to t ≥ 4
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Abstract

The concept of Zagreb eccentricity (E1 and E2) indices was introduced in the chemical
graph theory very recently [5, 12]. The first Zagreb eccentricity (E1) and the second Zagreb
eccentricity (E2) indices of a graph G are defined as

E1 = E1(G) =
∑

vi∈V (G)

e2i

and
E2 = E2(G) =

∑
vivj∈E(G)

ei · ej ,

where E(G) is the edge set and ei is the eccentricity of the vertex vi in G. In this paper we
give some lower and upper bounds on the first Zagreb eccentricity and the second Zagreb
eccentricity indices of trees and graphs, and also characterize the extremal graphs.
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1 Introduction
Mathematical chemistry is a branch of theoretical chemistry using mathematical methods
to discuss and predict molecular properties without necessarily referring to quantum me-
chanics [1, 8, 14]. Chemical graph theory is a branch of mathematical chemistry which
applies graph theory in mathematical modeling of chemical phenomena [6]. This theory
has an important effect on the development of the chemical sciences.

Topological indices are numbers associated with chemical structures derived from their
hydrogen-depleted graphs as a tool for compact and effective description of structural for-
mulas which are used to study and predict the structure-property correlations of organic
compounds. Molecular descriptors are playing significant role in chemistry, pharmacol-
ogy, etc. Among them, topological indices have a prominent place [13]. One of the best
known and widely used is the connectivity index, χ , introduced in 1975 by Milan Randić
[11]. The Randić index is one of the most famous molecular descriptors and the paper in
which it is defined is cited more than 1000 times. The first M1, and the second M2, Zagreb
indices (see [2],[3],[4],[7],[9] and the references therein) are defined as:

M1 = M1(G) =
∑

vi∈V (G)

d2i

and
M2 = M2(G) =

∑
vivj∈E(G)

di · dj .

where di is the degree of the vertex vi ∈ V (G) in G.

Let G = (V,E) be a connected simple graph with |V (G)| = n vertices and |E(G)| =
m edges. Also let di be the degree of the vertex vi, i = 1, 2, . . . , n. For vertices vi, vj ∈
V (G), the distance dG(vi, vj) is defined as the length of the shortest path between vi and
vj in G. The eccentricity of a vertex is the maximum distance from it to any other vertex,

ei = max
vj∈V (G)

dG(vi, vj) .

The maximum eccentricity over all vertices of G is called the diameter of G and denoted
by d.

The invariants based on vertex eccentricities attracted some attention in Chmistry. In an
analogy with the first and the second Zagreb indices, M. Ghorbani et al. and D. Vukičević
et al. define the first E1, and the second, E2, Zagreb eccentricity indices by [5, 12]

E1 = E1(G) =
∑

vi∈V (G)

e2i (1.1)

and
E2 = E2(G) =

∑
vivj∈E(G)

ei · ej . (1.2)

where E(G) is the edge set and ei is the eccentricity of the vertex vi in G.

LetG = (V (G), E(G)) . If V (G) is the disjoint union of two nonempty sets V1(G) and
V2(G) such that every vertex in V1(G) has degree r and every vertex in V2(G) has degree
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s, then G is (r, s)-semiregular graph. When r = s , is called a regular graph. As usual,
Ka,b (a + b = n), Pn and K1,n−1 denote respectively the complete bipartite graph, the
path and the star on n vertices. A vertex of a graph is said to be pendent if its neighborhood
contains exactly one vertex. An edge of a graph is said to be pendent if one of its vertices
is a pendent vertex. Now we calculate

E1(Pn) =

{
1
12 (n− 1)(7n2 − 2n) if n is even
1
12 (n− 1)(7n2 − 2n− 3) if n is odd.

(1.3)

and

E2(Pn) =

{
1
12 n(7n2 − 21n+ 20) if n is even
1
12 (n− 1)(7n2 − 14n+ 3) if n is odd.

(1.4)

Also we have

E1(K1,n−1) = 4n− 3 and E2(K1,n−1) = 2n− 2.

Denote by T̃n, is a tree of order n with maximum degree n − 2. We have E1(T̃n) =
9n− 10, E2(T̃n) = 6n− 8.

In this paper we give some lower and upper bounds on the first Zagreb eccentricity
and the second Zagreb eccentricity indices of trees and graphs, and also characterize the
extremal graphs.

2 Lower and upper bounds on Zagreb eccentricity indices
We now give lower and upper bounds on the Zagreb eccentricity indices of trees.

Theorem 2.1. Let T be a tree with n vertices. Then

(i) E1(K1,n−1) ≤ E1(T ) ≤ E1(Pn) (2.1)
and (ii) E2(K1,n−1) ≤ E2(T ) ≤ E2(Pn). (2.2)

Moreover, the left hand side (right hand side, respectively) equality holds in (2.1) and (2.2)
if and only if G ∼= K1,n−1 (G ∼= Pn, respectively).

Proof. Upper bound: If T is isomorphic to path Pn, then the right hand side equality holds
in (2.1) and (2.2). Otherwise, T � Pn. Let d be the diameter of tree T . Then there exists a
path Pd+1 : v1v2 . . . vd+1 of length d in T . Thus we have the eccentricity of a vertex vi in
tree T ,

ei = max{dG(vi, v1), dG(vi, vd+1)} .

Since T is a tree, both vertices v1 and vd+1 are pendent vertices. Thus we have ei ≤ d for
each vi ∈ V (G). Since T � Pn, let vk (k 6= 1, d+ 1) be a vertex of degree one, adjacent
to vertex vj in T . We transform T into another tree T ∗ by deleting the edge vk vj and
join the vertices vd+1 and vk by an edge. Then the longest path Pd+2 : v1v2 . . . vd+1vk
of length d + 1 in T ∗. Let the vertex eccentricities be e∗1, e

∗
2, . . . , e

∗
n in T ∗. Therefore

we have e∗t = max{d∗G(vt, v1), d∗G(vt, vk)} = max{dG(vt, v1), dG(vt, vd+1) + 1} ≥
max{dG(vt, v1), dG(vt, vd+1)} = et (as d∗G(vt, vk) = dG(vt, vd+1) + 1) for t 6= k
whereas e∗k = d+1 > d ≥ ek (d∗G(vi, vj) is the length of the shortest path between vertices
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vi and vj in T ∗). So we have e∗r e
∗
s ≥ er es for vrvs 6= vkvj , vkvd+1 and e∗k e

∗
d+1 =

d(d+ 1) > d2 ≥ ek ej . Using above result we get

E1(T ∗)− E1(T ) =
∑

vi∈V (T∗)

e∗2i −
∑

vi∈V (T )

e2i ≥ e∗2k − e2k > 0

and

E2(T ∗)− E2(T ) =
∑

vr vs∈E(T∗)

e∗r e
∗
s −

∑
vr vs∈E(T )

er es ≥ e∗k e∗d+1 − ek ej > 0.

Therefore we have
Ei(T

∗) > Ei(T ), i = 1, 2.

By the above described construction we have increased the value of Ei(T ), i = 1, 2. If
T ∗ is the path, we are done. If not, then we continue the construction as follows. Next we
choose one pendent vertex (6= v1, vk) from T ∗, etc. Repeating the procedure sufficient
number of times, we arrive at a tree in which the maximum degree 2, that is, we arrive at
path Pn.

Lower bound: If T is isomorphic to star K1,n−1, then the left hand side equality holds
in (2.1) and (2.2). If T is isomorphic to T̃n, then the left hand side inequality is strict in
(2.1) and (2.2). Otherwise, T � K1,n−1 , T̃n . Suppose that a path Pd+1 : v1v2 . . . vd+1

of length d in T , where d is the diameter of T . Without loss of generality, we can assume
that d2 ≥ dd (the degree of vertex v2 is greater than or equal to the degree of vertex vd).
Now choose vi to be an arbitrary maximum degree vertex, unless vd has maximum degree,
in which case vi is chosen to be v2. We transform T into another tree T̂ by deleting the
edge vd vd+1 and join the vertices vi and vd+1 by an edge. Let the vertex eccentricities be
ê1, ê2, . . . , ên in tree T̂ . Similarly, as before we obtain êt ≤ et for all t = 1, 2, . . . , n.
Using above we get

E1(T̂ )− E1(T ) =
∑

vi∈V (T̂ )

ê2i −
∑

vi∈V (T )

e2i ≤ 0

and

E2(T̂ )− E2(T ) =
∑

vr vs∈E(T̂ )

êr ês −
∑

vr vs∈E(T )

er es ≤ 0.

Therefore we have
Ei(T̂ ) ≤ Ei(T ), i = 1, 2.

By the above described construction we have non-increased the value of Ei(T ), i =
1, 2. If T̂ is to the tree T̃n , we are done. If not, then we continue the construction as follows.
Next we choose one pendent vertex from longest path in T̂ such that its adjacent vertex is
not maximum degree vertex. Now we delete that pendent edge and join the pendent vertex
to the maximum degree vertex, etc. Repeating the procedure sufficient number of times,
we arrive at a tree in which the maximum degree n − 2, that is, we arrive at tree T̃n. This
completes the proof.
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We now give lower and upper bounds on the Zagreb eccentricity indices of bipartite
graph.

Theorem 2.2. Let G be a connected bipartite graph of order n with bipartition V (G) =
U ∪W , U ∩W = ∅, |U | = p and |W | = q. Then

(i) E1(Kp,q) ≤ E1(G) ≤ E1(Pn) (2.3)
and (ii) E2(Kp,q) ≤ E2(G) ≤ E2(Pn). (2.4)

Moreover, the left hand side (right hand side, respectively) equality holds in (2.3) and (2.4)
if and only if G ∼= Kp,q (G ∼= Pn, respectively).

Proof. If G is isomorphic to a complete bipartite graph Kp,q , then the left hand side
equality holds in (2.3) and (2.4). Otherwise, G � Kp,q . If we add an edge in G,
then each vertex eccentricity will non-increase. Thus we have ei(G + e) ≤ ei(G). Us-
ing this property, one can see easily that E1(G) ≥ E1(Kp,q\{e}) > E1(Kp,q) and
E2(G) ≥ E2(Kp,q\{e}) > E2(Kp,q) , where e is any edge in Kp,q .

Let T be a spanning tree of connected bipartite graph G. Then by the above property,
E1(G) ≤ E1(T ) and E2(G) ≤ E2(T ). Using this result with Theorem 2.1, we get the
right hand side inequality in (2.3) and (2.4). Moreover, the right hand side equality holds
in (2.3) and (2.4) if and only if G ∼= Pn. This completes the proof.

In [10], Hua et al. proved the following result in Theorem 3.1.

Lemma 2.3. Let G be a connected graph with ei = n − di for any vertex vi ∈ V (G). If
G � P4, then ei ≤ 2 for any vertex vi ∈ V (G).

We now give some relation between first Zagreb index and the first Zagreb eccentricity
index of graphs.

Theorem 2.4. Let G be a connected graph of order n with m edges. Then

E1(G) ≤M1(G)− 4mn+ n3, (2.5)

where M1(G) is the first Zagreb index in G. Moreover, the equality holds in (2.5) if and
only if G ∼= P4 or G ∼= Kn or G is isomorphic to a (n− 1, n− 2)-semiregular graph.

Proof. If G ∼= P4, then the equality holds in (2.5). Otherwise, G � P4. Now,

E1(G) =
∑

vi∈V (G)

e2i ≤
∑

vi∈V (G)

(n− di)2 as ei ≤ n− di

= M1(G)− 4mn+ n3 as M1(G) =
∑

vi∈V (G)

d2i ,
∑

vi∈V (G)

di = 2m.

First part of the proof is over.

Now suppose that equality holds in (2.5). Then ei = n − di for all vi ∈ V (G). By
Lemma 2.3, we conclude that ei ≤ 2 for any vertex vi ∈ V (G) as G � P4. Since
ei = n − di for any vertex vi ∈ V (G), we must have di = n − 1 or n − 2 for any vertex
vi ∈ V (G), that is, G ∼= Kn or G is isomorphic to a (n− 1, n− 2)-semiregular graph.

Conversely, one can see easily that (2.5) holds for P4 orKn or (n−1, n−2)-semiregular
graph.
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Remark 2.5. (n−1, n−2)-semiregular graph is obtained by deleting i independent edges
from Kn, 1 ≤ i ≤ bn2 c.

We now give some relation between first Zagreb index, second Zagreb index and the
second Zagreb eccentricity index of graphs.

Theorem 2.6. Let G be a connected graph of order n with m edges. Then

E2(G) ≤M2(G)− nM1(G) +mn2, (2.6)

whereM1(G) is the first Zagreb index,M2(G) is the second Zagreb index inG. Moreover,
the equality holds in (2.6) if and only if G ∼= P4 or G ∼= Kn or G is isomorphic to a
(n− 1, n− 2)-semiregular graph.

Proof. Now,

E2(G) =
∑

vivj∈E(G)

ei · ej

≤
∑

vivj∈E(G)

(n− di)(n− dj) as ei ≤ n− di and ej ≤ n− dj

=
∑

vivj∈E(G)

(
n2 + didj − (di + dj)n

)
= M2(G)− nM1(G) +mn2.

First part of the proof is over. Moreover, one can see easily that the equality holds in (2.6)
if and only ifG ∼= P4 orG ∼= Kn orG is isomorphic to a (n−1, n−2)-semiregular graph,
by the proof of Theorem 2.4.

Figure 1: Graphs G∗ and G∗∗.

Let K1
2,a−2 be a connected graph of order a obtained from the complete bipartite graph

K2,a−2 with the vertices of degree a− 2 are adjacent. Denote by G∗, is a connected graph
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of order n, obtained from K1
2,n−2q−2 by attaching two paths Pq+1 to two of its vertices of

degree n − 2q − 1. Let Γ1 be the class of graphs H1 = (V,E) such that H1 is connected
graph of diameter d (d = 2q + 1) with V (G∗) = V (H1) and E(G∗) ⊆ E(H1).

Let K2
3,a−2 be a connected graph of order a + 1 obtained from the complete bipartite

graph K2,a−2 with the vertices of degree a − 2 are adjacent to a new vertex. Denote by
G∗∗, is a connected graph of order n, obtained from K2

3,n−2q−1 by attaching two paths
Pq to two of its vertices of degree n − 2q. Let Γ2 be the class of graphs H2 = (V,E)
such that H2 is connected graph of diameter d (d = 2q + 2) with V (G∗) = V (H2) and
E(G∗) ⊆ E(H2).

We now give another lower bound on E1(G) in terms of n, d and also characterize the
extremal graphs.

Theorem 2.7. Let G be a connected graph of order n with diameter d. Then

E1(G) ≥

{
1
12 (3nd2 + 6nd+ 3n+ 4d3 + 3d2 − 4d− 3) if d+ 1 is even
d
12 (3nd+ 4d2 + 9d+ 2) if d+ 1 is odd

(2.7)

with equality holding if and only if G ∼= Pn or G ∈ Γ1 or G ∈ Γ2 .

Proof. Since G has diameter d, G contains a path Pd+1: v1 v2 . . . , vd+1. Moreover, n ≥
d+ 1 and ei ≥ dd2e, i = 1 , 2 , . . . , n. If n = d+ 1, then G ∼= Pn and the equality holds in
(2.7). Otherwise, n > d+ 1. By (1.3), we get

d+1∑
i=1

e2i =

{
d
12 (7d2 + 12d+ 5) if d+ 1 is even
d
12 (7d2 + 12d+ 2) if d+ 1 is odd.

(2.8)

Since ei ≥
⌈
d
2

⌉
, i = 1 , 2 , . . . , n, using above result, we get

E1(G) =

d+1∑
i=1

e2i +

n∑
i=d+2

e2i

≥

{
d
12 (7d2 + 12d+ 5) + (n− d− 1)dd2e

2 if d+ 1 is even
d
12 (7d2 + 12d+ 2) + 1

4 (n− d− 1)d2 if d+ 1 is odd,
(2.9)

from which we get the required result (2.7). First part of the proof is over.

Now suppose that equality holds in (2.7) with n > d + 1. From equality in (2.9), we
get

ei =
⌈d

2

⌉
for i = d+ 2 , d+ 3 , . . . , n.

Using above result we conclude that all the vertices vd+2 , vd+3 , . . . , vn−1 and vn are
adjacent to vertices vq and vq+2 (when d = 2q), or vq+1 and vq+2 (when d = 2q + 1).
Hence G ∈ Γ1 or G ∈ Γ2.

Conversely, one can see easily that (2.7) holds for path Pn or graph G, where G ∈ Γ1

or G ∈ Γ2.
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We now give another lower bound on E2(G) in terms of m, d and also characterize the
extremal graphs.

Theorem 2.8. Let G be a connected graph of order n with diameter d. Then

E2(G) ≥

{
1
12 (3md2 + 6md+ 4d3 − 6d2 − 4d+ 3m+ 6) if d+ 1 is even
d
12 (3md+ 4d2 − 4) if d+ 1 is odd

(2.10)

with equality holding if and only if G ∼= Pn or G ∈ Γ1 or G ∈ Γ2 .

Proof. By (1.3), we get

∑
vivj∈E(Pd+1)

ei ej =

{
d+1
12 (7d2 − 7d+ 6) if d+ 1 is even
d
12 (7d2 − 4) if d+ 1 is odd.

(2.11)

Since ei ≥
⌈
d
2

⌉
, i = 1 , 2 , . . . , n, we have

E2(G) =
∑

vivj∈E(Pd+1)

ei ej +
∑

vivj∈E(G\Pd+1)

ei ej

≥

{
d+1
12 (7d2 − 7d+ 6) + (m− d)dd2e

2 if d+ 1 is even
d
12 (7d2 − 4) + 1

4 (m− d)d2 if d+ 1 is odd,

from which we get the required result (2.10). Rest of the proof is similar as Theorem
2.7.
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The median problem is a classical problem in Location Theory: one searches for a
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1 Introduction
Most of the facility location problems in the literature are concerned with finding locations
for desirable facilities. The goal there is to minimize a distance function between facil-
ities and the demand sites (clients). One way to model this is using a network, see for
instance [23, 24, 17]. In the discrete case one uses graphs, and clients and facilities are to
be positioned on vertices.

One may formulate such location problems also in terms of achieving a consensus
amongst the clients. Thus it becomes a problem in Consensus Theory. This approach
has been fruitful in many other applications, e.g. in social choice theory, clustering, and
mathematical biology, see for instance [7, 16, 15, 22].

From the view point of median consensus the classical result of Goldman [12] is very
interesting: to find the median in a tree, just move to the majority of the clients. In [20], this
majority strategy was formulated for arbitrary graphs. It was proved that majority strategy
finds all medians for any set of clients if and only if the graph is a so-called median graph.
Clients are termed as profiles in the language of graph theory, defined as a sequence of
vertices in which vertices are allowed to repeat.

The class of median graphs comprises that of the trees as well as that of the hypercubes
and grids. It allows a rich structure theory [18, 13, 21] and has many and diverse applica-
tions, see, for. e.g., [14], for median type consensus. In the majority strategy we compare
the two ends of an edge v and w: if we are at v and at least half of the clients are strictly
nearer to w than to v, then we move to w. One could relax the requirement for making a
move as follows: one may move to w if there are at least as many clients closer to w than
to v. Note that in the latter case less than half may actually be closer to w because there are
many clients having equal distance to v andw. This idea of relaxing the majority strategy is
formalized as plurality strategy in [4]. Other consensus strategies known as Condorcet, hill
climbing and Steepest ascent hill climbing strategies were also proposed in [4]. There it is
proved that the plurality, hill climbing and steepest ascent hill climbing strategies starting
at an arbitrary vertex for arbitrary profiles will always return the median set of the profile
if and only if the graph has connected medians.

However just as important are the problems dealing with the location of undesirable or
obnoxious facilities, such as nuclear reactors, garbage dumps or water purification plants,
see [9, 10, 11]. Here the criterion for optimality is maximizing the sum of the distances
from the location of the obnoxious facility to the locations of the clients. The problem is
known as the antimedian problem.

In general any two subgraphs may appear as antimedian and median sets, respectively,
for clients located at all vertices without repetitions, with the distance between them being
arbitrary, see for instance [2]. It is possible that facilities which are undesirable for some
clients may be desirable for some other clients. For example, assume the problem of locat-
ing a beer parlour in a human habitat area. Some of the inhabitants may consider it as a
desirable facility where as some others may consider it as undesirable facility. One way to
formulate such problem is to associate a sign with the clients indicating whether the facility
is desirable or undesirable to the client. In this paper we are concentrating on methods to
solve such problems. For this a more general concept called signed profiles is introduced
and is formally defined in the next section. In Section 3, the equivalence of rational weight
functions and signed profiles are established, and the relationship between the median and
antimedian sets for signed profiles is obtained. In Section 4, various consensus strategies
are formulated, amongst which Majority, Plurality and Scarcity strategy, and it is shown
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that all these consensus strategies are pairwise distinct for signed profiles, as it has already
been known for the usual profiles. We show that, for signed profiles, the hypercubes are the
only graphs on which Majority produces the median set for any signed profile in Section 5.
Finally, for Scarcity, we study various classes of graphs, on which this strategy produces
the antimedian set for any signed profile.

2 Preliminaries
Let G = (V,E) be a finite, connected, simple graph with vertex set V and edge set E. The
distance function of G is denoted by d, where d(u, v) is the length of a shortest u, v-path.
We call a subset W of V connected if it induces a connected subgraph in G. The interval
I(u, v) between two vertices u and v consists of all vertices on shortest u, v-paths, that is:

I(u, v) = {x | d(u, x) + d(x, v) = d(u, v)}.

