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Marko Bračko, Ljubljana, marko.bracko@ijs.si
Wojtek Broniowski, Krakow, b4bronio@cyf-kr.edu.pl

Michael Buballa, Darmstadt, buballa@theorie.ikp.physik.tu-darmstadt.de
Thomas Cohen, Maryland, cohen@physics.umd.edu

Bojan Golli, Ljubljana, bojan.golli@ijs.si
Ju-Hyun Jung, Graz, ju.jung@uni-graz.at

Bogdan Povh, Heidelberg, b.povh@mpi-hd.mpg.de
Christian Rohrhofer, Graz, christian.rohrhofer@uni-graz.at

Mitja Rosina, Ljubljana, mitja.rosina@ijs.si
Ica Stancu, Liege, fstancu@ulg.ac.be
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Preface

Our traditional Mini-Workshop at Bled carried some resemblance to a “forma
viva”, a colony of sculptors modelling their statues with their unique idea and in-
dividual method. The friendly interactions helped us to polish the models and to
understand their implications. The progress we have made is preserved in these
Proceedings in order to stimulate further interactions in the years to come.
This year, one of the questions was what can we learn from the Nambu–Jona-
Lasinio (NJL) model and other models about the QCD and hadronic phases and
about the dense and/or hot quark matter, also in the context of compact stars. While
in general the results should not be trusted quantitatively, the NJL model is a
powerful theoretical tool for obtaining new insights and ideas. An interesting
aspect of Lattice QCD was also presented: the bulk thermal properties of the
hadron gas preclude a very fast rising of the number of resonances, as assumed
by the Hagedorn hypothesis, unless a substantial repulsion between hadronic
resonances is present.
Another focus was the light hadron spectroscopy and nucleon structure. The classifi-
cation of excited baryons into SU(3) singlets, octets and decuplets, as supported
by the 1/Nc expansion, has been extended to strange baryons. Puzzles in η pho-
toproduction were related to low-lying resonances and the opening of a nearby
threshold rather than to an exotic resonance. The elusive Roper resonance has
been approached with models involving meson-baryon or meson-quark dress-
ing, with Lattice QCD and, experimentally, through pion electroproduction. The
quark spin content of the nucleon and its relation to the pion cloud is still unclear.
The pion cloud is also responsible for the pion-baryon-baryon vertices. The chiral
and angular momentum content confirms the ρ(770) to be a 3S1 state, in accor-
dance with the quark model, while the ρ(1450) is a 3D1 and not a radial excitation
of the ρ(770).
The third emphasis was on new resonances in the charm sector. The meson and
baryon resonances discovered at the Belle detector at KEKB are still being an-
alyzed in order to determine their quantum numbers and their double-qq̄ or
“molecular” dimeson structure. For the spectrum of baryons with one heavy
and two light quarks, the collective-coordinate Hamiltonian in the chiral soliton
model was proposed. After the failure of the light pentaquark, there is a revived
interest in heavy pentaquarks. A good candidate is the Pc(4380) resonance, since
the color-magnetic interaction which causes a repulsion between the nucleons
can result in an attraction in the color-octet configuration.

We would like to thank again all participants for coming and for making the Mini-
Workshop so friendly, lively and fruitful. We shall be happy to see you again at
Bled, either next year or thereafter.

Ljubljana, November 2016 B. Golli, M. Rosina, S. Širca





Predgovor

Naša tradicionalna blejska delavnica spominja na “formo vivo”, kiparsko ko-
lonijo, kjer vsak modelira svojo mojstrovino s svojo značilno idejo in metodo.
Prijateljsko povezovanje nam je pomagalo izbrusiti modele in razumeti njihove
implikacije. Doseženi napredek je zabeležen v tem Zborniku — v spodbudo za
nadaljnje sodelovanje v prihodnjih letih.
Letos je bilo eno od odprtih vprašanj, kaj se iz Nambu–Jona-Lasiniovega (NJL) in
drugih modelov lahko naučimo o kromodinamskem in hadronskem faznem di-
agramu in o lastnostih goste in/ali vroče kvarkovske snovi, zlasti v povezavi s kom-
paktnimi zvezdami. Čeprav rezultatom v splošnem ne moremo zaupati kvan-
titativno, je model NJL močno teoretično orodje za nove vpoglede in zamisli.
Predstavljen je bil tudi zanimiv vidik kromodinamike na mreži: termodinamske
lastnosti hadronskega plina izključujejo hitro naraščanje števila resonanc (kot jih
predvideva Hagedornova hipoteza), razen če obstaja znaten odboj med hadron-
skimi resonancami.
Drugo žarišče razprav sta bili spektroskopija lahkih hadronov in zgradba nukleona.
Klasifikacija vzbujenih stanj barionov v singlete, oktete in dekuplete simetrije
SU(3), kot jo podpira razvoj po recipročnem številu barv, je bila razširjena na
čudne barione. Uganke pri fotoprodukciji mezona η so navezali na nizko ležeče
resonance in odprte bližnje kanale, ne kažejo pa na eksotične resonance. Izmu-
zljive Roperjeve resonance so se lotili z modeli, ki vključujejo oblačenje barionov
in kvarkov z mezoni, pa tudi s kromodinamiko na mreži in eksperimentalno
z elektroprodukcijo pionov. Delež kvarkovskega spina v nukleonu in njegova
povezava s pionskim oblakom je še nejasna. Pionski oblak je tudi odgovoren
za vozlišča med pioni in barioni. Delež kiralnosti in vrtilne količine potrjuje, da
je mezon ρ(770) v stanju 3S1 v skladu s kvarkovskim modelom, medtem ko je
mezon ρ(1450) v stanju 3D1 in ni radialno vzbujeno stanje mezona ρ(770).
Tretje težišče predstavitev so bile nove resonance v čarobnem sektorju. Mezonske in
barionske resonance, odkrite z detektorjem Belle pri pospeševalniku KEKB, še
vedno analizirajo, da bi določili njihova kvantna števila ter njihovo zgradbo kot
dveh parov qq̄ ali dvomezonske molekule. Za spekter barionov iz enega težkega
in dveh lahkih kvarkov je bila predlagana metoda kolektivnih koordinat v ki-
ralnem solitonskem modelu. Po neuspehu lahkega pentakvarka je naraslo zani-
manje za težke pentakvarke. Dober kandidat je resonanca Pc(4380), kajti kromo-
magnetna interakcija, ki povzroči odboj med nukleonoma, lahko vodi do privlaka
v barvno oktetni konfiguraciji sestavin pentakvarka.

Radi bi se ponovno zahvalili vsem udeležencem, da ste prišli in naredili našo
mini-delavnico tako prijazno, živahno in plodno. Veseli bomo, če vas bomo na
Bledu spet videli prihodnje leto ali kmalu zatem.

Ljubljana, november 2016 B. Golli, M. Rosina, S. Širca
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Limits on hadron spectrum from bulk medium
properties?

Wojciech Broniowskia,b

a Institute of Physics, Jan Kochanowski University 25-406 Kielce, Poland
b The H. Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences,
31-342 Cracow, Poland

Abstract. We bring up the fact that the bulk thermal properties of the hadron gas, as mea-
sured on the lattice, preclude a very fast rising of the number of resonance states in the
QCD spectrum, as assumed by the Hagedorn hypothesis, unless a substantial repulsion
between hadronic resonances is present. If the Hagedorn growth continued above masses
∼ 1.8GeV, then the thermodynamic functions would noticeably depart from the measured
lattice values at temperatures above 140 MeV, just below the transition temperature to
quark-gluon plasma.

In this talk we point out the sensitivity of thermal bulk medium properties (en-
ergy density, entropy, sound velocity...) to the spectrum of the hadron resonance
gas. In particular, we explore the effects of the high-lying part of the spectrum,
above ∼ 1.8 GeV, where it is poorly known, on the thermal properties still below
the cross-over transition to the quark-gluon plasma phase. Such investigations
were carried out in the past by various authors, see [1–5] and references therein,
where the reader may find more details and results.

The presently established QCD spectrum reaches about 2 GeV, and it is a pri-
ori not clear what happens above. Does the growth continue, or is saturated? As
is evident from Fig. 1, the Hagedorn hypothesis [7] works very well up to about
1.8 GeV [8]. In the following, we explore two models: 1) hadron resonance gas
with the Breit-Wigner width, HRG(Γ ), which takes into account all states listed
in the Particle Data Group tables [6] with mass below 1.8 GeV, and 2) this model
amended with the states above 1.8 GeV, modeled with the Hagedorn formula fit-
ted to the spectrum at lower masses (see Fig. 1). In short, model 1) includes the
up-to-now established resonances, and model 2) extends them according to the
Hagedorn hypothesis.

First, we recall the fact that the inclusion of widths of resonances [11], as
listed in the Particle Data Group tables, affects the results noticeably and in fact
improves them. This is shown in Fig. 2, where the hadron resonance gas calcu-
lation for the QCD trace anomaly, ε − 3p divided by T4. Here ε stands for the
energy density, p for the pressure, and T for the temperature. In the calculation,

? Supported by the Polish National Science Centre grants DEC-2015/19/B/ST2/00937
and DEC-2012/06/A/ST2/00390.
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Fig. 1. Solid line, labeled HRG(Γ ): Number of QCD states (mesons, baryons, and an-
tibaryons combined) with mass below M. All stable particles and resonances from the
Particle Data Group tables [6] are included and their Breit-Wigner width is taken into ac-
count. Dashed line: the fit with the Hagedorn formula for the density of states, ρ(m) =

A exp(m/TH), with TH = 260MeV.
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Fig. 2. The QCD trace anomaly (divided by T4) plotted as a function of temperature T . The
inclusion of width of resonances to the hadron resonance gas improves the agreement with
the lattice data from the Wuppertal-Budapest (WB) [9] and Hot QCD [10] collaborations.

the hadrons are treated as components of an ideal gas of fermions and bosons. We
note that the overall agreement with of the hadron resonance gas model HRG(Γ )
with the lattice measurement is remarkable.

The virial expansion of Kamerlingh Onnes yields p/T = ρ + B2(T)ρ
2 +

B3(T)ρ
3 + . . . . Correspondingly, for the partition function of a thermodynamic

system including the 1→ 1, 2→ 2, etc., processes one has

lnZ = lnZ(1) + lnZ(2) + . . . (1)
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The non-interacting term

lnZ(1) =
∑
k

lnZstable
k =

∑
k

fkV

∫
d3p

(2π)3
ln
[
1± e−Ep/T

]±1
(2)

includes the sum over all stable particles, whereas the second-order virial term
involves the sum over pairs of stable particles denoted as K,

lnZ(2) =
∑
K

fKV

∫∞
0

dδK(M)

πdM
dM

∫
d3P

(2π)3
ln
[
1± e−EP/T

]±1
, (3)

where δK(M) stands for the phase shift in the channel K. For narrow resonances
the correction to the density of two-body states dδK(M)/(πdM) [12] can be accu-
rately approximated with the Breit-Wigner form, which is a basis of the hadron
resonance gas model.

In Fig. 3 we show the result of extending the Hagedorn hypothesis above
the present experimental limit on the QCD spectrum. We note that the inclusion
of extra (non-interacting) states above M = 1.8 GeV has a quite dramatic effect
on the trace anomaly θµµ = ε − 3p, placing it way above the lattice data at T >
140 MeV (the model calculation is credible below T ' 170 MeV, where a cross-
over to the quark-gluon plasma occurs). A similar conclusion is drawn for other
thermodynamic quantities, such as the entropy (cf. Fig. 4) or the sound velocity
(cf. Fig. 5).

WB

HotQCD

M<1.8GeV

+Hagedorn

100 120 140 160 180 200
0

1

2

3

4

T [MeV]

(ϵ
-
3
p
)/
T
4

Fig. 3. Same as in Fig. 2 but with the lines denoting the hadron resonance gas model,
HRG(Γ ), up toM = 1.8 GeV, and this model amended with the Hagedorn spectrum above
M = 1.8 GeV.

Therefore, if the hadron resonances were non-interacting, there would be no
room for extra states above 1.8 GeV in the QCD spectrum. This conclusion may
be affected by repulsion between the states (e.g., the excluded volume correc-
tions), which decreases the contribution to the partition function. The issue is
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Fig. 4. Same as in Fig. 3 but for the entropy density divided by T3.
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Fig. 5. Same as in Fig. 3 but for the square of the sound velocity.

discussed quantitatively in [3, 4], where a reduction of contributions to the ther-
modynamic quantities is assessed. The excluded volume reduces the contribu-
tion of resonances, and this makes them possible to appear in the spectrum in
an “innocuous” way. The effect is explicit in Eq. (3), as repulsion leads to a de-
crease of the phase shift with M, or a negative correction to the density of states
dδK(M)/(πdM).

An important example of such an explicit cancellation occurs in the case
of the σ meson, whose contribution to one-body observables is canceled by the
isospin-2 channel [12]. The case of the trace anomaly is shown in Fig. 6. Note
that the phase shift taken into account in this analysis automatically includes the
short-distance repulsion in specific channel, hence there is no need to model it
separately. The cancellation experienced by the σ state may occur also for other
states with higher mass.
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Fig. 6. Contributions to the trace anomaly from the pions, ρ mesons, σ meson, and the
isospin-2 component of the pion-pion interaction. We note an almost perfect cancellation
of the σ and isospin-2 channels.

In conclusion, the thermodynamic quantities offered by the modern lattice
QCD calculations allow to place limits on the high-lying spectrum on the QCD
resonances, but the interactions between the states, such as the short-range re-
pulsion, must be properly taken into account, as the two effects: increasing the
number of states and introducing repulsion works in the opposite way.
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matter?

Michael Buballa

Theoriezentrum, Institut für Kernphysik, TU Darmstadt D-64289 Darmstadt, Germany

Abstract. The merits and limitations of the Nambu–Jona-Lasinio model as a model for
strong interactions at nonzero density are critically discussed. We present several exam-
ples, demonstrating that, while in general the results should not be trusted quantitatively,
the NJL model is a powerful theoretical tool for getting new insights and ideas about the
QCD phase diagram and the dense-matter equation of state.

1 Introduction

In 1961, Nambu and Jona-Lasinio published two seminal papers on a “Dynam-
ical Model of Elementary Particles Based on an Analogy with Superconductiv-
ity,” [1, 2], now known as the Nambu–Jona-Lasinio (NJL) model. Originally in-
vented as a model for point-like nucleons, after the advent of QCD the NJL model
was reinterpreted as a schematic model for quarks, interacting by four-point ver-
tices rather than by the exchange of gluons. Subsequently the model was ex-
tended from two to three quark flavors and applied to study effects of nonzero
temperature and chemical potential as well as color superconductivity (for re-
views, see [3–6]). More recently features of Polyakov-loop dynamics have been
added to the model by coupling the quarks to a background temporal gauge field
with a phenomenological potential (PNJL model) [7–10].

