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Abstract

In this paper, we will determine the full automorphism groups of rose window graphs
that are not edge-transitive. As the full automorphism groups of edge-transitive rose win-
dow graphs have been determined, this will complete the problem of calculating the full
automorphism group of rose window graphs. As a corollary, we determine which rose
window graphs are vertex-transitive. Finally, we determine the isomorphism classes of
non-edge-transitive rose window graphs.
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1 Introduction
Rose windows graphs are defined as follows (we are using the notation and terminology as
in [18]).

Definition 1.1. Let n be a positive integer and a, r ∈ Zn (so arithmetic with a and r is
done modulo n). The rose window graph Rn(a, r) is defined to be the graph with vertex
set V = {Ai, Bi : i ∈ Zn} and four kinds of edges:

• AiAi+1 These edges are called rim edges.
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• AiBi These edges are called in-spoke edges.

• Ai+aBi These edges are called out-spoke edges.

• BiBi+r These edges are called hub edges.

Rose window graphs were introduced recently by Steve Wilson [18], whose initial mo-
tivation was concerned with determining which of these graphs are edge-transitive (and if
so what is their full automorphism group), as well as which of these graphs are the un-
derlying graph of a rotary map. He proposed four conjectures concerning questions that
he was interested in, and subsequently all of the conjectures have been shown to be true.
Edge-transitive rose window graphs were characterized in [5, Theorem 1.2], verifying [18,
Conjecture 11] (a graph is edge-transitive if its automorphism group acts transitively on
the set of edges). The full automorphism groups of edge-transitive rose window graphs
was determined in [6, §3], verifying [18, Conjectures 3 and 5]. The rose window graphs
which are the underlying graph of a rotary map were found in [6, Theorem 1.1], answering
[18, Question 3], Finally, [18, Conjecture 6] suggesting certain rose window graphs are
isomorphic was verified in [6, Theorem 3.6].

Our goal is to essentially complete the work that has already been done regarding cal-
culating the full automorphism groups of rose window graphs, as well determining exactly
when two rose window graphs are isomorphic. In this paper, we will calculate the full auto-
morphism groups of rose window graphs that are not edge-transitive (which will finish the
problem of determining the full automorphism groups of rose window graphs), see Corol-
lary 3.5 and Corollary 3.9. In Section 4, we will determine the isomorphism classes of rose
window graphs that are not edge-transitive. The conclusion of the isomorphism problem
for rose window graphs will be given in a sequel to this paper, where the isomorphism
classes of edge-transitive rose window graphs will be found.

There are a few additional results in this paper that should be mentioned. First, in
Lemma 2.2, we correct a small error in [18, Lemma 2] giving conditions on when a rose
window graph has an automorphism that maps every rim edge to a hub edge and vice versa.
Also, once the full automorphism groups of rose windows graphs are known, it is relatively
straightforward to determine which of these graphs are vertex-transitive, and this is given
in Theorem 3.10.

We should point out that our goal is a classical one. Namely, with graphs that have a
large amount of symmetry, it is quite standard to ask for their full automorphism groups as
well as their isomorphism classes. Perhaps the first family for which this has been done are
the generalized Petersen graphs. The automorphism groups of these graphs were obtained
by Frucht, Graver, and Watkins [4] in 1971, while the isomorphism classes were found by
by Boben, Pisanski, and Žitnik [1]. Using very differrent techniques, Steimle and Staton
[16] also determined the isomorphism classes for some, but not all, generalized Petersen
graphs, and then used that result to enumerate the generalized Petersen graphs whose iso-
morphism classes they determined. Using Boben, Pisanski, and Žitnik’s determination of
the isomorphism classes of all generalized Petersen graphs, Petkovšek and Zakrajšek [9]
enumerated generalized Petersen graphs. Determining the isomorphism classes of the rose
window graphs should also yield an enumeration of the rose window graphs using tech-
niques similar to those in [9].

Finally, in the last decade or so there has been considerable interest in tetravalent graphs
satisfying various properties or in studying certain families of such graphs (for a sample of
such work see [3, 7, 10, 11, 12, 13, 17]). See also [14], where a census of all locally
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imprimitive tetravalent arc-transitive graphs on up to 640 vertices was computed. This
work will certainly contribute to the understanding of such graphs.

2 Preliminary results
We first give some obvious automorphisms of rose window graphs. Let Rn(a, r) be a fixed
rose window graph and let G be the automorphism group of Rn(a, r). Observe that

Rn(a, r) = Rn(a,−r). (2.1)

Define ρ, µ : V 7→ V by

ρ(Ai) = Ai+1 and ρ(Bi) = Bi+1 (i ∈ Zn), (2.2)

µ(Ai) = A−i and µ(Bi) = B−a−i (i ∈ Zn). (2.3)

Note that ρ, µ ∈ G, and therefore 〈ρ, µ〉 ≤ G. The action of 〈ρ, µ〉 on the set of edges of
Rn(a, r) has three orbits: the set of rim edges, the set of hub edges and the set of spoke
edges.

