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Simple reparameterization to improve convergence in linear 
mixed models 

Slow convergence and mixing are one of the main prob-
lems of Markov chain Monte Carlo (McMC) algorithms applied 
to mixed models in animal breeding. Poor convergence is to a 
large extent caused by high posterior correlation between vari-
ance components and solutions for the levels of associated ef-
fects. A simple reparameterization of the conventional model 
for variance component estimation is presented which improves 
McMC sampling and provides the same posterior distributions 
as the conventional model. Reparameterization is based on the 
rescaling of hierarchical (random) effects in a model, which 
alleviates posterior correlation. The developed model is com-
pared against the conventional model using several simulated 
data sets. Results show that presented reparameterization has 
better behaviour of associated sampling methods and is several 
times more efficient for the low values of heritability. 
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Enostavna reparametrizacija za izboljšanje konvergence line-
arnih mešanih modelov 

Počasna konvergenca je eden največjih problemov upo-
rabe metode Monte Carlo z Markovimi verigami (McMC) za 
mešane modele na področju genetike in selekcije domačih živali. 
Slaba konvergenca je v veliki meri posledica visoke posteriorne 
korelacije med komponentami variance in rešitvami za ravni 
pripadajočih vplivov. Predstavljamo enostavno reparametriza-
cijo običajnega modela, ki izboljša lastnosti metode McMC in 
daje enake posteriorne porazdelitve parametrov modela kot 
standardni pristop. Reparametrizacija temelji na standardiza-
ciji hierarhičnih (naključnih) vplivov v modelu, kar posledično 
spremeni posteriorne korelacije med parametri. Oba pristopa 
smo primerjali na večjem setu simuliranih podatkov. Rezultati 
kažejo, da reparametrizacija vodi do bolj učinkovitih metod 
McMC vzorčenja in je nekajkrat bolj učinkovita za analizo last-
nosti z nizko heritabiliteto. 

Ključne besede: statistika / mešani model / bayesovska 
analiza / McMC / reparametrizacija / konvergenca 

1 INTRODUCTION 

Mixed mode l s are abundant ly used in the f ield of 
an imal b reed ing and genetics with the a im to infer genet-
ic values of animals given some phenotyp ic and pedigree 
i n fo rma t ion (Henderson , 1984). In i t s implest f o r m the 
mixed m o d e l can be wri t ten as: 

y = X b + Za + e, (1) 

where y is a vector of phenotypes , b is a vector of effects 

like sex, breed, age, etc., a is a vector of individual addi-

tive genetic effects and e residual, p(e | a 2 ) ~ N ( o , I a 2 ) , 

while X and Z are design matr ices l inking effects to phe-

notypic records. Pedigree in fo rma t ion is inc luded in the 

m o d e l hierarchically with pr ior d is t r ibut ion of individual 

additive genetic values, p (a | A , a 2 ) ~ N(o, A a 2 ) . H e n d -

erson (1972) developed the so called mixed m o d e l equa-

t ions (2) to efficiently obtain joint solut ions for b and a, 
where G = A a 2 and R = I a 2 : 
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b I I XTR-1y 

a I \ ZT R-1y 
(2) 

Use of mixed model equations assumes known vari-
ance components ca and ce . Standard procedure is 
to estimate these variance components using restricted 
maximum likelihood method (REML; Patterson and 
Thompson, 1971) and to use these estimates in mixed 
model equations (2) ignoring the error of estimation in 
variance components. 

Another approach to statistical inference, Bayesian 
approach, treats inference of all model parameters joint-
ly. Although conceptually very appealing, Bayesian ap-
proach leads to formulas that are computationally intrac-
table. This can be avoided by sampling methods such as 
Markov chain Monte Carlo (McMC; e.g., Gelman, et al., 
2004). Wang et al. (1993) showed how McMC methods 
can be used with linear mixed models in animal breed-
ing applications. In the case of linear mixed models all 
McMC computations follow from the posterior distribu-
tion (3): 

p(b, a, c My |R| ! e x p ( - i ( y - Xb - Za f R ' (y - X b - Za). 
2 exp( - i a f G - 1 a ) 