A profile on G is a finite sequence π = (x1, x2, . . . , xk) of vertices of G. The length of π
is the number k = |π|. Note that, π being a sequence, multiple occurrences are allowed.
In this paper we extend the concept of profile: a signed profile is a profile where a sign
from {+,−} is added to each element. We write the sign of element xi as si. Thus a
signed profile is a sequence π = (s1x1, s2x2, . . . , skxk). We call xi an element of π and
si its sign. Note that with this usage, a vertex occurring k times in a profile occurs as k
different elements in a profile. For an element x of π we denote its sign also by sx. For
computational reasons, we identify a sign s also with the number s1 = +1 or −1, and talk
about +1 or −1 as a sign. Thus we can take the sum of signs. As we will see below, a
signed profile with all signs being +1, plays the role of the usual profile without signs. We
call such a profile a positive profile. If all signs are −1, then the profile is negative. Since
all our profiles are signed, we call a signed profile just a profile, and omit the adjective
‘signed’, except in the statements of lemmas and theorems (to avoid confusion with similar
lemmas and theorems in the literature). A profile obtained from π by changing each si by
−si is denoted by −π. The size of a profile π is defined as

‖π‖ =

k∑
i=1

si.

So, for positive profiles we have ‖π‖ = |π|, and for negative profiles we have ‖π‖ = −|π|.
For an edge uv in G, we denote by πuv the subprofile of π consisting of the elements

of π strictly closer to u than to v, and by πvu the subprofile of all elements at equal distance
form u and v. Note that a profile, by definition, has a positive length. However, for sub-
profiles we allow the empty subprofile. For instance, a graph is bipartite if and only if the
subprofile πvu is empty for any edge uv and any profile π.

In the literature we find such concepts as remoteness, median and antimedian of positive
profiles, for e.g., see, [14] and [20]. These are all very natural and the definitions are in
accordance with our intuition. Because the definitions for signed profiles are basically the
same, we use the same terminology here.

The remoteness of a vertex v to a profile π is defined as

D(v, π) =

k∑
i=1

sid(xi, v).
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A permutation of the elements in a profile does not change remoteness. Because we are
only interested in the remoteness to profiles, we will consider two profiles as the same if
they can be obtained from each other by permuting the elements. We write the concatena-
tion of two profiles π and ρ as πρ. Thus, for any edge uv, we can write π = πuvπ

v
uπvu.

A vertex minimizing D(v, π) is called a median of the profile. The set of all medians
of π is the median set of π and is denoted byM(π). A vertex maximizingD(v, π) is called
an antimedian of the profile. The set of all antimedians of π is the antimedian set of π and
is denoted by AM(π). The reader has to keep in mind that the effects of the signs might
just be contra-intuitive. For instance, if π is a negative profile, then a median of π is an
antimedian of the positive profile −π.

A vertex x such that D(x, π) ≤ D(y, π), for all neighbors y of x, is a local median
of π. The set of all local medians is denoted by Mloc(π). If D(x, π) ≥ D(y, π), for all
neighbors y of x, then x is a local antimedian of π. The set of all local antimedians is
denoted by AMloc(π).

Let π = (s1x1, s2x2, . . . , skxk) be a profile, then we have

D(v,−π) =

k∑
i=1

−sid(xi, v) = −
k∑
i=1

sid(xi, v) = −D(v, π).

From this observation we deduce that, by replacing a profile π by its opposite−π, the roles
of (local) medians and (local) antimedians are exchanged. So we have M(π) = AM(−π),
etcetera. We single out one fact that we need in the sequel.

When the profile is of the form (−x,+x) the median set is equal to the antimedian set
and is the entire vertex set of the graph. But this is not the only case when the median
and antimedian set are equal. For example, consider a positive profile π on a hypercube
containing each vertex once. In this case the remoteness is constant and hence the median
and antimedian set are the same and coincide with the entire vertex set of the graph. It can
also be noted that the situation is the same for−π. In general, for such positive and negative
profiles on so called distance balanced graphs both the median sets and antimedian sets
coincide. The case for such positive profiles on the class of distance balanced graphs is
proved in [5]. The same situation holds for some special even profiles (both positive and
negative) in some other class of graphs, see for instance [1].

Lemma 2.1. Let G be a connected graph and π a signed profile on G. Then, for any two
adjacent vertices u, v in G,

‖πuv‖ ≤ ‖πvu‖ if and only if D(u, π) ≥ D(v, π).

Proof. Since uv is an edge in G, we can ignore πvu in the following computation.

D(u, π)−D(v, π) =

=
∑
x∈πuv

sxd(u, x) +
∑
x∈πvu

sxd(u, x)−
∑
x∈πuv

sxd(v, x)−
∑
x∈πvu

sxd(v, x)

=
∑
x∈πuv

sxd(u, x) +
∑
x∈πvu

sxd(u, x)−
∑
x∈πuv

sx(d(u, x) + 1)−∑
x∈πvu

sx(d(u, x)− 1)

= ‖πvu‖ − ‖πuv‖.
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From this the assertion follows immediately.

3 Remoteness with respect to arbitrary weight functions
The concept of remoteness function and hence of medians and antimedians can also be
studied with respect to weight functions defined on the vertex set of a graph. This was
studied by Bandelt and Chepoi in [6] for non-negative weight functions in the case of
medians. The equivalence of non-negative weight functions and positive profiles and hence
the corresponding equivalence of the remoteness function and medians of non-negative
weight functions and positive profiles are established in [4].

In this section, we establish that the same conclusion follows for arbitrary weight func-
tions and signed profiles.

A weight function on G is a mapping f from V to the set of real numbers. Note that we
now allow negative weights. We say that f has a local minimum at x ∈ V if f(x) ≤ f(y),
for every y adjacent to x. It has a local maximum if f(x) ≥ f(y), for every y adjacent to
x. The remoteness function with respect to the weight function f is the function Df from
V to the set of real numbers defined as:

Df (v) = D(v, f) =
∑
x∈V

d(v, x)f(x).

Note that Df is a weight function on G as well. A local median of f is a vertex u such
that Df has a local minimum at u. A local antimedian is a vertex at which Df attains a
maximum. The set of all local medians of a weight function f is denoted by Mloc(f). The
set of all local antimedians is denoted by AMloc(f). A median of f is a vertex u such
that Df has a global minimum at u. Similarly, an antimedian of f is a vertex at which
Df attains a maximum. The median set M(f) of f is the set of all medians of f . The
antimedian set AM(f) of f is the set of all anti-medians of f .

Let f be a weight function on a graph G and let −f be the weight function defined in
the obvious way: its value at x is −f(x). Then clearly, we have D(v, f) = −D(v,−f),
for any vertex v in G. In the sequel we make use of the following obvious facts.

Remark 3.1. Let f be an arbitrary weight function defined on the vertex set of a graph
G. Then replacing f with −f interchanges the roles of local maxima (minima) of f with
local minima (maxima) of −f , and hence also interchanges the roles of both local and
global medians (antimedians) of f with local and global antimedians (medians) of −f ,
respectively.

Let π be a profile on G. Then the weight function associated with π is the function fπ
with fπ(x) =

∑
si, where the summation is taken over the occurrences of vertex x. If

x does not occur in π, then we set f(x) = 0. The following lemma follows immediately
from the definitions. Note that, for any integer-valued weight function f , there are infinitely
many profiles having f as their associated weight function.

Lemma 3.2. Let G be a connected graph, and let π be a signed profile with associ-
ated weight function fπ . Then D(v, π) = D(v, fπ), and hence M(fπ) = M(π), and
AM(fπ) = AM(π), and Mloc(fπ) = Mloc(π), and AMloc(fπ) = AMloc(π), for every v
in V .

Let f be a weight function on a connected graph G. For a positive real number t, we
define tf to be the weight function with (tf)(x) = t × f(x). Then we have M(tf) =
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M(f) and Mloc(tf) = Mloc(f). Also we have AM(tf) = AM(f) and AMloc(tf) =
AMloc(f). Finally, Dtf has a strict local minimum (maximum) at a vertex u if and only if
Df has a strict local minimum (maximum) at u. The following lemma is obvious.

Lemma 3.3. Let g be rational weight function on a connected graph G. Then there is a
signed profile π on G such that fπ = tg for some positive integer t.

In other words, antimedians (medians) of signed profiles are exactly antimedians (medi-
ans) of rational weight functions. The same holds for local antimedians (medians). Next
we show that real-valued weight functions may be replaced by rational-valued weight func-
tions, and thus by profiles, when one wants to compute antimedian (median) sets. We only
present the proofs for the antimedian case. This is the one that we need in Sections 4 and 5.
The case for the median sets is similar to that in [4], except that one has to take into account
the signs. The next two Lemma’s are the signed version of Lemma’s 5 and 6 in [4]. The
proofs are easy adaptations of those in [4]. Because they are short and prepare the way for
Proposition 3.6, we include the proofs of the signed versions.

Lemma 3.4. LetG be a connected graph, and let f be a weight function onG such thatDf

has a local maximum at vertex u, which is not a global maximum. Then there is a weight
function g such that Dg has a strict local maximum at u, which is not a global maximum.
Furthermore if f is rational, then g may also be taken as a rational function.

Proof. First note that, for any two vertices x and y, we have d(x, y) < n = |V |. Let
D(u, f) = ε1. Let Df have a global maximum at z, that is, D(z, f) = ε > ε1. Let
ε2 = ε− ε1. Now define the function g as follows.

g(v) =

{
f(v) if v 6= u
f(u)− ε2

n if v = u.

Then D(u, g) = D(u, f), because in these sums the values f(u) and g(u) of the functions
at u are multiplied by d(u, u) = 0. For any vertex v adjacent to u, we have

D(v, g) = D(v, f)− ε2
n
< D(v, f) ≤ D(u, f) = D(u, g).

So Dg has a strict local maximum at u. Furthermore,

D(z, g) = D(z, f)− d(u, z)
ε2
n
> D(z, f)− ε2 = D(u, f) = D(u, g).

So g has a strict local maximum at u that is not a global maximum. Also if f is rational,
then ε2 is rational. So g is also rational.

Lemma 3.5. Let G be a connected graph with the property that, for each rational weight
function g, every local maximum of Dg is also a global maximum. Then the same property
holds for any real-valued weight function f on G.

Proof. Assume that for some real-valued weight function f there is a local maximum for
Df , at some vertex u that is not a global maximum. In view of the preceding lemma, we
may assume that Df has a strict local maximum at u. Let Df have a global maximum at z,
and let

ε1 = min{D(u, f)−D(x, f) | x adjacent to u}, ε2 = D(z, f)−D(u, f),
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ε =
min(ε1, ε2)

n2
.

Now choose a rational weight function g such that g(v) < f(v) and f(v) − g(v) < ε,
for all v. Then, for any vertex x adjacent to u, we have D(u, g) > D(u, f) − ε × n2 ≥
D(u, f)− ε1 ≥ D(x, f) > D(x, g). So u is a local maximum for Dg . Moreover, we have
D(z, g) > D(z, f) − ε × n2 ≥ D(z, f) − ε2 ≥ D(u, f) > D(u, g). So u is not a global
maximum for Dg , which is a contradiction.

Graphs with connected median sets for non-negative weight functions were character-
ized in [6]. Using an analogous approach, we now are able to characterize graphs with
connected antimedian and median sets for arbitrary weight functions. Before stating the re-
sult, we define basic concepts used in the following lines. A subgraph G of a graph H is an
isometric subgraph if dG(u, v) = dH(u, v) for all vertices u, v in G. We call a subset S of
the vertex set ofG a level set with respect to an integer λ if S = {x ∈ V (G) : Df (x) ≥ λ}.

Proposition 3.6. For a graph G and any arbitrary weight function defined on the vertex
set of G the following conditions are equivalent

(i) AMloc(f) = AM(f) for all weight functions f ;
(ii) all level sets {x : Df (x) ≥ λ} induce isometric subgraphs;
(iii) all antimedian sets AM(f) induce isometric subgraphs;
(iv) all antimedian sets AM(f) are connected.

Proof. The implications (ii)⇒ (iii), (iii)⇒ (iv) are trivial.
Next we prove (iv) ⇒ (i). Let f be a weight function. Assume to the contrary that

there exists a local antimedian z of f that is not an antimedian. Let y be an antimedian.
Amongst such pairs y, z, we may choose y and z such that d(y, z) is as small as possible.
Our aim is to find two vertices u and v with d(u, v) = 2 and a weight function f ′ such that
AM(f ′) = {u, v}. So f ′ does not have a connected antimedian set.

Consider the interval I(y, z). Because of the minimality of d(y, z), we have Df (y) >
Df (x) for all x in I(y, z) distinct from y. Since z is a local antimedian, we have Df (z) ≥
Df (x), for any neighbor x of z, in particular for any neighbor x of z in I(y, z). This
implies that d(y, z) ≥ 2. Hence, going from y to z within I(y, z), we will encounter two
vertices u, v such that d(y, u) = d(y, v) − 2, d(z, u) = d(z, v) + 2, d(u, v) = 2, with the
properties that Df (u) > Df (x) and Df (v) ≥ Df (x), for any common neighbor x of u
and v. Note that these common neighbors of u and v are precisely the vertices in I(u, v)
distinct from u and v.

If there is any common neighbor x of u and v such that Df (v) = Df (x), then we have
Df (y) ≥ Df (u) > Df (v). If Df (v) > Df (x) for all common neighbors of u and v, then
we compare Df (u) and Df (v). If Df (u) ≥ Df (v), then again we have Df (y) > Df (v).
If Df (v) > Df (u), then we have Df (y) > Df (v) > Df (u). In this case we interchange
the names of u and v. In all cases we end up with two vertices u and v at distance 2 with

Df (y) ≥ Df (u) ≥ Df (v) ≥ Df (x),

for all common neighbors x of u and v, such that, additionally,

Df (y) > Df (v) and Df (u) > Df (x),

for all common neighbors x of u and v.
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We set µ1 =
Df (u)−Df (v)

2 . So µ1 ≥ 0, and Df (v) = Df (u) − 2µ1. We set µ2 =
Df (y)−Df (v). Then µ2 ≥ µ1 and µ2 > 0. Note that for any x in V , we have

Df (v) ≥ Df (x)− µ2.

We construct the new weight function f ′ from f as follows

f ′(x) =

 f(x)− (µ1 + µ2) if x = v
f(x)− (µ2) if x = u
f(x) otherwise.

Straightforward computation now yields

Df ′(u) = Df (u)− 2(µ1 + µ2)

= Df (v)− 2µ2

= Df ′(v);

and for any vertex x in I(u, v) distinct from u and v:

Df ′(x) = Df (x)− µ1 − 2µ2 < Df (u)− µ1 − 2µ2 = Df ′(u)− µ2 < Df ′(u);

and for any vertex x outside the interval (recall that µ1 ≤ µ2):

Df ′(x) ≤ Df (x)− 3µ2 − µ1 ≤ Df (u)− 2µ2 − µ1 < Df ′(u).

Thus AM(f ′) = {u, v}, and hence the antimedian set of f ′ is not connected. This impos-
sibility proves this implication.

It remains to prove that (i) ⇒ (ii). Let AMloc(f) = AM(f) for all weight functions
f . Assume to the contrary that the level set S = {x |Df (x) ≥ λ} corresponding to λ is not
isometric. Hence there exist two vertices u, v such that no shortest u, v-path lies completely
inside S. Obviously, we can select u, v in S such that Df (x) < λ for any x in I(u, v),
distinct from u and v. Without loss of generality we may assume Df (u) ≤ Df (v). Set
Df (z)−Df (u) = µ1, where z is an antimedian, and set ε = min{Df (u)−Df (w) | w ∈
I(u, v)}. Note that, since Df (u) > λ > Df (w), for w in I(u, v), we have ε > 0. Let
µ2 = ε

d(u,v) . Define a weight function f ′ such that

f ′(x) =

 f(x)− µ1 if x = u
f(x)− (µ1 + µ2) if x = v
f(x) otherwise.

Straightforward computation now yields

Df ′(v) = Df (v)− d(u, v)µ1

> Df (u)− d(u, v)(µ1 + µ2)

= Df ′(u)

and for any vertex w in I(u, v) distinct from u and v:

Df ′(w) < Df (w)− d(u, v)µ1 ≤ Df (u)− ε2 − d(u, v)µ1 =

Df (u)− d(u, v)(µ1 + µ2) = Df ′(u)
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and for any other vertex x:

Df ′(x) < Df (x)− (d(u, v) + 1)µ1 < Df (z)− µ1 − d(u, v)µ1 =

Df (u)− d(u, v)µ1 = Df ′(u).

This implies that v is the unique antimedian of f ′, while u is a local antimedian, which is
not an antimedian vertex. This contradicts the assumption, by which the proof is complete.

Above we established the equivalence of real-valued weight functions, rational-valued
weight functions, and signed profiles with respect to medians etcetera. The next theorem is
now an easy consequence of the previous results.

Theorem 3.7. Let G be a connected graph. Then the following conditions are equivalent.

(i) The antimedian set AM(f) is connected, for all weight functions f on G.
(ii) AM(f) = AMloc(f), for all weight functions f on G.
(iii) The median set M(f) is connected, for all weight functions f on G.
(iv) M(f) = Mloc(f), for all weight functions f on G.
(v) AM(f) = AMloc(f), for all rational weight functions f on G.
(vi) AM(π) = AMloc(π), for all signed profiles π on G.
(vii) M(f) = Mloc(f), for all rational weight functions f on G.
(viii) M(π) = Mloc(π), for all signed profiles π on G.

Proof. (i) up to (iv) are equivalent by Proposition 3.6, and Remark 3.1 .
(ii)⇒ (v) follows trivially.
(v)⇒ (ii) follows from Lemma 3.5.
(v) ⇒ (vi): Let π be a signed profile on G. Now consider its associated weight

function fπ . By Lemma 3.2, we have D(v, fπ) = D(v, π). Since Dfπ cannot have any
local maximum that is not a global maximum, Dπ also cannot have any local maximum
that is not a global maximum.

(vi) ⇒ (v): Let g be any rational weight function on G. By Lemma 3.3, there is a
positive integer t and a signed profile π such that fπ = tg. By Lemma 3.2, Dfπ = Dπ ,
and, as observed above, Dfπ has a local maximum that is not a global maximum if and
only if Dg have a local maximum that is not a global maximum. So Dg cannot have a local
maximum that is not a global maximum.

The equivalence of (vii) and (viii) with the other statements follows similarly.

4 Consensus Strategies
If one wants to find the median set of a positive profile in a tree, then there exists a simple
strategy formulated by Goldman [12] already in 1971. It reads as follows. When at vertex
u, consider neighbor v of u. If there is a majority of the profile closer to v than to u, then
move to v. In [20] this Majority Strategy was formulated for arbitrary graphs. There it was
proved that the Majority Strategy produces the median set for any positive profile starting
at any vertex if and only if the graph is a median graph, Theorem 4.1 below. For more
details, we refer the reader to [20, 4]. A connected graph G is called a median graph, if
every triple of vertices in G has a unique median. One of the main reasons underlying
this result is that the structure of median sets is very nice in median graphs. In [4] four
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other related consensus strategies for positive profiles are studied. Antimedian sets are not
so well-structured. So one cannot expect such deep results for signed profiles. But it is
still possible to obtain some nice and unexpected results. Below we present a number of
consensus strategies for signed profiles similar to the Majority Strategy from [18]. They
are analogues of those in [4], but now formulated for signed profiles.

In all the strategies below the input is a connected graph G, a profile π, and an initial
vertex at which the strategy starts. There are two possibilities: one gets stuck at a vertex,
or it is possible to visit vertices more than once. In the latter case the strategy could get
into a loop, so the stopping rule must be more sophisticated here. In all cases, the output
after stopping is the single vertex where one gets stuck or the set of vertices visited at least
twice. Steps 1, 3 and 4(i) below are the same for all strategies, so we list these only in the
first instance. In all other instances we only list Step 2, describing when one moves to a
neighbor, and Step 4(ii), the stopping rule when one does not get stuck.

Majority Strategy
1. Start at the initial vertex.
2. [MoveMS] If we are in u and v is a neighbor of u with ‖πvu‖ ≥ 1

2‖π‖,
then we move to u.

3. We move only to a vertex already visited if there is no alternative.
4. We stop when

(i) we are stuck at a vertex u or
(ii) [TwiceMS] we have visited vertices at least twice, and

for each vertex u visited at least twice and each neighbor v of u,
either ‖πvu‖ < 1

2‖π‖ or v is also visited at least twice.

Before presenting the other strategies we quote the main theorem from [20]. This the-
orem has been the motivation for studying such strategies on graphs. It also shows the
special role of median graphs within the Class of All Graphs. Due to the structure theory
of median graphs, the equivalence of (ii) and (iii) on median graphs in the theorem is not
surprising. But otherwise it would not have been something one would expect at first sight.

Theorem 4.1. [Majority Theorem] Let G be a graph. Then the following conditions are
equivalent.

(i) G is a median graph.
(ii) The Majority Strategy produces the median set M(π) from any initial vertex, for each
positive profile π on G.
(iii) The Majority Strategy produces the same set from any initial vertex, for each positive
profile on G.

In the majority strategy one moves towards majority. A slightly different point of view
is to move away from minority. This seems to be the same, but it is not, as we will see
below. This latter strategy is known as the Condorcet Strategy.

Condorcet Strategy
2. [MoveCS] If we are in u and v is a neighbor of u with ‖πuv‖ ≤ 1

2‖π‖,
then we move to v.

4. (ii) [TwiceCS] we have visited vertices at least twice, and
for each vertex u visited at least twice and each neighbor v of u,
either ‖πuv‖ > 1

2‖π‖ or v is also visited at least twice.
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In non-bipartite graphs the subprofile πvu of π, for an edge uv, is not always empty.
From the viewpoint of voting, one might say that the elements of πvu abstain from voting
when the choice is between u and v. So these may be ignored when the question is whether
to move from u to v. This is the idea behind the Plurality Strategy. Note that on bipartite
graphs Majority and Plurality coincide.