The following result characterizes edge-transitive rose window graphs in terms of rim
and spoke edges (we remark that the full automorphism groups of edge-transitive rose
window graphs are given in [5], but the following formulation is nonetheless useful).

Lemma 2.1. The following are equivalent:

(i) Rn(a, r) is edge-transitive.

(ii) There is an automorphism of Rn(a, r) which sends a rim edge to a spoke edge.

(iii) There is an automorphism of Rn(a, r) which sends a spoke edge to a hub edge.

Proof. It is clear that (i) implies (ii). To show that (ii) implies (iii), suppose that AiAi+1 is
a rim edge mapped to a spoke edge by, say, σ ∈ G. Then σ(AiAi+1) = AjBk for some
j, k ∈ Zn, and σ(A`) = Bk for ` = i or i + 1. Of course, e1 = A`B` and e2 = A`B`−a
are spoke edges, and σ(e1) and σ(e2) are two edges incident with the spoke edge AjBk,
and all three of these edges are incident with σ(A`) = Bk. However, Bk is incident with
two hub edges and two spoke edges, so at least one of σ(e1) and σ(e2) must be a hub edge.

To show (iii) implies (i), recall that the hub, spoke and rim edges are the edge orbits
of 〈ρ, µ〉. If σ maps some spoke edge to a hub edge, we have that H = 〈ρ, µ, σ〉 has at
most two edge orbits, and if there are two edge orbits, these consist of spoke and hub edges
in one orbit and rim edges being the other orbit. However, if the rim edges form an orbit,
then H must map {Ai : i ∈ Zn} to itself, and so must map {Bi : i ∈ Zn} to itself, and
so must map hub edges to themselves. This then implies that H has three edge orbits, a
contradiction. So H has one edge orbit and Rn(r, a) is edge-transitive.

It follows that if Rn(a, r) is not edge-transitive, then it has either two orbits or three
orbits on edges. If Rn(a, r) has two orbits on edges, then one orbit consists of rim and hub
edges, and the other consists of spoke edges. If Rn(a, r) has three orbits on edges, then
the first one consists of rim edges, the second one consists of hub edges, and the third one
consists of spoke edges.

Lemma 2 in [18] states that there is an automorphism of Rn(a, r) sending rim edges
to hub edges and vice-versa if and only if r2 ≡ ±1 (mod n) and ra ≡ ±a (mod n).
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However, this is not entirely true. Namely, one can check that the rose window graph
R16(8, 3) has an automorphism sending rim edges to hub edges and vice-versa via the map
(i, j)→ (i, 11j). However it is clear that r2 = 9 6≡ ±1 (mod 16). We now wish to give a
correct statement of [18, Lemma 2], and begin with a preliminary lemma.

Lemma 2.2. Let σ be the automorphism of Rn(a, r), which sends every rim edge to a hub
edge and vice versa. Assume also that σ(A0) = B0 and σ(B0) = A0. Then one of the
following holds for every i ∈ Zn:

(i) σ(Ai) = Bri and σ(Bi) = Ari;

(ii) σ(Ai) = Bri and σ(Bi) = A(r+a)i;

(iii) σ(Ai) = B−ri and σ(Bi) = A−ri;

(iv) σ(Ai) = B−ri and σ(Bi) = A(−r+a)i

Proof. Since σ(A0) = B0 and σ(A1) are adjacent, we have σ(A1) ∈ {Br, B−r}. It is
easy to see that if σ(A1) = Br then σ(Ai) = Bri for i ∈ Zn, and that if σ(A1) = B−r
then σ(Ai) = B−ri for i ∈ Zn. Now let s ∈ Zn be such that σ(B1) = As and note that
σ(Bi) = Asi for i ∈ Zn. Moreover, σ(A1) and σ(B1) = As are adjacent. Therefore, if
σ(A1) = Br, then s ∈ {r, r+a}, and if σ(A1) = B−r, then s ∈ {−r,−r+a}. The result
follows.

Theorem 2.3. Let n ≥ 3 be an integer and a, r ∈ Zn\{0}. Then there is an automorphism
of Rn(a, r) sending every rim edge to a hub edge and vice-versa if and only if one of the
following holds:

(i) a 6= n/2, r2 ≡ 1 (mod n) and ra ≡ ±a (mod n);

(ii) a = n/2, r2 ≡ ±1 (mod n) and ra ≡ ±a (mod n);

(iii) n is divisible by 4, gcd(n, r) = 1, a = n/2 and (r2 + n/2) ≡ ±1 (mod n).

Proof. We first show that if (i), (ii) or (iii) holds, then there is an automorphism ofRn(a, r)
sending rim edges to hub edges and vice-versa. By (2.1) we can assume that ra ≡
−a (mod n). Observe that if one of conditions (i), (ii) or (iii) holds, then gcd(n, r) = 1.
If condition (i) or (ii) holds, then let σ : V → V be defined by σ(Ai) = Bri and
σ(Bi) = Ari. As gcd(n, r) = 1, σ is a bijection. It is straightforward to check that σ
is also an automorphism of Rn(a, r).

