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Abstract

Addona, Wagon and Wilf (Ars Math. Contemp. 4 (1) (2011), 29-62) examined a prob-
lem about the winning chances in tossing unbalanced coins. Here we present some integral
representations associated with such winning probabilities in a more general setting via
using certain Fourier transform method. When our newly introduced parameters (r, d) are
set to be (0, 1), one of our results reduces to the main formula in the above reference.
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1 Introduction: How to make it fair and fun?
One of the final two papers published by Herbert S. Wilf (1932-2012) is a joint work
with Addona and Wagon entitled “How to lose as little as possible”, which investigates
an intriguing problem of disadvantaged player Alice competing with Bob [1]:
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Suppose Alice has a coin with probability of heads equal to q (0 < q < 1), Bob has a
different coin with probability of heads equal to p (0 < p < 1), and that q < p. They toss
their coins independently n times each. The rule says that Alice wins if and only if she gets
strictly more heads than Bob does. Clearly, in the above setting Alice’s odds of winning
are

P(Sn > Tn) =

n∑
j=0

(
n

j

)
pj(1− p)n−j

n∑
k=j+1

(
n

k

)
qk(1− q)n−k, (1.1)

where the random variable Sn (resp. Tn) stands for the number of heads that Alice gets
(resp. Bob gets) after n tosses.

For convenience, let

f(n) = f(n, p, q) = P(Sn > Tn). (1.2)

In search of the choice of n that maximizes Alice’s chances of winning, it is shown in
[1] that f(n) is essentially unimodal, and sharp bounds on the turning point N(q, p) are
given. Their analysis uses the multivariate form of Zeilbergers algorithm [2]. In particular,
one of the main results of [1] that provides a key role in the proof of unimodality and in the
derivation of the turning point is the following:

Theorem 1.1. With f(n) defined above,

f(n+ 1)− f(n)
((1− p)(1− q))n+1

= (y +
1

2
(1 + xy))φn(xy)−

1

2
φn+1(xy), (1.3)

where x = p/(1 − p), y = q/(1 − q), φn(z) =
∑n
j=0

(
n
j

)2
zj = (1 − z)nPn( 1+z1−z ), and

Pn(u) is the classical Legendre polynomial:

Pn(u) =
1

π

∫ π

0

(u+
√
u2 − 1 cos t)ndt.

(Note that |u| = | 1+xy1−xy | > 1 for xy ∈ (0, 1) ∪ (1,+∞); the case xy = 1 yields p = 1− q
and (1.3) may be verified directly from (1.1) without using the Legendre polynomial.)

Explicitly, the numerator of the left hand side of (1.3), which is the essential part, may
be expressed via

f(n+ 1)− f(n) = 1

π

∫ π

0

ψn(t)(q − pq −
√
pq(1− p)(1− q) cos t)dt, (1.4)

where ψ(t) = 1− p− q + 2pq + 2
√
pq(1− p)(1− q) cos t. In fact, the above expression

(1.4) is found by first using the multivariate form of Zeilberger’s algorithm and then proved
mathematically (with ease once the formula is found). Also, it follows from (1.4) that the
probability for Alice to win with n tosses is

P(Sn > Tn) =
1

π

∫ π

0

1− ψn(t)
1− ψ(t)

(q − pq −
√
pq(1− p)(1− q) cos t)dt.

To be fair and fun, here in this paper we consider a more general setting. Since Alice
has a weaker coin, why should not she toss it for r more times than Bob does? And if
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that becomes the fact, maybe we should investigate the chances for Alice to get at least d
(d ≥ 1) more heads than Bob does.

Now formally, let Sn ∼ Bin (n, q) and Tm ∼ Bin (m, p). Suppose Alice tosses her
coin n+r (r ≥ 0) times and Bob tosses his n times, and that Alice wins iff she gets at least
d (d ≥ 1) more heads than Bob does. Under the new rule, the probability for Alice to win
is

P(Sn+r ≥ Tn + d) =

n∑
j=0

(
n

j

)
pj(1− p)n−j

n+r∑
k≥j+d

(
n+ r

k

)
qk(1− q)n+r−k.