Plurality Strategy
2. [MovePS] If we are in u and v is a neighbor of u with ‖πvu‖ ≥ ‖πuv‖,

then we move to v.
4. (ii) [TwicePS] we have visited vertices at least twice, and

for each vertex u visited at least twice and each neighbor v of u,
either ‖πvu‖ < ‖πuv‖ or v is also visited at least twice.

The next two strategies were introduced to find a (local) minimum based on a heuristic
function in a search graph. They are also known as Hill Climbing and Steepest Ascent Hill
Climbing, respectively.

Ascent Strategy
2. [MoveAS] If we are in u and v is a neighbor of u with D(v, π) ≤ D(u, π),

then we move to v.
4. (ii) [TwiceAS] we have visited vertices at least twice, and

for each vertex u visited at least twice and each neighbor v of u,
either D(v, π) > D(u, π) or v is also visited at least twice.

Steepest Ascent Strategy
2. [MoveSAS] If we are in u and v is a neighbor of u with D(v, π) ≤ D(u, π), and

D(v, π) is minimum among all neighbors of u, then we move to v.
4. (ii) [TwiceSAS] = [TwiceAS].

The next simple Lemma is an analogue of Lemma 1 in [4] for signed profiles with the
same conclusion. Note that the Plurality and Ascent strategy produce the same output for
signed profiles on any connected graph. On bipartite graphs both coincide with Majority.

Lemma 4.2. Let G be a connected graph and π a signed profile on G. Plurality Strategy
makes a move from vertex v to vertex u if and only if D(u, π) ≤ D(v, π).

Proof. The assertion follows immediately from the following computation:

D(v, π)−D(u, π) =

=
∑
x∈πvu

sxd(v, x) +
∑
x∈πuv

sxd(v, x)−
∑
x∈πvu

sxd(u, x)−
∑
x∈πuv

sxd(u, x)

=
∑
x∈πvu

sxd(v, x) +
∑
x∈πuv

sxd(v, x)−
∑
x∈πvu

sx(d(v, x) + 1)−∑
x∈πuv

sx(d(v, x)− 1)

= ‖πuv‖ − ‖πvu‖.
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The various strategies are quite similar. But on general graphs they are all different.
We present some examples to show this. The first example shows that Plurality, Condorcet
and Majority strategies are pairwise distinct. Consider the profile π = (+a,+b,−c,+d,
+e,+f) on the graph shown in Figure 1. We have ‖πuv‖ = 1, ‖πvu‖ = 0, ‖πva‖ =
‖πvb‖ = ‖πvd‖ = ‖πve‖ = 2 ‖πvc‖ = 4, ‖πav‖ = ‖πbv‖ = ‖πdv‖ = ‖πev‖ = 1,
‖πcv‖ = −1, ‖πua‖ = ‖πub‖ = ‖πud‖ = ‖πue‖ = ‖πuf‖ = 3, ‖πuc‖ = 5, ‖πau‖ =
‖πbu‖ = ‖πdu‖ = ‖πeu‖ = ‖πfu‖ = 1, ‖πcu‖ = −1. 

a b c d e 

v u 

 f 

Figure 1: Consensus strategies differing on a graph

Apply all the strategies starting at u. Using Majority we may not move to any of its
neighbors, so we are stuck at u. Thus the outcome of Majority is {u}. Note that we have
‖πux‖ ≤ 1

2‖π‖, for any neighbor x of u other than c. So, if we use Condorcet, then we can
move to any of its neighbors except c. Note also that from a, b, d and e a move to either u
or v is allowed, but from v we can move only to u. Thus using Condorcet we may move
along u, a, b, d, e, v. Hence the output of the Condorcet Strategy is {u, a, b, d, e, v}. When
we use Plurality, then we can move only to v and we get stuck at v. Hence the output of
Plurality is {v}. Ascent and Steepest Ascent strategies also produce the output {v}.

It is shown in [4] that Steepest Ascent is essentially different from the other strategies
for positive profiles. Note that the other strategies might make a move from u as soon as
they find a neighbor v of u that satisfies the condition for a move, while Steepest Ascent
has to check all neighbors of u before it can make a move. For a comparison of efficiencies
of these strategies, see [3].

The following example shows that the first four strategies might not even find the me-
dian vertex, even if the graph is bipartite. Consider the complete bipartite graph K2,5 with
vertices a, b and 1, 2, 3, 4, 5, where two vertices are adjacent if and only if one is a ‘letter’
and the other is a ‘numeral’. Now take the profile π = (+b,+1,+1,+1,+2,+2,+2,+3,
+3,+3,+4,−5). Then we have D(a, π) = 11, D(b, π) = 9, D(4, π) = 21, D(5, π) = 17
and D(i, π) = 13, for i = 1, 2, 3. Take 1 as initial vertex and assume that we check its
neighbors in alphabetical order. Then Majority, Condorcet, Plurality and Ascent strate-
gies move to a and get stuck there, whereas Steepest Ascent moves to b and thus finds the
median vertex of π.

It was already shown in [4] that Plurality produces the median set for any positive
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profile if and only if all median sets in the graph are connected. Hence Plurality produces
the antimedian set for negative profile in such graphs. Moreover the antimedian sets are
connected for all negative profiles in such graphs.

In the case of finding antimedian sets one would want to have the “converse” of the
above strategies, that is, apply the strategy on −π instead of π. Because we are working
with signed profiles these are strategies in their own right. We list them below, with their
appropriate names.

Minority Strategy
Minority applied to π is identical with Majority applied to −π.

Scarcity Strategy
Scarcity applied to π is identical with Plurality applied to −π.

Descent Strategy
Descent applied to π is identical with Ascent applied to −π.

Steepest Descent Strategy
Steepest Descent applied to π is identical with Steepest Ascent applied to −π.

It is interesting to note that Scarcity produces the antimedian set in hypercubes. Recall
that the n-dimensional hypercube Qn, the n-cube for short, has the 0, 1-vectors of length
n as its vertices, two vertices being adjacent if the corresponding vectors differ in exactly
one coordinate. Take any i with 1 ≤ i ≤ n. Let Q0

n,i be the (n− 1)-dimensional subcube
consisting of the vertices with a 0 as i-th coordinate, and let Q1

n,i be the complementary
subcube consisting of the vertices with a 1 as i-th coordinate. For a profile π, let π0

i be the
subprofile of π inQ0

n,i, and let π1
i to the subprofile of π inQ1

n,i. LetW be the set of vertices
in Qn, for which π has a signed minority in each coordinate. That is, x lies in W if and
only if x has a 0 in the i-th coordinate when ‖π1

i ‖ > ‖π0
i ‖, and a 1 when ‖π0

i ‖ > ‖π1
i ‖,

and a 0 or 1 when ‖π0
i ‖ = ‖π1

i ‖. This is precisely the antimedian set of π. It is also a
subcube of dimension d, where d is the number of coordinates, for which ‖π0

i ‖ = ‖π1
i ‖.

Proposition 4.3. Scarcity strategy produces the antimedian set on a hypercube for any
signed profile.

Proof. Take any i with 1 ≤ i ≤ n. Take any vertex u in Q0
n,i, and let v be its neighbor in

Q1
n,i. Then we have πuv = π0

i and πvu = π1
i . So, if ‖π0

i ‖ ≥ ‖π1
i ‖, then we move from

Q0
n,i to Q1

n,i. And if ‖π0
i ‖ > ‖π1

i ‖, then we never move back to Q0
n,i. So Scarcity moves

to the set of vertices W in Qn, for which π has a signed minority in each coordinate. This
is precisely the antimedian set of π.

In general Scarcity will not always produce an antimedian. For example when we use
Scarcity moves in a tree we will always stuck at leaf nodes, as we can see in the following
lines. Consider a tree T with at least three leaves, and a positive profile π of length k on
T . Take any leaf v that occurs less than 1

2k times in π, and let u be the neighbor of v in T .
Note that d(v, x) = d(u, x) + 1 for any x 6= v in T . Obviously we will move to v from u,
but we will never move back to v using Scarcity. But v need not be the antimedian of π. If
the profile is “close” to u, then obviously antimedian will be at some other leaves far away.
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Next we prove an analogue of the main Theorem (Theorem 8 in [4]) for positive profiles
in the case of signed profiles.

Theorem 4.4. The following are equivalent for a connected graph G.

(i) The Scarcity Strategy produces AM(π) from any initial vertex, for all signed profiles
π on G.
(ii) AM(π) is connected, for all signed profiles π on G.
(iii) AM(π) = AMloc(π), for all signed profiles π on G.
(iv) Descent Strategy produces AM(π) from any initial vertex, for all signed profiles π on
G.
(v) Steepest Descent Strategy produces AM(π) from any initial vertex, for all signed pro-
files π on G.
(vi) Scarcity, Descent, and Steepest Descent Strategy each produce the same set from any
initial vertex, for all signed profiles.

Proof. (i) ⇒ (ii): Suppose the antimedian set is not connected for some profile π. Then
let u and v be two vertices in different components of AM(π). Now, if Scarcity starts
at u, then it cannot reach vertex v, because a move from an antimedian vertex to a non-
antimedian vertex is not possible by Lemma 4.2. So the set computed by Scarcity will not
include u, which is a contradiction.

(ii)⇒ (iii): This follows from Theorem 3.7.
(iii)⇒ (iv): Starting at any vertex, Descent always finds a local maximum. Since this

local maximum is also global, it follows that Descent always reaches an antimedian, and
since the antimedian set is connected, Descent finds all antimedian vertices.

(iv) ⇒ (i): Assume that Descent finds the antimedian set. This means that Descent
will move to an antimedian starting from any vertex and finds all the other antimedians.
The same moves will be made by Scarcity, by Lemma 4.2. Hence Scarcity will compute
the antimedian set correctly.

(iii)⇒ (v) follows similarly as (iii)⇒ (iv).
(v) ⇒ (ii) follows from the fact that Steepest Descent finds a local maximum and

does move from antimedian to antimedian but does not move from an antimedian to a
non-antimedian.

(i)⇒ (vi) is obvious.
(vi)⇒ (i) follows from the fact that, starting from an antimedian, Scarcity can produce

only a set of antimedians which includes the initial vertex. So starting from any vertex
it produces the same set if and only if the produced set is actually AM(π). The same
argument works for Descent and Steepest Descent.

5 The Majority Strategy for Signed Profiles
In this section a characterization for hypercubes is obtained as the graphs for which Ma-
jority always produces the median set for any signed profile. Before stating the result, we
need a few facts from the theory of median graphs as developed in [18]. A median graph
is bipartite, and does not contain K2,3 as induced subgraph. This implies that any two
vertices at distance 2 have either one or two common neighbors. It is proved in [18] that
a graph G is a hypercube if and only if it is a median graph in which any two vertices at
distance 2 have exactly two common neighbors. For any vertex w in a graph G, we write
Ni(w) = {x | d(x,w) = i}, and N>i(w) =

⋃
j>iNj(w).
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Proposition 5.1. Let AM be the antimedian function on a median graph G. Then AM(π)
is connected for every signed profile π if and only if G is a hypercube.

Proof. If G is a hypercube, then Proposition 4.3 gives us the required result.
Conversely, let G be a median graph for which the antimedian set is connected, for any

signed profile. Let u and v be two vertices at distance 2, and let w be a common neighbor
of u and v. Due to the above mentioned characterization of hypercubes in [18] we have to
prove that there exists a unique common neighbor of u and v different from w. Consider
the profile π = (+w) of length 1. Note that, for any x in Nj(w), we have Df (x) = j. So
N>0(w) = V − w is a level set with respect to π. Due to Proposition3.6 any level set of π
induces an isometric subgraph. So, within V − w, the vertices u and v have distance 2 as
well, that is, there is a common neighbor z in V − x. Since a median graph is bipartite and
does not contain K2,3, this neighbor is unique.

The next theorem is an analogue of the majority theorem for signed profiles which turns
out to be a new characterization of hypercubes.

Theorem 5.2. A graph G is a hypercube if and only if the Majority Strategy, starting from
any initial vertex, produces the median set for any signed profile on G.

Proof. If G is a hypercube, then, by Proposition 4.3, Scarcity produces the antimedian
set for any signed profile. So, since the hypercube is bipartite, Minority produces the
antimedian set for any signed profile, whence Majority produces the median set for any
signed profile.

Conversely, assume that Majority produces the median set for any signed profile. Then
it also produces the median set for any positive profile. So, by Theorem 4.1, the graph is a
median graph. Hence, by Proposition 5.1, the graph is a hypercube.

6 Graphs for which Scarcity produces the Antimedian Set for any
Signed Profile

In this section we discuss some graph classes for which Scarcity always produces the anti-
median set for any signed profile.

First we consider the Hamming graphs. Let k1, . . . , kn be positive integers, and let V
be the Cartesian product

Πn
i=1{0, 1, . . . , ki − 1}.

The Hamming graph Hk1,...,kn is the graph with vertex set V , in which two vertices are
joined by an edge if and only if the corresponding vectors differ in exactly one coordinate.
The properties for Hamming graphs needed here probably all belong now to folklore, but
could also be found in [18, 19], where they were characterized for the first time. The set
of vertices in H = Hk1,...,kn having a in the i-th position of the corresponding vector is
denoted as Ha

k1,...,kn,i
, or simply as Ha

i . For a profile π, we denote its subprofile contained
in Ha

i by πai .
Let π be a profile on H = Hk1,...,kn . Fix a position i, for which ki ≥ 2, and let a

and b be distinct elements in {0, . . . , ki − 1}. Let u be a vertex in Ha
i , and let v be its

neighbor in Hb
i . Then πuv = πai and πvu = πbi . Note that, if u is in AM(π), then we have

‖πai ‖ ≤ ‖πbi ‖. This holds for every b in {0, . . . , ki − 1} distinct from a. In this case we
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say that there is a signed minority at a in position i. Clearly, an antimedian vertex in H
is a vertex with a signed minority in each coordinate. Let mi be the number of elements
in {0, . . . , ki − 1} with a signed minority, for i = 1, . . . , n. Then the antimedian set of π
induces a subgraph isomorphic to Hm1,...,mn . Obviously, any antimedian set is connected.

Proposition 6.1. Starting form any vertex Scarcity Strategy produces the antimedian set
on a Hamming graph for any signed profile.

Proof. Let π be a (signed) profile on the Hamming graph H = Hk1,...,kn . Take any i
with 1 ≤ i ≤ n and any vertex u in Ha

i , and let v be its neighbor in Hb
i with b 6= a. If

‖πai ‖ ≥ ‖πbi ‖, then we move from Ha
i to Hb

i . And if ‖πai ‖ > ‖πbi ‖, then we never move
back to Ha

i . So Scarcity moves to the set of vertices W in H for which π has a signed
minority in each coordinate. This is precisely the antimedian set of π.

Graphs which admit a scale-λ, (λ ≥ 2) embedding into a hypercube is called an `1
graph. The Johnson graphs and half cubes are important classes of `1 graphs which occur
as hosts for isometric embeddings of graphs, [8]. Next we consider the Johnson graphs
followed by half cubes. The Johnson graph Jn,k has as vertices the k-element subsets of
{1, 2, . . . , n}, and two vertices are adjacent if and only if their intersection has size k − 1.
In other words the vertices ‘differ’ in exactly one element. Some special Johnson graphs
are: Jn,1 is the complete graph on n vertices, Jn,2 is the n-triangular graph, and Jn,3 is
n-tetrahedral graph. Since each vertex u in Jn,k corresponds to a k-element subset X of
{1, 2, . . . , n}, we represent u with the vector [u1, . . . , un], where

ui =

{
1; i ∈ X,
0; i 6∈ X

Clearly the total number of 1’s in each vector representation is k. Moreover adjacent ver-
tices differ in two positions. Note that mapping these vectors to the corresponding vectors
in a hypercube Qn corresponds to a so-called scale-2 embedding, that is, two vertices at
distance d in the Johnson graph are mapped onto vertices at distance 2d in the hypercube,
for any two vertices. Since below the antimedian sets in more than one graph will be
considered, we denote the antimedian set of π in G also by AM(π,G), and so forth.

Proposition 6.2. Let G be a Johnson graph. Then M(π) and AM(π) are also Johnson
graphs.

Proof. Assume that G = J(n, k). Consider the scale-2 embedding of G in to the hyper-
cube Qn. Let π be a profile in G, and let M(π,Qn) be isomorphic to Qr. Without loss of
generality we may assume that, for all the vertices u = [u1, . . . , un] in this subcube, the
coordinates at positions r + 1 up to n are all the same, and that in the remaining positions
1, . . . , r values 0 and 1 are taken. Letm be the total number of 1’s, in positions r+1, . . . , n.

We analyze the properties of median sets in G by considering two cases.

Case 1. M(π,Qn) ∩G 6= ∅.
Clearly M(π,G) induces a subgraph isomorphic to Jr,(k−m).

Case 2. M(π,Qn) ∩G = ∅.
In this case we have either m < k − r or m > k. Clearly, if m < k − r, we get a vertex
in G by changing a minimum number of coordinates, say p, from the vertex in M(π,Qn)
having 1s in positions 1, . . . , r.
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Similarly, when m > k, we get a vertex in G with a minimum number of changes, by
selecting the vertex with 0’s in positions 1, . . . , r. Since we are looking for a median set in
G, we select the positions, in such a way that the change in remoteness is minimum. Thus
we select p coordinate positions with smaller signed majority values. If the signed majority
values are distinct we get a single vertex in G. Otherwise we make a selection among, say
p′ positions. In this case the subgraph induced by the vertices of G thus obtained will be
isomorphic to Jp′,p.

Since the remoteness is same for all vertices in the median set we get the same result
independent of the vertex selected. Hence we get a subgraph that is a Johnson graph as the
median set.

With similar arguments, by taking the signed minority values at coordinate positions,
we can prove that antimedian sets also induce some Johnson graph. This completes the
proof.

From the above theorem we have the following corollary.

Corollary 6.3. LetG be a Johnson graph. ThenM(π) andAM(π) are connected, for any
signed profile π in G.

From the above Corollary and Theorem 4.4 we have:

Corollary 6.4. Starting from any vertex on a Johnson graph Scarcity strategy produces the
antimedian set for any signed profile.

Next, we consider halfcubes. The vertex set of a halfcube is the subset of the vertices
of the hypercube Qn with an even (respectively, odd) number of ones in their vector rep-
resentation. Two vertices are adjacent when they differ in exactly two positions, see [8].
Halfcubes also admit a scale-2 embedding into the corresponding hypercube.

Theorem 6.5. Let G be a halfcube, then M(π,G) and AM(π,G) are connected for any
signed profile π in G.

Proof. Let Qn be the hypercube of dimension n in which G is scale-2 embedded. Let π
be an arbitrary profile in G and ‖π‖ = k. Note that by applying the Majority rule for the
given profile π of the halfcube embedded into hypercube Qn (looking as the vertices of a
hypercube), we get the median of π in Qn which will be a sub-hypercube, say Qr. We
analyze the property of M(π,G) by considering the following two cases separately.
Case 1. M(π,Qn) is a hypercube Qr of dimension at least one.
Clearly Qr has half vertices in the corresponding halfcube - call this set X . Set X forms
a halfcube in G, hence X is connected. Since the graph G is scale-2 embedded the re-
moteness in G is obtained by dividing the corresponding remoteness in Qn by 2, we get
M(π,G) = X , as we follow the signed Majority rule on π.
Case 2. M(π,Qn) in Qn contains exactly one vertex say x.
If x belongs to G, then clearly M(π,G) = {x} as the case may be and hence we are done.

So assume that x is not in G. Note that x = (x1, . . . , xd) can be obtained from the
signed Majority rule among coordinates of the profile π. Let mi, 1 ≤ mi ≤ n be the
signed majority at each position. Let m = min{m1, . . . ,mn}. Clearly if for any vertex y
obtained by changing any single ith coordinate of x, the remoteness changes by 2mi − k,
where ‖π‖ = k. This change in remoteness is minimum for coordinates having signed
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Majority value m. Hence M(π,G) is precisely the set of vertices obtained from G by
changing any coordinate of x, having minimum signed Majority mi. These vertices are all
adjacent to x, and hence forms a clique in G. Thus M(π,G) is connected for any signed
profile.

With similar arguments and by taking m as maximum(m1, . . . ,mn), where each mi

is signed minority, we can prove that AM(π,G) is also connected for any profile, which
completes the proof.

From the proof of the above theorem, we have the following corollary.

Corollary 6.6. Let G be a halfcube, then M(π,G) and AM(π,G) induce a halfcube in G
or a clique, for any profile π in G.

From Theorem 6.5 and Theorem 4.4 we have:

Corollary 6.7. Starting from any arbitrary vertex in a halfcube Scarcity Strategy always
produce antimedian set for any signed profile

7 Concluding remarks
In this paper, we have proved that the classes of graphs in which the consensus strategies
Scarcity, Descent and Steepest Descent will always produce the antimedians for any arbi-
trary signed profile is precisely the class of graphs with connected antimedians. This class
of graphs is characterized in terms of (local) medians and (local) antimedians of (rational)
weight functions. Also, we proved that, among the median graphs, the hypercubes are pre-
cisely the graphs with connected antimedians for an arbitrary signed profile. Moreover, we
presented some classes on which Scarcity produces the antimedian set for any signed pro-
file. An intriguing question remains: Which classes of graphs have connected antimedians
for arbitrary signed profiles?
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multaneous embeddings of graphs as median and antimedian subgraphs, Networks 56 (2010),
90–94.

[3] K. Balakrishnan, M. Changat and H. M. Mulder, Median computation in graphs using consen-
sus strategies, Report EI 2006, Econometrisch Instituut, Erasmus Universiteit, 2006, Rotter-
dam.

[4] K. Balakrishnan, M. Changat and H. M. Mulder, The plurality strategy on graphs, Australsian
J. Combin. 46 (2010), 191–202.