If condition (iii) holds, then let σ : V → V be defined by σ(Ai) = Bri and σ(Bi) =
Ari+(n/2)i. Let us show that σ is a bijection. As gcd(n, r) = 1, σ maps {Ai | i ∈ Zn}
to {Bi | i ∈ Zn} bijectively. As gcd(n, r) = 1, r is odd and n/2 is even, σ maps {Bi |
i ∈ Zn} to {Ai | i ∈ Zn} bijectively. Hence σ is a bijection. It is then straightforward to
check that σ is also an automorphism of Rn(a, r).

We now show that if there is an automorphism σ of Rn(a, r) sending rim edges to
hub edges and vice-versa, then either (i), (ii) or (iii) holds. Note that in this case it must
be the case that gcd(n, r) = 1. Since 〈ρ, µ〉 acts transitively on the sets of hub, rim and
spoke edges, we may assume (by replacing σ by an appropriate element of 〈ρ, µ, σ〉) that
σ(A0) = B0 and σ(B0) = A0. Using (2.1) we can further assume that σ(A1) = Br.
Therefore, by Lemma 2.2, σ(Ai) = Bri and σ(Bi) = Asi for i ∈ Zn, where s ∈ {r, r+a}.
Since σ2 sends A0 to A0 and A1 to Ars, we have rs ≡ ±1 (mod n).
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Consider an in-spoke AiBi and an out-spoke BiAi+a. The automorphism σ maps the
in-spoke AiBi to BriAsi, and the out-spoke BiAi+a to AsiBri+ra. Hence one of BriAsi

and AsiBri+ra is an in-spoke, and the other one is an out-spoke. Therefore, for every
i ∈ Zn either

ri ≡ si (mod n) and ri+ ra+ a ≡ si (mod n) (2.4)

or
ri+ ra ≡ si (mod n) and ri+ a ≡ si (mod n). (2.5)

Note that if (2.5) holds for i = 0, then a = 0, a contradiction. Therefore (2.4) holds for
i = 0, implying ra ≡ −a (mod n).

If (2.4) holds for i = 1, then we have r = s. Since rs ≡ ±1 (mod n) this implies r2 ≡
±1 (mod n). If a = n/2, then (ii) holds. If a 6= n/2, then multiplying the congruence
ra ≡ −a (mod n) by r, we obtain r2a ≡ −ar ≡ a (mod n). If r2 ≡ −1 (mod n),
then −a ≡ a (mod n). This implies that a = n/2, a contradiction. So if a 6= n/2, then
r2 ≡ 1 (mod n). Thus (i) holds.

Suppose now that (2.5) holds for i = 1. Then r + ra ≡ s (mod n) and r + a ≡
s (mod n). The two congruences then imply that ra ≡ a (mod n) and r+a ≡ s (mod n).
Since also ra ≡ −a (mod n), we have that a = n/2 and r is odd. Combining together
r + n/2 ≡ s (mod n) and rs ≡ ±1 (mod n) gives us (r2 + n/2) ≡ ±1 (mod n).

Observe that σ(Bn/2) = As(n/2) = A(r+n/2)(n/2). Suppose n is not divisible by 4. As
r and n/2 are both odd in this case, we have σ(Bn/2) = A0 = σ(B0). But this implies
that σ is not a bijection, a contradiction. Therefore, condition (iii) holds.

It follows from Theorem 2.3 that Rn(a, r) has two orbits of edges if and only if one of
conditions (i) or (ii) in Theorem 2.3 is satisfied. We will also use the following result.

Lemma 2.4. Assume that Rn(a, r) is not edge-transitive and a = n/2. Then at least one
of

(i) r2 ≡ ±1 (mod n)

(ii) r2 + n/2 ≡ ±1 (mod n)

does not hold.

Proof. If both (i) and (ii) above hold, then n/2 is congruent to 2, 0 or −2 modulo n. But
this is only possible if n = 4. If n = 4, then r ∈ {1, 3}. In both cases Rn(a, r) is edge
transitive, a contradiction.

3 Groups of non edge-transitive rose window graphs

Before proceeding, we will require some additional notation. Let N = gcd(n, r) denote
the number of inner cycles, and let L = n/N denote the length of an inner cycle. Here
an inner cycle is a cycle induced by some set of vertices {Bi | i ∈ Zn}. We now define
three types of permutations on V (Rn(r, a)). To do this we assume that n is even. For
0 ≤ ` ≤ n/2− 1, we define a permutation on V (Rn(r, a)) by

α` = (B`, B`+n/2).

If L is even, then for 0 ≤ ` ≤ N − 1 we let
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β` = (B`, B`+n/2)(B`+N , B`+N+n/2)(B`+2N , B`+2N+n/2) · · · (B`+n/2−N , B`+n−N ).

Observe that β` interchanges every two antipodal vertices of the inner cycle containing
B`. If L is odd, then for 0 ≤ ` ≤ N/2− 1 we let

γ` = (B`+0, B`+n/2)(B`+N , B`+N+n/2)(B`+2N , B`+2N+n/2) · · ·
(B`+n−N , B`+n−N+n/2).