For convenience, we let

fr,d(n) = fr,d(n, p, q) = P(Sn+r ≥ Tn + d). (1.5)

Apparently, the function f(n) in this setting is f0,1(n).
In order to study the turning point, investigations of the difference fr,d(n+1)−fr,d(n)

are needed. In Section 2 we introduce probabilistic preliminaries with Fourier analysis
blended. In Section 3 we provide several representations of the difference function based
on certain trigonometric integrals.

Throughout this work we adopt the commonly used convention for the generalized
binomial coefficients: for α ∈ R, j ∈ Z,

(
α

j

)
=


α(α−1)···(α−j+1)

j! , if j ≥ 1;
1, if j = 0;
0, if j < 0.

2 Probabilistic analysis: Lens of Fourier method
To attack on fr,d(n + 1) − fr,d(n), we adopt the Fourier analysis approach used in [4],
where the special case p = q has been studied.

The following known fact [3, p. 95] will be useful in our studies. Let Z be an integer-
valued random variable. It holds that

P(Z = k) =
1

2π

∫ 2π

0

ϕZ(t)e
−iktdt, (2.1)

where ϕZ(t) is the characteristic function of Z.

Lemma 2.1. For any r, d, n ∈ N,

fr,d(n+ 1)− fr,d(n) =
r∑
j=0

(
q(1− p)P(Tn − Sn − k = j + 1− d)− p(1− q)

P(Tn − Sn − k = j − d)
)
P(Sr = j).

Proof. For convenience, let g(n, k) := P(Tn − Sn − k = 0). Note that

fr,d(n) = P(Sn+r ≥ Tn + d) = P(S′r ≥ Tn − Sn + d) =

n∑
k=−n

g(n, k)P(S′r ≥ k + d).
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Here in this proof technically S′r is independent of Sn and has the same distribution as Sr.
Similarly,

fr,d(n+ 1) = P(S′r ≥ Tn − Sn + Y1 −X1 + d)

=

n∑
k=−n

g(n, k)P(S′r ≥ Y1 −X1 + k + d).

Comparing the two formulae above, we arrive at

fr,d(n+ 1)− fr,d(n)

=

n∑
k=−n

g(n, k)(p(1− q)P(S′r ≥ k + d+ 1) + q(1− p)P(S′r ≥ k + d− 1)

+ (2pq − p− q)P(S′r ≥ k + d))

=

n∑
k=−n

g(n, k)(q(1− p)P(S′r = k + d− 1)− p(1− q)P(S′r = k + d))

=

r∑
j=0

(q(1− p)g(n, j + 1− d)− p(1− q)g(n, j − d))P(S′r = j).

Corollary 2.2. For any r, d, n ∈ N, fr,d(n+ 1)− fr,d(n) =

1

2π

∫ 2π

0

ϕn(t)

r∑
j=0

(P(Sr = j)(q(1− p)e−i(j+1−d)t − p(1− q)e−i(j−d)t))dt,

where

ϕ(t) = ϕ(t, p, q) := Eeit(Y1−X1)

= (1− p+ peit)(1− q + qe−it)

= 1− p− q + 2pq + (p+ q − 2pq) cos t+ i(p− q) sin t

is the characteristic function of Y1 −X1 with that Y1 ∼ Bin (1, p) and X1 ∼ Bin (1, q).

Proof. This is an immediate consequence of (2.1) and Lemma 2.1.

Corollary 2.3. More specifically, for r = 0, d = 1, and n ∈ N,

f0,1(n+ 1)− f0,1(n) =
1

2π

∫ 2π

0

ϕn(t)(q(1− p)− p(1− q)eit)dt. (2.2)

In the case r = 0 and d = 1, the formula of Corollary 2.2 reduces to the formula by
Addona et al [1] as will be shown in Example 3.3.
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3 Integral representations
The difference fr,d(n+1)−fr,d(n) may be evaluated directly. In fact it depends on certain
trigonometric integrals. Before we proceed the following fact is needed.

Lemma 3.1. For all nonnegative integers a, b, c, let J(a, b, c) =
∫ 2π

0
cosa t sinb t cos(ct)dt

and K(a, b, c) =
∫ 2π

0
cosa t sinb t sin(ct)dt. Then

J(a, b, c) = 2π
∑
s

(−1)b/2+s

2a+b+1

(
b

s

)[(
a

(a+ b− c)/2− s

)
+

(
a

(a+ b+ c)/2− s

)]
K(a, b, c) = 2π

∑
s

(−1)(b−1)/2+s

2a+b+1

(
b

s

)[(
a

(a+ b− c)/2− s

)
−
(

a

(a+ b+ c)/2− s

)]
,

where for convenience we assume that (−1)u = 0 if u /∈ Z.