[5] K. Balakrishnan, M. Changat, I. Peterin, S. Špacapan, P. Šparl and A. R. Subhamathi, Strongly
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University of Primorska, FAMNIT, Glagoljaška 8, 6000 Koper, Slovenia
University of Primorska, IAM, Muzejski trg 2, 6000 Koper, Slovenia

Received 30 October 2011, accepted 4 February 2012, published online 15 June 2012

Abstract

A graph Γ is called a quasi m-Cayley graph on a group G if there exists a vertex
∞ ∈ V (Γ) and a subgroup G of the vertex stabilizer Aut(Γ)∞ of the vertex∞ in the full
automorphism group Aut(Γ) of Γ, such that G acts semiregularly on V (Γ)\{∞} with m
orbits. If the vertex∞ is adjacent to only one orbit of G on V (Γ)\{∞}, then Γ is called
a strongly quasi m-Cayley graph on G. In this paper complete classifications of quasi
2-Cayley, quasi 3-Cayley and strongly quasi 4-Cayley connected circulants are given.

Keywords: Arc-transitive, circulant, quasi m-Cayley graph.

Math. Subj. Class.: 05C15, 05C10

1 Introduction
Throughout this paper graphs are assumed to be finite, simple, connected and undi-

rected, and groups are finite. Given a graph Γ we let V (Γ), E(Γ), A(Γ) and Aut(Γ) be the
set of its vertices, edges, arcs and the automorphism group of Γ, respectively. A graph Γ
is said to be vertex-transitive, edge-transitive, and arc-transitive if its automorphism group
acts transitively on V (Γ), E(Γ) and A(Γ), respectively.

Let G be a finite group with identity element 1, and let S ⊂ G\{1} be such that
S−1 = S. We define the Cayley graph Cay(G,S) on the group G with respect to the
connection set S to be the graph with vertex set G, in which two vertices x, y ∈ G are
adjacent if and only if x−1y ∈ S. A circulant of order n is a Cayley graph on a cyclic
group of order n.

In this paper we consider quasi-semiregular actions on graphs, a natural generalization
of semiregular actions on graphs, which have been an active topic of research in the last
decades (see, for example, [1, 2, 3, 4, 5, 8, 9, 11]). Following [7] we say that a groupG acts
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quasi-semiregularly on a set X if there exists an element∞ in X such that G fixes∞, and
the stabilizer Gx of any element x ∈ X\{∞} is trivial. The element∞ is called the point
at infinity. A graph Γ is called quasim-Cayley onG if the groupG acts quasi-semiregularly
on V (Γ) with m orbits on V (Γ)\{∞}. If G is cyclic and m = 1 (respectively, m = 2,
m = 3 and m = 4) then Γ is said to be quasi circulant (respectively, quasi bicirculant,
quasi tricirculant and quasi tetracirculant). In addition, if the point at infinity∞ is adjacent
with only one orbit of G∞ then we say that Γ is a strongly quasi m-Cayley graph on G.

Quasi m-Cayley graphs were first defined in 2011 by Kutnar, Malnič, Martinez and
Marušič [7], who showed which strongly quasi m−Cayley graphs are strongly regular
graphs.

In this paper, we consider which circulants are also quasi m-Cayley graphs. Our main
results are stated in the following three theorems.

Theorem 1.1. Let Γ be a quasi 2-Cayley graph of order n which is also a connected circu-
lant. Then either Γ is isomorphic to the complete graph Kn, or n ≡ 1 (mod 4) is a prime
and Γ is isomorphic to the Paley graph P (n). Moreover, Γ is a quasi bicirculant.

Theorem 1.2. Let Γ be a connected circulant. Then Γ is also a quasi 3-Cayley graph if and
only if either Γ = Kn, or replacing Γ with its complement if necessary, Γ ∼= Cay(Zn, S),
where S is the set of all non-zero cubes in Zn, and n is a prime such that n ≡ 1 (mod 3).
Moreover, Γ is a quasi tricirculant.

Theorem 1.3. Let Γ be a connected circulant. Then Γ is a strongly quasi 4-Cayley graph
on a group G if and only if Γ ∼= C9 or Γ ∼= Cay(Zn, S), where S is the set of all fourth
powers in Zn\{0}, and n is a prime such that n ≡ 1 (mod 4). Moreover, Γ is a quasi
tetracirculant.

The paper is organized as follows. In Section 2 we recall the classification of connected
arc-transitive circulants. In Section 3 we prove Theorem 1.1 and in Section 4 we prove
Theorems 1.2 and 1.3.

2 Arc-transitive circulants
We begin this section with the following lemma:

Lemma 2.1. Let Γ be a connected vertex-transitive strongly quasi m−Cayley graph. Then
Γ is arc-transitive.

Proof. Since Γ is vertex transitive, it is sufficient to prove that there exists a vertex v such
that the stabilizer Aut(Γ)v acts transitively on the neighborhood of v. It is obvious that if
we choose the point at infinity for v, this condition is satisfied.

The previous lemma implies that we can somehow restrict our study to the connected
arc-transitive circulants, therefore it is important to understand the structure of such graphs.

To state the classification of connected arc-transitive circulants, which has been ob-
tained independently by Kovács [6] and Li [10], we need to recall certain graph products
and the concept of normal Cayley graphs.

The wreath (lexicographic) product Σ[Γ] of a graph Γ by a graph Σ is the graph with
vertex set V (Σ) × V (Γ) such that {(u1, u2), (v1, v2)} is an edge if and only if either
{u1, v1} ∈ E(Σ), or u1 = v1 and {u2, v2} ∈ E(Γ). For a positive integer b and a graph



A. Hujdurović: Quasi m-Cayley circulants 149

Σ, denote by bΣ the graph consisting of b vertex-disjoint copies of the graph Σ. The graph
Σ[Kb]−bΣ is called the deleted wreath (deleted lexicographic) product of Σ andKb, where
Kb = bK1.

Let Γ = Cay(G,S) be a Cayley graph on a group G. Denote by Aut(G,S) the set of
all automorphisms of G which fix S setwise, that is,

Aut(G,S) = {σ ∈ Aut(G)|Sσ = S}.

It is easy to check that Aut(G,S) is a subgroup of Aut(Γ) and that it is contained in the
stabilizer of the identity element 1 ∈ G. It follows from the definition of Cayley graph that
the left regular representation GL of G induces a regular subgroup of Aut(Γ). Following
Xu [12], Γ = Cay(G,S) is called a normal Cayley graph if GL is normal in Aut(Γ), that
is, if Aut(G,S) coincides with the vertex stabilizer 1 ∈ G. Moreover, if Γ is a normal
Cayley graph, then Aut(Γ) = GL o Aut(G,S).

Proposition 2.1. [6, 10] Let Γ be a connected arc-transitive circulant of order n. Then one
of the following holds:

(i) Γ ∼= Kn;

(ii) Γ = Σ[Kd], where n = md, m, d > 1 and Σ is a connected arc-transitive circulant
of order m;

(iii) Γ = Σ[Kd] − dΣ, where n = md, d > 3, gcd(d,m) = 1 and Σ is a connected
arc-transitive circulant of order m;

(iv) Γ is a normal circulant.

In Section 3 and 4 two lemmas (that show that arc-transitive circulants described in
Proposition 2.1(ii) and (iii) are not strongly quasi k-Cayley graphs) will be needed.

Lemma 2.2. Let Γ be an arc-transitive circulant, described in Proposition 2.1(ii). Then Γ
is not a strongly quasi k-Cayley graph for any k ∈ N.

Proof. We have Γ = Σ[Kd], where n = md, m, d > 1 and Σ is a connected arc-transitive
circulant of order m. Suppose that Γ is a strongly quasi k-Cayley graph on a group G.
Then val(Γ) = (n − 1)/k = (md − 1)/k. On the other hand, since Γ = Σ[Kd], we have
val(Γ) = val(Σ) ·d. These two facts combined together imply that d(m−k ·val(Σ)) = 1,
and so d = 1, a contradiction.

Lemma 2.3. Let Γ be an arc-transitive circulant, described in Proposition 2.1(iii). Then Γ
is not a strongly quasi k-Cayley graph for any k ∈ N.

Proof. We have Γ = Σ[Kd] − dΣ, where n = md, d > 3, gcd(d,m) = 1, and Σ is an
arc-transitive circulant of order m. Suppose that Γ is also a strongly quasi k-Cayley graph
on a group G. By [10, Theorem 1.1] the m copies of the graph Kd form an imprimitivity
block system B for Aut(Γ). Clearly the blockB ∈ B containing the point at infinity, that is,
the trivial orbit of G, is fixed by G. This implies that |G| divides d− 1. On the other hand,
since the valency of Γ is |G|, we have |G| ≥ d − 1. Combining these results we obtain
|G| = d−1. Thus, connectedness of Γ implies that m = 2. However, then there are 2d−1
vertices in Γ different from the point at infinity, and they cannot be divided into k orbits of
size d−1 for any natural number k. Therefore, there are no strongly quasi k-Cayley graphs
amongst the graphs from Proposition 2.1(iii) for any natural number k ≥ 1.
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Lemma 2.4. Let Γ be an arc-transitive circulant, described in Proposition 2.1(iv). If Γ is
also a strongly quasi m-Cayley graph on a group G, then the order of Γ has at most m+ 1
divisors.

Proof. Let Γ = Cay(Zn, S) be a normal circulant. Let A = Aut(Γ). Since Γ is a normal
Cayley graph, A ∼= Zn o Aut(Zn, S). We may, without loss of generality, assume that the
point at infinity corresponds to the vertex 0 ∈ Zn, and so G ≤ Aut(Zn, S) ≤ Aut(Zn) ∼=
Z∗n. Therefore, G . Z∗n. Since G has m orbits on Zn\{0}, then Aut(Zn) has at most m
orbits on Zn\{0}, and at most m+ 1 orbits on Zn. Elements in the same orbit of Aut(Zn)
are clearly of the same order in Zn. There exist an element in Zn of order d, if and only
if d divides n. Therefore the number of divisors of n, denoted by τ(n), is not greater than
m+ 1, i.e. τ(n) ≤ m+ 1.

3 Quasi 2-Cayley graphs
In this section the connected circulants are considered. In particular, connected circu-

lants that are also quasi 2-Cayley graphs are classified (see Theorem 1.1). If a graph Γ of
order n is a quasi 2-Cayley graph on a group G, which is not a strongly quasi 2-Cayley
graph, then it is isomorphic to the complete graph Kn. Namely, in such a graph, the point
at infinity ∞ is adjacent to both nontrivial orbits of G, and thus it is adjacent to all the
vertices different from∞. Consequently, we can conclude that Γ has valency |V (Γ)| − 1,
and so Γ is a complete graph. In order to classify all connected circulants that are also
quasi 2-Cayley graphs it therefore suffices to characterize strongly quasi 2-Cayley graphs
that are also connected circulants, we do this in Theorem 3.1.

Theorem 3.1. Let Γ be a connected circulant. Then Γ is also a strongly quasi 2-Cayley
graph if and only if Γ is isomorphic to the Paley graph P (p), where p is a prime such that
p ≡ 1 (mod 4). Moreover, Γ is a quasi bicirculant.

Proof. Let Γ be the Paley graph P (p), where p is a prime, such that p ≡ 1 (mod 4). It
is well known that the Paley graphs are connected arc-transitive circulants, and, as was
observed in [7], they are also strongly quasi 2-Cayley graphs.

Conversely, let Γ be a connected circulant Cay(Zn, S) of order n not isomorphic to
the complete graph Kn, which is also a strongly quasi 2-Cayley graph on a group G. Then
|G| = (n−1)/2 and Γ is of valency (n−1)/2. Lemma 2.1 tells us that Γ is an arc-transitive
graph, and moreover Proposition 2.1, Lemma 2.2 and Lemma 2.3 combined together imply
that Γ is a normal circulant. The theorem now follows from the three claims below.

CLAIM 1: n is an odd prime.

It is obvious that n must be odd, since 2 divides n − 1. By Lemma 2.4 we have that
τ(n) ≤ 3. Thus we have the following two possibilities for n:

• n = p, where p is a prime;

• n = p2, where p is a prime.

Suppose that the latter case hold. Let A = Aut(Γ). Since Γ is a normal Cayley graph, we
have A ∼= Zn o Aut(Zn, S). We may, without loss of generality, assume that the point at
infinity corresponds to the vertex 0 ∈ Zn, and so G ≤ Aut(Zn, S) ≤ Aut(Zn) ∼= Z∗n.
Therefore, Z∗n contains a subgroup G of order (n − 1)/2. Since |Z∗n| ≤ n − 1 and |G|
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divides |Z∗n| we obtain that |Z∗n| = n − 1 or (n − 1)/2. Since, by assumption, n is not a
prime, we have |Z∗n| = (n− 1)/2. This gives in the following equation

p2 − 1

2
= p(p− 1)

which has the unique solution p = 1, a contradiction.

CLAIM 2: n ≡ 1 (mod 4).

Since S = −S, and no element in Zn can be its own inverse, we have that the number of
elements in S is even, and since |S| = n−1

2 , we have n ≡ 1 (mod 4).

CLAIM 3: Γ is isomorphic to the Paley graph P (n).

By Claim 1, n is a prime. Therefore the group Z∗n is cyclic, and thus since G is a subgroup
of Z∗n, G is cyclic as well. By [6, Remark 2], we have Aut(Γ) = {g 7→ gσ + h | σ ∈
K,h ∈ Zn}, for a suitable groupK < Aut(Zn), and S is the orbit underK of a generating
element of Zn, that is, S = OrbK(g) for some generating element g of Zn. Now we have
that Aut(Γ)0 = {g 7→ gσ +h | σ ∈ K,h ∈ Zn : 0σ +h = 0} = {g 7→ gσ | σ ∈ K} ∼= K.
So we see that G . K. Since S = OrbK(g) . OrbG(g), and |S| = |OrbG(g)| we have
that S ∼= OrbG(g), which gives us that S ∼= G (taking g = 1). Now, since G is the index
2 subgroup of the cyclic group Z∗n, G is of the form G = 〈x2〉 where x generates Z∗n.
Therefore G consists of all squares in Z∗n and S ∼= G, implying that Γ is isomorphic to the
Paley graph P (n) as claimed.

It is obvious that G must be cyclic, so the graph Γ is in fact a quasi bicirculant.

Proof of Theorem 1.1: It follows from Theorem 3.1 and the paragraph preceding it. �

In general, if Γ is a vertex transitive quasi 2-Cayley graph on a groupG, not isomorphic
to the complete graph, then it is a strongly regular graph of a rank 3 group. Namely, the
orbits of G are contained in the orbits of the stabilizer of the Aut(Γ)∞ and since there are
just two nontrivial orbits of G, then there are exactly two nontrivial orbits of the Aut(Γ)∞
which in fact must coincide with the orbits ofG. Therefore Aut(Γ) must be a rank 3-group,
and the graphs of the rank 3 groups are strongly regular graphs.

4 Quasi 3-Cayley and 4-Cayley graphs
In this section we will deal with the question which connected circulants are also quasi

3-Cayley graph or strongly quasi 4-Cayley graphs. We first consider the case of strongly
quasi 3-Cayley graphs.

Theorem 4.1. Let Γ be a connected circulant. Then Γ is also a strongly quasi 3-Cayley
if and only if Γ ∼= Cay(Zn, S) where S is the set of all non-zero cubes in Zn, and n is a
prime such that n ≡ 1 (mod 3). Moreover, Γ is a quasi tricirculant.

Proof. Let Γ = Cay(Zp, S) where p ≡ 1 (mod 3) is a prime and S is the set of all non-
zero cubes in Zp. Since p is a prime, it is well known that Aut(Zp) ∼= Z∗p is a cyclic group
of order p−1. Let G = 〈a3〉, where a is a generating element of Z∗p. Then G consists of all
non-zero cubes in Zp, and |G| = p−1

3 . The action of G on Zp defined by xg = g · x gives
G as the subgroup of Aut(Γ). The group G acts quasi-semiregularly on Zp with 0 ∈ Zp
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as the point at infinity. Namely, it is easy to check that G0 = G, and that the stabilizer
of any element x ∈ Zp\{0} is trivial. Since |G| = p−1

3 , it follows that G has 3 orbits on
Zp\{0}, and therefore Γ is a quasi 3-Cayley graph. Since one of the orbits of G is the set
S, the point at infinity is adjacent to only one orbit of G, so Γ is in fact a strongly quasi
3-Cayley graph. By the construction Γ is an arc-transitive circulant since G ≤ Aut(Γ)0
acts transitively on the set of vertices adjacent to the vertex 0.

Conversely, let Γ be a connected circulant of order n, which is also a strongly quasi
3-Cayley graph on a group G. Then |G| = n−1

3 . From Lemma 2.1 we have that Γ is arc-
transitive, and therefore Proposition 2.1, Lemma 2.2 and Lemma 2.3 combined together
imply that Γ is a normal circulant. Therefore, we can assume that Γ = Cay(Zn, S), and
that G ≤ Aut(Zn, S) ≤ Aut(Zn), implying that n−13 |ϕ(n), where ϕ(n) is the Euler totient
function.

CLAIM 1: n is a prime number.
Let

n = pk11 · p
k2
2 · · · p

kt
t ,

be a canonic factorization of a positive integer n. From Lemma 2.4, we have τ(n) ≤ 4.
Now we can calculate

τ(n) = (k1 + 1)(k2 + 1) · · · (kt + 1).

We have the following possibilities for n:

• n = p,

• n = p2;

• n = p3;

• n = pq,

where p and q are different primes.
If n = p2, then the only solution of n−13 |ϕ(n) is p = 2 and n = 4. However, if n = 4,

the graph Γ is of valency 1, so it is not a connected graph.
If n = p3, then there is no solution of the above equation.
If n is a product of two different primes, then we have |Z∗n| = (n−1)/3 or 2(n−1)/3.

In the first case Z∗n ∼= G, so Z∗n acts semiregularly on Zn\{0}, and it is not difficult to see
that this is not the case for n = pq. If |Z∗n| = 2(n − 1)/3, then we obtain the following
equation

(p− 1)(q − 1) =
2(pq − 1)

3
.

The only solutions in natural numbers of the above equation are (p, q) ∈ {(4, 7), (5, 5),
(7, 4)}, so there are no two different primes p, q satisfying the given equation.

Having in mind all the written above, we conclude that n is a prime.

CLAIM 2: Γ is isomorphic to the Cayley Graph Cay(Zn, S), where S is set of all non zero
cubes in Zn, and n is a prime such that n ≡ 1 (mod 3).

Similarly as in the previous section, it can be shown that G ∼= S. Since G is an index 3
subgroup of Z∗n, we have G = 〈x3〉, where x is a generating element of Z∗n. It follows that
G consists of all cubes in Z∗n, so Γ is isomorphic to Cay(Zn, S), where S is the set of all
non zero cubes in Zn and n ≡ 1 (mod 3) is a prime. It is obvious from the mentioned
above, that the group G must be cyclic, therefore, Γ is in fact a quasi tricirculant.
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Proof of the Theorem 1.2: Let Γ be a connected circulant of order n, which is also a quasi
3-Cayley on a group G. The point at infinity is adjacent to all three nontrivial orbits of G,
if and only if Γ is isomorphic to Kn. If the point at infinity is adjacent to just one nontrivial
orbit of G, then Γ is a strongly quasi 3-Cayley graph, therefore, Theorem 4.1 gives us the
desired result. If the point at infinity is adjacent to two nontrivial orbits of G, then we
consider the complement Σ = Γ of the graph Γ. The graph Σ is a quasi 3-Cayley graph
on G, and actually it is a strongly quasi 3-Cayley graph on G. Since Σ is the complement
of a circulant it is also a circulant. Suppose that Σ is not connected. Then, since it is
vertex-transitive, it is the disjoint union of some isomorphic graphs. The point at infinity is
adjacent to one orbit of G, so the connected components of Σ must have at least 1 + n−1

3
points. Therefore n = k · n1, where k is the number of connected components, and n1 is
the number of points in each of the components. We have noticed that n1 ≥ 1 + n−1

3 , thus
k ≤ 2. If k = 1 then Σ is connected. Suppose that k = 2. Then there are two connected
components of Γ, say Γ1 and Γ2, each containing n/2 points. Suppose that∞ ∈ Γ1. Let
∆1,∆2 and ∆3 be a nontrivial orbits of G, and let the point at infinity be adjacent to ∆1.
Then ∆1 ⊂ Γ1. Since Γ1 and Γ2 have the same size, it means that at least one of ∆2 and ∆3

have points both in Γ1 and Γ2. Suppose that u, v ∈ ∆2, such that u ∈ Γ1 and v ∈ Γ2. Since
u and v are in the same orbit of G then there exist g ∈ G which maps u to v. However, g
fixes∞, and consequently g fixes Γ1, a contradiction.

Having in mind all the written above, we see that Σ is a connected circulant, which is
also a strongly quasi 3-Cayley graph. Therefore we have the desired result. �

We will continue this section with the proof of Theorem 1.3.

Proof of Theorem 1.3: Let Γ = C9. Then Γ ∼= Cay(Z9, {±1}). Then the group G =
{1,−1} ⊂ Z∗9 acts quasi semiregularly on Z9 with 0 as the point at infinity.

Let Γ ∼= Cay(Zp, S), where S is the set of all fourth powers in Zp\{0}, and p is a
prime such that p ≡ 1 (mod 4). Define G = 〈a4〉, where a is some generating element
of Z∗p, which is cyclic in this case. We have that G acts quasi-semiregularly on Z∗p with 0
as the point at infinity. Since |G| = p−1

4 , it follows that G has 4 orbits on Zp\{0}, and
therefore Γ is a quasi 4-Cayley graph. It is also easy to see that 0 is adjacent to only one
orbit of G on Zp\{0}, therefore Γ is a strongly quasi 4-Cayley graph. By the construction,
Γ is a connected arc-transitive circulant.