Observe that γ` interchanges the inner cycle containing B` and the inner cycle containing
B`+n/2.

Lemma 3.1. Assume n is even. Then the following hold:

(i) For 0 ≤ ` ≤ n/2− 1 we have α` = ρ`α0ρ
−`.

(ii) If L is even, then for 0 ≤ ` ≤ N − 1 we have β` = ρ`β0ρ
−`.

(iii) If L is odd, then for 0 ≤ ` ≤ N/2− 1 we have γ` = ρ`γ0ρ
−`.

Proof. (i) It is straightforward to check that (ρ`α0ρ
−`)(Ai) = Ai for every i ∈ Zn and

that (ρ`α0ρ
−`)(Bi) = Bi for every i ∈ Zn \ {`, `+ n/2}. Similarly we find that ρ`α0ρ

−`

interchanges B` and B`+n/2. The result follows.
(ii) Since β0 = α0αNα2N · · ·αn/2−N and β` = α`α`+Nα`+2N · · ·α`+n/2−N the

result follows from (i) above.
(iii) Similarly as (ii) above.

Lemma 3.2. Assume n is even. Then the following hold:

(i) If L = 4 then α` is an automorphism of Rn(n/2, r) for 0 ≤ ` ≤ n/2− 1.

(ii) If L is even, L 6= 4, then β` is an automorphism of Rn(n/2, r) for 0 ≤ ` ≤ N − 1.

(iii) If L is odd then γ` is an automorphism of Rn(n/2, r) for 0 ≤ ` ≤ N/2− 1.

Proof. Straightforward.

Lemma 3.3. Let GA be the point-wise stabiliser of {A0, A1, . . . , An−1} in G. Then the
following hold:

(i) If a 6= n/2 then GA is trivial.

(ii) If a = n/2 and L = 4, then GA = 〈α0, α1, . . . , αn/2−1〉.
(iii) If a = n/2, L is even and L 6= 4, then GA = 〈β0, β1, . . . , βN−1〉.
(iv) If a = n/2 and L is odd, then GA = 〈γ0, γ1, . . . , γN/2−1〉.

Proof. Let σ ∈ GA. Since the outer cycle (that is, the n-cycle induced by the vertices {Ai |
i ∈ Zn}) is fixed by σ, for every i ∈ Zn we have either σ(Bi) = Bi and σ(Bi−a) = Bi−a,
or σ(Bi) = Bi−a and σ(Bi−a) = Bi. If σ is nontrivial, then there exists j ∈ Zn such that
σ(Bj) = Bj−a and σ(Bj−a) = Bj . Applying the above comment to i = j + a we find
that σ(Bj+a) = Bj and σ(Bj) = Bj+a. Therefore j−a = j+a, implying a = n/2. This
proves (i).
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Assume L = 4. Every α` (1 ≤ ` ≤ n/2 − 1) is clearly in GA by Lemma 3.2
(i). Therefore 〈α0, α1, . . . , αn/2−1〉 ≤ GA. Pick σ ∈ GA. Since for every i (i ∈ Zn)
the automorphism σ either fixes or interchanges Bi and Bi+n/2, we clearly have GA ≤
〈α0, α1, . . . , αn/2−1〉. Therefore GA = 〈α0, α1, . . . , αn/2−1〉.

Assume L is even, L 6= 4. By Lemma 3.2 (ii), 〈β0, β1, . . . , βN−1〉 ≤ GA. Pick σ ∈
GA. For every i (i ∈ Zn) the automorphism σ either fixes or interchanges Bi and Bi+n/2.
However, since L 6= 4, if σ interchanges Bi and Bi+n/2, then it must interchange every
pair of antipodal vertices of the inner cycle containing Bi (and therefore also Bi+n/2).
Hence GA ≤ 〈β0, β1, . . . , βN−1〉, implying GA = 〈β0, β1, . . . , βN−1〉.

Assume L is odd. Again, by Lemma 3.2 (iii), we have 〈γ0, γ1, . . . , γN/2−1〉 ≤ GA.
Pick σ ∈ GA and assume that σ interchanges Bi and Bi+n/2. Note that Bi and Bi+n/2 are
now in different inner cycles. Therefore, σ must interchange every Bj of the inner cycle
containing Bi with Bj+n/2 (which is contained in the same inner cycle as Bi+n/2). It is
now clear that σ ∈ 〈γ0, γ1, . . . , γN/2−1〉. This implies GA = 〈γ0, γ1, . . . , γN/2−1〉.

Proposition 3.4. Let G{A} be the set-wise stabiliser of {A0, A1, . . . , An−1} in G. Then
the following hold.

(i) If a 6= n/2 then G{A} = 〈ρ, µ〉.
(ii) If a = n/2 and L = 4, then G{A} = 〈ρ, µ, α0〉.

(iii) If a = n/2, L is even and L 6= 4, then G{A} = 〈ρ, µ, β0〉.
(iv) If a = n/2 and L is odd, then G{A} = 〈ρ, µ, γ0〉.