Proof. Note that J(a, b, c) = 0 whenever b is odd, and that∫ 2π

0

eitmdt =

{
2π, if m = 0;
0, otherwise.

Hence we have

J(a, b, c) =

∫ 2π

0

cosa t sinb t cos(ct)dt

=

∫ 2π

0

(
eit + e−it

2
)a(

eit − e−it

2i
)b(
eict + e−ict

2
)dt

=
∑
l,s

(−1)b−s

2a+b+1ib

∫ 2π

0

(
a

l

)
eitl−it(a−l)

(
b

s

)
eits−it(b−s)(eict + e−ict)dt

=
∑
l,s

(−1)b/2−s
(
a
l

)(
b
s

)
2a+b+1

(

∫ 2π

0

eit(2l−a+2s−b+c)dt+

∫ 2π

0

eit(2l−a+2s−b−c)dt)

= 2π
∑
s

(−1)b/2+s

2a+b+1

(
b

s

)[(
a

(a+ b− c)/2− s

)
+

(
a

(a+ b+ c)/2− s

)]
.

A similar calculation yields the result for K(a, b, c).

Now we rewrite Corollary 2.2 in a more explicit form:

Theorem 3.2. For any r, d, n ∈ N,

fr,d(n+ 1)− fr,d(n)

=
1

2π

∫ 2π

0

ϕn(t)

r∑
j=0

[

(
r

j

)
qj(1− q)r−j(q(1− p) cos(j + 1− d)t− p(1− q) cos(j − d)t

− q(1− p)i sin(j + 1− d)t+ p(1− q)i sin(j − d)t]dt,

where

ϕ(t) = 1− p− q + 2pq + (p+ q − 2pq) cos t+ i(p− q) sin t.
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Note that by Theorem 3.2, fr,d(n+ 1)− fr,d(n) reduces to

1

2π

r∑
j=0

(
r

j

)
qj(1− q)r−j(I1 + I2 + I3 + I4)

where the integrals Ik’s (1 ≤ k ≤ 4) are defined as,

I1 =

∫ 2π

0

ϕn(t)q(1− p) cos(j + 1− d)tdt

I2 = −
∫ 2π

0

ϕn(t)p(1− q) cos(j − d)tdt

I3 = −
∫ 2π

0

ϕn(t)q(1− p)i sin(j + 1− d)tdt

I4 =

∫ 2π

0

ϕn(t)p(1− q)i sin(j − d)t)dt.

All results reduce to such integrals. We shall represent fr,d(n + 1) − fr,d(n) by
the “basis”

∫ 2π

0
cos2k tdt, k ≥ 0. To do this, we partition the real parts of ϕn(t)(q(1 −

p) cos(j + 1 − d)t, etc, according to the “order” 2k, i.e., those of the form constant times
cosa t sinb t cos(ct) or cosa t sinb t sin(ct) where 2k − 1 ≤ a + b ≤ 2k. The notation
[cos2k t]If means that in the expansion of f , we group all “homogeneous” terms (of form
cosa t sinb t cos(ct) or cosa t sinb t sin(ct) where 2k−1 ≤ a+b ≤ 2k) and take the ratio of

the integrals
∑
a,b

∫ 2π
0

cosa t sinb t cos(ct)dt∫ 2π
0

cos2k tdt
or

∑
a,b

∫ 2π
0

cosa t sinb t sin(ct)dt∫ 2π
0

cos2k tdt
as the corresponding

coefficient. For example, based on Lemma 3.1, we have

[cos2k t]I(cos
2k−1−2m t sin2m t cos(ct))

=
(2k)!!

(2k − 1)!!

∑
s

(−1)m+s

22k

(
2m

s

)
(

(
2k − 1− 2m

(2k − 1− c)/2− s

)
+

(
2k − 1− 2m

(2k − 1 + c)/2− s

)
),

[cos2k t]I(cos
2k−2m t sin2m t cos(ct))

=
(2k)!!

(2k − 1)!!

∑
s

(−1)m+s

22k+1

(
2m

s

)
(

(
2k − 2m

(2k − c)/2− s

)
+

(
2k − 2m

(2k + c)/2− s

)
).