The ground-breaking achievements of the original NJL papers were to ex-
plicitly demonstrate how the spontaneous breaking of chiral symmetry in a quan-
tum-field theoretical context leads to the dynamical generation of fermion masses,
while at the same time there appears a massless mode (“Nambu-Goldstone bo-
son”) in the quark-antiquark scattering matrix, which can be identified with the
pion. However, despite this indisputable success (culminating in the 2008 Nobel
prize awarded to Nambu “for the discovery of the mechanism of spontaneous
broken symmetry in subatomic physics”) one may ask why we should still use
a model after QCD was established as the theory of the strong interaction. Of
course, model calculations are in general much simpler than QCD calculations.
But to what extent can we trust the results? In particular we have to face the fol-
lowing problems:

• The essential feature of the NJL model which motivates its use as an effective
model of QCD is the fact that the two share the same global symmetries. How-
ever, the symmetries alone do not uniquely fix the interaction. There could be
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(infinitely) many possible interaction terms, not only containing four-point
but also higher 2n-point vertices (see, e.g., Ref. [11] and references therein),
and thus many parameters.

• In principle, these vertices should be derivable from QCD by integrating out
the gluonic degrees of freedom. However, this procedure would lead to den-
sity dependent coupling constants, while in actual NJL-model calculations
the model parameters are typically fitted to vacuum observables and then
kept unchanged in the medium.

• As far as symmetries are concerned, there are model independent theorems,
which, if not spoiled by an improper approximation, are reproduced by the
model. But those we know anyway while for non-universal properties it is
not clear whether the results obtained in the model agree with those in QCD.

In addition, the NJL model has the well-known shortcomings that it is non-re-
normalizable and has no confinement,1 which could both lead to artifacts.

There are nevertheless situations where QCD-inspired models in general and
specifically the NJL model can be very useful. “Model independent” predictions
are sometimes based on unrealistic assumptions, e.g., Taylor expansions in pa-
rameters which are not really small. Such cases can be uncovered by specific
model calculations. Sometimes models can also be used to test ideas and tech-
niques used in other frameworks. Most importantly, however, models can be em-
ployed for exploratory studies in order to identify interesting problems, worth-
while to be studied more seriously.

In the following these statements will be illustrated by specific examples re-
lated to the QCD phase diagram and the dense-matter equation of state.

2 Phase diagram at nonzero temperature and density

Despite tremendous theoretical and experimental efforts, the exact phase struc-
ture of QCD as a function of temperature and baryon chemical potential µB ≡ 3µ
is still unresolved to a large extent [13, 14]. While at µ = 0 QCD can be solved
on the lattice by standard Monte-Carlo methods, this is prevented at µ 6= 0 by
the so-called sign problem. Our current picture in this regime is therefore mainly
based on model calculations, with the NJL model playing a pioneering role:

In 1989 Asakawa and Yazaki presented an NJL-model calculation of the T -µ
phase diagram [15]. At low temperatures but high chemical potential they found
a first-order chiral phase transition, while at low µ the transition is a crossover, in
agreement with today’s lattice QCD results. As a consequence there is a critical
point where the first-order phase boundary ends. Although not much attention
was paid to this fact at the beginning, this changed dramatically after it was ar-
gued that the critical endpoint (CEP) could have observable consequences [16].
Today the search for the CEP is the main goal of the beam-energy scan at RHIC [17]
and of the future projects at NICA [18] and CBM at FAIR [19].

1 In the PNJL model confinement is statistically realized, meaning that the quark contribu-
tion to the pressure is suppressed at low temperatures. However, this does not prevent
the unphysical decay of mesons into quarks and antiquarks in the model [12].
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To my knowledge the NJL-model calculation of Ref. [15] was the first predic-
tion of the CEP. On the other hand, it was already demonstrated in that reference
that its exact position depends on the choice of the model parameters. For in-
stance the CEP can be moved around considerably by varying the strength in the
vector channel or of the chiral anomaly (parametrized by a six-point interaction
in the three-flavor model) [20]. Indeed, already for rather moderate values of the
vector coupling, the first-order phase boundary (and hence the CEP) disappears
completely.

We can thus conclude that the NJL model (like other models) cannot predict
the position of the CEP and not even tell whether it exists. However, it gave the
first hint for its possible existence and in this way inspired experimental searches
and more serious theoretical investigations. In particular there are now various
works which try to identify the CEP directly starting from QCD, both, within
functional methods which do not have a sign problem (like truncated Dyson-
Schwinger equations [21]) and on the lattice, trying to circumvent the sign prob-
lem in some way [22]. For example, one method to get information about the
µ 6= 0 regime by lattice calculations is to perform a Taylor expansion of the pres-
sure in powers of µ, evaluating the coefficients at µ = 0. The power of this method
can in turn be tested within models which do not have a sign problem and thus
allow for a direct comparison of the Taylor-expanded pressure with the exact
model results at µ 6= 0. Such test have been performed in the NJL model [23] as
well as in the Polyakov-loop extended quark-meson model [24], revealing that
the number of expansion coefficients required for the detection of a CEP located
at µ/T > 1 would be far beyond the present state of the art.

In most studies of the QCD phase diagram it is tacitly assumed that the chi-
ral condensate, i.e., the order parameter for chiral-symmetry breaking is spatially
homogeneous. Allowing for spatially varying condensates, however, it turns out
that in the NJL model there is a region where such an inhomogeneous condensate
is energetically favored over homogeneous or vanishing condensates [25, 26]. In
particular it was found that for the standard NJL Lagrangian the inhomogeneous
phase covers the entire first-order phase boundary which is obtained in the case
when only homogeneous phases are considered [27]. Moreover, the inhomoge-
neous phase turned out to be very robust against various model extensions, like
including strange quarks [28], isospin asymmetries [29], magnetic fields [30] or,
most notably, vector interactions [31] (for a review, see Ref. [32]). Again, the model
cannot be used to prove the existence of such phases in QCD, but in the same
way as the model prediction of a CEP, the possibility of an inhomogeneous phase
should seriously be considered and deserves more thorough investigations. In-
deed, inspired by the NJL model results, inhomogeneous phases have also been
studied within Dyson-Schwinger QCD, where qualitatively similar results have
been found [33].

3 Equation of state for compact stars

Neutron stars can reach densities of several times nuclear-matter densities in their
centers. Under these conditions it has been argued long time ago that matter
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could be deconfined [34,35], so that “neutron stars” would in fact be hybrid stars
with an outer hadronic part and a quark matter core. Although this idea has been
challenged by the recent discovery of two compact stars with masses of about
2M� (whereM� is the mass of the sun) [36,37], the question whether or not there
are deconfined quarks at the centers of compact stars is still open [38, 39]. Here
the problem is again that QCD at µ 6= 0 cannot be studied on the lattice, and that
therefore the QCD equation of state (EoS) at nonzero density is largely unknown.
In this situation one often starts from two independent EoSs, a phenomenological
hadronic one and a quark-matter one and constructs a phase transition between
them by comparing their pressure at given chemical potential.

For the quark-matter part the most common choice are MIT bag-model EoSs,
but more recently NJL-model EoSs have also gained popularity. One reason is that
the critical chemical potential of the phase transition depends sensitively on the
bag constant, which is a largely unconstrained parameter in the bag model, while
in the NJL model it is dynamically generated as the pressure difference between
the vacuum states with spontaneously broken and unbroken chiral symmetry.
Moreover, the NJL model allows for a straightforward incorporation of color su-
perconductivity [6]. Yet, as pointed out earlier, the NJL model has many parame-
ters as well. Indeed, while early studies mostly disfavored the presence of quark
matter in neutron stars [40,41], later analyses succeeded in getting solutions with
a quark-matter core, simultaneously reaching maximum masses above 2M�, by
choosing relative large couplings in the vector and diquark channels [42]. Hence,
the NJL model (in combination with a hadronic model) can serve as a counter-
example against the claim that the detection of compact stars with 2M� already
rules out the presence of a quark-matter core [43]. On the other hand, we con-
clude again that it cannot make qualitative or even quantitative predictions about
its existence.

In fact, it is not even clear, whether resorting to the dynamically generated
bag pressure of the NJL model really makes sense when combining it with a
hadronic model. Basically it means that the NJL model is taken seriously in vac-
uum and at high densities, but not in the hadronic phase in between. Some au-
thors therefore introduced an additional bag constant by hand, which is supposed
to account for confinement effects and other uncertainties [44, 45]. However, it is
then even more questionable to fix the NJL-model parameters in vacuum, and
one may ask why the NJL model should be used at all. (After all, the most im-
portant feature of the NJL model is its nontrivial vacuum.) To my opinion, the
only convincing way to ultimately avoid these problems is to describe quark and
hadronic phase in a single framework, e.g., construct nucleons and nuclear mat-
ter within the NJL model as well. Some steps in this direction have been made
in Refs. [46–48]. As an alternative approach it might also be worthwhile to revisit
the description of baryons as chiral solitons [49, 50] and investigate their relation
to the inhomogeneous phases discussed above.
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43. F. Özel, Nature 441, 1115 (2006).
44. G. Pagliara and J. Schaffner-Bielich, Phys. Rev. D 77, 063004 (2008).
45. C. H. Lenzi and G. Lugones, Astrophys. J. 759 (2012) 57.
46. A. H. Rezaeian and H. J. Pirner, Nucl. Phys. A 769, 35 (2006).
47. S. Lawley, W. Bentz and A. W. Thomas, J. Phys. G 32, 667 (2006).
48. J. c. Wang, Q. Wang and D. H. Rischke, Phys. Lett. B 704, 347 (2011).
49. R. Alkofer, H. Reinhardt and H. Weigel, Phys. Rept. 265, 139 (1996).
50. C. V. Christov, A. Blotz, H. C. Kim, P. Pobylitsa, T. Watabe, T. Meissner, E. Ruiz Arriola

and K. Goeke, Prog. Part. Nucl. Phys. 37, 91 (1996).



BLED WORKSHOPS
IN PHYSICS
VOL. 17, NO. 1
p. 12

Proceedings of the Mini-Workshop
Quarks, Hadrons, Matter

Bled, Slovenia, July 3 - 10, 2016

The Sign Problem in QCD

Thomas D. Cohen

Department of Physics, University of Maryland, College Park, MD 20742-4111



BLED WORKSHOPS
IN PHYSICS
VOL. 17, NO. 1
p. 13

Proceedings of the Mini-Workshop
Quarks, Hadrons, Matter

Bled, Slovenia, July 3 - 10, 2016

The microscopic structure of πNN, πN∆ and π∆∆
vertices in a hybrid constituent quark model?

Ju-Hyun Jung and Wolfgang Schweiger

Institute of Physics, University of Graz, A-8010 Graz, Austria

Abstract. We present a microscopic description of the strong πNN, πN∆ and π∆∆ vertices.
Our starting point is a constituent-quark model supplemented by an additional 3qπ non-
valence component. In the spirit of chiral constituent-quark models, quarks are allowed to
emit and reabsorb a pion. This multichannel system is treated in a relativistically invariant
way within the framework of point-form quantum mechanics. Starting with a common
SU(6) spin-flavor-symmetric wave function for N and ∆, we calculate the strength of the
πNN, πN∆ and π∆∆ couplings and the corresponding vertex form factors. Our results
are in accordance with phenomenological fits of these quantities that have been obtained
within purely hadronic multichannel models for baryon resonances.

1 Introduction

One of the big deficiencies of conventional constituent-quark models is the fact
that all states come out as stable bound states. In nature, however, excited states
are rather resonances with a finite decay width. In order to remedy this situation,
we study a constituent-quark model with explicit pionic degrees of freedom. The
underlying physics is that of “chiral constituent-quark models”. This means that
the spontaneous chiral-symmetry breaking of QCD produces pions as the associ-
ated Goldstone bosons and constituent quarks as effective particles [1], with the
pions coupling directly to the constituent quarks. The occurrence of pions affects
then the masses and the structure of the hadrons and leads to resonance-like be-
havior of hadron excitations. If one assumes instantaneous confinement between
the quarks, only “bare” hadrons, i.e. eigenstates of the pure confinement problem,
can propagate. As a consequence, pionic effects on hadron masses and structure
can be formulated as a purely hadronic problem with the hadron substructure
entering pion-hadron vertex form factors1. In the present contribution we will
present predictions for πNN, πN∆ and π∆∆ couplings and vertex form factors,
given the πqq coupling and an SU(6) spin-flavor symmetric model for the 3q
wave function of the nucleon and the ∆.
? Talk delivered by Ju-Hyun Jung
1 Strictly speaking these are vertex form factors of the bare hadrons.
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2 Formalism

Our starting point for calculating the strong πNN, πN∆ and π∆∆ couplings and
form factors is the mass-eigenvalue problem for 3 quarks that are confined by
an instantaneous potential and can emit and reabsorb a pion. To describe this
system in a relativistically invariant way, we make use of the point-form of rela-
tivistic quantum mechanics. Employing the Bakamjian-Thomas construction, the
overall 4-momentum operator P̂µ can be separated into a free 4-velocity operator
V̂µ and an invariant mass operator M̂ that contains all the internal motion, i.e.
P̂µ = M̂ V̂µ [2]. Bakamjian-Thomas-type mass operators are most conveniently
represented by means of velocity states |V ;k1, µ1;k2, µ2; . . . ;kn, µn〉, which spec-
ify the system by its overall velocity V (VµVµ = 1), the CM momenta ki of the
individual particles and their (canonical) spin projections µi [2]. Since the phys-
ical baryons of our model contain, in addition to the 3q-component, also a 3qπ-
component, the mass eigenvalue problem can be formulated as a 2-channel prob-
lem of the form (

M̂conf
3q K̂π

K̂†π M̂conf
3qπ

)(
|ψ3q〉
|ψ3qπ〉

)
= m

(
|ψ3q〉
|ψ3qπ〉

)
, (1)

with |ψ3q〉 and |ψ3qπ〉 denoting the two Fock-components of the physical baryon
states |B〉. The mass operators on the diagonal contain, in addition to the relativis-
tic particle energies, an instantaneous confinement potential between the quarks.
The vertex operator K̂(†)

π connects the two channels and describes the absorption
(emission) of the π by one of the quarks. Its velocity-state representation can be di-
rectly connected to a corresponding field-theoretical interaction Lagrangean [2].
We use a pseudovector interaction Lagrangean for the πqq-coupling

Lπqq(x) = −
fπqq

mπ

(
ψ̄q(x)γµγ5τψq(x)

)
· ∂µφπ(x), (2)

where the “·”-product has to be understood as product in isospin space. After
elimination of the 3qπ-channel the mass-eigenvalue equation takes on the form[

M̂conf
3q + K̂π(m− M̂conf

3qπ)
−1K̂†π︸ ︷︷ ︸

V̂
opt
π (m)

]
|ψ3q〉 = m |ψ3q〉 , (3)

where V̂opt
π (m) is an optical potential that describes the emission and reabsorp-

tion of the pion by the quarks. One can now solve Eq. (3) by expanding the (3q-
components of the) eigenstates in terms of eigenstates of the pure confinement
problem, i.e. |ψ3q〉 =

∑
B0
αB0 |B0〉, and determining the open coefficients αB0 .

Since the particles which propagate within the pion loop are also bare baryons
(rather than quarks), the problem of solving the mass eigenvalue equation (3) re-
duces then to a pure hadronic problem, in which the dressing and mixing of bare
baryons by means of pion loops produces finally the physical baryons (see Fig. 1).
As also indicated in Fig. 1, the quark substructure determines just the coupling
strengths at the pion-baryon vertices and leads to vertex form factors. To set up
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Fig. 1. Graphical representation of the kernel 〈B′0|V̂
opt
π (m)|B0〉 needed to solve the mass-

eigenvalue equation (3).

the mass-eigenvalue equation on the hadronic level one needs matrix elements
〈B′0|V̂

opt
π (m)|B0〉 of the optical potential between bare baryon (velocity2) states.

