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Foreword

The last 30 years have witnessed sustained research by a number of individuals in skew
lattices, a class of noncommutative generalizations of lattices. (A partial list of published work is
given in the Bibliography at the end of this monograph.) Papers on noncommutative lattices in
general have appeared since the late 1940s. It would not be unfair to say that the more recent
research has been both deeper and more fruitful than the earlier work, for several reasons.

To begin, by restricting attention to a particular class of algebras, one is more focused.
Indeed, once commutativity is dropped, the possibilities for differing absorption identities that
reduce to the familiar identities in the commutative case becomes quite large. Thus, by working
within the boundaries of a fixed set of identities, one becomes more concentrated in one’s efforts.

Secondly, in more recent times advantage has been made of results in semigroup theory
about bands, that is, semigroups consisting entirely of idempotents. Indeed the newer research
began by studying multiplicative bands of idempotents in rings, and realizing that under certain
conditions such bands would also be closed under an “upward multiplication” to yield a skew
lattice. Parallel to this was an expanding role of universal algebra, both due to results of a fairly
general scope (basic universal algebra) and also results related to structures that were weakened
or modified forms of Boolean algebras. This was especially important in the study of skew
Boolean algebras. Summing up: there has been a greater awareness of relevant information.

Thirdly, as indicated above, the newer research began with a rich source of motivating
examples — bands of idempotents in rings. In particular for bands that were left regular (xyx = xy),
any maximal such band in a ring was also closed under the circle operation xOy = x + y — xy. And
any band closed under both operations satisfied certain absorption identities, e.g.,
e(eOf) = e = eO(ef). These observations, along with others related to normal bands of idempotents
(that were middle commutative: xyzw = xzyw) indicated the presence of structurally enhanced
bands with a roughly lattice-like structure. Thus skew lattices arose, along with a number of
potential properties first observed in the setting of rings. To this was added a second class of
motivating examples, algebras of partial functions P(A, B) between pairs of sets, A and B. These
provided examples of skew Boolean algebras and related structures, much as “partial sets” (that is,
subsets) led to basic examples of Boolean algebras and distributive lattices.

In addition, there was the effect of computer technology, especially beginning in the late
90s. The internet provided a quick, efficient means of communication, making it easier for like-
minded individuals to connect. And computer software made it easier to find examples and initial
proofs for some theorems. This continued to impact the development of skew lattice theory in the
21st century.

And finally and most fortunately, skew lattices have attracted the attention of a number
very fine mathematicians from around the world, including (to my current awareness) individuals
from America, Australia, China, Ethiopia, Europe (including Great Britain ©), India and Iran.

This present volume is an organized presentation of much that has been published on the
subject up through 2017. It is divided into seven chapters, the first four of which form the core of
this survey.
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The first chapter begins with a review of basic information about lattices and universal
algebra. This is followed by a review of results about bands. The reader already familiar with
these areas can move to the third section. (Caveat: it is imperative that one be grounded in the
basic theory of bands, and especially the theory of regular bands, to be comfortable reading this
monograph.) The third and final section provides introductory definitions and a few general
results about noncommutative lattices. The latter are always given as at algebras (S; A, v) where
A and v are associative, idempotent binary operations that jointly satisfy a set of absorption laws.
Two varieties in particular are introduced: the variety of quasilattices and the variety of
paralattices. Their intersection, the variety of refined quasilattices, contains the variety of skew
lattices, our main topic. Placing skew lattices in a larger context provides a better sense of their
place within the pantheon of generalizations of lattices.

In Chapter 2, Skew Lattices, we proceed to study skew lattices in earnest, starting with a
selection of basic concepts and results in the first two sections. These include two decomposition
theorems (Theorems 2.1.2 and 2.1.5.) and initial results about skew lattices of idempotents in
rings. In Section 2.3 we study the important class of normal skew lattices for which
XAynzaw = xazayaw. (If the idempotents of a ring are closed under multiplication, then they
form a normal skew lattice; indeed they form a skew Boolean algebra.) The remaining sections
provide a deeper general analysis of the structure of a skew lattice. Sections 2.1 — 2.3 of this
chapter are all that is required to read the remaining chapters, except for Sections 5.3 — 5.6.

Chapter 3 is entitled Quasilattices, Paralattices and Their Congruences. Sections 3.1 —
3.3 study congruences on quasilattices, thus obtaining results applicable to skew lattices. Section
4 looks at paralattices and especially refined quasilattices. We show the latter to be roughly skew
lattices in the sense given in Theorem 3.4.14. Section 5 discusses the effects of distributivity, the
main results being Theorems 3.5.1 and 3.5.2. Section 6 is recreational.

Skew Boolean algebras are studied in Chapter 4. Skew Boolean algebras are algebras
(S; A, v, \. 0) of type (2, 2, 2, 0) that look and behave in many ways like Boolean algebras, except
that they need not be commutative. Boolean algebras decompose at will, and so do these algebras.
This leads to a crisp description of the finitely generated (and thus finite) algebras, and of finite
free algebras in particular. The final two sections are about skew Boolean algebras for which the
natural partial order > has a meet called the intersection and denoted by N. Many skew Boolean
algebras have intersections, e.g., all free algebras do. For partial function algebras, M is the
standard set-theoretic intersection of the involved partial functions.

As noted above, the core of this monograph is these four chapters. More specialized
topics are studied in the last three chapters. Chapter 5 is entitled Further Topics in Skew Lattices,
Chapter 6 is entitled Skew Lattices in Rings and the final chapter is entitled Further Topics in
Skew Boolean Algebras.

As the reader will see, skew Boolean algebras understandably get a good bit of attention
in this monograph. There is other research on these algebras that is not in this monograph. It is
typically of more recent vintage, with much being quite good. Hopefully, before too long, some
motivated individual or group will produce a monograph devoted to skew Boolean algebras and
related topics.



Foreword

All chapters begin with a fairly detailed introduction and conclude with a list of relevant
references, sometimes preceded by historical remarks. Following Chapter 7 is a Bibliography of
publications that to my knowledge are either on or are closely related to skew lattices, appearing
up through 2017, plus a few beyond. Although some material is not included in this monograph
due to limitations on subject matter, this monograph should give the reader a good idea of the
extent of activity within the area.

Following the bibliography there is a brief Addendum intended to give the reader a sense
of ongoing further research of relevance from the last two years involving newer topics not
covered in this monograph.






I: PRELIMINARIES

Noncommutative variants of lattices have been studied for over sixty-five years. The first
person, to our knowledge, to engage in their extended study was Pascual Jordan who published
numerous articles over a span of seventeen years. Since then papers on this subject have been
written by various authors from a variety of perspectives.

Why study noncommutative lattices? One reason comes from an interest in axioms.
Clearly many important algebraic structures are characterized by axioms expressed as algebraic
identities. In particular, lattices are defined as algebras (L; v, A) where v and A are binary
operations on a set L satisfying the following pairs of associative, absorption and commutative
identities.

anbnarc)y=(anb)ac av(bvey=(avb)vec
an(avb)y=a av(avb)y=a
anb=bna. avb=bva.

An initial result in lattice theory is that the idempotent identities (@ A @ = a =a v a)
follow from the two absorption identities above without recourse to either the associative or
commutative identities.

If one deletes both commutative identities, then the four remaining identities are satisfied
by genuinely noncommutative structures. (Consider, e.g., any set A of size greater than 1.
Define v and A on A by setting @ v b = a =a A b.) On the other hand, if one deletes the
commutative laws, and combines instead the associative identities with a modified and expanded
set of absorption identities

an(avb)y=a, (bva)n a=a,
av (baa)=a, (@anb)v a=a,

then these identities also characterize lattices. (See Theorem 1.3.2 below.) The point is
that axiomatic studies of lattices opened the door to considering noncommutative variants of
lattices. Indeed, during the period when Jordan studied noncommutative lattices, others were
studying axiomatic issues of lattices with an awareness of noncommutative possibilities. Thus an
interest in axioms combined with a curiosity about possible noncommutative variations of lattices
virtually insured that such variants would appear and then studied to some degree.

11
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A second source of motivation arises from studying the multiplicative semigroups of
rings. In the study of rings, idempotents play an important role. In general, given idempotents e
and fin a ring, their product ef need not be idempotent (unless, e.g., the ring is commutative).
Nonetheless ef is “below and to the right” of e in that e(ef) = ef, and at the same time “below and
to the left” of f'in that (ef)f = ef. Dually, e is “below and to the left” of the circle product eOf = e
+ f— ef in that e(eOf) = e, while f'is “below and to the right” of eOf'in that (eOf)f'=f. On thus has
the following picture:

eof
e ) .'f
..ef...

In general, given an element x in a ring, x% = x iff xOx = x. What is more, for a set of
idempotents in a ring that is closed under both multiplication and O, the following four absorption
identities are satisfied.

a(@a0b)=a=(bOa)a. aO(ab)y=a=(ba)O a.

Noncommutative rings that are well endowed with idempotents are rich in such examples.
What can one say about their structure? Such ring-based structures will occupy our attention in
much of the second and sixth chapters to follow.

Abstracting only slightly, one can think of bands — semigroups of idempotents — that are
rich enough in structure to possess an idempotent counter-multiplication. Thus multiplication
produces products that are generally “further down” in the band, while the counter-products
would be generally “further up” in the band. Such bands exist. What can be said about them?

A third source of motivation comes from universal algebra, especially the study of what
may be loosely termed “generalized Boolean phenomena”. Do noncommutative generalizations
of (generalized) Boolean lattices and algebras exist? If so, what connections exist between them
and other structures related to Boolean algebras? Clearly noncommutative lattice theory have
something to say about all this? Questions such as these will occupy our attention in the fourth
and seventh chapters to follow.

In the meanwhile, we begin this introductory chapter by reviewing a number of concepts
about lattices and universal algebra in the first section. In the second section we recall various
facts about bands that are pertinent to the rest of the monograph. And then in Section 3 we discuss
some “first principals” of noncommutative lattices. All the material in this chapter is foundational
to what follows later. The reader well-versed in the material in either of the first two sections can
easily skip over one or both of them and then proceed to the third section. We emphasize,
however, that a firm grasp of regular bands, and their left and right-sided cases, is crucial to
understanding much that will be said about skew lattices.

Left regular bands have received increased attention recently due to their role in
combinatorial aspects of algebra and geometry. See, e.g., the introductory remarks in the

12



I: Preliminaries

monograph, Cell complexes, poset tolopogy and the representation theory of algebras arising in
algebraic combinatorics and discrete geometry by Stuart Margolis, Franco Saliola and Benjamin
Steinberg.

1.1 Lattices

Recall that a partially ordered set or poset is any pair (L; >) where L is asetand >isa
partial ordering of L, that is, reflexive, anti-symmetric and transitive relation on L. Givenx >y in
L, we think of x as lying above y, or equally of y lying below x.

Given elements x, y in a poset (L; >), an element m € L such that (1) x > m and y > m and
(2) m lies above all other elements lying jointly below x and y is called the meet of x and y and is
denoted by xay. Dually, an element j € L such that (3) j > x, j > y and (4) j lies below all other
elements lying jointly above x and y is called the join of x and y and is denoted by xvy.

XAY

When they exist, xAy and xvy are unique with respect to the given x and y. If all pairs x, y € S
have a meet and a join, then (L; >) is a lattice. In this case (L; v, A) satisfies the following
idempotent, commutative, associative and absorption identities:

LO. XAX = X = XVX.

LI1. xAy = yAx and xvy = yvx.

L2. (xAy)Az = xA(yaz) and (xvy)vz = xv(yvz).
L3. XA(xvy) = x = xV(xAy).

Conversely, given (L; v, A) with binary operations A and v satisfying LO — L3, a partial order > is
defined on L by
x>y ifand only if x A y =y, or equivalently, x v y = y.

As a poset, (L; >) is a lattice whose meets and joins are precisely the given A and v. Indeed the
process of passing from a lattice poset (L; >) to an algebra (L; v, A) and the reverse process of
passing from an algebra (L; v, A) satisfying LO-L3 to a lattice poset are reciprocal processes.
Thus lattices may be viewed from either a poset perspective or an algebraic perspective.

While not verifying all details, we offer the following remarks. To begin, in any lattice
poset, LO and L1 are clear. L2 refers to the unique elements xAyaz lying maximally below x, y
and z and xvyvz lying minimally above x, y and z. Likewise, the absorption identities in L3 refer
to the fact that xvy > x > xAy in (L; >). Conversely, given an algebra (L; v, A) satisfying LO — L3,
the derived relation > is reflexive by LO and anti-symmetric thanks to L1. L2 is instrumental in

13
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showing that > is transitive. L3 yields the basic duality x A y =y if and only if x v y =y. (L;>)is
indeed a poset. Its meets and joins are given by A and v. As stated above, LO is redundant
relative to L1-L3. Indeed:

Lemma 1.1.1. Given binary operations n and v on a set L, L3 implies L0.
Proof. Given L3, x Ax=x A [x Vv (xAx)]=x,and thusx vx=xv (x Ax)=x.
Lattices of small order are easily drawn. A list of all lattices up through order 5 that is

complete up to isomorphism follows. The indexing on the totally ordered chains (Co, Ci, etc.)
corresponds to their length, which is always 1 less than their order.

) J’ L]
C C l C . C l C, xC <
° 3 X [ °
0 1. 2 1 3 . 1 1~L %
) N .
v l Vs 3 7/
l L] L] l/ \L \I L]
. /1 . . . . ! .
C4 1 ° . . NS
[ ] J/ |/ l L] \ l
\L ° ° M °
* (CxCy)! (CyxCy)° > Ns

Recall that a lattice (L; v, A) is distributive when for all x, y, z €L the following identities
hold:
DI. XA VvZ)=@XAY)V(XAz).
D2. XVE@AZ)=(xVY)A(xVz).

All chains are distributive lattices as are C; x Cy, C| x Clland C;x C°. In general, a lattice is
distributive if and only if it has no sublattice that is a copy of either Ms or Ns. Distributivity
leads us to another fundamental redundancy, whose proof is easily accessible in the literature.

Theorem 1.1.2. For any lattice (L, A, v), D1 holds if and only if D2 holds. (]

The shaping of distributive identities in noncommutative contexts is an important concern
in generalized lattice theory. An important characterizing property of distributivity is:

Theorem 1.1.3. Distributive lattices are cancellative in that xAnz = yAz and xvz = yvz
together imply x =y. Conversely, cancellative skew lattices are distributive.

14
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Proof. Given xaz = yaz and xvz = yvz, then

xX=xv@xaz)=xv@Aaz)=@xvy)A(xvz)=@xvy)A@Evz) =xvz)Ay<y

and similarly, y < x, so that x = y. Conversely, neither M3 nor N5 can be subalgebras of a
cancellative slew lattice. [

A lattice (L; v, A) is complete if every subset X of L has a supremum (an element u > x
for all x in X, with u being the least such element in L) denoted by sup(X) and an infimum (an
element v < x for all x in X, with v being the greatest such element in L) denoted by inf(X). In
particular, a complete lattice has a greatest element 1 and a least element 0. Conversely, a lattice
with both least and greatest elements 0 and 1 is complete if all subsets have suprema, or
equivalently, if all subsets have infima. Finally, in any complete lattice, we let 0 = sup(<J) and

1 = inflD).
Lattices and universal algebra

An algebra is any system, A = (4: f1, f2, ..., f), where 4 is a set and each f; is an n;-ary
operation on 4. If B C A is such that for all i <r, fi(b1, b, ..., b, )E B forall by, ..., b, inB,
i i

n.
then the system B = (B: fi', /', ..., /;') where f{=f; | B ' is a subalgebra of A. (When confusion
occurs, subalgebras may be indicated by their underlying sets.) Under inclusion, &, the
subalgebras of an algebra A form a complete lattice Sub(A) with greatest element 4, least

element the smallest subalgebra containing &J and meets given by intersection. If none of the
operations are nullary, then the least subalgebra is the empty subalgebra, &J. If there are no
operations, then Sub(A) is the lattice 24,

Recall that a congruence on A = (A: f1, f2, ..., f;) is an equivalence relation 6 on 4 such

that given i < r with a10by, a20b, ..., a, 0b, in 4, then
i i

Mar, az, ..., ani)efi(b1, by, ..., b"i )-
Under inclusion, C, the congruences on A form a complete lattice Con(4). Its greatest element is

the universal relation V = AxA relating all elements in A. Its least element is the identity relation
A. Suprema and infima in Con(‘A) are calculated as in the lattice Equ(4) of all equivalences on

A. In particular, infima in Con(A) are given by intersection. []

Recall that an element ¢ in a lattice (L; v, A) is compact if for any subset X of L, ¢ < supX
implies that ¢ < supY for some finite subset ¥ of X. (Every cover can be reduced to a finite cover.)
An algebraic lattice is a complete lattice for which every element is a supremum of compact
elements. The proof of the following result is easily accessible in the literature

Theorem 1.1.4. Given an algebra A = (A: f1, f2, ..., f1), both Sub(A) and Con(A) are

algebraic lattices.

15
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Of particular interest is the next result. It’s proof may be obtained in any standard text on
lattice theory.

Theorem 1.1.5. Congruence lattices of lattices are distributive. [

A subset U of a poset (L; >) is directed upward if given any two elements x, y in U, a
third element z exists in U such that x, y < z. The proof of the next result is also easily accessible.

Theorem 1.1.6. Given an algebraic lattice (L; v, A), a A sup(U) = sup{anx |x € U}
holds if U is directed upward. This equality holds unconditionally when (L; v, A) is also
distributive.

Recall that two algebras 4 = (4; f1, f2, ..., f+) and B = (B; g1, g2, ..., &) have the same
type if r = s and for all i < r, both f; and g; have the same number of variables, that is, both are say
nj-ary operations. Recall also that a class V of algebras of the same type is a variety if it is closed

under direct products, subalgebras and homomorphic images. A classic result of Birkhoff is as
follows:

Theorem 1.1.7. Among algebras of the same type, each variety is determined by the set
of all identities satisfied by all algebras in that variety. That is, all varieties are equationally
determined in the class of all algebras of the same type. [1

Let B = {B;|i € I} be a set of algebras of the same type. An algebra A of the same type
is a subdirect product of the B; if a monomorphism x: A — []./B; exists such that for each
projection m;: [[:aBi — Bi, the composite mwoy: A — B; goes onto Bi. A is subdirectly
irreducible if for any subdirect factorization x: A — []1B; one of the composites 7w;0%: A — ‘B;

is an isomorphism. A second classic result of Birkhoff is as follows:

Theorem 1.1.8. In a given variety of algebras V, every algebra A in Vis a subdirect
product of subdirectly irreducible algebras. [

We apply Theorem 1.1.8 to the variety of distributive lattices. But first recall that an
ideal in a lattice L is any subset / of L that is closed joins and given any xE /and yE L, xaAy €
also. Recall also that a filter (or dual-ideal) in a lattice L is any subset F of L that is closed under
meets and given any x € Fand y € L, xvy € F also. Given any element x € L, the principal ideal
x|} = {y € L|x > y} is the smallest ideal of L containing x. Dually, the smallest filter of L
containing x is the principal filter x| = {y € L|x < y}.

Theorem 1.1.9. Given a distributive lattice (L; v, A) and an element a € L,

x: L = a| xa? defined by y(x) = (xAa, xva) is a subdirect decomposition of (L; v, A). Thus a
distributive lattice is subdirectly irreducible if and only if it is a copy of either Co or C1.

16
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Proof. That x is a homomorphism follows easily from the associative, commutative and
distributive laws. By cancellation, y is one-to-one. Upon composing with either coordinate
projections, it clearly it mapped onto each factor. [

Corollary 1.1.10. Every nontrivial distributive lattice is a subdirect product of C1.

We return to the variety of all lattices. On any lattice, consider the polynomial
M(x, y, z) = (xvy) A (xvz) A (yvz) that was implicit in the proof of Theorem 1.5. M satisfies the
identities

M(x, x, y) = M(x, v, x) = M(y, x, x) = x.

Given an algebra A = (4; fi, ..., fr) on which a ternary operation M(x, y, z) satisfying these
identities is polynomial-defined using the operations of A, then Con(4A) is distributive. In general,
if a ternary function M can be defined from the functions symbols of a variety V such that M
satisfied these identities on all algebras in V, then the congruence lattices of all algebras in that

variety are distributive and 'V is said to be congruence distributive.

Boolean lattices and Boolean algebras

Given a lattice (L; A, v) with maximal and minimal elements 1 and 0, elements x and x’
are complements in L if xvx' =1 and xax’ = 0. If L is distributive, then the complement x’ of any
element x is unique. Indeed, let x” be a second complement of x. Then

X'=x"Al=x"A@Evx)=x"Ax)v X" Ax)=0v (X" Ax)=x"rX.
Similarly, x' =x" A x" and x" = x" follows. Clearly 0 and 1 are mutual complements.

Recall that Boolean lattice is a distributive lattice with maximal and minimal elements 1
and 0, (L; A, v, 1, 0), such that every x in L has a (necessarily unique) complement x" in L. If the
operation ' is built into the signature, then (L; A, v, ', 1, 0) is a Boolean algebra. Boolean
algebras are characterized by the identities for a distributive lattice augmented by the identities

for maximal and minimal elements and the identities for complementation. They also satisfy the
DeMorgan identities: (x vy) =x"Ay and (x Ay) =x"v ).

Given a Boolean algebra, the difference (or relative complement) of elements x and y is
defined by x\y =x A y'. This operation satisfies the relative DeMorgan identities:

x\(yvz)=xw) A (x\z) andx\ (y A 2) = (x\) v (x\2).

More generally, given any distributive lattice with a maximum 1 and minimum O, if x and y have
complements, thensodoxv yandx A ywith(x vy) =x" Ay and(x A y) =x" v ).
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The classic example of a Boolean algebra is the power set algebra 2% of all subsets of a
given set X with v and A being U and N respectively, and complementation being ordinary set

complementation. More generally recall that a ring of sets is any family R of subsets of a given
set X that is closed under finite unions and finite intersections. ‘R is a field of sets if it is also

closed under complementation. Before stating the next lemma, recall that an ideal P in a lattice is
a prime ideal if xny € P implies that either xE P or y € P.

Lemma 1.1.11. Let I be an ideal and F be a filter that are disjoint in a distributive
lattice. Then a prime ideal P exists such that I C P but F(\ P = <.

Proof. Let P be an ideal that is maximal subject to the stated conditions. Suppose that anb € P
for some a P and b& P. Let P; and P, be the ideals generated respectively from PU {a} and
PU {b}. Since they are properly larger than 7, P; contains an element pjva € F and P, contains
an element p,vb € F where p1, p» € P. But then F contains

(p1va)a(pavb) = (p1Ap2)V(p1AD)V(p2Aa)v(anb)
which is also in P, a contradiction. Thus a and b do not exist and P is indeed prime. [
This leads us to the first of several fundamental results about Boolean lattices:

Theorem 1.1.12. (M. H. Stone) A lattice is (distributive) Boolean if and only if it is
isomorphic to a (ring) field of sets.

Proof. The “if” direction is clear. So suppose that a lattice L is distributive. Let P denote the set
of all nonempty prime ideals of L. To each x € L, set i(x) = {PE P |x & P}. ltis easily seen that
wt(xvy) = n(x) U n(y) and mw(xay) = 7i(x) N wt(y). Moreover, if x # y then either x| N y?1 = or else
vy} Nxt=. In either case, by the lemma, a prime ideal P exists containing exactly one of x and
y. Hence x # y implies nt(x) # n(y). Thus m: L — 27 is an embedding of distributive lattices.

If L is Boolean lattice, then first w(0) = &J. Next, in the Boolean case we consider
only proper prime ideals. We still have m(xvy) = m(x) U n(y) and m(xay) = w(x) N n(y),
but now m(1) = P. Moreover, for all x, m(x) N n(x') = 7(x A x') = 7(0) = . Likewise,
ax) U n(x) = a(x v x') = (1) = P. Thus w(x) and m(x’) are complements in 27 and so

w(x") = P\ w(x). Thus x is an embedding of Boolean algebras. [

Recall that an atom in a lattice with 0 is an element @ > 0 such that no element x exists
properly between 0 and a. A lattice is atomic if every element is a supremum of atomic elements.
In particular, each x is the supremum of the set a(x) of all atoms lying beneath x. Again, the
proofs of the following three results are easily accessible. We give the proof of the third.
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Theorem 1.1.13. A4 Boolean lattice L is isomorphic the power lattice of some set if and
only if it is complete and atomic. If the latter holds, then upon denoting the set of all atoms in L

by AL, one has L = 2¢1L under the map x — a(x). U

Proposition 1.1.14. For all x in a complete Boolean lattice L and all subsets Y of L:

0) x A sup(Y) =sup({xny |y €Y}) and x v inf(Y) = inf({xvy |y EY}).
() GupY) = infl{y’ |y EY}) and (infY) = sup({y' |y EY}).

(i)  x\sup({x\y |y €Y} =infix\Y) and x\infY) =sup({x\y |y EY}).
@iv)  sup(Y)\x=sup({y\x |y €Y}) and in(Y)\x=inf({y\x|y€EY}). O

Theorem 1.1.15. Given a Boolean algebra (L, A, v, 1,0, "), let a € L be given. Then
both a| and al are Boolean lattices and y: L — a| x a? defined by x(x) = (xAa, xva) is an
isomorphism of Boolean lattices.

Proof. y is at least a lattice embedding by Theorem 1.1.9. Next, let (4, v) € a| x a? be given. If
x=(w\a) v u, then

anx = an[(v\a)vu] = (@an(v\a))v(aru) = 0vu = u
and

avx = av[v\a)vu]l =av(@ad)va=(avv)a(avad)=val =
Thus y is also surjective and the theorem follows. [J

2 denotes the Boolean lattice {1 > 0}. By mild abuse of notation, 2 also denotes the
Boolean algebra ({1, 0}; v, A, 1, 0, ') again with 1 > 0. Put otherwise, 2 is the chain C reset in a
Boolean context. We have the following sequence of easy corollaries of Theorem 1.1.15 and
Corollary 1.10.

Corollary 1.1.16. Every finite Boolean lattice factors as a finite power of 2. [
Corollaryl.1.17. The only nontrivial subdirectly irreducible Boolean algebra is 2. [
Corollaryl.1.18. Every distributive lattice can be embedded into a Boolean lattice. []

By a generalized Boolean lattice is meant a lattice L with a minimal element 0 such that
each principal ideal x| of L is a Boolean lattice. Such a lattice is necessarily distributive;
moreover a difference operation on L is given by setting x\y = x\ (yAx) in the Boolean lattice x| .
For Boolean lattices both differences agree. The relative DeMorgan identities also hold for
generalized Boolean lattices. Upon including \ in the signature, one has a generalized Boolean
algebra (L, A, v, )\, 0). It is characterized by the identities for a distributive lattice with a minimal
element 0 together with the pair: (xay) A (x\y) =0 and (xAy) v (x\v) = x.

Every Boolean algebra (L, A, v, 1, 0, ") possesses a generalized Boolean algebra reduct
(L, A, v, \, 0) with x\y given as xa)'. Conversely, any generalized Boolean algebra (L, A, v, \, 0)
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possessing a maximal element 1 becomes a Boolean algebra upon setting x' = 1 \ x. In particular,
every generalized Boolean algebra that is complete as a lattice forms a complete Boolean algebra
and thus satisfies all the identities of Theorem 1.1.15. Generalized Boolean algebras play a basic
role in the study of skew Boolean algebras in Chapter 5, being both the commutative cases of the
latter as well their maximal lattice images.

1.2 Bands

A band is a semigroup S whose elements are idempotent. Thus x~ = x (in multiplicative
notation) for all x in S. A band that is also commutative is called a semilattice. Clearly:

Lemma 1.2.1. If'S is a commutative semigroup, then the set E(S) of all idempotents in S
forms a semilattice under the semigroup operation. [

When a semigroup S is not commutative, E(S) need not be closed under multiplication.
Closure of E(S) is obtained, however, with a weakened version of commutativity. A semigroup
is mid-commutative (or weakly commutative) if it satisfies the identity wxyv = uyxv. A mid-
commutative band is called a normal band. The next result is trivial.

Lemma 1.2.2. Given a mid-commutative semigroup S, the set of idempotents E(S) forms
a normal band under the given multiplication. [

Given a band S, several quasi-orders can be defined on S. To begin, the natural partial
order > is defined on S by e > f if ef = f = fe. The natural partial order refines the natural quasi-

order > on S defined by e > f if fef = f. Between > and > lie the left and right quasi-orders, >~
and =g defined by respectively by: e >, f if fe = f and e>gf if ef = f.

In the lattice of all quasi-orders on the underlying set of S, > is the meet (intersection) of
>r and >g, and > is the join of > and >gr. That > is a partial order, and that >, and >g are
quasi-orders meeting at > are easily verified. To see that of > is a quasi-order that is the join of
>r and >g we will need the equivalences £ = > () ELOP and R = =) =g P Alternatively, £
and R are defined by: e L fif both ef = e and fe = f, and e R f'if both ef =fand fe = e. L is a right
congruence (e Lf = eg L fg for all g€ S) and R is a left congruence (e Rf = ge L gf for all

g€S). E.g., e Lfimplies egfg = efgfg = efg = eg and likewise fgeg = fg. We now state:

Lemma 1.2.3. For any band S, =1 0 =g = =g 0 > = > and the result is a quasi-order.
Proof. Ife > 0 =g f, then for some g, ge =g and gf' =f. From this e =g ef > ffollows. That
e =g ef is clear. That ef >/ f follows from (ef)f = ef and g(ef) = f. Thus > 0 =g C >x 0 >.
The reverse inclusion is shown in similar fashion. This commuting composition is thus a quasi-

order; moreover, it contains >. Indeed, from e > f'we obtain e >r ef = fef = f, so that > lies in =g
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0 >r. On the other hand >z o >y € >. For suppose e =g f >r g. But then f R fe and thus

g=gf R gfe = ge. It follows that geg = g so thate > g. [J

L and R were originally defined for arbitrary semigroups by J. A. Green, who showed
that LoR = RoL, with the resulting composition also being an equivalence denoted by D. (The
proof in the case of bands is similar to that for > and >.) Alternatively, D = > EOP. In the
lattice of all equivalences on the underlying set of S, D is the join of R and L, while the meet
RNL is the equality relation A. To understand the role of these equivalences in the structure of

bands we turn to the class of bands that form the “anti-semilattices” amongst bands.

A rectangular band is a band S satisfying the identity xyx = x, or equivalently, the
identity xyz = xz. (Given the former identity, xyz = xyzxz = xz.) Rectangular bands thus form a
variety of bands for which xy = yx iff x = y. Examples are left zero bands having the
multiplication xy = x and right zero bands having the dual multiplication xy = y. Given a left
zero band L and a right zero band R, their direct product L x R is also a rectangular band. The
generality of such an example is demonstrated as follows.

Theorem 1.2.4. Given a rectangular band S with e € S, L = {se |s € S} is a maximal
left zero band in S and R = {es |s € S} is a maximal right zero band in S; moreover the map
w: LxR — S given by u(x, y) = xy is an isomorphism. Finally, L is the L-class of e, R is the R-

class of e and S forms a single D-class.

Proof. Fixing e, since S is rectangular, sefe = se so that L is at least a left zero semigroup in S. If
L' were any left zero band in S such that ¢ € L', then for all s € L', s = se so that s EL. Thus
L'C L and L is indeed a maximal left zero band in S. Clearly such a subset must be an L-class of

S. Similarly, R is a stated. Finally, consider function u: LxR — S. Viewing L x R as a direct
product of bands and applying the defining identity of a rectangular band we get:

u((re, es)(te, eu)) = u((rete, eseu)) = u(re, eu) = reu = ru = resteu = u(re, es)u(te, eu)
so that u is a homomorphism. Since s = (se)(es) for all sES, u maps L xR onto S. Finally, let
s = u(ue, ev) = uev. Then se = ueve = ue and es = euev = ev so that (ue, ev) = (se, es). Thus u

one-to-one also and an isomorphism. [

A rectangular band can be represented as a rectangular array with R-equivalent elements

comprising the rows and L-equivalent elements comprising the columns.

e f g
i j ok
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Given elements x and y, the product xy is the unique element in the row (‘R-class) of x and the

column (L-class) of y. Thus ek = g while ke = i in this array.

Returning to the broader context of arbitrary bands, we have

Corollary 1.2.5. Given any band S, its L-classes are the maximal left zero sub-bands in

S and its R-classes are the maximal right zero sub-bands in S. [

Theorem 1.2.6. (Clifford-McLean) Given a band S, the equivalence D is a congruence

on S. lIts congruence classes form maximal rectangular sub-bands of S and the quotient algebra
S/D is the maximal semilattice image of S.

Proof. If e £ fin S, then in general, ev L fv forall vin S. Thus for all u, vin S,
(uev)(ufv)(uev) = uevufvuev = uev(fv)ufvuev = uevfvuev = uevuev = uev

and similarly (ufv)(uev)(ufv) = ufv. Thus eLf implies uev D efv for all u, v in S. In like fashion,
eRf implies uev D efv for all u, vin S. Suppose that e D fin S. Then e R ef L fand thus for all
u, vin S, uev D uefv D ufv. D is thus a congruence. Since ef D fe for all e, fin S, S/D is
commutative and hence a semilattice. Since each D-class is a maximal subset of S satisfying

Xyx = x, it is a maximal rectangular subalgebra of S. [J

In brief, every band is a semilattice of rectangular bands. Thus a band has the appearance
of a semilattice diagram with each node filled in by a rectangular band.

O |

O

While multiplication is performed in rectangular fashionwithin D-classes, multiplication between
elements from distinct D-classes is another matter. We can, however, be more specific in this

regard for the two subvarieties that we consider next.

Unlike D, the relations £ and R need not be congruences. A band for which £ and R are
full congruences is called regular. Since D is a congruence, whenever D = L (so that R = A) or
D = R (so that L = A) the band must be regular. When D = L the band is called left regular and
when D = R it is called right regular. 1t is both precisely when it is a semilattice. A normal, left

(right) regular band is called left (right) normal band.
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Theorem 1.2.7. A4 band is left regular [right regular] if and only if xyx = xy [xyx = yx].
In general, a band is regular, if and only if it satisfies the identity xyxzx = xyzx.

Proof. Givenx, y in a band S, xyx R xy. Conversely, given x Ry in S, x = xyx and y = xy. Thus
S is left regular (R = A and D = L) precisely when xyx = xy holds on S. Dually S is right regular
(L = A and D = R) precisely when xyx = yx holds on S. If S is regular, then consider the
canonical epimorphisms S — S/L£ and S — S/R. From the rectangular structure of D-classes of
S, it is follows that S/L is right regular and S/R is left regular. Thus both bands satisfy either

xyx = xy or xyx = yx and hence the identity xyxzx = xyzx. Since the two epimorphisms induce an
embedding of S into S/L x S/R which satisfies xyxzx = xyzx, so does S. Conversely, let S satisfy

xyxzx = xyzx. Suppose u L v in S, so that uv = v and vu = v. Then for all w,

(uw)(vw) = uvwuv = uvw = uw and likewise (vw)(uw) = vw. The assumed identity then gives us
(wu)(wv) = wuwvu = wuwuvu = wuwu = wu and likewise (wv)(wu) = wv showing that £ is a

indeed congruence. In similar fashion R is seen to be a congruence. [

Corollary 1.2.8. 4 band S being regular is equivalent to either of the following:
i) Givene > a, bin S, aeb = ab.

(ii) S satisfies xyx'zx" = xyzx", given x', x" D x.

Proof. If (i) holds, then xyxzx = (xy)x(zx) = xyzx follows and S is regular. Conversely, if S is
regular and e > a, b in S, xyxzx = xyzx gives us (i): aeb = aebaeb = aeababeb = aababb = ab.
Clearly S is regular if (ii) holds. Conversely, (i) implies xyx'zx" = (xy)x'(zx") = xyzx". O

The function T: S — S/L£ x S/R defined by T(x) = (L, Ry) is always 1-1 for any band.
The product S/L x S/R is naturally a band and T is a homomorphism (and thus a monomorphism)
precisely when S is regular. In this case, the image C[S] is the fibered product S/L xg/p S/R of
S/L with S/R over the common maximal semilattice image, S/D. Thus the following commuting
diagram of natural epimorphisms is a pullback. The isomorphism S = S/R xg/p S/L is called the

Kimura factorization, after its discoverer, Naoki Kimura.

S SIL
| |
! !
SIR SID

Corollary 1.2.9. Every normal band is regular. Normal bands are also characterized by
the identity xyzx = xzyx. In particular, normal left [right] regular bands are characterized by the
identity uxy = uyx [xyu = yxul].

Proof. Normal bands clearly satisfy this identity, and any band S satisfying this identity is

regular: xyxzx = xxzyx = xzyx = xyzx. But a left regular band satisfies this identity it and only if
it satisfies xyz = xzy, thus making it normal. Likewise a right regular band satisfies this identity if
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and only if it satisfies yzx = zyx, also making it normal. Since any regular band S can be
embedded in S/R x S/L, with the latter being normal if and only if S is, the corollary follows.

The remainder of this section is devoted to assorted further remarks about bands. We
begin by defining four canonical sub-bands arising for each e in a band S.

el ={f€S|f<e}, el ={f€S|f<e}, rle={fES|f<e} and elr={/ES|fr=e}.

Lemma 1.2.10. Given a normal band S, for each e €S, under the given operation e, is a
semilattice; conversely, every band satisfying this property is normal.

Proof. If S is normal and f, g < e in S, then fg = efge = egfe = gf. Thus e| is a commutative sub-
band of S, that is, a semilattice in S. Conversely, if each e| is commutative, then S at least
satisfies the identity xyxzx = xzxyx. From this we derive the identity xyzyxzyzx = xzyzxyzyx. But
since xyzy, zyzx and yxz lie in the same D-class, xyzyxzyzx reduces to xyzyzx = xyzx. Similarly,

xzyzxyzyx reduces to xzyx and xyzx = xzyx follows. [

Given D-classes A, B in a band S we write A > B if a > b for any (and hence all) pairs a
€ A and b € B. When A > B but A # B, we write A > B. This reflects, of course, what occurs
between the corresponding elements in the underlying lattice S/D. When A > B we say that A
and B are comparable D-classes. The following results provide an explicit description of the

architecture of a normal band.

Lemma 1.2.11. Given D-classes A > B in a normal band S, for each a €A exactly one b

E€B exists such that a > b.  The function o: A — B determined by o(a) = b if a > b is a
homomorphism of rectangular bands; moreover a(a) = aba for all b € B. Conversely, if >

induces functions in this manner between all pairs of comparable ‘D-classes of a band S, then S is

normal.

Proof. Given a € A and b € B for comparable D-classes A > B in a normal band S, observe that
a>abain B. Given b’ € B also, then bb'b = b and b'bb’ = b’ in B. Normality give us

aba = abb'ba = ab'ba = ab'b'ba = ab'bb'a = ab'b'a = ab'a.