Conversely, let Γ be a connected circulant of order n which is also a strongly quasi
4-Cayley graph on a group G. Then |G| = (n − 1)/4. Using Lemma 2.1 we have that
Γ is arc-transitive, and so Proposition 2.1, Lemma 2.2 and Lemma 2.3 combined together
imply that Γ is a normal circulant. Therefore, we can assume that Γ = Cay(Zn, S), and
that G ≤ Aut(Zn, S) ≤ Aut(Zn), implying that

n− 1

4
|ϕ(n). (4.1)

Using Lemma 2.4 we obtain τ(n) ≤ 5. So we have the following possibilities:

• n = p,

• n = p2,

• n = p3,

• n = p4,

• n = pq,
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where p and q are different primes.
If n = p2, then the only solution of (4.1) is n = 9. In this case, the valency of Γ is

(9− 1)/4 = 2, so Γ ∼= C9.
In the cases when n = p3, and n = p4 there is no prime satisfying (4.1).
When n = pq, we have that (p − 1)(q − 1) = α · (pq − 1)/4, where α ∈ {1, 2, 3}.

If α = 1, then we have Z∗n = G, so Z∗n must act semiregularly on Zn\{0}, which is not
the case. If α = 2, then there are no two different primes satisfying (p − 1)(q − 1) =
(pq − 1)/2, and finally, when α = 3, we have that n = 5 · 13 is the only possibil-
ity. In this case, Γ is a connected arc-transitive circulant on 65 vertices, which has va-
lency 16. Since G is an index 3 subgroup of Z∗65 ∼= Z4 × Z12, then we can calcu-
late G ∼= {±1,±8,±12,±14,±18,±21,±27,±31}, and we can see that G does not act
semiregularly on Z65\{0}. Namely, the non identity element 21 ∈ G fixes the point
13 ∈ Z65\{0}.

Assume now that n is a prime. Similarly as in the proof of Theorem 3.1, we obtain
G ∼= S, and therefore, since G is an index 4 subgroup of Z∗n, we have G = 〈x4〉, where x
is some generating element of Z∗n. Therefore, Γ ∼= Cay(Zn, S), where S is the set of all
fourth powers in Zn\{0}.

From the mentioned above, it is clear that G is a cyclic group, so Γ is in fact a quasi
tetracirculant. �
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1 Introduction
Groups that factorise as products of isomorphic cyclic groups have been studied for over
fifty years [4, 7, 9, 10, 11]. In several recent papers [5, 6, 13, 14, 15, 16, 17, 18] these groups
have emerged as an important tool for the classification of regular embeddings of complete
bipartite graphs in orientable surfaces. They also arise naturally in the theory of finite p-
groups, for example in the recent classification by Berkovich and Janko [1, Chapter 87]
of 2-groups with a unique non-metacyclic maximal subgroup. Our aim in this paper is to
demonstrate some connections between these two problems by showing that a certain class
of non-metacyclic 2-groups play an important role in both situations. As a consequence,
we are able to give more information and simpler presentations for some of the groups
described by Berkovich and Janko.

As shown in [15], the problem of classifying orientably regular embeddings of complete
bipartite graphs Kn,n is closely related to that of determining those groups G that factorise
as a productAB of two cyclic groupsA = 〈a〉 andB = 〈b〉 of order n such thatA∩B = 1
and there is an automorphism of G transposing the generators a and b. Such groups are
called isobicyclic, or n-isobicyclic if we wish to specify the value of n (see [15]). We will
call (G, a, b) an isobicyclic triple, and (a, b) an isobicyclic pair for G.

A result of Itô [9] shows that an isobicyclic groupG, as a product of two abelian groups,
must be metabelian. In particular it is solvable, so it satisfies Hall’s Theorems, which extend
Sylow’s Theorems from single primes to sets of primes. This fact, together with results of
Wielandt [19] on products of nilpotent groups, allows one to reduce the classification of
n-isobicyclic groups to the case where n is a prime power (see [13] for full details).

When n is an odd prime power, a result of Huppert [7] implies that G must be meta-
cyclic. When n is a power of 2, however, Huppert’s result does not apply, and indeed for
each n = 2e ≥ 4 there are non-metacyclic n-isobicyclic groups. In this paper we will study
all n-isobicyclic groups where n = 2e, our main goal being to give a complete description
of the corresponding isobicyclic triples (G, a, b).

In order to state our main result, let us define

G1(e, f) = 〈h, g
∣∣ h2e = g2

e

= 1, hg = h1+2f 〉 (1.1)

where f = 2, . . . , e, and

G2(e; k, l) = 〈a, b
∣∣ an = bn = [b2, a2] = 1, [b, a] = a2b−2(an/2bn/2)k,

(b2)a = b−2(an/2bn/2)l, (a2)b = a−2(an/2bn/2)l〉 (1.2)

where n = 2e ≥ 4 and k, l ∈ {0, 1}, with k = l = 0 when n = 4. In fact, it is easily seen
that this last group G2(2; 0, 0) has a simplified presentation

G2(2; 0, 0) = 〈a, b
∣∣ a4 = b4 = [a2, b] = [b2, a] = 1, [b, a] = a2b2〉. (1.3)

Our main result shows that if n = 2e then every n-isobicyclic group has one of the
above two presentations.

Theorem 1.1. Let G be an n-isobicyclic group where n = 2e ≥ 4. Then either

(i) G is metacyclic, and G ∼= G1(e, f) for some f ∈ {2, . . . , e}, or

(ii) G is not metacyclic, in which case either G ∼= G2(2; 0, 0), or e ≥ 3 and G ∼=
G2(e; k, l) where k, l ∈ {0, 1}. In the latter case there are, up to isomorphism, just
three groups for each e, with G2(e; 0, 1) ∼= G2(e; 1, 1).
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The metacyclic groups G1(e, f) were treated in detail in [5]; for instance, it was shown
there that, up to automorphisms of G, one can take the isobicyclic pair to have the form
a = gr and b = grh, where r is an odd integer such that 1 ≤ r ≤ 2e−f . This paper is
therefore devoted to the non-metacyclic groups G2(e; k, l).

These groups G2(e; k, l) have recently arisen in a purely group-theoretic context. In [1,
Chapter 87] Berkovich and Janko, having classified the minimal non-metacyclic 2-groups
(i.e. those with all their maximal subgroups metacyclic), then classify those 2-groups with
a unique non-metacyclic maximal subgroup. Clearly such a group requires at most three
generators (two to generate a metacyclic maximal subgroup, and one more outside it).
The 3-generator groups of this type are relatively easy to deal with, and Berkovich and
Janko devote most of their analysis to the 2-generator groups. In Corollary 87.13 they
show that any such group factorises as a product of two cyclic groups, and conversely in
Theorem 87.22 they show that any non-metacyclic group which factorises in this way (and
is therefore a 2-generator group) has a unique non-metacyclic maximal subgroup. Their
analysis of the 2-generator groups depends on considering the different possibilities for the
commutator subgroup, and one part of the classification (essentially Theorem 87.19, see
also [12, Theorem 4.11]) is as follows:

Theorem 1.2. (Berkovich and Janko) Let G be a 2-generator 2-group with exactly one
non-metacyclic maximal subgroup. Assume that G′ ∼= C2r × C2r+1 where r ≥ 2. Then

G = 〈a, x | a2
r+2

= 1, [a, x] = v, [v, a] = b, v2
r+1

= b2
r

= [v, b] = 1,

v2
r

= z, b2
r−1

= u, x2 ∈ 〈u, z〉 ∼= C2 × C2, b
x = b−1,

vx = v−1, ba = b−1, a4 = v−2b−1w, w ∈ 〈u, z〉 〉
(1.4)

with |G| = 22r+4 and G′ = 〈b〉 × 〈v〉 ∼= C2r × C2r+1 .

One should regard (1.4) as giving sixteen presentations for each r, since there are four
possibilities for each of x2 and w in the Klein four-group 〈u, z〉. In Theorem 4.2, we will
show that the groups G2(e; k, l) for e ≥ 4 are exactly those groups G in Theorem 1.2 for
which x2 = zk and w = zl for some k, l ∈ {0, 1}, with e = r + 2. As noted by Janko
in [12, p. 315], the classification problem is not completely solved since some pairs of pre-
sentations define isomorphic groups. Indeed Theorem 1.1 shows that for each r ≥ 2 there
are, up to isomorphism, just three groups presented by (1.4) with x2 = zk and w = zl,
those with l = 1 and k = 0, 1 being isomorphic to each other. As a consequence of Theo-
rem 4.2, in (1.2) we give slightly more transparent presentations for these groups, showing
that each is an extension of its Frattini subgroup Φ(G) ∼= C2r+1 × C2r+1 by C2 × C2: the
roles of a, b and an/2bn/2 in (1.2) are played by a, ax and the central involution z in (1.4).
Moreover, all our structural results proved in Section 2 for the groups G2(e; k, l) apply to
these groups G. For instance, we show that they are all metabelian, of exponent 2e and
nilpotence class e. In classifying all isomorphisms between the groups G2(e; k, l), we also
determine their automorphisms; in particular, we show that for each e ≥ 3, AutG2(e; k, l)
has order 24e−3 or 24e−4 as l = 0 or 1.

Section 3 begins a structural analysis of isobicyclic 2-groups in general, while Section 4
is devoted specifically to non-metacyclic isobicyclic groupsG. We show that if n = 2e then
either G has a cyclic derived subgroup, in which case e = 2 and G ∼= G2(2; 0, 0), or G
has a derived group generated by two elements, in which case e ≥ 3 and G is isomorphic
to one of the three non-isomorphic groups of the form G2(e; k, l). This proves part (ii) of
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Theorem 1.1, and since part (i) is dealt with in [5], it completes the proof of that theorem.
In Section 5 we apply results from the preceding sections to the classification of regular
embeddings of complete bipartite graphs Kn,n where n is a power of 2.

A completely different proof of Theorem 1.1(ii) has already been given in [6]; it pro-
ceeds by induction on e, based on the fact that if n = 2e then any n-isobicyclic group has
an m-isobicyclic quotient where m = 2e−1. However, the main purpose of that paper was
not to study these groups for their own sake, but rather to enumerate them and to obtain
sufficient information about them to determine the corresponding graph embeddings. Here
we present an alternative proof, designed to shed more light on the internal structure of
these groups, and on how they are related to more general classes of 2-groups.

2 Non-metacyclic groups G2(e; k, l)

In this section we analyse properties of the non-metacyclic groups G2(e; k, l) appearing in
Theorem 1.1. Throughout this section we writeG(k, l), or simplyG, instead ofG2(e; k, l).
For brevity we also write n = 2e and m = n/2 = 2e−1.

It is useful to note that each groupG has a Frattini subgroup Φ = Φ(G) = 〈a2〉×〈b2〉 ∼=
Cm × Cm, with G/Φ ∼= C2 × C2 (see [6, Prop. 2.1]). It therefore has three maximal
subgroups, namely 〈Φ, a〉 = Φ ∪ Φa, 〈Φ, b〉 = Φ ∪ Φb and 〈Φ, ab〉 = Φ ∪ Φab.

Lemma 2.1. The following properties hold in G = G(k, l).

(i) The elements am, bm, and z = ambm are central involutions of G.

(ii)

bjai =


aibj , for i and j even,
aib−jzlj/2, for i odd and j even,
a−ibjzli/2, for i even and j odd,
a−ib−jzk+l(i+j)/2, for i and j odd.

(iii) The element g = aibj has order

|g|


dividing m, for i and j even,
equal to n, with gm = am, for i odd and j even,
equal to n, with gm = bm, for i even and j odd,
dividing 4, and equal to 2 if k = l = 0, for i and j odd.

(iv) The groupG is isobicyclic, that is,G = 〈a〉〈b〉, where |a| = |b| = 2e and 〈a〉∩〈b〉 =
1, and there is an involutory automorphism of G interchanging a and b.

(v) G′ = 〈a2b−2zk〉 × 〈a4zl〉 with 〈a2b−2zk〉 ∼= Cm and 〈a4zl〉 ∼= Cm/2.

(vi) G is not metacyclic.

(vii) G has nilpotence class e, with upper central series 1 = Z0 < Z1 < · · · < Ze = G

where Zi = 〈a2e−i〉〈b2e−i〉 for i = 0, 1, . . . , e.

Proof. Some of these results were proved in [6]; for completeness we give proofs here.
If we define z = ambm, the defining relations for G in (1.2) take the form

an = bn = [b2, a2] = 1, [b, a] = a2b−2zk, (b2)a = b−2zl, (a2)b = a−2zl, (2.1)
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where k, l ∈ {0, 1} with k = l = 0 if n = 4.

(i) Since m is even, and [a2, b2] = 1, the involutions am and bm commute; they are
distinct, so their product z is also an involution. Since z commutes with a2 and b2, and
either m is divisible by 4 or l = 0, we have (bm)a = ((b2)a)m/2 = (b−2zl)m/2 =
b−mzlm/2 = b−m = bm, so bm is an element of the centre Z(G) of G. Similarly, am ∈
Z(G), so z ∈ Z(G).

(ii) Now we compute bjai. Define c = [b, a] = b−1a−1ba. If both i and j are even,
then bjai = aibj . If i is odd and j is even, then since i− 1 is even we have

bjai = (bjai−1)a = ai−1bja = ai((b2)a)j/2 = aib−jzlj/2.

If i is even and j is odd, then

bjai = b−1(bj+1ai) = (b−1aib)bj = ((a2)b)i/2bj = a−ibjzli/2.

If both i and j are odd, then

bjai = bj−1abcai−1 = bj−1ab(b−2a2zk)ai−1 = a(bj−1)a(ai+1)bb−1zk

= ab1−jzl(j−1)/2a−i−1zl(i+1)/2b−1zk = a−ib−jzk+l(i+j)/2.

(iii) If i and j are both even then (ii) implies that

g2 = (aibj)2 = ai(bjai)bj = a2ib2j ∈ 〈a4〉 × 〈b4〉 ∼= Cm/2 × Cm/2,

so gm = 1. If i is odd and j is even then (ii) gives

g2 = ai(bjai)bj = a2ib−jzlj/2bj = a2izlj/2,

so 〈g4〉 = 〈a4i〉 = 〈a4〉; thus 〈g2r 〉 = 〈a2r 〉 for all r ≥ 2, so |g| = |a| = n with gm = am.
The proofs in the other two cases are similar.

(iv) The formulæ in (ii) show that every element ofG can be expressed in the form aibj ,
so G = 〈a〉〈b〉. In order to see that 〈a〉 ∩ 〈b〉 = 1, note that ai and bj lie in distinct cosets
of Φ unless i and j are both even; in this case the fact that Φ = 〈a2〉 × 〈b2〉 ensures that
〈a〉∩〈b〉 = 1. The defining relations ofG are equivalent to those obtained by transposing a
and b, so this transposition can be extended to an automorphism α of order 2 of G. Hence
G is an n-isobicyclic group.

(v) SinceG = 〈a, b〉,G′ is the normal closure 〈cg | g ∈ G〉 inG of the commutator c =
[b, a]. We will show that this is the subgroup M := 〈c, ca〉. Since c = [b, a] = a2b−2zk we
have ca = (a2b−2zk)a = a2b2zk+l, and conjugation by a transposes these two generators
of M since [c, a2] = 1. Similarly, conjugation by b transposes the generators c and (ca)−1

of M , so M is normal in G and hence M = 〈cg | g ∈ G〉 = G′. Thus G′ has generators
c = a2b−2zk = akm+2bkm−2 and cac = a4zl = alm+4blm; these generate disjoint cyclic
groups of orders m and m/2, so

G′ = 〈a2b−2zk〉 × 〈a4zl〉 ∼= Cm × Cm/2.



160 Ars Math. Contemp. 6 (2013) 155–170

(vi) For e ≥ 3 the fact thatG′ is not cyclic immediately implies thatG is not metacyclic.
In the case e = 2 it is easily seen that the only cyclic normal subgroups of G are contained
in Φ, and these do not have cyclic quotients.

(vii) This follows by induction on e, using the facts that Z(G) = {1, am, bm, z} (a
simple consequence of (ii)), thatG/Z(G) ∼= G(e−1; 0, 0), and thatG(2; 0, 0), as presented
in (1.3), clearly has class 2.

Proposition 2.2. Each isomorphism σ : G(k1, l1)→ G(k, l) is given by setting aσ1 = aibj

and bσ1 = afbh, where

(i) k1 ≡ k + l(f+h−i−j)
2 (mod 2),

(ii) l1 = l, and

(iii) either i and h are odd and j and f are even, or i and h are even and j and f are odd.

Moreover, each choice of the parameters i, j, f and h satisfying the above conditions de-
termines an isomorphism G(k1, l1)→ G(k, l).

Proof. Recall that

G = G(k, l) = 〈a, b
∣∣ an = bn = [b2, a2] = 1, [b, a] = a2b−2zk,

(b2)a = b−2zl, (a2)b = a−2zl〉

with z = ambm, and define

G1 = G(k1, l1) = 〈a1, b1
∣∣ an1 = bn1 = [b21, a

2
1] = 1, [b1, a1] = a21b

−2
1 zk11 ,

(b21)a1 = b−21 zl11 , (a21)b1 = a−21 zl11 〉,

where z1 = am1 b
m
1 .

An isomorphism σ : G1 → G is uniquely determined by an assignment

a1 7→ a2 = aibj , b1 7→ b2 = afbh

for some integers i, j, f and h such that a2 and b2 generate G and satisfy the defining
relations of G1, when substituted for a1 and b1.

Now a1 has order n, whereas Lemma 2.1(iii) shows that a2 has order less than n if i
and j are both even or both odd. We may therefore restrict attention to mappings σ for
which i and j have opposite parity, that is, a2 ∈ Φa ∪ Φb. A similar argument shows that
b2 ∈ Φa ∪ Φb. If a2 and b2 are both in Φa, or both in Φb, they are both contained in a
maximal subgroup Φ ∪ Φa or Φ ∪ Φb of G and hence cannot generate G. They therefore
lie in distinct cosets Φa and Φb, and by composing σ with the automorphism α of G
transposing a and b if necessary, we may assume that a2 ∈ Φa and b2 ∈ Φb, that is, i and
h are odd while j and f are even. This ensures that a2 and b2 generate G, since none of the
three maximal subgroups of G contains both of them.

For any g ∈ Gwe have g2 ∈ Φ ∼= Cm×Cm, so a2 and b2 satisfy the first three relations
an2 = bn2 = [b22, a

2
2] = 1 for G1.

Now σ sends z1 = am1 b
m
1 to am2 b

m
2 . Since i is odd and j is even, we have am2 = am by

Lemma 2.1(iii). Similarly bm2 = bm, so σ sends z1 to ambm = z.
We can now consider the fourth relation. Straightforward calculations give

[b2, a2] = [afbh, aibj ] = a2ib−2hzk+l(h−i)/2
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and
a22b
−2
2 zk1 = a2ib−2hzk1+l(j−f)/2,

so we require

k1 ≡ k +
l(f + h− i− j)

2
(mod 2),

giving condition (i) of the Lemma.
For the fifth relation, we have

(b22)a2 = ((afbh)2)a
ibj = ((b2hzlf/2)a

ibj = b−2hzl+lf/2

and
b−22 zl1 = b−2hzl1−lf/2;

since f is even and h is odd we require l1 = l. Similar arguments show that the sixth and
final relation is also equivalent to this, so we have condition (ii).

Conditions (i) and (ii) are necessary and sufficient conditions for σ to be an isomor-
phism, in the case where a2 ∈ Φa and b2 ∈ Φb, that is, i and h are even while j and f are
odd. For the case where a2 ∈ Φb and b2 ∈ Φa we can compose σ with α, transposing i
with j, and f with h; this gives condition (iii) of the Lemma, leaving conditions (i) and (ii)
unchanged.

Corollary 2.3. For each e ≥ 3 we have G(1, 1) ∼= G(0, 1) while G(0, 0), G(1, 0) and
G(0, 1) are pairwise non-isomorphic.

Proof. From Proposition 2.2 we immediately deduce that G(k, 0) 6∼= G(k′, 1) for any k
and k′, and that G(0, 0) 6∼= G(1, 0). Furthermore, taking i = 3, j = f = 0 and h = 1 in
the definition of σ, we get an isomorphism from G(0, 1) to G(1, 1).

Corollary 2.4. The automorphisms of G(k, l) are given by σ : a 7→ aibj , b 7→ afbh

where

(i) either i and h are odd and j and f are even, or i and h are even and j and f are odd,
and

(ii) i+ j ≡ f + h (mod 4) if l = 1.

Proof. This follows immediately from Proposition 2.2, with k1 = k and l1 = l.

By counting choices of i, j, f, h ∈ Zn satisfying the conditions of Corollary 2.4, we
deduce that |AutG(k, l)| = n4/8 or n4/16 as l = 0 or 1.

3 The derived group of an isobicyclic 2-group
In this section we begin an analysis of the structure of an isobicyclic 2-group. Let (G, a, b)
be an n-isobicyclic triple where n = 2e ≥ 4. As before, let c = [b, a] and let Φ denote the
Frattini subgroup Φ(G) ofG. Let 0i(G) = 〈g2i | g ∈ G〉, and letKi(G) = [G,G, · · · , G]
(i times); in particular, K2(G) = G′. Each of these subgroups Φ(G),0i(G) and Ki(G) is
a characteristic subgroup of G.

The following properties of G follow from more general known results.

Lemma 3.1. Let (G, a, b) be a non-abelian n-isobicyclic triple where n = 2e ≥ 4, and let
A = 〈a〉 and B = 〈b〉. Then the following hold.
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(i) The derived group G′ is abelian (see [9]).