The general structure of these matrix elements is (B0 and B′0 are at rest)

〈B′0|V̂
opt
π (m)|B0〉 ∝

∑
B′′
0

∫
d3k′′π

2
√
m2π + k′′ 2π

J5∗πB′′
0
B′
0
(k′′π)

1

m−mB′′
0
π

J5πB′′
0
B0

(k′′π) , (4)

wheremB′′
0
π is the invariant mass of the B′′0π system in the intermediate state and

spin- as well as isospin dependencies have been suppressed.
For the cases we are interested in, i.e. theN and the ∆, the currents occurring

in Eq. (4) can be cast into the form3:

J5πN0N0(kπ) = i
fπN0N0
mπ

FπN0N0(k
2
π) ū(−kπ)γµγ5u(0)k

µ
π ,

J5π∆0∆0(kπ) =
fπ∆0∆0
mπm∆0

Fπ∆0∆0(k
2
π) ε

µνρσ ūµ(−kπ)uν(0)k∆0,ρ kπ,σ ,

J5πN0∆0(kπ) = −i
fπN0∆0
mπm∆0

FπN0∆0(k
2
π) ε

µνρσ ū(−kπ)γσγ5uν(0)k∆0,µ kπ,ρ ,

J5π∆0N0(kπ) = i
fπN0∆0
mπm∆0

Fπ∆0N0(k
2
π) ε

µνρσ ūν(−kπ)γ5γσu(0) k∆0,µ kπ,ρ , (5)

where u(.) is the Dirac spinor of the nucleon and uµ(.) the Rarita-Schwinger
spinor of the ∆. Here we have again suppressed the isospin dependence and also
omitted the spin labels. From Eqs. (4) and (5) one can then infer the analytical
expression for the combination fπB′

0
B0 FπB′0B0(k

2
π) in terms of quark degrees of

freedom. It is an integral over the (independent) quark momenta involving the
3qwave function of the in- and outgoing (bare) baryons, the pseudovector quark
current as resulting from the Lagrangean (2) and some kinematical as well as
Wigner-rotation factors [4].

Assuming a scalar isoscalar confinement potential, the masses of the bare
nucleon and the bare ∆ are degenerate, the momentum part of the wave function
will be the same and the spin-flavor part of the wave function is SU(6) symmetric.
Rather than solving the confinement problem for a particular potential, we thus

2 We suppress this velocity dependence since it factors out and has no influence on the
mass spectrum.

3 Note that this form exhibits the correct chiral properties and avoids problems with su-
perfluous spin degrees of freedom when treating spin-3/2 fields covariantly by means
of Rarita-Schwinger spinors [3].



16 Ju-Hyun Jung and Wolfgang Schweiger

parameterize the momentum part of the 3qwave function ofN0 and∆0 by means
of a Gaussian

ψN0,∆03q (kq1 ,kq2 ,kq3) ∝ exp
(
−α2(k2q1 + k

2
q2

+ k2q3)
)
, kq1 + kq2 + kq3 = 0 ,

(6)
and choose an appropriate value for the mass of N0 and ∆0, i.e. MN0 = M∆0 =:

M0. The parameters of our model are therefore the oscillator parameter α, the
N0 and ∆0 mass M0, the constituent-quark mass mq := mu = md and fπqq,
the πqq coupling strength. For fixed mq = 263 MeV we have adapted the re-
maining parameters such that the physical N and ∆ masses, resulting from the
mass renormalization due to pion loops (with N0 and ∆0 intermediate states),
agree with their experimental values. This gives us for the remaining parameters
M0 = 1.552 GeV, α = 2.56 GeV−1 and fπqq = 0.6953.

3 Results and Outlook

Having fixed the parameters of our model, we are now able to make predictions
for the strong πN0N0, π∆0∆0, πN0∆0, and π∆0N0 couplings and form factors.
The top plot of Fig. 2 shows these (unnormalized) form factors as function of
the (negative) four-momentum transfer squared (analytically continued to small
time-like momentum transfers). It is worth noting that Fπ∆0N0 and FπN0∆0 do
not agree. This is, of course, no surprise, since in the first case the N0 is real and
the ∆0 virtual, whereas it is just the other way round in the second case. The form
factors describe thus completely different kinematical situations, but they coin-
cide at a particular negative (i.e. unphysical) value of Q2. Since there is only one
coupling strength at the πN0∆0-vertex (i.e. fπ∆0N0 = fπN0∆0 , see Eq. (5)), this
is the natural point to normalize the form factors and extract the coupling con-
stants. Its value Q20 = −0.090 GeV2 is close to the standard normalization point,
namely the pion pole Q20 = −m2π. Comparing the resulting coupling strengths,
we get the ratio fπN0∆0 : fπN0N0 : fπ∆0∆0 = 1.208 : 1 : 0.608. This should be
compared with the prediction from the non-relativistic constituent-quark model
assuming SU(6) spin-flavor symmetry, i.e. fπN∆ : fπNN : fπ∆∆ = 4

√
2/5 : 1 :

4/5 = 1.13 : 1 : 0.8 [8]. The differences can solely be ascribed to relativistic effects
and are obviously significant, in particular for the π∆0∆0-vertex. Remarkably, our
results resemble very much those needed in dynamical coupled-channel models,
e.g. fπN∆ : fπNN : fπ∆∆ = 1.26 : 1 : 0.42 in Ref. [6].

In the bottom plot of Fig. 2 our result for FπN0N0 is compared with the out-
come of another relativistic constituent-quark model [5] and with two parame-
terizations of this form factor that have been used in dynamical coupled-channel
models [6, 7]. Up to Q2 ≈ 1 GeV2 our prediction is comparable with the form
factor parametrization of Ref. [7], but for higher Q2 it falls off slower. The form
factors of Refs. [5, 6] fall off much faster already at small Q2. Deviations of our
result from the one of Ref. [5] have their origin in different 3q wave functions of
the nucleon, but also in different kinematical and spin-rotation factors entering
the microscopic expression for the pseudovector current of the nucleon.

Having determined the πN0N0, π∆0∆0 and πN0∆0 vertices from a micro-
scopic model, we are now in the position to calculate the electromagnetic form
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Fig. 2. The top plot shows the (unnormalized) πN0N0, π∆0∆0, πN0∆0, and π∆0N0 form
factors as functions ofQ2 = −2M0(M0−(M2

0+k
2
π)
1/2). In the bottom plot theQ2 behavior

of FπN0N0 (normalized to 1 at Q2 = 0) is compared to the outcome of another relativistic
constituent-quark model (RCQM) [5] and of phenomenological fits obtained within two
purely hadronic dynamical coupled-channel models [6, 7] (SL and PR).

factors of physical nucleons and Deltas and determine the effect of pions on their
electromagnetic structure. First exploratory calculations for the nucleon show
that visible effects can be expected for Q2 . 0.5 GeV2 [4]. It will, of course, be
more interesting to investigate electromagnetic ∆ and N → ∆ transition form
factors, where pionic effect are expected to play a more significant role.
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The following conflict has been pointed out. In the constituent quark model with
constituent quarks containing a pion cloud [1] the value of quark spin content
amounts to ∆Σ ≈ 0.6. In the evaluation of the deep inelastic scattering (DIS)
[2,3], however, the value ∆Σ ≈ 0.33 is quoted. Possible resolutions of this conflict
have been discussed.
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Abstract. We identify the chiral and angular momentum content for the leading quark-
antiquark Fock component for the ρ(770) and ρ(1450) mesons using a lattice simulation
with chiral fermions. Our analysis shows that in the angular momentum basis the ρ(770)
is a 3S1 state, in accordance with the quark model. The ρ(1450) is a 3D1 state, showing that
the quark model wrongly assumes the ρ(1450) to be a radial excitation of the ρ(770).

1 Introduction

An interesting question in hadronic physics is the origin of spin and distribution
of angular momentum. How the spin of a hadron is generated, and by which
constituents it is carried, is a priori not clear. In the non-relativistic, constituent
quark model [2], which has been quite successful in delivering a classification
scheme for the low-lying hadron spectrum, the spin of a hadron is assigned solely
to its valence quarks. Being an effective classification scheme, it does not care
about foundations in terms of underlying QCD dynamics. Despite its successes
the non-relativistic description clearly has limitations.

In this project we investigate the angular momentum content of the ρ(770)
and ρ(1450) mesons. In the spectroscopic notation n 2S+1lJ the ρ(770) is assigned
to the 1 3S1 state by the quark model. The ρ(1450) is assigned to the 2 3S1 state,
hence being the first radial excitation of the ρ(770). However, this assumption
is by far not clear from the underlying QCD dynamics, and is an output of the
non-relativistic potential description of a meson as a two-body system.

The angular momentum content of the leading quark-antiquark Fock com-
ponents of mesons can in principle be identified by lattice simulations. Studies
like [3], which rely on heavy quarks for the non-relativistic reduction of hadrons,
find good agreement with the quark model classification. However, there is an
alternative approach to project non-perturbative lattice results onto the quark
model assuming ultra-relativistic quarks. Latter method, which is explained and
has been applied in previous studies [4–8], makes use of the chiral-parity group
and an unitary transformation to the 2S+1lJ basis.

Main ingredients to such an investigation are the overlap factors of opera-
tors obtained in lattice calculations. In our study it is crucial that these operators
? Talk delivered by C. Rohrhofer
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form a complete set with respect to the chiral-parity group. From these overlap
factors the chiral content of a state can be identified, and using the unitary trans-
formation also the angular momentum content. Since the chiral properties are im-
portant for such a study, we need a proper lattice fermion discretization, which
respects chiral symmetry. For this purpose we use overlap fermions, which dis-
tinguishes the present study from the previous ones.

2 Method and Simulation

The full details of this study, its methodology and simulation parameters, can be
found in the main paper [1] and references therein. Here we present the idea and
summarize the most important components.

To generate states with ρ quantum numbers (1, 1−−) two different local in-
terpolators can be used, which belong to two distinct chiral representations

JVρ (x) = Ψ̄(x)(τ
a ⊗ γi)Ψ(x) ∈ (0, 1)⊕ (1, 0) (1)

JTρ(x) = Ψ̄(x)(τ
a ⊗ γ0γi)Ψ(x) ∈ (1/2, 1/2)b. (2)

We denote them according to their Dirac structure as vector (V) and pseudotensor
(T) interpolators. In a next step we connect the chiral basis to the angular mo-
mentum basis with quantum numbers isospin I and 2S+1lJ. For spin-1 isovector
mesons there are only two allowed states |1;3 S1〉 and |1;3D1〉, which are con-
nected to the chiral basis by a unitary transformation:

|ρ(0,1)⊕(1,0)〉 =
√
2

3
|1;3 S1〉+

√
1

3
|1;3D1〉 , (3)

|ρ(1/2,1/2)b〉 =
√
1

3
|1;3 S1〉−

√
2

3
|1;3D1〉 . (4)

Note that the operators (1),(2) form a complete and orthogonal basis with respect
to the chiral group. Through the unitary transformation (3),(4) they also form a
complete and orthogonal basis with respect to the angular momentum content.

On the lattice we evaluate the correlators 〈J(t)J†(0)〉. We apply the variational
technique, where different interpolators are used to construct the correlation ma-
trix 〈Jl(t)J†m(0)〉 = C(t)lm. By solving the generalized eigenvalue problem

C(t)lmu
(n)
m = λ(n)(t, t0)C(t0)lmu

(n)
m (5)

the masses of states can be extracted in a standard way. Denoting a(n)l = 〈0| Jl |n〉
as the overlap of interpolator Jl with the physical state |n〉, the relative weight of
the chiral representations is now given by

C(t)lju
(n)
j

C(t)kju
(n)
j

=
a
(n)
l

a
(n)
k

. (6)

We can extract the ratio aV/aT for each state n. Then via the unitary transforma-
tion (3),(4) we arrive at the angular momentum content of the ρmesons.
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Fig. 1. Partial wave content of ρ mesons in dependence of the relative chiral contribution
aV/aT , which are connected via transformation (3),(4).

For any lattice simulation an intrinsic resolution scale is set by the lattice
spacing a. This means that probing the hadron structure with point-like sources
gives results at a scale fixed by the ultraviolet regularization a.

In order to measure the structure close to the infrared region we introduce a
different resolution scale by smearing the sources of the quark propagators. We
use four different smearing widths in this study. The radius σ of a given source
S(x; x0) is calculated by

σ2 =

∑
x(x− x0)

2|S(x; x0)|
2∑

x |S(x; x0)|
2

, (7)

where we define the resolution scale as R = 2σa. The smeared profiles of the
sources used in this study are pictured in Figure 2. The Ultra Wide source does
not resolve details smaller than ∼ 0.9 fm and marks our infrared end, where we
ultimatively extract the resolution scale dependent quantities.
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Fig. 2. Different source profiles. σ is their radius in lattice units.
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3 Results

To study the ratio aV/aT at different resolution scales R we solve the eigenvalue
problem (5) with operators (1) and (2) and four different smearings. Then using
(6) we extract the ratio aV/aT as a function of R. In Fig. 4 we show the ratio aV/aT
at different resolution scales R. We find a clear R-effect for the ratio aV/aT : both ρ
and ρ ′ states are linear dependent on the resolution scale.
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Fig. 3. Normalized eigenvalues and effective masses.
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Fig. 4. aV/aT ratio for different resolutions.

Using now transformations (3),(4) we find:

|ρ(770)〉 =+ (0.998± 0.002) |3S1〉 (8)

− (0.05 ± 0.025) |3D1〉 ,

|ρ(1450)〉 =− (0.106± 0.09 ) |3S1〉 (9)

− (0.994± 0.005) |3D1〉 .

|ρ(1700)〉 =+ (0.99± 0.01) |3S1〉 (10)

− (0.01± 0.12) |3D1〉 .
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The ground state ρ is therefore practically a pure 3S1 state, in agreement with the
potential quark model assumption.

The first excited ρ is, however, a 3D1 state with a very small admixture of a
3S1 wave. The second excited state is almost pure 3S1 state. The latter results are
in clear contradiction with the potential constituent quark model that attributes
the first excited state of the ρ-meson to a radially excited 3S1 state and the next
excited state to a 3D1 state.
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Abstract. The spectrum of excited baryons in the N = 2 band is reanalyzed in the 1/Nc
expansion method, with emphasis on hyperons. Predictions are made for the classification
of these excited baryons into SU(3) singlets, octets and decuplets.

1 Introduction

The 1/Nc expansion method [1, 2] where Nc is the number of colors, is a power-
ful and systematic tool for baryon spectroscopy. For Nf flavors, the ground state
baryons display an exact contracted SU(2Nf) spin-flavor symmetry in the large
Nc limit of QCD [3, 4]. The Skyrme model, the strong coupling theory and the
static quark model share a common underlying symmetry with QCD baryons in
the large Nc limit [5].