Thus the procedure ¢ — aba induces a well-defined map from A to B such that a > aba with aba
being independent of » € B.  Since b = aba whenever a > b, the first statement of the lemma
follows. That a is a homomorphism follows immediately from S being normal: if ¢, a' € A and
b € B, then abaa'ba’ = aa'bbaa’ aa'baa’. Conversely, suppose that > always induces a function
between comparable pairs of D-classes of a band S in the above manner. Since xyzx D xzyx with
x > xyzx and x > xzyx for all x, y, z € S, this assumption gives xyzx = xzyx in S. S is thus normal
by Corollary 1.2.9. [J
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Lemma 1.2.12. For all comparable D-classes A > B in a normal band S, if ocg :A—B
is the homomorphism determined for all a € A by a > Otg (a) € B, then:

i) Otﬁ =ida for all D-classes A in S, and

i) ocg @) ocg = (xé for all comparable D-classes A>B>CinS.

iii) Givena € A and b € B, ab = OLIC[ (a) (XE,[ (b) in the meet-class M of A and B.

Proof. (i) is just aa’'a = a for all o' € A. (ii) states that (aba)c(aba) = aca for alla€E A, bE B
and ¢ € C, a trivial consequence of normality: abacaba = acbcacacbca = accccca = aca.
Finally, (iii) follows from the identity ab = a(ab)ab(ba)b holding in all bands. [J

This leads to the following result of Naoki Kimura and Miyuki Yamada.

Theorem 1.2.13. Let T be a meet semilattice poset (T; >). Assign a rectangular band N,
to each a € T and a homomorphism NZ : Ny —= Ny to each pair a> b in T, such that:

i) Given a # b in T, N, and Ny, are disjoint.

ii) NZ is the identity map on N, for alla € T.

i)  N2ONY =N forallazb>cinT.

Given x € N, and y € Ny, set xy = sz x) sz () in Ngp. Then S =U ;.1 Ny is a normal band

with maximal rectangular sub-bands being the N,, with maximal semilattice image being T and
the canonical homomorphism t©: S — T defined by T (x) = a if xEN,. Conversely, every normal
band arises in this fashion.

Proof. It is easily verified that the above construction produces a band such that x >y for x € N,
and y € Ny, holds precisely when a > b in T and Ngb (x) =y. It follows from Lemma 1.2.11 that

S is indeed a normal band. The converse assertion follows from Lemma 1.2.12. [

What is the picture in the case of regular bands? Or is there one? To begin, given
comparable D-classes A > B in a band S and b €B, the set AbA = {aba' |a, a' EA} is a coset of

A in B. Similarly the left coset is Ab = {ab |a €A} and the right coset is bA = {ba|a € A}.
Proposition 1.2.14. Let S be regular band, with comparable D-classes A > B. Then:

i) For all b, c € B, either AbA = AcA or ADANAcCA =QD.

ii)  In particular, if AbA = AcA, then aba' = aca’ for all a, a' in A.

iii) B is partitioned into a disjoint union of nonempty subsets B;, each consisting of all
b €B inducing the same coset AbA of A in B. In particular, all c € AbA induce
the coset AbA, so that AbA C B;={c € B|AcA = AbA}.

iv)  For each a € A and each partition cell B;, a unique b; € B; exists such that a 2 b;.
For any b € B;, aba is this b; and bab = b.

Proof. To begin, suppose AbA N AcA # & for some b, ¢c € C. Thus ajbas = azcay for some aj,
az, as, as €A. Corollary 1.2.8 then implies that for all a, a’ in A,
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a(a1baz)a’ = (aara)b(a’axa’) = aba’

and likewise a(ascas)a’ = aca’, so that aba’ = aca’. From this (i) - (iii) follow. To see (iv),
clearly a > aba in the cell containing AbA. Assuming b € B;, then aca = aba for all ¢ € B;, so
that aba is this unique b; < a in B;. That bab = b follows from a = 5. [

Given A>B and cell B; in B, B; is called an A-cell in B and a;: A — B; is defined by
ai(a) = aba for all a €A and any b €B; is the cell-map of A into B;. Its image in B is the coset
AbA, since by Corollary 1.2.8 again, aba’ = aa'baa’ for all a, ' € A and b € B.

Application. All left regular bands with just two D-classes A > B are constructed as
follows.

(1) Given sets A and B, partition B into disjoint nonempty subsets {B; C B |i € I}.

(2) For each cell B; of the partition, choose a function a;: A — B,.

(3) Define multiplication on S = A U B by first imposing left zero multiplications on A

and B separately, setting ba = b for all a € A and b € B, and finally by setting ab = a,(a)

if b € B;.

X In the resulting band S = A U B, the cell decomposition of B is the given partition B =UB; and
the cell-maps from A to B are precisely the o;: A — B; C€ B for each i € L.

Cell decompositions and cell-maps also determine the multiplication of elements in
incomparable D-classes in a left regular band. But first a definition: given D-classes A > B in a
band with a €A, the image of a in B is the set { € B |a > b}. Put otherwise, this image is
aBa = {aba | b € B}, or when S is left regular, aB = {ab | b € B}. In the next situation, both D-

classes A and B can be incomparable

Proposition 1.2.15. Given a left regular band S and D-classes A and B, with meet D-
class M, and with a €A and b €B, then:

(@Y The image bMb of b in M lies in a unique cell M; of the A-decomposition of M.
2) If o;: A — M; & M is the corresponding cell-map, then ab = o(a).
3) Dual remarks hold for the image class of a in M and the product ba.

Conversely, given two left regular bands consisting of D-classes A>M and B> M respectively,
such that AN B = &, with M the same for both bands with A>M and B >M satisfying (1) — (3),
then the multiplications on each band extend uniquely to a left regular multiplication on their
union A UBUM such that M is the meet class of A and B. (Dual constructions and observations
exist for the right regular case. The general case follows using fibered products.)

Proof. Given b > b' €M, ab’' = a(bb") = (ab)b' = ab. Thus all such b’ < b lie in the same cell of

the A-decomposition of M and (1) — (3) are now clear. For the second part, given (1) — (3), one
needs to show that all possible multiplications of abm (and bam), amb (and bma), mab (and mba),
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aa'b (and bb'a), aba' (and bab') and baa' (and abb’) are unambiguous. We consider only the non-
parenthesized cases, of which the amb, mab and baa’' cases are trivial.

abm: Since bm is in the A-cell in M containing all images of b in M, (ab)m = ab = a(bm).

aa'b: Since ab and a'b lie in a common A-cell in M, (aa")b = ab and a(a'b) are images of a in
this cell and so are equal.

aba': Note that ba' is an image of b in M lying in the unique A-cell of M containing all images
of B in M. Thus (ab)a’ = ab = a(ba').

We consider next a class of necessarily regular bands for which architectural issues are
simplified. A band S satisfies the class covering condition (CCC) if for every comparable pair of
D-classes A > B in S, and every b € B an a € A exists such that a>b. Every b € B is thus

“covered” by some a in A. The free left regular band on {a, b, ¢} does not satisfy the CCC.
Theorem 1.2.16. In a band S satisfying the class covering condition, the following hold:

i) S is regular.
i) An element x lies in the center of S if and only if Dy = {x}
iii) Given x, y €S, Dy, is DDy = {uv|u €EDx & vED,}.

iv) In particular, when Dy and ‘D,, are finite, so is D,.

Proof. (i) Given x, y, z € S, by the CCC, u, v € D, exists such that u > xy and v > zx. Since
uvw = uw holds in D, we obtain: xyzx = (xyu)(vzx) = xp(uxv)zx = (xyu)x(vzx) = xyxzx. Thus S is
regular. (ii) If x commutes with all elements in S, then clearly D, = {x}. Conversely, let
D, = {x} and let y € S be given. By the CCC, x > xy and hence xy = xyx. Similarly, x > yx so
that yx = xyx. Thus xy = yx and x lies in the center of S. (iii) Clearly DDy C Dyy. Let z in Dyy
be given. Since Dy > D,y and Dy > D,y, by the CCC, u €D, and v €D, exist such that u > z and

v>z. Thus z = uvzuv = uv since both z and uv lie in Dy,. (iv) is now clear. []

The situation regarding cell-maps in the CCC case is much cleaner.

Theorem 1.2.17. In a band S satisfying the class covering condition, the following hold:

i) Given D-classes A > B, the A-cells in B are precisely the cosets, AbA.

ii) B is partitioned by the cosets of A in B and the cell-maps from A to B are
collectively surjective in that B = Up.AbA.

iii) Given a ‘D-class chain A > B > C, all compositions of cell-maps from A to B

with cell-maps from B to C are cell-maps from A to C.
iv) Conversely, all cell-maps from A to C are obtained in this fashion.

Proof. (i) Given b € B, by the CCC, a € A exists such that a > b. Hence b = aba € AbA and
the cell containing b collapses to AbA. (ii) is now clear. (iii) Next, given A > B > C as stated,
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consider the cell-maps @: A — AbpA C B and ¢y: B — B¢oB C C defined by ¢(a) = aboa and
Y(b) = beob for bo€ B and co € C. Then for all a € A, Yog(a) = aboacoaboa = = abocoboa by
Corollary 1.2.8. Thus yog: A — C is a cell-map form A to the cell of bocobp in C. Finally, given
c € CletT: A — C be cell-map defined by T(a) = aca. By CCC again, by € B exists such that
by > c¢. By Lemma 1.2.8 again, for all a € A, aca = abochoa = aboacaboa. Thus, if
@: A — AbpA C B and y: B — Bc¢B C C are the cell-maps @(a) = aboa and (b) = bcb, then Yo
is precisely &: A — C. I

The above need not hold in all regular bands, as is seen in LRegq, 5, ¢} The cell-map
from {a} to the bottom D-class in LRega, b, ¢} sending a to abc does not factor through the

intermediate class {ac, ca}. Likewise the cell-map sending a to ach does not factor though the
class {ab, ba}.

Proposition. 1.2.18. The class of all bands satisfying the class covering condition are
closed under products and homomorphic images.

Proof. Closure under products is clear. Suppose that band S satisfies the CCC and that /S — T
is a homomorphism. Let a > b in f[S] with @ = f(x) and b = f{y) for x, y in S. Thenx > yxy in S
with f{yxy) = bab = b in T. By CCC, x" € D, exists such that x' > yxy. Clearly a' = f{x") > b and

a eD, O

Thus bands satisfying the class covering condition do not form a variety. This condition
holds, however, for both band reducts (S, A) and (S, v) of any skew lattice (S, v, A). And skew
lattices do form a variety.

1.3 Noncommutative lattices — initial observations

In general, a noncommutative lattice is an algebra (N: v, A) where both v and A are
associative, idempotent binary operations satisfying a specified set of absorption identities. We
continue to call v the join and A the meet. The adjective “noncommutative” is used here in the
inclusive sense of “not-necessarily-commutative”. Thus lattices will play an important role in the
general study of noncommutative lattices. Thus far, nearly all types of noncommutative lattices
that have been studied assume absorption identities from among the following:

Bi: an(avb)=a. Ci:av(anb)=a.
By (bva)ra=a. Cy (bra)va=a.
Bs: an(bva)=a. Cs:av(baa)=a.
Bs: (avb)ra=a. Cs (@anb)va=a.

If v and A are commutative, then clearly the B’s merge together as do the C’s. In general we
require that v and a satisfy at least a pair of identities that reduce to B; and C; when v and A are
commutative. We consider several classes of such algebras.
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The noncommutative lattices studied most extensively in recent years are skew lattices
that satisfy By, By, C; and C,. We will see that these identities express the dualities:

xvy=x ifandonlyif x Ay=y and x v y=y ifand only if x A y=x.

(The equivalence of the absorption identities with the stated dualities will be shown shortly.)
Likewise, skew™ lattices satisfy the complementary set of identities, B3, B4, C3 and Cy4, and are
characterized by the pair of dualities: xvy = x if and only if yAx = y and xvy = y if and only if
yax =x. Either type of algebra is transformed into the other by replacing A by A* or by replacing
v by v¥ wherea A* b=baaanda v* b=>bv a. A double replacement yields the original type
of algebra. Hence we choose to focus on skew lattices. A detailed study of skew lattices will
commence in the following chapter. Two further classes of noncommutative lattices are:

A quasilattice is a noncommutative lattice satisfying the two-sided absorption identities
Bs:an(bvavb)aa = a. Cssav((brnanb)yva = a.

We will see that these identities expresses the duality, x A y Ax=xifandonly ify vxvy=y,
stating that x < y under A if and only if y < x under v.

A paralattice is a noncommutative lattice satisfying the absorption identities

Be: an(avbva)=a=(avbva)na.
Cs: av(anbana)=a=(@nrnbnra)va.

These identities express the duality, x A y=x=y A x ifandonlyif xvy = y = yv x, stating
that x <y under A if and only if y <x under v.

While B5 — C6 above are not among the previous absorption identities, if combined with
flatness (see below), they reduce to identities on the earlier list. (See Theorem 1.3.7 below.)

Quasilattices that are also paralattices are called refined quasi-lattices. Skew lattices and
skew* lattices are both refined quasi-lattices. Another significant class of examples is as follows.
In Section 3.4 we will see that refined quasi-lattices are closely related to skew* lattices.

An antilattice is an algebra (N, v, A) with associative, idempotent binary operations v
and A such that botha A bAa=aand av b v a=a. Lattices and antilattices form antipodal
classes of examples having foundational import in the study of noncommutative lattices. Thanks
to the simple behavior of rectangular bands, however, antilattices are easily described. A pair of

double indexing {x(, ) | (A, p) EL x R} and {X0.2,0% | (A%, p*) € L* x R*} of the elements of N
exist such that:

XV X o) =X0. ) and Xox g1 A X(gx o) = X0k, %)

If N is finite, it can be exhibited as a pair of rectangular arrays. Consider the example:
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a b ¢ b ¢ f
vy d e f N a e i
g h i d g h

The result of either xvy or xay is the element lying in the row of x and the column of y in the
relevant array. Thus avf= ¢ while aanf=i. In this example, none of the B; or C; are satisfied for i
<4. In particular, we have neither a skew lattice nor a skew™ lattice.

If both arrays coincide, then x v y =x A y and N is a skew* lattice. If they are transposes
(so that L =R* and R =L¥), thenx v y =y A x and N is a skew lattice. In both special cases only

the A-array is needed. (In the transpose case, one has x(3, 5) A X(.g) = X(u.p)-) In general, both
arrays are needed and all we can assert is that N is a refined quasi-lattice.

We return to the first eight absorption identities. Initially, each pair (B;, C;) is a dual pair
in that either is obtained from the other by switching v with A. But other forms of duality exist.

Lemma 1.3.1. Given (N, v, A) where both v and A are associative and idempotent:

Bi-an(avb)=a-asserts that for x,y EN, x (,)»ry impliesx =< ().
By - (b v a) A a=a - asserts that for x,y EN, x (,)>ry implies x =< (,) »-
B3 -ana (bva)=a-asserts that for x,y EN, x (,)=¢y implies x =< (,) ).
By-(av b) A a=a-asserts that for x,y EN, x (,)>ry implies x =< () y.
Ci-av (aab)=a-asserts that for x,y EN, x (,»ry implies x <) ».
Cy- (b Aa)va=a-asserts that for x,y EN, X (,)=ry implies x R< () ».
C3-av (b a)=a-asserts that for x,y EN, x (,)>=¢y implies x <)y

C4-(anb)va=a-asserts that for x,y EN, x (,)»ry implies x R=< () y-
Thus, we have the following pairs inducing converse implications:
B and C,, B, and Cy, B3 and C3 and Bsand C4. O
Theorem 1.3.2. (Laslo [1997]) An algebra (N, v, A) where v and A are associative,

idempotent binary operations is a lattice if and only if Bi, Ba, C3 and C4 all hold or the
complementary set B3, Ba, Cy and C; all hold. (Thus absorption can imply commutativity.)

Proof. B, By, C3 and Cy yield x (\)>RY = X () YV = X (W)LY = X R3 ()Y = X (\)=R V-
Thus, for each operation, both > and > reduce to > and both natural partial orders dualize each

other and we have a lattice. The case for B3, B4, C; and C; is similar. The converse is clear. [J

Similarly we obtain:
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Theorem 1.3.3. An algebra (N, v, A) where v and A are both associative and

idempotent is a skew lattice (B, By, C1 and C») if and only if \<¢ dualizes \,<g and ,<r dualizes

V=5, that is:
xvy=xiffxany=y and xvy=yiffx ny=x.
Likewise, N is a skew* lattice (B3, B, C3 and Cy) if and only if ,<r dualizes ,<; and ,<g

dualizes =g, thatis: xvy=xiffy aAx=y and xvy=yiffy nx=x. O

Laslo has shown that no lesser combination than those given in Theorem 1.3.2 suffice to
force (N, v, A) to be a lattice. Moreover, the effect of Theorems 1.3.2 and 1.3.3 is that the
combination of any three of B-B4 with any three of C;-C4 guarantees that (N, v, A) is at least a
skew* lattice, if not a lattice.

In the first section on lattices we saw that B; and C; together were sufficient to force both
A and v to be idempotent operations. In general, we have:

Theorem 1.3.4. (Laslo and Cozac [1998]) Let B; and C; where 1 < i, j < 4 be a pair of
absorption identities and let (N, v, A) be an algebra with binary operations v and A \on N that
satisfy both B; and C;. Unless B; and C; form a converse pair in the above sense, then both v and
A are idempotent. When B; and C; form a converse pair, then even assuming that both operations
are associative is not enough to force them to also be idempotent.

Proof. We have already seen that B; and C; imply that both operations are idempotent. Given
Biand Cswehaveana=an[av(bAaa)l]=aandava=av (ana) =a. Next, given By and
Cswehaveava=(an(ava)va=aanda rna=a A (av a)=a. Lastly, both B; and C, are
satisfied by the three-element algebra with binary operations given by tables:

| |
Both operations are associative, but clearly not idempotent.

We have settled the case for By and any of the C;. What about B, through B4? First,
suppose we are given algebra (N, v, A) where v and A are binary operations. For (N, v, A) to
satisfy By it is equivalent that (N, v, A*) satisfy B;. (Here x A* y =y A x as before.) But
replacing A by A* has the effect of permuting the C;. In particular, (N, v, A*) satisfying C,
corresponds to (N, v, A) satisfy Cs. Thus, given By, all C; except C4 induce idempotent
operations. Continuing, the B-C, pairing for (N, v*, A) corresponds to the B3-C3 pairing for
(N, v, A) and the B-C; pairing for (N, v*, A*) corresponds to the B,-C; pairing for (N, v, A).
Thus all B;-Cj pairings insure idempotent operations except for the converse pairings. [l

and

o S QK
& o ol
8 0 o>
o o o |0
o S >
Q2 2l
Q2 2>
& 9o

Comment. The proof shows that once one of the operations is known to be idempotent,
then the nonconverse pairing is enough to force the other operation to be idempotent also.
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Thanks to various dualities, coherent quasi-orderings are defined as follows.

1) If (N, v, A)is a quasilattice, its natural quasiordering < is just ,=<, or the dual of , <.
2) If(N, v, A)is a paralattice, its natural partial ordering < is ,<, or the dual of , <.
3) If (N, v, A) is a skew(*) lattice, its left and right quasiorderings, <r and <g, are ,<r

and ,=<g respectively, or their duals of the appropriate v-quasi-orderings.

Congruences

A congruence on a noncommutative lattice N is an equivalence relation 6 on N such that
for all a, b, ¢ EN,
a 8 b implies anc 0 bac, cana 0 cab, ave 8 bve and cva 6 cvb.

In accord with standard notation, A denotes the least congruence (equality) and V denotes the
greatest congruence. Besides A and V, two other congruences of interest are:

The least lattice congruence is the smallest congruence A on N such that N/A is a lattice.
N/\ is thus the maximal lattice image of N. On the interval [A, V], 8Nsup,(6;) = sup; (6N6;),
since [A, V] is lattice isomorphic with Con(N/A), the congruence lattice of the lattice N/A.

On the other hand, the least rectangular congruence, is the least congruence p on N for

which N/p is rectangular. Clearly p is the congruence generated from the relation ,<U ,<.

Theorem 1.3.5. If (N, v, A) is a noncommutative lattice with D,, and D, the

D-congruences for v and A, then \ is the congruence on N generated from the relation D, U D, .

Proof. Ifd is the congruence on N generated from D,, U D,, then N/d is commutative in both v

and A. Since N satisfies absorption identities inducing By and C; on any commutative image, N/0
is a lattice. Thus A C 8. Since & C A is clear, A = 8 follows. [

Corollary 1.3.6. Let (N, v, A) be a noncommutative lattice for which D,, = D,. Then
A =D, the common D-equivalence for both operations, N is a quasilattice, N/D is the maximal

lattice image of N and all the ‘D-classes are the maximal antilattices in N. Conversely, for all

quasilattices, D,, = D, .

Proof. If D,, = D,, then A is clearly the common D-equivalence. By the Clifford-McLean

Theorem for bands, N/D is the maximal lattice image of N and the D-classes are maximal anti-

lattices in N. Hencea Dan (bvav b)aainN. Butsincea ,>an(bvavb)aainN,

equality follows: a=a A (bvav b)Aa. Similarly,a=av (b A an b)v asothat N is a quasi-
lattice. The converse is clear. [
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Thus, every quasilattice is a lattice of antilattices. Hence quasilattices are precisely the
noncommutative lattices having a direct analogue of the Clifford-McLean Theorem for bands.

Flatness
A noncommutative lattice is flat if one of the following holds:

(r,): avbva=bva and anbra=anb.
(I, ¥): avbva=avb and anbra=bnaa.
(,,): avbva=avb and anbra=anb.
(r,r): avbva=bva and aabra=bnaa.

Thus, being (r, /)-flat means that D,y = Ry, and Dy,) = L(,), or equivalently, L) = R(,) = A.
Modified remarks hold for the other three types of flatness. Clearly:

Proposition 1.3.7. Given any variety of noncommutative lattices (e.g., paralattices or
quasilattices), the flat algebras of a given type form a subvariety. [

If (N, v, A) if flat, then (N, v*, A), (N, v, A¥*) and (N, v¥*, A¥) are also flat, with all four
types of flatness represented. Of particular interest is:

Theorem 1.3.8. (I, [)-flat paralattices are characterized by B, Ba, C1 and Cy:
an(avb) = a = (avb)aa and av(anb) = a = (anb)va.
Similarly, (I, I)-flat quasilattices are characterized by By, Bz, C1 and Cs:
an(avb) = a = an(bva) and av(anb) = a =av(bra).

Proof. Assuming (/, /)-flatness B, B7, Cs and C7 reduce to By, B4, C; and C4. Conversely, from
By, By, Ci and C4 we get anbaa = anba[(anb)val= anb. Switching v and A (which we can since
B1, B4, C1 and C4 are operational duals) yields avbva = avb. Thus Bg, B7, Cs and C7 can be
recovered from B, By, C; and C4. Still assuming (/, /)-flatness, Bs, Cs and their derived
identities, an(avbva)aa = a = av(anbaa)va, reduce to By, B3, C; and Ciz. From the latter,
anbaa = anbnlav(anb)] = anb follows. Similarly, avbva =avb. Thus Bs and Cs are recovered
from By, B3, Cy and Cs. [

This illustrates a general rule of thumb: upon assuming flatness, By - B4 and Cy - C4
usually suffice to describe the dualities encountered in noncommutative lattice theory.

Flatness was encountered in early work on noncommutative lattices. P. Jordan, who

wrote numerous articles on the subject in the 1950s and 1960s, often worked with algebras
satisfying B, B3, C; and C4 which characterize (r, [)-flat paralattices. M. D. Gerhardts, who
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published in the 1960s and early 1970s, studied algebras satisfying By, B3, C2 and C4 which
characterize (r, [)-flat quasilattices. In a sequence of papers beginning in the 1980s, Gh. Farcas
considered systems combining (/, /)-flatness with middle commutativity, avbvc = avevb and
anbac = ancab, so that both operations were left normal.

Distributive identities
Just as the number of essentially distinct absorption identities proliferates in the absence

of commutativity, so do the number of essentially distinct distributive identities. To begin, a
noncommutative lattice is fully distributive if it satisfies the identities:

D : anve=(anb)v(ano). Dl/: avbnrc)y=(avb)a(avec).

D,: (@avbnrc=(@nrc)v(@dnao). Dz’: (anb)yve=(@ve)anveo).

Unlike the case for lattices:

Theorem 1.3.9. For skew lattices D, Dl’, D, and Dz' are mutually independent.

Proof. A skew lattice satisfying precisely D, Dl/and Dz/ is given by the tables:

and

That D2' is not satisfied is seen by (a A 0) vb=b#a=(av b) A (0 v b). Replacing (v, A) by

(v*, A*) or (A, v) or both (A*,v*) gives examples of the other ways that a skew lattice can satisty
just three of the four identities above. [J

Being fully distributive is powerful. To see this, observe first that distributive lattices are
fully distributive as well as flat antilattices of any of the four types. Hence any direct product of
algebras from these five types is also fully distributive. We shall see in Corollary 3.5.3 that for
quasilattices (and hence skew lattices) this is all. Thus, any fully distributive quasilattice factors
as the product of a distributive lattice and up to four flat antilattices.

We next consider two other sets of distributive identities that while less powerful, have a
broader scope. A noncommutative lattice is bidistributive if it satisfies the slightly weaker pair of
identities:

Dy:an(bveynd=(@nrbad)v(ancad).
D3 av((bnac)yvd=(avbvd)a(avcvd).

Distributive lattices and arbitrary antilattices are bidistributive, as are their direct products. By

Theorem 3.5.2 below, this is all among quasilattices. (In this more general case the antilattice
factor need not be completely factored into a product of flat antilattices.)
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Finally, a noncommutative lattice is distributive if it satisfies the even weaker pair of
identities:
Ds: anbveyna=(anbra)v(ancha).
Dy: avbac)yva=(avbva)r(avcyva).
Among skew lattices, D4 and D4’ play an important role. For instance, skew lattices in
rings are distributive, as are skew Boolean algebras. Moreover, as will be seen in Theorem 3.5.1,
a distributive, noncommutative lattice is a paralattice if and only if it is a quasilattice. It thus
follows that the type of distributivity expressed by D4 and D4’ is of maximal general use.

Theorem 1.3.10. Among skew lattices identities D3 and D3 " are independent.

Proof. The skew lattice example of Theorem 1.3.8 satisfies D3 but not D3 . Switching the A and
v tables provides the complementary example satisfying D3’ but not D3. [

Theorem 1.3.11. (Spinks [2000]) Among skew lattices, D4 and D4’ are independent.

Proof. Spinks gave the following example of a 9-element skew lattice satisfying D4 but not D4'.

d—e f-g (D is indicated by ‘—’;

. and .* denote >)

Both 1 and 0 behave as they ought. Otherwise, the operations are described by the partial tables:

via b ¢ d e [ g Ala b c d e f g
ala d e d e 1 1 ala 00 a a 0 0
bld b b dd [ f b|O b ¢ b ¢ b c
cle ¢ ¢ e e g g c|0 b ¢ b ¢ b ¢
dld d d d d 1 1 dla b ¢c d e b c
ele e e e e 1 1 ela b ¢c d e b c
flr f f 11 f f fl10 b ¢ b ¢ f g
g|l g g 1 1 g g §10 b c b c f g

In particular,a v (dAg)va=avcecva=e#d=dnanl=(avdva)na(av gv a). Switching
the A and v provides a 9-element example satisfying D4 but not D4. [

Spinks’ examples are minimal examples. In all cases of order < 8, D4 is equivalent to
D4” Under the added condition of symmetry (xvy = yvx iff xAy = yAx), Spinks found a machine-
generated proof that for skew lattices, D4 is equivalent to D4”. In Section 5.2 we give a short
“normal” proof of this fact.
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Enriched structures

We have already encountered 1 and 0. As is the case for lattices 1, if it exists, is the
unique element at the top of the noncommutative lattice and 0, if it exists, is the unique element at
the bottom, whatever the (quasi-)ordering may be. This is given expression by the following sets
of identities.

lva=l=avlandlana=a=anl.
Orna=0=an0and Ova=a=avO.
For skew lattices (and for paralattices in general) both second pairs of identities is redundant.

Paralattices, and particularly skew lattices, have a coherent natural partial order < given

as either <(,) or the dual of <,). It may be that two elements x, y in a paralattice possesses a
natural meet that is maximal among all z such that both x, y > z. Dually they may also possess a
natural join that is minimal among all z such that both x, y <z. To distinguish natural meets and
natural joins from the given operations A and v, we shall refer to them as intersections and
unions of elements respectively, employing the notation xNy and xUy. Unless x and y commute,
one has xAy > xMy and xUy > xvy.

Theorem 1.3.12. The natural meet operation in a paralattice is characterized by the
identities:
NM;: xNx=x;
NMa:  xNy =yNx;
NM;: (xNy)Nz=xN(yNz);
NMs: x A (xNy) =xNy = (xNy) A x;
NMs:  x N (XAYAX) = XAYAX.

Dual identities characterize a natural joins. [

Theorem 1.3.13. Given a paralattice (P; v, A) with a natural meet N, the enriched
algebra (P; v, A, N) has a distributive congruence lattice.

Proof. Setting m(x, y, z) = (xNy)v(yNz)v(xNz), one has m(x, x, y) = m(x, y, x) = m(y, x, X) = x.
But this implies its congruence lattice is distributive. (Theorem II.12.3 in Burris and
Sankappanavar [1981].) O

Rectangular bands and rectangular skew lattices

A rectangular skew lattice is a skew lattice (S; A, v) for which (S; A) and (S; v) are
rectangular bands. Equivalently, its is an antilattice that is also a skew lattice. Given a
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rectangular skew lattice, from x A (x v y) = x, it follows that x vy = u A x for some u. Similarly,
from (x v y) A y =y, it follows that x v y = y A v for some v. Combining we get

XVy = (XVY)A(XVY) = YAVAUAX = PAX.

Conversely, given an algebra (S; A, v) for which both (S; A) and (S; v) are rectangular bands and
xvy = yax holds on S, it is easily seen that all four relevant absorption identities must hold,
making (S; A, v) a rectangular skew lattice. We thus have:

Proposition 1.3.14. The variety of rectangular bands is term equivalent to the variety of
rectangular skew lattices. Thus a map between rectangular bands f: A — B is a homomorphism
of bands if and only if it is a homomorphism between their induced rectangular skew lattices.
Likewise an equivalence on a rectangular band is a band congruence if and only if it is a
congruence on the derived skew lattice. [

We continue by considering the case of right zero bands (xy=y), and their derived right
rectangular skew lattices (where xAy = y = yvx). The following result is trivial.

Proposition 1.3.15. Given right zero bands B and B', each function f: B — B' is a
homomorphism, and thus each equivalence relation on B is a congruence. (Similar remarks hold
also for left zero bands where xy = x.) O

We next consider the case of a factored rectangular band B = L x R, where L and R are
left zero and right zero bands, respectively. (All rectangular bands are isomorphic to such a
factorization.)

Theorem 1.3.16. Given a factored rectangular band B = L x R, and a left zero band L'.
Then every homomorphism from B to L' has the form f(I, r) = MI) where \ is any function from L
to L'. Dually, every homomorphism from B to a right zero band R’ has the form f(I, r) = p(r)
where p is any function from R to R'. Finally, given a second factored rectangular band
B’ = L' xR/, all homomorphisms from B to B' are of the form f(I, r) = (M1), p(r)) where \ is any
function from L to L' and p is any function from R to R'.

Proof. Given a homomorphism from f: L xR — L', since homomorphisms send R-classes to R-
classes, f is constant on each R-class {/} x R and thus must factor through the left factor L,
leading to a chain of homomorphisms L x R — L — L' whose composite f must be a
homomorphism. Here L x R — L is just the projection onto L. The second map is the induced
map A: L — L’ that must be a homomorphism. [

Corollary 1.3.17. Given a factored rectangular band B=L xR, each congruence 6 on B

has the form (I, v) 6 (I, r) iff 1 61" and r Or v’ for any pair of equivalences 6; and 6g on L and R
respectively. [
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The internal perspective. Given rectangular bands B and B’, choose elements » € B and
b' € B’ as base points. Each x € B is of the unique form x = /r where /€ £ and r € R,p. Indeed,

x factors as (xb)(bx) where xb € L and bx € Rp. Again, this factorization is unique relative to the

base point b. Clearly similar remarks hold for B’ and »'. Next, let A: L, — Ly and p: Ry — Ry

be functions, both of which are trivially homomorphisms between their restricted domains.
Finally define £ B — B’ by f{x) = Mxb)p(bx), or equivalently, f{x) = Mxb)b'p(bx).

Theorem 1.3.18. As defined, f is a homomorphism from B to B'. Conversely, every
homomorphism from B to B' arises in this manner. Finally, fis 1-1 or onto if and only if both A
and p are. (Of course, the choice of b and b’ is part of “this manner.”)

Proof. We first show that f'as defined is a homomorphism from B to B'.

Sxy) = Mxyb)b'p(bxy) = Mxb)b'p(by) = Mxb)p(by)
whilst

JOy) = Maxb)b'p(bx)Myb)b'p(by) = Mxb)p(by).

Conversely, if f; B — B’ is a homomorphism, then upon picking some b in B and setting 5" = f(b),
for any x in B we get f(x) = fixbbbx) = f(xb)b'f(bx) = Mxb)b'p(bx) where the functions A and p are
the restrictions of fto L, and R;, respectively. [J

A primitive skew lattice is a skew lattice consisting of two rectangular algebras A > B,
where baanb = b or dually avbva = a, for all a € A and b E B. We are especially interested in
the case when B = {0}. We denote such an algebra by N Suppose we are given two such
algebras, A% and B®. Then the following assertions follow from the behavior of 0 and the results
above

Proposition 1.3.19. Given primitive skew lattices A" and BO, Hom(AO, BO) consists of (1)
all constant maps from A 10 B® and (ii) all maps f from A’ 1o Bofor which f{0a) = (0) and the
restriction flA is a homomorphism from A to B. (Thus the nontrivial part of f'is governed by the
conclusions of the preceding results.)

Corollary 1.3.20. Given a primitive skew lattice AO, the nontrivial congruences on A°

(where not all elements are related), are equivalences for which {0} forms a single equivalence
class and their restriction to A is a congruence on the subalgebra A.
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II: SKEW LATTICES

We take a closer look at skew lattices, i.e., at algebras (S; v, A) with associative binary
operations v and A satisfying the absorption identities:

Bi: an(avb)=a. Ci: av(anb)=a.
B»: (bva)ra=a. Ca: (bra)va=a.

By Theorem 1.3.4, both v and A are idempotent: x v x =x = x A x. Equivalently, skew lattices
are characterized as the double bands (S; v, A) satisfying the dualities:

avb=aqa ifandonlyif a A b=0>.
avb=>b ifandonlyif an b=a.

In this chapter a basic theory for these algebras is developed. For every statement about skew
lattices, clearly a parallel statement holds for skew* lattices. Thus, from this point on, the latter
will not be mentioned until more general structures are considered in Chapter 3.

We begin in Section 1 with some fundamental results about skew lattices. Of particular
importance are two core structural results for skew lattices: analogues of the Clifford-McLean
Theorem and the Kimura Factorization Theorem (Theorems 2.1.2 and 2.1.5), given originally for
bands and regular bands respectively (Theorem 1.2.6 and what follows). We also initiate our
study of skew lattices of idempotents in rings, a source of both examples and conceptual
motivation, in Theorems 2.1.7 and 2.1.9. (In this case, A and v are given first as eAf = ef and
evf=e +f—ef)) Due to the latter theorem, a band can be embedded into some skew lattice as a
sub-band of its A-reduct (or of its v-reduct) if and only if the band itself is regular (Theorem
2.1.10).

In Section 2 we consider the role of commutativity in skew lattices. The center of a skew
lattice S, Z(S) = {¢e € S|evx = xve and eAx = xAe for all x € S} is characterized in Theorem 2.2.2

as the sublattice of all elements that form singleton D-classes. We look at the important property

of symmetry (avb = bva iff anb = baa) and some of its consequences. These include Theorem
2.2.10 that asserts that any symmetric skew lattice with a countable maximal lattice image has a
lattice section (that is, a sublattice meeting each D-class of S at a single point). Example 2.2.2
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exhibits a nonsymmetric 13-element skew lattice with a generating set of 3 mutually commuting
elements (under both v and A), that has noncommuting pairs of elements.

In the third section we consider normal skew lattices, i.e., skew lattices whose A-reducts
are normal in that xaAyazaw = xayazaw. Of special interest are distributive, symmetric, normal
skew lattices characterized in Theorem 2.3.2 by identities an(b v ¢) = (anb) v (anc) and
(av b)ac = (anc) v (bac). This strengthened form of distributivity is called strong distributivity.
Thanks to Theorem 2.3.6, every normal skew lattice of idempotents in a ring is strongly
distributive. In this case the operations are given by eAf = ef again, but

evf=(e +f—ef)’ = e +f +fe - efe — fef.

Of course when e +f— ef is idempotent, both outcomes agree. Strongly distributive skew lattices
are also of interest due to their connections to skew Boolean algebras, the subject of Chapter 4.
Suffice it to say here that a skew lattice can be embedded into (the skew lattice reduct of) a skew
Boolean algebra precisely when it is strongly distributive.

In Section 4 we engage in a detailed study of the natural partial order > on a skew lattice.
This study is based on the behavior of primitive skew lattices consisting of exactly two D-classes,
A > B. Primitive skew lattices have a simple description given in terms of 4-cosets arising in B
and B-cosets arising in 4 and the coset bijections between these cosets induced by >. (See
Theorem 2.4.1) As a consequence, primitive skew lattices of the most general type are easily
manufactured. Moreover, the interaction between the various maximal primitive subalgebras of a
skew lattice says much about the behavior of the entire algebra. (See, e.g., Theorem 2.4.9 and its
consequences.) We also look at skew chains of comparable D-classes A > B > C and consider
the case where coset bijections between cosets in the outer classes are compositions of successive
intermediate coset bijections (as is the case for skew lattices in rings). When this always occurs
in a skew lattice, it is said to be categorical.

In Section 5 we continue the analysis of skew lattices by their primitive subalgebras
begun in the previous section. But here we pass from coset bijections between comparable pairs
of cosets in (usually) distinct D-classes to coset projections from an entire D-class onto a coset in
a comparable D-class. The individual projections are obtained by combining all coset bijections
from one D-class that share a common coset of outputs in the other class. Even if the skew
lattice itself is not categorical in the above sense, these downward (or upward) projections taken
collectively along with the involved D-classes, form a category. (See Theorem 2.5.4.) All this is

developed in the fifth section and then applied to give a general description of a normal skew
lattice in Theorem 2.5.7.