Proof. Let σ ∈ G{A}. Observe that the group induced by G{A} on A is 〈ρ, µ〉, since the
subgraph induced byA is a cycle. Therefore, ρkµ`σ ∈ GA for appropriate k ∈ Zn, ` ∈ Z2.
The result now follows from Lemma 3.3 and Lemma 3.1.

Corollary 3.5. Assume the automorphism group of Rn(a, r) has three orbits on the edge-
set of Rn(a, r) (that is, Rn(a, r) does not satisfy any of the conditions (i) and (ii) of Theo-
rem 2.3). Then the following hold.

(i) If a 6= n/2 then G = 〈ρ, µ〉.
(ii) If a = n/2 and L = 4, then G = 〈ρ, µ, α0〉.

(iii) If a = n/2, L is even and L 6= 4, then G = 〈ρ, µ, β0〉.
(iv) If a = n/2 and L is odd, then G = 〈ρ, µ, γ0〉.

Proof. If Rn(a, r) has three orbits on the edge-set, then one of these three orbits is the set
of rim edges. Therefore G = G{A}. The result now follows from Proposition 3.4.

We now turn our attention to the case when Rn(a, r) has two orbits on edges. In this
case, in view of Lemma 2.1, the rim edges and the hub edges are in the same orbit, implying
that gcd(n, r) = 1. Additionally, every automorphism of such a rose window graph must
either fix the rim and hub or interchange them. Now suppose that we have an automorphism
ω that interchanges the rim and hub. For any automorphism δ of Rn(a, r), we then have
that ωδ or δ is contained in GA (noting that the set-wise stabilizer of {Ai : i ∈ Zn}
is the same as the set-wise stabilizer of {Bi : i ∈ Zn}). Thus in order to calculate the
automorphism groups of such graphs, we need only find one ω that interchanges the rim
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and hub, and then G = 〈GA, ω〉. Of course, GA is given in Lemma 3.3, and we need only
consider the parameters listed in Theorem 2.3.

Definition 3.6. (i) Assume r2 ≡ ±1 (mod n) and ra ≡ −a (mod n). Then we define
δ : V → V by δ(Ai) = Bri and δ(Bi) = Ari.

(ii) Assume n is divisible by 4, r is odd, a = n/2 and (r2 + n/2) ≡ ±1 (mod n). Then
we define γ : V → V by γ(Ai) = Bri and γ(Bi) = Ari+(n/2)i.

Lemma 3.7. Assume r2 ≡ ±1 (mod n) and ra ≡ −a (mod n). Then δ ∈ G, where δ is
as defined in Definition 3.6(i).

Proof. Note that δ is a bijection since gcd(n, r) = 1. The proof of the fact that δ is an
automorphism of Rn(a, r) is straightforward.

Lemma 3.8. Assume n is divisible by 4, r is odd, a = n/2 and (r2+n/2) ≡ ±1 (mod n).
Then γ ∈ G, where γ is as defined in Definition 3.6(ii).

Proof. We will show that γ is a bijection as once this is established it is straightforward to
verify that γ ∈ G. Clearly, γ maps {Ai | i ∈ Zn} bijectively to {Bi | i ∈ Zn} as r is
a unit. Similarly, γ maps {Bi | i ∈ Zn, i odd} bijectively to {Ai : i ∈ Zn, i odd}, and
{Bi | i ∈ Zn, i even} to {Ai : i ∈ Zn, i even}. Hence γ is a bijection.

Corollary 3.9. Assume the automorphism group ofRn(a, r) has two orbits on the edge-set
of Rn(a, r). Then, in view of Theorem 2.3, the following hold.

(i) If a 6= n/2 and r2 ≡ 1 (mod n), then G = 〈ρ, µ, δ〉.
(ii) If a = n/2, r2 ≡ ±1 (mod n) and ra ≡ −a (mod n), then G = 〈ρ, µ, β0, δ〉.

(iii) If n is divisible by 4, r is odd, a = n/2 and (r2 + n/2) ≡ ±1 (mod n), then
G = 〈ρ, µ, β0, γ〉.

We remark that in the case (ii) of the previous corollary when r2 = −1, listing β0 as a
generator is redundant as δ2µ = β0. In (iii), β0 is superfluous as if r2+n/2 ≡ −1 (mod n)
then β0 = γ2µ while if r2 + n/2 ≡ 1 (mod n) then β0 = ρ−1γρrγ.

The full automorphism group of all rose window graphs are now known with the pre-
vious result. We may then check each case to determine which are vertex-transitive. But
given that ρ is always an automorphism of Rn(a, r), Rn(a, r) is vertex-transitive if and
only if there is an automorphism of Rn(a, r) which maps a rim vertex to a hub vertex and
an automorphism which maps a hub vertex to a rim vertex. Recall that a rose window
graph has either three, two or one edge orbit. It has at most two edge orbits if and only if
there is an automorphism which maps rim edges (vertices) to hub edges (vertices) and vice
versa. Therefore, a rose window graph is vertex-transitive if and only if it has either one
or two edge orbits. The edge-transitive rose window graphs are given in [5] and their full
automorphism groups were obtained in [6]. Combining this information with Theorem 2.3,
we obtain the following result which characterizes exactly which rose window graphs are
vertex-transitive.