The method has been successfully applied to ground state baryons (N =

0 band), in the symmetric representation 56 of SU(6) [4, 6–9]. At Nc → ∞ the
ground state baryons are degenerate. At large, but finite Nc, the mass splitting
starts at order 1/Nc as first observed in Ref. [5].

The extension of the 1/Nc expansion method to excited states requires the
symmetry group SU(2Nf) × O(3) [10], in order to introduce orbital excitations.
It happens that the experimentally observed resonances can approximately be
classified as SU(2Nf) × O(3) multiplets, grouped into excitation bands, N = 1, 2,
3, ..., each band containing a number of SU(6) × O(3) multiplets.

The situation is technically more complicated for mixed symmetric states
than for symmetric states. Two approaches have been proposed so far. The first
one is based on the Hartree approximation and describes theNc quark system as
a ground state symmetric core of Nc − 1 quarks and an excited quark [11].

The second procedure, where the Pauli principle is implemented to all Nc
identical quarks has been proposed in Refs. [12, 13]. There is no physical rea-
son to separate the excited quark from the rest of the system. The method can
straightforwardly be applied to all excitation bands. It requires the knowledge
of the matrix elements of all the SU(2Nf) generators acting on mixed symmetric
states described by the partition (Nc−1, 1). In both cases the mass splitting starts
at order N0c. The latest achievements for the ground state and the current status
of large Nc QCD excited baryons (N = 1, 2, 3, 4) can be found in Ref. [14]. The N
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= 1 band is the most studied. TheN = 2 band received considerable attention too.
Here we reanalyze the results of Ref. [15] for N = 2. The reason is that in a few
octets an anomalous situation appeared where the hyperons Λ or Σ (presently
degenerate) appeared slightly lighter than the nucleon in the same octet.

Here we use the data of the 2014 Particle Data Group [16] which includes
changes due to a more complex analysis of all major photo-production of mesons
in a coupled-channel partial wave analysis.

2 The Mass Operator

The general form of the mass operator, where the SU(3) symmetry is broken, has
first been proposed in Ref. [9] as

M =
∑
i

ciOi +
∑
i

diBi. (1)

The operators Oi are defined as the scalar products

Oi =
1

Nn−1c

O
(k)
` ·O(k)

SF , (2)

whereO(k)
` is a k-rank tensor in SO(3) andO(k)

SF a k-rank tensor in SU(2)-spin, but
invariant in SU(Nf). Thus Oi is rotational invariant. For the ground state one has
k = 0. The excited states also require k = 1 and k = 2 terms. The k = 1 tensor has
three components, which are the generators Li of SO(3). The components of the
k = 2 tensor operator of SO(3) read

L(2)ij =
1

2

{
Li, Lj

}
−
1

3
δi,−jL · L. (3)

The operators O(k)
SF are expressed in terms of the SU(Nf) generators Si, Ta and

Gia.
The operators Bi break the SU(3) flavor symmetry and are defined to have

zero expectation values for nonstrange baryons. The coefficients ci encode the
quark dynamics and di measure the SU(3) breaking. They are obtained from a
numerical fit. The most dominant operators considered in the mass formula to-
gether with the fitted coefficients are presented in Table 1.

For the [56]-plets the spin-orbit operator O2 is defined in terms of angular
momentum Li components acting on the whole system as in Ref. [17] and is order
O(1/Nc)

O2 =
1

Nc
L · S, (4)

while for the [70]-plets it is defined as a single-particle operator ` · s of order
O(N0c).

O2 = ` · s =
Nc∑
i=1

`(i) · s(i). (5)



Excited hyperons of the N = 2 band in the 1/Nc expansion 27

3 Matrix elements

The matrix elements of the [56, 2+] multiplet were derived in Ref. [17]. Details
of the derivation of the matrix elements of Oi for [70, `+], as a function of Nc,
can be found in Ref. [18]. Note that in the case of mixed symmetric states the
matrix elements of O6 are O(N0c), in contrast to the symmetric case where they
areO(N−1

c ), and non-vanishing only for octets, while for the symmetric case they
are non-vanishing for decuplets. Thus, at large Nc the splitting starts at order
O(N0c) for mixed symmetric states due both to O2 and O6.

The SU(3) flavor breaking operators Bi have the same definition for both
the symmetric and mixed symmetric multiplets. The matrix elements of B2 and
B3 for [70, `+] were first calculated in Ref. [15]. For practical purposes we have
summarized these results by two simple analytic formulas valid at Nc = 3. The
diagonal matrix elements of B2 take the following form

B2 = −ns
〈L · S〉
6
√
3
, (6)

where ns is the number of strange quarks and 〈L · S〉 is the expectation value of
the spin-orbit operator acting on the whole system. Similarly the diagonal matrix
elements of B3 take the simple analytic form

B3 = −ns
S(S+ 1)

6
√
3
, (7)

where S is the total spin. The contribution of B3 is always negative, otherwise
vanishing for nonstrange baryons. These formulas can be applied to 28J, 48J, 210J
and 211/2 baryons of the [70, `+] multiplet. Presently the SU(3) breaking operators
B2 and B3 are included in the analysis of the [70, `+] multiplet, first considered in
Ref. [15].

4 Fit and discussion

We have performed a consistent analysis of the experimentally known resonances
supposed to belong either to the symmetric [56, 2+] multiplet or to the mixed
symmetric multiplet [70, `+] with ` = 0 or 2, by using the same operator basis.
Results of the fitted coefficients ci and di are exhibited in Table 1 together with
the values of χ2dof for each multiplet.

The spin and flavor operators O3 and O4 are the dominant two-body opera-
tors and bring important 1/Nc corrections to the masses. The sum of c3 and c4 of
[70, `+] is comparable to the value of c3 in [56, 2+] where the equal contribution
of O3 and O4 is included in c3. The contribution of the operator O6 containing
an SO(3) tensor is important especially for [70, `+] multiplet. Together with the
spin-orbit it may lead to the mixing of doublets and quartets to be considered in
further studies when the accuracy of data will increase. The incorporation of B2
and B3 in the mass formula of the [70, `+] multiplet brings more insight into the
SU(6) multiplet classification of excited baryons in the N = 2 band.
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Table 1. List of the dominant operators and their coefficients (MeV) from the mass formula
(1) obtained in numerical fit for [56, 2+] in column 2 and for [70, `+] in column 3. The spin-
orbit operator O2 is defined by Eq. (4) for [56, 2+] and by Eq.(5) for [70, `+].

Operator [56, 2+] [70, `+]

O1 = Nc l1 542 ± 2 631 ± 10

O2 spin-orbit 7 ±10 62 ± 26

O3 =
1

Nc
SiSi 233 ± 11 91 ± 31

O4 =
1

Nc

[
TaTa −

1

12
Nc(Nc + 6)

]
112 ± 22

O6 =
1

Nc
L(2)ijGiaGja 6 ±19 137 ± 55

B1 = ns 205 ± 14 35 ± 33

B2 =
1

Nc
(LiGi8 −

1

2
√
3
LiSi) 97 ± 40 - 38 ± 121

B3 =
1

Nc
(SiGi8 −

1

2
√
3
SiSi) 197 ± 69 46 ± 159

χ2dof 1.63 1.67

4.1 The multiplet [56, 2+]

The partial contribution and the calculated total mass obtained from the fit were
presented in Table VI of Ref. [15] which we do not repeat here. The experimental
masses were taken from the 2014 version of the Review of Particle Properties
(PDG) [16], except for ∆(1905)5/2+ where we used the mass of Ref. [17] which
gives a smaller χ2dof, but does not much change the fitted values of ci and di.
As expected, the most important sub-leading contribution comes from the spin
operator O3. The contributions of the angular momentum-dependent operators
O2 and O6 are comparable, but small. Among the SU(3) breaking terms, B1 is
dominant. An important remark is that in the [56, 2+] multiplet B2 and B3 lift the
degeneracy of Λ and Σ baryons in the octets, which is not the case for the [70, `+]
multiplet.

4.2 The multiplet [70, `+]

As compared to Ref. [18] where only 11 resonances have been included in the
numerical fit, here we consider 16 resonances, having a status of three, two or
one star. This means that we have tentatively added the resonances Ξ(2120)??∗,
Σ(2070)5/2+∗, Σ(1940)??∗, Ξ(1950)??∗∗∗ and Σ(2080)3/2+∗∗. The masses and the
error bars considered in the fit correspond to averages over data from the particle
listings, except for a few which favor specific experimental values cited in the
headings of Table 2.

We have ignored the N(1710)1/2+∗∗∗ and the Σ(1770)1/2+∗ resonances, the
theoretical argument being that their masses are too low, leading to unnatural
sizes for the coefficients ci or di [19]. On the experimental side one can justify the
removal of the controversial N(1710)1/2+∗∗∗ resonance due to the latest GWU
analysis of Arndt et al. [20] where it has not been seen. We have also ignored the
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∆(1750)1/2+∗ resonance, because neither Arndt et al. [20] nor Anisovich et al. [21]
find evidence for it.

Table 2. Partial contribution and the total mass (MeV) predicted by the 1/Nc expansion.
The last two columns give the empirically known masses and status from the 2014 Review
of Particles Properties [16] unless specified by (A) from [21], (L) from [22], (Z) from [23],
(G1) from [24], (B) from [25], (AB) from [26], (G2) from [27], .

Part. contrib. (MeV) Total(MeV) Experiment(MeV) Name, status

c1O1 c2O2 c3O3 c4O4 c6O6 d1B1 d2B2 d3B3

4N[70, 2+]
7

2

+

1892 62 113 28 −22 0 0 0 2073± 38 2060± 65(A) N(1990)7/2+**

4Λ[70, 2+]
7

2

+

35 11 −17 2102± 19 2100± 30(L) Λ(2020)7/2+*

4Ξ[70, 2+]
7

2

+

70 22 −34 2131± 8 2130± 8 Ξ(2120)??*

4N[70, 2+]
5

2

+

1892 −10 113 28 57 0 0 0 2080± 32 2000± 50 N(2000)5/2+**

4Λ[70, 2+]
5

2

+

35 −2 −17 2096± 10 2100± 10 Λ(2110)5/2+***

4N[70, 2+]
3

2

+

1892 −62 113 28 0 0 0 0 1972± 29

4Λ[70, 2+]
3

2

+

0 35 −11 −17 1979± 39

4N[70, 2+]
1

2

+

1892 −93 113 28 −80 0 0 0 1861± 33 1870± 35(A) N(1880)1/2+**

4Λ[70, 2+]
1

2

+

35 −16 −16 1869± 79

2N[70, 2+]
5

2

+

1892 21 23 28 0 0 0 0 1964± 29 1860± 120
60 (A) N(1860)5/2+**

2Σ[70, 2+]
5

2

+

0 35 4 −3 2000± 18 2051± 25(G1) Σ(2070)5/2+*

2N[70, 2+]
3

2

+

1892 −31 23 28 0 0 0 0 1912± 21 1905± 30(A) N(1900)3/2+***

2Σ[70, 2+]
3

2

+

0 35 −6 −3 1938± 10 1941± 18 Σ(1940)??*

2Ξ[70, 2+]
3

2

+

0 70 −11 −7 1964± 7 1967± 7(B) Ξ(1950)??***

4N[70, 0+]
3

2

+

1892 0 113 28 0 0 0 0 2033± 18 2040± 28(AB) N(2040)3/2+*

4Σ[70, 0+]
3

2

+

35 0 −16 2052± 21 2100± 69 Σ(2080)3/2+**

2∆[70, 2+]
5

2

+

1892 −21 23 140 0 0 0 0 2034± 31 1962± 139 ∆(2000)5/2+**

2Σ∗[70, 0+]
1

2

+

1892 0 23 140 0 35 0 −3 2087± 30 1902± 96 Σ(1880)1/2+**

2Λ ′[70, 0+]
1

2

+

1890 0 23 −84 0 35 0 −3 1863± 19 1853± 20(G2) Λ(1810)1/2+***
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The partial contributions and the calculated total masses obtained from the
fit are presented in Table 2. Regarding the contribution of various operators we
note that the good fit forN(1880)1/2+∗∗ was due to contribution of the spin-orbit
operatorO2 of -93MeV and of the operatorO6 which contributed with −80MeV.
The good fit also suggests that Σ(1940)??∗ and Ξ(1950)??∗∗∗ assigned by us to the
2[70, 2+]3/2+ multiplet is reasonable, thus these resonances may have JP = 3/2+,
to be experimentally confirmed in the future.

The 1/Nc expansion is based on the SU(6) symmetry which naturally allows
a classification of excited baryons into octets, decuplets and singlets. In Table 2
the experimentally known resonances are presented. In addition some predic-
tions are made for unknown resonances. Many of the partners in a given SU(3)
multiplet are not known. Note that Λ and Σ are degenerate in our approach. Al-
though the operators B2 and B3 have different analytic forms at arbitraryNc [15]
they become identical at Nc = 3 for Λ and Σ in octets, thus they cannot lift the
degeneracy between these hyperons, contrary to the [56, 2+] multiplet.

The present findings can be compared to the suggestions for assignments
in the [70, `+] multiplet made in Ref. [28] as educated guesses. The assignment
of Σ(1880)1/2+∗∗ as a [70, 0+]1/2+ decuplet resonance is confirmed as well as
the assignment of Λ(1810)1/2+∗∗∗ as a flavor singlet. We agree with Ref. [28] re-
garding Λ(2110)5/2+∗∗∗ as a partner of N(2000)5/2+∗∗ in a spin quartet, con-
trary to our previous work [15] where Λ(2110)5/2+∗∗∗ was a member of a spin
doublet, together with N(1860)5/2+∗∗ and Σ(2070)5/2+∗. This helps to restore
the correct hierarchy of masses in all octets. However we disagree with Ref. [28]
that N(1900)3/2+∗∗∗ is a member of a spin quartet. We propose it as a partner of
Σ(1940)??∗ and Ξ(1950)??∗∗∗ in a spin doublet.

The problem of assignment is not trivial. Within the 1/Nc expansion method
Ref. [17] suggests that Σ(2080)3/2+∗∗ and Σ(2070)5/2+∗ could be members of two
distinct decuplets in the [56, 2+] multiplet.

Here the important result is that the hierarchy of masses as a function of the
strangeness is correct for all multiplets.
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Recent LHCb experiments have shown us that there are two resonances in
the J/ψp channel in the Λ0b → J/ψpK− decay: the higher peak, Pc(4450), has a
mass of 4449.8±1.7±2.5 MeV and a width of 39±5±19 MeV, while the lower and
broader peak, Pc(4380), has a mass of 4380±8±29 MeV and a width of 205±18±86
MeV. The most favorable set of the spin parity for the lower and the higher peaks
is JP = (3

2

−
, 5
2

+
). These two peaks are considered as uudcc pentaquark states [1].

In this work, we have investigated the I(JP) = 1
2
(1
2

−
, 3
2

−
, 5
2

−
) uudcc sys-

tems. The possible flavor spin configurations of the uud in the uudcc (0s)5 pen-
taquarks are one of the following three: (a) color-singlet spin-1

2
baryon, namely,

nucleon, (b) color-octet spin-1
2

, and (c) color-octet spin-3
2
uud configurations. It is

found that the color-magnetic interaction, which gives an repulsion between the
nucleons [2], gives an attraction to the uudcc states with the configuration (c); the
expectation value of the color-magnetic interaction in that uud configuration is
lower than that of the corresponding threshold.