In Section 6 we study decompositions of (mostly symmetric) normal skew lattices. After
some preliminary cases, theorems of general character are given. For instance, the Reduction
Theorem (2.6.9) implies that every symmetric normal skew lattice can be embedded in
the product of its maximal lattice image and its maximal distributive image. The Primary
Decomposition Theorem (2.6.11) tells how a strongly distributive (hence symmetric and normal)
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skew lattice with a finite maximal lattice image must factor into a fibered product of primary
factors, the latter being algebras of rather simple type. In general, strongly distributive skew
lattices can be embedded in powers of a special primitive skew lattice 5, a noncommutative
5-element variant of the lattice 2 for which the latter is its maximal lattice image. (See Theorem

2.6.12)

Finally, the material presented in this chapter first appeared in the papers referenced at
the end of this chapter.

2.1 Fundamental results

Any noncommutative lattice has two D-equivalences, D,y and D(,), with each being a

congruence with respect to its associated operation. For skew lattices we have:

Lemma 2.1.1. Given a skew lattice, R,y = L(,), L(y) = Rqp)> and D) = Dy,y. Thus the

common equivalence ‘D is a congruence of skew lattices.

Proof. That R(,)= L(,)and L(,)= R, follow immediately from the above dualities. Hence:

D) = L)oR(y) = RpoLip) = Dy U

Thus for any skew lattice (S; v, A) we set R =R,y = L(,) and L= L,)=R(,). A skew

lattice is rectangular if either (S, v) or (S, A) is a rectangular band in which case, thanks to the
above dualities, both are rectangular bands with xvy = yax. Put otherwise, a rectangular skew

lattice is precisely an antilattice for which R,y = L(,) and L) = R(,).

Theorem 2.1.2. (The Clifford-McLean Theorem for skew lattices). Given a skew lattice
(S; v, M), the equivalence D is a congruence, S/D is the maximal lattice image of S and all

congruence classes of ‘D are maximal rectangular skew lattices in S.

Proof. This follows from the above lemma and Corollary 1.3.6. [
Lemma 1.2.3, Theorem 1.3.3 and the above result give us:

Lemma 2.1.3. Given elements a and b in a skew lattice S,
azb iff b>ya anda> b iff b>=(,a. U

Thus the natural partial order on any skew lattice is given by > =>(,) =<(,) and the

natural quasiorder on any skew lattice is given by > = > (,) = <(y)-
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Lemma 2.1.4. On any skew lattice S, both R and L are congruences. In particular, both

algebraic reducts (S, v) and (S, A) are regular bands and given e > a, b > fin S:
avfvb=avband anenb=anb.

Proof. Given a skew lattice S, we first show that (S, A) satisfies the class covering condition.
Indeed, given comparable D-classes A > B in S with b an arbitrary element in B, then for any a in

A, b >, bvavb € A. Thus bvavb >(,) b and (S, A) is seen to satisfy the class covering
condition. Thus by Theorem 1.2.16, both £, and R(,) are A-congruences. Similarly, both £,

and Ry, are v-congruences. The first statement follows now from Lemma 2.1.1. Thus both

band reducts are regular; moreover, by Theorem 1.2.7, the dual conditional identities must hold.
O

A skew lattice for which D = R ['D = L] is said to be right-handed [left-handed]. 1f S is

also rectangular, then it is right-rectangular [left-rectangular]. Remarks following Theorem
1.2.27 give us:

Theorem 2.1.5. (Kimura factorization for skew lattices). Given a skew lattice S, S/R is
the maximal left-handed image of S, S/L is the maximal right handed image of S and the

commuting diagram

S S/L
I |
| |
| |
! !
SIR S/D

is a pullback diagram and S factors as the fibered product S = S/R xs/p S/L. [

An embedding of a band B into a skew lattice S is a semigroup embedding of B into the
band (S; A). Clearly for a band to be embedded into a skew lattice, the band must be regular. It
turns out that this condition is sufficient. Our easy proof of this fact brings us into the subject of
skew lattices in rings. We begin with the following considerations. Given a ring R with set of
idempotents E(R), a band in R is any subset of E(R) that is closed under multiplication. Clearly:

Proposition 2.1.6. Let R be a ring with identity 1 such that any descending chain
e1 > ey > ... in E(S) eventually stabilizes: e, = ey+1 =... for some n > 1. Then the D-classes of

any band B in R such that 1 € B are lattice-ordered. (This is the case for matrix rings over
fields.) O
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Such cases naturally raise the question as to whether a counter-operation v exists such

that the join class D, v Dy of two D-classes, D, and Dy, is given as D,z This leads to a simple

but important observation:

Theorem 2.1.7. Any multiplicative band B in a ring that is also closed under the circle
operation x Oy = x +y —xy has the following properties:

1. B is also a band under .

2. x(xoy) =x = (@ox)x and xO(xy) = x = (yx) Ox hold on B:
Thus (B; 0O, ®) is a skew lattice. In this case the elements in B also satisfy the
identity:

3. Xyx +yxy = xy +yx.

. o 2 . .
Proof. To see (1), note that O is always associative and xox =x + x —x~ = x if and only if xx = x.
Thus if B is closed under o, then (B, 0) is indeed a band. (2) is straightforward. For instance,

xxoy) =xxt+txy—xxy=xtxy—xy=x andxo(xy) =x txy—xxy=xtxy—xy =x.

Given the assumptions, x + y—xy =x0y = (xO y)2 =(x+y —xy)2 =x+yx +y—yxy—xyx, and
(3) follows. [

The terms in (3) form a rectangular subalgebra for which the diagonal sums are equal.

xyx R xy
L L
o R oyxy

Two classes of bands closed under O are given in the next theorem. But first a lemma:
Lemma 2.1.8. Let B be a right regular band in a ring R and let e, f € B. Then:
1) e+ f—ef€ER), and

2) BU{e+ f — ef} generates a right regular band.
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Proof. (1) Given e, f€ B, since B is a right-regular band,
2
(etf-ef) =etef—eftfetf—fef-cfe—eftef=etfetf—ef—fe=et]-ef

To see (2), observe first that for all g, 4 €B,

(e +f—ef)gle +/-¢ef) ege + egf — egef + fge + faf - fgef — efge — efgf + efgef
ge + egf — gef + fge + gf — gef — fge — egf + gef
= ge—gef+gf

=gletf-¢f)

Thus any product go(e + f — ef)gi(e + f — ef)ga ... gn1(e + f — ef)gn generated from
BU{e+ f — ef } reduces to gogig2... gn-1(e + f— ef)g,. From this observation, (2) follows. [

Theorem 2.1.9. Every maximal right [left] regular band in a ring R is also closed under
the circle operation e O f=e + f— ef and thus forms a skew lattice in R. [J

In general, maximal regular bands in rings need not be closed under 0. We give an
example of this in Section 2.3. Nonetheless, what we have seen thus far suffices to prove:

Theorem 2.1.10. A band can be n-embedded in a skew lattice if and only if it is a
regular band.

Proof. The condition is clearly necessary. Suppose that B is a regular band. By the Kimura
Decomposition B can be embedded in B/R x B/L. In the semigroup ring Z[B/R], B/R generates

a regular band C; that is closed under the circle operation. Likewise B/L generates a regular band
Cy in Z[B/L] that is closed under the circle operation. Thus B/R x B/L is a sub-band of C; xC,
in Z[B/R] x Z[B/L]. Since C; X C, is closed under the circle operation it is a skew lattice and B
is embedded in C;, xC,. O

Thus, even if a maximal regular band in a ring does not form a skew lattice in that ring,
some copy of it will generate a skew lattice under O and multiplication in another ring. We
complete this section with an important elementary fact about skew lattice in rings. Recall that a
skew lattice is distributive if it satisfies identities D3 and D4 in Section 1.3.

Theorem 2.1.11. Skew lattices in rings (using multiplication and o) are distributive.

Proof. an(bveyna = alb+c—bc)a = aba+ aca—abca

aba + aca — abaca (regularity)
(anbra)v(ancnhaa).

For the dual identity, D4, observe first that avbva = a + b —ab — ba + aba. Thus

av (bac)va= a+ bc—abc—bca + abca.
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II: Skew Lattices
Expanding (a v b v a) A (a v ¢ v a) and then reducing, we get:
(avbva)an(avcva) =a+ bc—bca—abc—bac +baca + abac.

Equating both outcomes and then cancelling corresponding pairs of identical terms we are left
with abca = — bac +baca + abac. Rearranging gives abca + bac = baca + abac, which
is true, since it is a case of Theorem 2.1.7(3) with x = baca and y = abac, so that
xy = bac, yx = abca, xyx = baca again and yxy = abac again. O

An alternative proof that D4 holds follows from D3 holding and the fact that skew
lattices in rings are symmetric (Theorem 2.2.6). This forces D4 to hold also. (See Section 5.2.)

2.2 Instances of commutative behavior

Skew lattices, like many noncommutative structures, can possess abundant instances of
commutativity. Indeed, selective instances of commutativity play an important role in their basic
theory. We begin a pair of results to this effect.

Theorem 2.2.1. Let S be a skew lattice and let A and B be D-classes in S with join class

J = AvB and meet class M = AAB. Then given v € J with v>a € A and v > b € B,
avb =v = bva. Similarly, given m € M such that a > m and b > m for a € A and b € B,
anb=m=bna. Thus

J={avb|a€EA,bEB & avb=bva} and M= {anb|a €A, b EB & anb = baa}.

Moreover, for every a € A there exist b, b' € B such that avb = bva in J and anb' = b'aa in M.

Proof. Givenv € J, leta € A and b € B be such that v>a, b. (Both a and b exist since for any x
inAandyinB, v>vaxavin A and v>vayavin B.) For this @ and b we have avb € J so that

avb = avbvvvavb = avvvb = v.
Similarly, bva equals v also and the assertion about J is seen. The case for M is similar. For the
final assertion, pick a in A and let v € J and m € M be such that v>a > m. Now apply remarks
from the first part of the proof. [
This theorem has the important corollary:
Theorem 2.2.2. Given an element e in a skew lattice S, the following are equivalent:
1) D, = {e}.

2) Forallx €S, evx = xve.
3) Forallx €S, enx

XAe.

The subset of such elements forms a sublattice Z(S) of S (called the center of S).
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Proof. First, if e either v-commutes with all x € S or else A-commutes with all x € S, then in
particular it does such with all elements in D,, which forces D, to be trivial. Conversely, if D, is

known to be {e}, then by the final assertion of Theorem 2.2.1 e must commute under both
operations with all elements of S. [

While an element that join commutes with all elements in a skew lattice also meet
commutes with all elements (and conversely), in general two elements commuting under one

operation need not commute under the other operation. This is evident in the following example.

Example 2.2.1a. Consider the right-handed skew lattice defined by the Cayley tables

v O Lay [by |y A Oiamfibnrijpf /)

T T T . .

b i, 0l0i 01070 -

o0l 2fololole
G| Am_| Am | Jm_ | Jm and  9m 9,;,[’1",’,;,9,;,211 a— a by = by
b, | by, 1 j, 1 b b, |01 0 by by .
I
Jp | Jp | p | p | Jp Jp |0 am’ | bw | Jp’ 0

This skew lattice is jointly determined by being right handed with the displayed Clifford-Mclean
picture and having > given by j, > both a,, b, > 0 for n = 1 or 2. While a; and b, A-commute,

they clearly do not v-commute. We denote this example by NS?’O . (See Section 5.2) O

A skew lattice S is symmetric if for all e, f € S, evf = fve iff eAf = fae. A symmetric
alternative to the above example is as follows:

Example 2.2.1b. The direct product of the right-handed algebras {ay ", %} and {bl’.b2} is
{0} {0}

symmetric. Its D-class diagram (with “redundant” 0-coordinates suppressed) is as follows. The

partial ordering between the top class and the intermediate classes given by coordinate projection.

{(al’ bl)’ (al’ b2)9 (a27 b])» (02» b2)}

{als 02} {bl’ bz} . D

Two elements in a skew lattice commute if they commute under both operations. If they
just commute under a single operation, they are said to A-commute or v-commute, as the case
may be. The following statement is easily verified.
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Proposition 2.2.3. Any set of mutually commuting elements in a symmetric skew lattice
must generate a sublattice of the skew lattice. [

This is not the case with nonsymmetric skew lattices.

Example 2.2.2. Consider the 13-element right-handed skew lattice generated from a, b
and ¢’. In the diagram, “---* indicates ‘R-equivalence and the slanted lines indicate the natural

!

partial ordering. Thus in particulare > a, d; €' >a',d'; f>d,c; andf'>d', c'.

a---a’ d---d’ c---¢

0
Here avb = e = bva, bvc' =f = c'vb and avc’' = 1 = ¢’'va, while all three pairs of elements meet
at 0. Collectively, a, b and ¢’ generate S. But avb = e does not A-commute with bve' =f. (We
will see in Section 2.4 how the natural partial ordering coupled with the D-class diagram can
determine the outcome of either operation.) Since b is central and {a, ¢'} generates the sublattice
{1, a, ¢, 0}, we see that a central element and a sublattice of a nonsymmetric skew lattice
neednot generate a (possibly larger) sublattice. []

Theorem 2.2.4. Symmetric skew lattices form a subvariety of skew lattices characterized
by the identities: XAYA(xVYVX) = (XVYVX)AYAX and xvVyv(XAYAX) = (XAYAX)VYVX.

Proof. Given elements x and y in a skew lattice, x will v-commutes with (xvyvx)Aya(xvyvx),
the join being xvyvx. Moreover, if x v-commutes with y then (xvyvx)aya(xvyvx) =y. Thus all
elements in S that v-commute with x have the form (xvyvx)aya(xvyvx). Likewise, all elements
in S that A-commute with x are of the form (xAyax)vyv(xayax). Hence symmetric skew lattices
are characterized by the identity

XAXVYVX)AYA(XVIVX) = (XVYVX)AYA(XVYVX)AX

and its dual. Thus the displayed identities follow from absorption. [

Corollary 2.2.5. Symmetric right-handed skew lattices are characterized by the two
identities: xAyA(xvy) = yax and xvy = (YAX)VYVX.
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Proof. If S is a right-handed symmetric skew lattice, then it satisfies the identities of the above
theorem plus the identities xvyvx = xvy and xayax = yax from which the displayed identities
follow. Conversely, if the displayed identities hold on a skew lattice S, then one has

XAYAX = XA(PAX) = XA[XAYA(XVY)] = XAVA(XVY) = YAX

and similarly xvyvx = xvy so that S is right-handed. But using xvyvx = xvy and xAyAx = yAx,
the displayed identities can be transformed back into the identities of the previous theorem. [J

Our interest in symmetry is due further to the following three theorems.

Theorem 2.2.6. All skew lattices in rings (using multiplication and the circle operation)
are symmelric.

Proof. Obviously a + b—ab =b + a — ba if and only if ab = ba. U

A lattice section in a skew lattice S is any sublattice T of S having nonempty intersection
with each D-class of S, in which case, T = S/D.

Theorem 2.2.7. If'S is a symmetric skew lattice for which S/D is countable, then S has a

lattice section.

Proof. Let Dy, D,, ... be a listing of all D-classes. Pick x; € Dy. By Theorem 2.2.1 we know
that in every D-class of S elements exist that commute with x. By symmetry we know that such
commuting is under both operations and, moreover, that the set of all such elements is closed
under both operations. Thus S| = {y € S|y commutes with x} is a sub-skew lattice of S that has
nonempty intersection with each D-class of S and for which ‘Dxl = {x1} asa D-class in S;. If S;
is not a lattice (and hence not a lattice section of S) we find an element x; in DS and thus not
in lil in S;. The argument repeats. We thus obtain a descending chain of sub-skew lattices

S1 28, 2S832...

each having nonempty intersection with each D-class of S, and such that D; 1 S; = {x;} for all
i > j where each x; commutes with all x; that precede it. Clearly, the full intersection 1,5,S,, isa

lattice section of S. [

A left-handed section of S is any left-handed sub-skew lattice Sp of S such that its
intersection with each D-class in S is an L-class. A right-handed section Sy of S is similarly

defined. An internal (subobject) variant of the Kimura decomposition is the following result:
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Theorem 2.2.8. (Cvetko-Vah) Given a skew lattice the following are equivalent:

1) S has both a left-handed section and a right-handed section.
2)  Sub-skew lattices Sy, and Sg exist whose intersection with any D-class is an L-class,

or respectively, an R-class of S.

3) S has a lattice section So.
When these conditions hold, then:

4)  The natural epimorphisms S — S/R and S — S/ L induce isomorphisms of Sy with
S/R and Sy with S/L.
5) Every x € S factors uniquely as a = a'na" with a' € SL N D, a" € SR N D,.

Under this decomposition
(@'na")A(B'AD")= (a'n B )A(a"AD") and (a'aa")v(b'Ab")= (a'v b')A(a"vb").

6) The functions my: S — Sy and mr: S — Sg defined by ni(a) = a' and nr(a) = a" are
retractions of 'S upon Sy, and SR respectively and the commuting composite TR is
a retraction of 'S upon So; moreover R = ker(nr), L = ker(nr) and D = ker(mwLmr).

Proof. (2) clearly implies (1). Given (1), expand S’ to the subset Sp = U{L,|a € S’} and expand
S” to the subset Sg = U{R,|a € S"}. Since £ and R are congruences, Si. and S are as stated in
(2). Given (2) again, since every pair of £ and R-classes in a D-class must meet at a single
element in that D-class, (3) follows from (2). Conversely, given (3) one has a minimal case of
(1). Thus (1) — (3) are equivalent. Since Sy is an ‘R-class cross-section, the map S — S/R
restricts to an isomorphism of Si upon S/R. Similar remarks apply to Sg — S/L and (4) follows.
(5) follows from (4) and the embedding S = S/R xg/p S/L C S/R x S/L = Si x Sg given by a =

a'na" — (a',a"). To see (6), first set a. = anap and ar = apaa. This gives
anb = (anapna)n(babonb)
while
(apAbL)A(arAbR) = (anaoababo)a(agnanbonb) = (anaoab)A(anbonb).

But both “middles” are equal since

aonanbaby = agnanbaaonboranbaby = agaynagnbonanby = agabaanbo.

Thus anb = (aLnbr)a(arabr) follows. Recalling that R,y = L) and L(,) = Ry,), so that
a=agrvay and b = brvby gives: avbh = (arvbr) v (arLvbr) = (aLvbr) A (arvbr). O

In the case where S has a lattice section, Theorem 2.2.8 (4)-(6) describes an internal
(monic) Kimura decomposition of S in contrast to the external (epic) Kimura decomposition of
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Theorem 2.15. Both decompositions are similar in that they both involve copies of the maximal
lattice, left-handed and right-handed images of S. While external decompositions always occur
and use quotient objects, internal decompositions that use subobjects need not always occur.

One is led to ask the following question. Is symmetry really needed for the all this?
Otherwise put, does a skew lattice S exist for which S/D is countable, or even finite, but S has no

lattice section?

Example 2.2.2 continued. Returning to the non-symmetric Example 2.2.2, a lattice
section is given by the subset {0, a, b, ¢, d, f, 1}.

Some elementary, albeit useful, cases where symmetry is not needed are as follows.

Theorem 2.2.9. A skew lattice S will have a lattice section T if its maximal lattice image
S/D is a copy of one of the following lattices:

1 1
(i) 2x2 o o« (i) M3 . . (iii) N5
0 0 o

In these cases, S also has internal copies of S/R and S/L, both occurring as maximal left and

right-handed subalgebras of S.

Proof. First, suppose S/D is a copy of 2x 2. Let a, b, e, fin S be such that e is in the top D-
class, f'lies in the bottom D-class, and a and b are separately in the two incomparable D-classes.

We create a lattice section as follows.
1. Reset a to be enane, b to be enbae and f'to be eafae so thata, b, f<e.
2. Reset a to be fvavfand b to be fvbvf'so that f < a, b < e is a lattice section.

Next suppose S/D is a copy of M3. Leta, b, ¢, e, fin S be such that e is in the top D-class, f is
in the bottom D-class, and a, b and c lie separately in the three incomparable D-classes. We

create a lattice section as follows.
1. Reset all x among a, b, ¢, f'to be enxae so that now a, b, ¢, f<e.
2. Reset all y among a, b, ¢ to be fvyvf'so that f<a, b, c < e is a lattice section.
Finally suppose S/D is a copy of Ns. Let a, b, ¢, e, fin S be such that e and f are as before, a, b

and c lie separately in the three middle D-classes, where the D-class of a is incomparable with
the D-classes of b and ¢, but the D-class of b lies above the D-class of ¢. We create a lattice

section by first repeating the first two steps so that f< a, b, ¢ < e and then:
3. Reset ¢ to be bacab so that we also have ¢ < b.

The final assertion follows from Theorem 2.2.8. [
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A skew lattice S is quasi-distributive if its lattice image S/D is distributive. Quasi-
distributive skew lattices are a subvariety of skew lattices. Indeed, since (xAy) v (xAz) < x A (yvz)
holds for all lattices, these skew lattices are characterized by the identity:

[xA(v2)] A [(xAY) Vv (xAZ)] A [XA(YVZ)] = XA (YVZ).
We have the following corollary to Theorem 2.2.9.
Theorem 2.2.10. A skew lattice S is quasi-distributive if and only if neither M3 nor Ns is
a subalgebra of S.

2.3 Normal skew lattices

Recall that a band S is normal if it satisfies any and hence all of:
a) Ya, b, c €S: abca = acha.
a') Ya, b, c,d €S: abcd = acbd.
b) Va €S, aSa = {axa | x € S} is a semilattice in S.

b") Va, b €S, aSh = {axb | x € S} is a semilattice in S.
c) Given D-classes A>BinS,VaE A, b EB,a>b.

Likewise, a skew lattice S is normal if either (and thus both) of the following hold:

a) (S: A) is anormal band. In particular, abcd = acbd holds on (S: A).
b) Ya €S, anSraa= {arnxra|x €S} = {bES|a > b} is a sublattice of S.

Clearly: Normal skew lattices form a subvariety of skew lattices.
Applying the Kimura decomposition we get the elementary but important:

Theorem 2.3.1. A skew lattice S is normal if and only if its left factor S/R is left normal
(anbac = ancnb) and its right factor S/L is right normal (anbac = baanc). O

Being normal has interesting connections with distributivity.
Theorem 2.3.2. [Leech, 1992] Given a skew lattice S, the following are equivalent:
1) anbveynd = (anbad)yv(ancnd) holdsonS.

2) S is distributive and normal.
3) S/D is distributive and S is normal.
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Proof. First observe that each of these conditions holds on S if and only if it holds on both its left
factor S/R and its right factor S/L£. Thus, we may prove the theorem by proving it for all right

[left]-handed algebras. So suppose that (1) holds for a right-handed skew lattice, S. We show
that if a > b, ¢ in S with b R ¢, then b = ¢. Indeed, the following instance of (1)

ba(@aveyna = (baana)v(bacnha)

reduces firsttobA cAa = bvc,and thentoc =b. Hence S is right normal and thus normal.
Next, consider the D-equivalent expressions, av(bac)va and (avbva)a(avcva). Assuming right

normality. They are actually the ‘R-equivalent expressions, av(bac) and (avb)a(avc). Since

[(avb)a(ave)] v (ave) = avc by absorption, and
[av(bac)] v (ave) = av (bac) v c] = ave.
Hence avce > both av(bac) and (avb)a(ave). S being normal with av(bac) R (avb)a(avc) we
get av(bac) = (avb)a(avce). Thus (1) implies (2). Next, (2) clearly implies (3). Suppose that (3)
holds. Then by normality,
and>anbveynd,anbrad,ancrdandhence and >(anbad)v (ancnd)
with an(b v ¢)ad D (an ba d) v (ancad) since S/D is distributive. Whence,
anbvelnd = (anbad)v(ancad),

again by normality. Thus (3) implies (1). [

Lemma 2.3.3. In any normal skew lattice, avb = bva implies anb = bna.
Proof. Indeed, avb = bva implies a, b E(avb)ASA(avb), a sublattice, so that anb = baa. O

A skew lattice is strongly distributive if it satisfies both (4) and (5) below:

4) an(bvey=(anb)v(anc).
5) bveyad=bnad)v(cnad).

Theorem 2.3.4. A skew lattice S is strongly distributive if and only if it is distributive,
normal and symmetric.

Proof. A skew lattice satisfying (4) and (5) also satisfies (1), and thus is distributive and normal.
Being normal, avb = bva implies anb = baa holds. So let anb = baa. If avb # bva, then either
an(bva)#aor(bva)nb#b, for otherwise absorption givesavbva=bva=bvavbso
that avbh = bva. Suppose that a A (b v a) # a. But then (4) fails in general since a A (b Vv a) #a
while

(anb) v (ana) = (anb) v a=(bra) v a=a.
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Similarly (b v a) A b # b implies that (5) fails in general. Hence symmetry must also follow from
(4) and (5) combined.

Conversely, suppose that S is distributive, symmetric and normal. Assume in addition
that S is right-handed. Thus both distributive laws

av(bane)=(avb)ya(ave) and (bveyad = (bad)yv(cnad
hold by the right-handed version of the standard distributive laws. We consider the status of
an(bve)=(@nb)v(anoc).
First, b A-commutes with both aa(bvc) and (aab) v (anc) with anb being their common meet.

baan(bvec) =branba(bvc) =baanb=anb. an(bvc)ab=anba(bvc)anb = anb.
ba[(and) v (anc)] =r balan(bvc)Ia[(anb) v (anc)] = ba(bvc)aan[(and) v (anc)]

= baan[(anb) v (anc)] = ba(anb)a[(anb) v (anc)] = ba(anb) =anb.
[(anb) v (anc)] A b = (anb) v (ancab) = (anb) v (anbacab) = (anb)

Next, the necessarily commuting join of b with either aa(bvc) or (anb)v(anc) is (bva)a(bvc).
Indeed

b v [an(bvc)] = (bva) A (bvbve) = (bva) A (bve)
and

b v [(anb)v(anc)] = bv (baanb) v (anc) = b v (anc)=(bva)a(bvc).

Hence an(bvc) and (anb) v (anc) are D-equivalent and both are < (bva) A (bvc). By normality

they are equal. We have seen that (4) and (5) above hold when S is distributive, symmetric,
normal and right-handed. This must also true in the left-handed case. It follows that they must
hold when S is distributive, symmetric and normal. [J

Corollary 2.3.5. 4 normal skew lattice (S; O, ®) in a ring is strongly distributive. [

Proof. Indeed, any skew lattice (S; O, *) is already distributive and symmetric.

The simplest class of normal bands are the rectangular bands that satisfy abc = ac.

0 A AB
Example 2.3.1. The set of matrices o I’ B Ae j»"x], Be j]—']Xk in "
0 0 0

with i+ j+k=n andi+j<n, fori j, kfixed is a rectangular band. For such bands
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0 A AB 0 C CD 0 C AB+CD-AD 0 C CB
0 I B |O|0 I D|=101 B #|0 I B
00 0 00 0 00 0 00 0
0 C AB+CD—AD2 0 C CB
except in special cases. However, |0 [ B =10 I B O
0 0 0 0 0 O

This leads us to define a cubic join eVf by
eVf = e+ [+ fe—efe— fef.

The cubic join extends the quadratic join given by O in the following sense:

1) If e, f, ef, fe € E(R), then (e Of)2 =e + f+ fe—efe—fef =eViE E(R) also.

2) Every skew lattice (S; O, ®) in a ring is trivially a skew lattice under V and e,
since eVf reduces to e O f whenever the latter is idempotent.

3) Situations occur where e O f'is not idempotent but eVf'is. Indeed, eVf € E(S)
whenever e, f, ef, fe € E(S). (This combines (1) with the previous example.)

4) Caveat: While O is always associative, V needn’t be, even when giving
idempotent closure.

Example 2.3.2. (Karin Cvetko-Vah) Consider the following matrix band with two D-

classes:
0 X xp Xy +x,
0 1 0 Y]
X1,X5,V1,V5 €F
0 0 1 v 1°%2:Y1>Y2
0 0 O 0
l
0 u uvy  uvy
01 v v
u,vy,vy € F
00 O 0
00

This band is also closed under V. However, upon setting
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00 0O 01 00 00 00O
01 00 0100 01 10
A= ,B= and C =
0010 0000 0000
0000 0000 00 0O
we get
00 00 00 -10
01 00 01 0 0
AV(BVC) = # (AVB)VC = . g
00 10 00 1 0
0000 00 0 O

A multiplicative band in a ring R that is closed under V is called a V-band. Observe that
the V-band in Example 2.3.2 is not normal. Indeed:

00 00 00 0O
0100 01 v O

> for all v.
0010 00 00O
00 00 00 0O

For normal V-bands in rings the following results hold.
Theorem 2.3.6. Every normal V-band in a ring is a strongly distributive skew lattice.

Proof. Given ¢, f, g in a normal V-band S, observe that eV(fVg) = eV(f + g + gf — fef — gfe)
calculates to

et f+g+gf—fof—gfg + fe + ge + gfe - fafe - gfge
—e(f+g+gf-faf-gfg)e—(f+g+gf—fef—gfg)e(f + g + gf —fef - gf2)
= e+ f+g+(gf+fe+ ge)—(efe + fef +fgf +gfg + ege + geg)
—(fge + gef) + (efge + fegf + gefg)

where in this calculation repeated use is made by the identity xyzw = xzyw. Similarly,
(eV)Vg = (e+ f + fe—efe— fef )Vg
calculates to the same final expression, showing that Vis associative. Next, note that
e(eVf) =e + ef + efe — eefe — efef = e.
Likewise, eV(ef) = e + ef + efe — eefe — efeef = e. Similarly (eVf)f and (ef)Vf reduce to /. Thus S

is a skew lattice. Since eVfand fVe differ only in the respective terms fe and ef, S is symmetric.
Finally,

e(fVgle = e(f+g+gf—fgf—gfe)e = efe+ ege + egfe—efgfe - egfge
efe + ege + egefe — efegefe — egefege = (efe)V(ege).
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Applying the identity eVfVe = e + f— fef (replace g by e in the above calculation of eVfVg and
then simplify) we get

(eVfVe) (eVgVe) = (e +[—fef)(e + g —geg)
= eteg—egtfetfg—[fgeg—fe—feg + fefgeg
= e tfg-feg = e +fg—[gefg = eV(fg)Ve.
Thus S is also distributive. [
The above theorem has several consequences of significance for skew lattices.

Theorem 2.3.7. IfR is a ring for which E(R) is closed under multiplication, then E(R) is
a normal skew lattice under V and . In particular, E(R) is closed under multiplication if R
satisfies the identity, abcd = acbd. E(R) is a Boolean lattice when R has an identity, 1.

Proof. We prove the last statement first. So let R be a ring with identity 1 for which E(R) is
closed under multiplication. Then for all e € E(R), 1 — e € E(R) also with e(1 —e) = 0. Since
E(R) is a band, for all f€ E(R), ef(1 — e) = 0 also (The Clifford-McLean Theorem). Thus ef = efe
holds for all e, f EE(R). Likewise, from (1 — e)fe = 0 we get fe = efe. Thus E(R) is commutative
under multiplication, forcing (E(R); O, ¢, 1, 0) to be a Boolean lattice.

Suppose next that R is any ring for which E(R) is a multiplicative band. Given e € E(R),
eE(R)e = E(eRe) is a sub-band that is necessarily commutative since e is the identity of eRe.
Thus E(R) is a normal band. Moreover, for any e, f € E(R),

@V = (e+f+fe—cfe—fof) =e+ (e +f —fef) + fe—cfe—fe = (V)

where each term in the third expression is a reduction of x(eVf) where x is one of the terms in
eVf. Thus E(R) is closed under V, and being normal forms a skew lattice under V and °.

Finally, if R satisfies the identity abcd = acbd, then (ef)2 = efef = eeff = ef for any pair of
idempotents e and /. Thus E(R) is indeed a multiplicative band and the theorem follows. [

Corollary 2.3.8. A normal band in a ring generates a normal skew lattice under V and
. A maximal normal band in a ring R thus forms a normal skew lattice under V and .

Proof. For such a band B, the subring S generated from B satisfy xyzw = xzyw. Thus B C E(S)
which is a normal band forming a skew lattice under V and *. By maximality, B=E(S). O

Example 2.3.3. If R is the semigroup ring A[B] with A a commutative ring and B a
normal band, then E(R) is a normal skew lattice. []

Example 2.3.4. [Karin Cvetko-Vah] Consider the band of all (n+2)x(n+2) matrices of
the form:
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0 a ay az ag .c
06 0 0 0 . b 6. =01
l
00 68 0 0 b |, =45
l 11
0 0 0 & 0 .. b
3 3 0lb. =bs.
0O 0 0 o0 54 b4 J JJ
: : : : c = Yab
1
0O 0 0 0 O .. 0

This is the normal skew lattice E(R) for the upper triangular subring R that it ring-generates. [

Query: Are maximal regular bands in rings skew lattices under V? Do regular bands in
rings generate skew lattices under V? Do they even generate V-bands? That this is not the case
in general is guaranteed by:

Example 2.3.5. In the semigroup ring Z[Reg, ] of the free regular band on {a, b, c},
the product (a V b)c = ac + bc + bac — abac — babc fails to be idempotent. []

2.4 Primitive skew lattices and skew lattice structure

A primitive skew lattice is a skew lattice P consisting of exactly two D-classes A >B.
Primitive skew lattices and their relation to arbitrary skew lattices were studied in Leech [1993].
We present a number of results from that paper.

Given a primitive skew lattice P with D-classes A > B in P/D, a coset of A in B is any

subset of B of the form A A b A A= {a A b ad|a a EA} for some fixed b € B. Similarly, a
coset of B in A is any subset of the form Bv av B={bv av b’ |b, b' € B} for some a € A.
Since both operations are regular, an alternative description of both types of cosets is given by
ArnbrnA={anbrala€A} and BvavB={bvavb|bEB}.
Indeed, {a A b A a|a €A} CA A b A A as already defined.. But by regularity,
anbrad=and rnanbra rana =(and)rbna(and)
which is of the form @ A b A a. The case for B v a v B is similar. For any a € A, the set

anBra={anbra|bEB}={bEB|b<a}

is the image set of a in B. Its elements are the images of a in B. Dually, given any b € B, the set
bv Av b= {a € A;a>b} is the image set of b in A. We have the following fundamental result:
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Theorem 2.4.1. Let P be a primitive skew lattice with D-classes A>B. Then

1) B is partitioned by the cosets of A in B. In particular, b € ANbDAA for all b € B
and if x € ANDAA for some x € B, then AAxAA = ANDAA.
2) The image set in B of any a € A is a transversal of the cosets of A in B.
3) Dual remarks hold for cosets and element images of B in A. Furthermore:
4) Given cosets BvavB in A and AAbAA in B a natural bijection of both cosets is
given by the natural partial ordering: x in BvavB corresponds to y in ANDAA if
and only if x > y.
) The meet and join on P are determined jointly by these coset bijections and the
rectangular structure of each D-class.
Proof. By absorption, b = (avb)aba(bva) for all a in A so that b € AAbAA. Given x € AADAA,
say x = maban form, n € A, then foralla EA,anxna=arnmAabannra=anbnawhere
the second identity holds since A is regular and m, n > a, b. Thus (1) is seen and this conditional
identity also gives us (2). Condition (3) follows by duality. Given cosets BvavB and AabAA,
for any x in BvavB, by (2) x A b A x is the unique element y of AAbAA such that x > y. Dually,
for each y in AAbAA, yvavy is the unique element x in BvavB such that x > y. Between these
two cosets, the processes x — y < x and y — x >y are reciprocal and (4) is seen. Finally, given
x, y € P, whenever x D y then both xAy and xvy are given by the rectangular structure of the
common D-class of x and y. Otherwise, say x € A and y € B, we have xvy = xv(yvxvy),
yvx = (yvxvy)vx, xAy = (xAyAx)Ay and yAx = yA(xAyAx). Since yvxvy is the image of y in the
B-coset in A containing x and xAyAx is the image of x in the A-coset in B containing y, (5) is
seen. [

Given A > B as above, if A is partitioned by cosets {A;|i € I} and B is partitioned by
cosets {B;|j € J}, then for each pair of indices i, j let ¢;: A; — B; denote the coset bijection
given by setting @;(x) =y if for x in A;, y is the unique element in B; such that x > y. Then for all
xEA;andy EB;

-1 -1
XVy=xvei (), yvx=q; VX, xAy=@i(x) Ay and y A X =y A @ji(x).

Thus it seems that any primitive skew lattice should be obtained by a fairly simple construction.
To this end we begin by calling a right-handed primitive skew lattice right primitive, with left
primitive skew lattices defined in dual fashion. For right primitive skew lattices the description
of a coset can be simplified as

ArnbraA=bAaA={brala€EA} and BvavB=Bva={bva|bEB}

for any a € A and b € B since anbaa = baa and bvavb = bva. Dual remarks hold in the left-
primitive case. All right [left] primitive skew lattices arise as follows.

A P-graph is a pair of partitioned disjoint sets A = U;.,A; and B = U;.,B; , where all A;

and all B; have a common cardinality, together with a fixed set of bijections ¢;: A; — B; . The
P-graph is denoted by the triple (A;, ¢;;, B)). A right primitive structure is induced on AUB in the
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following way. First, A and v restricted to either A or B must be x A y =y and x v y =x. But
given x €EA; and y € B; we set

-1
XAYy=y, yAX=@jx), xvy=xand yvx=q; ().

The primitive skew lattice thus obtained, denoted by P[A;, ¢;;, Bj], has D-classes A > B, with
cosets A; and By, and coset bijections ;. A left primitive skew lattice P'[A;, ¢;;, B;] is obtained in
dual fashion: x Ay = @j(x), yAx=y, xvy= (pj,-il(y) and y v x=x.

A partial image of a P-graph is given in the following diagram, where the top row of dots
represents an upper D-class A of order 9 and the bottom row represents a lower D-class B of
order 6. All cosets in this example have size 3, with the members of each coset linked in the
diagram. The four arrows represent four of the six coset bijections, with arrows corresponding to
@20 and oy left out.

A o_e___e — e — e,
\"Poo Por < \'(Pu ‘Pn/
B: o e, — oo

In terms of the natural partial order, >, the situation looks more like

where the dotted lines indicate the partial order relationships.

Applying Kimura factorization, every primitive skew lattice is isomorphic to the fibred
product of a left primitive skew lattice and a right primitive skew lattice over their maximal
lattice image, which here is isomorphic to 2 = {1 > 0}. This factorization coupled with the ideas

above yields:

Theorem 2.4.2. Every primitive skew lattice P has a fibred product decomposition,
P = P[A, ¢ji, Bj] Xp/p P'[C, Yir, D1,

where (A;, ©ji, B)) and (Cy, i, Dy) denote P-graphs and P/'D is isomorphic to the primitive lattice
1> 0. Both P-graphs are unique to within isomorphism of P-graphs. [

The P-graph description of right [left] primitive skew lattices can be refined as follows.
A P-graph coordinate system consists of a sextuple (I, J, C, G, u, 8) where
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) I, J and C are nonempty sets.
(i) G is a group and u: G x C — C is a group action of group G on C.
(iii) 0:J x I — G is a map.

From this data construct a P-graph by first setting A =1 x C and B=1J x C. The B-cosets in A are
the A; = {i} x C and the A-cosets in B are the B; = {j} x C. Coset bijections are given by
@;ii, ¢) = (j, 0(j, i)c). From this data, a right or left primitive skew lattice is constructed to be
denoted by P[I,J,C, G, u, 8] or P'[ L J, C, G, u, 6].