(3) 

where prior distributions for and both variance compo-
2 2 nents ca and ae were assumed uniform (e.g., Gelman 

2 

et al., 2004). Given that cra and a are a priori correlated 
due to the prior definition of a, the a posteriori correla-
tion between them is expected to be high. This leads to 
high autocorrelation between consecutive samples, mak-
ing McMC method inefficient. Autocorrelations can be 
really problematic with low or near zero values for some 
variance components (e.g. additive genetic variance). 
This is caused by the shrinkage of a towards zero and in 
a next round of sampling variance component will again 
be close to zero, which can make the sampler stuck for 
quite some time at the values near zero (Gelman et al., 
2004). 

Chib and Carlin (1999) proposed block sampling 
of some parameters in (2) to improve convergence. 
Autocorrelation has also been alleviated by the use of 
centered models (Gelfand et al., 1995), parameter ex-
panded models (Liu and Wu, 1999; Gelman et al., 2003; 
Gelman, 2004) and data augmentation based models 
(Meng and van Dyk, 1997; van Dyk and Meng, 2001). 
These methods have been applied both to accelerate the 
Expectation-Maximization (EM) algorithm and to al-
leviate the autocorrelation of McMC algorithms. In this 
work a reparameterization will be employed where addi-
tive genetic values will be a priori uncorrelated with c a . 
This approach will be compared against the conventional 
model of Wang et al. (1993). 

2 METHOD 

Let us consider a simple animal model y = Xb + 
Za + e with the following distributional assumptions: 

p(y | b, a, o2)~ N(Xb + Za, Io2
e ) 

p ( a \ A , o 2 ) ~ N (o, A o 2 ) (4) 

p ( e | o 2 )~ N(o, Io2
e ) 

For this particular case and assuming uniform pri-
ors for b and both variance components, p ( b ) x const., 

pCa )x const., and p(c^ )<x const., the equation (3) 
becomes: 

p(b MM^CT^y(trf 

& )1 

e x p ^ i y - X b - Z L g y - X b ^ ^ 

e xP 

(5) 

where n is the number of records and q the number of 
animals. Full conditionals of the posterior (5) can be 
sampled using the coefficient (left hand side) matrix of 
the mixed model equations (2), sums of squares, normal 
and scaled central deviates (Wang et al., 1993). 

Here another approach is proposed, which allevi-
ates the autocorrelation of samples from (5). It is based 
on the reparameterization of the model in the terms of 
a new augmented variable u, a = uc a . Such a model has 
been already proposed by Foulley and Quaas (1995) in a 
heterogeneous variance EM-REML context. To simplify 

2 

the notation, ca is used instead of y ca , but the model 

is still considered written in terms of c a . The model is now y = Xb + Zuca 

assumptions: 
• e, with the following distributional 

p (y 1 b ) ~ 

p ( u | A) ~ N (0, A), 

p(e K 2 ) ~ N ( o , I ^ ) 

N Xb + Z u a a , I K 2 

(6) 

The joint posterior distribution, assuming again 
uniform priors on b and both variance components, is: 

I. 2 2 | ^ I 2 V n ( ( y - X b - Z u a ) T ( y - X b - Z u a 
p { b , u , a ^ , a 2 \ y j K [ e x p ! - ^ [ ^ Ix 

e x Pr 

(7) 

Note that in (7) variance component ca drops out 
from the last part, but ca comes in the sum of squares of 
residuals. The full conditional distributions for the levels 
of both b and a are univariate normal distributions as in 
the conventional model, but considering a = uca: 

p{br | b-i, u 2 2 
c a , c e , y j - N 

-Z,f,c.,J
b

J
-Zt 

, t ( 8 ) 

X T R - 1 X X T R - 1 Z 

ZT R - 1 X ZT R - 1 Z + G - 1 
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?(«,• \ u-i,b,CT2,CT2,y)~ N\ , ^ I, (9) 

where both s{ and c,j are closely related with the conven-
tional mixed model (2) but modified as: 

C = ( X
T X XT Zaa 

ZT Xaa ZT + A~la2
e 

S = 
f XTy ^ 

T Z y ^ a y 
(10) 