(ii) G′/(G′ ∩A) is isomorphic to a subgroup of B (see [3, Corollary C]).

(iii) G is metacyclic if and only if G/Φ(G′)K3(G) is metacyclic (see [2] or [8, Hilfssatz
III.11.3]).

Lemma 3.2. [5, Lemma 3.1] Let G be an isobicyclic 2-group of exponent 2e ≥ 4. Then
G has a central series 1 = Z0 < Z1 < Z2 < · · · < Ze = G of subgroups Zi =

〈a2e−i〉〈b2e−i〉 of order 22i. Moreover, 0i(G) = Ze−i and Zi/Zi−1 ∼= C2 × C2 for each
i ∈ {1, 2, . . . , e}. In particular, for every element g ∈ Zi we have |g| ≤ 2i.

Outline proof. We proved this result as Lemma 3.1 of [5], so we simply outline the ar-
gument here. By a result of Douglas [4] and Itô [10] (see also [8, VI.10.1(a)]), the core
of A in G is nontrivial. Since 〈a2e−1〉 is the unique minimal normal subgroup of A it is
therefore normal inG, and hence central. The same applies to 〈b2e−1〉, so these two disjoint
subgroups generate a central subgroup Z1

∼= C2 × C2. Now apply the same argument to
the isobicyclic group G/Z1, and iterate. �

Lemma 3.3. Let (G, a, b) be a non-abelian n-isobicyclic triple where n = 2e ≥ 4, and let
A = 〈a〉 and B = 〈b〉. Then G has the following properties.

(i) There exist an odd integer d < 2e and integers u and v such that 0 ≤ u < v ≤ e,
c = [b, a] = ad2

u

b−d2
u

and G′ = 〈c〉 × 〈a2v 〉 = 〈c〉 × 〈b2v 〉. In particular, G′ is
cyclic if v = e. Moreover, [a2

u

, b2
v

] = [b2
u

, a2
v

] = 1.

(ii) 〈c〉 ∩ A = 〈c〉 ∩ B = 1, |c| = 2e−u, and for each integer j such that 0 ≤ j ≤ e− u
there exists an odd integer h such that c2

j

= ah2
u+j

b−h2
u+j

.

(iii) Either G′ = 〈c〉, or G′ = 〈c, ca〉 = 〈c, cb〉 with ca = csat2
v

and cb = csb−t2
v

where
s and t are odd.

Proof. Since G = AB, each element can be written as aibj , and since A ∩ B = 1 this
representation is unique. Let c = [b, a] = arbw. Since the automorphism α interchanges a
and b, we have

braw = [bα, aα] = [a, b] = [b, a]−1 = b−wa−r.

Therefore w ≡ −r (mod 2e) and so c = arb−r. We can write r = d2u where d is odd,
d < 2e and 0 ≤ u ≤ e. Similarly, for every integer j there is an integer k such that
cj = akb−k. In particular, 〈c〉 ∩A = 〈c〉 ∩B = 1, as claimed in (ii).

Let the cyclic group G′ ∩ A be generated by a2
v

, where v ≤ e. Applying α gives
G′ ∩B = 〈b2v 〉. Since G = 〈a, b〉, Lemma III.1.11 of [8] implies that G′ = 〈cg

∣∣ g ∈ G〉.
By Lemma 3.1(i), G′ is abelian, so c is an element ofG′ of maximal order. Since 〈c〉∩A =
〈c〉 ∩ B = 1, we see that 〈c〉 × 〈a2v 〉 ≤ G′. By Lemma 3.1(ii), G′/〈a2v 〉 is cyclic. Since
〈c〉 ∩A = 1 again, the image of c in G′/〈a2v 〉 has order |c|, so it is an element of G′/〈a2v 〉
of maximal order and therefore generates G′/〈a2v 〉. This gives G′ = 〈c〉 × 〈a2v 〉 and
hence, by applying α, G′ = 〈c〉 × 〈b2v 〉.

From a2
v

c = ca2
v

and c = ad2
u

b−d2
u

we see that [bd2
u

, a2
v

] = 1. Hence it follows
that [〈bd2u〉, a2v ] = 1, and in particular, since d is odd, [b2

u

, a2
v

] = 1. By symmetry,
[a2

u

, b2
v

] = 1.
Since 〈c〉 = 〈ad2ub−d2u〉 ≤ 0u(G) = Ze−u, Lemma 3.2 shows that |c| ≤ 2e−u. Since

c is an element of maximal order in G′, we have 2e−v = |a2v | ≤ |c| ≤ 2e−u, so u ≤ v.
This proves (i), apart from the inequality u 6= v, which follows later.
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To prove (ii), let L denote the subgroup G′〈b2u〉. Then

L = 〈ad2
u

b−d2
u

, b2
v

〉〈b2
u

〉 = 〈a2
u

, b2
u

〉 = 〈a2
u

〉〈b2
u

〉 = Ze−u.

Computing the order

22(e−u) = |L| = |G′||〈b2
u

〉|/|G′ ∩ 〈b2
u

〉| = |c|2e−v2e−u/2e−v = |c|2e−u,

we see that |c| = 2e−u.
For each j = 0, 1, . . . , e − u we have c2

j ∈ Ze−(u+j), so c2
j

= ah2
u+j

b−h2
u+j

for
some integer h. Since |c2j | = 2e−(u+j), it follows that c2

j 6∈ Ze−(u+j+1), so h is odd.
This proves (ii).

We now consider (iii). Since ca ∈ G′ = 〈c〉 × 〈a2v 〉, either ca ∈ 〈c〉, or ca =
csat2

q

for some integers s, t and q where t is odd and q ≥ v. In the former case we have
G′ = 〈c〉, satisfying (iii); we may therefore assume the latter, in which case we also have
cb = csb−t2

q

. Define M = 〈c, ca〉, so M = 〈c〉× 〈a2q 〉. From the preceding paragraph we
know that c2

q−u

= ah2
q

b−h2
q

for some odd h. Therefore

b2
q

∈ 〈bh2
q

〉 = 〈c−2
q−u

ah2
q

〉 ≤ 〈c2
q−u

, a2
q

〉 ≤M,

which implies that M = 〈c〉 × 〈b2q 〉. Now Ma = 〈c, a2q 〉a = M and M b = 〈c, b2q 〉b =
M , so Mg = M for each g ∈ G. In particular, cg ∈ M for each g ∈ G. Therefore
G′ = 〈cg

∣∣ g ∈ G〉 = M. In other words, q = v, that is ca = csat2
v

where t is odd.
We now show that u 6= v. Recall that G′ = 〈c〉 × 〈a2v 〉 = 〈c〉 × 〈b2v 〉, so Ze−v =

〈a2v 〉× 〈b2v 〉 ≤ G′. On the other hand c = ad2
u

b−d2
u

, so G′ ≤ 〈a2u〉〈b2u〉 = Ze−u. Now
suppose that u = v, so G′ = Ze−v , with e− v > 0 since G is non-abelian. By Lemma 3.2,
the subgroupG′/Ze−(v+1) = Ze−v/Ze−(v+1) is central inG/Ze−(v+1). We have seen that
G′ = 〈c, ca〉, so caZe−(v+1) = cZe−(v+1) since c ∈ G′. Thus

G′/Ze−(v+1) = 〈c, ca〉/Ze−(v+1) = 〈c〉/Ze−(v+1)

is cyclic, contradicting the fact that Ze−v/Ze−(v+1)
∼= C2 × C2 by Lemma 3.2. Thus

u < v, completing the proof of (i).
Finally, since ca = csat2

v ∈ G′ = 〈c〉 × 〈a2v 〉 we have

2e−u = |c| = |ca| = |csat2
v

| = max{|cs|, |at2
v

|},

with |at2v | = 2e−v < 2e−u since v > u, so |cs| = |c| and hence s must be odd.

The next result uses the parameter u, where c has order 2e−u, to distinguish between
metacyclic and non-metacyclic n-isobicyclic groups G.

Lemma 3.4. Let (G, a, b) be a non-abelian n-isobicyclic triple where n = 2e ≥ 4. With u
and v defined as in Lemma 3.3, the following statements hold.

(i) If u ≥ 2 then G is metacyclic, with 2 ≤ u < v = e and G′ = 〈c〉 = 〈(ab−1)r〉 ∼=
C2e−u .

(ii) If u < 2 then G is non-metacyclic, with u = 1, v = 2 and G′ = 〈a2b−2〉 × 〈a4〉 =
〈a2b−2〉 × 〈b4〉, where 〈a2b−2〉 ∼= C2e−1 and 〈a4〉 ∼= 〈b4〉 ∼= C2e−2 .
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In particular, if G is non-metacyclic and G′ is cyclic, then e = 2 and G′ = 〈a2b−2〉 ∼= C2.

Proof. By Lemma 3.3, G′ = 〈c〉 × 〈a2v 〉 where c = [b, a] = arb−r with r = d2u for an
odd integer d and some integers u and v such that 0 ≤ u < v ≤ e.

(a) We first consider the case whereG′ is cyclic, so that v = e. By Lemma 3.3,G′ = 〈c〉
and hence ca = cs for some s, which must be odd. By applying α, which inverts c, we
also have cb = cs. It follows that cab

−1

= c. Moreover, [c, a] = [c, b] = cs−1 ∈ 〈c2〉,
which means that the image c〈c2〉 of c in G/〈c2〉 is a central involution in that group. (As
a characteristic subgroup of 〈c〉 = G′, 〈c2〉 is normal in G.) Now we have

(ab−1)2 = ab−1ab−1 = a2(a−1ba)−1b−1 = a2(bc)−1b−1

= a2c−1b−2 ≡ a2b−2c (mod 〈c2〉)

and

a2b2 = abac−1b = bac−1ac−1b ≡ baab ≡ babac−1 ≡ b2ac−1ac−1 ≡ b2a2 (mod 〈c2〉).

(a1) Suppose that u ≥ 2, as in (i). Then r/2 is even, so

(ab−1)r = ((ab−1)2)r/2 ≡ (a2b−2c)r/2 ≡ (a2b−2)r/2cr/2

≡ (a2b−2)r/2 ≡ arb−r ≡ c (mod 〈c2〉).

Thus (ab−1)r is an odd power of c, so 〈(ab−1)r〉 = 〈c〉 and |(ab−1)r| = |c| = 2e−u by
Lemma 3.3. Since G = 〈a, b〉, the quotient group G/G′ = G/〈c〉 is generated by the
images a and ab−1 of a and ab−1 in this group. Now 〈c〉 ∩ A = 1 by Lemma 3.3(ii), so a
has order |a| = 2e. Since (ab−1)r ∈ 〈c〉, we see that ab−1 has order dividing r, and hence
dividing 2u. But G/〈c〉 is an abelian group of order |G|/|〈c〉| = 22e/2e−u = 2e+u, so
ab−1 must have order 2u with G/G′ = 〈a〉 × 〈ab−1〉 ∼= C2e × C2u .

Since (ab−1)r is an odd power of c we have 〈(ab−1)r〉 = 〈c〉, so the cyclic subgroup
H := 〈ab−1〉 contains G′ with index 2u. Since the image of H in G/G′ has order 2u,
and G′ has order 2e−u, it follows that H has order 2e. Since H contains G′ it is a normal
subgroup of G. Thus AH = HA is a subgroup of G, and since it contains both a and b we
have G = AH , so G is metacyclic. This proves (i) in the case where G′ is cyclic.

(a2) Now suppose that G′ is cyclic and u = 0. Then G′ = 〈c〉 has order 2e−u = 2e by
Lemma 3.3(ii). SinceG′∩A = 1 by Lemma 3.3(ii) we have |G′A| = |G′||A| = 22e = |G|,
soG = G′A andG/G′ is cyclic. But thenG/Φ is cyclic and hence so isG, a contradiction.
Hence u 6= 0.

We therefore have u = 1, so r = 2d, giving c = a2db−2d, where d is odd. By
Lemma 3.3(ii), |c| = 2e−1, and since G = 〈a, ab−1〉 we have G/G′ = G/〈c〉 ∼= C2e ×C2.

(a3) Suppose first thatG is metacyclic. Huppert gives the general form for a metacyclic
p-group in [8, III.11.2]; taking p = 2 we have

G = 〈g, h | h2
i

= 1, g2
j

= h2
k

, hg = hq〉

with 0 ≤ k ≤ i, q2
j ≡ 1 (mod 2i) and 2k(q − 1) ≡ 0 (mod 2i). Thus G has a normal

subgroup H = 〈h〉 ∼= C2i with G/H ∼= C2j , so |G| = 2i+j and hence i + j = 2e. Since
|h| = 2i and G has exponent n = 2e we have i ≤ e and hence j ≥ e. Since |g| = 2i+j−k

we have i+ j − k ≤ e and hence k ≥ e. But k ≤ i, so i = j = k = e. Thus

G = 〈g, h | gn = hn = 1, hg = hq〉
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for some q satisfying 1 < q < n. Now G′, being cyclic, is generated by [h, g] = hq−1. We
are assuming that u = 1, so G′ ∼= C2e−1 and hence q ≡ 3 (mod 4).

Each element of G has the form gihj for a unique pair i, j ∈ Zn. By using the relation
(hj)g

i

= hjq
i

, we obtain

(gihj)m = gim(hj)g
i(m−1)

(hj)g
i(m−2)

. . . (hj)g
i

hj

= gimhj(q
i(m−1)+qi(m−2)+···+qi+1)

= gimhj(q
im−1)/(qi−1)

for all m ≥ 1. Let m = n/2 = 2e−1. If i is even then gim = 1 and qi ≡ 1 (mod 4); if
2k ‖ qi − 1 then 2k+e−1 ‖ qim − 1, so 2e−1 ‖ (qim − 1)/(qi − 1) and hence (gihj)m =
hjm. If i is odd then gim = gm and qi ≡ 3 (mod 4); if 2k ‖ qi + 1 (so k ≥ 2) then
2k+e−1 ‖ qim − 1, and 2 ‖ qi − 1, so 2e | (qim − 1)/(qi − 1) and (gihj)m = gm. Thus

(gihj)m =

{
hjm, for i even,
gm, for i odd,

so gihj has order n if and only if i or j is odd, that is, gihj 6∈ Φ = 〈g2, h2〉.
If a and b are an isobicyclic pair for G then they have order n, so they are not elements

of Φ. Since they generate G, they are in different cosets of Φ, namely gΦ, hΦ or ghΦ. The
subgroups A = 〈a〉 and B = 〈b〉 are disjoint, so am 6= bm; hence these two cosets cannot
be gΦ and ghΦ (otherwise am = gm = bm), so one of them must be hΦ, say a ∈ hΦ.
Then AΦ = HΦ, so HαΦ = BΦ = gΦ or ghΦ, giving (hα)m = gm 6= hm and hence
Hα ∩H = 1. Since H is a normal subgroup of G, so is Hα. Hence G = Hα ×H , which
is abelian, contradicting the assumption. Thus G cannot be metacyclic.

(a4) Now suppose that G is non-metacyclic, with G′ cyclic and u = 1 as before. We
consider the subgroupN := 〈c, ab−1〉 ofG; this is abelian since cab

−1

= c, and it is normal
in G since it contains G′ = 〈c〉. Note that N is the preimage in G of 〈ab−1〉 ≤ G/G′. In
the abelian group G/G′ = G/〈c〉 we have (ab−1)2d = a2db−2d = c = 1, which means
that ab−1 is of order 2. Since |c| = 2e−1, we have |N | = 2e. Since 〈N, a〉 = 〈a, b〉 = G,
we deduce that G = N o 〈a〉. Since G is not metacyclic, N can not be cyclic and so
N ∼= C2e−1×C2. Let c′ be an involution ofN different from c2

e−2

, so thatN = 〈c〉×〈c′〉.
Then the conjugacy action of a on N is defined by ca = cs and (c′)a = cj2

e−2

c′, where
j = 0 or 1, and s is odd. Now G = 〈c, c′, a〉 with [c, c′] = 1, so G′ = 〈[c, a]g, [c′, a]g

∣∣ g ∈
G〉 ≤ 〈c2, cj2e−2〉. Since G′ = 〈c〉, we see that j2e−2 must be odd, so j = 1 and e = 2,
giving |G| = 16. Since v = e we have v = 2, and we have proved (ii) in the case where G′

is cyclic. (Note that a4 = b4 = 1 in this case.)
(b) We now consider the case where G′ is not cyclic, that is, v < e. This immediately

implies that G is not metacyclic. Recall that u < v. Since G′ = 〈c〉 × 〈a2v 〉, we have
Φ(G′) = 〈c2〉×〈a2v+1〉. Moreover, by Lemma 3.3(iii) we have ca = csat2

v

for some
odd integers s and t. Then at2

v

= c−s+1[c, a] ∈ L := Φ(G′)K3(G), which implies that
a2

v ∈ L. Since L is a characteristic subgroup of G, it also contains b2
v

= (a2
v

)α, and
hence it contains the subgroup Ze−v = 〈a2e−v 〉〈b2e−v 〉.

Suppose that G/Ze−v is metacyclic. Since G/L ∼= (G/Ze−v)/(L/Ze−v), it follows
that G/L is metacyclic. Then Lemma 3.1(iii) implies that G is metacyclic, which is a
contradiction. Therefore G/Ze−v is non-metacyclic.
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Now G/Ze−v is an isobicyclic 2-group. Since it is non-metacyclic, and its derived
group (G/Ze−v)

′ = G′/Ze−v ∼= C2v−u is cyclic, it follows from part (a2) of this proof
that G/Ze−v has order 16, with |G′/Ze−v| = 2. Thus a4 ∈ Ze−v = 〈a2v 〉〈b2v 〉, so v = 2.
Since G′/Ze−v ∼= C2v−u and |G′/Ze−v| = 2, we deduce that v − u = 1, so u = 1. We
have G′ = 〈c〉 × 〈a2v 〉 = 〈c〉 × 〈b2v 〉 with c = ad2

u

b−d2
u

= a2db−2d for some odd d, so
G′ = 〈a2b−2〉× 〈a4〉 = 〈a2b−2〉× 〈b4〉, with first and second factors cyclic of orders 2e−1

and 2e−2 as required for (ii).
The final statement in the Lemma is an immediate consequence of (i) and (ii).

4 Non-metacyclic isobicyclic 2-groups
The following theorem characterises non-metacyclic isobicyclic 2-groups.

Theorem 4.1. Let (G, a, b) be a non-metacyclic n-isobicyclic triple with n = 2e ≥ 4.
(i) If e = 2 then

G = 〈a, b
∣∣ a4 = b4 = [a2, b] = [b2, a] = 1, [b, a] = a2b2〉

∼= G2(2; 0, 0).

(ii) If e ≥ 3 then

G = 〈a, b
∣∣ an = bn = [b2, a2] = 1, [b, a] = a2b−2(an/2bn/2)k,

(b2)a = b−2(an/2bn/2)l, (a2)b = a−2(an/2bn/2)l〉

∼= G2(e; k, l)

where k, l ∈ {0, 1}.

Proof. (i) If e = 2 then c = a2b−2 = a2b2 is an involution commuting with both a and b,
so c is central in G. Thus [a, b2] = [b, a2] = 1 and it follows that G ∼= G2(2; 0, 0).

(ii) Let e ≥ 3. By Lemma 3.4(ii) we see that v = 2 and u = 1, so

G′ = 〈c〉 × 〈a4〉 = 〈a2b−2〉 × 〈a4〉 ∼= C2e−1 × C2e−2

where c = [b, a] = a2db−2d for some odd d. By Lemma 3.3(iii) we have

ca = csa4t and cb = csb−4t (4.1)

for some odd s and t. We will determine d, s and t up to group automorphisms.
By Lemma 3.4(ii), [a4, b2] = [a2, b4] = 1; since d− 1 is even, this implies that

ca
2b−2

= b2a−2a2db−2da2b−2 = b2a2(d−1)b−2da2b−2

= a2(d−1)b−2(d−1)a2b−2 = a2db−2d = c,

so ca
2

= cb
2

. Since

ca
2

= (ca)a = (csa4t)a = (ca)sa4t = cs
2

a4t(s+1)

and
cb

2

= (cb)b = (csb−4t)b = (cb)sb−4t = cs
2

b−4t(s+1),
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we see that a4t(s+1) = b−4t(s+1). However, A ∩ B = 1, so a4t(1+s) = 1 and hence ca
2

=
cs

2

. Since t is odd, we have s ≡ −1 (mod 2e−2). In what follows, we set s = −1 + l2e−2;
since |c| = 2e−1 we can assume that l = 0 or 1. Then s2 ≡ 1 (mod 2e−1), and because
|c| = 2e−1 we have ca

2

= cs
2

= c. Thus a2 commutes with c = a2db−2d, and hence with
b2d; since d is odd we therefore have

[a2, b2] = 1. (4.2)

Using equation (4.1) we see that

b−1a2jb = ((ab)2)j = ((ac−1)2)j = (ac−1ac−1)j = (a2(ca)−1c−1)j

= (a2a−4tc−(s+1))j = a2(1−2t)jc−j(s+1) (4.3)

for each positive integer j. By taking j = 2e−2 we deduce that the involution a2
e−1

is
central inG, and the same holds for b2

e−1

. In what follows we set z = a2
e−1

b2
e−1

= c2
e−2

.
By equations (4.1) and (4.3) we have

ca = c−1a4tzl, cb = c−1b−4tzl, b−1a2jb = a2(1−2t)jzlj . (4.4)

From cb = (a2db−2d)b and equation (4.4) we have

a−2db2db−4tzl = a2(1−2t)dzldb−2d,

so
a4(1−t)d = b4(d−t)

and hence
(1− t)d ≡ d− t ≡ 0 (mod 2e−2).

Solving these equations gives

d ≡ t ≡ 1 (mod 2e−2).