Every right [left] primitive skew lattice has a coordinatization. ~Given a P-graph
representation, P = P[A;, ¢;;, Bj], let C = A for some common index 0 in I J.

AO Ai AO
-1 -1

Yooy oo ‘L(/’ji /‘P()j

BO Bj

Next, for each pair (j, i), let 8(j, 7)) be the permutation ij()_](pj[(p[()_](p()o of Ag and then let G denote
the permutation group on Ao generated collectively by the various 0(j, 7). Here the
coordinatization is normalized in that 6({0} x I U Jx {0})=11in G.

In the case where G = C and u is group multiplication, P has a coordinatization with
group translations. In this case the data reduces to the indexing sets I, J, the group G and map
0: I xJ — G, and the skew lattice is denoted by P[I, J, G, 6]. By the above discussion we may
assume that 0 € INJ, and ({0} xI U Jx {0}) =1 in G (or = 0 in the case of additive notation).
An instance of this is given by any maximal right [left] primitive skew lattice in a ring.

Example 2.4.1. Given a ring R and an idempotent e € E(R), the R-set of e in R is the set
R.=e+eR(l-e)= {xER|ex =x and xe = e}

It is the maximal right-0 band (xy = y) in R containing e. R, also forms a left-0 band under O,
and thus is a rectangular skew lattice in R. Let f'be a second idempotent in R such that e > f.
Then Ry forms a second rectangular skew lattice and the union Pe~y= R, U Ryis a right primitive

skew lattice in R with upper D-class R, and lower D-class Rx. Its coordinatization is given as

follows. To begin, notice that the group A = eR(1 — e) acts simply transitively on R, and that the
group B = fR(1 — /) acts simply transitively on Ry both under the operation of addition. A and B
share the common subgroup

G=ANB=eR(l —e) R /) =/R(l —e).

A splits as fR(1 — e) @ (e — )R(1 — e) and B splits as fR(1 — e) ® fR(e — f). The various
summands are naturally arranged in the following array format:
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f Re-f) Rd-e)
e—f (e— f)R(1—e) |.
1-e
B-cosets in A are given as
Ac=e+G+e.

for any ¢ € (e — f)R(1 — e). Similarly, A-cosets in B are
By=f+G+d
for any d € fR(e —f). Coset maps are given by
Qacletgte)=(+d(e+g+c)=f+[g+dc]+d

Identifying A with R, under a — e + a, and similarly identifying B with Ryunder b — f'+ b,
yields the coordinatization. R, U Ry corresponds to G @ (e —f)R(1 —e) U G ® fR(e —f). Under
this correspondence, for all ¢ € (e — f)R(1 — e) and all d € fR(e —f), @a.(g, c) = (g + dc, d).
Clearly 0: fR(e — f) x (e —f)R(1 — €) = fR(1 — e) = G is given by the ring multiplication. []

Another instance involving coordinatization using group translations is as follows. To
begin, a connected graph with each vertex having degree 2 is called a simple circuit in the finite
case and an infinite simple path when infinite. By the natural graph of a primitive skew lattice
P we mean the graph with vertices being the elements of P and with edges given by the relation
for > U > That is, e — f'is an edge for e, f €P if either e > for /> e. We state the following
result without proof. (See Leech [1993].)

Theorem 2.4.3. Let P be a right primitive skew lattice. Then the natural graph of P is a
simple circuit precisely when P has a coordinatization by group translations under addition,
P(Z2, Z2, Zy, 0] for some n > 1, where 0(j, i) = ji fori, jin {0, 1}. The graph is a simple path
precisely when P has a coordinatization by group translations P[Z,, Zy, Z 0] where again
0(j, i)= ji in which case P[Za, 73, Z, 0] is an infinite primitive skew lattice on four generators,
namely (0,0), (0,1), (1,0) and (1,1). O

Exercise. Show that infinite primitive skew lattices require at least four generators.
Primitive skew lattices, connectedness and maximal rectangular inages

In general, the natural graph of a skew lattice S is the undirected graph on S generated
from the natural partial order on S. Thus the vertices are just the elements of S and two vertices e
and f are adjacent precisely when either ¢ > for f> e. A component of S is any maximally
connected subset of its natural graph. In particular, a skew lattice is connected if its natural graph
has a single component. Theorem 2.2.1 implies that each component of S has nonempty
intersection with each ‘D-class of S. Clearly the components of S are a partition of the underlying

set.
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Given a primitive skew lattice P, each component of P has nonempty intersection with
each coset of P. Thus we say that a primitive skew lattice P is maximally disconnected if distinct
elements of each coset of P belong to distinct components of P. P is degenerate if it is both
connected and maximally disconnected. If P has D-class structure A > B, then P is degenerate

precisely when a > b for all @ €A and all b €B. Finally, a coset component of P is any
(necessarily nonempty) intersection of a coset in P with a component of P. For primitive skew
lattices we have the following results:

Lemma 2.4.4. Given a primitive skew lattice P, the cosets of P form a congruence
partition of P. If T is the corresponding congruence, then the primitive skew lattice P/C is the
maximal degenerate image of P.

Proof. Given our descriptions of primitive skew lattices in Theorems 2.4.1 and 2.4.2 above,
pointwise computations yield A;v B;j=A;=B; v A;and A;A B;=B;=B; A A;. U

Theorem 2.4.5. If P is a primitive skew lattice, then its components are the maximal
connected subalgebras of P. Moreover, they are the congruence classes of the congruence p
whose quotient algebra P/p is the maximal rectangular image of P. Thus the coset components of
P form the congruence partition for the congruence TNp for which the quotient algebra PICNp is
the maximal disconnected image of P. Finally, if P is maximally disconnected, then it factors as
the product of a degenerate skew lattice with a rectangular skew lattice.

Proof. The components of P clearly induce an equivalence relation p on P. To begin, let
denote the symmetric closure of >. Thus a 0 b means that either a > b or b > a. Since p is the
transitive closure of o, to show that p is a congruence we need only show that @ 0 b and a’ © b’
imply that both ava’ p bvb' and ana’ p bab'. We first show this under the added restriction that
P is right primitive. Thus ava' > a and bvb' > b so that ava’ p bvb' follows. Similarly, ana’ <a’
and bab' < b' so that ana' p bab' also follows and p is shown to be a congruence. Similarly, if P
is left primitive then again, p is a congruence. By the Kimura factorization, p is a congruence on
any primitive skew lattice. The first part of the theorem follows. Since the coset components
arise as congruence classes for the meet congruence CNp, the second part of the theorem is seen.
Finally the assumption of being maximally disconnected insures that the induced homomorphism
from P to P/C x P/p with kernel congruence TNp is an isomorphism. []

A skew lattice S is bounded if it has a maximal class A and a minimal class Z in which
case the primitive skew lattice AUZ forms the boundary Bd(S) of S. A generalization of first part
of the above theorem complements the Clifford-McLean Theorem.

Theorem 2.4.6. The components of a skew lattice S are its maximal connected sub-
algebras. Moreover, their partition of S is the congruence class partition into for the congruence
p for which the induced quotient algebra S/p is the maximal rectangular image of S. If S is also
bounded with boundary algebra BA(S), then the inclusion BA(S) C S induces an isomorphism of
maximal rectangular images.
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Proof. The theorem holds when S is primitive. Next, assume S is bounded with maximal class A
and minimal class Z. Then Bd(S) = AUZ decomposes into components A{JZ;. We say that an
element x €S belongs to component AJZ; if the latter is the unique boundary component such
that there exists # €A and v €Z such that u > x > v. For any y € S such that either x <y orx >y it
is clear that x and y belong to the same boundary component. Hence the inclusion Bd(S) C S
indices a bijection between the classes of components. Next, let x belong to A{JZ; and y belong
to AJUZ;. Pick u € A;and w € A; such that u > xvyvx and w > yvxvy. By the previous theorem,
uvw p (xvyvx)v( yvxvy) = xvy. Thus xvy lies in the component of S containing
(AUZ) v (AUUZ)). Likewise, xay lies in the component containing (AUZ;) A (A{UZ;). The
bounded case of the theorem now follows from the primitive case. The general case follows from
the fact that every skew lattice is the directed union of its intervals. [J

Recall that a noncommutative lattice splits if it factors as the product of a lattice and an
antilattice (here a rectangular skew lattice). Since every component of a skew lattice S meets
every D-class of S we have the following corollary.

Corollary 2.4.7. Given a skew lattice S, S/(DNp) is its maximal split image. [
Orthogonal D-classes and the behavior of skew diamonds

Let A, B and C be D-classes in a skew lattice S such that both A and B are comparable
with C. By a class component of A [or B] in C is meant the intersection of a component of AUC
[or BUC] with C. We say that A and B are orthogonal in C if each class component of A in C
lies in a unique coset of B in C and likewise each class component of B in C lies in a unique coset
of A in C where

A and B being orthogonal in C is equivalent to asserting that the image in C of each x in
A lies in a unique coset of B in C and likewise the image in C of each y in B lies in a unique coset
of Ain C. That is, each x in A is covered in C by a unique coset of B in C and dually each y in B
is covered in C by a unique coset of A in C.

Lemma 2.4.8. Given D-classes A, B and C in a skew lattice S, if A and B are

orthogonal in C, then each coset of A in C has nonempty intersection with each coset of B in C;
all such coset intersections, moreover, have a common cardinality.

Proof. Indeed let Aj and A; be cosets of A in C, let B; and B; be cosets of B in C, and let ¢; and
@2 be coset bijections of Aj and A into a common coset of A in C. (If C lies above Aj and A,

then ¢; and @y are inverses of the downward bijections.) The bijection (pz_l(p1 and its inverse
(pfkpz keep individual elements in the same class component of A in C. Orthogonality implies

that both bijections restrict to an inverse pair of bijections of AjB; with Ay(\B;. Similarly
A,(Bj is in 1-1 correspondence with A,(\B,, so the assertion is verified. [
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*
clele o | o] o A-cosets --- a—images*
. * B-cosets :  b—images®
%k

Let the rows in the diagram above represent A-cosets in C and the columns represent B-
cosets in C, where A and B are orthogonal in C. Then for any a in A, the images of g in C all lie
in different rows, but a single column and for any b in B, the images of b in C all lie in different
columns, but a single row. Since the A- and B-cosets all have nonempty intersection by the
lemma above, some unique A-C coset intersection contains both an image of a and an image of b.

Theorem 2.4.9. Let A and B be D-classes in a skew lattice. Then A and B are
orthogonal in both their join class J and their meet class M. For each x € A and y € B,
xVvy=x'vy wherex'istheimage of x in J lying in the unique coset of A in J covering y, and y'
is the image of 'y in J lying in the unique coset of B in J covering x. That is, both x"and y' lie in
the unique A-B coset intersection in J containing both an image of x and an image of y, namely x’
andy'. The computation of x A y in M is determined in dual fashion.

Proof. Given x € A and y € B, for all u € J such that u > x we have
VVXVY = PVXVXVY = YVXVUVXVY = PVUV).

Thus each x €A is covered by a fixed coset of B in J. Likewise each y € B is covered by a
unique coset of A in B. Thus both A and B are orthogonal in J, and similarly, they are orthogonal
in M. Since

xvy = (xvyvx)v(yvxvy) = (xvvvx)v(yvuvy)

for any u, v €] such that u > x and v > y, it follows that indeed x v y = x" v y' where x' is the
image of x in J lin the unique coset A’ of A in J covering y, and )’ is the image of y in J lying in
the unique coset B’ of B in J covering x. Clearly both x" and y' lie in A’NB’ but no other pair of x

and y images in J can belong to a common A-B coset intersection. [

The double partition of either J or M by A-cosets and B-cosets is illustrated below where
the partition is further refined by the coset partitions that J and M directly induce on each other.
Indeed, if saymE M, jEJandj>a € A, thenmvjvm=mva)vjv(avm)EAvjvA. Thus
MvjvMCAv;vA. Likewise MvjvMC B v, vB. Similar remarks hold for cosets in M.

A-cosets &>
B-cosets
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When do these double partitions coincide with the (generally finer) J-M partitions.

Theorem 2.4.10. A skew lattice S is symmetric if and only if for many two
equivalence classes A and B: (i) the double partition of the join class J by intersections of
A-cosets with B-cosets equals the partition by cosets of the meet class M; (i) the dual assertion
holds for the meet class M.

Proof. First assume that A-cosets and B-cosets in J and M intersect to J-M cosets. Let a €A and
b €B be given with avb = bva. By Theorem 2.4.9, anb and baa lies in the same A-B coset
intersection in M. Thus aab and baa belong to the same J-coset in M. Since avb > both anb and
baa, we must have anb = baa. Dually, anb = baa implies avb = bva.

Suppose instead that say more than J-coset in M lies inside the intersection I of an
A-coset with a B-coset. Thus there exists j € J with at least two distinct images m and m' in L
We form a subalgebra T=J U A’ U B’ U M’ inside the subalgebra S’ = jaSaj as follows. SetJ'
= {j}, M' =jAlAj and set A’ equal to the image of M' in ANS’ under a single coset bijection of S’
from M’ to the intermediate class. Define B’ in similar fashion. Thus in T exactly one coset
bijection exists from A’ to M’ and likewise exactly one coset bijection exists from B’ to M'. In
particular, exactly one a' €A and exactly one b’ €B exist such that @' > m and b’ > m’. Then
a'vbh' = b'va' = j and by orthogonality a’'an b' = ma m' and b'A @' = m'Am. Since m # m/,
mam' # m'am follows and S has an instance of anti-symmetry. [

These results have a number of worthwhile corollaries.
Coset bijections in skew chains and as morphisms in categories

A skew chain is a skew lattice S with finitely many D-classes that is totally quasi-
ordered under > . Thus it can be viewed as a chain of D-classes A > B > C > ... > X in that are

totally ordered in S/D. We begin with a near-obvious lemma.

Lemma 2.4.11. Given a skew chain A>B>C:

(1) For each ¢ € C, there is the inclusion of cosets AncAnA C BacaB in C.
(2) Foreach a € A, there is the inclusion of cosets CvavC C BvavB in A.
(3) Givena>b>cwherea€A,bEBandcEC, if

@: BvavB — AAbAA,y: CvbvC — BacaB and y: CvavC — AAcAA

are coset bijections between the relevant cosets in the respective ‘D-classes taking a to b,

b to ¢ and a to ¢, then Yoy C .

Proof. Given x = ancaa € ArcaA, b € B exists such that bacab = ¢. Hence, x = anbacabiaa
which us in BacaB and (1) follows. The proof of (2) is dual. To see (3), first observe that the
output set of ¢ and the input set for y have the intersection AAbAA () CvbvC within B. Thus (3)
follows from the inclusions,
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[AABAA N CvbvClvav[AabAA N CvbvC] € CvbvCvavCvbvC =CvavCin A
and
[AABAA N CvbvCIACA[AADAA N CvbvC] © AABAAACAANDAA = AAcAA in C,

where the equalities on the right are due to regularity. Here the expression to the left of C are the
respective input and output sets of \pog. Applying the letter to any x in the input set we get

Yoe(x) = (XADAX)ACA(XAbAX) = XAbACADAX = xAcAX =Y (X). O

A skew chain A>B>C is categorical if \pogp = x always holds in (3) above, in which
case every coset bijection x between a C-coset in A and an A-coset in C must factor as such.
Indeed, given @ €A and ¢ €C such that x sends a to ¢, some b €B exists such that a > b > c.
(Set b =an(cvyvc)aa for some y €B.) If ¢ and y are the A-B and B-C coset bijections sending a
to b and b to ¢, then ¥ = Yop. A skew lattice S is categorical if every chain of D-classes
A >B>Cin S is categorical. S is strictly categorical if it is categorical and all such composites
Yoo of coset bijections between cosets in comparable D-classes A > B > C are nonempty. The

outer cosets in a categorical skew chain A > B> C induce virtual versions of themselves in the
middle D-class B as follows.

Theorem 2.4.12. (Cvetko-Vah [2005¢c]) A skew chain A>B > C is categorical if and
only if foralla € A, b € B and ¢ € C that satisfy a > b > ¢,

(CvavC) A b A (CvavC) = (AABAA) N (CvbvC) = (AAcAA) v b v (AAcAA).

Proof. In terms of the coset bijections @: A; — Bj, Y:B} — C,; and x: A}, — C], such that

@(a) = b, P(b) = c and y(a) = ¢ with YO@ = ¥, the given equalities are what is needed for Yo to
occur. [

The term “categorical” comes from the following result:

Theorem 2.4.13. [f a skew lattice S is strictly categorical, then a category Cat(S) is
defined by:

(1) Letting the objects of S to be the D-classes of S.
(2) For comparable D-classes A > B, Hom(A, B) consists of all coset bijections from

all B-cosets in A to A-cosets in B. Otherwise, Hom(A, B) is empty.
(3) In particular, each Hom(A, A) consists of the unique identity bijection on A.
(4) Letting morphism composition be the usual composition of partial bijections.

When S is just categorical, a modified category Cato(S) is given as above, but in addition, for
each comparable pair A > B, Hom(A, B) contains a labeled copy of the empty bijection 0ap. [
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Theorem 2.4.14.

(1) A skew lattice S is categorical if and only if for all x, p, q, r withx Dp>q >r,

(xArAx) v g v (XATAX) = [(XAFAX) V p V (XATAX)] A g A [(XAFAX) V p V (XAFAX)].

(2) Categorical skew lattices form a subvariety of skew lattices.
(3) A skew lattice S is categorical if and only if its left and right factors are categorical.

Proof. Observe that in any skew lattice S, all p such that x Dp arise as (uAxAu) v x v (uAXAU)

for u unrestricted. Observe next that for any p, all ¢, r such that p > g > r arise ¢ = pavap and
r = gawagq for v and w unrestricted. Thus the condition stated in (1) can be made unconditional
so that (2) follows from (1) and thus (3) follows from (2). To see that (1) holds, consider the case
of a nonempty composition of coset bijections 1o, where ¢ is a coset bijection from A to B and
Y is a coset bijection from B to C. Since oo is nonempty, for all elements p in A in the domain
of Yo, @ send p to some ¢ in B and 1 sends that g to some r in C yielding p > g > r. Clearly all
triples p > g > r arise in this fashion for some ¢ and ¢. For the given ¢ and ¢, letting  be the
coset bijection from A to C sending p to ». Thus at least 1pop C ¢ by Lemma 4.16. The equation
of (1) states that

WA A A Al = @l TA A 7 A Al

with AAraA being the image of . Since all indicated cosets in this equation lie in the domains
of the relevant bijections, this equation is equivalent first to [A A r A A] = lpocp[xfl[A ArAAll

and then to X[Xﬁl [AAraA] =pog [xﬁl [AAraAl] so that Yog must be all of . [

While 2.4.16(1) at first may appear to be an obfuscation of the simple implication, if yog
C x then Yo = 7y, it does unpack YO =  at the element-wise level, thus setting the stage for
(2) and (3). In Chapter 5, (strictly) categorical skew lattices will be studied more closely.

We next present several classes of categorical skew lattices.
Theorem 2.4.15. Skew lattices in rings are categorical.

Proof. Assume first that S is a right-handed skew lattice in a ring R and thatx Rp>¢ >rin S.
The conditional identity in of the previous theorem thus reduces to (rax) v ¢ = g A [(rAx) v p].
Applying © and multiplication, the left side of the equation reduces to rx + g —rxg =rx + g —r,
and the right side reduces to g[rx + p — rxp] = rx + ¢ — r again. Hence S is categorical.
Similarly, if S is left handed in R, then S must be categorical.

Next suppose that is neither left nor right-handed with either O or V for a join. S will be
categorical if all countable subalgebras are thus. So let S’ be a countable subalgebra of S. By
symmetry, copies the maximal left and right-handed images of S’ arise as subalgebras of S’ in R
and thus these are categorical. By the Theorem 2.4.14(3), S’ is categorical. Since this holds for
all countable subalgebras of S, S is also categorical. [J
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Theorem 2.4.16. Normal skew lattices are strictly categorical.

Proof. Since the lower D-class in any maximal primitive subalgebra of a normal skew lattice has

exactly one coset, the composition of adjacent coset bijections is a nonempty coset bijection. []

A third class of categorical skew lattices is as follows.

Theorem 2.4.17. Every primitive skew lattice is strictly categorical, distributive and
symmetric. Thus all skew lattices in the subvariety generated from the class of primitive skew
lattices are categorical, distributive and symmetric.

Proof. Any primitive skew lattice S is trivially strictly categorical. The only nontrivial instances
of either xvy = yvx or xAy = yAx when S is primitive are when x >y or y > x. Thus S is also

symmetric. Next, consider the equation xA(yvz)Ax = (xAyAx)v(xAazax). It holds trivially when x
is in the lower D-class B. So let x = a in the upper class A and let y = b and z = ¢ in B. Then

an(bve)aa = an(eab)aa = (ancna) A (anbaa) = (anbaa) v (ancaa) in B.

Ifa in A and say b in B but ¢ in A then bvc in A so that an(bvc)aa = a, while (anbaa) v (ancha)
= (anbaa) v a = ain A. The case where the locations of b and ¢ are switched is similar. Finally,
one similarly verifies xv(yaz)vx = (xvyvx) A (xvzvx). O

We eventually show that all skew lattices in this subvariety are in fact strictly categorical
and also cancellative. Query: are skew lattices in this subvariety characterized by being
cancellative, distributive, strictly categorical and symmetric?

Example 2.4.2. [Kinyon and Leech, 2013] A minimal noncategorical skew chain has
the following Hasse diagram where a; > b1, b3; az > by, ba; b1, by > c1; b3, by > ¢2; and thus both

a; > both Cj.
A a — a,

B b5 by=c b3—p by — (bl)
C -

Instances of left-handed operations are given by a; v ¢ = a2 = a1 vV ay,
a1/\b4:b3/\b4:b3andb1vcz:blvb4:b4. O

Before moving to the next section we clear up one detail:

Proposition 2.4.18. Every coset bijection ¢: A; — B is a skew lattice isomorphism.
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Proof. Pick b € B;. Then for all x € A;, p(x) =xabax. Thus given x, y in A; we have
P(xAy) = (XAY)ADA(XAY) = xAbAY = XADAbAY = XAbxAYAbAY = @(x) A @(p),

due to regularity and Corollary 1.2.8. But since A; and B; are rectangular algebras satisfying
XVy = yAx, the proposition follows. [J

In the left [right] rectangular case this proposition is trivially true since it is easily seen
that any bijection between left [right] rectangular skew lattices must be an isomorphism.

2.5 Partial skew lattices and coset projections

Every nonrectangular skew lattice S is the union of its maximal primitive skew lattices
and the latter jointly determine its structure. Indeed one could view primitive skew lattices as
“lego pieces” that when appropriately “snapped together” produce entire skew lattices. To pursue
this perspective, we need a new concept. A partial skew lattice on a quasi-ordered set (S, >) is a
4-tuple (S,>,Vv,A) where v and A are partial binary operations defined for pairs of elements
comparable under > in such a way that the union U of any chain of --equivalence classes forms a
skew lattice under v and A whose natural quasi-order coincides with > over U. In particular,
each equivalence class A under v and A is a rectangular skew lattice and each comparable pair of
such classes, say A > B, forms a primitive skew lattice. That v and A are associative on totally
quasi-ordered subsets is called linear associativity.

Lemma 2.5.1. Let (S, >,V, A) be a partial skew lattice and let m < x,y <p in S. Then

both(xvp)vy=xv(pvy) and (x Am)Any=x A (m AYy). (This form of associativity, where x
and y need not be comparable, is called extremal associativity.)

Proof. (xvp)v (pvy)reduces to both (x vp) vyandx v (p v y). Thus the latter must be equal.
Similar remarks hold for (x A m) A yand x A (m A y). O

Every skew lattice (S; v, A) induces a canonical partial skew lattice (S; -, v, A) upon
restricting the given binary operations, v and A, to >-related pairs. When is a given partial skew
lattice (S, >, V, A) canonical for some skew lattice? Two conditions are obviously necessary.

I. The >=-equivalence classes (proto-D-classes of mutually >-related elements) must

have both join and meet classes.
II. Each pair of equivalence classes must be orthogonal in both their join and meet
classes.

Given both conditions, both v and A can be extended to full binary operations as follows.

III. Set xvy = (xvgvx)v(yvpvy) for any p, g in the join class of x and y such that p > x
and g > y.
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IV. Set xAy = (xanax) A (yAmay) for any m, n in the join class of x and y such that m < x
andn <y.

Since the equivalence classes of x and y are orthogonal in both their join and meet classes, any p,
g, m and n satisfying the stated conditions must produce the same values for xvgvx, yvpvy,
xanax and yamay so that the extended binary operations are uniquely determined. The full
algebra (S; v, A) is called the algebraic closure of (S; >, v, A).

Example 2.5.1. Given a ring R, two partial skew lattice structures exist for the entire set
of idempotents: (E(R); >r, v, A) and (E(R); =, v, A). Here e > fiff fe = fand e >=x fiff ef = f.
In both cases evf'= eqf and enf = ef, given that e and fare =-related. While Condition I above is
met in many classical rings (e.g., full matrix rings over fields), Condition II is rarely met. [

Theorem 2.5.2. A partial skew lattice (S; >, v, A) is the canonical partial algebra of a
full skew lattice (S; v, A) if and only if Conditions I and II above hold, in which case (S; v, A) is
precisely the algebraic closure of (S; =, v, A).

Proof. Necessity is clear. Moreover, if such a lattice extension exists, it must be the algebraic
closure by Theorem 2.4.9. We show that the algebraic closure must be a skew lattice. So let x
and y be given. Then xvy is calculated as x'vy’ for some x" and y' in the join class of x and y such
that x <x" and y <'. Thus in the partial skew lattice we have

xA(xvy) =xAE'vy) =xa(@xvx'vy) =ux
The other instances of absorption are similarly seen. Suppose next that both x, y < s in S. By
extremal associativity, xvy = xvgvpvy for any p > x and ¢ > y in the join class of x and y. Choose

q such that y < g < yvsvy. (If need be, replace the given g by (yvsvy)aga(yvsvy)). Applying
linear associativity we get

(xvy)vs = (xvgvpvy)vs = (xvg)vpVv (Y VSVY)Vs

(xvg) vy vsvy)vs = xv(@Vyvsvy)vs =xVv (yVs).
We similarly obtain the three other cases of outer associativity: if r < x, y < s, then also
svxvy)=(svx)vy, ra(xay)=FAax)ay and (xAY)AFr=XA (Y ATF).

With the available conditional associative identities we obtain the unconditional identities. For
instance, let s lie in the join class of x, y and z. Then xA(yA(zAs)) must equal both ((xAy)Az)As
and (xA(yaz))as. Likewise ((sax)Aay)az must equal both sa((xAy)az) and sa(xa(yAaz)). It follows
that xA(YA(zA$))A((sAx)Ay)Az must equal both ((xAy)az)Asasa((xay)az) which reduces to
(xAy)Az and (xA(yAz))AsAsA(xA(yAz)) which reduces to xA(yAz). Thus (xAy)az = xa(yaz). The
dual form of associativity is likewise seen. The algebraic closure is thus indeed a skew lattice and
the theorem follows. [
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Returning to primitive skew lattices, let (S; >) be a quasi-ordered set. A primitive
covering P of (S; >) consists of (1) an assignment of a rectangular skew lattice structure to each
equivalence class A of (S; >) and (2) to any comparable pair of equivalence classes A > B a
primitive skew lattice structure is assigned that extends the separate rectangular structures on A
and B in such a way that A > B as separate D-classes. Given a partial skew lattice (S; >, v, A),

its canonical primitive covering is the class of all maximal primitive subalgebras of (S; >, v, A).

Given a primitive covering P of a quasi-ordered set (S; ), conditional operations v and
A are defined on any >-comparable pair of elements e and f'in S by letting evf'and eaf be the join
and meet respectively given in any primitive subalgebra of P containing both. (This subalgebra
is unique if e and f'are not equivalent. Otherwise, e and f'lie in a common rectangular subalgebra
where v and A are defined.) One can ask: is (S; >, Vv, A) a partial skew lattice? 1f “yes”, then P
would be its canonical primitive covering. Put otherwise: when is a primitive covering of given
quasi-ordered set (S; >) the canonical primitive covering of some partial skew lattice
(S; >, Vv, A) on (S; =)? Or: when are the induced operations linearly associative?

So let a primitive covering P of (S; >) be given and consider equivalence classes A > B.
If B; is an A-coset in B, then the lower coset projection of A onto B; is the function p;: A — B
(note that B is the codomain) projecting each element of A onto its unique image in B;. Clearly
pj(a) = anbaa for any b in B;. Similarly for each B-coset A; in A, an upper coset projection
qi: B — A is given by gi(b) = bvavb for any @ in A;, When A =B, setp =g = 1o. We let
Proj.(S; >) [respectively, Proj.(S; >)] denote the family of all lower [upper] coset projections
between comparable equivalence classes of (S; >). If composites of lower [upper] coset
projections are also lower [upper] coset projections, then Proj,(S; >) forms the category of lower
coset projections and Proj,(S; >) forms the category of upper coset projections.

Theorem 2.5.3. The partial algebra (S; >, v, A) induced from a primitive covering P
of a quasi-ordered set (S; >) is a partial skew lattice precisely when both coset projection
families, Proj,(S; >) and Proj,(S; >), form categories under ordinary composition of functions.

Proof. Suppose that Proj,(S; >) and Proj,(S; ) are categories under the usual composition of
functions. Given comparable classes A > B > C, witha € A, b € B and ¢ € C we first show that
an(bac) = (anb)ac. Firstset d =bacab in C. Using only primitive operations and projections:

an(bac) = an(dnc) = (and)ac = pagla)adnac = pgla)nc
and
(anb)nc = (pplalab)ac = ppplalab)ac = pepslaln pelblac == pepslalac.

where pp: A — B, p.: B— C and ps: A — C denote coset projections with b, ¢ and d respectively
in their images. By our assumption about Proj,(S; >) the composition pps: A — C is either py or
their images are disjoint in C. Given @’ € A such that a' > b we have pppla’] = p[b] =d. Thus
the images of ppp and py overlap and so are equal. Hence an(bac) = (anb)ac for all a EA.
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Next observe that aa(cab) = an(ca(eab)) = (anc)a(eab) in AUC while
(anc)ab = ((anc)nc)nb = (anc)a(eab) in BUC so that an(cab) = (anc)ab. Also
cn(anb) = calanb)ab = cab in BUC, while (caa)ab =ca(cra)ab = cab so that
cn(anb) =(cna)ab.

The three other cases of potential associativity under A with a, b and ¢ are left-right
reflections of cases already considered and must also hold. Finally, the six cases involving v are
the duals of the cases considered. Hence, using our assumption about Proj,(S; >), the dual
arguments in all cases for associativity of the v-product involving a, b and ¢ in some order will be

successful. Thus (S;>,V,A) is indeed a partial skew lattice.
Conversely, let (S;>,V,A) be a partial skew lattice. Conditional regularity yields

(anbaa)ncea(anbaa) = an(bacab)na

forall a = b = cin S. Thus, pepp = pprcpp and Proj(S; ») is seen to be a category. In similar
fashion, so is Proj,(S; >). [

Combining the above two results we have:

Theorem 2.5.4. A quasi-ordered set (S; >) with a covering ‘P of primitive skew lattices is

the primitive covering of a (necessarily unique) skew lattice (S; v, A) if and only if

i) Both coset projection families, Proj,(S; =) and Proj(S; >), form categories under the
usual composition of functions.

ii) The equivalence classes of (S; =) form a lattice under their usual partial ordering.

iii) Each pair of equivalence classes is orthogonal in both their join and meet classes. [

The case for normal skew lattices

From the perspective of coset bijections and projections, the significant features of
normal skew lattices are (1) that they are strictly categorical and (2) that for each primitive sub-
algebra A > B there is exactly one A-coset in the lower D-class B, namely B, and thus exactly
one projection of A onfo B. One thus has a situation like following, where the ¢; are coset
bijections from individual B-cosets A;in A onto B.

A A A, A,
v NEOE E Pg=9 VP, YOy
B B

Clearly upward projections are just the upward coset bijections. We thus modify our discussion
of these matters in a way that is more commensurate to the situation for normal skew lattices.
A projective pair is a pair (K, k) where (i) K: A — B is a regular epimorphism of

rectangular skew lattices, that is, a factorization ¢: J x B = A exists such K o @ is the B-coordinate
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projection of Jx B upon B. (ii) k is a set of monomorphisms k;: B — A called injections such that
the compositions cpflkj are precisely the canonical injections b — (j, b) of B into the various {j} x
B. Clearly the inverse injections kj71 jointly decompose the projection K. Any factorization ¢ for
which (7) and (i7) hold is said to be compatible with the projection.

L] L] L]
Example 2.52. A=|—— | = B= [' ¢ '] with J= |:. .il'

K is the union of the four obvious isomorphisms of each of the four displayed quadrants of A

onto B. The four injections are the four embeddings of B upon each of the four quadrants given
by the inverse isomorphisms. [J

Rectangular skew lattices and projective pairs form a category. Indeed, if (K, k): A— B
and (£, [): B — C are projections, then the composite projection is (L, [)(K, k) = (LK, kl): A — C
upon setting k(= {kol | k € k, [ € [}. This composition is well-defined and associative. Moreover
if : JxB = A is a compatible factorization for (K, k): A — B and \: I'x C = B is a compatible
factorization for (L, [): B — C, then a compatible factorization for (LK, kl): A — C is given by

IxJxC

IJX‘U ® A where kjlj, ()= kj W, )= 0@, w(’, c¢)) forceC.

Lemma 2.5.5. Let A > B be two ‘D-classes in a normal skew lattice, let ' K: A — B be the
unique projection of A onto B defined implicitly by x > K(x) and let k be the let of all coset
bijections from B onto cosets of A. Together the pair (K, k) forms a projective pair. (We call

this pair the natural projective pair form A to B.)

Proof. For any b in B, a factorization is given by ¢: bvAvb x B — A, where ¢(x, y) = yvxvy.
Here bvAvb is the image set {bvavb|a EA} = {a EAla > b} of b in A that naturally
parametrizes the cosets of B in A. Clearly @ is a bijection. Given the rectangular situation one
need only show that ¢ is a v-homomorphism; but (yvxvy)v(y'vx'vy’) = (yvy')v(xvx')v(yvy') is
given by regularity, since x, x' >y, y". [

A rectangular functor on a lattice T is a functor K from (T, >) to the category RP of
rectangular skew lattices and projective pairs. K is separable if K(s) 1 K(?) = D forall s # t € T.
For s > ¢t € T, the projection from K(s) to K(#) is denoted by K(s, 7) and its injections (upward
coset bijections) by (s, ¢, i) with i parametrizing the various injections.

Lemma 2.5.6. IfS is a normal skew lattice with T = S/D, then K: T — RP defined as in

the previous lemma is a rectangular functor.

Proof. This follows from the previous lemma and the fact that any normal skew lattice is strictly
categorical. [J
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Given a lattice T and a separable, rectangular functor K from (T, >) to the category RP, a
normal A-band may be constructed on S = U;rK(s) by setting

anb = K(s, sat)[a] A K(¢, sat)[b], for a € K(s) and b € K(t).

This is, of course, the Yamada-Kimura construction. One would like to be able to use injections
to define a join operation v on S and thus turn this normal band into a normal skew lattice. To do
so, requires a key concept from Section 2.4.

Given s, t € T with join n € T we say that projections K(n, s) and K(n, ¢) are orthogonal
in K(n) if (i) for each a € K(s), its pre-image K(n, s)fl[a] in K(n) lies in the image of a unique
injection k(n, ¢, j) from K(#) to K(n) and similarly (ii) for each b € K(¢), its pre-image
K@, t)fl [b] in K(n) lies in the image of a unique injection k(n, s, j) from K(s) to K(n).

Our observations above combined with earlier results in this section yield the following
extension of the description of normal bands by Yamada and Kimura [1958]:

Theorem 2.5.7. Let K be a separable, rectangular functor defined on a lattice T such
that for every join situation n = svt in T the projections K(n, s) and K(n, t) are orthogonal in
K(n). Then S = UstK(s) becomes a normal skew lattice with K providing the system of natural
projections and coprojections, if given a in K(s) and b in K(¢), their meet and join are defined by

anb =K(s, m)[a] A K(t, m)[b] and avb = k(n, s, i)[a] v k(n, t, j)[b]

where m = sat, n = svt, the image of k(n, s, i) contains K(n, t)_l[b] and the image of k(n, t, j)

. —1 . . . . .
contains K(n, s) [a]. Conversely, every normal skew lattice arises in this fashion. [J

2.6 Decompositions of normal, symmetric skew lattices

Given rectangular skew lattices I and B, let A be their direct product I x B. A normal
primitive skew lattice P1g with D-class structure A > B is given by letting B be a full A-coset in
itself and for each i €I, letting {i} x B be a full B-coset in A, and using the coset bijections:
@;: {i}xB—B and ¢;': B—{i}xB given by @,(i, b)=b and ;' (b)=(i, b) . Clearly
Pig = I xB where I is just I with a zero element 0 adjoined, so that I > {0}. Our first
decomposition result states that for normal, primitive skew lattices this is essentially all there is.

Lemma 2.6.1. Let P be a normal, primitive skew lattice with ‘D-class structure A > B,
and let 1 be a set of indices for the B-cosets A; in A. Then a rectangular skew lattice structure
exists on 1 such that I0 x B = P. Given b€B, | can be given as the image set bvAvb of b in A, in
which case IO = Ib =1U{b} = bvSvb. An isomorphism 6: Ib x B = S is given by O(x, y) = yvxvy,
the unique image of y in BvxvB in S for all (x, y) € lb x B.
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Proof. The basic coset structure insures that @ is at least a bijection. To see that 0 as defined is
. . . b . . .
an isomorphism, first observe that for x, x' in I and y, ' in B, regularity gives:

Ox, y) v Ox', y") = yvxvy v y'vx'vy' = yvxvx'vy' = yvy'vxvx'vyvy' = 6(ivj, bvbd').

Thus 6 is at least a v-isomorphism of skew lattices, in which case it is also a full isomorphism
between corresponding D-classes, where uav = vau holds. Suppose say x = b. Then we have
both 8(b, y) A 6(x', y') =y A y'vx'vy'" =yay since y' is the unique image of y'vx'vy’ in B, while
O(bax', yny") = Ay )v(bax")v(yvy') = yvy' since bax’ = b. The case where x' = b is similar. [J

This simple result can be extended several ways. We begin with normal skew lattices
possessing D-classes that are minimal with respect to the partial ordering of D-classes.

Proposition 2.6.2. Let S be a normal skew lattice with a minimal D-class B. Pick b€ B

and let T be the subalgebra bvSvb of S given as {bvxvb|x € S} or equivalently {x € S|x> b}.
Then b is the zero element of T, and an isomorphism 0: T x B — S is given by 6(x, y) = yvxvy.