The calculation by the quark cluster model, by which the baryon-meson scat-
tering states as well as bound states can be investigated, shows us that the uudcc
states with the above configuration (c) with the color-octet cc pair cause struc-
tures around the Σc(∗)D(∗) thresholds: one bound state, two resonances, and one
large cusp are found in the uudcc negative parity channels. We argue that these
resonances and cusp may correspond to, or combine to form, the negative parity
pentaquark peak observed by LHCb.

Acknowledgments

This work has been done in collaboration with Dr. Makoto Takizawa, Dr. Kiy-
otaka Shimizu, and Dr. Makoto Oka. This work has been discussed in [3, 4]. The
author would like to thank the participants of the Bled2016 workshop for various
discussions.

References

1. R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 115, 072001 (2015).
2. M. Oka, K. Shimizu and K. Yazaki, Prog. Theor. Phys. Suppl. 137, 1 (2000).
3. S. Takeuchi and M. Takizawa, arXiv:1608.05475 [hep-ph].
4. S. Takeuchi and M. Takizawa, arXiv:1610.00091 [hep-ph].



BLED WORKSHOPS
IN PHYSICS
VOL. 17, NO. 1
p. 33

Proceedings of the Mini-Workshop
Quarks, Hadrons, Matter

Bled, Slovenia, July 3 - 10, 2016

Soliton model analysis of SU(3) symmetry breaking
for baryons with a heavy quark?

H. Weigel, J. P. Blanckenberg

Physics Department, Stellenbosch University, Matieland 7602, South Africa

Abstract. In these proceedings we review the construction of the collective coordinate
Hamiltonian that describes the spectrum of baryons with a single heavy quark and up,
down or strange degrees of freedom in the context of chiral soliton models.

1 Introduction

This presentation is based on Ref. [1] that describes the numerical results of this
soliton model analysis in detail. The derivation of the Hamilton for the (light)
flavor degrees of freedom (up,down, strange) and, in particular, the origin of the
constraint that projects onto certain flavor SU(3) representations are discussed
only by the way in Ref. [1]. We therefore provide more details of the derivation
here.

2 Collective rotations in flavor symmetric SU(3)

The approach builds up from a chiral soliton generated from light flavors and
heavy meson fields that are bound to the soliton. Both acquire strangeness com-
ponents by collectively rotating in flavor SU(3). Without symmetry breaking this
corresponds to approximating time dependent configurations by large zero–mode
fluctuations.

2.1 Chiral soliton

The major building block for the chiral soliton is the non–linear representation
of the pseudoscalar mesons in form of the chiral field U but also vector mesons
ρ and ω may be included. In a first step we construct the stable static soliton
(with winding number one). Subsequently we approximate time dependent solu-
tions and introduce collective coordinates for the flavor orientationA(t) ∈ SU(3).
Generically we write this as

U(r, t) = A(t)U0(r)A
†(t) , (1)

? Talk delivered by H. Weigel
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where U0(r) represents the classical (static) soliton. The time dependence is most
conveniently parameterized via eight angular velocitiesΩa

i

2

8∑
a=1

Ωaλa = A†(t)
dA(t)

dt
. (2)

The resulting collective coordinate Lagrange function has the structure

Ll(Ωa) = −Ecl +
1

2
α2

3∑
i=1

Ω2i +
1

2
β2

7∑
α=4

Ω2α −
Nc

2
√
3
Ω8 . (3)

The term linear in the time derivative originates from the Wess–Zumino–Witten
action [3] and therefore carries an explicit factor Nc (number of colors). The co-
efficients α2 and β2 are radial integrals of the profile functions and represent
moments of inertia for rotations in isospace and the strangeness subspace of fla-
vor SU(3), respectively. The form of Eq. (3) is generic. The particular numerical
values for the classical energy and the moments of inertia are, of course, subject
to the particular model. They are reviewed in Ref. [2].

2.2 Heavy meson bound states

In the heavy flavor limit the pseudoscalar and vector meson components become
degenerate [4]. In contrast to the light sector it is hence inevitable to include both
components. Since the soliton configuration itself has non–zero orbital angular
momentum the most strongest coupling to the solution dwells in the P–wave
channel [5] (P and Qµ are SU(3) flavor spinors):

P =
eiωt√
4π
Φ(r)r̂ · τ̂χ ,

Q0 =
eiωt√
4π
Ψ0(r)χ , (4)

Qi =
eiωt√
4π

[
iΨ1(r)r̂i +

1
2
Ψ2(r)εijkr̂jτk

]
χ ,

where χ = χ(ω) is a three component spinor that is constant in space but should
be viewed as the Fourier amplitude of the heavy meson wave–function. Since the
coupling to the light mesons occurs via a soliton in the isospin subspace, only
the first two components of χ are non–zero. The parameterization that emerges
by left multiplication with r̂ · τ̂ has different profile functions and leads to the
S–wave bound states.

The field equations for heavy mesons turn into coupled linear differential
equations for the profile functions in eq. (4) with the soliton generating a binding
potential. This (so–called bound state) approach assumes the soliton as infinitely
heavy and corresponds to (formally) assuming the large NC limit. Normalizable
solutions to these differential equations only exist for certain frequenciesω below
the heavy meson mass.
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To quantize the Fourier amplitudes, χ as harmonic oscillators it is necessary
to properly normalize the bound state profiles. The normalization condition is
that occupying the bound produces one unit of heavy charge (charm or bottom).
This heavy charge arises from the Noether current associated with an infinitesi-
mal phase transformation of the heavy field. We write the Lagrange function for
the heavy meson as

LH(ω) =

∫
d3r

[
ω2

2
ϕtM̂ϕ+ωϕtΛ̂ϕ+ϕtĤϕ

]
χ†(ω)χ(ω) , (5)

where ϕt = (Φ,Ψ0, Ψ1, Ψ2) contains the bound state profiles while the soliton
determines the matrices M̂, Λ̂ and Ĥ are matrices that also contain differential
operators. Since the phase transformation in Eq. (4) can be modeled as ω→ ω+

δω, the normalization condition reads∣∣∣∣∫ d3r [ωϕtM̂ϕ+ϕtΛ̂ϕ+ϕtĤϕ
]∣∣∣∣ !

= 1 . (6)

We require absolute values because bound states withω < 0 have opposite heavy
charge and eventually describe heavy pentaquarks with a heavy anti–quark. The
heavy meson fields are spinors in SU(3) flavor space and thus subject to the col-
lective flavor rotation from Eq. (1),

P −→ A(t)P and Qµ −→ A(t)Qµ , (7)

where the right hand sides contain the bound state profile functions. It is then
very instructive to compute the time derivative

Ṗ = A(t)
[
iω +A†(t)Ȧ(t)

] eiωt√
4π
Φ(r)

(
r̂ · τ̂χ
0

)

= iA(t)

[
ω +

1

2
√
3
Ω8 +

1

2

7∑
a=1

Ωaλa

]
eiωt√
4π
Φ(r)

(
r̂ · τ̂χ
0

)

because it shows that
∂LH(ω)

∂Ω8
=

1

2
√
3

∂LH(ω)

∂ω
. Then the normalization condition

enforces
−
∂L

∂Ω8
=

1

2
√
3

(
Nc − sign(ω)χ†χ

)
=

1

2
√
3
(Nc −N) , (8)

where we have also identified the charge of the heavy quark. Finally, the collec-
tive rotation of the bound state yields the hyperfine coupling [6]

Lhf = ρχ
†
(
Ω · τ

2

)
χ , (9)

where ρ is an integral involving all profile functions, including those of the classi-
cal soliton. The bound state also contributes to the moments of inertia, α2 and β2,
but numerically that contribution is negligible since the bound state is localized
at the center of the soliton.
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3 Symmetry breaking and mass formula

Though it is appropriate to work with mu = md, the deviation ms � mu is
substantial and requires to add terms like

Lsb ∼
f2πm

2
π

4
Tr

1 0 00 1 0

0 0 x

(U +U† − 2
) + . . . where x =̂

2ms

mu +md
� 1 . (10)

to the effective chiral Lagrangian that describe different masses and decay con-
stants of strange and non–strange mesons1. These symmetry breaking terms yield
an explicit A dependence of the collective coordinate Lagrange function

Lsb = −
x

2
γ̃ [1−D88(A)] with Dab = 1

2
Tr
[
λaAλbA

†] . (11)

Again, γ̃ is a radial integral2 over all profile functions. Collecting Eqs. (3,9) and (11)
and Legendre transforming to the right SU(3) generators Ra = ∂L

∂Ωa
yields the

Hamilton operator whose eigenvalues are the baryon masses that are expressed
in the mass formula

E = Ecl +

(
1

α2
−
1

β2

)
r(r+ 1)

2
+
ε(x)

2β2
−

1

24β2
(Nc −N)

2

+ |ω|N+
ρ

2α2
[j(j+ 1) − r(r+ 1)]N . (12)

The moments of inertia are the same for the light and heavy degrees of freedom
as they result from a single local Lagrangian. In Eq. (12) ε(x) is the eigenvalue
of Osb =

∑8
a=1R

2
a + xβ2γ̃ [1−D88(A)] according subject to the constraint R8 =

(Nc − N)/2
√
3. For odd Nc and N = 1 this constraint requires diquark SU(3)

representations. The total spin is j and r(r + 1) is the eigenvalue of
∑3
i=1R

2
i . It is

zero and one for the anti–symmetric and the symmetric diquark wave–functions,
respectively.

Obtaining the eigenvalues ε(x) of the operatorOsb amounts to a non–pertur-
bative treatment of light flavor symmetry breaking. Yet, the approach can be illu-
minated in the language of perturbation theory as it corresponds to linearly com-
bining states that belong to different SU(3) representations, but otherwise have
identical quantum numbers. Possible representations are subject to the constraint
on R8: For the physical value Nc = 3 representations with the lowest eigenvalue
of the quadratic Casimir operator,

∑8
a=1R

2
a are the anti–triplet and the sextet with

r = 0 and r = 1, respectively. That is, these are the quark model representations.
With symmetry breaking added an anti–fifteen–plet and a 24 dimensional repre-
sentation follow suit [7]. Increasing to the next odd value,Nc = 5, an anti–sextet,
a mixed– and a fully symmetric fifteen–plet are allowed by the constraint. The lat-
ter has r = 2 and does not have a counterpart for Nc = 3. Hence the Nc counting
effects (heavy) baryon masses via modified eigenvalues of Osb.

1 Symmetry breaking for the heavy mesons, proportional to e.g. M2
Bs −M2

B, is also in-
cluded.

2 The notation is chosen to distinguish it from γ = xγ̃ in the literature [2].



Soliton model analysis of SU(3) symmetry breaking 37

4 Summary

In these short proceedings we have explained the origin of the collective coor-
dinate Hamiltonian from treating baryons with heavy quark as a heavy meson
bound to a chiral soliton. The resulting spectrum and its comparison with empir-
ical data has been discussed at length elsewhere [1]. We stress that light baryons
are simultaneously described in this approach by settingN = 0 in Eq. (12) and in
the constraint on R8. In particular, we have unique moments of inertia and sym-
metry breaking coefficients regardless of the value forN. This is in contrast to the
approach of Ref. [8] that employs different Lagrangians in the light and heavy
sectors.
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Abstract. The paper reviews selected recent spectroscopy results of measurements per-
formed with the experimental data sample collected by the Belle detector, which has been
operating between 1999 and 2010 at the KEKB asymmetric-energy e+e− collider in the
KEK laboratory in Tsukuba, Japan. The sample of collected experimental data enables var-
ious interesting measurements, including ones in hadron spectroscopy. Due to size of the
data sample and complexity of experimental procedures, measurements are still being per-
formed and new results published even now, several years after the end of the Belle de-
tector operation. The selection of recent results presented here corresponds to the scope of
the workshop and reflects interests of its participants.

1 Introduction

The Belle detector [1] at the asymmetric-energy e+e− collider KEKB [2] has dur-
ing its operation, between 1999 and 2010, accumulated an impressive sample of
data, corresponding to about 1 ab−1 of integrated luminosity. The KEKB collider,
often called a B Factory, was operating mostly around the Υ(4S) resonance, but
also at other Υ resonances, like Υ(1S), Υ(2S), Υ(5S) and Υ(6S), as well as in the
nearby continuum [3]. As a result of both successful accelerator operation and an
excellent detector performance, the large amount of collected experimental data
enabled many valuable measurements in the field of hadron spectroscopy, in-
cluding discoveries of new charmonium(-like) and bottomonium(-like) hadronic
states together with studies of their properties. This paper reports on some of the
recent results, selected according to the scope of the workshop.

2 Charmonium and Charmonium-like States

The charmonium spectroscopy was a well established field around the year 2000,
when the two B Factories started their operation [4]. At that time the experimen-
tal spectrum of cc states below the DD threshold was in good agreement with
the theoretical prediction (see e.g. ref. [5]), and with the last remaining cc states
below the open-charm threshold soon to be discovered [6]. However, instead of
a peaceful era, the true renaissance in the field actually started with the discov-
eries of the so called “XYZ” states—new charmonium-like states outside of the
conventional charmonium picture.
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Table 1. Results of branching fraction measurements for the B decays containing an inter-
mediate exotic resonance. For Z(3900)0 and Z(4020)0 resonances the assumed masses are
close to those of their charged partners.

Resonance Decay mode Upper limit (90% C.L.)

X1(3872) ηcπ
+π− 3.0× 10−5

ηcω 6.9× 10−5

X(3730) ηcη 4.6× 10−5

ηcπ
0 5.7× 10−6

X(4014) ηcη 3.9× 10−5

ηcπ
0 1.2× 10−5

Z(3900)0 ηcπ
+π− 4.7× 10−5

Z(4020)0 1.6× 10−5

X(3915) ηcη 3.3× 10−5

ηcπ
0 1.8× 10−5

2.1 The X(3872)-related news

The “XYZ” story begins in 2003, when Belle collaboration reported on B+ →
K+J/ψπ+π− analysis1, where a new state decaying to J/ψπ+π− was discovered [7].
The new state, called X(3872), was confirmed by the CDF, DØ, BABAR collabora-
tions [8], and later also by the LHC experiments [9]. The properties of this nar-
row state (Γ = (3.0+1.9−1.4 ± 0.9) MeV) with a mass of (3872.2 ± 0.8) MeV, which
is very close to the D0D∗0 threshold [10], have been intensively studied by Belle
and other experiments [11]. These studies determined the JPC = 1++ assignment,
and suggested that the X(3872) state is a mixture of the conventional 23P1 cc state
and a loosely bound D0D∗0 molecular state.