Writing d = 1 + k2e−2 where k = 0 or 1, and using b2
e

= 1, we see from these two con-
gruences that the relations c = a2db−2d, ca = csa4t and cb = csb−4t can be respectively
rewritten as

[b, a] = a2+k2
e−1

b−2+k2
e−1

, (b2)a = al2
e−1

b−2+l2
e−1

, (a2)b = a−2+l2
e−1

bl2
e−1

(4.5)

where k, l ∈ {0, 1}. By combining the relations in (4.5) with the fact that a2
e

= b2
e

=
[a2, b2] = 1, we see that G satisfies all the defining relations of G2(e; k, l) in (1.2). Thus
G is an epimorphic image of G2(e; k, l), and since these two groups have the same order,
they are isomorphic.

Recall that Theorem 1.2, of Berkovich and Janko, states that a 2-generator 2-group with
exactly one non-metacyclic maximal subgroup, and with a derived group isomorphic to
C2r×C2r+1 for some r ≥ 2, has a presentation of the form (1.4). Here we consider a subset
of these groups, namely those for which x2 and w are powers of the central involution z.
For each r ≥ 2, and for each pair k, l ∈ {0, 1}, let G = G(k, l) denote the group given by
the presentation (1.4) with x2 = zk and w = zl, that is,

G(k, l) = 〈a, x | a2
r+2

= 1, [a, x] = v, [v, a] = b, v2
r+1

= b2
r

= [v, b] = 1,

v2
r

= z, b2
r−1

= u, x2 = zk, bx = b−1,
vx = v−1, ba = b−1, a4 = v−2b−1w, w = zl 〉.

(4.6)
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Our aim is to show that G is isomorphic to the group G2 = G2(e; k, l), where e = r + 2.
To avoid notational confusion, let us present G2 as

G2(e; k, l) = 〈a1, b1 | a2
e

1 = b2
e

1 = [b21, a
2
1] = 1, [b1, a1] = a21b

−2
1 (a2

e−1

1 b2
e−1

1 )k,

(b21)a1 = b−21 (a2
e−1

1 b2
e−1

1 )l, (a21)b1 = a−21 (a2
e−1

1 b2
e−1

1 )l〉.
(4.7)

Theorem 4.2. For each e = r+ 2 ≥ 4 there is an isomorphism from G(k, l) to G2(e; k, l)
sending the generators a and x of G(k, l) to a1 and a−11 b1 in G2(e; k, l).

Proof. We first show that the map a 7→ a1, x 7→ a−11 b1 extends to a homomorphism
G→ G2. We map the other elements of G appearing in (4.6) into G2 by

v 7→ a−21 b21z
k
1 , b 7→ b−41 zl1, z 7→ z1, u 7→ b2

e−1

1 and w 7→ zl1

where z1 = a2
e−1

1 b2
e−1

1 . We need to show that the defining relations for G in (4.6) are
satisfied when a, x, v, b, z, u and w are replaced with their images in G2. This is a routine
matter, using the properties of G2 proved in Section 2, so we will simply illustrate it in a
typical case, namely the relation x2 = zk. For this we need to show that (a−11 b1)2 = zk1 in
G2. Using Lemma 2.1(ii) and the fact that z1 is in the centre of G2, we have

(a−11 b1)2 = a−11 (b1a
−1
1 )b1 = a−11 (a1b

−1
1 zk1 )b1 = zk1 ,

as required. The other cases are similar, so the mapping extends to a homomorphism
θ : G→ G2. This is an epimorphism since a1 and a−11 b1 generate G2.

We proved in [6, Prop. 2.1] that |G2| = 22e, so |G| ≥ 22e. The defining relations

v2
r+1

= b2
r

= [v, b] = 1

for G show that 〈v, b〉 has order at most 22r+1. The relations

x2 = zk (= v2
rk), vx = v−1, bx = b−1

show that 〈v, b〉 is a normal subgroup of index at most 2 in 〈v, b, x〉, so the latter group has
order at most 22r+2. Finally the relations

a4 = v−2b−1zl, ba = b−1, va = vb, xa = xv−1

show that 〈v, b, x〉 is a normal subgroup of index at most 4 in 〈v, b, x, a〉 = G, so |G| ≤
22r+4 = 22e. Thus |G| = |G2|, so θ is an isomorphism.

This confirms the assertions in [1, 12] that the groups G(k, l) have order 22r+4, a fact
which is not immediately apparent from the presentation (4.6).

5 Regular embeddings of Kn,n where n = 2e

A mapM is a cellular embedding of a connected graph K in a closed orientable surface.
It is (orientably) regular if the group Aut(M) of all orientation-preserving automorphisms
of the embedding acts regularly on the oriented edges (darts) of K.

It was shown in [15, Section 2] that every regular embeddingM of a complete bipartite
graph Kn,n determines an n-isobicyclic triple (G, a, b). Here G is the subgroup Aut0(M)
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of index 2 in Aut(M) leaving the bipartition of Kn,n invariant. The generators a and b
rotate a chosen edge e = uv around its incident vertices u and v to the next edge, follow-
ing the orientation of the surface around u or v. The automorphism of G transposing a
and b is induced by conjugation by the map automorphism reversing e. Conversely, every
n-isobicyclic triple (G, a, b) arises in this way, with (G1, a1, b1) and (G, a, b) giving iso-
morphic maps if and only if there is an isomorphism G1 → G sending a1 to a and b1 to b
(see [15] or [14, Proposition 2]). Thus an isobicyclic group G may have inequivalent pairs
a, b leading to non-isomorphic maps.

The following characterisation of regular embeddings of Kn,n, where n = 2e and
Aut0(M) is non-metacyclic, was proved in [6]. Here we give a different proof, using the
structure of non-metacyclic isobicyclic 2-groups described in earlier sections.

Theorem 5.1. For each n = 2e ≥ 8 there are exactly four non-isomorphic regular em-
beddingsM of Kn,n for which Aut0(M) is non-metacyclic; these correspond to the four
isobicyclic triples (G, a, b), where G = G2(e; k, l) and k, l ∈ {0, 1}. There is exactly
one regular embeddingM of K4,4 for which Aut0(M) is non-metacyclic; this map corre-
sponds to the isobicyclic triple (G, a, b) where G = G2(2; 0, 0).

Proof. If e = 2 the result follows directly from Theorem 4.1(i). We may therefore assume
that e ≥ 3, so by Theorem 4.1(ii) there are at most four isomorphism classes of isobicyclic
triples, corresponding to the four presentations G2(e; k, l) where k, l ∈ {0, 1}. By Corol-
lary 2.3, the groups G2(e; 0, 0), G2(e; 1, 0) and G2(e; 0, 1) are mutually non-isomorphic,
and hence so are the corresponding isobicyclic triples. To complete the classification it
is enough to show that the triples corresponding to the isomorphic groups G2(e; 0, 1) and
G2(e; 1, 1) are not equivalent. If there is an isomorphism from G2(e; 1, 1) = 〈a1〉〈b1〉 to
G2(e; 0, 1) = 〈a〉〈b〉 taking a1 to a and b1 to b then condition (i) of Proposition 2.2 gives
1 = k1 ≡ k = 0 (mod 2), a contradiction. Hence there are four non-isomorphic maps, as
claimed.
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1 Introduction
Let G = (V,E) be a (simple) graph, of order ν = |V | and size ε = |E|. The signless
Laplacian of G is defined to be the matrix Q = A+D, where A(= A(G)) is the adjacency
matrix of G, while D(= D(G)) is the diagonal matrix of its vertex degrees. The largest
eigenvalue (or spectral radius) of Q is usually called the Q-index of G, and is denoted by
κ(= κ(G)). Much interest has been paid recently to this very important spectral invariant.
Let us recall that

∆ + 1 6 κ 6 2(ν − 1) , (1.1)

where ∆ denotes the maximal vertex degree of the graph, with equality for stars, on the
lower bound, and complete graphs, on upper bound [7].

In 2007, Cvetković, Rowlinson, and Simić [6] conjectured that

κ 6 ν − 1 + d̄ , (1.2)

where d̄ is the average (vertex) degree of a graph. Later Feng and Yu [9] proved that (1.2)
is true (cf. also [1]). Many other bounds on Q-index for arbitrary (connected) graphs can
be found in [8].

We will now describe in brief the structure of a connected double nested graph (or DNG
for short). It was first considered in [3, 4] and, independently, under the name of chain
graph, in [5], in studying graphs whose least eigenvalue is minimal among the connected
(bipartite) graphs of fixed order and size. The vertex set of any such graph G consists of
two colour classes (or co-cliques). To specify the nesting, both of them are partitioned

into h non-empty cells
h⋃
i=1

Ui and
h⋃
i=1

Vi, respectively; all vertices in Us are joined (by

cross edges) to all vertices in
h+1−s⋃
k=1

Vk, for s = 1, 2, . . . , h. Denote by NG(w) the set of

neighbors of a vertex w. Hence, if u′ ∈ Us+1, u′′ ∈ Us, v′ ∈ Vt+1, and v′′ ∈ Vt, then
NG(u′) ⊂ NG(u′′) and NG(v′) ⊂ NG(v′′). This claim makes precise the double nesting
property. Observe that 1 6 s, t 6 h.

If ms = |Us| and ns = |Vs|, with s = 1, 2, . . . , h, then G is denoted by

DNG(m1,m2, . . . ,mh;n1, n2, . . . , nh) .

Note that G is connected whenever m1, n1 > 0. Additionally, if some of the remain-
ing parameters are equal to zero, we again get a DNG with a smaller value of h. Thus,
throughout we assume that all these parameters are greater than zero.

We now introduce some notation to be used later on. Let

Ms =

s∑
i=1

mi and Nt =

t∑
j=1

nj , for 1 6 s, t 6 h.

Thus G is of order ν = Mh+Nh and size ε =
∑h
s=1msNh+1−s. Observe that Nh+1−s is

the degree of a vertex u ∈ Us; the degree of a vertex v ∈ Vt is equal to Mh+1−t. We also
set Ms,t = Mt −Ms−1 and, additionally, M1,t = Mt.
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Figure 1: The structure of a double nested graph.

2 Extremal bipartite graphs
Let G be a bipartite graph with colour classes U and V . First, we state the main result of
this section.

Theorem 2.1. If G is a graph for which κ(G) is maximal among all connected bipartite
graphs of order ν and size ε, thenG is a DNG with all pendant edges attached to a common
vertex.

Theorem 2.1 means that double nested graphs play the same role among bipartite graphs
(with respect to the signless Laplacian index) as nested split graphs among non-bipartite
graphs. The same classes of graphs appear as extremal with respect to the adjacency spectra
as well, i.e., in the class of all connected (resp. all connected bipartite) graphs of fixed order
and size, those with maximal radius with respect to the adjacency matrix are NSGs (resp.
DNGs). The proof of Theorem 2.1 is based on the following lemmas, the first of which is
taken from [6]. Recall that there exists a unique unit eigenvector corresponding to κ(G)
having only positive entries; this eigenvector is called the principal eigenvector of G.

Lemma 2.2. Let G′ be the graph obtained from a connected graph G by rotating the
edge rs around r to the non-edge position rt. Let x = (x1, x2, . . . , xν)T be the principal
eigenvector of G. If xt > xs then κ(G′) > κ(G).

The next lemma will be very helpful when we find a bridge in a graph whose index is
assumed to be maximal. Given two rooted graphs P (= Pu) and Q(= Qv) with u and v
as roots, let G be the graph obtained from the disjoint union P ∪̇Q by adding the edge uv.
Let G′ be the graph obtained from the coalescence of Pu and Qv by attaching a pendant
edge at the vertex identified with u and v.

Lemma 2.3. With the above notation, if P and Q are two non-trivial connected graphs
then κ(G) < κ(G′).

Proof. Let (x1, x2, . . . , xν)T be the principal eigenvector of G. Without loss of generality,
we may suppose that xu 6 xv . Let NP (u) be the neigbourhood of u in P ; since P is
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non-trivial, NP (u) 6= ∅. Now G′ is obtained from G by replacing the edges uw, with w ∈
NP (u) by the edges vw and, therefore, κ(G) < κ(G′), by Lemma 2.2, as required.

In what follows we assume that G has maximal index among the connected bipartite
graphs of fixed order and size.

Lemma 2.4. LetG be a graph satisfying the above assumptions, and let x = (x1, . . . , xν)T

be the principal eigenvector of G. If v and w are vertices in the same colour class such
that xv > xw, then deg(v) > deg(w).

Proof. Let U, V be the colour classes of G. Assuming that v and w are vertices in V such
that xv > xw and deg(v) < deg(w), then deg(w) > 1 and there exists u ∈ U such
that v 6∼ u ∼ w. By Lemma 2.3, we may rotate uw to uv to obtain a graph G′ such
that κ(G′) > κ(G). If uw is a bridge, then deg(u) = 1 and, again by Lemma 2.3, G′

is necessarily connected; but now the maximality of κ(G) is contradicted and the proof is
complete.

From now on we take the colour classes to be U = {u1, u2, . . . , um} and V =
{v1, v2, . . . , vn}, with xu1 > xu2 > · · · > xum and xv1 > xv2 > · · · > xvn . By
Lemma 2.4, this ordering coincides with the ordering by degrees in each colour class. In
the next lemma we note some consequences of those facts.

Lemma 2.5. Let G be a graph satisfying the above assumptions including those on vertex
ordering. Then

(i) the vertices u1 and v1 are adjacent;

(ii) u1 is adjacent to every vertex in V , and v1 is adjacent to every vertex in U ;

(iii) if the vertex u is adjacent to vk, then u is adjacent to vj , for all j < k, and if the
vertex v is adjacent to uk, then v is adjacent to uj , for all j < k.

Proof. First we consider bridges in G. By Lemma 2.3, all bridges are pendant edges. By
Lemma 2.2, all pendant edges are attached at the same vertex, and this vertex w is such
that xw is maximal. Without loss of generality, xu1 > xv1 and w = u1. It follows that the
result holds if G is a tree and, consequently, G is a star. Accordingly, we suppose that G is
not a tree.

To prove (i), suppose by way of contradiction that u1 6∼ v1. Then v1 is adjacent to some
vertex u ∈ U , and uv1 is not a bridge. By Lemma 2.2, we may rotate v1u to v1u1 to obtain
a connected bipartite graph G′ such that κ(G′) > κ(G), contradicting the maximality of
κ(G).

To prove (ii), suppose that u is a vertex of U not adjacent to v1. Then u 6= u1 by (i), uv
is not a bridge, and u is adjacent to some vertex v in V other than v1. Now we can rotate
uv to uv1 to obtain a contradiction as before. Secondly, suppose that v is a vertex of V not
adjacent to u1. Then v 6= v1 by (i), again vu1 is not a bridge, and a rotation about v yields
a contradiction.

To prove (iii), suppose that u ∈ U , u ∼ vk and u 6∼ vj for some j < k. Now u 6= u1
by (ii), and so uvk is not a bridge. Then we can rotate uvk to uvj to obtain a contradiction.
Finally, suppose that v ∈ V, v ∼ vk and v 6∼ uj for some j < k. In this case, vuk is not a
bridge because k > 1, and the rotation of vuk to vuj yields a contradiction.

The proof is now finished.
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Taking into account Lemma 2.5 and the definition of a DNG the first part of Theorem
2.1 follows. It remains only to prove that all cut-edges in the observed DNG are pendant
edges attached to a common vertex. This easily comes from Lemma 2.3.

3 Q-eigenvectors of DNGs
Here we consider the principal eigenvector of the signless Laplacian of DNGs. In this
section (and in the next one, if not told otherwise) we will assume that

x = (x1, . . . , xν)T

is a Q-eigenvector of G with all positive entries, which is usually normalized, i.e.,

ν∑
i=1

xi = 1 .

The entries of x are also called the weights of the corresponding vertices. We first observe
that all vertices within the sets Us or Vt, for 1 6 s, t 6 h, have the same weights, since
they belong to the same orbit of G. Let xu = as, if u ∈ Us, while xv = bt, if v ∈ Vt.

From the eigenvalue equations for κ, applied to any vertex from Us or Vt, we get

κas = Nh+1−sas +

h+1−s∑
j=1

njbj , for s = 1, . . . , h, (3.1)

and

κbt = Mh+1−tbt +

h+1−t∑
i=1

miai , for t = 1, . . . , h. (3.2)

By normalization we have

h∑
i=1

miai +

h∑
j=1

njbj = 1 , (3.3)

and, from (3.1), we easily get

as =
1

κ−Nh+1−s

h+1−s∑
j=1

njbj , for s = 1, . . . , h. (3.4)

From (3.2) we have

bt =
1

κ−Mh+1−t

h+1−t∑
i=1

miai, for t = 1, . . . , h, (3.5)

and therefore, using (3.3), we have

as =
1

κ−Nh+1−s

1−
h∑
i=1

miai −
h∑

j=h+2−s

njbj

 , for s = 1, . . . , h, (3.6)
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or, using (3.2) for t = 1,

as =
1

κ−Nh+1−s

1− (κ−Mh)b1 −
h∑

j=h+2−s

njbj

 , for s = 1, . . . , h.

Similarly,

bt =
1

κ−Mh+1−t

(
1− (κ−Nh)a1 −

h∑
i=h+2−t

miai

)
, for t = 1, . . . , h.

Setting ah+1 = bh+1 = 0 and N0 = 0, from (3.4) and (3.6), together with (3.3), we get
successively

(κ−Nh−s)as+1 − (κ−Nh+1−s)as = −nh+1−sbh+1−s, for s = 1, . . . , h− 1,

and
(κ− n1)ah = n1b1, for s = h.

Since all components of x are positive and κ > ∆ + 1 (1.1), it comes

as+1 6 as, for s = 1, . . . , h− 1, (3.7)

and
bt+1 6 bt, for t = 1, . . . , h− 1. (3.8)

Furthermore, by setting s = h in (3.2), we obtain

(κ−m1)bh = m1a1. (3.9)

Moreover, substituting s = 1 in (3.1) and t = 1 in (3.2) and applying in (3.3) we get

(κ−Nh)a1 + (κ−Mh)b1 = 1,

and finally

as =
1

κ−Nh+1−s

(κ−Nh)a1 −
h∑

j=h+2−s

njbj

 . (3.10)

Next we focus our attention on bounding ai’s and bj’s.

Lemma 3.1. For any s = 1, . . . , h, we have

Nh+1−sbh+1−s

κ−Nh+1−s
6 as 6

Nh+1−sb1
κ−Nh+1−s

. (3.11)

Proof. From (3.4), we have

as =
1

κ−Nh+1−s

h+1−s∑
j=1

njbj .

Therefore, (3.11) immediately follows since bj’s are strictly decreasing, from (3.8).
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Lemma 3.2. For any s = 1, . . . , h,

as 6 a1

(
1− Nh+2−s,h

κ−Nh+1−s

(
1 +

m1

κ−m1

))
, (3.12)

Proof. The inequality (3.12) follows from (3.10), since bi’s are strictly decreasing, bearing
in mind (3.9) as well.

Lemma 3.3. For any s = 1, . . . , h,

as >
a1

κ−Nh+1−s

(
1−

s−1∑
i=1

nh+1−iMi

κ−Mi

)
.

Proof. By induction on s. For s = 1, the inequality holds trivially. Assume next that

as >
a1

κ−Nh+1−s

(
1−

s−1∑
i=1

nh+1−iMi

κ−Mi

)
,

for s > 1. Then

as+1 =
1

κ−Nh−s

h−s∑
j=1

njbj

=
1

κ−Nh−s
((κ−Nh+1−s)as −Nh+1−sbh+1−s)

>
a1

κ−Nh−s

(
1−

s−1∑
i=1

nh+1−iMi

κ−Mi

)
− Nh+1−sMsa1

(κ−Nh−s)(κ−Ms)

=
a1

κ−Nh−s

(
1−

s∑
i=1

nh+1−iMi

κ−Mi

)
.

This ends the proof.

Lemma 3.4. For any s = 1, . . . , h, we have

as 6
b1

κ−Nh+1−s

(
Nh+1−s −

κfh+1−s

(κ− n1)(κ−Ms)

)
, (3.13)

where

fh+1−s =

h+1−s∑
j=1

njMh+2−j,h .

Proof. From (3.4) and (3.12) applied to bj , we get

as =
1

κ−Nh+1−s

h+1−s∑
j=1

njbj

6
1

κ−Nh+1−s

h+1−s∑
j=1

njb1

(
1− Mh+2−j,h

κ−Mh+1−j

(
1 +

n1
κ− n1

))

6
b1

κ−Nh+1−s

(
Nh+1−s −

κfh+1−s

(κ− n1)(κ−Ms)

)
.

The proof is now complete.
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4 Some bounds on the Q-index of a DNG
In this section we obtain some upper and lower bounds on the Q-index of DNGs using the
eigenvalue and the matrix technique. We also emphasize that our main goal is to consider
the estimation of theQ-index of large graphs. Before we proceed, we provide the following
observations.

First, if h = 1 we get a complete bipartite graph Km1,n1 , whose Q-index is equal
to m1 + n1 = ν [2]. Furthermore, since the Q-index of an arbitrary graph increases by
inserting edges (cf. [6]), we have

κ 6 ν, (4.1)

for any (not necessarily connected) DNG.
Otherwise, if h > 1 is fixed but the graph size is not, using the same previous ar-

guments, the maximal Q-index would appear in DNG(m1, 1, . . . , 1;n1, 1, . . . , 1). The
computational results suggest this will happen when |m1−n1| 6 1. So, these cases are not
interesting for our research and, therefore, we will assume that h > 1 and the size is fixed.

4.1 Eigenvalue technique

Now we establish some bounds for the Q-index of DNGs using the eigenvalue technique.
We start with lower bounds.

Proposition 4.1. If G is a connected DNG, then

κ > max
16k6h

{Mh+1−k +Nk}.