Proof. That 8: T xB — S is a bijection, that between corresponding D-classes an isomorphism,

follows from the lemma. Given (x, y), (x', ') in T x B, that 6(x, y) v 6(x', b) = O(xvx', yvb) is
seen exactly as above so that 0 is at least a v-isomorphism. Next, observe that

Ox, y) A O(x", y") = (yvxvy) A (V'vx'vy) < ('vx'vy) v (pvavy) = y'vx'vxvy

since unv < vvu for skew lattices in general. O(xax’, ya y") = (yA y')v(xax")v(ya y"), on the other
hand, is D-related to xAx" and thus to (yvxvy)A(y'vx'v y'). But (yaAy )v(xax)v(ya y') < y'vx'vxvy

also. Indeed:

A IVEAX )V (AY IV v vavy) = Ay )V ax )V v vavy) = YAy )v(xax)v(x vxvy)
= (A )v(x'vavy) = YAy )vy'v(x'vavy) = y'vx'vxvy

by a combination of absorption and regularity. Likewise:
O/'vx'vaxvy) v pay)v(xax)v(yay') = y'vx'vxvy.

Since O(x, y)AO(x', ¥") is D-equivalent to (xAx’, yA ') in a normal skew lattice with a common

upper bound in (S, >), they are equal, i.e., O(x, ) A O(x', y') = O(xax', ya y'). U

As an application, let A > B > C be a normal skew chain. Then first, this skew chain is
isomorphic to the product of a skew chain A" > B’ > {0} with C. But A’ > B’ in turn is
isomorphic to the product of a skew chain A” > {0} with B". Thus A > B > C essentially is
A"xB'xC > B'xC > C with all downward projections and upward coset injections being the
coordinate-wise functions: p(a, b, c) projects down to (b, ¢) or even further down to ¢, while say
cpafl(b, ¢)=(a, b, ¢). Ingeneral we have:
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Theorem 2.6.3. For each finite chain T, to within isomorphism every normal skew chain
S with maximal lattice image isomorphic to T is obtained as follows. Take a T-indexed family of
rectangular skew lattices {X(¢) | t ET}. For each t €T, set ‘D(t) = [s<(X(s). Then for t| <ty, the

primitive subalgebra with D-classes D(t;) = 1 s<ty X(s) >D(t) =1l < f X(s) is determined

by letting the projection from D(t2) onto D(t1) and the coset bijections from D(t)) into D(t2) be

the coordinate-wise projection and injections between these products. [

Thus given say #; < 2, (xl, e xtl)/\(yl, e ytz) = (xl AV oo xtl /\yll) and
Xy e s X IV(Yys oo 5 Y )= (X VYyy een s X, VY, eres ).
1 v ty 1V Y Yo My
Alternatively, such a skew chain S is isomorphic to a fibered product of “near constant”

skew chains over a common maximal chain image. In the case of A > B > C above, the skew
chain is isomorphic to the fibered product of the following skew chains over 2 > 1> 0:

C B A”
C B {0}
C {0} {0}.

We saw in Theorem 2.4.10 that symmetric skew lattices are characterized by the fact that
all skew diamonds have some special properties. For symmetric normal skew lattices we have:

Theorem 2.6.4. A normal skew lattice S is symmetric if and only if for every
incomparable pair of D-classes A and B of S, the skew diamond Sa g generated from A U B is
isomorphic to a normal skew diamond of the form

XxMxY
v N
A=XxM MxY=B
N
M

where the downward projections and upward coset-bijections are all given in coordinate-wise
fashion. In this case the skew diamond decomposes as a direct product, M x XO X YO, where X0
andY0 are skew chains X> {0} and Y > {0}. In particular, if ANB = {0}, then Sa B = A0 X BO.

Proof. By Proposition 2.5.2, the proof reduces to the special case where AAB = {0}. So what is
the situation in the join class? First it consists of all possible outcomes avb. By symmetry, in all
cases avb = bva. Suppose that avb = a'vb’. Then since avb > both a and a' in A, a = d'.
Likewise b = b'. Thus the avb-outcomes are all distinct, with each pair commuting. Thus the
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join class factors as A x B with both projections being canonical: avb —a and avb —b. The
isomorphism of A’xB’ with Sa  is given by 6(x, y) = xvy for x in A’ and y in BO. O

All results in this section thus far involve decompositions. We attempt to develop this
theme in what follows. We begin by generalizing the construction of Theorem 2.6.3.

Let T be a lattice and let P be a prime filter of T. Thus P is a filter and T \ P is an ideal of
T. Put otherwise:
€)) ForallpEPandtET,p v tEP.
2) P is closed under A.
3) If s v t EP, then eithers EP or t EP.

Given T, P and a rectangular skew lattice X, let T[X | P] be the normal skew lattice defined on
PxX)U(T\P)
by extending the operations on the skew lattice s P x X and the lattice ideal T \ P by setting

sv(p,x) = (svp,x) = (p,x)vs and sA(p,x) = sAp = (D, X)A S

for (p,x) EP x X ands € S\P. Any skew lattice isomorphic to T[X | P] is said to be P-primary
over T with fiber X. Prime filters arise as inverse images /(1) for lattice epimorphisms f: T — 2
where 2 is the lattice 10. Thus T[X | P] may be viewed as the fibered product T x x’ obtained by
pulling the surjection X0 — 2 back along f: T — 2.

More generally, let P(T) be the family of all prime filters of T, including T and let
{Xp|P €Pr(T)} be a corresponding family of rectangular algebras. Then the fibered product
over T, []t{T[Xp | P]|P €P(T)} is both symmetric and normal. To within isomorphism, its
rectangular D-classes are given by setting D(¢) = [[{Xp | P EPr(T) & ¢ €P} and using canonical

coordinate projections and injections. Any skew lattice S isomorphic to such a fibered product is
decomposable with the fibered product being its primary decomposition. The rest of this section
is devoted to proving a main result of this section.

Theorem 2.6.5. (The Decomposition Theorem) Every symmetric normal skew lattice
with a finitely generated maximal lattice image is decomposable. More generally, a symmetric
normal skew lattice with a finite maximal distributive lattice image is decomposable. []

The first major step in proving this result is our next theorem. But we first need several
preliminary lemmas, beginning with:

Lemma 2.6.6. Let S be a symmetric, normal skew lattice and let A > B be D-classes in

S. If > induces an isomorphism between A and B as rectangular skew lattices (making both full
cosets of each other), then for any D-class C such that A > C > B, > also induces isomorphisms

between A and C and between C and B.
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Elements x and y in a normal skew lattice S are reflections of each other if D-classes
A > B exist such that (i) x and y lie in intermediate D-classes, (ii) > induces an isomorphism of A

with B and (iii) x and y have the same images in A and in B. (This includes the possibility that
either x or y lies in either A or B or both.)

Lemma 2.6.7. Reflection is an equivalence on symmetric, normal skew lattices.

Proof. Letx, y and z be given wherea>x>b,a>y>b,c>y>dand c>y>d witha, b, cand d
lying in respective D-classes A, B, C and D such that both A = B and C = D under >. It follows
that A = Y and C = Y under > where Y = D,. Thus A = AAC = C under > also. Setting J] = AvC,
J is isomorphic to both A and C under > by Theorem 2.6.4. In similar fashion if M = B/\D, then
B and D are isomorphic to M. Hence x, y and z all lie between the D-classes J and M that are

isomorphic under >. Clearly x and y and also y and z share a common unique image avc up in J
as well as a common unique image bad down in M. [

Lemma 2.6.8. Given a symmetric, normal skew lattice, reflection is a congruence.

Proof. If > induces an isomorphism for classes A > B, then for all classes C both AvC = BvC
and AAC = BAC under >. In the case of AvC > BvC we have the diagram

AVC
A BVC

M

B
If M is the meet class of A with BV C, then M lies somewhere between A and B. (Possibly
M =B.) Since A =B under>,sois A =M. Sincc AVC=AVBVC,AVC =BV C by Theorem
2.5.4 (since if one side of the diagram is an isomorphism, so is the other). Let »' € M be the
unique element such that b> > b. Since B and M have identical cosets in BvC, orthogonality
yields bve = b've. But Theorem 2.6.4 implies that ave > b've, and thus ave > bve. Likewise,
cva > cvb, anc > bac and caa > cab. (In fact, anc > bac and caa > cab follow from a > b in

any normal skew lattice without the added assumption that A = B under >. This implication
characterizes normal bands.) It is now clear that reflection must be a congruence. [J

Reflection is the maximal congruence + on S inducing isomorphisms between D-classes
in S and their image D-classes in the quotient skew lattice S/r. The latter is called the reduced

skew lattice of S to be denoted Srd. Clearly (Srd
lattice S is reduced if SrCl =S. The following result is of independent interest.

d d .
)r =8 we say that a symmetric, normal skew
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Theorem 2.6.9 (The Reduction Theorem) Let S be a symmetric, normal skew lattice
with maximal lattice image T and reduced skew lattice Srd. If' D is the maximal lattice image of
Srd. then the canonical epimorphisms S — T and S — Srd induce an isomorphism of S with the
fibered product of T and Sml overD,S=T xp Srd; both Smd and D, moreover, are distributive.

s — ™
U pullback L  T=S/Dand D=5"D,

T — D

Proof. We need only show that when S is reduced, it is distributive. We do so by showing that
none of the following types of subalgebras can arise in S where in what follows A, B. C, J and M
represent distinct ‘D-classes of S.

J J
A
A B C or : C
. B
M M

Suppose first that M is trivial so that in both diagrams each element of C commutes with all
elements in A and B. In the left diagram C must also commute with all elements of J so that C
must trivial. Similarly in the left diagram A and B must also be trivial and thus the left diagram
reduces to a lattice. Dropping the added assumption that M be trivial, we see that the natural
rectangular functor K of S when restricted to the left diagram is a functor of isomorphisms
between distinct classes. Thus K cannot be the rectangular functor of a reduced algebra. In the
right subalgebra, each n € J has commuting factorizations as avc and bve with a € A, b € B and
¢ € C where clearly @ > b. As a consequence, A = B under >. Even if M is not trivial, the skew
lattice on the right must factor as M x the M-trivial case. Hence still A = B under >, which again
cannot happen in a reduced symmetric, normal skew lattice. Thus the right diagram also cannot
occur in S. Hence lattice D is distributive and the normal skew lattice SrCl must also be
distributive by Theorems 2.3.2 and/or 2.3.4. [

The structure of symmetric, normal skew lattices has been reduced to that of lattices and
symmetric, normal, distributive skew lattices that is, to that of lattices and strongly distributive
skew lattices. We now examine the latter, first when S/D is finite where we show that S is

decomposable, thus proving a significant special case of Theorem 2.5.4.

So let S be strongly distributive with S/D finite and denote the latter by T. Being a finite

distributive lattice, T has a finite set 7 of join-irreducible elements, including its minimal element
0. The class of prime filters of T is thus given by

Pr(T) = {pvT|pEn}.
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Recall that the center Z(S) of S is the union of all trivial D-classes of S. Since S is normal, Z(S)

is a (possible empty) ideal of S that is isomorphic to its image in T which is also an ideal of T.
Z(S) is empty precisely when the minimal D-class of S is nontrivial. In any case, all D-classes of

S that are minimal in the complement of Z(S) correspond to join-irreducible elements in T.

Lemma 2.6.10. Given S and T as above, let X be a minimal D-class in the complement
of Z(S), let x be fixed in X and let P be the prime filter in T induced by the image of X in w. Set

S’ = (S\SvxvS)UJxvSvx
and let T[X | P] be the P-primary algebra induced by X and P. Then
i) S'is a subalgbra of S that is also mapped onto T by the canonical epimorphism from S.
i) Anisomorphism 0:S = S’ x1 T[X|P] is given by the rule

(xvyvx,yaxay)forallye SvxvS
06(») —{ .

otherwise
iii) Upon comparison in T, Z(S") is properly larger than Z(S).

Proof. S’ is a subalgebra since x commutes with all elements in the complement of SvxvS. Thus
0 is at least an isomorphism off of SvxvS and by Theorem 2.6.3, 0 also yields an isomorphism of
SvxvS with (xvSvx) x X. Suppose that # € SvxvS and w € S \ SvxvS are given. Then
O(uvw) = B(u)vO(w) is equivalent to xvuvwvx = xvuvxvw and (uvw)Axa(uvw) = (UAXAL).
Since x commutes with w, the first identity holds. Because xaw lies in Z(S), xAu > xAw and

xA(uvw) = xau. Similarly, (uvw)ax = wuax and the second identity holds. Finally,
O(urw) = B(u)AB(w) is equivalent to uaw = (xvuvx)aw. Distribution in the symmetric, normal
case yields

(evuvx)aw = (xaw) v (uAw) v (XAW) = uAw
since uAw = xAw with xAw in Z(S) implies uaw >xaw. [J
As a consequence we have the following Primary Decomposition Theorem.

Theorem 2.6.11. Let S be a strongly distributive skew lattice with finite maximal lattice
image T and let Pr(T) be the set of prime filters of T including T. Then to each P in Pr(T) there

corresponds to a rectangular algebra Xp, that is unique to within isomorphism, such that S is
isomorphic to the fibered product [[t{T[Xp|P]|P €Pr(T)}. S is reduced if and only if Xp is

nontrivial for each proper prime filter P.
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Proof. Repeated applications of Lemma 2.6.10 enable one to pass through the prime filters of T
and successfully strip primary factors off of S to obtain the decomposition. To see uniqueness, let
X be a D-class corresponding to a join-irreducible element p of T and let P = pvT be the induced

prime filter. If P = T, X was just the minimal D-class of S and Xp = X. Otherwise there is a
maximal D-class of S lying beneath X, call it Y. Applying the Lemma to the subalgebra XUY, X

must factor as Xp x Y where to within isomorphism Xp is yvXvy for any y in Y. Thus Xp is
indeed unique to within isomorphism. Finally, if any Xp for some P # T is trivial, then for Y <X
as just given, K(x, v) is an isomorphism and S is not reduced. But if no Xp is trivial, except
possibly for P =T, then no K(a, gy with A > B can be an isomorphism since then A as an element
of T belongs to a prime filter P that excludes B and thus Xp is not trivial so that B is to within
isomorphism a proper factor of A. [

Theorem 2.6.5 follows immediately from Theorems 2.6.9 and 2.6.11.

What happens when the maximal distributive lattice image D of S is not finite? S still
factors as the fibered product of its maximal lattice image T and its maximal reduced image Sred:
S=T xp Ser. Since Ser is necessarily distributive, the question reduces to what can be said
about arbitrary distributive, symmetric, normal skew lattices. Being a variety of algebras, every
such algebra decomposes into a subdirect product of subdirectly irreducible algebras. Which

distributive, symmetric, normal skew lattices are the subdirectly irreducible?

To answer this, let 2 denote the lattice 1 > 0, let Ry [L3] denote the right [left]
rectangular skew lattice on {1, 2} and let 3r and 3y, be the results of adjoining a zero element 0 to
R and L, respectively (Thus 1, 2 > 0 in both cases.) Finally, let 5 denote the fibered product

algebra 3y, x2 3r of order 5. Equivalently, 5 = (L3 x ‘Rz)q

Theorem 2.6.12. The only nontrivial subdirectly irreducible strongly distributive skew
lattices are copies of 2, Ra, L3, 3r or 3. Every strongly distributive skew lattice is thus a

subdirect product of some of these algebras and in particular can be embedded in a power of 5.

Proof. We show that a nontrivial subdirectly irreducible distributive, symmetric, normal skew
lattice S must be a copy of one of the stated algebras. If S is such an algebra, a pair of elements «
# b in S must exist that are congruent under all nonidentity congruences on S. If ¢ and b are not
D-equivalent, then since D separates them, D is the identity A and S is a lattice that must be a

copy of 2. So assume that a # b in some D-class. We define two congruences on S as follows:

a a
x ~yifanx=any and x ~*yifxaa=yna

Each is clearly an equivalence on S that, thanks to normality and Theorem 2.3.4, is indeed a
a a

congruence. Since a D b but a # b, either ~ or ~* must separate a and b and thus equal A. In

either case A must be the maximal D-class of S. (Otherwise some @’ > a exists in a properly
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a a
higher D-class, but neither ~ nor ~* separate ' from a and so neither is A.) If S = A, then S is

rectangular and so, being subdirectly irreducible, is a copy of either Ry or L£,. Otherwise lower
c c
D-classes exist and in particular there is an element ¢ < a. Since both ~ and ~ * identify a with
c c
¢, both are the trivial congruence, the universal relation V. Since ~ and ~* equal V for all ¢ <a,

A must have a unique singleton lower class, {0} and thus S = AO. Since S is subdirectly
irreducible, A itself is a copy of either R, or L3 so that S is a copy of either 3g or 31.. [

Corollary 2.6.13. The variety of strongly distributive skew lattices is generated by 5. The
variety of symmetric, normal, skew lattices is generated by 5 plus the variety of lattices.

We saw in Section 2.3 normal skew lattices arise as maximal normal bands in rings.
Before proceeding to the next section, we offer an example of somewhat different character, an
example that both illustrates much that has occurred in this section and also sets the stage for
developments in Chapter 4.

Example 2.6.1. Given sets A and B, let Pr(A, B) be the set of all partial function from
A to B. Pr(A, B) becomes a strongly distributive skew lattice upon setting

fveg=fUg|GF and frg=g|FNG

where F and G denote the actual functional domains in A of f and g respectively. Pr(A, B)
factors as [[4.a Pr({a}, B) with each factor Pr({a}, B) being a copy of the primitive algebra BO,
the right rectangular skew lattice on A with 0 adjoined. The various D-classes are indexed by the
subset algebra 2A that forms the maximal lattice image of Pr(A, B). For any subset F of A, its

D-class is precisely BF. IfGCF K : BF — BG is just the natural coordinate-wise

@F,BG)y"

projection. If A is finite, Pr(A, B) has the primary decomposition [] A {ZA[Ba |Pa] ae A}
2

where P, is the principal filter generated by a. [

Example 2.6.2. Given sets A and B, the left-handed variant of the above skew lattice on
PL(A, B) is given by setting fv g =g U f|F\G and fA g=f]|FNG. Remarks similar to those
made above can be made here also. [J

By a ring of partial functions is meant any subalgebra Pr(A, B) for some pair of sets A

and B. The following variation of Theorem 2.6.12 holds. By a full ring of partial functions is
meant a subalgebra S of some Pr(A, B) such that each @« € A correspond to a subset B, € B such

that the primary decomposition of Pr(A, B) given above restricts to the primary decomposition

I B, |P,llacA}.
2A
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Theorem 2.6.14. Every right-handed, strongly distributive skew lattice can be embedded
in a power of 3r. Equivalently, every such skew lattice can be embedded in some Pr(A, {1, 2}).

Thus, every right-handed strongly distributive skew lattice S is isomorphic to a ring of partial
functions. If S/D is finite, then S is isomorphic to a full ring of partial functions. [l

Example 2.6.3 (Example 2.3.4 revisited). This matrix example is isomorphic to the
direct product of the primitive algebras (F x F )0 where F x F is the rectangular algebra, that is, it

is isomorphic to the power [(F x F)O]n. O

As indicated above, a natural continuation of these ideas is given in Chapter 4, and in
particular, in the first section.
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Historical remarks

The material in Sections 2.1 and 2.2 appeared in Jonathan Leech’s 1989 paper in Algebra
Universalis. The material in Sections 2.3 and 2.6 appeared in his 1992 paper in the Semigroup
Forum. The material in Sections 2.4 and 2.5 originated in his 1993 paper in the Transactions of
the American Mathematical Society. Highlights from these papers appeared later in his 1996
survey article in the Semigroup Forum. An important result from his 1993 Transactions paper,
not presented here is the fact that the free symmetric skew lattice on two generators is infinite. As
a consequence, the free skew lattice on two generators must be infinite. Thus (symmetric) skew
lattices are not locally finite. This contrasts with the case for lattices where the free lattice on 2
generators has four elements, but the free lattice on three generators is infinite. In her 2011 paper
in Algebra Universalis, Karin Cvetko-Vah showed that for symmetric skew lattices that are also
categorical, the free algebra on two generators is finite of order 16. (But then thanks to the case
for lattices, the free such algebra on three generators must be infinite.) Her result echoed the case
for small skew lattices (< 2 generators) in rings that had been studied in Leech’s 2005 paper
below.
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IIT: QUASILATTICES, PARALATTICES & THEIR
CONGRUENCES

We take a closer look at quasilattices, paralattices, and especially refined quasilattices
which by definition are simultaneously algebras of both types. Particular attention is given to
their congruence lattices and to related topics such as Green’s equivalences and simple algebras.
Since all skew lattices are refined quasilattices, our study has implications for skew lattices.

In the first section we consider quasilattices where D) = D,), with D denoting the

common congruence. These are the noncommutative lattices for which the Clifford-McLean
Theorem holds: the maximal lattice image of a quasilattice Q is Q/D and its maximal antilattice

subalgebras are its D-classes. The congruence D also plays an major role in the congruence

lattice Con(Q) of a quasilattice Q. For instance, given a family of congruences {6;}, both
D A supi(0;) = supi(D A 0;)

and its dual hold. (Theorem 3.1.1) As a consequence, Con(Q) is a subdirect product of the
interval sublattices [D, V] and [A,D], where V is the universal congruence where A is the identity

congruence. (Theorem 3.1.2) In particular, Con(Q) is naturally a copy of the direct product [D,
V] x [A,D] precisely when Q itself factors as the direct product 7' x 4 of a lattice 7 and an

antilattice 4. (Theorem 3.1.3) Due to these theorems, the only simple quasilattices (in that the
congruence lattice reduces to {A, V}) are simple lattices and simple antilattices.

Section 2 addresses the topic of simple antilattices. Its main result Theorem 3.2.3 states
that finite simple antilattices exist for all composite orders greater than 5. Antilattices of odd
prime order are trivially non-simple. In the remaining cases, algebras of orders 1 or 2 are always
simple, while simple antilattices of order 4 are shown to be impossible.

In the next section we look at noncommutative lattices that are regular in the strongest
sense: L(,), R,), L(y) and R(,) are congruences relative to both v and A. Flat quasilattices
(where Dy, is either L) or Ry, and likewise D,) is either L,) or R(,), with the two remaining

Green’s relations being equality) are trivially regular since D is both unambiguous and a

congruence on quasilattices (Theorem 3.3.2). Moreover, every regular quasilattice factors as the
fibered product of its four possible maximal flat images (Theorem 3.2.4).

In Section 4 we study paralattices, and especially refined quasilattices that are paralattices

and quasilattices simultaneously. A paralattice S is also a quasilattice if and only if both D,y and

D(,) are congruences, in which case they meld into a single relation D. A regular paralattice is
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thus a refined quasilattice. In fact it is the fibered product of its maximal skew lattice and skew*
lattice images. (Corollary 3.4.6.) As a consequence we have the following sublattice of the
lattice of quasilattice varieties:

Refined quasilattices
Regular paralattices
skewlattices  skew *lattices

lattices

In general a refined quasilattice is partially regular in that £, and Ry, are congruences relative

to v, while £(,) and R(,) are congruences relative to A. Even if not fully regular, refined

paralattices behave very much like skew(*) lattices. This aspect is developed in some detail in
the discussion from Theorem 3.4.7 through Theorem 3.4.14. The latter asserts that each refined
quasilattice, if not isomorphic, is at least isotopic to some skew lattice. (The definition of
“isotopic” is given in the section). Indeed every refined quasilattice can be viewed as the result of
taking a left-handed skew lattice and mildly scrambling its v- and A-computational details. (See
the remarks after Theorem 3.4.14.) Thus here is a sense in which refined quasilattices are
roughly skew lattices.

In Section 3.5 we study the effects of various distributive identities. Theorem 3.5.1
asserts that a double band (S; v, A) satisfying both aa(b v ¢)aa = (anbaa) v (anchaa) and its dual
av(b A ¢)va = (avbva) A (aveva) is a quasilattice if and only if it a paralattice. Theorem 3.5.2
asserts that such a quasilattice [paralattice] satisfies both strengthened identities
an(b v c)ad = (anbad) v (ancad) and its dual av(b A c)vd = (avbvd) A (avevd) if and only if it
factors as the product of a distributive lattice and an antilattice. Finally, any given quasilattice
[paralattice] factors as the product of a distributive lattice and a regular antilattice if and only if
the even stronger identities, an(b v ¢) = (anb) v (anc), (b v c)ad = (bad) v (cad) and their duals,
hold.

The sixth and final section is rather “recreational” in nature. Extending Section 3.2, we
consider ways that magic squares, finite planes and other rectangular designs can be used to
create simple antilattices. Many classic magic squares, beginning with the classic Lo Shu,
provide examples of simple antilattices.

81106 8 1 6 123
31517 — MWl3 5 7] W45 6
41912 49 2 78 9

Conditions for simplicity are given for various classes of antilattices derived from finite designs.
(See, e.g., Theorems 4.6.10 and 4.6.11.)
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3.1 Congruences on quasilattices

Recall that a quasilattice is a noncommutative lattice (Q; v, A) for which the natural
quasi-orders ()< and (,)> dualize each other: x ()< y iff x (,)> y, that is, yvxvy = y iff xAyAx = x.
Corollary 1.3.5 asserts that a noncommutative lattice is a quasilattice if and only if Dy, = Dy,
with the common relation D being a congruence, in which case Q/D is the maximal lattice image

of O and the D-classes are the maximal rectangular subalgebras of Q. Thus quasilattices are

precisely the class of those noncommutative lattices that follow the Clifford-McClean Theorem.
Indeed we might say that quasilattices are the most natural noncommutative generalizations of
lattices in that they have the rough shape of a lattice. They also have some striking properties that
have no precursors for regular bands.

Theorem 3.1.1. For any quasilattice (Q; v, A), the following hold:

i) For all congruences® on O, Do =00D=0v D.
i) Given a family of congruences {0} on Q:
D v infi0;) = inf(D v 8;) and D A supi(0;) = sup(D A 6;).

Proof. Let x, y €O be such that x Dof y. Hence u € Q exists such that x D u 6 y. Set
w=(xvyvx) A y A (xvyvx). Then x = (xvuvx)aur(xvuvx) 8 w Dy sothat Do 6 C 6o D. But
D=D'and0=0"s0that 6o D=0 "'0D ' =(Do6) ' CO0D) '=Dloo ' =Doo,
and D o 6 =0 o D follows with D o 0 being precisely 6 v D.

Thanks to (i), we next need to show D o infi(0;) = infi(D o 0;). That we have
Do infi(0;) C infi('D 0 0,) is clear. So letx infi('D 0 6;) y in Q. Then for each i, some u; in Q exists
such that x D u; 0; y. Set w = (yvxvy)axa(yvxvy). Then

v 0; u; = (uinxAup)vxv(uinxau) 0 w D x

or just,x Dw 0;y. Since w works for all i, x D w (inf;0;) y and infi{(D 0 6,) C D o infi(0;) is seen.

Finally, clearly sup,(D A 6;) € D a supi(6;). So letx (D a supi(0)) y for some x, y € Q.
Thus x Dy and uy,... ,u, exist such that x = ug 01 u; 02 ua ... uy—1 6, uy, = y. Forj < n set
w; = (uinxau)vxv(ujnxau;). Then x D w;. In particular x = wo, y = wy, and w; 1 0; w; for j < n.
Thus

x DNO; w1 DNO2 wa ... w1 DNO, y
so that x sup(DNO;) y and sup(Da6;) = D a supi(0;) follows. [

As a consequence we have:
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Theorem 3.1.2. Given a quasilattice (Q; v, A), the map x: Con(Q) — [D, V] x [A, D]
defined by x(0) = (Dv0, DNO) is an embedding of complete lattices yielding Con(Q) to be a
subdirect product of ['D, V] and [A, D].

Proof. That y is a homomorphism of complete lattices follows from the above theorem. To see
that ¢ is 1-1, observe that for any congruence 6 on Q,

x8y iff xOxAyax, xAyaxByaxay and yAxay0y.

In general, xAyax 0 yaxay iff xayax 6ND yaxay as xaAyax D yaxay. Also x 8 xayax iff x Dvo
xAyAx, and likewise yaxay 0 y iff yaxay DvO y. The 6 = OvD direction is clear. So suppose
that x DvO xayax. Thus by Theorem 3.1.1(i), u € Q exists such that x D u 0 xayax. But then

X = xAunx O xA(xAyAx)Ax =xayAx. Similarly yaxay DvO y implies yaxay 6 y. Consequently:
x 0y ifand only if x DvO xayax, xayax 6ND yaxay and yaxay DvO y.

But this means that 0 is determined by DN6 and Dv, so that  is an embedding. Since [A, D]
and [D, V] are sublattices of Con(Q) with DNO = O for all 6 € [A, D] and DvO = 6 for all
6 € [D, V], Con(Q) is embedded as a subdirect product. [

When does Con(Q) factor directly as ['D, V] x [A, D]? To begin, a quasilattice Q splits if

it is isomorphic with the product 7" x A4 of a lattice 7 and an antilattice 4. In what follows p
denotes the smallest congruence containing >.

Theorem 3.1.3. Given a quasilattice Q, the following are equivalent:

i) Q splits.
i) DNp=A.
i) A congruence 0 exists such that DNO = A and Dob = V.

iv) Forallx,y € Q,x py iff xvy = yvx [alternatively, xAy = yAx].
V) Con(Q) = [D, V] x [A,D] under the map 6 — (60D, 6ND).

Proof. Assume (i). Indeed, let O = T'x 4 with T and 4 as above. The D-classes of O consist of

pairs (¢, @) having common 7T-coordinates and the p-classes consist of pairs (¢, @) having common
A-coordinates. From this, (ii) follows. Since Dop = V always holds, (ii) implies (iii). Suppose

that (iii) holds for a congruence 6. Thus each 0-class meets each D-class at a unique element.
Let x: O — O/D x Q/6 be the homomorphism defined by y(x) = (xD, x0), where xD and x0 are
the respective congruence classes of x. Since D6 = A, x is one-to-one. Since each D -class
meets each 6-class, every possible pair (xD, y0) is in the image of , so that  is an isomorphism.

Since each 0-class meets each maximal rectangular subalgebra of O, O/6 is rectangular. Since
Q/D is always a lattice, we have shown that Q splits. Hence (i) through (iii) are equivalent.
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From the explicitly split case, Q = T x 4, (iv) is easily seen. Conversely, since xvy = yvx implies
x = y in each D-class, (iv) implies that each p-class uniquely meets each D-class, that is,
(iv) implies (ii). But (ii) in turn implies (v). Indeed, let (81, 62) € [D, V] x [A, D]. Upon setting
0 = (pAB1)v0,, the distributive properties of D yield (BoD, 6(1D) = (61, 6,). Hence the indicated
injective homomorphism is also surjective and (v) follows. Finally, given (v), a congruence 0
exists such that 0D =V and 8o D = A and (iii) holds. I

Every split quasilattice is a refined quasilattice. Within the variety of refined
quasilattices, split quasilattices are characterized as follows.

Theorem 3.1.4. Split quasilattices form the subvariety of refined quasilattices S for
which (S, v) and (S, N) are normal, in that uvxvyvyv = uvyvxvy and unxny91av = unyaxav hold,

Proof. Both identities hold for lattices as well as for rectangular quasilattices, and hence also for
split quasilattices. Conversely, suppose that both identities hold on a refined quasilattice. Then
xvy=yvxiff xay = yax. For xvy = yvx implies xvy >y, x so that

XAY = (XVY)AXAYA(XVY) = (XVY)AVAXA(XVY) = VAX.

The other direction is seen in similar fashion. Next, define a binary relation po by xpgy if
xvy = yvx (or equivalently, xAy = yax). Clearly po is both reflexive and symmetric. From
X Poy Po zZ, xVyvz = yvxvzvy = pvzvxvy = zvyvx follows. Denoting this common value by u we
get u > x, z and xAz = uAxazau = unzaxau = zAx. Hence pg is also transitive and thus an
equivalence. By the identities in the theorem statement, po is seen to be a congruence. Since
< C po, we get p € po. Conversely, given x pg y, from x < xvy >y first x p y and then po = p
follows. Hence Theorem 3.1.3(iv) is satisfied and N splits. [

Corollary 3.1.5. 4 noncommutative lattice Q is a split quasilattice if and only if
pNd = A. In general, Q/pNd is the maximal split quasilattice image of any quasilattice Q.

Proof. O/pN3J is isomorphic to a subalgebra of the product O/p x Q/d where O/p is an antilattice
and Q/0 is a lattice. Thus Q/pN3d splits also and is indeed isomorphic to O/p x O/ under the map
x(pNd) = (xp, x8). O

We have seen that Con(Q) is a subdirect product of [A, D] and [D, V]. If {D;|i €1} is
the set of all D-classes of O, then an embedding D*: [A, D] — [[:Con(D;) of complete lattices is
given by

D*0)=(0ND;xDy)|iE€I)

Since [[;Con(D;) is in turn embedded in Con([];D;), this suggests that [A, D] shares similarities

with congruence lattices of rectangular quasilattices. On the other hand, the interval [p, V] is
isomorphic to the congruence lattice Con(N/p) of the greatest rectangular image Q/p of Q. This
leads us to inquire how [A, D] and [p,V] are related.
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Consider the embedding y: Con(Q) — [D, V] x [A, D] given by x[0] = (D v 6, D 6).
Since poD =V, restricting  to [p, V] yields an embedding xo: [ p, V] — [A, D] of complete
lattices defined by yo[0] = DNO. When is o an isomorphism? Precisely when p(\D = A. This

condition is clearly necessary as it states that A lies in the image of yo. Given this condition, then
forall 8 € [A, D],

D N(O vp) = (D NB)V(D Np) =OBvA =8,
which implies that ¥y is also surjective. But p(1D = A if and only if Q splits. Thus:

Theorem 3.1.6. The interval [p, V] of rectangular congruences on a quasilattice Q is
isomorphic to a complete sublattice of the interval [A, D] under the map 6 — DNO. This

embedding is an isomorphism if and only if Q splits. [J

To complete our basic picture of quasilattice congruences we give a partial complement
of the Clifford-McLean Theorem. In its proof, the terms v—morphism and A-morphism refer to
homomorphisms with respect to the stated operations.

Theorem 3.1.7. Given a lattice A with disjoint antilattices D, assigned to each A EA, a
quasilattice structure exists on Q = U, Dy such that the maximal antilattices in Q are precisely the

Dy and N/'D = A. In addition, v and A can be defined so that [A, D] = []; Con(D;).

Proof. Let ® = {qg, ):D) — Dy, | A < u} be an ascending family of v—morphisms such that for
all M € A, @, ) is the identity map on D, and secondly, @, )¢(,, w = 9., forall A <u <vin
A. Similarly let W = {y,, ) Dy — Dy | A < u} be a descending family of A-morphisms

satisfying dual properties. To define v, set xvy = @, ")(x)vcp(w 20 ED.ifxe D, y€ D, and
7t = Avu. Similarly, define A on Q using W in dual fashion. The operations v and A induced

from ® and W yield a quasilattice (Q; v, A) for which the D, are the maximal antilattices and for
which Q/D = A as stated.

To complete the first assertion we need only exhibit at least one pair (®, ¥). This is done
as follows. First, to each A € A pick some d, in D;. Next, for each A € A, let g5 = P be
the identity map on D, as required. Finally for each strict comparison A < w in A, let
Po. w: D, — DM be the constant map sending all D, to dM in DM' Similarly define

Y(w.n): Dy — D, as the constant map sending all of D, onto d. As so defined, (P, W) satisfies
all the required conditions. Moreover, for such a pair (&, W), the embedding

D*: [A, D] — [I;Con(D,) defined by D*(B) = (6 N DyxD; | A €A) is onto. For given
(8, |~ €EA) € [T, Con(Dy)), the union 8 = U, 6, is at least an equivalence on Q. Thanks to the
pointed character of (@, W) as defined, 8 is a congruence inducing (68, | AEA). O

92



IIT: Quasilattices, Paralattices and their Congruences

Not all quasilattices Q = U, D, for which O/D = A arise from some such pair (®, ¥) of

ascending and descending morphisms. Those that do are characterized by both (Q, v) and (Q, A)
being normal. This is just the double assertion of Theorem 1.2.16.

The above construction is relevant to the question: Given a band B with multiplication A,
is (B, A) the a-reduct of some quasilattice (B, v, A)?

If (B, v, A) exists, it is called a quasilattice closure of B. It is not unique, unless B is a
semilattice so that (B, v, A) is a lattice. Clearly, it is necessary that the maximal semilattice
image (B/D, a) form a lattice in that given any pair of D-classes M and N in B, a ‘D-class J exists
which is the supremum of M and N in (B/D, a). This condition is also sufficient. Indeed, assume
that B has join classes. On each D-class M define a rectangular join vy (Perhaps, let xvry = x.)

Using an ascending family ® of v-morphisms between the M, create an operation v on all of B
that yields a quasilattice, (B, v, A).

Proposition 3.1.8. A4 band B is a n-reduct of a quasilattice if and only if its maximal
semilattice image B/D is the n-reduct of a lattice.

Returning to quasilattice congruences, note that while the interval [D, V] is distributive,

in general Con(N) need not satisfy any identity beyond those common to all lattices. Indeed
[A, D] need only satisfy identities common to congruence lattices of antilattices. But consider

the antilattice defined on a given set N by xAy = x = xvy. In this case Con(N) is just the lattice
Equ(N) of all equivalences on N. But such lattices collectively satisfy only lattice identities
common to all lattices. We shall see in the next section that not all antilattices are so behaved.

Consider the following questions. Given quasilattice Q, when is Con(Q) distributive?
Even if Con(Q) is not distributive, under what conditions will instances of distribution occur? In
response we present three assertions, the first two following immediately from Theorem 3.1.1 and
the complete embedding D*: [A, D] in [[;Con(D;) where the D; are all maximal antilattices in Q.

1. Con(Q) is distributive precisely when [A, D] is distributive. The latter occurs when
each D-class of Q has a distributive congruence lattice. (For example, this is the case
if all D-classes are simple as algebras.)

2. Given particular quasilattice congruences v and 0; for i € I, n A supi(6;) = supi(nn06;)
holds in Con(Q) if either n) or at least one of the 0; lies in [D, V1.

We present our third assertion as a theorem where we consider the remaining Green’s

equivalences L), Ryy), £(,) and R(,) which are defined for any noncommutative lattice.
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Theorem 3.1.9. If O is a quasilattice, then L)), Ry, L(,) and R,) permute with any

congruence in [A, D), n-distribute over suprema in [A, D] and v-distribute over infima in [A, D],

even if these four equivalences are not congruences themselves. If either L), R, L(,) or R¢,)

is also a congruence, then it possesses these distributive properties in Con(Q).