Theorem 3.10. Let n ≥ 3 be an integer and a, r ∈ Zn \ {0}. The rose window graph
Rn(a, r) is vertex-transitive if and only if one of the following holds:

(i) r2 ≡ ±1 (mod n) and ra ≡ ±a (mod n);
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(ii) n is divisible by 4, r is odd, a = n/2 and (r2 + n/2) ≡ ±1 (mod n);

(iii) n is divisible by 2, a = n/2± 2, and r = n/2± 1;

(iv) n is divisible by 12, a = ±(n/4 + 2), and r = ±(n/4− 1) or a = ±(n/4− 2) and
r = ±(n/4 + 1); or

(v) n is divisible by 2, a = 2b, where b2 ≡ ±1 (mod n/2), and r is odd such that
r ≡ ±1 (mod n/2).

4 Isomorphisms of non edge-transitive rose window graphs
Let Rn(a, r) and Rn(a1, r1) be non edge-transitive rose window graphs. In this section
we consider the problem of finding conditions on a, r, a1, r1 to ensure that Rn(a, r) and
Rn(a1, r1) are isomorphic. For the remainder of this paper, we will, as usual, denote the
vertices of Rn(a, r) by {A0, A1, . . . , An−1} ∪ {B0, B1, . . . , Bn−1}. The vertices of the
rose window graphRn(a1, r1) will be denoted in the natural way by {C0, C1, . . . , Cn−1}∪
{D0, D1, . . . , Dn−1}. Let ρ and µ denote the automorphisms of Rn(a, r) defined at the
beginning of this paper, and ρ1 and µ1 the corresponding automorphisms of Rn(a1, r1).

Theorem 4.1. Let Rn(a, r) and Rn(a1, r1) be rose window graphs. If one of the following
holds, then Rn(a, r) and Rn(a1, r1) are isomorphic:

(i) r1 = ±r and a1 = ±a;

(ii) gcd(n, r) = 1, r1 = ±r−1, and a1 = ±ar−1;

(iii) n is even with gcd(n, r) = gcd(n, n/2 + r), a = a1 = n/2 and r1 = ±(r + n/2);

(iv) n is even with gcd(n, r) = gcd(n, n/2 + r) = 1, a = a1 = n/2 and r1 = ±(r +
n/2)−1;

(v) r = ±1, r1 = ±1, gcd(n, a) = gcd(n, a1) = 2 and aa1/2 ≡ ±2(mod n);

(vi) gcd(n, n/2−1) = 1, r = ±(n/2−1), r1 = ±(n/2−1), gcd(n, a) = gcd(n, a1) = 2
and aa1/2 ≡ ±2(mod n).

Proof. (i) Note thatRn(a, r) = Rn(a,−r) and that an isomorphism betweenRn(a, r) and
Rn(−a, r) is given by φ(Ai) = C−i and φ(Bi) = D−i for i ∈ Zn.

(ii) Assume gcd(n, r) = 1, r1 = r−1, and a1 = ar−1. Then an isomorphism from
Rn(a, r) to Rn(a1, r1) is given by φ(Ai) = D−ir−1 and φ(Bi) = C−ir−1 for i ∈ Zn. The
result now follows from (i) above.

(iii) Let L = n
gcd(n,r) = n

gcd(n,n/2+r) , the length of the inner cycles of Rn(a, r) and
Rn(a1, r1). We first claim that L is divisible by 4. To this end let n = 2ino and r = 2jro,
where no and ro are odd positive integers. Since gcd(n, r) = gcd(n, n/2 + r), we also
have that gcd(n, r) = gcd(n/2, r), and so j ≤ i − 1. Assume now that j = i − 1. Then
n/2 + r = 2i−1(no + ro) = 2i(no + ro)/2 (note that no + ro is even). This shows
that gcd(n, n/2 + r) is divisible by 2i. Since gcd(n, r) is not divisible by 2i, we have a
contradiction. Therefore, j ≤ i− 2, and so L is divisible by 4.

Now define φ : V (Rn(n/2, r)) 7→ V (Rn(n/2, n/2 + r)) by φ(Ai) = Ci for i ∈ Zn

and φ(B`+kr) = D`+kr+kn/2 for 0 ≤ ` ≤ gcd(n, r) − 1 and 0 ≤ k ≤ L − 1. Choose an
inner cycle C of Rn(n/2, r). Note that φ maps C to an inner cycle of Rn(n/2, n/2 + r),
and while doing so, the only change in every other vertex is changing Bi to Di and on the
remaining vertices φ interchanges “antipodal vertices” of the cycle. This will produce a



72 Ars Math. Contemp. 9 (2015) 63–75

bijection if and only if L is divisible by 4, and so φ is a bijection. It is now routine to check
that φ is an isomorphism. The result now follows from (i) above.

(iv) Immediately from (ii) and (iii) above.
(v) Assume r = 1, r1 = 1, gcd(n, a) = gcd(n, a1) = 2 and aa1/2 ≡ 2 (mod n).