In order to fully understand the nature and internal structure of the X(3872),
further studies of X(3872) production and decay modes are needed. One example
of such studies is the search for X(3872) production via the B0 → X(3872)K+π−

and B+ → X(3872)K0Sπ
+ decay modes, where the X(3872) decays to J/ψπ+π−,

which was presented by the Belle collaboration last year [12]. The analysis was
performed on a data sample containing 772×106 BB̄ events, yielding the first ob-
servation of the X(3872) in the decay B0 → X(3872)K+π−, with the measured
branching fraction of B(B0 → X(3872)(K+π−)) × B(X(3872) → J/ψπ+π−) =

(7.9 ± 1.3(stat) ± 0.4(syst)) × 10−6. The result for the B(B+ → X(3872)K0π+) ×
B(X(3872)→ J/ψπ+π−) = (10.6± 3.0(stat)± 0.9(syst))× 10−6 shows that B0 →
X(3872) K∗(892)0 does not dominate the B0 → X(3872)(K+π−) decay, which is in
clear contrast to charmonium behaviour in the B→ ψ(2S)Kπ case.

TheD0D̄∗0 molecular hypothesis of X(3872) allows for the existence of other
“X(3872)-like” molecular states with different quantum numbers. Some of these
states could be revealed in studies of decays to final states containing the ηc me-
son. For example, a D0D̄∗0 − D̄0D∗0 combination (denoted by X1(3872)) with
quantum numbers JPC = 1+− would have a mass around 3.872 GeV/c2 and

1 Throughout the document, charge-conjugated modes are included in all decays, unless
explicitly stated otherwise.
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Fig. 1. The χc1π+π− invariant mass spectrum for B+ → χc1π
+π−K+ candidates. Two ver-

tical red lines show the ±3σ window to search for X(3872) → χc1π
+π−. The curves show

the χc1(2P) signal (red dashed) and the background (green dotted) and the overall fit (blue
solid).

would decay to ηcρ and ηcω. Combinations ofD0D̄0+D̄0D0, denoted byX(3730),
and D∗0D̄∗0 + D̄∗0D∗0, denoted by X(4014), with quantum numbers JPC = 0++

would decay to ηcη and ηcπ0. The mass of the X(3730) state would be around
2mD0 = 3.730 GeV/c2, while that of the X(4014) state would be near 2mD∗0 =

4.014 GeV/c2. These molecular-state candidates were searched for in the recent
Belle analysis, performed on the complete Belle data sample [13]. In addition,
neutral partners of the Z(3900)± [14] and Z(4020)± [15], and a poorly understood
state X(3915) were also searched for. All performed studies of B decays to se-
lected final states with the ηc meson resulted in no signal being observed, thus
only 90% confidence level upper limits were set on the product of branching frac-
tions to various intermediate states and their decay branching fractions in the
range (0.6 − 6.9) × 10−5 (see Table 1). The obtained upper limits for these exotic
states are already based on the full Belle data sample and are roughly of the same
order as obtained for their presumed partners (compare results from ref. [11]), so
more information about the nature of these states could only be extracted from
the larger data sample, which will be available at the Belle II experiment [16].

Recently Belle collaboration has studied the multi-body B decay modes with
χc1 and χc2 in the final state, using the full Belle data sample of 772 × 106 BB
events [17]. This study is important to understand the detailed dynamics of B
meson decays, but at the same time these decays could be exploited to search
for charmonium and charmonium-like exotic states in one of the intermediate
final states such as χcJπ and χcJππ. For example, looking at the χc1π+π− in-
variant mass spectrum in B → χc1π

+π−K decays, one can search for X(3872)
and/or χc1(2P), which could be the conventional charmonium component of
the X(3872) state. The χc1(2P) component may have a substantial decay rate to
χc1π

+π− because of no obvious conflict in quantum numbers and observations
of di-pion transitions between χbJ states in the bottomonium system. In case
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that X(3872) is not a mixed state and hence χc1(2P) is a physically observable
state, its decay to χc1π+π− would still be expected. Its mass is predicted to be
about 3920 MeV/c2, assuming that it lies between χc2(2P) and the X(3915) that
is interpreted as χc0(2P) by PDG [10]. The measurement yields B(B → χc1X)=
(3.03 ± 0.05(stat) ± 0.24(syst)) × 10−3 and B(B → χc2X)= (0.70 ± 0.06(stat) ±
0.10(syst))× 10−3. For the first time, χc2 production in exclusive B decays in the
modes B0 → χc2π

−K+ and B+ → χc2π
+π−K+ has been observed, along with

first evidence for the B+ → χc2π
+K0S decay mode. For χc1 production, the first

observation in the B+ → χc1π
+π−K+, B0 → χc1π

+π−K0S and B0 → χc1π
0π−K+

decay modes is reported. For the above decay modes, a difference in the pro-
duction mechanism of χc2 in comparison to χc1 in B decays is clearly observed.
In the search for X(3872) → χc1π

+π− and χc1(2P), an U.L. on the product of
branching fractions B(B+ → X(3872)K+) × (X(3872) → χc1π

+π−) [B(B+ →
χc1(2P)K

+)×(χc1(2P)→ χc1π
+π−)]< 1.5×10−6 [1.1×10−5] is determined at the

90% C.L. (the fit to the χc1π+π− invariant mass distribution is shown in Figure
1) The negative result for these searches is compatible with the interpretation of
X(3872) as an admixture state of a D0D̄∗0 molecule and a χc1(2P) charmonium
state.

2.2 Study of JPC = 1−− states using ISR

Initial-state radiation (ISR) has proven to be a powerful tool to search for JPC =

1−− states at B-factories, since it allows one to scan a broad energy range of
√
s be-

low the initial e+e− centre-of-mass (CM) energy, while the high luminosity com-
pensates for the suppression due to the hard-photon emission. Three charmonium-
like 1−− states were discovered at B factories via initial-state radiation in the last
decade: the Y(4260) in e+e− → J/ψπ+π− [18,19], and the Y(4360) and Y(4660) in
e+e− → ψ(2S)π+π− [20, 21]. Together with the conventional charmonium states
ψ(4040), ψ(4160), and ψ(4415), there are altogether six vector states; only five of
these states are predicted in the mass region above the DD threshold by the po-
tential models [22]. It is thus very likely, that some of these states are not charmo-
nia, but have exotic nature—they could be multiquark states, meson molecules,
quark-gluon hybrids, or some other structures. In order to understand the struc-
ture and behaviour of these states, it is therefore necessary to study them in many
decay channels and with largest possible data samples available.

Recent paper from Belle collaboration reports on the experimental study of
the process e+e− → γχcJ (J=1, 2) via initial-state radiation using the data sample
of 980 fb−1, collected at and around the Υ(nS) (n=1, 2, 3, 4, 5) resonances. For the
CM energy between 3.80 and 5.56 GeV, no significant e+e− → γχc1 and γχc2 sig-
nals were observed except from ψ(2S) decays, therefore only upper limits on the
cross sections were determined at the 90% credibility level. Reported upper lim-
its in this CM-energy interval range from few pb to a few tens of pb. Upper lim-
its on the decay rate of the vector charmonium [ψ(4040), ψ(4160), and ψ(4415)]
and charmonium-like [Y(4260), Y(4360), and Y(4660)] states to γχcJ were also
reported in this study (see Table 2). The obtained results could help in better un-
derstanding the nature and properties of studied vector states.
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Table 2. Upper limits on Γee × B(R→ γχcJ) at the 90% C.L.

χc1 (eV) χc2 (eV)

Γee[ψ(4040)]× B[ψ(4040) → γχcJ] 2.9 4.6

Γee[ψ(4160)]× B[ψ(4160) → γχcJ] 2.2 6.1

Γee[ψ(4415)]× B[ψ(4415) → γχcJ] 0.47 2.3

Γee[Y(4260)]× B[Y(4260) → γχcJ] 1.4 4.0

Γee[Y(4360)]× B[Y(4360) → γχcJ] 0.57 1.9

Γee[Y(4660)]× B[Y(4660) → γχcJ] 0.45 2.1

3 Results on Charmed Baryons

Recently, a lot of effort in Belle has been put into studies of charmed baryons.
Many of these analyses are still ongoing, but some of the results are already avail-
able. One example of such a result is the first observation of the decay Λ+

c →
pK+π− using a 980 fb−1 data sample [23]. This is the first doubly Cabibbo-sup-
pressed (DCS) decay of a charmed baryon to be observed, with statistical signifi-
cance of 9.4 σ (fit results for invariant-mass distributions are shown in Figure 2).
The branching fraction of this decay with respect to its Cabibbo-favoured (CF)
counterpart is measured to be B(Λ+

c → pK+π−)/B(Λ+
c → pK−π+) = (2.35 ±

0.27± 0.21)× 10−3, where the uncertainties are statistical and systematic, respec-
tively.
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Fig. 2. Invariant mass distributions for the Λ+
c candidates: M(pK−π+) for the CF decay

mode (left) andM(pK+π−) for the DCS decay mode (right, top). In the DCS case the distri-
bution after the combinatorial-background subtraction is also shown (right, bottom). The
curves indicate the fit result: the full fit model (solid) and the combinatorial background
only (dashed).
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4 Summary and Conclusions

Many new particles have already been discovered during the operation of the
Belle experiment at the KEKB collider, and some of them are mentioned in this
report. Although the operation of the experiment finished several years ago, data
analyses are still ongoing and therefore more interesting results on charmonium(-
like) and bottomonium(-like) and baryon spectroscopy can still be expected from
Belle in the near future. These results are eagerly awaited by the community and
will be widely discussed at various occasions, in particular at workshops and
conferences.

Still, the era of Belle experiment is slowly coming to an end. Further progress
towards high-precision measurements—with possible experimental surprises—
in the field of hadron spectroscopy are expected from the huge experimental data
sample, which will be collected in the future by the Belle II experiment [16].
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Abstract. We claim that a narrow peak in the cross section near 1685 MeV in the γn→ ηn

channel can be explained through a peculiar radial behaviour of the p-wave quark states
with j = 1/2 and j = 3/2 in the low lying S11 resonances and the opening of the KΣ
threshold rather than by an exotic resonance. We explain the mechanism of its formation
in the framework of a coupled channel formalism which incorporates quasi-bound quark-
model states corresponding to the two low lying resonances in the S11 partial wave. A
relation to the Single Quark Transition Model is pointed out.

1 Motivation

In this contribution we discuss a possible quark-model explanation for a narrow
structure at W ≈ 1685 MeV in the γn → ηn reaction observed by the GRAAL
Collaboration [1] which, however, turned out to be absent in the ηp channel. Az-
imov et al. [2] were the first to discuss the possibility that the structure could
belong to a partner of the Θ+ pentaquark in the exotic antidecouplet of baryons.
More conventional explanations have attributed the peak to the threshold effect
of the KΣ channel [3], interference of the nearby S11, P11 and P13 resonances [4],
constructive and destructive interference of the two lowest S11 resonances in
the ηn and ηp channels, respectively, as anticipated in the framework of the
Giessen model [5, 6] as well as in the Bonn-Gatchina analysis [7, 8]. In the frame-
work of the constituent-quark model coupled to the pseudoscalar meson octet
the (non)appearance of the peak was related to different EM multipoles (at the
quark level) responsible for excitation in either of the two channels [9].

2 The coupled channel approach

In our recent paper [10] we have systematically analysed the partial waves with
sizable contributions to the ηN, KΛ and KΣ decay channels using a SU(3) ex-
tended version of the Cloudy Bag Model (CBM) [11] which includes also the ρ
and ω mesons1. We have found that the main contribution to η photoproduction
? Talk delivered by B. Golli
1 The method has been described in detail in our previous papers [12–16] where we have

analysed the scattering and electro-production amplitudes in different partial waves.
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at low and intermediate energies comes from the S11 partial wave. In this contri-
bution we therefore concentrate on the S11 partial wave in which the considered
phenomenon is most clearly visible.

In our approach the main contribution to η production in the S11 partial
wave stems from the resonant part of the electroproduction amplitude which can
be cast in the form

Mres
ηNγN =

√
ωγE

γ
N

ωπEN

ξ

πVπNR
〈ΨR|Vγ|ΨN〉 TηNπN , (1)

where TηNπN is the T -matrix element pertinent to the πN → ηN channel, Vγ
describes the interaction of the photon with the electromagnetic current and ξ is
the spin-isospin factor depending on the considered multipole and the spin and
isospin of the outgoing hadrons. Here |ΨR〉 = c1(W)|N(1535)〉+ c2(W)|N(1650)〉
with

|N(1535)〉 = cos ϑ|70, 28, J = 1
2
〉− sin ϑ|70, 48, J = 1

2
〉 ,

|N(1650)〉 = sin ϑ|70, 28, J = 1
2
〉+ cos ϑ|70, 48, J = 1

2
〉

and ci(W) are W-dependent coefficients determined in the coupled-channel cal-
culation for scattering.

The strong TηNπN amplitude is obtained in a coupled channel calculation
with ten channels involving π, ρ, ω, η and K mesons. The most important chan-
nels are shown in Fig. 1. The behaviour of the amplitudes is dominated by the
N(1535) andN(1650) resonances as well as the ηN, KΛ and KΣ thresholds. In the
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Fig. 1. The real and imaginary parts of the scattering T matrix for the dominant πN, π∆,
ηN, KΛ and KΣ channels in the S11 partial wave. The corresponding thin curve denote the
2014-2 solution of the Bonn-Gatchina group [17] for the ηN channel.. The data points for
the elastic channel are from the SAID partial-wave analysis [18].

present calculation we put the mixing angle θ to the popular value of 30◦ and
assume that all meson-quark coupling constants are fixed at their quark-model
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values dictated by the SU(3) symmetry. While the real part of the elastic ampli-
tude is well reproduced, the imaginary part is rather strongly underestimated
in the region of the second resonance which can be to some extent attributed to
too strong couplings in the π∆, KΛ and KΣ channels. This discrepancy should be
taken into account when assessing the quality of the photoproduction amplitudes
in the following.

3 The η photoproduction amplitudes

The electromagnetic amplitude in (1) in the S11 partial wave is dominated by the
photon-quark coupling while the coupling to the pion cloud turns out to be small.
The spin doublet and quadruplet states involve quarks excited to the p orbit with
either j = 1

2
or j = 3

2
[19]:

|48 1
2
〉 = 1

3
|(1s)2(1p3/2)

1〉+
√
8

3
|(1s)2(1p1/2)

1〉 , (2)

|28 1
2
〉 = −

2

3
|(1s)2(1p3/2)

1〉+
√
2

6
|(1s)2(1p1/2)

1〉+
√
2

2
|(1s)2(1p1/2)

1〉 ′ , (3)

where the last two components with p1/2 correspond to coupling the two s-
quarks to spin 1 and 0, respectively; the flavour (isospin) part is not written ex-
plicitly. The quark part of the dominant E0+ transition operator can be cast in the
form ∫

dr jq ·Ae11 = i
3∑
i=1

[
M 1

2
Σ
[ 1
2
1
2
]

11 (i) +M 3
2
Σ
[ 3
2
1
2
]

11 (i)
] [
1
6
+ 1
2
τ0(i)

]
, (4)

where

M 1
2
=

√
2

3

∫
dr r2

[
j0(qr)

(
3vp1

2

(r)us(r) + up1
2

(r)vs(r)
)
− 2j2(qr)u

p
1
2

(r)vs(r)
]
, (5)

M 3
2
=

√
2

3

∫
dr r2

[
2j0(qr)u

p
3
2

(r)vs(r) + 1
2
j2(qr)

(
up3
2

(r)vs(r) − 3vp3
2

(r)us(r)
)]
. (6)

The quark transition operator is defined through 〈ljmj|Σ[j 1
2
]

LM |1
2
ms〉 = Cjmj1

2
msLM

.
Evaluating (4) between the resonant states and the nucleon we notice that for

the proton, the isoscalar part of the charge operator exactly cancels the isovector
part in the case of the first two components in (2) and (3). This is a general prop-
erty known as the Moorhouse selection rule [20] and follows from the fact that the
flavour part in these two components corresponds to the mixed symmetric state
φM,S. The proton therefore receives no contribution from the 1s → 1p3/2 transi-
tion. This is not the case with the neutron which receives contributions from all
components in (2) and (3). The quark in the 1p3/2 orbit has a distinctly different
radial behaviour from that in the 1p1/2 orbit, which is reflected in a different q-
andW-behaviour of the amplitudes (5) and (6).