Proof. To begin, Lo 0 =00 L and Ro 6 =0 o R hold for any congruence 6 on a rectangular

band. Hence L(,), R(,), L(,) and R(,) permute with any congruence on an antilattice. Likewise,
£ and R distribute as stated over congruences on a rectangular band. Thus the first statement
must hold at least for antilattices. The general statement involving [A, D] now follows since all
calculations take place in D-classes. Since the join of all four equivalences with D is just D, the

second statement follows from the first and Theorem 3.1.2. [J

3.2 Antilattices that are simple as algebras

Recall that an algebra A is simple if Con(A) = {A, V}. Algebras of order 2 are simple.
By Theorem 3.1.2, a simple quasilattice is either a simple lattice or a simple antilattice. Our
interest is in the latter case. We begin with some remarks about when simplicity cannot occur,
starting with a definition.

An antilattice N is flat if L), R(,), L£(,) and Ry,) are each either A or V. In the finite

case, N is flat precisely when the arrays defining v and A are either single columns or rows.

Lemma 3.2.1. All antilattices of prime order are flat; moreover every equivalence on a
flat antilattice is a congruence. Thus an antilattice cannot be simple if its order is an odd prime.

Proof. Given the assumption of prime order, £(,,) and R, reduce to either A or V. Hence either

xvy = x holds uniformly or else xvy = y holds uniformly. Similarly, either xAy = x holds
uniformly or else xAy =y does. For such operations, every equivalence must be a congruence. [

By contrast, let 4 be the antilattice on {a, b, ¢, d} determined from the arrays:
(v) a b (A) a d
c d c b.

Recall that xvy and xay are the element lying in the row of x and the column of y of the relevant

array, where the rows are the R-classes and the columns are the L-classes for the respective

operations. Here L) = L(,) is the only proper nontrivial congruence. The lattice of congruences
is thus: A <L < V. In general:
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Proposition 3.2.2. No 4-element antiilattice is simple.

Proof. Any such antilattice 4 falls into one of three cases. First case: 4 is flat. In this case
Con(A4) equals Equ(4) and has order greater than 2. Second case: either (4, v) or (4, A) is flat,
but not both. Then both £ and R for the nontrivial operation are congruences that are distinct

from A and V. Third case: neither (4, v) nor (4, A) is flat. Then the elementary combinatorics of
2x2 squares forces one of L) or Ry, to equal one of L,) or R,), with the equated equivalence

being a nontrivial congruence. [l

Thus simple antilattices of finite order > 2 must have composite order greater than 5.
We may now state:

Theorem 3.2.3. Simple antilattices exist for all composite orders > 5. In all such cases, none

of Rey) Lv)» Rep) 0o L) are congruences.

Proof. Given a set 4 of order mn > 6 with n > m > 2, store its elements in each of the following
mxn arrays, so that avb is in the row of a and the column of b of the array on the left and anb is
similarly obtained from the array on the right. (First array indices are used in the second array to
show how the elements have been rearranged.)

a1 42 93 - Yy
app dyy dp3 . Ay,
(V) a3y azp a3 .. oag,
Yl “m2 m3 Ymn
arq ar A p-m+l YAp-m+2 0 A, n-2 4d.n-1 921
ay @3 v @Qpemt2 @Qp-m+3 @ p-1 431 a3
(n) a3z az4 v @pemt3 Bp-mt+d 41 a42 a43
Am, m 9m, m+1 am, n dm—-1,n 43 .n a.n d,n

Let 0 be a congruence on 4 and let distinct a, b in A4 exist such that a8b. We show that
0 = V. To begin, let a110az; be given. Then (aiivai;)0(azivay;) fori =1, 2, ..., n yields a
sequence of congruent pairs a;;0ay; in the first two rows of the v-array. Upon taking A-products
of these O-related pairs, all elements in the first two rows of the A-array are seen to be 0-related.
In particular, a210a3;. This leads first to a sequence of relations a;0a3; in the v-array and then to
all elements in the first three rows of the a-array being 6-related. The process continues until the
entire A-array, and hence 4, is absorbed into a single 0-class, showing that 6 = V.
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Suppose next that we are just given a;0ay for some i < k. Then
a1 = (ajvan) 0 agvay = ap.

Applying flx) =(x Aair)vair to both sides of a;10ax1, as often as needed, eventually yields
ai10aiz and hence 6 = V.

Finally, suppose that aj0apr with i # k. If ap and ap lie in different rows in the
(A)-array, then apirapc and aprnap; are O6—equivalent, but have differing first indices, thus
returning us to the previous case to obtain 6 = V. Otherwise, look at aumAan 0 ammAank in the
final row of the A-array. If both A-products have differing first indices we again return to the
previous case. Otherwise, a1; = aiiA( @mm A ani) O aiiA( @mm A an) = ark. with i <i’and k < k’.
We repeat this cycle of calculations until a pair of 0-related elements with distinct first indices is
eventually encountered, which must happen due to the design of the a-array. We are then
returned to the previous case. []

By contrast, for any flat antilattice 4, Con(A4) is the lattice Equ(4) of all equivalences on
the underlying set of 4. Flat antilattices of all types together generate the variety of regular

antilattices for which R, L(,), R(,) and L,) are congruences. Such an algebra 4 factors as the

direct product of flat antilattices of each type, 4 = Ay 1) x Ay » x A, 1 x Ag, » With Con(4)
correspondingly factoring as

Con(4) = Equ(4(, ) x Equ(4(, ) x Equ(4, 1)) x Equ(4(, ).

Flatness and regularity are studied in a broader context in the next section.

3.3 Regular quasilattices

Recall that a noncommutative lattice is flat if one of the following pairs of identities is
satisfied:
(r, D): avbva=bva and anbnaa=anb.
(I, ¥): avbva=avb and anbnaa=bna.
(I, ): avbva=avb and anbaa=anb.
(r,r): avbva=bva and anbnaa=bna.
Thus, being (r, /)-flat means that D,y = Ry, and Dy,) = L(,), or equivalently, L) = R(,) = A.

Modified remarks hold for the other three types of flatness.

A noncommutative lattice is regular if R,y L), R(,) and L(,) are all congruences, in

which case D,y and D, are also congruences. While flat quasilattices are regular, this is not the

case for flat paralattices. In general:
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Theorem 3.3.1.  The condition that L) be a congruence determines a subvariety for

any variety of noncommutative lattices. It contains as a further subvariety those algebras for

which L,y =A. When L) is a congruence on a noncommutative lattice N, then L(,,)= A on N/0

for any congruence 0 in [L(,,), V]. Similar remarks hold for D), Rq,), D(n)» R(n) and L,).

Proof. A typical pair of L, )-related elements are bva and avbva. L, is compatible with v and

A if and only if the equations,

[ev(bva)lv[ev(avbva)]=cv(bva) and [cv(avbva)lv[cv(bva)]=cv(avbva)

together with their -ve, ca- and -Ac variants, hold. Clearly £, is a congruence when L) = A, a

condition that is equivalent to the equation avbva = bva being satisfied. The first assertion

follows. If L(,)is a congruence, then L) = A on N/L(,). Thus, if 0 is as stated, N/0, being a

homomorphic image of N/L,, must also satisfy L(,) = A.
The verifications of the remaining cases are similar, depending on the descriptions of

typical Ry, )-related elements (avbva, and avb), typical D y-related elements (avbva and

bvavb) and their A-variants. []

Theorem 3.3.2. Flat quasilattices are regular. Regular quasilattices, in turn, form the
subvariety of quasilattices generated from all flat quasilattices.

Proof. In a flat quasilattice, each of Ry,), L(,), R(,) and L,) is either D or A, and hence is a
congruence. Conversely, given a regular quasilattice O, define k: O — O/L(,) x O/R(,) by
K(x) = (xL(y), XRy(y)). Since L,)NR(,) = A, K is an embedding of Q into a product of quasilattices
for which either D = Ry, or D = L,y holds on each factor. Repeating the process on each factor,
but using R(,) and L(,) instead, we obtain a final embedding of Q into a product of four flat

quasilattices, each representing a specific type of flatness. The theorem follows. []

Given a noncommutative lattice Q, let ¢, ;) denote the least congruence on 0 for which
0/0 is (I, )-flat. Similarly, let @, », @, 1) and @, » denote least congruences for the other types
of flatness. For regular quasilattices, Theorems 3.1.8 and 4.3.1 yield:

Lemma 3.3.3. Given a regular quasilattice O, the equivalences R, L), R(n) and L)
all permute with each other. Moreover, ¢q 1y = R(,)0R(n), 91, » = Re)0L(n) P 1) = L)0R(p)

and @, ) = L(,)0L(y)- U
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Given a regular quasilattice Q, let O, 1), Qu, »» O, 1, and O, ) denote the maximal flat
images of each type. Define @: O — Q¢ 1 x Oq, » x O, 1y x O, r) by:

D(x) = (XP(L, 1), XD, 1) XP(r, 1) XP(r, 7)-

@ is a monomorphism, since the involved congruences intersect to A. To describe its image,
observe that O shares with its four maximal flat images a common maximal lattice image, O/D.

If Ouvy: Oy — O/D, for (u, v) € {(, ), (I, ), (, ), (v, r)}, are epimorphisms induced by the
inclusions of the ¢, ) into D, then &(Q) lies in

{, v, w, ) € Qu, 0 x Qu,n % O, iy % Ot ) | 84, n(w) = 3¢, n(¥) = 8¢, n(W) = 8¢, n(V)},

the fibered product over Q/D of the various maximal flat images of Q. In fact:

Theorem 3.3.4. If Q is a regular quasilattice, then @ is an isomorphism of Q with the
fibered product over Q/'D of the four maximal flat images of Q.

0= 0un*xom Oa rn %o O, 1y XD Otr, 1)

Proof. Restricting our attention to each D-class 4 of Q, the respective rectangular band

structures yield first 4 = A/Ry,) x A/L(,,) and then in turn

AIR(yy = AIRYR(n) x AIRY Ly = AIR(y)0R(y) x ARy Ly = Alpy, 1y x Alpy, )

with A/L(,,) similarly factoring as A/@, n x A/¢pq, ». Thus class 4 factors as a product of its

maximal flat images. In passing from ‘D-classes to Q, the result follows. [J

The above theorem is the quasilattice version of a result of Kimura [1958] about regular
bands. For a general discussion of permuting congruences and fibered products, see Gritzer
[1979].

3.4 Paralattices and refined quasilattices

Skew lattices are simultaneously quasilattices and paralattices and thus possess the
features of both. While quasilattices possess a coherent Clifford-McLean structure, paralattices
need not. Nor need (flat) paralattices be regular. Thus some of our basic intuitions about bands
and quasilattices no longer always hold. We begin our look at paralattices with a special case.

Unlike skew lattices and more generally quasilattices, it is possible for say v to be

commutative, but not A. (For quasilattices, if say v is commutative, then D, = A and hence

D, = A, making A commutative.) A band with joins, or a v-band, is a band B whose natural
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partial order < has natural joins. Thus, for any pair of elements x and y, their supremum xvy
exists in (B, <). Upon denoting the band multiplication by A, one obtains a paralattice (B; Vv, /\)

where (B, v) is a semilattice, or equivalently, where D(,) = A. Thus, in this case D will denote

Dip)-

Viewed as paralattices, v-bands form a subvariety characterized simply by xvy = yvx.
Flat v-bands are v-bands for which A is either left regular (xAyAx = xAy) or right-regular
(xAyax = yax). Both types of flat v-bands form subvarieties. In terms of B; and C; identities of
Section 1.3, we have the following result and its left dual:

Theorem 3.4.1. A flat v-band satisfying anbaa = baa (so that D, = R,) is

characterized by the associativity of v and A together with the following four identities,

B and Cy: an(avb)y=a=(bnra)va.
B3 and Cs: an((bva)=a=av(bna).

Proof. These identities necessarily hold for such a v-band, as baa < a < avb = bva in the
coherent natural partial ordering. Conversely, any associative algebra (V; v, A) satisfying By, B3,
C; and C;s is at least a double band by Theorem 1.3.4. In this case By and C; together assert that

y=r dualizes ,=<, while B3 and C3 jointly assert that , <, dualizes ,<; making ,<r = , <z = <

and thus ,<; = ,<. Thus Nis a flat v-band of the indicated type. [l

Thanks to the dual (union) version of Theorem 1.3.13 we have:

Theorem 3.4.2. The congruence lattice of a v-band is distributive. []

How prevalent are v-bands among bands? Several established classes of bands turn out
to be v-bands.

Example 3.4.1. If B is a rectangular band and set S = Bl, the extension obtained by
adjoining an identity element 1, then (Bl, <) is a join semilattice characterized by 1 > b for b in B.

Examples 3.4.2. Let B be the free (left, right or 2-sided) normal band Bx (where

xyzw = xzyw) on alphabet X. Then B'is a v-band. Indeed elements of B (in the 2-sided case)
look like adc where A is any finite subset of X (thanks to middle commutativity). In (B, <),
adc <a'A'c' ifand only if a =a', ¢ = ¢ and 4 C A'. Thus any finite subset of B with a common
upper bound in (B, <) has a least upper bound:
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adicv adacv ... v adpc=a(41 U A2 U ... U 4,)c.

(Bl, <) is hence an upper semilattice. In similar fashion one handles the free left normal case
(with expressions a4) and the right normal case (with expressions A4c).

Indeed with a little more work one can show that if B is the free (left, right or 2-sided)
regular band on X (where xyxzx = xyzx), then B'is a v-band. With even further work one can
show that if B is a free band on X, then B'is a v-band. O

Dual v-bands are paralattices for which A is commutative. Dual v-bands arise as reducts
(S; v, N) of structurally enriched skew lattices (S; v, A, N) for which the natural partial ordering
< has natural meets, with inf(x, y) denoted by xNy. In particular, they arise in the study of certain
types of skew Boolean algebras. (See Section 4.2 below.) For v-bands and their duals (where

D =Dy,)) we have:

Theorem 3.4.3. D is a congruence on a [dual] v-band B if and only if D = A and B is a

lattice. In general a paralattice is also a quasilattice if and only if both D,y and Dy, are

congruences. Regular paralattices in particular are quasilattices.

Proof. Given a D-class 4 of a v-band B, pick elements a, b in 4. If D = Dy,) is a congruence,
then avb lies in 4 also with @ < avb and b < avb. Being a common D-class, this forces

a=avb=b. Thus 4 is a singleton set. Hence D = A and B is a lattice. More generally, let P be a
paralattice for which both D(,,) and Dy, are congruences. Then P/D(,) is a v-band. Since D(,)
is a congruence on P, D,) is also a congruence on P/D(,) by Theorem 3.3.1. Hence P/Dy,)is a
lattice by our first assertion and A C D). Similarly, A C Dy,). Since the converse inclusions
hold, D) = D, and P is a quasilattice by Corollary 1.3.5. Conversely, when P is also a
quasilattice, Dy, = Dy,) with the common equivalence being a congruence. [J

Corollary 3.4.4. The class of all regular paralattices is just the class of regular refined

quasilattices. In particular, every flat refined quasilattice is necessarily regular and is either a
skew lattice or a skew* lattice.

Proof. The first statement is clear. Next, take, e.g., a (/,/)-flat refined quasilattice, P. Since P is
a flat quasilattice, , <y = < dualizes ,<r = ,<. Since P is a flat paralattice, ,<g = , < dualizes
r=r= <. Hence N is a flat skew* lattice and thus necessarily regular. [

Theorem 3.4.5. The variety of regular paralattices is the join of the varieties of skew
lattices and skew* lattices. In particular, every regular paralattice factors as the fibred product

of its maximal skew lattice image with its maximal skew* lattice images over its maximal lattice
image.
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Proof. Clearly skew* lattices are regular paralattices. Thus the join of both varieties lies in the
variety of regular paralattices. One the other hand, the larger variety is generated by its four
subvarieties of flat algebras by Theorem 3.3.4. But these four subvarieties are either subvarieties
of the varieties of skew lattices or the varieties of skew* lattices. The “join” assertion follows.
The final remark follows again from the isomorphism of Theorem 3.3.4. [

More generally:

Proposition 3.4.6. Given a refined quasilattice, both R,y and L, are congruences with

respect to v, while R,y and L,y are congruences with respect to A.

Proof. First observe that < is surjective between comparable D-classes: given classes, 4 < B,

then for all @ € 4 and b € B, there exist by € A and ap € B such that b4 < b and a < ap. Indeed
we may choose by = baanb and ap = avbva. It follows from Theorem 1.2.19 that both v and a
satisfy the identity xyxzx = xyzx. Since < is surjective, u and v exist in the D-class of x such that

xAy <u and zax < v. Because u, x and v lie in a common D-class, ual01xa101v = unl101v and

thus

XAYAXAZAX = (XAY)AUAXAVA(ZAX) = (XAY)AUAVA(ZAX) = XAYAZAX.

From the theory of bands, the identity xayaxazax = xayazax implies R¢,) and L,) are

A-congruences. Similarly one shows that R(,) and L) are v-congruences. [

From refined quasilattices to skew lattices and back again
Many results established for skew lattices extend to refined quasilattices. In particular the
following extensions of Theorem 2.2.1 and its immediate consequences hold, with the proofs

being essentially the same.

Theorem 3.4.7. Let (S, v, A) be a refined quasilattice with D-classes A and B. If J and

M are the respective join and meet classes of A and B in S/D, then

J={avb|a€E A, bEB & avb=bva} and M= {anb|aE A, bE B & anb =baa}. O

Corollary 3.4.8. Given a refined quasilattice (N, v, A) and an infinite cardinal number
R, then the union of all D-classes of order [equal to or] less than R, is a subalgebra of N. In

particular, the union of all finite D-classes is a subalgebra of N. [J
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Corollary 3.4.9. Let (S, v, A) be a refined quasilattice with a € S. The following are
equivalent:

1. ForallbE S, avb=bva.
2. Forallb € S, anb = baa.
3. The D-class of a is the singleton, {a}.

Thus the union of all singleton ‘D-classes is the center of S. [

These results, in contrast with that of Theorem 3.1.7, show the effect of a coherent
natural partial order on the structure of a quasilattice. It turns out that (even irregular) refined
quasilattices and skew lattices are closely connected in a very precise way. To see this, we
borrow a term arising in a number of other contexts both mathematical and scientific.

An isotopy of quasi-lattices (Q, v, A) and (Q', v, A") with respective natural pre-orders >
and >’ is a bijection £ Q — Q' such that x >y in Q iff f{x) >’ Ay) in Q'.

An isotopy of paralattices (P, v, A) and (P', v', A") with natural partial orders > and >’ is
a bijection f: P — P’ such that x >y in P iff f{x) >’ f{y) in P'.

Finally, an isotopy of refined quasi-lattices (S, v, A) and (S', v/, A") is any bijection from
S'to ' that is simultaneously an isotopy of quasi-lattices and an isotopy of paralattices.

In each case, all isomorphisms are isotopies. Also, in each of these cases, given an
algebra (S, v, A), upon defining v- by xv:y = yvx and A- by xAy = yax, all three derived algebras
(S, v+, A), (S, v, A) and (S, v+, A°) are all isotopes of (S, v, A) under the identity map on S. Indeed
xv:yvax =xvyvx and xAyAx = xAyAx on S, in the case of quasilattices, thus guaranteeing that < is
the same for all four algebras. Likewise xv:y = yvx iff xvy = yvx on § with both outcomes
agreeing, and xAy = yax iff xAy = yax on S with both outcomes agreeing in the case of
paralattices, thus guaranteeing that < is the same for all four algebras. Note that antilattices are
isotopic precisely if the have the same size.

In general we have the following assertions, the first of which is near-obvious:

Proposition 3.4.10. Let quasilattices (Q, v, A) and (Q', V', A") be given. Then any
isotopy f: Q — Q' induces a unique isomorphism f*: Q/D — Q'/'D making the following diagram
commute, where 8: Q — Q/D and 6’ Q' — Q'/'D denote the canonical epimorphisms.

o I ¢

5l 1§
o —*5 oip
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Moreover, bijections f.: D, — D. between all corresponding D-classes of Q and Q' are induced
upon restricting f to the various D-classes of S. Conversely, given quasilattices (Q, v, N) and
(O, V', "), suppose that f*: Q/'D — Q'/D is an isomorphism and that bijections f.: D, — D, exist
between all corresponding pairs of D-classes (relative to f*). Then an isotopy f: Q — Q' is given
by f=U/f.. Any isotopy of (Q, v, A) with (Q', v', A') thus arises in this manner. [

The existence of an isotopy between quasilattices thus depends on having isomorphic
maximal lattice images and corresponding ‘D-classes of the same size. For refined quasilattices

more constraints occur.

Proposition 3.4.11. An isotopy f: (S, v, A) = (S, V', A") of refined quasilattices preserves
both commuting joins and meets. Thus avb = bva in S implies flavb)=f(a) v' f(b)=f(b) v' fla) in
S". Dually, anb = baa in S implies flanb) = fla) A" fb) = f(b) A" fa) in §'.

Proof. Suppose that avb = bva in S. If ¢ denotes this common join, then c is the unique element
in the join-class of the D-classes of @ and b such that both ¢ > a and ¢ > b. Being an isotropy of
paralattices, we have f(c) > both f{a) and f(b) in S '. Being an isotropy of quasilattices, we have
flc) lying in the join class of the D-classes of fla) and fib) in S'. By uniqueness,
fla) v' (b) =fic) =f(b) v' fla). Similarly, fpreserves commuting meets. []

Michael Kinyon observed (in a personal comminication) that every refined quasilattice is
isotopic to a skew lattice in a fairly simple way. To see this first recall a fact about regular bands.

Lemma 3.4.12. If (S, ®) is a band and an operation 1, is defined on S by e*Lf = efe, then
(S, *1) is a band if and only if (S, *) is a regular band, in which case (S, *1) is a left regular band.
Dually, defining *r on S by e*rf = fef, (S, *r) is a band if and only if (S, ®) is a regular band, in
which case the band (S, *R) is right regular. Moreover, e < fin (S, ®) iff e <fin (S, L), and e < f
in (S, *)iffe<fin (S, *L). Similar remarks relate both < and < for (S, *) and (S, *r).

Proof. (Here xe*y is denoted by xy.) Clearly *p is idempotent. Is it associative? Note that
acr(berc) = a*L(bcb) = abeba while (a*Lb)*rc = (a*Lb)c(a*Lb) = abacaba. Thus *y is associative
iff
abcba = abacaba
holds on S. Clearly this happens if (S, ®) is regular. Conversely, if (S, *1) is associative, then
expanding a* b c both ways gives abcha = abacaba for all a, b, c. Replace a by ba to get
babcbba = babbacbabba, which simplifies to
(1) babcba = bacba

The mirror argument gives
(2) abcbab = abcab.
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Multiply both sides of (1) on the right by bcb to get babcbabeb = bacbabeb. Simplifying on the
left gives

(3) babcb = bacbabcb.

Using (2), the right side of (3) simplifies as follows: bacbabch =) bacbach = bacb. Thus (3)
becomes babch = bach, which is regularity.

So assume that (S, ®) is regular. Then a*rbera = (aba)*rLa = a(aba)a = aba = a*Lb,
making (S, *p) left-regular. If e < fin (S, *), then efe = f'= fef, that is e*;f = f = foLe, so that e < f
in (S, *r). Conversely e*;f = f= f*Le reduces to efe = f = fef so that ef = efefef = f = fefefe = fe
in (S, *). In similar fashion, e < fin (S, *) iff e < f'in (S, °L), since fere* f = fefef which
immediately reduces to fef. Thus fef = fiff feree f=f O

Thus, if (S, *) is regular, then it is isotopic as a band to both (S, *r) and (S, *r). Our next
theorem rests on the lemma and a special case of Corollary 3.4.4. We give an alternative proof.

Lemma 3.4.13. If (S, A, V) is a refined quasilattice that is left-handed in that
XAYAX = XAy and xvyvx = yvx, then it is a skew lattice.

Proof. Being a quasilattice, xA(xvy) = xA(xvy)ax = x. Being a paralattice,
(YVX)AX = (XVYVX)AX = X.
The dual identities are similarly seen. [
This leads to Kinyon’s observation (via email) about refined quasi-lattices.

Theorem 3.4.14. Given a quasilattice (S, v, A), it is a refined quasilattice if and only if
(S, VR, AL) is a left-handed skew lattice, in which case (S, v, A) and (S, Vr, VL) are isotopic under
the identity map on S. In addition, they share all instances of commutation in which case the
outcomes agree for the corresponding pairs of operations.

Proof. As seen in the proof above, anpbara expanded reduces to anbaa. Likewise, bvravrb
reduces to bvavb. Thus whenever (S, VR, AL) is a quasilattice, both algebras share a common
natural quasi-order. Also in general, anb = baa iff anLb = bara with both outcomes being equal,
and avb = bva iff avrb = bvra, with both outcomes being equal. Thus (S, vr, AL) has a
coherent natural partial order iff (S, v, A) does, in which case both algebras share the same natural
partial order. It follows that if (S, v, A) is a refined quasilattice if and only if (S, Vg, AL) is a left-
handed skew lattice, thanks to the previous lemmas. [

Every refined quasilattice is thus just a “scrambled skew lattice”. Indeed given a left-
handed skew lattice (S, v, A) with S/D denoted by 7, various refined quasi-lattices (S, v*, A¥)

may be recovered from it by (1) doing a fibered product factorization (S, vi) xT (S2, v2) of the
right regular band (S, v), replacing v, by its left-handed dual operation and finally shifting the
resulting operation on S| x1 52 back to S to get v*; and (2) likewise factoring the left-regular band

(S, A) as say (83, A3) X(7, 5) (S4, A4) and replacing A4 by its right-handed dual and then shifting the

104



IIT: Quasilattices, Paralattices and their Congruences

resulting operation from Sz x7S4 back to S to get A*. Every refined quasilattice can in principle
be recovered from its derived skew lattice in this manner. When S| xt Sy and S3 x7 S4 are just
reducts of a common fibered factorization of (S, v, A) as a skew lattice, the algebra (S, v*, A*) is
also a skew lattice.

Note that results 3.4.7 — 3.4.9 above, are trivial consequences of the above theorem and
their skew lattice predecessors in Section 2.2.

3.5 The effects of the distributive identities

Connections between refined quasilattices and distributive properties exist which
particularly involve split quasilattices; however, distributive identities, much like absorption
identities, proliferate in the absence of commutativity.

To begin, a noncommutative lattice is fully distributive if it satisfies the identities:

Di: an(bve)=(anb)v(anc). Dy (avbyac=(@nc)v(bnac).
Ds:av(bac)=(avb)a(avec). Ds: (anb)yve=(anc)v(bnac).

The four identities are mutually independent, unlike the case for lattices.

Remark. If one replaces (v, A) by (+, ®), these identities describe a semiring that is also
distributive in that addition distributes over multiplication. When both operations are idempotent,
one has an idempotent, distributive semiring or an ID-semiring. That is, ID-semirings are just
fully distributive double bands, but in ring notation. ID-semirings were introduced by Pastijn and
Romanowska [1982] and studied in several subsequent papers. For instance, varieties of ID-rings
where both operations are middle commutative (i.e., normal in band terminology) were classified
by Pastijn in [1983]. Two separate lines of research thus meet at fully distributive quasilattices.
We will consider connections between ID-semirings and fully distributive quasilattices after
Corollary 4.5.3 below.

A noncommutative lattice is bidistributive if it satisfies a slightly weaker pair of
identities:
Ds:an(bveyand=(@nrbnad)v(ancad).
Dgs: av(bac)yvd=(avbvd)a(avcvd).

Finally, a noncommutative lattice is distributive if it satisfies an even weaker pair of
identities:
Dran(bveyna=(@nbnaa)v(ancnha).

Ds:av(bacyva=(avbva)a(avcva).

Recall that all skew lattices in rings are distributive as are all skew Boolean algebras.
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The power of these varying forms of distribution is seen in the following results.

Theorem 3.5.1. A distributive, noncommutative lattice is a paralattice if and only if it is
a quasilattice.

Proof. Any paralattice satisfying D7 and Dg is a quasilattice. Just expand aa(bvavb)aa and
av(baanb)va using D7 and Dg and then simplify using B¢, B7, C¢ and C7 to obtain respectively
Bs and Cs. On the other hand, let N be a quasilattice satisfying both D7 and Dg. To see that N is
also a paralattice, suppose to the contrary that there exist a, b € N such that anb = b = baa, but
either avb # a or bva # a. Then we obtain either

an(avb)na=a# avb = (anana)v(anbna)
or
an(bva)na=a # bva = (anbra)v(arana)

and thus deny D7. Similarly, if ¢,b € N exist such that avb = b = bva, but either anb # a or
baa # a then we obtain denials of Dg. Hence the two natural partial orderings indeed dualize
each other and N is a paralattice. [J

Passing to D5 and Dg we obtain a much stronger result.

Theorem 3.5.2. A bidistributive quasilattice (paralattice) factors into the product of a
distributive lattice and an antilattice.  Conversely, every such product is a bidistributive
quasilattice (paralattice).

Proof. Let N be a (necessarily fine) bidistributive quasilattice. We show that if x > y, z with
y D z, then y = z. Since both u > uaxayau, unyaxau and uanxaysu D unyaxau in general, the
implication yields the identity uaxayau = unyaxau. Soletx >y,zin N. Since y R ) yaz Li,) z,
with x > yAz also, we show that y = z under the added assumption that either y L)z or y R,)z.
Let us assume that y £(,)z. Consider yvz and zvy. Ds gives

yA(VzZ) = yAVZ)AX = (PAYAX)V(VAZAX) = yVy =y
and

vz)Ay = xA(YVZ)AY = (XAYAY)V(XAZAY) = pVz.

Hence y R(,) yvz L) z, in a common L(,)-class of N. Thus, we may assume further that in

addition to y L,)z either y L)z ory Ry, z. Supposing thaty L)z, then by Dy,
Yy = yvz = (XAYAZ)V(XAXAZ) = XA(PVX)AZ = XAXAZ = Z.

If we take y Ry, z instead, then Ds again yields
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Y = zVy = (XAXAZ)V(XAYAZ) = XA(XVY)AZ = XAXAZ = Z.

Thus if x > y,z with y L£,)z, then y = z. If we had first supposed that y Ry,)z, then it would
follow in similar fashion that y = z. Thus x > y,z in N with y D z implies that y = z, from which

the identity uanxayau = unyaxau follows.
Similarly, if x, y > z in N with x D y, then Dg can be used to show that x = y, from which

follows the identity uvxvyvu = uvyvxvu. By Theorem 3.1.4, N factors into the product of its
(necessarily) distributive maximal lattice image and an antilattice.

For the converse, observe that antilattices are always bidistributive as, of course, are
distributive lattices. Thus split quasilattices whose lattice factors are distributive are indeed
bidistributive quasilattices. [J

An even stronger result occurs when full distribution is assumed:

Corollary 3.5.3. A quasilattice is fully distributive if and only if it is the product of a
distributive lattice and a regular antilattice. In particular, every fully distributive quasilattice is
regular.

Proof. Let N be a fully distributive quasilattice. N factors as the product of a distributive lattice

T and an antilattice 4. Being a fine quasilattice, £, is a v-congruence by Theorem 3.4.5. But
L, is a also a A-congruence: given b L(,) ¢, Dy implies aanb L(,) arc and D; implies
bad L,y cad. Thus L) is a full congruence. Similarly, Ry, is a full congruence. Likewise, D3

and D4 imply that R(,) and L,) are full congruences. Thus both N and its rectangular factor 4

are regular. Conversely, let N factor as the product of a distributive lattice 7 and a regular
antilattice 4. Being regular, 4 factors into a product of flat algebras, 4 = A1 x Aqr x A1) %
Agn, with each factor having operations v and A that each satisfy ab = a or ab = b. Conversely,
identities D1 — D4 are easily seen to hold on such structures and, of course on 7 and hence on N.
O

As mentioned above, two lines of research meet at fully distributive quasilattices. In
particular, our Corollary 4.5.3 follows from Theorem 2.6 of Pastijn [1983]. By the latter theorem,
the lattice of varieties of all ID-semirings satisfying the identities,

xtytz+w=x+tz+y+w and xyzw =xzyw,

is described. The sublattice of those varieties that also satisfy semiring versions of Bs and Cs is
easily seen to be the join of the variety of distributive lattices and the variety of rectangular ID-
semirings (satisfying x + y + z = x + z and xyz = xz). Thus every fully distributive quasilattice is
the subdirect product of a distributive lattice and a rectangular ID-semiring (that is essentially a
regular rectangular quasilattice). But such a subdirect product splits by Theorem 3.5.2 and the
corollary follows.
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Pastijn’s theorem also shows that the lattice of all varieties of fully distributive
quasilattices is Boolean of order 32. The larger lattice of varieties is also Boolean, but of order
2'% (Pastijn works with identities, aba + a + aba = a and (a+b+a)a(a+b+a) = a, the ID-semiring
equivalents of Bs and Cs.)

Returning to refined quasilattices from the last section, one may ask about the effect of
distributivity of (S, v, A) on its isotopic left-handed skew lattice variant (S, v*, a*) where
xv*y = yvxvy and xA*y = xAYAX,

Propositon 3.5.4. If a refined quasilattice (S, v, A) is distributive, then its isotopic left-
handed skew lattice (S, v*, A¥) is also distributive.

Proof. Given that xv*y =yvxvy =yv*xv*y and xa*y = xAyax = xa*ya*x, suppose that (S, v, A)
is distributive. Then

XA VEZ)AFX =XAQp V¥ Z)AX =XA(z V Y V Z2)AX = (XAZAX) V (XAYAX) V (XAZAX)
and
(XAFYAEX) VE (XAFZATY) = (XAYAX) VF (XAZAX) = (XAZAX) V (XAYAX) V (XAZAX),

so that (S, v*, A*) satisfies D7 and likewise its dual Dg. []
Conversely, if (S, v*, A¥) is distributive, then (S, v, A) is easily seen to satisfy the weaker

identity xA(zvyvz)Ax = (xAzAX)V(xAyAX)V(xAzAx) and its dual. If in addition (S, v, A) is already
known to be a skew lattice, then one can show it must be distributive.

3.6 Deriving simple antilattices from magic squares

Recall that a magic square is a square array of distinct numbers where all rows, columns
and the two diagonals have a common magic sum. A classic instance is the Lo-Shu with a magic
sum of 15:

81116
81116
315.7
41912

Given a magic square, its derived antilattice arises by letting the given square be the a-array and
letting the v-array be the square array storing the same numbers entered in their natural ordering.
Thus in the case of the Lo-Shu one gets:
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816 123
W35 7] |45 6]
49 2 789

Square arrays also come from finite planes, that is, vector spaces of dimension 2 over
finite fields. For instance, given the field Zs, the plane Zs x Zs can be represented as the 5x5
array of ordered pairs on the left below, but with parentheses deleted. Alternatively, one could
view these pairs as base 5 representations of integers in base 10. Thus 3,2 represents 325 = 171o.
The planar array could thus be encoded using the numbers in the right array.

0.0 1,0 2,0 3.0 4,0 0o 1 2 3 4

0,1 1,1 2,1 3,1 4,1 5.6 7 8 9
0,2 1,2 2,2 32 4,2 100 11 12 13 14
0,3 1,3 2,3 3,3 4,3 15 16 17 18 19
0,4 1,4 2,4 3,4 4,4 20 21 22 93 o4

In either case, this plane has 25 points and 30 lines, the latter arranged in six classes of five
parallel lines each. The rows of the array consist of all lines of slope 0, the columns consist of all
lines of undefined slope, the main diagonal plus the four broken descending diagonals yield all
five lines of slope 1, and the counter-diagonal plus all four broken ascending counter-diagonals
yield all five lines of slope 4. In all, between the rows, columns, diagonals and counter-
diagonals, 20 out of 30 lines are accounted for, with only lines of slopes 2 or 3 left out.

Alternatively, Zs x Zs can be represented by storing the five lines of slope 1 in the five
rows and the five lines of slope 4 in the five columns in the left array below.

0,0 1,1 2,2 3,3 4,4 0 6 12 18 24
2,3 3,4 40 0,1 1,2 13 19 20 1 7
4,1 0,2 1,3 2,4 3,0 21 2 8 14 15
1,4 2,0 3,1 42 0,3 9 10 16 22 3
3,2 4,3 0,4 1,0 2,1 17 23 4 5 11

In the right array, not only do all rows, columns, the main diagonal and the counter-diagonal sum
to 60, but so do all broken diagonals and counter-diagonals. This makes the right array a
pandiagonal magic square. Returning to the left array, the (broken) diagonals and counter-
diagonals are precisely the lines of slope 3 and 2 respectively. Indeed, the line arrangement of the
left array forces the right array to be pandiagonal. That finite planes can yield pandiagonal
squares is well known. Together, the two representations of this plane in integer format describe
an antilattice induced from a magic square. As will be shown below, both antilattices derived
from the two magic squares thus far encountered are simple. Is this true in general?
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To begin, given antilattice A and any pair a, b €A, recall that the principal congruence
0(a,p) is the smallest congruence on A relating a and 5. Clearly: 6,5 = {0 € Con(A)|a 6 b}.
In particular, 6,5) = A precisely when a = b. Clearly:

Lemma 3.6.1. An algebra A of any type is simple if and only iff O@p) =V for all a # b in
its underlying set . [

For antilattices, this obvious criterion can be simplified. Consider an antilattice A deter-
mined by a pair of rectangular arrays. Let Ry and Cy represent a row and a column of] say, the v-
array of A. (Which array is not important. But Rp and Cyp must come from the same array.)

Lemma 3.6.2. (Simplicity Criterion for Antilattices) Given an antilattice A determined
by a pair of rectangular arrays, let Ry and Co denote respectively a row and a column of the
v-array. Then A is a simple algebra iff Oupy = V for all a # b in Ry and all a # b in Co. In
particular, any given 04y must equal V if A is generated from {a, b} using both v and .

Proof. The condition is clearly necessary. To see sufficiency, suppose that the condition holds
for row Ry and column Cj intersecting at element ¢ in the v-array. Given a # b in A, both cva
and cvb lie in Ry, while avc and bvc lie in Cy. Since a # b, either cva # cvb in Ry or ave # bve

in Co. Say cva # cvb, so that O a.cyp) = V. But since cva 0pcvb, Ocyacyp) refines 0 p) so
that O = V also. Thus Oy =V for all @ # b € 4 and A is simple. Since v and A are
idempotent, the subalgebra {(a, b) generated from {a, b} lies in the O p)-class of a. The final
statement follows. []

In the case of a square antilattice determined from a pair of nxn arrays, this theorem says
that the number of principal congruences needing to be checked can be reduced from (n4 - nz)/2
to just nzf n. Although the check to see that 0, 5) = V for a # b in either RoxRo or CoxCp can be
initially tedious, as the check continues some random recursion enters the process. Thus, if say
0(4,5) has been shown to equal V and a 0, 4) b is encountered in the check of 0, 4), then one can
immediately conclude that 0., 4 =V also holds.