Similarly we obtain the formulas for [cos2k t]I(cos2k−2m t sin2m−1 t sin(ct)) and
[cos2k t]I(cos

2k+1−2m t sin2m−1 t sin(ct)). Consequently, [cos2k t]I{I1}, etc, may be
found and the following theorem follows. To keep the cleanness we omit the proof de-
tails.

Theorem 3.3. For r, d ∈ N,

fr,d(n+ 1)− fr,d(n) =
1

2π

∑
j

(
r

j

)
qj(1− q)r−j

∑
k

an,k(j, d)

∫ 2π

0

cos2k(t)dt,
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where (i) an,k(j, d) =

n!

(2k)!(n+ 1− 2k)!

(2k)!!
(

2k
k+(j−d+1)/2

)
(2k − 1)!!

(1− p− q + 2pq)n−2k(q(1− p)p(1− q))k

(q−1(1− p)−1p(1− q))
j−d+1

2 {(k + (j − d+ 1)/2)p+ (n+ 1− k + (j − d+ 1)/2)q

− (n+ 2 + j − d)pq − (k + (j − d+ 1)/2)}, if j − d is odd;

and (ii) an,k(j, d) =

n!

(2k)!(n+ 1− 2k)!

(2k)!!
(

2k
k+(j−d)/2

)
(2k − 1)!!

(1− p− q + 2pq)n−2k(q(1− p)p(1− q))k

(q−1(1− p)−1p(1− q))
j−d
2 {(−n− 1 + k + (j − d)/2)p

− (k − (j − d)/2)q + (n+ 1− j + d)pq + k}, if j − d is even.

We conclude with three examples.

Example 3.1.

f1,1(n+ 1)− f1,1(n)

=
∑
k

an,k(1, 1)
1

2π

∫ 2π

0

cos2k(t)dt,

where

an,k(1, 1) =
n!

(2k)!(n+ 1− 2k)!
(1− p− q + 2pq)n−2k22k(1− q)

(pq(1− p)(1− q))k((−n− 1 + k)p− kq + (n+ 1)pq + k).

Example 3.2. For m ∈ N,

(i) f0,2m(n+ 1)− f0,2m(n) =
∑
k

an,k(0, 2m)
1

2π

∫ 2π

0

cos2k(t)dt,

where an,k(0, 2m) :=

n!

(2k)!(n+ 1− 2k)!
(1− p− q + 2pq)n−2k

(2k)!!
(

2k
k+m

)
(2k − 1)!!

(pq(1− p)(1− q))k

(q(1− p)p−1(1− q)−1)−m((−n− 1 + k −m)p− (k −m)q + (n+ 1 + 2m)pq + k).

(ii) f0,2m+1(n+ 1)− f0,2m+1(n) =
∑
k

an,k(0, 2m+ 1)
1

2π

∫ 2π

0

cos2k(t)dt,

where an,k(0, 2m+ 1) :=

n!

(2k)!(n+ 1− 2k)!
(1− p− q + 2pq)n−2k

(2k)!!
(

2k
k+m

)
(2k − 1)!!

(pq(1− p)(1− q))k

(q(1− p)p−1(1− q)−1)−m((k −m)p+ (n+ 1− k −m)q+

(n+ 1− 2m)pq +m− k).
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Theorem 3.3 actually provides a perspective to generalize the Legendre type represen-
tations discussed in [1].

Finally we exhibit the equivalence of Corollary 2.3 and (1.4).

Example 3.3.

f0,1(n+ 1)− f0,1(n) =
1

π

∫ π

0

ψn(t)(q − pq −
√
pq(1− p)(1− q) cos t)dt,

where ψ(t) = 1− p− q + 2pq + 2
√
pq(1− p)(1− q) cos t.

Proof. In fact, specializing Theorem 3.3,

f0,1(n+ 1)− f0,1(n) =
1

2π

b(n+1)/2c∑
k=0

an,k(0, 1)

∫ 2π

0

cos2k tdt

=
1

π

∫ π

0

b(n+1)/2c∑
k=0

an,k(0, 1) cos
2k tdt

=
1

π

∫ π

0

ψn(t)(q − pq −
√
pq(1− p)(1− q) cos t)dt.

Thus we have rediscovered (1.4).
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