2 
The full conditional distribution of ae can be sam-

pled from scaled inverted chi-square distribution with 
n - 2 degrees of freedom as in the conventional model: 

4 r 2 | b , u,a2
a, y)~ (y - Xb - Zuoa ) (y - Xb - Zuaa )Zn-2 . (11) 

2 
After some algebra the full conditional of aa is 

P ^ 1 b, u , ^ , y e x p 

_ 2 u ' U (y-X b ) 

u' Z' Zu 
a „ + a n 

2 
uT ZT Zu 

(12) 

from which a truncated normal distribution can be rec-
ognized when presented in terms of aa with mean 
u T Z ( y - X b ) 
—y^t,—", variance T T uT Z Z u u' Z' Zu , and truncation point at 0: 

L i b , u , ^ 2 , y ) ~ TN{ — ^ z X b ) , —T-1, , 
\ a 1 ' ' e'J' 1 — ZT Zu —T Z' Z— 

0 (13) 

2 
When the full conditional distribution of aa does 

not involve the neighbourhood of zero, it is a scaled non-
central xX distribution with 1 degree of freedom, with a 
scale parameter u T Z u and noncentrality parameter 

2 = _ uTZT (y-Xb)(y-Xb)T Zu 
2uT ZT Zúa, 

^a 1 b y ) ~ U ZJ Zu X ! ( u ) . (14) 

3 APPLICATION 

Seven simulated datasets were used to compare the 
length of burn-in period and Monte Carlo variance of 
the model y = Xb + Zucrs + e against the conventional 
sire model y = Xb + Zs + e. All datasets consisted of 
10,000 records, 100 herds (b) and 500 unrelated sires (s). 
Records were randomly assigned to herds and sires, i.e., 
having on average 100 records per herd and 20 records 
per sire. True phenotypic variance was 100 and sire vari-
ances for each simulated case were: 0.25, 0.5, 1.25, 2, 3.75, 
5, and 10. 

Markov chain Monte Carlo method was imple-
mented using Gibbs sampler for the full conditional dis-
tributions described in (8, 9, and 11), while Metropolis 
sampler was used for sampling from (15). The length of 
burn-in period was determined by the use of coupling 
argument (Johnson, 1996; García-Cortés et al., 1998), 
where the tolerance of difference between two chains 
for the sire variance component was set to 10-4. After 
the burn-in period, chains with 20,000 samples were 
produced. Monte Carlo error was calculated empirically 
after 50 replicates for each simulated dataset. Presented 

Table 1: Average (± standard deviation obtained empirically from 
50 replicates) burn-in length by model and true heritability (h2) 
Preglednica 1: Povprečna (± standardni odklon, pridobljen 
empirično iz 50 ponovitev) dolžina ogrevalne faze glede na model 
in dejansko vrednost heritabilitete (h2) 

True h2 Conventional model Reparametrized model 

0.01 569.6 ± 266.1 9.8 ± 6.4 

0.02 332.7 ± 165.2 8.4 ± 3.9 

0.05 173.9 ± 37.1 7.8 ± 2.6 

0.10 162.4 ± 41.2 7.8 ± 2.9 

0.15 55.1 ± 5.8 6.8 ± 2.4 

0.20 42.6 ± 2.7 7.4 ± 2.2 

0.40 25.2 ± 3.6 8.4 ± 3.5 

For cases where the posterior distribution of a2 

is close to zero, the Metropolis-Hastings algorithm with 
positive proposal can be implemented, where the natural 
logarithm of the conditional density derived from (12) is: 

lnfp^lb, u,ae
2, y ))=-

-2z<Ja +aa 
(15) 

where T represents mean and p variance from (13). 

results show the rate of convergence in the terms of burn-
in period (Table 1) and after burn-in period (Table 2) for 
the conventional model (4) and the new reparameterized 
model (6). 