Proof. On the one hand, from (3.2), we get

bk =
1

κ−Mh+1−k

h+1−k∑
i=1

miai >
Mh+1−kah+1−k

κ−Mh+1−k
,

since, from (3.7), ai’s are decreasing. On the other hand, from (3.1), we get

ah+1−k =
1

κ−Nk

k∑
j=1

njbj >
Nkbk
κ−Nk

,

since bj’s are decreasing, from (3.8). From the last two inequalities we get

κ(κ− (Mh+1−k +Nk)) > 0,

which is equivalent to
κ >Mh+1−k +Nk.

In particular, for k = h and k = 1, we obtain the following corollary.

Corollary 4.2. If G is a connected DNG, then

κ > m1 +Nh and κ > n1 +Mh .
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Proposition 4.3. If G is a connected DNG, then

κ >
1

2

t+
ε

Nh
+

√(
t− ε

Nh

)2

+ 4ê∗h

 ,

where

t =

∑h
i=1miN

3
h+1−i∑h

i=1miN2
h+1−i

and ê∗h =

h∑
i=1

mi

N2
h+1−i
Nh

.

Proof. Let y = (y1, . . . , yν)T be a vector whose components are indexed by the vertices of
G, and let yu = Nh+1−i if u ∈ Ui, for some i ∈ {1, . . . , h}, or, otherwise, yv = q = κ− t,
for some t, if v ∈ Vj for some j ∈ {1, . . . , h}. Substituting y into the Rayleigh quotient
(see, e.g., [8, p. 49]) we obtain

κ >
2
∑h
i=1miN

2
h−1+iq +

∑h
i=1miN

3
h+1−i +

∑h
i=1 niMh−1+iq

2∑h
i=1miN2

h+1−i +Nhq2

due to Rayleigh’s principle which reads
yTQy

yT y
6 κ. Since q = κ− t, we get

Nhq
3 + (Nht− ε)q2 −

h∑
i=1

miN
2
h+1−iq >

h∑
i=1

miN
3
h+1−i − t

h∑
i=1

miN
2
h+1−i .

Choosing

t =

∑h
i=1miN

3
h+1−i∑h

i=1miN2
h+1−i

,

and having in mind that N1 6 t 6 Nh, we immediately get a quadratic inequality in q and
the proof is concluded.

Proposition 4.4. If G is a connected DNG, then

κ 6
1

2

(
ν +

√
ν2 − 4(MhNh − ε)

)
. (4.2)

Proof. From (3.1), with s = h, and from (3.3), recalling (3.11), we get

(κ−Mh)b1 =

h∑
i=1

miai 6
h∑
i=1

mi
Nh+1−i

κ−Nh+1−s
b1 .

Then, we obtain
(κ−Mh)(κ−Nh) 6 ε,

and, therefore, from the quadratic inequality

κ2 − (Mh +Nh)κ+MhNh − ε 6 0,

we obtain κ1 6 κ 6 κ2 where κ1 and κ2 are the solutions of the associated quadratic
equality, and this completes the proof.
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The next two bounds improve the bound (4.2). We recall that fh+1−i is defined in
Lemma 3.4.

Proposition 4.5. If G is a connected DNG, then

κ 6
1

2

(
ν +

√
ν2 − 4(MhNh − ε′)

)
,

where

ε′ = ε− ν(ν −Nh)

(ν − n1)2(ν −m1)

h∑
i=1

mifh+1−i .

Proof. As in the proof of Proposition 4.4, we have

(κ−Mh)b1 =

h∑
i=1

miai .

Using (3.12), we get

κ−Mh 6
h∑
i=1

mi

κ−Nh+1−i

(
Nh+1−i −

κfh+1−i

(κ− n1)(κ−Mi)

)
,

and therefore

(κ−Mh)(κ−Nh) 6 ε− κ(κ−Nh)

(κ− n1)2(κ−m1)

h∑
i=1

mifh+1−i .

Taking into account that κ 6 ν, from Proposition 4.4 it follows

(κ−Mh)(κ−Nh) 6 ε′,

and the proof ends.

The next result may be proved in a similar way.

Proposition 4.6. If G is a connected DNG, then

κ 6
1

2

(
ν +

√
ν2 − 4(MhNh − ε′′)

)
,

where

ε′′ = ε− κ′(κ′ −Nh)

(κ′ − n1)2(κ′ −m1)

h∑
i=1

mifh+1−i,

for

κ′ =
1

2

(
ν +

√
ν2 − 4(MhNh − ε′)

)
.
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4.2 Matrix technique

The partition

V =

h⋃
k=1

Uk ∪
h⋃
k=1

Vk (4.3)

is equitable since every vertex in Ui and every vertex in Vi have the same number of neigh-
bors in Uj and Vj , for all i, j ∈ {1, 2, . . . , h}. Let AD be the signless Laplacian divisor
matrix of a DNG(m1, . . . ,mh;n1, . . . , nh) with respect to the equitable partition (4.3).
The matrix AD has the following form:

AD =



Nh n1 n2 · · · nh−1 nh
Nh−1 n1 n2 · · · nh−1

. . .
...

... ...

N2 n1 n2
N1 n1

m1 m2 · · · mh−1 mh Mh

m1 m2 · · · mh−1 Mh−1
...

... ...
. . .

m1 m2 M2

m1 M1


,

where the non-mentioned entries are to be read as zero. Setting

N =


n1 n2 · · · nh−1 nh
n1 n2 · · · nh−1

...
... ...

n1 n2
n1

 , M =


m1 m2 · · · mh−1 mh

m1 m2 · · · mh−1
...

... ...

m1 m2

m1

 ,

D1 = diag(Nh, . . . , N1), and D2 = diag(Mh, . . . ,M1), AD can be rewritten in the com-
pact block form

AD =

(
D1 N
M D2

)
.

In order to obtain more bounds we set

P =

(
0 xI
I 0

)
,

for some x 6= 0. Since the matrices

PADP
−1 =

(
D2 xM
x−1N D1

)
and AD are similar, they have the same index. We choose x such that the sum in the first
row and the (h + 1)-th row are equal. It leads to Mhx

2 − (Nh −Mh)x − Nh = 0, i.e.,
x = Nh

Mh
. By Frobenius Theorem [11, Theorem 3.1.1], we have

min
16i6n

Ri 6 κ 6 max
16i6n

Ri,
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where Ri stands for the sum of elements in the i-th row of PADP−1. Using this, we get
the following result.

Proposition 4.7. If G is a connected DNG, then

min

{
n1

(
Nh
Mh

+ 1

)
, n1

(
Mh

Nh
+ 1

)}
6 κ 6 Nh +Mh = ν. (4.4)

Clearly, the upper bound does not provide a decisive progress in our quest (recall (4.1)).
We will establish some more interesting improvements next.

Let Ri be the sum of the entries in row i of the matrix AD. It is easy to confirm that

Ri = 2Nh−i+1, for i ∈ {1, . . . , h}
= 2Mh−i+1, for i ∈ {h+ 1, . . . , 2h},

and, therefore,
maxRi = max{2Nh, 2Mh}.

By Frobenius Theorem

min{2n1, 2m1} 6 κ 6 max{2Nh, 2Mh}. (4.5)

Here the upper bound does not make any (general) improvement since max{2Nh, 2Mh} >
ν (compare (4.1)), so next we use the result of Minc (see [10]), which for the matrix AD
reads:

min
i

∑h
j=1(AD)ijRj

Ri
6 κ 6 max

i

∑h
j=1(AD)ijRj

Ri
.

Proposition 4.8. If G is a connected DNG, then

min{n1 +Mh,m1 +Nh} 6 κ 6 max

{
ε

Nh
+Nh,

ε

Mh
+Mh

}
. (4.6)

The bounds (4.6) obviously improve both (4.4) and (4.5), but the lower bound is still
rough comparing with Corollary 4.2.

5 Computational results
In this final section, we provide several examples which can help to gain a better insight
into the quality of the bounds obtained in the previous section.

We compute the lower bounds of Propositions 4.1 and 4.3, and the upper bounds from
Propositions 4.4, 4.5, 4.6, and 4.8. One observes that the bound from Proposition 4.1 is
always integral. The number of vertices in the corresponding DNG is also given in every
example since it makes another upper bound (cf. (4.1)). It can be easy checked that the
lower bounds from Corollary 4.2 and Propositions 4.7 and 4.8, all of them having simple
expressions, are rough in some cases, and therefore they are not considered in our examples.
We also compute the relative errors in each case.

Example 5.1. First we consider a randomly chosen DNG with small number of vertices
and some larger DNGs derived from the previous one:

G1 = DNG(2, 2, 5, 3; 2, 3, 1, 1);
G2 = DNG(10, 10, 25, 15; 10, 15, 5, 5);
G3 = DNG(200, 200, 500, 300; 200, 300, 100, 100);
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Prop. 4.3 Prop. 4.1 κ Prop. 4.8 Prop 4.6 Prop 4.5 Prop 4.4 ν

G1 13.6785 14 15.6451 16.7500 17.0210 17.0550 17.4530 19
-12.57% -10.52% 7.06% 8.79% 9.01% 11.56% 21.44%

G2 68.3923 70 78.2257 83.7500 85.1052 85.2749 87.2649 95
-12.57% -10.52% 7.06% 8.79% 9.01% 11.56% 21.44%

G3 1367.8452 1400 1564.5133 1675.0000 1702.1030 1705.4985 1745.2987 1900
-12.57% -10.52% 7.06% 8.79% 9.01% 11.56% 21.44%

Notice that κ(G2) (resp. κ(G3)) is very close to 5κ(G1) (resp. 100κ(G3)); we get
5κ(G1) − κ(G2) ≈ 10−7. Since the similar fact holds for all bounds obtained (compare
the corresponding propositions), we get the same results for the relative errors.

Example 5.2. Here we consider the DNGs obtained from G1 by multiplying some of its
parameters:

H1 = DNG(2000, 2, 5, 3; 2, 3, 1, 1000);

H2 = DNG(2000, 2, 5, 3; 2, 3, 1000, 1);

H3 = DNG(2000, 2, 5, 3; 2, 3000, 1, 1);

H4 = DNG(2000, 2, 5, 3; 2000, 3, 1, 1);

Prop. 4.3 Prop. 4.1 κ Prop. 4.8 Prop 4.6 Prop 4.5 Prop 4.4 ν

H1 3006.0284 3006 3006.0287 3011.0164 3008.2682 3008.2960 3012.6750 3016
-8 · 10−6% -1 · 10−3% 0.17% 0.07% 0.08% 0.22% 0.33%

H2 3008.0175 3007 3008.0177 3012.0104 3009.8145 3009.8323 3013.3388 3016
-5 · 10−6% -0.03% 0.13% 0.06% 0.06% 0.18% 0.27%

H3 5010.9908 5009 5010.9909 5010.9980 5011.7199 5011.7199 5012.2008 5014
-5 · 10−7% -0.04% 1 · 10−4% 0.15% 0.15% 0.02% 0.06%

H4 4014.9731 4010 4014.9732 4014.9866 4014.9800 4014.9800 4014.9933 4015
-3 · 10−6% -0.12% 3 · 10−4% 2 · 10−4% 2 · 10−4% 5 · 10−4% 7 · 10−4%

In this example all bounds are (more or less) close to the exact value of Q-index. We
already pointed that the bounds obtained in Propositions 4.5 and 4.6 are the improvements
of the one obtained in Proposition 4.4. This example shows that the bound from Proposition
4.8 is incomparable to them. In opposition to the previous example, here Proposition 4.1
gives a better estimation than Proposition 4.3.

Example 5.3. The parameters of the following DNGs are obtained by multiplying the
parameters of G1 by 1, 10, 100 or 1000 ad hoc.

I1 = DNG(2, 2, 5, 3; 2000, 300, 10, 1);

I2 = DNG(2, 2, 5, 3; 2, 30, 100, 1000);

I3 = DNG(2000, 200, 50, 30; 2000, 300, 10, 1);

Prop. 4.3 Prop. 4.1 κ Prop. 4.8 Prop 4.6 Prop 4.5 Prop 4.4 ν

I1 2255.0867 2314 2316.3632 2322.5716 2322.5716 2322.5733 2322.5737 2323
-2.65% -0.10% 0.26% 0.27% 0.27% 0.27% 0.29%

I2 1118.5026 1134 1134.0007 1134.3799 1134.4002 1134.4000 1134.4002 1144
-1.37% -6 · 10−5% 0.03% 0.04% 0.04% 0.04% 0.88%

I3 4562.6064 4550 4562.6584 4563.2717 4563.1367 4563.1369 4563.6312 4591
-0.28% -1 · 10−3% 0.01% 0.01% 0.01% 0.02% 0.62%
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Taking into account the lower bound of Proposition 4.3, one can conclude that its devia-
tion from the exact value is expected for I1 (and other similar graphs). Note that Proposition
4.6 will often give better bound than Proposition 4.5, but not always – see graphs I2 or J2
in the next example.

Example 5.4. Finally, we consider the extensions of the original graphs:

J1 = DNG(2, 2, 5, 3, 2, 3, 1, 1; 2, 3, 1, 1, 2, 2, 5, 3);
J2 = DNG(20000, 2, 5, 3, 10, 10, 10, 10; 2, 3, 1, 10000, 10, 10, 10, 10);
J3 = DNG(2, 2, 5, 3, 1, 1, 1, 1; 2000, 300, 10, 1, 1, 1, 1, 1);

Prop. 4.3 Prop. 4.1 κ Prop. 4.8 Prop 4.6 Prop 4.5 Prop 4.4 ν

J1 23.1888 23 27.4601 29.0526 32.3032 32.3022 32.8203 38
-15.56% -16.24% 5.80% 17.64% 17.64% 19.52% 38.38%

J2 30065.9176 30046 30065.9178 30080.9446 30072.6747 30072.7003 30085.9668 30096
-6 · 10−7% -0.07% 0.05% 0.02% 0.02% 0.07% 0.10%

J3 2313.0140 2324 2327.5409 2330.8445 2330.8452 2330.8452 2330.8456 2331
-0.62% -0.15% 0.14% 0.14% 0.14% 0.14% 0.15%

The bounds obtained will be used in a forthcoming research regarding the graphs with
maximal Q-index and fixed (but high) orders and also a fixed particular size. We also
remark that the results could be also compared to the corresponding bounds obtained for
the adjacency spectra.
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size with maximal Q-index: Some spectral bounds, Discrete Appl. Math. 160 (2012), 448–459.
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When during the early 1970’s localization techniques in
topology were developed, he made immediate use of the
new tool to obtain interesting results on vector fields on
manifolds. At the same time, he advanced his work on
graph theory, culminating in a classification of the irre-
ducible graphs for the projective plane. After about 1980,
he began a productive collaboration on questions in geo-
metric group theory, dealing with group cohomology involving the mapping class group
as well as the automorphism group of a free group. His deep understanding of the geom-
etry of Teichmüller Space and Outer Space where crucial at this point. Toward the end
of his life he got again more involved in graph theory, with a new group of collaborators,
investigating Hamiltonian cycles in Cayley graphs.

Henry Glover made substantial contributions to a wide field of mathematical topics.
The many people who had the opportunity to collaborate with him will not forget his gen-
erosity and the pleasure of discussing with him mathematical ideas, politics and the philos-
ophy of life in general. His love of art, symmetries of patterns and architecture were part
of his complex personality, and that, along with his tremendous sense of loyalty, made him
a great and fascinating friend.

Thank you Henry!

Prof. em. Guido Mislin
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Jaroslav Nešetřil Egon Schulte

xi



 
 

For more information, visit our website or email your inquiry to csasc2013@upr.si 

 

FIRST ANNOUNCEMENT - CSASC 2013 
University of Primorska, Koper, Slovenia, 9th - 13th June 

Joint Mathematical Conference of the Society of Mathematicians, Physicists and Astronomers of Slovenia together with 
Austrian, Catalan, Czech and Slovak Mathematical Societies. 

http://csasc2013.upr.si 

Within the conference there will be plenary talks and minisymposia on special topics. Every participant can also give a 
contributed talk or present a poster. 

PLENARY SPEAKERS (preliminary list) 

 Primož Moravec (University of Ljubljana, Slovenia) 

 John Erik Fornaess (NTNU Trondheim, Norway) 

 Ivan Mizera (University of Alberta, Canada) 

 Marc Noy (Universitat Politècnica de Catalunya, Catalonia)  

 Gerald Teschl (University of Vienna, Austria) 

 Xavier Tolsa (Universitat Autonoma of Barcelona, Catalonia) 

 Günter Rote (Freie Universität Berlin, Germany) 

MINISYMPOSIA and their organizers (preliminary list) 

 Diferential Geometry and Mathematical Physics (X. Gracia, O. Rossi) 

 Graph Theory (M. Drmota, J. Kratochvil, B. Mohar, O. Serra) 

 Combinatorics (I. Fischer, M. Konvalinka) 

 Several Complex Variables (F. Forstnerič, M. Kolar, B. Lamel, J. Ortega-Cerda) 

 Symmetries in Graphs, Maps and Other Discrete Structures (A. Malnič, N. Seifter) 

 Algebra (W. Herfort, P. Moravec) 

 Discrete and Computational Geometry (O. Aicholzer, P. Valtr, S. Cabello) 

 Mathematical Methods in Image Processing (V. Caselles, D. Leitner, M. Remesikova)  

 EuroGIGA Session (O. Aichholzer, J. Kratochvil, T. Pisanski, G. Rote) 

 Proving in Mathematics Education at University and at School (R. Hasek, Z. Magajna, W. Neuper, P. Pech, W. 
Windsteiger)  

 General Session 

 Poster Session 

Venue:  The event will take place at University of Primorska, Slovenia, Koper, Glagoljaška 8. 

Conference fee: 

 Early Rate (paid before 1
st

 April, 2013): 100 EUR 

 Late Rate: 150 EUR 

 Students: early rate 50 EUR, late rate 100 EUR 

Important dates: 

 1
st

 April, 2013, deadline for early registration 

 1
st

 May, 2013, deadline for late registration and abstract submission (via registration system) 

 9
th

 - 13
th

 June, 2013, conference in Koper 

Scientific committee: J. Kratochvil, B. Maslowski (Czech Republic), R. Nedela, K. Mikula (Slovak Republic),  M. Drmota, B. 
Lamel (Austria), O. Serra, J. Ortega (Catalonia), T. Pisanski, J. Prezelj (Slovenia) 

Organizing committee: K. Kutnar, A. Orbanid, T. Pisanski, J. Prezelj 

Organized by:  

 DMFA - Society of Mathematicians, Physicists and Astronomers of Slovenia 

 IMFM – Institute of Mathematics, Physics and Mechanics, Slovenia 

 UL FMF – Faculty of Mathematics and Physics, University of Ljubljana, Slovenia 

 UP FAMNIT - University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies 

 UP IAM - University of Primorska, Andrej Marušič Institute 

In collaboration with  the Austrian, Catalan, Czech, and Slovak Mathematical Societies. 

Sponsors:  

 European Science Foundation - EUROCORES/EuroGIGA programme, project GReGAS - Graphs in Geometry and 
Algorithms, Geometric representations and symmetries of graphs, maps and other discrete structures and 
applications in science 

 EMS - European Mathematical Society 
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2013 PhD Summer School in Discrete Mathematics

Rogla, Slovenia, June 16 – June 21, 2013
http://www.famnit.upr.si/sl/konference/rogla2013

SUMMER SCHOOL PROGRAMME: Aimed at bringing PhD students to several open
problems in the active research areas, three minicourses (6 hours of lectures each) will be

given on the following topics:

• Graph Symmetries, by Marston Conder, University of Auckland, New Zealand,

• Imprimitive Permutation Groups, by Edward T. Dobson, Mississippi State Univer-
sity, USA, and University of Primorska, Slovenia,

• Leonard pairs and the q-Racah polynomials, by Tatsuro Ito, Kanazawa University,
Japan.

In addition to lectures, time will also be devoted to workshop sessions and students’
presentations.

VENUE: Rogla is a highland in the north-eastern part of Slovenija, located 130 km by
road from Slovenian capital Ljubljana. At around 1500m above sea level, the beautiful
natural scenery of Rogla provides pleasant climate conditions and stimulating working

environment.

ORGANIZED BY University of Primorska, UP IAM and UP FAMNIT, in collaboration
with Centre for Discrete Mathematics UL PeF.

SCIENTIFIC COMMITTEE: K. Kutnar, A. Malnič, D. Marušič, Š. Miklavič, P. Šparl.
ORGANIZING COMMITTEE: B. Frelih, A. Hujdurović, B. Kuzman.

Sponsored by Slovenian National Research Agency (ARRS).

For more information, visit our website or email your inquiry to sygn@upr.si.

xiii



UP IAM – University of Primorska
Muzejski trg 2, 6000 Koper, Slovenia

ANNOUNCEMENT

PhD Fellowship (“Young Researcher” position)
at the University of Primorska, Slovenia

The University of Primorska announces three “Young researcher” positions under the
supervision of

• Dragan Marušič (Algebra and Discrete Mathematics);

• Enes Pašalić (Cryptography);

• Dragan Stevanović (Spectral Graph Theory, Applications).

Applicants should have a BSc or equivalent training in Mathematics (by September 30,
2013), and are expected to enroll in the PhD program. The positions are for 3 and 1/2
years and include a tuition fee waiver. The holder is expected to complete his/her PhD

training in 4 years.

The deadline for applications is July 31, 2013. Applicants should send a letter of interest
with CV and two recommendation letters to

“Young Researcher position”
University of Primorska, UP IAM

Muzejski trg 2, 6000 Koper
Slovenia

The application should also be sent electronically to the address
martina.m.kos@upr.si.

For any additional information contact Martina M. Kos at
Phone: +386 5 611 7585

Fax: +386 5 611 7592
Email: martina.m.kos@upr.si
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