The E0+ amplitudes are shown in Fig. 2 for the proton and the neutron in the
region of the KΣ threshold. Our results do show a (bump-like) structure in the γn
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channel, which is absent in the γp channel, though its strength in the imaginary
part is lower compared to the Bonn-Gatchina 2014-2 analysis (which fits well the
experimental cross-section). A moderate rise of the neutron real amplitude below
the KΣ threshold is clearly a consequence of the contribution from the j = 3/2

orbit, while the cusp-like drop in the amplitudes is due to the KΣ threshold. This
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Fig. 2. The dominant contributions to the imaginary and real part of the E0+ amplitude (in
units of mfm) for the proton (upper two panels) and for the neutron (lower two panels).
Apart of the separate contributions from the s→ p3/2 and s→ p1/2 transitions the vertex
correction is also displayed. The Bonn-Gatchina results are taken from the 2014-2 dataset
and multiplied by −1.

behaviour of the amplitudes is reflected in the cross-section as a peak (bump)
present only in the neutron channel (see Fig. 3). Though the strength in our model
is lower compared to the Bonn-Gatchina analysis, the qualitative agreement does
offer a possible and straightforward explanation of this structure in terms of the
quark model: a combination of a peculiar property of the (relativistic) wave func-
tions of the S11 resonances and the presence of the KΣ threshold. Let us stress
that the proposed explanation of the considered peak would not be possible in
a framework of the nonrelativistic quark model in which the radial behaviour of
the quark wave function depends only on the orbital momentum quantum num-
ber.
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Fig. 3. The total cross-sections for γp→ ηp and γn→ ηn (multiplied by the conventional

factor of
3

2
) (right panel), the ratio of the neutron and the proton cross-section (left panel).

Thinner circles and lines: contribution of the S11 partial wave. The BoGa curves have been
reconstructed from the Bonn-Gatchina 2014-2 data set [17].

4 Relation to the Single Quark Transition Model

Our model can be envisioned as a version of the Single Quark Transition Model
(SQTM) in which the photon interacts with a single quark in the three-quark core
and the other two quarks act as spectators. The general form of the SQTM opera-
tor is a product of the boost operator and current operators [21]:

Bjλ =
∑
lSL

Mλ
lSLT (l, S, L, λ) =

∑
llzS

RλlSlzT(l, lz, S, Sz = λ− lz) , (7)

where

Mλ
lSL = CLλllzSλ−lzR

λ
lSlz

, 〈l||T ||0〉 = 1 and 〈1
2
||T(S)||1

2
〉 =
√
2S+ 1 .

In our approach the quark states are labeled by the total angular momentum j, jz
rather than the orbital angular momentum and spin. In this case it is more conve-
nient to expand (7) as

Bjλ =
∑
jlL

Mλ
ljLΣ

[j 1
2
]

Lλ , 〈lj||Σ[j 1
2
]

L ||01
2
〉 = δj,l± 1

2
.

Recoupling the angular momenta we find

Mλ
ljL =

∑
S=0,1

(−1)j+L−S−
1
2

√
2(2L+ 1)(2S+ 1)W(ljS1

2
; 1
2
L)Mλ

lSL

= (−1)j+L−
1
2Mλ

l0l + (−1)j+L+
1
2

√
6(2L+ 1)W(lj11

2
; 1
2
L)Mλ

l1L ,

whereW are the Racah coefficients.
In the case of S11 resonances l = 1, and only the E1 multipole is involved

(L = 1, λ = 1). In this case the coefficients (5) and (6) read

M 1
2
=M1

1 1
2
1 = −M1
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√
2M1

111 = −e111 +
√
2m111 ,

M 3
2
=M1

1 3
2
1 =M1
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2
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11
1 +

1√
2
m111 ,
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where e111 andm111 are the ”quark electric” and ”quark magnetic” multipole mo-
ments. Table 1. in [21] gives for the corresponding E1 baryon multipole moment
of the proton and the neutron which in turn can be related to (5) and (6):

pE1 =

√
1

3
e111 −

√
2

3
m111 = −

1√
3
M 1

2
,

nE1 = −

√
1

3
e111 +

√
2

27
m111 =

1

9
√
3

[
5M 1

2
− 4M 3

2

]
,

in agreement with our conclusion that the j = 3
2

orbit contributes only in the
γn→ ηn channel, which explains the different behaviour of the ηp and ηn chan-
nels in η photoproduction.
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Abstract. We study to what extent the soluble two-level Nambu–Jona-Lasino model can
be applied to the study of the equation of state of quark matter. We have found that in the
relation of energy versus temperature the phase transition does occur at a similar temper-
ature as in Lattice QCD calculations.

1 Introduction

We have designed a simple model similar to the Nambu–Jona-Lasino model, in
order to explore pedagogically [1,2] several phenomena and approximations sim-
ilar to those in full Nambu–Jona-Lasinio or Lattice QCD. In our previous stud-
ies, it was very instructive to get consistent results with such a simple model for
ground state (vacuum) properties such as the chiral condensate, as well as multip-
ion energies, pion-pion scattering length, and sigma meson energy and width [3].
In this contribution we explore the application to the phase transition of quark
matter.

In order to have a soluble two-level model with finite number of quarks, we
make the following simplifications:

1. We assume a sharp 3-momentum cutoff 0 ≤ |pi| ≤ Λ;
2. The space is restricted to a box of volume V with periodic boundary condi-

tions. This gives a finite number of discrete momentum states,
N = NhNcNfVΛ3/6π2 occupied by N quarks. (Nh, Nc and Nf are the num-
ber of quark helicities, colours and flavours.)

3. We take an average value of kinetic energy for all momentum states: |pi| →
P =

3

4
Λ .

4. While in the NJL model the interaction conserves the sum of momenta of
both quarks we assume that each quark conserves its momentum and only
switches from the Dirac level to Fermi level.

5. Temporarily, we restrict to one flavour of quarks, Nf = 1.
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We get a simplified NJL-like Hamiltonian

H =

N∑
k=1

(
γ5(k)h(k)P +m0β(k)

)
+

−
g

2

( N∑
k=1

β(k)

N∑
l=1

β(l) +

N∑
k=1

iβ(k)γ5(k)
N∑
l=1

iβ(l)γ5(l)
)

.

Here γ5 and β are Dirac matrices, h = σ · p/|p|, m0 is the bare quark mass and
g = 4G/V .

We introduce the quasispin operators which obey the spin commutation re-
lations

jx =
1

2
β , jy =

1

2
iβγ5 , jz =

1

2
γ5 ,

Rα =

N∑
k=1

1+ h(k)

2
jα(k) , Lα =

N∑
k=1

1− h(k)

2
jα(k) , Jα = Rα + Lα =

N∑
k=1

jα(k) .

The model Hamiltonian can then be written as

H = 2P(Rz − Lz) + 2m0Jx − 2g(J
2
x + J

2
y) .

The three model parameters Λ = 648MeV, G = 40.6MeV fm3, m0 =

4.58MeV have been fitted (in a Hartree-Fock + RPA approximation) to the ob-
servables

M =

√(
Eg(N) − Eg(N− 1)

)2
− P2 = 335MeV

Q = 〈g|ψ̄ψ|g〉 = 1

V 〈g|
∑
i

β(i)|g 〉 = 1

V 〈g|Jx|g 〉 = 250
3MeV3

mπ = E1(N) − Eg(N) = 138MeV .

The values of our model parameters are very close to those of full Nambu–
Jona-Lasinio model used by the Coimbra group [4] and by Buballa [5].

2 The canonical ensemble

It is easy to evaluate the matrix elements of the quasispin Hamiltonian using the
angular momentum algebra. If N is not too large the corresponding sparse ma-
trix can be diagonalized using Mathematica. The eigenstates and eigenvalues ε(ν)
are labeled with the quasispin quantum numbers R and L corresponding to the
operators |R|2 and |L|2 which commute with the Hamiltonian. The eigenvalues
may be highly degenerate (degeneracyD(ν) is due to the permutation symmetry
of different single particle labels p(i)). The ground state band with R = L = N/4

is nondegenerate and corresponds to the vacuum and multipion states.
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To get the equation of state (energy versus temperature) we apply the canon-
ical ensemble

E =
∑

ε(ν)D(ν) exp(−ε(ν)/T)/
∑

D(ν) exp(−ε(ν)/T) .

It is plotted in Fig.1 for two different values of quark numbers. As expected, the
phase transition is sharper for the larger number of quarks. However, the values
of energy are about the same. The model in its present form does not offer yet the
thermodynamic limit in which the energy would be proportional to the volume.
The reason is in the approximation 3 ( |pi|→ P = 3

4
Λ) which makes lifting quarks

to the upper level too expensive. Only collective excitations (multipion states, σ
mesons etc.) contribute significantly to the equation of state, but they are roughly
independent of the size of the normalization volume. Improvements to make a
more flexible average of the kinetic energy are in progress.

In the graph for the Lattice QCD asqtad and p4 refer to two different im-
proved staggered fermion actions [6]. At low temperature the curve corresponds
to the meson gas with 3 light degrees of freedom while at high temperatures it
corresponds free gas of quarks and gluons (18 quarks + 18 antiquarks + 16 gluons
= 52 massless degrees of freedom).

Note the difference in the vertical scale in our NJL curves (energy) as com-
pared to the Lattice QCD curve (energy density/T4). As mentioned before, we
are not yet in the thermodynamic limit and it would not be meaningful to plot
energy density. However, even in the simple model we get the temperature of the
phase transition with approximately the same value and width.

3 The two-flavour case: the SU(4) algebra

In order to proceed to two flavours, a larger group than SU(2) would be needed.
It is the O(3)⊗O(3)⊂O(5)⊂O(6) group (or equivalently SU(4) group) with fifteen
generators

τα; γ5τ
α; β, iβγ5τα; γ5, iβγ5, βτα,

where τα are isospin operators with α = 1, 2, 3.
With these generators we can express the two-flavour Hamiltonian

H =

N∑
k=1

(
γ5(k)h(k)P +m0β(k)

)
+

−
g

2

( N∑
k=1

β(k)

N∑
l=1

β(l) +

N∑
k=1

iβ(k)γ5(k)τ(k) ·
N∑
l=1

iβ(l)γ5(l)τ(l)
)

.

Work is in progress.
We have discussed this SU(4) symmetry in 2009 but have not exploited it

yet [2]. This symmetry has been recently widely popularized and applied by
L.Glozman [7–11].
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Fig. 1. Equation of state in the Quasispin NJL for N = 96 and N = 192, compared to the
Lattice QCD [6]
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Abstract. A brief review of some of the recent advances regarding our knowledge of the
elusive P11(1440) “Roper” resonance is presented. We refer to several experimental results
from MAMI, Jefferson Lab and other laboratories; report on novel attempts at explain-
ing the nature of this resonance within models involving meson-baryon or meson-quark
dressing; and give a glimpse into the progress made in the past few years by Lattice QCD.

1 Introduction

The Roper resonance, N∗(1440), which is the first excited state of the nucleon
with equal quantum numbers, has been discovered in πN scattering about 50
years ago [1]. It has a very large Breit-Wigner width (extracted from partial-wave
analyses), ranging from as low as 135MeV to as high as 605MeV according to the
most recent (2016) Particle Data Group compilation of the corresponding partial-
wave analyses, with an uncertainty of more than 100MeV; its pion-nucleon scat-
tering amplitude, TπN, also has a very peculiar behavior with barely a hint of the
characteristic maximum of the imaginary part at resonance. The Breit-Wigner ap-
proach at the description of the Roper is faulty by itself: the strong inelasticities
simply prevent one from treating this resonance in an isolated manner.

Hence, in particular when compared to the familiar ∆(1232) excitation, the
nature of the Roper remains a puzzle — in spite of it being awarded four-star
PDG status. Part of the problem of course lies in the fact that it is next to impos-
sible to oberve it directly in any kind of “simple” observables like partial cross-
sections. The theoretical picture is just as obscure: for example, the mechanism
in Lattice QCD that would cause the positive-parity N∗(1440) resonance (a radial
excitation) to drift below the negative parity N∗(1535) (orbital) excitation when
approaching the physical pion mass, remains elusive.

2 Phenomenological support for the “two-structure” picture

Studies of the Roper resonance within dynamical coupled-channels models based
on baryon-meson degrees of freedom (see, for example, [2, 3]) have shed further
light into this picture by identifying multiple resonance poles originating in what
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is assumed to be the same bare state. These analyses tend to yield three P11 poles
below 2GeV, two of which are typically associated with the N∗(1440) and one
with N∗(1710), although it is not totally clear whether the lower-lying pair is an
artefact of the analysis or a genuine statement on the resonance(s). In the most
recent analysis of [3], the poles belonging to the N∗(1440) are located at (1353 −
i 106)MeV and (1357− i 114)MeV, respectively.

There are several older as well as more recent experiments whose conclu-
sions were based on the argument that indeed two structures (or mechanisms,
or particular interferences involving the Roper) are needed in order to explain
the observed quantities. In other words, can the two-pole structure encountered
in partial-wave analysis be in any way associated with features seen in individ-
ual measurements? For example, it has been shown in the study of αp and πN
scattering in the Saturne Collaboration [4, 5] that the data on can be explained by
assuming two structures, the lower of which (M ≈ 1.39GeV, Γ ≈ 0.19GeV) is
only seen in α-p scattering in addition to πN elastic and πN→ N(ππ)S, while the
upper one (M ≈ 1.39GeV, Γ ≈ 0.19GeV) is seen only in πN elastic and πN→ π∆.
Strong interferences of the N∗(1440) → N(ππ)T=0S−wave and N∗(1440) → π∆ pro-
cesses have been claimed by [6] to be crucial in order to reproduce the ππ→ ππN
data close to threshold as measured by the Crystal Ball collaboration. Similar con-
clusions were reached in the research conducted at Wasa/Promice [7] where the
properties of the Roper excitation have been studied by the pp→ ppππ process.