Define a mapping from V (Rn(a, r)) to V (Rn(a1, r1)) by φ(A2i) = Cia1
, φ(A2i+1) =

Dia1
, φ(B2i) = Cia1+1, φ(B2i+1) = Dia1+1 for 0 ≤ i ≤ n/2 − 1. Observe that φ is

a bijection as gcd(n, a1) = 2. It is also clear that φ is an isomorphism. The result now
follows from (i) above.

(vi) Assume r = n/2 − 1, r1 = n/2 − 1, gcd(n, a) = gcd(n, a1) = 2 and aa1/2 ≡
2 (mod n). Note that since gcd(n, n/2 − 1) = 1, we have that n/2 is even. Further-
more, since gcd(n, a) = gcd(n, a1) = 2, a/2 and a1/2 are odd. Define a mapping
from V (Rn(a, r)) to V (Rn(a1, r1)) by φ(A2i) = Cia1 , φ(A2i+1) = Dia1 , φ(B2i) =
C1+ia1

, φ(B2i+n/2+1) = D1+ia1
for 0 ≤ i ≤ n/2 − 1. Observe that φ is a bijection

as gcd(n, a1) = 2. Furthermore, since a1/2 is odd (and so (n/4)a1 = n/2), φ is an
isomorphism. The result now follows from (i) above.

Theorem 4.2. Let φ : Rn(a, r) → Rn(a1, r1) be an isomorphism which sends every rim
edge of Rn(a, r) to a rim edge of Rn(a1, r1). Then one of the following holds:

(i) a1 = ±a and r1 = ±r;

(ii) n is even with gcd(n, r) = gcd(n, r + n/2), a = a1 = n/2 and r1 = ±(r + n/2).

Proof. Note that there exist k ∈ Zn and ` ∈ {0, 1} such that µ`
1ρ

k
1φ maps vertex Ai to

vertex Ci for each i ∈ Zn. Therefore without loss of generality we can assume that φ maps
vertex Ai to vertex Ci for each i ∈ Zn. Observe also that φ maps the hub (spoke) edges of
Rn(a, r) to the hub (spoke) edges of Rn(a1, r1). It follows that φ(B0) ∈ {D0, D−a1

}.
Claim 1: If φ(B0) = D0 then a1 = a. If, in addition, a 6= n/2, then r1 = ±r.

Assume φ(B0) = D0. Since vertices B0 and Aa are adjacent, vertices φ(B0) = D0 and
φ(Aa) = Ca are also adjacent. Since a 6= 0 this shows that a1 = a. Assume a 6= n/2.
As Ar and Br are adjacent, φ(Ar) = Cr and φ(Br) are also adjacent. This shows that
φ(Br) ∈ {Dr, Dr−a}. As Ar+a and Br are adjacent, φ(Ar+a) = Cr+a and φ(Br) are
also adjacent. This shows that φ(Br) ∈ {Dr, Dr+a}. Note that since a 6∈ {0, n/2}, we
have {Dr, Dr−a} ∩ {Dr, Dr+a} = {Dr}. Therefore φ(Br) = Dr and r1 = ±r. This
proves Claim 1.

Claim 2: If φ(B0) = D−a1
then a1 = −a. If, in addition, a 6= n/2, then r1 = ±r.

Rearranging the subscripts of the vertices {D0, D1, . . . , Dn−1} according to the rule x→
x + a1 we get the graph Rn(−a1, r1) instead of the graph Rn(a1, r1). Furthermore, φ :
Rn(a, r) → Rn(−a1, r1) now maps vertex B0 to (the new) vertex D0. By Claim 1 we
have −a1 = a and, if a 6= n/2, r1 = ±r. This proves Claim 2.

Assume now a = a1 = n/2 and r1 6= ±r. Similarly as above, we find φ(B0) ∈
{D0, Dn/2}. If φ(B0) = D0, then φ(Br) ∈ {Dr1 , D−r1} ∩ {Dr, Dr+n/2}. Since r1 6=
±r, we have r1 = ±(r+n/2). It is clear that we have gcd(n, r) = gcd(n, r1) = gcd(n, r+
n/2). The case φ(B0) = Dn/2 is treated similarly.

Theorem 4.3. Let φ : Rn(a, r) → Rn(a1, r1) be an isomorphism which sends every rim
edge of Rn(a, r) to a hub edge of Rn(a1, r1). Then one of the following holds:

(i) a1 = ±ar−1 and r1 = ±r−1;
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(ii) n is even with gcd(n, r) = gcd(n, r + n/2) = 1, a = a1 = n/2 and r1 = ±(r +
n/2)−1.

Proof. Since φ sends the rim edges ofRn(a, r) to the hub edges ofRn(a1, r1), it also sends
the hub edges of Rn(a, r) to the rim edges of Rn(a1, r1). This shows that gcd(n, r) =
gcd(n, r1) = 1. Rearranging the vertices of Rn(a1, r1) according to the rule Ci → Dir−1

1

and Di → Cir−1
1

for i ∈ Zn we obtain the graph Rn(−a1r−11 , r−11 ) instead of the graph
Rn(a1, r1). Moreover, φ now satisfies the assumptions of Theorem 4.2. If Theorem 4.2 (i)
holds, then r1 = ±r−1 and a1 = ±ar−1. If Theorem 4.2 (ii) holds, then n is even with
gcd(n, r + n/2) = gcd(n, r) = 1, a = −a1r−11 = n/2 and r−11 = ±(r + n/2). Since r1
is odd (recall that gcd(n, r1) = 1), −a1r−11 = n/2 is equivalent to a1 = n/2. The result
follows.

