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Abstract

Motivated by the conjectures from Castro, et al. in 2011, in this paper we use integer
programming formulations for computing the domination number, the 2-packing number
and the independent domination number of Fibonacci cubes and Lucas cubes for n < 13.

Keywords: Fibonacci cubes, Lucas cubes, domination number, 2-packing number.

Math. Subj. Class.: 05C69, 05C25

1 Introduction

Hypercubes form one of the most applicable classes of graphs with many appealing prop-
erties. The n-cube @), is the graph whose vertices are all binary strings of length n, and
two vertices are adjacent if they differ in exactly one position. The Fibonacci cubes were
introduced as a model for interconnection networks [4, 2]. They offer challenging math-
ematical and computational problems, and admit a recursive decomposition into smaller
Fibonacci cubes (see [5], [6], [8] for their structural properties). The Fibonacci cubes can
be recognized in O(mlogn) time (where n is the order and m the size of a given graph)
[10]. The Lucas cubes [7] form a class of graphs closely related to the Fibonacci cubes,
obtained by removing some vertices from the Fibonacci cubes.

Let Q,, be the n-dimensional hypercube. A Fibonacci string of length n is a binary
string b1bs ... b, with b; - ;1 = 0 for 1 < ¢ < n. In other words, Fibonacci strings
are binary strings that contain no consecutive ones. The Fibonacci cube I',,, for n > 1
is the subgraph of @),, induced by the Fibonacci strings of length n. A Fibonacci string
b1by ... by, is a Lucas string if b; - b, = 0. In other words, Lucas strings are binary strings
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that contain no consecutive ones circularly. The Lucas cube A,,, for n > 1 is the subgraph
of @, induced by the Lucas strings of length n. It is well-known that |V(T',,)| = Fp42,
where F), are the Fibonacci numbers: Fy =0, F} =1, Fj,.y1 = F, + F,_1 forn > 1.
Similarly, |V (A,)| = L, for n > 1, where L,, are the Lucas numbers: Lo = 2, L1 = 1,
Ln+1 = Ln + Ln—l forn 2 1.

Let G be a graph. Set D C V(@) is a dominating set if every vertex from V' (G) either
belongs to D or is adjacent to some vertex from D. The domination number (G) is the
minimum cardinality of a dominating set of G. A set X C V(G) is called a 2-packing if
d(u,v) > 2 for any two different vertices u and v of X. The 2-packing number p(G) is
the maximum cardinality of a 2-packing of G. It is well-known that for any graph G holds
Y(G) > p(G).

An independent set or stable set is a set of vertices in a graph, no two of which are
adjacent. The independent domination number i(G) of a graph G is the size of the smallest
independent dominating set (or, equivalently, the size of the smallest maximal independent
set). The minimum dominating set in a graph will not necessarily be independent, but the
size of a minimum dominating set is always less than or equal to the size of a minimum
maximal independent set, v(G) < i(G).

Pike and Zou in [9] obtained a lower bound for the domination number of Fibonacci
cube of order n and determined the exact value of the domination number of Fibonacci
cubes of order at most 8. Castro et al. in [1] obtained upper and lower bounds for the
domination and 2-packing number of Fibonacci and Lucas cubes. Furthermore, the authors
obtained the exact values for v(I',,) and y(A,,) for n < 9 and for p(T',) and p(A,,) for
n < 10.

In this paper we use integer programming method to compute the exact values of the
domination, 2-packing and independent domination number of Fibonacci and Lucas cubes
for n < 13, which resolves the conjecture from [1].

2 Main results

For each subset of the vertex set S C V(@) define

f1 ifies
Tl 0 ifieV\S.

The neighborhood N (v) of a vertex v in a graph G is the induced subgraph of G consisting
of all vertices adjacent to v and all edges connecting two such vertices. Let N[v] = N(v)U
{v} denote the closed neighborhood of the vertex v.

The domination number of G can be formulated as the following 0 — 1 integer program-
ming problem:

v(G) = miani 2.1)
i=1
subject to
Z x> 1, (2.2)
JENIi]
x; € {0,1}, foralll <i < n. (2.3)

It is easy to see that the conditions (2.2) and (2.3) define dominating set .S and vice versa
[3]. For Fibonacci cube I';, this formulation has F), o variables and 2F), ;o constraints,
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while each condition from (2.2) contains at most n variables. For Lucas cube A, this
formulation has L,, variables and 2L, constrains, while each condition from (2.2) contains
at most n variables.

The 2-packing number of G can be formulated as the following 0 — 1 integer program-
ming problem:

p(GQ) = maxz x; (2.4)
i=1
subject to
> o<, (2.5)
JENId]
x; € {0,1}, foralll <i < n. (2.6)

We will prove that the conditions (2.5) and (2.6) define 2-packing set S and vice versa.
Let S be a 2-packing set. Since .S does not contain two vertices on distance 1 or 2, for each
v € V(G) there is at most one vertex from the closed neighborhood N [v] which belongs
to S. Assume now that the set .S satisfies the condition (2.5) and let v and v be two vertices
from .S on distance 2. In that case for the shortest path vwu, we have > JEN[w] Tj > 2,
which is impossible. Therefore, S is a 2-packing set.

The independent domination number G can be formulated as the following 0— 1 integer
programming problem:

i(G) =min Y _ 2.7
i=1
subject to
> x>, (2.8)
JENIi]
(n—Dzi+ Y z;<n-1, (2.9)
JEN(3)
x; € {0,1}, forall1 <i<n. (2.10)

The conditions (2.8) and (2.10) define domination set .S, while the condition (2.9) en-
sures the independence. For x; = 0 we have always true > JEN() Tj < n — 1, while for
z; = 1 we have } .y, 2; < 0 which is equivalent to . v(; #; = 1. This proves
that the formulation is correct. For Fibonacci cube I',, this formulation has F,,» variables
and 3F,, 1o constraints, while each conditions from (2.8) and (2.9) contain at most n vari-
ables. For Lucas cube A,, this formulation has L,, variables and 3L,, constrains, while each
condition from (2.8) and (2.9) contain at most n variables.

The tests were performed on the Intel Core 2 Duo T5800 2.0 GHz with 2 GB RAM
running the Linux operating system and using CPLEX 8.1. The results are summarized in
Tables 1 and 2. In Tables 3 and 4 we give some examples of dominating sets and 2-packing
sets that were obtained during the computation of these values.

These results resolve the conjecture from [1] and support Problem 5.1 for n < 12.
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Table 2: Parameters of small Lucas cubes.

Table 1: Parameters of small Fibonacci cubes.
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Table 3: Examples of minimal dominating sets for I'(10) and A(11)
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Table 4: Examples of 2-packing sets for I'(11) and A(12)
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