1 23 816
Example 3.6.1. The Lo-Shu antilattice (V)| 4 5 6| (A) |3 5 7| issimple.
78 9 49 2

To begin, take {1, 2}. From the A-array, it is clear that 6, 9 (1, 2), the subalgebra generated
from {1, 2}. But {1, 2, 6, 9} clearly generates the v-array and thus the algebra. Hence 012 =V.
Similar remarks hold for any other pair a # b in any row or column of either array. [

These remarks deserve a more precise analysis. Given distinct elements a and b in a
common row (column) of a 3x3 array, the elements ¢ and d lying in neither the row (column) or
the two columns (rows) of a and b is called the dual pair. The relationship is symmetrical. Thus
{1, 2} and {6, 9} form dual pairs in the v-array above, but not in the a-array. Any pair of dual
pairs in a 3x3 array generates the entire array under the ambient idempotent operation. Given
two distinct elements in a common row or column of one of the above Lo-Shu arrays, this pair
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immediately generates its dual pair in the opposite array. In this sense, these two arrays are
complementary 3x3 arrays, so that any pair of elements lying in a common row or column in
either array generates the entire antilattice which thus is simple.

What can be said in general about congruences on an antilattice?

Given a rectangular array A, a cartesian partition of A is a partition P that is induced in

cartesian fashion from a partition of the rows and a partition of the columns of A. For example,
one cartesian partition of
abcde

feghij
kIl mno

a b cf|d e
is given by: f g n]li jl|-
[k [ m] [n 0]

In all, 260 = 52 x S cartesian partitions of this array are given by the fifty-two partitions of {a, b,
¢, d, e} and the seven partitions of {a, f, k}.

. .. . # L. #oo. .
Given such a partition P, an equivalence P on A is given by a P b if a and b lie in the
same P-class. Such an equivalence is called a cartesian equivalence on A. In the case of

rectangular bands, the congruences on an array that are consistent with a single rectangular band
operation (using just one of v or A) are precisely its cartesian equivalences. Thus:

Proposition 3.6.3. Given an antilattice A, its congruences arise from pairs of cartesian
partitions of its two arrays sharing the same equivalence classes. [

The general 3x3 case.

The Lo-Shu is one of infinitely many possible 3x3 magic squares that can arise if we
agree to store integers besides 1 - 9. Others include the following two squares:

71 89 17 252 171 363
5 59 113 373 262 151
101 29 47 161 353 272

The magic square on the left consists entirely of primes, with a magic sum of 177, the least
possible such sum for any magic square of primes. The magic square on the right consists of 3-
digit palindromes. Like the Lo Shu case, both examples induce simple antilattices. Is this true
for all 3 x 3 magic squares? To answer this, we begin with the following result.
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Lemma 3.6.4. Given 3x3 arrays, A and A', each storing the same 9 distinct elements,
the following assertions are equivalent:

1. Aand A’ form a complimentary pair of 3x3 arrays.

2. If'two distinct elements are either row-related or column-related in either array, they
are unrelated in either sense in the other array.

3. Therows [columns] in A either all become (extended) diagonals in A’ or all become
extended counterdiagonals in A'; similar remarks hold in passing from A’ to A.

Proof. Clearly (1) implies (2). For the converse, observe that the status of (2) is unchanged if
either array undergoes row or columns interchanged! Thus, we assume (2) in the case where
abc

elements a and b lie in a common row of A, as in | d e f |. Assertion (2) implies that A’ is of

g hi
af x ai x af h aie
form |i b y|or|f b y|. Applying (2) further, A" must be either |i b d|or|f b g| its
uvw uvw e g ¢ hdc

trnaspose. In either case we have a complementary pair of arrays. Similarly, assuming a and b
lie in the same column of A, (2) forces A’ to be a complementary array. Likewise, if a and b are
row-[column-] related in A', then (2) forces A to be a complementary to A’. Thus, (1) and (2) are
equivalent. Clearly (3) implies (1) and (2). Given the latter, every row/column in either array
must be an (extended) [counter]diagonal in the other array. This can only happen if (3) holds. [

We are ready to state our main result about antilattices induced from 3x3 magic squares.

a b ¢
Theorem 3.6.5. Given a 3x3 array A =|d e f | consisting of distinct positive
g h i
integers in their natural (increasing) order and a second 3 x 3 magic square A’ storing the same
b i ¢

integers, then either A and A' are complementary or A' is a dihedral variation of | f e d|.

g a h
1 3 4 3114
(An instance of the latter is the pair A=|5 6 7|andA'=[7 6 5|.)
8 911 8109

Proof. Using a dihedral replacement of A’ if need be, distinct § >y > 0 and o > f + y exist such
that:

111 -110 01-1 a-f a+B+y a-y
Al=0a|ll 1T 1| +p|10-1| +y|[-10 1| =|a+B-7y o a-B+7v|.
111 0-1 1 1-1 0 a+y o-B-y o+f
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Clearly a =a— f —y and b = o — . What is the next smallest element? If it is a — y, then the
ascending sequence
a-pP-y <a-fp<a-y<a-frty<a<aoatf-y<aty<atp<atfty

must occur. In this case we have the displayed array. Otherwise, we must have:
a-f-y<oa-Pf<aoa-Pfrty<o-y<a<aty<atpPp-y<atp<atpt+y

yielding an array complementary to A. [
This theorem has the following consequence:

Corollary 3.6.6. Given the arrays A and A’ of the prior theorem, the induced antilattice
A is simple if and only if A and A" are complementary. Otherwise, Con(A) is a 3-element chain.
In general, all antilattices induced from 3 x 3 magic squares are congruence distributive.

Proof. In the complementary case, any pair of distinct elements generates A, which thus is
simple. Otherwise, a single nontrivial, proper congruence is given by [a, b, ¢, g, b, i| d, e, f]. U

The 4 x4 case

We next consider antilattices induced from 4 x 4 magic squares storing 1 - 16. While just
one 3x3 magic square stores 1 - 9 (with eight dihedral variations), 880 essentially distinct magic
squares store 1 to 16. A list of all 880 squares was given by Bernard Frénicle de Bessy in a
posthumous 1693 publication. A mathematical analysis was given in the 1983 paper of Dame
Kathleen Ollerenshaw and Sir Hermann Bondi [S]. Thanks to the following observation, these
880 cases decompose into 220 classes of 4.

Lemma 3.6.7. Given a 4 x 4 magic square A, let squares B, C and D be induced from A
by simultaneous row and column permutations determined by (2 3), (1 2)(3 4) and (1 3 4 2)
respectively. Then A — D are all magic squares, but none are dihedrally equivalent. Moreover all
four squares induce the same antilattice. [

Thus one can get by checking the leading array in each row of four squares in the
Ollerenshaw-Bondi list. Among these, the nonsimple cases are easily spotted, thanks to a
theorem about semimagic squares (all rows and columns add up to 34). In its statement, the
index of a congruence w counts its number of congruence classes.

Theorem 3.6.8. If'a semi-magic square A storing 1 — 16 induces a nonsimple antilattice
A, then A has a maximal congruence w of index 2 whose corresponding congruence class
partition is either
arR={1-4,13-16|5-12}
or

ne=1{1,4,5,8,9,12,13,16]2,3,6,7, 10, 11, 14, 15}
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where mr and wc are outer/inner partitions splitting rows[columns] 1 & 4 against rows[columns]
2 & 3 in the standard array.

Examples 3.6.2. Consider the following magic squares in the Ollerenshaw-Bondi listing:

1 7 12 14 1 4 15 14 1 16 6 11

1016 3 5 1316 3 2 13 4 10 7
1 159 6 4 ©) 129 6 7 (25) 12 515 2

8 213 11 8 510 11 8 9 3 14

Square (1) induces a simple antilattice because 1 - 4 lie in distinct rows and columns
(denying mr) and 1, 5, 9, 13 lie in distinct rows and columns (denying mc). By contrast both 7r
and wc work for (9), while nc works, but not nir, for square (25). Thus both (9) and (25) are
nonsimple. (Caveat. In the Ollerenshaw-Bondi list, the arrays actually store 0 — 15, instead of 1
— 16, and do so in base 4 notation.) [

A survey of the 220 leading squares in the Ollerenshaw-Bondi list yields, upon applying
the test of Theorem 3.6.8, the following statistic:

Corollary 3.6.9. Of the 880 magic squares storing 1 — 16, 416 cases yield simple
antilattices and 464 yield nonsimple antilattices, giving a breakdown of 47.27% to 52.73%. [

Proof of Theorem 3.6.8. (All arrays in this proof are identified to within row and column
permutations.) To begin, all possible cartesian partitions of a 4x4 square with distinct elements
can only have indices among the following: 1, 2, 3, 4. 6, 8,9, 12, 16. Thus if A is nonsimple, the
index |u| of its maximal proper congruence u must lie among 2, 3, 4, 6, 8, 9, 12.

If |u| = 2, then any cartesian partition of the standard array is one of four cases: one row
and three rows, or one column and three columns, or two rows and two rows, or two columns and
two columns. The first two cases are impossible when A is included, as no row or column in the
standard array has the magic sum of 34. In the final cases, the sum of each pair of rows or
columns must be 2 x 34 = 68. This occurs only for {row 1 U row 4|row 2 U row 3} or
{column 1 U column 4 | column 2 U column 3}, just as stated.

|u| = 3 is impossible in the antilattice context since that would mean a row or column in
the standard array would sum to 34 (because it would appear as a row or column in A), which is
impossible.

|u| =4 is possible. But in this case, the quotient algebra A/u would have order 4 and thus
be nonsimple by Proposition 3.2.2. Hence u was not really maximal after all.

lu| = 6 is also possible with the cartesian partition of the standard array having either

[1x2] [1x2] [1x1] [1x3]

template [1>< 2] [1><2] or template [1><1] [1>< 3] or a transpose. In all these cases, the
[2x2] [2x2] [2x1] [2x3]
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two bottom cells would still be adjacent in the cartesian partition of the magic square, thus
inducing a congruence of index two.

Similarly for the remaining indices of 8, 9 and 12, congruences with these indices must
be refined by a properly larger congruence of index 2, thus returning us to the |u| = 2 case. [l

Examples 3.6.3. Pandiagonal magic squares first appear in the 4x4 case. In considering
pandiagonal magic squares in general, two such squares of the same dimension are equivalent if
either is obtained from the other using a combination of dihedral operations, along with cyclic
permutations of the rows and/or the columns. Any given pandiagonal square storing 1 through 16
is thus one of 8 x 4 x 4 = 128 equivalent pandiagonal magic squares. In the 4x4 case, 48
dihedrally distinct pandiagonal squares exist, all being equivalent to exactly one of the following
three pandiagonal magic squares:

1 8 10 15 1 8 11 14 1 14 4 15

1213 3 6 1213 2 7 8 11 5 10

7 2 16 9 6 3 16 9 13216 3

411 5 4 1279 6
1510 5 4

The first two pandiagonal magic arrays induce simple antilattices; but not the third array. [

Two classic constructions

In 1693, Simon de la Loubére gave the following rule for constructing magic squares for
any odd order n. Again we will work with base n ordered pairs, often in abbreviated notation.

De la Loubére’s Rule. Place 00 in the middle of the first row. In ascending (broken)
diagonal fashion place in order the remaining 01 through 0, n—1. Beneath 0, n—1 place 10 and
again in ascending diagonal fashion place 11 through 1, n—1. Beneath 1, n—1 place 20, and
repeat the process until an entire nxn array is filled. The resulting array is a magic square of
odd order n storing 0 through n2—1 in base n.

The array to the right is the n = 5 case in base 5 notation storing 0 — 24.

00 01 02 03 04 31 43 00 12 24
10 11 12 13 14 42 04 11 23 30
(v)|20 21 22 23 24 (A)|03 10 22 34 41
30 31 32 33 34 14 21 33 40 02
40 41 42 43 44 20 32 44 01 13

Theorem 3.6.10. The magic squares of odd order n given by De la Loubére’s rule along
with their corresponding standard array yield simple antilattices precisely when n is prime.
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Proof. Suppose that x 6 y where x # y. By Lemma 3.6.2, we may assume that x and y either lie in
a common row or in a common column of the v-array. If x and y are in the same column, then
their meets yield O-related elements u and v in distinct columns of the v-array. From
{u, v, uvv, vvu} we gain a pair of distinct O-related elements lying in a common row of the
v-array.

Thus at the outset we may assume that x 6 y with x and y distinct elements in a common
row of the v-array. If the order of the magic square is p = 2n + 1 (and the order of the algebra is
pY), then n0 v x and n0 v y must be distinct 8-related elements in the middle row of the v-array,
say ni and nj. But ni and nj are also lie the main ascending diagonal of the A-array and from them
we can generate via AX, Y) =ni v (X A Y), all n, izmk where k =j—1i. If p is prime, the main
ascending diagonal in the A-array must lie in a common 0-class. Since this diagonal generates the
entire algebra, 6 = V.

If p is composite, say p = ab with 1 < a, b < p, then define an equivalence a by ij o &/ if
both i = k (mod a) and j = / (mod a). That a is a v-congruence is clear. In the case of A, observe
that in the A-array any horizontal or vertical displacement of a positions from any starting
position yields an a-related element. Conversely, any pair of a-related elements are connected
by a sequence of such displacements. Thus given x o y and u o v, the A-columns of xAu and yAv,
being the A-columns of u and v, differ in their position by a multiple of a. Likewise the A-rows of
x A uandy A v, being the A-rows of x and y, differ in their position by a multiple of a. It follows
that x A u oy A v so that a is a A—congruence also. Clearly o is neither A or V. [

A variation of the above rule had been given previously by Claude Gaspar Bachet de
Méziriac (who in 1621 published the famous edition of Diophantus’ Arithmetica).

Bachet de Méziriac’s Rule. Place 00 directly above the middle position of an nxn array.
In ascending (broken) diagonal fashion place in order, the remaining 01 through 0, n—1. Next,
place 10 two rows directly above 0, n—1. In ascending (broken) diagonal fashion place, in order,
11 through 1, n—1. Next, place 20 two rows directly above 1, n—1. Repeat the process until an

, . . , 2 .
entire nxn array is filled to produce a magic square storing 0 through n"—1 in base n.

Theorem 3.6.11. The magic squares of odd order given by Bachet de Méziriac’s rule
induce simple antilattices precisely when the order is prime.

[00 01 02 03 04 05 06] (63 20 54 11 45 02 36
10 11 12 13 14 15 16 26 53 10 44 01 35 62
20 21 22 23 24 25 26 52 16 43 00 34 61 25
30 31 32 33 34 35 36 15 42 06 33 60 24 51
40 41 42 43 44 45 46 41 05 32 66 23 50 14
50 51 52 53 54 55 56 04 31 65 22 56 13 40
|60 61 62 63 64 65 66 | 130 64 21 55 12 46 03 |

(Standard array for 0 — 48, base 7) (de Méziriac array for 0 — 48. base 7)
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Proof. Suppose first that p is prime with p = 2n + 1 and let 6 be a congruence with x 6 y where x
#y. As with the previous theorem, things may be reduced to the case where x = ni and y = nj in
the middle row of the v-array and the ascending diagonal of the a-array. If F(X, Y)=n0 v (X A
Y), then F(ni, nj) = n (i +j)/2 in the same 0-class as ni = n0 v ni. (Here (i +j)/2 is calculated in
Zp.) Since n0, nl, ... , n p—1 generates the algebra, simplicity follows if we can show that from
ni and nj one can F-generate the entire nth v-row. This is equivalent to showing that from any
two i #j in Zj, all of Z, is generated via the function f{x, y) = (x + y)/2. Let S be the set of all
numbers in Z, thus generated. If 0 € S, then S is closed under addition and thus is a nontrivial
subgroup of Z, which forces S = Z,. Indeed {0, (x + »)/2) = (x + »)/4, A0, (x + y)/4) = (x + y)/8,
etc. Hence all (x +y)/2n lie in S. Since some power of 2 equals 1 in Z,, we get x +y € S so that
S is as claimed. Otherwise, suppose 0 &€ S. From f{x + k, y + k) = f{x, y) + k, the general case can
be shifted to the 0-case, so that no matter what pair i, j is given, the f-generated set is all of Z,.

If p is composite, say p = ab with 1 < a, b < p, then define an equivalence a by ij a &/ if
both i = k (mod a) and j = / (mod @). The argument that o is a congruence is identical to that in
the case of de la Loubére’s rule. [

A number of further examples of magic squares that induce simple antilattices are given
in Leech [2005b].

Historical remarks

Nearly all results in the first five sections appeared in a 2002 paper by Gratiela Laslo and
Jonathan Leech that studied congruences on noncommutative lattices. The paper was written
while Laslo was working her dissertation at the University of Cluj-Napoca; several results are
from that dissertation. The material on isotopy is of more recent vintage, and was developed
from remarks in an email from Michael Kinyon. It appears here for the first time. The final
section on recreational mathematics and antilattices appeared Leech’s 2005 paper.
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IV: SKEW BOOLEAN ALGEBRAS

In this chapter such fundamental concepts as normal bands, skew lattices and generalized
Boolean algebras are integrated. We have already seen in Theorem 2.3.7 that maximal normal
bands in rings form strongly distributive skew lattices that are characterized by

an(b v c)=(anb) v (anc) and (av b)ac=(anc)v (bac).
More is true: any such maximal normal band S forms a noncommutative variant of a generalized
Boolean algebra called a skew Boolean algebra. In particular S possesses a zero element 0 for
which Ova = a = av0 and Ona = 0 = a0 hold; S is also closed under a difference operation a\b
given by a —aba. Such a system (S; v, A, \, 0) satisfies many identities, a subset of which
provides a defining set of identities for a skew Boolean algebra.

The strongly distributive skew lattices of partial functions encountered Section 2.6 give
archetypal examples: to v and A we adjoin the empty partial function & as the zero and the
difference f\ g given by the restriction of fto F\FNG, where F and G are the respective supports
of fand g (their sets of actual inputs). In this chapter we will work with the right-handed case
Pr(A, B). The skew Boolean version (with the expanded signature) is denoted by P(A, B).

In addition to the above classes of examples, every primitive skew lattice with a singleton
lower class A > {0} is strongly distributive and has a zero element 0; moreover a difference
operation is given by the simple rule: x\y = x, if y = 0, and 0 otherwise. These primitive algebras
play a basic role in the theory, doing for skew Boolean algebras what the Boolean algebra 2 and
its isomorphic copes do for (generalized) Boolean algebras.

In the Section 4.1, skew Boolean algebras (S; v, A, \, 0) are formally defined as structural
enhancements of strongly distributive skew lattices. Variants of some of the familiar results
about generalized Boolean algebras are then proved. In particular, skew Boolean algebras are
shown to be subdirect products of primitive skew Boolean algebras; moreover every skew
Boolean algebra can be embedded into a power of 5, a 5-element primitive algebra. (See
Corollaries 4.1.6 and 4.1.7.) Not surprisingly, every right-handed skew Boolean algebra can be
embedded in some partial function algebra P(A, B).

In Section 4.2, special attention is given to classifying finite algebras, and in particular, to
classifying finitely generated (and thus finite) free skew Boolean algebras. In the process, not
only do we look at an important class of examples, we also engage in some of the basic algebraic
procedures of skew Boolean algebras. A fundamental concept in this section is that of an
orthosum, both an orthosum of elements and an orthosum of subalgebras. The main results are
Theorems 4.2.2 and 4.2.6, with the latter describing the structure of finitely generated free
algebras.

A skew Boolean algebra is, of course, just a strongly distributive skew lattice with added
operations and axiomatic constraints. While section 4.3 focuses mostly on the relation between
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skew Boolean algebras and strongly distributive skew lattices, this is also a convenient context to
consider alternative characterizations of skew Boolean algebras. Theorem 4.3.5 gives an
independent set of five identities that characterizes all right-handed skew Boolean algebras.

In the Section 4.4 we look at skew Boolean algebras with finite intersections N, that is,
algebras for which the natural partial order > has meets that are called intersections and denoted
by xNy. For a partial function algebra P(A, B), fMg is the usual intersection of partial functions f
and g viewed as subsets of A x B. All skew Boolean algebras S for which S/D is finite have
intersections as do, more generally, all complete skew Boolean algebras. Indeed, having at least
finite intersections is often the rule. Here, similarities with Boolean algebras are much tighter: if
N is included in the signature, then all congruences are determined by their kernel ideals — the
congruence classes of 0 — and thus their congruence lattices are distributive (Theorem 4.4.8). We
also show that free skew Boolean algebras have finite intersections (Theorem 4.4.18). The lattice
of all subvarieties of these algebras is described in the section’s concluding Theorem 4.4.24.

Sections 4.1 —4.4 give a structural hierarchy lying at the core of this chapter’s subject.

skew Boolean algebras

with finite intersections

‘ skew Boolean algebras

strongly distributive

skew lattices

In Section 4.5 we study a functor o that object-wise takes a generalized Boolean algebra
B and constructs a skew Boolean cover of B, that is, a skew Boolean algebra Sg such that (1)
Sp/D = B and (2) Sp has a trivial center {0}. Its underlying set w(B) consists of all naturally

ordered pairs in B, {(b, b')|b > b'}. Initially, w(B) has obvious join and meet operations:
(b, b") v (¢, ¢")=(bve, b'vc') and (b, b') A (¢, ¢') = (bac, b'Ac).

We “twist” these outcomes to produce noncommutative variants of v and A. This provides
another class of skew Boolean algebras that have finite intersections as well as other properties
that we investigate. The process also gives us a “workout” of much that was discussed in
previous sections.

In Chapter 6, where we return to skew lattices in rings, special attention is given to skew
Boolean algebras that occur when the set of idempotents in a ring is closed under multiplication,
in which case the idempotents form such an algebra. In particular we will examine how this
occurrence affects the structure of the ring. All this occurs in Sections 6.4 to 6.7.
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In the seventh and final chapter, we examine further the role of skew Boolean algebras in
universal algebra, in particular in the study of what might be termed “generalized Boolean
phenomena,” a topic of continuing interest in universal algebra. In particular we will present a
number of results by Robert Bignall and his student, Matthew Spinks. Both gentlemen have
made significant contributions in this area.

This chapter concludes with a discussion of historical aspects of this topic and references.

4.1 Skew Boolean algebras

We have seen that any maximal normal band S in a ring R is a skew lattice in R under
multiplication and the cubic join V. Indeed, every such band is the full set of idempotents in the
subring it generates in R. There is more.

To begin, if E(R) is commutative, then E(R) is a generalized Boolean lattice since for
each e in E(R), the principal lattice ideal [e] = {f|f< e} is a Boolean lattice. Indeed, if ¢ > fin
E(R), then e — f € E(R) also; moreover e > e — fwith fA (e—f)=0and fv (e—f)=e. All thisis
true even when E(R) is not commutative, provided it forms a band under multiplication. Since
E(R) is then a normal skew lattice by Theorem 2.3.7, each [e] is a sublattice; what is more, for all
fE€[e] one has e — fE [e] with v (e —f) = e and f A (e —f) = 0. This leads us to a definition:

A skew Boolean algebra is an algebra (S; v, A, \, 0) such that

(i) (S; v, A, 0) is a strongly distributive skew lattice with 0 and

(ii) \ is a binary operation satisfying (eafae) V (€\f) = e and (eafae) A (ef) = 0.
By Theorem 2.3.4, (i) is equivalent to (S; v, A) being distributive, symmetric and normal and
having the 0-identities hold. (i) and (ii) together imply eafAae and e\f commute. They also imply
that each [e] is a Boolean sublattice of S with e\f being the unique complement of eafae in [e].
Conversely given (i), if each [e] forms a Boolean lattice, then (ii) follows. These observations
give:

Theorem 4.1.1. Skew Boolean algebras form a variety; moreover, every congruence on
the skew lattice reduct of a skew Boolean algebra is also a skew Boolean algebra congruence. In

particular, the Green’s equivalences are all skew Boolean algebra congruences. [

This variety will be denoted by SBA. The broader perspective of skew lattices yields:
Theorem 4.1.2. A4 normal, symmetric skew lattice with O forms a skew Boolean algebra

if and only if its maximal lattice image S/D is a generalized Boolean lattice, in which case \ is

implicitly determined by (ii) above.
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Let S be a normal, symmetric skew lattice with 0 such that S/D is a generalized Boolean

Then S is distributive by Theorem 2.3.2. Since each [e] is a Boolean lattice, \ is

implicitly determined by (ii). The converse is clear. [

Proof.
lattice.

Examples 4.1.1. The following skew lattices are examples of skew Boolean algebras:

(a) Maximal normal bands in rings form skew Boolean algebras upon setting
enf = ef ,evf=eVfand e\f= e — efe. (See Cvetko-Vah and Leech, [2011] and
[2012].)

(b) Any partial function set P(A, B) with v and A defined as before and with 0 = &
and /' \ g = f| F\ G where F and G are the supports in A for fand g respectively

(c) More generally, any ring of partial functions provided the underlying lattice of
subsets of A is a generalized Boolean lattice and contains the empty set.
(d) Given a rectangular skew lattice D, a primitive skew Boolean algebra is formed

by D0 upon setting x \ y = x if y = 0, but 0 otherwise. []
Theorem 4.1.3. Skew Boolean algebras satisfy:

(iii) e\f =e\(enfne).
(iv) e\(fvg) = (e\Ha(e\g) and e\(frg) = (e\f)v(e\g).
) e\(e\f) =enfne.

These identities are immediate consequences of each inner ideal [e] being a Boolean
[

Given a skew lattice S, an ideal of S is a subset / of S such that givenx, yin/, and zin S

xvy, zax and xAz are in /. Given any element a in a skew lattice S, the principal ideal of a is the

set (a)

= {x €S|x<a}. Clearly, x E(a) if and only if x < b for all b ED,. If S has a zero element

0, the annihilator of a is the set ann(a) = {x ES|x A a=0}. Due to Theorem 2.1.2, x € ann(a) if
and only if x A b =0=b A x for all bED,. If the skew lattice is distributive, then ann(a) is easily

seen to be an ideal. Clearly (a) and ann(a) can also be parameterized by the relevant D-class

A =D, as (4) and ann(4) respectively since due to Theorem 2.1.2, any b in D, induces the same

pair of sets,, When S is a skew Boolean algebra, the situation can be sharpened to give a

decom

position of primary importance in understanding these algebras.

Theorem 4.1.4. Given a D-class A of a skew Boolean algebra S, then:

(i) Both (A) and ann(A) are ideals of S.

(ii) All elements of (A) commute with all elements of ann(4).

(iii) In particular, for all u €(A) and all v E ann(A4), unv=0=vau.

(iv) The map W: (A) x ann(4) — S defined by W(e1, e2) = e1 V ey is an isomorphism.
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Proof. As stated above, (i) holds for all distributive skew lattices with zero elements. From vab
=0 = bav for all v Eann(4) and all b ED,, (iii) follows by Theorem 2.12. Next, (ii) follows from

(iii) and symmetry. Given (ei, €2), (f1, 2) E(4) x ann(A4), (e1vez) v (fivfa) = (e1vfi) v (eavf2)
follows from (ii). By Theorem 2.3.4, (e; v e2) A (fi Vv f2) expands to

(erafyviernf)vieanfi)vieanf)= (errfi)v(enf)

Hence w is at least a homomorphism. For any s €S, the decomposition s = (saaAs) v (s \ a)
represents s as the join of an element in S; with an element in S;. Hence w is also “onto”.
Finally, suppose that (e v e2) = (fi v f2) for ey, f1 in St and ey, f> in S). Letting u be this common
join we have u > ey, fi, ez and f>. Thus

e1 = einu = er A (fiv f2) = (einfi) Vv (einf2) = (einfi) v 0 =e1afi
and in similar fashion f] = ejAf]. Likewise e; =f; so that u is indeed an isomorphism. []

Corollary 4.1.5. Every skew Boolean algebra S with a finite maximal lattice image is
isomorphic to a product of primitive skew Boolean algebras that are determined to within
isomorphism by its minimal non-0 D-classes. []

Recall that 2 is the Boolean lattice {1 >0}, 3y, is the left-handed primitive skew Boolean
algebra {1 £L2> 0}, 3R is its right-handed variant and 5 is the fibered product, 31, x2 3g.

Corollary 4.1.6. The nontrivial directly irreducible skew Boolean algebras are the
primitive algebras. The nontrivial subdirectly irreducible skew Boolean algebras are 2, 31, and
3R. Thus every skew Boolean algebra is a subdirect product of copies of 2, 31, and 3r. [

Proof. The first statement is clear by Theorem 4.1.4. A nontrivial, subdirectly irreducible
algebra is thus primitive, and must be either left-or right handed, thanks to the factorization of
Theorem 2.1.5. If both, it is a copy of 2. Otherwise, it is a copy of 31, or 3g by Theorem 2.6.12.
O

Corollary 4.1.7. Every skew Boolean algebra can be embedded in a power of 5. Every
left-handed (right-handed) skew Boolean algebra can be embedded in a power of 31 (of 3Rr).
Alternatively, every right-handed skew Boolean algebra can be embedded in some algebra of
partial functions with codomain {1,2}. [

Corollary 4.1.8. A (quasi-)identity in v, A and \ holds for all skew Boolean algebras if
and only if'it holds on 5. It holds for all left-handed (vight-handed) skew Boolean algebras if and
only if it holds on 31, (or 3r). The question of when a (quasi-)identity holds in any of these
varieties is thus decidable. [

The above results reveal the following simple lattice. Here (A) denotes the subvariety
generated by the algebra A.
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Theorem 4.1.9. The lattice of all subvarieties of skew Boolean algebras is given by:
®
() )
. 2 .

1
1

where 1 is the subvariety of trivial algebras, (S) is the variety of all skew Boolean algebras, and
(3L ), (3R) and (2) are the respective subvarieties of all lefi- and right-handed skew Boolean
algebras and generalized Boolean algebras. [

Recall that an algebra is locally finite if every finite subset generates a finite subalgebra.
A variety of algebras is called locally finite if each of its algebras are locally finite.

Theorem 4.1.10. Skew Boolean algebras are locally finite.

Proof. Let a skew Boolean algebra S be generated from a finite set X. Clearly only finitely
many distinct functions from X to 5 exist. Let @ = [[ug;: S — 5I be an embedding of S into a
power of 5. Since each ¢; is determined by its behavior on X, only finitely many of the ¢;’s can
be distinct, in which case only finitely many are needed for an embedding, since in a family of
functions that collectively separate points in their common domain, repetition is superfluous. Put
otherwise, we may assume that |I| is finite, in which case the embedding gives |S| < 5‘1‘. (I

Complete algebras

We now turn to issues of completeness. A symmetric skew lattice is join [meet]
complete if all commuting subsets have suprema [minima] in the natural partial ordering. It is
complete if it is both join and meet complete. By a maximal element in a skew lattice is meant
any element in the maximal D-class of S, should the latter exist. The unique maximal element, if

it exists, is essentially the constant 1.

Lemma 4.1.11. Join complete, symmetric skew lattices have maximal D-classes. In

particular, every join complete symmetric, normal skew lattice S has lattice sections, all given as
mASAm for some maximal element m of S.

Proof. For then every maximal totally <-ordered subset must contain a maximal element m that
in turn is <-maximal in the skew lattice. The rest is clear. [

A nontrivial skew Boolean algebra is completely reducible if it is isomorphic to a product

of primitive skew Boolean algebras. Since primitive algebras are trivially complete, so is any
completely reducible algebra. A primitive class in a skew Boolean algebra is any D-class lying
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directly above 0. An afom or primitive element is any element in a primitive class. A skew
Boolean algebra is atomic if for every nonzero x €S an atom a €S exists such that a < x.

Theorem 4.1.12. A4 skew Boolean algebra is completely reducible if and only if it is
complete and atomic.

Proof. Completely reducible algebras are clearly complete and atomic. For the converse, let S
be a complete atomic skew Boolean algebra. For any x €S, the set xASAx is a complete atomic
Boolean algebra with (unique) maximal element x. Thus each x > 0 in S is the supremum of its
underlying atoms, all of which commute, with distinct sets of commuting atoms giving distinct
suprema. Next, let {X;} be an indexed collection of all primitive classes of S and let P; = X;
be the corresponding primitive skew Boolean algebras. Define o: []; P, — S by setting
ol{e;)] = sup(e;). By our remarks, o is at least a bijection.

Let (ej), {f;) €[1;P; be given with supie;) = e and supi(f;) =f. Then evf> e;vf; for each j.
Indeed,

(evh) A (evf)) = (ene) v (fae)) v (enf)) v (faf)) = eiv (fae) v (enfy) v fi = eV (fae) v f.

Case 1.  Bothe, f; # 0. Here ejv(faej)vf; = e;vf; since all v-factors are D-equivalent.
Case 2.  f;=0. Then fae; = 0 since its image in S/D is 0. Hence fiv(fae))vf; = e; = e;vf;.
Case 3.  ¢;=0. Here ejv(faej)Vvf; =f; = e;vf; again.

Similarly, (ejvf))a(evf) = (ejvf)) so that evf> e;vf; is verified. Each primitive join e;vf; is either
an atom of S or 0. Claim evf=sup(e;vf;). Clearly evf>sup(e;vf;). If the inequality is strict, this
means that ev/> an atom g that does not lie below sup(e;vf;). Thus for this index %, ex= 0 = f;.
But this yields a contradiction in the Boolean lattice S/D where ng is an atom and neither D, >

Cng nor Dy > ng , yet Do v Dy > Cng . Thus evy = sup(e;vf;) as claimed. Next, by mid-

commutativity, (erf) A (ejnf) = (ene)) A (fafj) = ejnf;, and similarly (e;af;) A (enf) = ejnf;. Thus
(enf) = (ejnf)) for each j and hence (eAf) > sup(ejaf;). An argument similar to that for the join
guarantees that (enf) = sup(ejafj). Thus o: [[;P; — S is an isomorphism of skew lattices. Since \
is implicitly determined by the skew lattice structure, o is an isomorphism and S is seen to be
completely reducible. [J

Theorem 4.1.13. Complete skew Boolean algebras satisfy the identities:

1) e A sup(f)) = sup(e A f)).
2) e v inf(f;)) = inf(e v f).
3) e\sup(fy) = inf(e\f)).
4) e\inf(f;) = sup(e\f).

Proof. In each case the obvious inequality (< or >) becomes equality in its complete maximal
Boolean algebra image. Thus one already has equality in the skew Boolean algebra. [
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Given complete skew Boolean algebras S and T, any homomorphism f: S — T sends
commutative subsets to commutative subsets. If f'also preserves suprema and infima, then f'is a
complete homomorphism of complete skew Boolean algebras. We state the following fuller
description of the P(A, B) process.

Theorem 4.1.14. Given maps o: A' — A and p: B — B’, P(a, B): P(A,B) — P(A’, B)
defined by P(a, B)f = pfo, for all fEP(A, B), is a homomorphism of complete Boolean skew

algebras. Moreover, if Set and CSBA denote the respective categories of sets and complete skew
Boolean algebras, then P: Set x Set — CSBA is a bifunctor from the category of sets to the

category of complete skew Boolean algebras.

4.2 Finiteness, orthosums and free algebras

We recast the assertions of Theorem 4.1.4 and Corollary 4.1.5 in more detail for the case
where S/D is finite and especially when the algebra S itself is finite. It will be helpful to explore

things in a slightly more general context, proceeding as follows. Two element a and b in a skew
Boolean algebra are orthogonal if a A b = 0 (and thus baa = 0 and also avb = bva). A finite set
of elements {ay, ... , a,} is an orthogonal set if the a; are pairwise orthogonal, so that

a1Vv..Vap,=ag1V...Vagn

for all permutations o on {1, 2, ... , n}. In this situation, @; V ... V a, is denoted by a; + ... + a,
n
or zl a; . (Indeed, such notation will assume orthogonality.) Such a sum is referred to as an

orthogonal sum, or an orthosum for short.

A family of D-classes {D, ... , D,} is orthogonal when elements from distinct classes
are orthogonal. For this it is sufficient that some transversal set {d|, ... , d,} is orthogonal. When
this occurs, the D; are the primitive D-classes in the subalgebra they generate. In general:

Proposition 4.2.1. Given an orthogonal family of nonzero D-classes {D1, ... , D} and

two orthosums ay + ... + a, and by + ... + b, where a;, b; € D;:

i) (a1 +...+a)v (b1 +...+b) = (a1vb1) + (a2vh2) + ... + (arvb,);
if) (a1 +...+a) A (b1 +...+b) = (a1nb)) + (aanb) + ... + (arnby);
iif) (a1 +...+a)\(b1+ ...+ b)) = (a1\by) + (a2\b2) + ... + (a,\b));
iv) ai+...+a, = by+...+b, iff ay=b1,ax="by, ... ,and a,=b,.

Indeed (i) — (iv) extend to the subalgebra Z]r DlQ = {x1 + ... +x|x ED?} generated from the

. .. 0
union D1 U ... U D, where elements from distinct Di are also orthogonal. UJ
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Zf DIQ is an internal direct product of the primitive subalgebras D? y ey D(r) that we call

the orthosum of the D?. Of course, a;\b; = 0 whenever a; D b;. A special case occurs when the
D; are atomic D-classes lying directly over the class {0}. Here a; A b; = 0 for elements a; and b;
from distinct atomic D-classes, making them orthogonal. In general, nonzero orthogonal D-
classes Dy, ... , D, are the atomic D-classes of the generated subalgebra ZfDlO . In any case we

have a basic result for skew Boolean algebras with only finitely many D-classes:

Theorem 4.2.2. [f'S is a nontrivial skew Boolean algebra with finitely many ‘D-classes

and having atomic ‘D-classes {Di, ... , D,}, then S is the orthosum Z{Dto of primitive

subalgebras {D?, e D? yog

The above decomposition is an internal form of the atomic decomposition of a skew
Boolean algebra §, which must occur when S/D is finite. This internal form is unique. The

external form, given as a direct product, is unique to within isomorphism. In the lefi-handed case
for finite S, the standard atomic decomposition is

S = Ry XMy X Xy with 2Sn1Sn2S .. <ny,

with ny being the unique left-handed primitive algebra on {0, 1, 2, ... , n—1} with 0 being the
0-element. Standard decompositions are also unique. Consider 2 x 2 x 47 x 57 x 57 or more

briefly 2° x 4; x 5;° In this instance 22 provides the center of the algebra where “L” is

superfluous. Similar remarks hold in the right-handed case. In the two-sided general case one
uses notation such as 3;°5p to represent the primitive algebra 3;x;5z given by the fibered
product, as in: § = 2% x 375k x 5.°4p x 7r*7g. In this case a standard decomposition could be
given by lexicographically ordering the factors. In any case, a finite skew Boolean algebra is
classified when its standard atomic decomposition is given.

Example 4.2.1. Partial function algebras serve as primary examples of SBAs. Note that

P, oonb (), omy) =TI Py, (1,2, m))

n
= (PLAD L 20 om))) = 1))

In particular, P({1, ... , n},{1}) = 2". In this case each partial function f is determined by

choosing a subset of {1, 2, ..., n} to befl(l), resulting in a bijection between PL({1, ..., n},{1})

and the power set of {1, 2, ..., n} that preserves the generalized Boolean operations.