3 The Roper in quark models and on the lattice

If the Roper were a purely radial excitation (“breathing mode”) of the nucleon,
corresponding to the (1s)3 → (1s)2(2s)1 quark transition, this should correspond
to a sizeable scalar (monopole) transition strength, together with a non-zero trans-
verse (dipole) amplitude. On the other hand, if the Roper were a q3g hybrid,
the monopole amplitude should be suppressed and the transverse part should
dominate. Experimentally one observes a relatively large transverse helicity am-
plitude A1/2 with a zero-crossing at Q2 ≈ 0.5 (GeV/c)2, while the scalar helic-
ity amplitude clearly does not vanish and is comparable in magnitude to the
transverse amplitude [13], ruling out the hybrid picture. Almost all modern rela-
tivistic quark models [14–17] confirm such behavior, implying that the Roper can
be seen as the first radial excitation of the q3 ground state, although all models
fail to describe the low-Q2 behavior of A1/2; see [19, 20] for a possible remedy
within a “χPT-inspired” effective theory and models involving strong meson-
baryon dressings. Moreover, the issue of meson dressing of the quark core opens
the whole avenue of exploration by means of chiral quark models (optionally
incorporated into coupled-channels models). For an overview see [18].

The correct level ordering of the positive-parity N∗(1440) with respect to the
negative-parity N∗(1535) when approaching the physical pion mass remains an
unsolved problem even in the most recent lattice QCD calculations. At most, one
observes “evidence” of the correct level ordering; see, for example, the studies of
Refs. [21–23] and the summary plots therein, as well as the most recent calculation
of Ref. [24].
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4 Accessing the Roper through pion electro-production

Identifying the signatures of the Roper resonance in processes induced by real
or virtual photons is an option that has been recently pursued at major electron
scattering facilities like MAMI and Jefferson Lab. There is a large amount of ex-
isting data on single-pion and two-pion electroproduction processes in the en-
ergy region of the Roper resonance; see e. g. Refs. [25–30]. The most sensitive ob-
servables are single-spin and beam-target double-spin asymmetries. As such they
represent crucial testing grounds for the state-of-the-art models like MAID [31]
and DMT [32], two distinct approaches to meson electroproduction calculations:
unitary isobar models operating with dressed resonances versus dynamical mod-
els incorporating bare states and their subsequent dynamical dressing. No such
measurement has ever been performed in the region of the Roper resonance, in
particular at low momentum transfers where the effects of the pion cloud are ex-
pected to be most relevant. At MAMI, we have recently performed a dedicated
p(~e, e ′~p)π0 experiment [10] in order to provide precise beam-recoil double polar-
ization data for the process in the energy region of the Roper.

The differential cross section for the p(~e, e′~p)π process involving beam po-
larization and recoil polarization analysis can be cast in the form

d5σ

dp ′edΩ
′
edΩ

∗
p

= Γ σ̄
(
1+ hA+ ~S · ~Π

)
,

where Γ is the virtual photon flux, σ̄ is the unpolarized cross section, h is the
electron helicity, A is the beam analyzing power (equal to zero assuming parity
invariance), ~S is the spin direction for the recoil proton, and ~Π = ~P + h~P′ is the
recoil polarization consisting of its helicity-independent and helicity-dependent
parts. The cross section can be decomposed into products of precisely calculable
kinematic factors, να, which depend only upon electron kinematics, with the re-
sponse functions, Rα, which carry the relevant hadronic information. The central
kinematics of our experiment has been chosen such that θ∗p ≈ 90◦ and φ∗p ≈ 0◦
(in-plane measurement), resulting in three non-vanishing polarization compo-
nents:

P ′`σ̄ = ν0
[
ν′LTR

′`
LT + ν′TTR

′`
TT

]
,

Pnσ̄ = ν0 [νLR
n
L + νTR

n
T + νLTR

n
LT + νTTR

n
TT ] ,

P ′tσ̄ = ν0
[
ν′LTR

′t
LT + ν′TTR

′t
TT

]
,

where σ̄ = ν0 [νLRL + νTRT + νLTRLT + νTTRTT ]. The structure functions can be
further represented in terms of the bilinear forms of electroproduction multi-
poles. For the Roper resonance the multipoles of interest are the scalar (monopole)
S1− and the magnetic dipole M1−. To leading orders in the angular decompo-
sition, the relevant terms in the structure functions are R′`TT ∝ ReE∗0+(3E1+ +

M1+ + 2M1−) and RnT ∝ ImE∗0+(3E1+ +M1+ + 2M1−), hence P ′` and Pn pick
up the real and imaginary parts, respectively, of the same interference of the
non-resonant E0+ multipole with the resonant M1−. These interferences are the
key to the sensitivity of our experiment to its Roper content as a small resonant
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amplitude is multiplied by a large non-resonant one. By the same token, since
R′`LT ∝ ReS∗1−M1− and RnLT ∝ ImS∗1−M1−, the same polarization components are
also sensitive to the respective resonant-resonant interferences, but these terms
are correspondingly smaller. As P ′t ∝ R′tLT , the transverse component P ′t is sensi-
tive to two interference terms involving resonant and non-resonant amplitudes:
R′tLT ∝ Re

[
S∗0+(2M1+ +M1−) + (2S∗1+ − S∗1−)E0+

]
.

Our study of p(~e, e ′~p)π0 was performed at the three spectrometer facility
of the A1 Collaboration at the Mainz Microtron (MAMI). The kinematic ranges
covered were W ≈ (1440 ± 40)MeV for the invariant mass, θ∗p ≈ (90 ± 15)◦ and
φ∗p ≈ (0 ± 30)◦ for the CM scattering angles and Q2 ≈ (0.1 ± 0.02)(GeV/c)2 for
the square of the four-momentum transfer. The analysis is ongoing.
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Omejitve hadronskih spektrov v zvezi z lastnostmi kvarkovske
snovi
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Opozorimo na dejstvo, da termodinamske lastnosti hadronskega plina, kot jih
napoveduje kromodinamika na mreži, ne dopuščajo tako hitrega naraščanja šte-
vila resonančnih stanj v kromodinamskem spektru, kot bi ha dala Hagedornova
hipoteza, razen če je med hadronskimi resonancami znaten odboj. Če bi se nara-
ščanje po Hagedornu nadaljevalo nad 1.8 GeV, bi termodinamske funkcije znatno
odstopale od vrednosti določenih na mreži pri temperaturah nad 140 MeV, ravno
pod temperaturo prehoda v plazmo kvarkov in gluonov.

Kaj se lahko naučimo iz modelov tipa Nambu–Jona-Lasinio o
gosti snovi?

Michael Buballa

Theoriezentrum, Institut für Kernphysik, TU Darmstadt, D-64289 Darmstadt, Germany

Podana je kritična ocena, kakšni so uspehi in omejitve modela Nambuja in Jona-
Lasinia kot modela za močne interakcije pri gostoti, različni od nič. Na več prime-
rih pokažemo, čeprav rezultatom v splošnem ne moremo zaupati kvantitativno,
da je model Nambuja in Jona-Lasinia močno teoretično orodje, s katerim dobimo
nove vpoglede in ideje o kromodinamskem faznem diagramu in enačbi stanja
goste snovi.

Problem predznaka pri kvantni kromodinamiki

Thomas D. Cohen

Department of Physics, University of Maryland, College Park, MD 20742-4111
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Mikroskopska struktura vozlišč πNN, πN∆ in π∆∆ v hibridnem
modelu s konstituentnimi kvarki

Ju-Hyun Jung in Wolfgang Schweiger

Theoretical Physics, Institute of Physics, University of Graz, Universitaetsplatz 5, A-8010
Graz, Austria

Prikažemo mikroskopski opis močnih vozlišč πNN, πN∆ in π∆∆. Izhodišče je
konstituentni kvarkov model z dodatkom komponente 3qπ. V duhu kiralnega
konstituentnega kvarkovega modela smejo kvarki oddati in absorbirati pion. Ta
sistem z več kanali obravnavamo relativistično invariantno v točkovni sliki. Za-
čnemo z valovno funkcijo za N in ∆ s spinsko in okusno simetrijo SU(6) in izra-
čunamo jakost omenjenih vozlišč in ustrezne oblikovne faktorje. Naši rezultati se
skladajo s fenomenološko prilagojenimi količinami, dobljenimi s čisto hadronski-
mi večkanalskimi modeli za barionske resonance.

Spin nukleona pri globoko neelastičnem sipanju

Bogdan Povh

Max-Planck-Institut für Kernphysik, Postfach 103980, D-69029 Heidelberg, Germany

Opozorimo na konflikt pri interpretaciji deleža spina nukleona, ki ga nosijo kvarki.
V kvarkovem modelu, v katerem vsebujejo oblečeni kvarki oblak mezonov pi, je
delež spina ∆Σ ≈ 0.6. Pri analizi globoko neelastičnega sipanja pa citirajo vred-
nost ∆Σ ≈ 0.33. Razpravljali smo o možnih razrešitvah tega konflikta.

Določitev deleža vrtilne količine mezona ρ(1450), ki jo nosijo
kiralni kvarki na mreži

C. Rohrhofer, M. Pak in L. Ya. Glozman

Theoretical Physics, Institute of Physics, University of Graz, Universitaetsplatz 5, A-8010
Graz, Austria

Delež kiralnosti in vrtilne količine za vodilno Fockovo komponento kvark-anti-
kvark pri mezonih ρ(770) in ρ(1450) določimo s simulacijo na mreži s kiralnimi
fermioni. Naša analiza pokaže, da je v bazi vrtilnih količin mezon ρ(770) v stanju
3S1, v skladu s kvarkovim modelom. Stanje mezona ρ(1450) pa je 3D1, kar kaže
na napačno predpostavko v kvarkovem modelu, da je ρ(1450) radialno vzbujeno
stanje mezona ρ(770).
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Vzbujeni hiperoni iz pasu N = 2 v razvoju po recipročnem
številu barv

Floarea Stancu

University of Liège, Institute of Physics B5, Sart Tilman, B-4000 Liège 1, Belgium

Predstavljena je ponovna analiza vzbujenih barionov z metodo razvoja po re-
cipročnem številu barv, s posebnim poudarkom na hiperonih. Izpeljane so napo-
vedi za klasifikacijo teh vzbujenih barionov v singlete, oktete in dekuplete grupe
SU(3).

Pentakvarki tipa cc̄ v kvarkovem modelu

Sachiko Takeuchi

Japan College of Social Work, Kiyose, Tokyo 204-8555, Japan; Research Center for Nuclear
Physics (RCNP), Osaka University, Ibaraki, Osaka, 567-0047, Japan; Theoretical Research
Division, Nishina Center, RIKEN, Wako, Saitama 351-0198, Japan

Preučevali smo sisteme uudcc̄ s kvantnimi števili I(JP) = 1
2
(1
2

−
, 3
2

−
, 5
2

−
). Možne

konfiguracije uud v pentakvarku uudcc̄ (0s)5 so barvni singlet (spin
1

2
), barvni

oktet (spin
1

2
) in barvni oktet (spin

3

2
). Izkaže se, da kromomagnetna interak-

cija, ki odbija nukleone, pri tretji konfiguraciji privlači gruči uud in cc̄ (0s)5,
in to pod prag za razpad. Dobimo naslednje strukture okrog pragovΣ(∗)

c D̄(∗):
eno vezano stanje, dve resonanci in ost. Predvidevamo, da morda ustrezajo vrhu
(pentakvarku) z negativno parnostjo, opaženem pri LHCb.

Analiza zloma simetrije SU(3) pri barionih s težkim kvarkom z
uporabo solitonskega modela

H. Weigel, J. P. Blanckenberg

Physics Department, Stellenbosch University, Matieland 7602, South Africa

V kontekstu kiralnega solitonskega modela podamo pregled, kako se zgradi Ha-
miltonov operator s kolektivnimi koordinatami, ki opiše spekter barionov z enim
težkim kvarkom in lahkimi kvarki u, d in s.
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Izbor novejših spektroskopskih rezultatov eksperimenta Belle

Marko Bračko

Univerza v Mariboru, Smetanova ulica 17, SI-2000 Maribor, in Institut J. Stefan, Jamova
cesta 39, SI-1000 Ljubljana

Predstavljeni so nekateri novejši rezultati spektroskopskih meritev, opravljenih
na vzorcu izmerjenih podatkov, ki ga je v času svojega delovanja, med letoma
1999 in 2010, zbral eksperiment Belle. Istoimenski detektor je bil postavljen ob
trkalniku elektronov in pozitronov KEKB, ki je obratoval v laboratoriju KEK v
Cukubi na Japonskem. Zbrani izmerjeni podatki omogočajo številne kakovostne
meritve, tudi spektroskopske. Zaradi velikosti vzorca in zahtevnosti pri obdelavi
izmerjenih podatkov pa raziskovalna skupina Belle objavlja rezultate novih meri-
tev še sedaj, torej kar vrsto let po zaključku delovanja eksperimenta. Izbor rezul-
tatov, predstavljenih v prispevku, ustreza zanimanju in razpravam udeležencev
delavnice.

Uganke pri fotoprodukciji mezona eta: ozki vrh pri 1685 MeV

Bojan Gollia,b in Simon Šircab,c

a Pedagoška fakulteta, Univerza v Ljubljani, Ljubljana, Slovenija
b Institut J. Stefan, Ljubljana, Slovenija
c Fakulteta za matematiko in fiziko, Univerza v Ljubljani, Ljubljana, Slovenija

Pokažemo, da je mogoče ozek vrh v bližini 1685 MeV v preseku za reakcijo γn→
ηn razložiti z različno radialno odvisnostjo kvarkovskih stanj z l = 1 j = 1/2 in
l = 1 j = 3/2 v nizko ležečih resonancah v parcialnem valu S11 in prisotnostjo
praga za nastanek kaona in bariona Σ in ne kot eksotično resonanco. Razložimo
mehanizem za nastanek vrha v okviru formalizma, ki vključuje kvazivezani kvar-
kovski stanji, ki ustrezata nizikoležečima resonancama v tem parcialnem valu.
Opozorimo na povezavo z modelom SQTM, pri katerem le en sam kvark sodeluje
pri vzbuditvi resonančnega stanja.

Enačba stanja v kvazispinskem modelu Nambuja in Jona-Lasinia

Mitja Rosina

Fakulteta za matematiko in fiziko, Univerza v Ljubljani, Jadranska 19, p.p.2964, 1001 Ljub-
ljana, Slovenija in Institut J. Stefan, 1000 Ljubljana, Slovenija

Proučujemo, do katere mere se da rešljivi dvonivojski model podoben modelu
Nambuja in Jona-Lasinia uporabiti tudi za študij enačbe stanja kvarkovske snovi.
V povezavi energije kot funkcije temperature se res pojavi fazni prehod pri podob-
ni temperaturi kot pri računih s kromodinamiko na mreži.
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Večna uganka Roperjeve resonance

S. Širca

Fakulteta za matematiko in fiziko, Univerza v Ljubljani, Jadranska 19, p.p.2964, 1001 Ljub-
ljana, Slovenija in Institut J. Stefan, 1000 Ljubljana, Slovenija

V prispevku podamo kratek pregled nekaterih najnovejših dognanj v zvezi z
našim znanjem o skrivnostni “Roperjevi” resonanci P11(1440). Sklicujemo se na
različne eksperimente iz laboratorijev MAMI, Jefferson Lab in od drugod; poro-
čamo o novih poskusih razumevanja narave te resonance v okviru modelov z
mezonsko-barionskimi in mezonsko-kvarkovskimi oblaki; in ponudimo vpogled
v razvoj, ki ga je v zadnjih nekaj letih naredila kvantna kromodinamika na mreži.
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iz sredstev državnega proračuna iz naslova razpisa za sofinanciranje domačih
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