Reparameterization of the model resulted in sub-
stantial reduction in burn-in phase of McMC procedure 
(Table 1), especially with the low values of heritability. 
Inspection of trace plots (not shown) showed that in the 
case of low heritability values for additive genetic vari-
ance were very close to zero as well as individual additive 
genetic values, which is expected. However, conventional 
model was prone to stuck in that configuration, while 
reparameterized model more easily explored wider pa-
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Table 2: Posterior mean (± standard deviation obtained empiri-
cally from 50 replicates) for the component of variance between 
sires by model and true heritability (h2) 
Preglednica 2: Posteriorno povprečje (± standardni odklon, pri-
dobljen empirično iz 50 ponovitev) komponente variance med 
očeti glede na model in dejansko vrednost heritabilitete (h2) 

True O"2 True h2 
Conventional 
model 

Reparametrized 
model 

0.25 0.01 0.39 ± 0.03 0.38 ± 0.01 

0.50 0.02 0.91 ± 0.03 0.98 ± 0.01 

1.25 0.05 1.45 ± 0.02 1.44 ± 0.01 

2.50 0.10 1.69 ± 0.02 1.69 ± 0.01 

3.75 0.15 4.39 ± 0.01 4.39 ± 0.01 

5.00 0.20 6.02 ± 0.01 6.03 ± 0.01 

10.00 0.40 13.03 ± 0.01 13.05 ± 0.02 

rameter space, which in turn leads to faster convergence 
to stationary distribution (e.g., Gelman et al., 2004). 

Both models gave the same posterior mean on aver-
age (Table 2) for variance between sires. Only results for 
this effect are reported as this is one of the parameters 
that are hard to accurately estimate in linear mixed mod-
els (e.g., Gelman et al., 2004). Posterior means for vari-
ance between sires were larger than the true value. This 
can be attributed to skewed posterior distributions for 
this effect. Monte Carlo variance obtained after 50 rep-
licates of conventional analysis was sensitive to the value 
of the true heritability, while this was not the case for 
reparameterized model. In addition, Monte Carlo vari-
ance was higher with conventional model for heritabili-
ties up to 0.1. More stable behaviour of reparameterized 
model was due to the possibility of easier escape from the 
neighbourhood of zero value for variance between sires. 
This means that reparameterized model is of a great value 
when traits with low heritability are analysed. 

4 DISCUSSION 

The new data augmentation scheme resulted in an 
algorithm faster than the conventional Gibbs sampler for 
linear mixed models. Estimates for variance components 
do not suffer from getting stuck when visiting values close 
to zero and then the rate of convergence does not depend 
on the true value of heritability. When new model was 
applied to data sets with small heritability, Monte Carlo 
variance was around five times smaller. Therefore, the 
new model needs about twenty five times shorter chains 
to get the same Monte Carlo variance as the conventional 
model of Wang et al. (1993). The new model can be easily 
implemented in existing programs for the conventional 

model - slightly modifying the mixed model equations 
according to (10) and using the Metropolis algorithm to 
sample from the full conditional density of cra . 

Our procedure is very similar to the parameter 
expanded models presented in (Liu and Wu, 1999; Gel-
man et al., 2003; Gelman, 2004) among others for both 
the most frequent EM and Bayesian McMC. Their ap-
proach also standardizes the additive genetic values, 
but in terms of a = ua, where a represents an extra 
augmented variables in the model, while our approach 
standardizes breeding values with its hyper-parameter, 
i.e., o a . The data augmentation scheme presented here 
can be understood as a particular case of that presented 
in van Dyk and Meng (2001), which is based on linear 
transformations of random variables, such as y = Xb + 
Zp+ e, where p = Yu + y. In our case Y = Icr-1 and y = 0, 
is the simplest case having a significant reduction of the 
Monte Carlo variance. 

Reparameterized model has been tested with a sire 
model example. Further research is necessary for ani-
mal models or multiple trait models (Henderson, 1984), 
where the amount of missing information may be higher 
causing more stringency in standard McMC samplers. In 
such cases reparameterization in terms of u is expected 
to provide even better results than presented here. 

5 CONCLUSION 

In summary, reparameterization of hierarchical ef-
fects resulted in a feasible Markov chain Monte Carlo al-
gorithm that accelerates the convergence of the conven-
tional sampling methods for Bayesian analysis of linear 
mixed models. This procedure requires a little program-
ming effort for implementation by researchers who have 
experience with the conventional sampling methods. 
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