Theorem 4.4. Let φ : Rn(a, r) → Rn(a1, r1) be an isomorphism which sends every rim
edge of Rn(a, r) to a spoke edge of Rn(a1, r1). Then one of the following holds:

(i) r = ±1, r1 = ±1, gcd(n, a) = gcd(n, a1) = 2 and aa1/2 ≡ ±2 (mod n);

(ii) gcd(n, n/2−1) = 1, r = ±(n/2−1), r1 = ±(n/2−1), gcd(n, a) = gcd(n, a1) = 2
and aa1/2 ≡ ±2 (mod n).

Proof. Observe first that as the rim edges of Rn(a, r) are mapped to the spoke edges of
Rn(a1, r1), the outer cycle of Rn(a, r) is mapped to a cycle of even length in Rn(a1, r1).
This shows that n is even. Next, as the rim edges ofRn(a, r) are mapped to the spoke edges
of Rn(a1, r1), the image of a rim edge has endpoints a rim vertex and a hub vertex. As
hub edges and rim edges have no endpoints in common, the images of hub edges and rim
edges have no endpoints in common. This implies that hub edges cannot be mapped either
to the hub edges or the rim edges, and so the hub edges of Rn(a, r) are also mapped to the
spoke edges of Rn(a1, r1). As the spoke edges of Rn(a1, r1) form a single edge orbit, we
have that the hub and rim edges of Rn(a, r) also forms a single edge orbit. This shows that
Rn(a, r) and Rn(a1, r1) have two orbits on edges (and so gcd(n, r) = gcd(n, r1) = 1).
We may thus assume that φ(A0) = Ci and φ(A1) ∈ {Di, Di−a1

} for some i ∈ Zn.
Multiplying φ by appropriate powers of µ1 and ρ1 we can further assume that φ(A0) = C0

and φ(A1) = D0. This implies that φ(A2i) = Cia1 and φ(A2i+1) = Dia1 for 0 ≤ i ≤
n/2 − 1. Therefore, the order of a1 in Zn is n/2 and thus gcd(n, a1) = 2. Reversing
the role of Rn(a, r) and Rn(a1, r1) we also obtain that gcd(n, a) = 2. Note that this also
shows that n, a and a1 are all even. Since R4(2, 1) is edge-transitive, we may assume that
n ≥ 6.

Observe now that φ(B0) ∈ {C1, C−1}. We will assume φ(B0) = C1; the case
φ(B0) = C−1 is treated similarly. Since B0 and Aa are adjacent, φ(B0) = C1 and
φ(Aa) = C(a/2)a1

are also adjacent. This shows that aa1/2 ≡ 2(mod n). Furthermore,
φ(B2ir) ∈ {C0, C1, . . . , Cn−1} and φ(B(2i+1)r) ∈ {D0, D1, . . . , Dn−1} for 0 ≤ i ≤
n/2− 1.

Recall that gcd(n, r) = gcd(n, r1) = 1. In particular, r, r1, r−1 and r−11 are odd.
Since B1 = Br−1r this shows that φ(B1) ∈ {D0, D1, . . . , Dn−1}. Since B1 and A1

are adjacent, φ(B1) and φ(A1) = D0 are also adjacent. Since B1 and Aa+1 are ad-
jacent, φ(B1) and φ(Aa+1) = D(a/2)a1

= D2 are also adjacent. Therefore φ(B1) ∈
{Dr1 , D−r1} ∩ {D2+r1 , D2−r1}. This shows that r1 = ±1 or r1 = ±(n/2− 1). Revers-
ing the role of Rn(a, r) and Rn(a1, r1) we also obtain that r = ±1 or r = ±(n/2 − 1).
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Since Rn(a, r) = Rn(a,−r), we need only show r = 1 and r1 = n/2− 1 or r = n/2− 1
and r1 = 1 cannot occur.

Suppose that r = 1 and r1 = n/2− 1. We saw in the previous paragraph that φ(B1) ∈
{Dr1 , D−r1} ∩ {D2+r1 , D2−r1}. Since n ≥ 6 this implies φ(B1) = Dn/2+1. But B0

and B1 are adjacent, and so φ(B0) = C1 and φ(B1) = Dn/2+1 are also adjacent. As
1 6= n/2+1 this implies n/2+1+a1 = 1 and thus a1 = n/2. It follows that gcd(n, a1) =
n/2 ≥ 3, contradicting gcd(n, a1) = 2.

Finally, if r = n/2 − 1 and r1 = 1, then by reversing the roles of Rn(a, r) and
Rn(a1, r1), this case cannot occur by arguments in the previous case.
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