We characterize congruences on and homomorphisms between skew Boolean algebras
with finitely many D-classes.
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Proposition 4.2.3. Let 6 be a congruence on a skew Boolean algebra A viewed as an

orthosum Y| Dlp of primitive subalgebras D?, the D; being the atomic D-classes. Then:

1) If d 00 for d €D;, then D; C [0] g, the congruence class of 0.
2) [fd] 0 d, with d\ €D;, dy € Dj, but D; # Dj, then D; U D]' - [0] o

3) Thus if some D; C [0]g, then upon re-indexing, DU ... UD;C [0]g, with the remaining

refined by 6-classes and
N1 _ r 0
(Z1Di )/9 = 2k+1Di /Oi

where ;= 01 DlQ X D? and sz/ei is primitive for each i > k + 1.

Thus, given S = Z:Dlo and a homomorphism of skew Boolean algebras f: S — T:

4) 18] is an orthosum with summands f[DZO:| , each of which is either primitive or else

just {0r}. In the former case, f| Di 1 is at least atomic in f[S].

5) f[DlO] ﬁf|:D;):| # {07} implies i = so that D? = D?,

Finally, in the purely primitive case:

6) Given left-[right]handed primitive algebras D? and Dg , a non-0 homomorphism

from D(l) to Dg is any map sending 0 to 0, and elements in D1 to elements in D;.

7) In general, all non-0 homomorphisms f D? — Dg are obtained as follows:

(a) Send 0 to 0.

(b) Pick a €D\ and b €D; and any map A: L, — L, and any map p: Rg —> Rp.

(c) Finally set f{0) = 0 and for all x EL, and y ER,, set f{xny) = Ax) A p(y).
Proof. (1) should be clear. (2) For di = dia d, is 6-related to dia d> = 0 and likewise d> 6 0.
The conclusion now follows from (1). (3) — (5) should also be clear. (6) and (7) recall some of

our remarks in the final part of Section 1.3. [J

As a consequence, we have the following particularly crisp result:
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Theorem 4.2.4. Given a skew Boolean algebra S = erDlO with finitely many D-classes
and with the D; being its atomic D-classes, then its congruence lattice decomposes as follows:
Con(S) = Con(D})x ... x Con(D\). O

Recall that for a primitive algebra DO, Con( D? ) is essentially the lattice of rectangular partitions

of D, augmented by a bottom element corresponding to the universal congruence on D°.

Free algebras: the finite case
Given a non-empty set X:

SBAy is the free skew Boolean algebra on X.
rSBAy is the free right-handed skew Boolean algebra on X.

rSBAy is the free left-handed skew Boolean algebra on X.
GBA x is the free generalized Boolean algebra on X.

Free algebras are, of course, unique to within isomorphism. Thus if we say “the free” we have in
mind a particular concrete instance, from which we are free (in an alternative sense) to find other
isomorphic variants. In this paper, the default free algebra Fy on an alphabet X is the algebra of
all terms (or polynomials) in X. In the current context, the terms are defined inductively as
follows.

1) Each x in X is a term, as is the constant 0.
2) If u and v are terms, so are (u v v), (u A v) and (u \ v).

Two terms, u and v, are equivalent in Fy iff # = v is an identity in the given variety of algebras.
Clearly these criteria for equivalence differ among the four varieties of interest. Given an SBA
equation of terms in X, u = v, one can check if it is a left-handed identity (or right-handed
identity) by seeing if it holds for all evaluations on 37 (or on 3g). It is an SBA identity precisely
when it holds for all evaluations on both 3, and 3. Finally, it is a GB4 identity if and only if it

holds for all evaluations on 2. In our considerations, we are free to relax aspects of the syntax for
parentheses if all ways of reinserting them lead to equivalent expressions. E.g., that would
happen with xvyvz, but not with xayvz.

Given the universal character of the homomorphisms involved in the Clifford-McLean
and the Kimura Factorization theorems for skew Boolean algebras:

GBAy = SBAYx/D =xSBAx/D = SBAx/D.
fRSBAy = SBAx/L and [SBAy = SBAy/R.
SBAy= [SBAyx XGBAX ®RSBAy.

13

(Indeed, let 'V be any variety of algebras with W a subvariety of V. For each algebra A in 'V, let
6a be the congruence on A such that A/64 is in W and the induced map @a: A — A/fa is a
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universal homomorphism from A to W. Then if A is a free V-algebra on generating set X, then
A/0 is a free W-algebra on generating set @a[X]. In the above context, 64 = D, L or R as
appropriate, with X and @a[X] being equipotent under @a.)

In what follows we first consider SBA,,, ;SBA,, etc. which denote SBAy, {SBAy etfc. on
alphabet X = {xi, x2, ... , x,}. Their standard atomic decomposition is given in Theorem 4.2.6
below. But to obtain the latter we need to understand their atomic structure. The case for ;SBA,
and for RSBA,, is described in Theorem 4.2.5, the content of which is our immediate goal. We
focus on (SBA,. Since (SBA, has finitely many generators it will be finite and thus is
determined by its atomic D-classes, all lying just above the class {0}. We first describe these

classes. Each class consists of atoms all sharing a common form. The justification that they are
indeed the atomic D-classes will follow. They are the 2"—1 classes of one of the forms below
where {y1, y2, ... , yu} in the table represents an arbitrary permutation of {xi, x2, ... , x4}. A
typical class arises from a partition {LM} of {x1, x2, ... , x,} with k > 1 elements in L and n—k
elements in M used to form the term (y1A ... AYr)\ (Vk+1V...Vvyy,). This partition is ordered in that
{LM} is distinct from {M|L}. Thus, e.g., {1, 2|3, 4} # {3, 4|1, 2}.

FormType Number of Classes of this Form | Class Sizes

n

URISOR2 2 Y =1, 1
n

G AYIN(3 VYL VeV y) ) 2
n

(5 AV AP\ VY5 Vv yg) 3 3
n

Y| AYy A A Yy 1= n
n

Given the left-handed identity xAyAz = xAzAy and the 2-sided identities

x\yvz)=x\(zvy = x\y\z=x\z2)\y,

(easily checked on 3, or on both 31 and 3R respectively), (ViA ... AVO\k+1V...Vyy) is invariant in
outcome under any permutation of y, ..., yr or of yr+1, ..., y». What does distinguish the
elements in each class is the left-most element or variable, y;. In all, a total of n2"" essentially
distinct atoms exist to produce n2"" n-variable functions on 3¢ (or on 3g). This is verified in the
remarks below. But first, an example:
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Example 4.2.2. For X = {x, y, z, w}, the 15 atomic classes and the 4(2*) = 32 atoms are:
{x\(vzvw)} {y\(xvzvw)} {z\ (@xvyvw)} {w\(xvyvz)}

{xap)\zvw), Ax)\zvw)} {GeA\yvw), (zax)\(yvw)}

{xAw)\(yvz), (wax)\(yvz)} {A)\(xvw), EAy)\(xvw)}

{Aw)\(xvz), (WAy)\(xvz)} {EAw)\(xVvy), (WAz)\(xvy)}
{(xAyA2)\w, (PAzAX)\W, (zAxAY)\W} {(xAyaw)\z, yAwWAx)\z, (WAXAY)\z}
{(xazaw)\y, (zawax)\y, (WAxAz)\y} {Azaw)\x, (zaway)\x, (WAyAz)\x}

{XAYAZAW, YAZAWAX, ZAWAXAY, WAXAYAZ}. [

Theorem 4.2.5. Given the free left-handed skew Boolean algebra (SBA, on

X1, .o, Xa)

i) SBA, is a finite algebra whose atoms are the terms (ViA...AY)\ (Vi+1V...VVy)
for k> 1 and where (1, ... , y,) is a permutation of {x1, ... , X}.

ii) Atoms V1A...AVi)\ Wre1V...Vyn) and (z1A...Az)\ (Z141V ... VZy) lie in the same
atomic class if and only if k =1, (z1, ... , z) is a permutation of {y1, ... , yr} and
thus (zp1, ... , zn) is a permutation of {Yk+1. ... , Yn}-

i) V1A A\ kY. VYn) = (1A AZ) N\ (Z11V ...V zZy) Bf besides (1), y1 = z1.
For the free right-handed dual algebra RSBA,, (1) and (ii) again hold along with:

iiiR) 1A AV k1Y ... V) = (1A AZ) \ (211 ... VzZy) if in addition to (ii), yi = zk.

Proof. We consider the left-handed case. The right-handed assertion is similar. To begin, given
a permutation (z1, ... , zk) of {¥1, ... , Yk}, @A AZD\DVk+1V ... VYy) and (V1A o AVONDVk+1V ... V)
are L-related; they are not equal if z; # y1. Indeed yiA...Ayk L ziA... Az plus (a\c)a(b\c) =
(anb)\c implies they are L-related; they are not equal if z; # y; since they are not equal when
operating as functions on 3. Give y; and z; values 1 and 2 respectively, the remaining front
variables 1, and all n—k back variables 0. The outcome for (y1A ... AY\ (Vik+1V...Vyy,) is 1 and for
A AZNPR+IV .. VYp) 1S 2.

In general, given distinct partitions {L|M} and {L'M'} of {x1, x2, ..., x,} with L and L’
nonempty, some element m lies in LNM' or in L'NM, say the former. Viewing m as a generator,
given any {LM}-term « and any {L'|M'}-term v, we have uam = u but vam = 0 = mav. Thus
unv =urmav =un0=0=vau. Thus all {L|M}-terms are orthogonal to all {L'|M'}-terms. Since
x1A oo.AxE) \ (0kt1V...vx,) = 0 is not an identity in 3y for £ > 1, all {L|M}-classes are non-0
classes and distinct {L|M}-classes are orthogonal. = Returning to the example above,
{xA)\zvw), (WAx)\(zvw)} is disjoint from {(xAw)\(yvz), (WAx)\(yvz)} with pairs from distinct
classes being orthogonal.

To see that they are full D-classes of (SBA,, and that they (all the) atomic D-classes,

observe first that they are the atomic ‘D-classes in the subalgebra of [SBA, that they generate.
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We need to show that this subalgebra is in fact all of [SBA,. We do so by showing that each

generator x; of fSBA, is in the generated subalgebra. The identities above give us:

X1 = (x1Ax2) + (x1\x2) = (x1Ax2Ax3) + ((x1AX2)\x3) + ((r1\x2) AXx3) + (x1\x2)\x3)
= (x1Ax2Ax3) + ((x1AX2)\x3) + ((r1AX3)\2) + (x1\(x2vX3))
= (x1Ax2AX3AX4) + ((r1AX2AX3)\Xg) + ...

The process keeps repeating on each new term until generator x; is resolved into an orthosum of
2" {L|M}-type terms — indeed into all the {L|M}-type terms with left-most entry x;. Similar
calculations work for the remaining generators. Thus the 2"-1 distinct {L|M}-classes are all the
atomic D-classes of [SBA,,. [

In the generalized Boolean case, all atomic terms resulting from the same {L|M}
decomposition are equated. Thus the particular left-most generator/variable no longer
differentiates among outcomes. In the 2-sided case, in the Kimura fibered product construction
each left-handed atomic class is matched off with the right-handed atomic class with the same
{LIM} partition. In this case the data of ((yiA...A¥r), ('1A...A)Y's)) can be combined as
VIA...AYkAY 1A ... Ak and then reduced via 2-sided normality. Returning to the previous example:

Example 4.2.2 continued. These previous terms describe the atomic classes of both the
left- and right-handed free algebras on {x, y, z, w}. E.g. {(xA»)\(zvw), (pAx)\(zvw)} works in the
left-hand case, while {(xAy)\(zvw), (yAx)\(zvw)} works in the right-hand case. In both finite
cases it is possible to describe the “atomic” terms using cyclic permutations in a way that the
terms do double duty. But that won’t “stretch” to the 2-sided case. Here we adjoin both
(xAyAx)\(zvw) and (yAxAy)\(zvw) to the class to get:

{GeA\zvw), AX)\zvWw), (XAYAX)NzVW), (PAXAY)NzVW)}.

For two terms to be equal in value, both end variables in the left part would have to agree. In
general, the corresponding atomic classes would be squared in size. [

We thus obtain precise structural descriptions of all four relevant free algebras. In what
follows D is the {L|M}-induced D = L-class, P‘C{L‘M} is the left-handed primitive algebra
D{L|M}0 and PK‘R{L|M} is its right-handed counterpart. Also, given primitive algebras P and Q, P*Q
denotes their fibered product over 2, Px3Q. In the next theorem, the trivial algebra 1 on {0} is
included to allow the full distribution of binomial coefficients. This factor corresponds to the
front-empty partition {J|X}. Hence:
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[2.2]

Theorem 4.2.6. The free left-handed skew Boolean algebra (SBA, on {xi, ..., x,} is a

direct sum of the primitive algebras PL{L\M} where {LIM} ranges over partitions {LIM} of
{x1, ..., Xn} where L+ . Thus:

0 1 2 3
SBA, =1" /X2" 'x3; 'X4; ><...><(n+1)Ln .
Dually, the free right-handed skew Boolean algebra fSBA, on {xi, ..., x,} is a direct

sum of the primitive algebras PR{L‘M} where {LM} shares the same range. Thus:

n n n n n
0 1 2 3 n]
fRSBA, = 1' "X2' "X3p X4y 'X.. . X(n+1), 7.
Finally, the free skew Boolean algebra SBA, on {xi, ..., x,} is a direct sum of the

primitive algebras PL{L‘M;‘PR{L‘M} where {LIM} again shares the same range. Thus:

n

SBAHE1{°]x2[?]><(3L-3R)[;]><(4L-4R)[Z]x...x((n+1)L-(n+1)R)[Z]. 0
Corollary 4.2.7. Foralln>1:
i) I:SBA,| = 2[1J3{2]4[3J---(n+1)[”] — |xSBA,].

ii) ISBA,| = 2[35[;]10[2] (n® + 1)[2] ,

Moreover, if ai(n), ar(n) and o(n) denote the number of atoms in (SBA,, :SBA, and
SBA,, respectively, then:

n n n n
iii) ap(n) = (]]l+(2]2+...+(n_1)(1'1—1)+(an = ar(n) .
iv) a(n) = 1 1+ 5 44+ ne1 (n=1)"+ ; n°. O

Standard combinatorial arguments give the following simplifications:

Corollary 4.2.8. Given oy (n), ar(n) and o(n) as above:

ar(n) = ar(n) = n2"" and a(n) = n(n+1)2" 2, so that a(n) = L ar(n).
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2

and set x = 1. Setting x = 1 again in the second derivative of the binomial expansion of (1 + x)"
n n n w2

gives: 2.1+ 3e2 4o+ n(n—1) =n(n-1)2"".
2 3 n

Adding the equality of the previous expansion to this and simplifying gives

n n n)y 2 ai n2 _ n-2
) 1+ 5 44 .-+ n- =n2"  +amE-1)2" " = am+12" . O
n

n n n
Proof. To see (1 j1+[ ]2+...+[ ]n =n2"" differentiate the binomial expansion of (1 + x)"
n

A short table of values follows with the sizes for n = 5 given to 4-digit accuracy.

503715%10° | 80 |3.017x10% | 240

. n n n n
Slnce( j+[ )+---+( ) =2"—1, we have:
1 2 n

Corollary 4.2.9. A fiee (left-handed, right-handed or two-sided) skew Boolean algebra
on n generators has 2" — 1 primitive factors in its atomic decomposition. Thus any skew Boolean
algebra on n generators has at most that many. Any generalized Boolean algebra on n generators
thus has <2" — 1 atoms, and is free if and only if it has exactly that many. [

Theorems 4.2.2 and 4.2.6 also lead to:
Corollary 4.1.20. Every finite skew Boolean algebra can be embedded in a finite free

skew Boolean algebra. Every finite left-handed [right-handed] skew Boolean algebra is
isomorphic to a direct factor of a finite free left-handed [right-handed] skew Boolean algebra.

4.3 Connections with strongly distributive skew lattices
A skew lattice is embedded in a skew Boolean algebra (S; v, A, \, 0) if it is embedded in

its skew lattice reduct (S; v, A). Since such reducts are strongly distributive, theorems from the
previous section and Section 2.6 lead to the following results.
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Theorem 4.3.1. A4 skew lattice can be embedded in a skew Boolean algebra if and only if
it is strongly distributive.

Proof. (Only if) Skew lattice reducts of skew Boolean algebras are strongly distributive and
strongly distributive skew lattices form a skew lattice subvariety. (If) By Theorem 2.6.12 every
strongly distributive skew lattice can be embedded in a power of the skew lattice 5, which
however, is the reduct of that power of the skew Boolean algebra 5. [J

Theorem 4.3.2. For skew lattice S the following are equivalent:

i) S can be embedded in a right-handed skew Boolean algebra.
ii) S'is right-handed and strongly distributive.
iii) S can be embedded in a slew lattice of partial functions Pr(A, B).

Proof. The equivalence of (i) and (ii) is seen as in the previous proof, but with 5 replaced by 3.
If S can be embedded in some partial function skew lattice Pr(A, B), then since the latter is right-

handed and strongly distributive so it S. The converse follows from Theorem 2.6.14. [

Theorem 4.3.3. Given an identity in v and A the following are equivalent:

i) The identity holds in all skew Boolean algebras.

ii) The identity holds in all strongly distributive skew lattices.

iii) The identity holds in the skew lattice 5.
Proof. Both (i) and (ii) are equivalent by Theorem 4.2.1, and each clearly implies (iii).
Conversely, any identity holding on 5 must also hold on any sub-skew lattice of any power of 5,
and extending via isomorphism, it must hold on any strongly distributive skew lattice. [l

Of course, one has the right-handed specialization of the above.

Theorem 4.3.3R. Given an identity in v and A the following are equivalent:

i) The identity holds in all right-handed skew Boolean algebras.

ii) The identity holds all right-handed strongly distributive skew lattices.

iii) The identity holds in the skew lattice 3r.
iv) The identity holds in all partial function algebras P(A, B). O

Proof. The equivalence of (i) — (iii) is seen similarly as in the general case. Their equivalence
with (iv) comes from Theorem 2.6.14. [
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The override and the update operations

J. Berendsen, D. Jansen, J. Schmaltz and F. Vaandrager in their 2010 paper, The
axiomatization of overriding and update (Journal of Applied Logic, 8 (2010), 141-150.), gave an
approach to studying partial function algebras that is similar in many ways to ours, but with some
differences. To begin, given a pair of partial functions f and g in the partial function set P(A, B)
with subsets F and G of A being their respective support, the authors considered the following

operations:
Override: frg =fU g|(G\F).
Update: flg]l = g|(FNG) U f|(F\G).
Minus: f-g = f|(F\G).

The override f > g is clearly the join f' v g, while the minus f—g is just f\ g. Stated in our
notation, the authors defined the update by f[g] = (fag) v (f\g) where fag is g\ (g\f), the latter
holding for all right-handed skew Boolean algebras. For right-handed, strongly distributive skew
lattices in general, f[g] is given also as either (fAg) v for f A (gvf). Indeed, using any of these
three ways, on 3r one has:

Thus all three evaluations of x[y] in any skew Boolean algebra agree. (The equation

(xAy)vx =xA(yvx)
and its v-A dual are examined in Section 5.1.)

One can consider algebras with signature ([], v) as was suggested by Berendsen ef a/ in
their paper. The problem of interest for those authors was that of determining identities in [ ] and
v that hold for all partial function algebras (and thus more generally, for all right-handed,
strongly distributive skew lattices). Clearly all identities in [] and v that hold in all partial
function algebras follow from the defining identities for right-handed skew Boolean algebras;
more generally, they follow from the defining identities for right-handed, strongly distributive
skew lattices. In their paper, the authors were interested particularly in finding a set of identities
in just [ ] and v that (1) held for all partial function algebras and (2) was powerful enough so that
all identities in v and [ ] that hold in all partial function algebras were consequences of the given
identities. The search for such a set of identities is apparently still open. However, if 3* denotes
the algebra ({0, 1, 2}; [ ], v) defined by the Cayley tables

and
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that reflect what occurs on 3, either as a skew lattice or as a skew Boolean algebra, then along
with Theorem 4.3.3R, we are led to the following result of Cvetko-Vah, Leech and Spinks:

Theorem 4.3.4. An identity in [] and v holds in all right-handed skew Boolean algebras,
or more broadly in all right-handed strongly distributive skew lattices, if and only if it holds in
3*. Thus, the question of whether an identity in [] and v holds in these classes of algebras, or in
particular in all partial function algebras of the form P(A, B) is decidable.

Proof. The condition is clearly necessary. Since every right-handed SBA [strongly distributive
skew lattice] is a subalgebra of a power of 3r [under the appropriate signature] the condition is
also sufficient. The final statement is now clear. [J

Our interest in such identities and especially in [] is due to the role of the latter in right-
handed strongly distributive skew lattices. Returning to Section 2.7, the free categorical and
symmetric right-handed skew lattice on generators x and y can be presented as follows:

XVY —p yVX
ST T xyl=xA(yvi)=(xAy)va
x —p Xyl yixl-p y  where
oo Mxl=yAaxvy)=(arx)vy.
YAX—p XAy

In particular, this skew diamond and its subalgebras describe the 2-generator subalgebras that can
occur in right-handed skew Boolean algebras or in right-handed strongly distributive skew lattices
in general or, for that matter, in right-handed skew lattices in rings. Thus, just as skew
joins/overrides can be seen as biased unions, and meets as biased intersections, the two other
terms in this diagram besides x and y can be viewed as the outcomes of updating x and y relative
to each other. More will be said about the update operation in Section 5.1.

Axioms for (right-handed) skew Boolean algebras

In their paper, Berendsen ez a/ introduced five identities that describe the behavior of >, —
and & in combination. Using automated reasoning software they showed their equations to be
independent and obtained a number of derived equations. They also raised questions about the
algebras that satisfy these equations.

In a responding paper by Cvetko-Vah, Leech and Spinks (Skew lattices and binary
operations on functions, Journal of Applied Logic, 11 (2013), pp. 253-265), the variety of
algebras satisfying those five identities was shown to be term equivalent to the variety of right-
handed skew Boolean algebras. Thus the five identities given in the first paper lead to the
following equational basis (or set or characterizing identities) for right-handed skew Boolean
algebras.
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Theorem 4.3.5. An independent set of identities that characterize the variety of all right-
handed skew Boolean algebras (S; A, v, \, 0) is given by:

1) XVX =X

ii) x\x=0.

iii) xvy=@\x)vx

iv) x\p\z) = x\y) v (x\(x\2)).
V) xvy)\z=(x\2)v(\2).

Here the meet A is defined by xay : =y \ (y\x). O

An independent set of six identities characterizing the variety of skew Boolean algebras
was given in Spinks’ dissertation: (See also Spinks [1998] Prop. LBSL-RC-7.)

i) XA(xvy) = x; ii) yAx)vx = x;
iii) x A (yvz) = (xAY) V (xAZ); iv)  (xvy) Az = (xAz) vV (VAZ);
V) ((xAa)Ax) v (x\y) = x; vi) (W)ay =0.

These contrast with the 12 identities implicit in the definition of a skew Boolean algebra in
Section 4.1. As of this writing, neither of these two sets of identities have been bettered with
respect to size. Of interest in the first set is the fact that along with 0 which is just used once, the
binary operations \ and v suffice in their statements.

Could A be eliminated from the second set of 2-sided identities? Actually yes, thanks to
the identity:
xAy = (v)\{[(rvx)\x] v [(yvx) \ y]}.

This identity is easily seen to hold on primitive algebras, and hence on all skew Boolean algebras.
Returning to all six identities above, it can be used to first define A in terms of v and \, and then
to eliminate all occurrences of A in the six identities. A reduced signature (v, \, 0) is thus possible
for skew Boolean algebras, but not convenient. As with generalized Boolean algebras, v cannot
be eliminated in favor of A, \ and 0. A closer look at the role of \ occurs in the final chapter.

4.4 Skew Boolean algebras with intersections

Recall that a skew lattice (S; v, A) has finite intersections if every pair e, f €S
possesses a natural meet with respect to the natural partial order > on S. When it occurs,
the natural meet of any e and f in S is denoted by eNf. We say that (S; v, A) has
intersections if the natural partial order > on S has infima for arbitrary subsets. In general
the following must hold:
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Lemma 4.4.1. For any pair e, f'in a skew lattice S the following are equivalent:

i) enf=fne.
i) enf= eNf, where eNf exists.
iii) fae = eNf, where eNf exists.
Proof. That (i) implies (ii) and (iii) is clear. Conversely, given say (ii) one has
fre=frnenfrne=far(eNflae =eNf=enf

and (i) follows. The equivalence of (i) and (iii) is similar. [

Lemma 4.4.2. A skew lattice having finite intersections is an algebra S = (S; v, A, N)
such that (S; N) is a meet semilattice, (S; v, A) is a skew lattice and the following identities hold:

e N (enfre) = enfae and e n (eNf)=eNf=(eNf) A e.
Skew lattices with finite intersections thus form a variety of algebras.

Proof. The identities state in essence that the two partial orders on S induced by A and N must
contain each other and thus coincide. [J

Theorem 4.4.3. (Theorem 1.3.11 restated) The variety of all skew lattices having finite
intersections is congruence distributive. []

A skew lattice (S; v, A) is initially finite if for all e € S, [e] = {f | f< e} is finite. Clearly:
Theorem 4.4.4. If(S; v, A, 0) is a normal, symmetric skew lattice with a zero, then:

i) If'S is join complete, then S is complete.

i) If'S is complete, then S has intersections.

iii) If'S is initially finite, then S has intersections. [

A skew Boolean algebra with finite intersections is called a skew Boolean N-algebra.
(Read “skew Boolean intersection algebra”.) These algebras form a variety of algebras denoted

by S Bizlm. We next scan examples of skew Boolean algebras to see which are N-algebras.
Example 4.4.1. Finite intersections trivially exist for generalized Boolean algebras.

Example 4.4.2. A 0-primitive skew Boolean algebra S = D0 has arbitrary intersections.
Given A C S, infA is the sole element of A when A is a singleton set, and 0 otherwise.

Example 4.4.3. Every completely reducible skew Boolean algebra, being the product of
primitive algebras, has arbitrary intersections.

139



Jonathan E. Leech | Noncommutative Lattices: Skew Lattices, Skew Boolean Algebras and Beyond

In particular, a partial function algebra P(A, B) is completely reducible and thus must
have arbitrary intersections. Indeed, upon viewing partial functions from A to B as subsets of A x
B, intersections in our sense are just intersections of subsets: Mg = g.

In particular, a skew Boolean algebra S for which S/D is finite has arbitrary intersections.

Example 4.4.4. Let R be a C-ring: an associative ring such that every for each x €ER a
central idempotent C(x) exists such that xC(x) = x and C(x) is the least central idempotent with
respect to this property. Cornish [1980] showed that a left-handed skew Boolean algebra can be
defined from any C-ring upon setting: xay = xC(y), xvy =x +y —xC(y) and x \y =x—xC(y).
The intersection of a pair of elements is given by xNy =[1 — C(x — y)]x.

Example 4.4.5. Kudryavtseva and Leech [2016] have shown that free skew Boolean
algebras have finite intersections. This is discussed later in this section.

Example 4.4.6. Given any maximal normal band S in a ring R, we have seen that S
forms a skew Boolean algebra upon settingeaf = ef , evf = eVfand e \ f=e— efe. They have

intersections if the ring is semisimple and Artinian, or in particular, is a matrix ring over a field.

Example 4.4.7. (Counterexample) Let N be the set of natural numbers and let S denote
the subset of P(N, {0, 1}) consisting of all partial functions having domains that are either finite
or cofinite (in that the complement in N is finite). It is easily verified that S is closed under the

skew Boolean operations, v and A and \. Thus S is a skew Boolean algebra. Clearly fMg does not
exist for the partial functions f, g € S, both with full domain N, but with

0 if n is even

Ay=0 and glm)= {1 ifn isodd

Recall that an ideal is a nonempty subset / of a skew lattice S such that for all x, y €/ and
all z €S, xvy, xaz and zax all lie in /. While arbitrary sub-skew Boolean algebras of skew
Boolean N-algebras need not have finite intersections, ideals of skew Boolean MN-algebras do.

Extending Theorem 4.1.4, we have:

Theorem 4.4.5. Given a principal ideal {(a) in a skew Boolean algebra S and its
associated annihilator ideal ann(a), S has finite intersections if and only if both {a) and ann(a)
have finite intersections, in which case the map w: {a) x ann(a) — S defined by u(x, y) = xvy is an
isomorphism of skew Boolean N-algebras. In particular, given x, y in {a) and u, v in ann(a),

vy NEvvy=xNyv@ny. O

Asa consequence we have:
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Theorem 4.4.6. In the variety of skew Boolean N-algebras the following assertions hold.

i) The primitive algebras are precisely the nontrivial simple algebras.
ii)  The primitive algebras are the nontrivial directly irreducible algebras.
iii) The primitive algebras are the nontrivial subdirectly irreducible algebras.

Proof. By Theorem 4.4.5, a nontrivial simple algebra must be primitive. Conversely, let S be a
primitive algebra and let 6 be a congruence on S. Suppose that e 0 fwith e # fin S. Then e and f
are also O-congruent to eNf' = 0. Since either e # 0 or ' # 0, this forces every element of the
primitive algebra to be congruent to 0. Hence 0 is the universal congruence. The only other
congruence possible is thus the identity congruence A. Thus all primitive algebras are simple and
(i) holds. (ii) is clear. Given (i) and (ii), (iii) easily follows. [J

Given a primitive skew Boolean algebra P and an N-preserving homomorphism ¢ from P
to a skew Boolean N-algebra S, it follows that ¢ is either the 0-homomorpism, or an embedding.

The ideals of any skew lattice S form a complete lattice. The canonical map m: S — S/D
induces an isomorphism of this lattice with the lattice of ideals of S/D, via the map
1 — I/D=S/D. If S/D is finite, then all ideals of both S and S/D are principal with both lattices
of ideals being isomorphic to S/D. In the current context, ideals serve as the kernels of

homomorphism.

Lemma 4.4.7. Let © be a congruence on a skew Boolean N-algebra S and let 0[0] be the
congruence class of 0. Then the class 0[0] is an ideal of S and for all e, f E S,

e 0 f ifand only if (e\ eNf) v (f\ eNf) € B[0].

Conversely, if 1 is an ideal of S, then the relation © = 0 defined as above is a congruence on S.
Moreover the maps 6 — 0[0] and 1 — 01 form an inverse pair of bijections.

Proof. Observe that on any skew Boolean MN-algebra, e = f'if and only if (e \ eNf) v (f\ eNf) = 0.
This is certainly true in the primitive case. Thus it is true for all such algebras by Theorem 4.3.6
and the first assertion of the lemma follows. For the converse, first let I be a principal ideal {a)
with complement ann(a). By Theorem 4.4.5, an MN-algebra homomorphism ¢ of S onto ann(a)
exists for which {a) = cpfl(O). If 0 is the congruence associated with ¢, then

eBfinS iff @(e) = o(f) in ann(a)

i (@@)\ @@Ne0) v @) \ @@N@() = 0 in ann(a)
iff  (e\eNp) v (F\eny) € (a).

In general, any ideal 1 is the directed union of principal ideals: 1= Ut {{(a)|a € I}. The 0 as

defined above is the corresponding directed union Ut {8,4|a € I} of “principal congruences” and
thus is also a congruence. That both processes are reciprocal is clear. [
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Theorem 4.4.8. Given a skew Boolean N-algebra S, its congruence lattice Con,(S) on is
isomorphic to the lattice of ideals of S (or of its maximal generalized Boolean image S/D.).

Finitely generated congruences correspond to the principal ideals of S/D and thus form a

generalized Boolean sublattice of the congruence lattice.

Proof. The general correspondence is clear by the previous lemma. By the lemma again, finitely
generated congruences have finitely generated ideal kernels that must be principal. Conversely, a
principal ideal {a) corresponds to the congruence generated from (a, 0). [

Theorem 4.4.9. The lattice Con(S) of all skew lattice congruences on a skew Boolean

N-algebra S is the subdirect product of the interval [A, D] and the sublattice Con(S) of skew

Boolean N-algebra congruences on S under the map Con(S) — [A, D] x Con(S) given by the
rule © — (06ND, 0,[07).

Proof. By Theorem 3.1.2, Con(S) is the subdirect product of [A, D] and the interval [D, V]
under the map 6 — (6N‘D, 6vD). But ['D, V] = Con(S/D) which is isomorphic to the lattice of
ideals of S/D and in turn to the lattice of ideals of S, and thus to Con.(S). The N-respecting

congruence corresponding to 8v‘D has kernel ideal (BvD)(0) = 6(0) so that 6., 1)) = O.0). O

Intersections and the canonical images of a skew lattice

Given a skew lattice S, the canonical skew lattice maps, S — S/L£, S — S/R and S — S/D,

are all homomorphisms. How do intersections fit into this picture? We begin with:

Theorem 4.4.10. Given a skew lattice S with finite intersections:

i) The canonical map S — S/ L preserves intersections iff S is right-handed, so that S/L = S.
ii) The canonical map S — S/R preserves intersections iff' S is left-handed, so that S/R = S.
i) Both maps preserve finite intersections if and only if' S is a lattice, in which case N is A.
iv) The canonical map S — S/'D preserves intersections iff' S is a lattice, so that S/D = S.

Proof. Suppose the map S — S/L preserves finite intersections and let x and y be distinct in S,
but L-related. Then xNy exists in a properly lower D-class in S, while their images merge in S/L,
giving them a trivial intersection in the D-class of S/L corresponding to that of both x and y in S.
Thus (i) is seen. That cases for (ii) and (iv) are similar and (iii) follows immediately. [

Since neither S/L nor S/R need be isomorphic to S in general, they need not, in general,

inherit intersections. This raises questions: Under what added conditions must a skew lattice S
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having finite intersections imply that both S/L and S/R do also? Do examples exist where S has
finite intersections but not S/L or S/R? Conversely, if S/L and S/R do also:

Theorem 4.4.11. If a skew lattice S with finite intersections has a lattice section, then
both S/L and S/R also have finite intersections.

Proof. If T C S is a lattice section in S, then a copy of S/R in S is given by T[L] = U;.rL.. For
all x € S let ¢, be the unique element in Dy N T and set xy = xAt, in T[L]. Then xz R x and
T[L] = {xc|xE S}. Given a, b € T[L], we claim that its intersection ¢Nb in S is already in T[L].
We use the fact that x > y in S iff both xr >y in T[L] and dually, xg > yx in the dual subalgebra
T[L]. (In general, if x and y correspond to (x', x") and (), y") in S/R xs/p S/L, then x > y iff both
x'>y"and x" > ")) Since a = ay and b = by, it follows that a, b > (e¢Nb)r in T[L]. But since
both aNb D (aNb)r and aNb > (aNb)s by definition of aNb, aNb is (aNb)r in T[L]. Being

closed under N, T[L] and also T[R] have finite intersections and so do their copies, S/R and S/L.
O

Thus for a symmetric skew lattice S with finite intersections, if S/D is countable (so that

S has a lattice section), then both S/R and S/L also have finite intersections. We can do better.

Theorem 4.4.12. If a symmetric skew lattice S has finite intersections, so do S/R and

S/L.
Proof. So let S be a symmetric skew lattice and let x" and y" in S/R be given with pre-images x
and y in S. Let S be the sub-algebra generated from x and y, let T be a lattice section of S; and
let T[L] be the maximal left-handed subalgebra T[L] = U,.tL; of S1. If xy = xAtr and yr = yat,
in Sj as in the previous proof, then x; and y are also pre-images of x' and )’ in S. Let S; be the
generated result of adjoining xNy; in S to S; and let T, be a lattice section of Sy extending
Ty. Then xsNy, must lie in T2[ L], as above.

Suppose next that x’, y' > z' in S/R. If z is a pre-image of z' in S, let S3 be the extension
of Sy generated from S; and z, and let T3 be a lattice section of S3 extending T,. By what was
seen in the above proof, zr in T3[L] is also a pre-image of z' such that both x > zr and yr > z¢
hence xNyr > zr. Clearly, if 6 is the image of x Ny, in S/R, then x’, y' > 6> z'. Given that x’

and )’ are fixed and z' is arbitrary but subject to the constraint x', y' > z', 8 must be x'Ny’" in
S/R. Since this must be true for all x’, )’ in S/R, the latter has intersections. Likewise, so does

S/L. 0
Indeed, the above arguments essentially show: if a skew lattice S with finite intersections

is such that for each countable sublattice T of S/D, the inverse image S|t of T in S has a lattice

section, then both S/R and S/L also have finite intersections.
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Theorem 4.4.13. If a normal skew lattice S has finite intersections, then both S/L and

S/R have finite intersections.

Proof. A skew lattice S has finite intersections if and only if each principal ideal SAxAS has
finite intersections. For a normal skew lattice S, each ideal SAxAS has a lattice section, namely
xASAx, with xAS = (xASAX)[R] = S/L and SAax = (xASAx)[L] = S/R. Thus S/L and S/R must

have finite intersections if S does. []

Conversely, one may ask: if both S/L and S/R have finite intersections, must S also? Or

do counterexamples exist? Here is a case of the latter.

Example 4.4.8. Let S be the skew lattice defined on U, ;{a,, by}, with the
{a,, b, } being a totally ordered family of D-classes. For x, y in a common class {a,,, b, },
x, if nis even.
XVY = PAX =
YTYMTA S i nis odd.

Thus even classes are right-handed and odd classes are left-handed. If say x E{am, bm} but
vE€{a,, b,} where m <n, thenxvy =y =yvxand xay =x = yax. Thus,

both a b, > both a,, b, > botha, ;, b, _; forallnEZ.

n+l’ “n+l

Consequently neither a, U by, nor a, M by, exist, for all n € Z. On the other hand, both S/L and

S/R, have a D-class structure
- {an+2’ bn+2 } > {Cn+l } > {an, by, } > {Cn—l } > {an—Z’ bn—Z} Z

that is right-handed when 7 is even and left-handed when n is odd. Botha, N bk = ¢;_p and
ap v bk = €1 - Cases of pairs of elements from distinct D-classes are trivial, as they involve
pairs x, y where x > y.

Observe that this example is trivially symmetric (since totally quasi-ordered), has many

lattice sections, is distributive and thus is categorical. But for normal skew lattices, and in
particular for skew Boolean algebras, we have the equivalence:

Theorem 4.4.14. A normal skew lattice S has finite intersections if and only if both S/L
and S/R have finite intersections. In particular, a skew Boolean algebra S has finite inter-

sections iff both S/L and S/R do.

Proof. We have already seen (=). As for (<), without loss in generality we represent S as the
fibred product S/L xg/p S/R. So let both (x', x") and ()', »") in S be given where x', y' €S/L and
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x",y" €S/R. Since S/L and S/R have finite intersections, x'My’ and x"Ny" exist in S/L and S/R,
respectively. If x'My’ and x"Ny” share a common image in S/D, then (x', x") N (3', »") is just
*'MNy', x"Ny"). In general, let ugpavg be the meet in S/D of the respective images uo of x'My’ and
vo of x"My"” in S/D. In the respective D classes of S/L and S/R indexed by upAvy, unique
elements w' and w” exist (by normality) such that both x'Ny’ > w' in S/L and x"Ny"” > w" in S/R.
The intersection (x’, x") N (', ") is then precisely (w', w"). O

The practical consequence of all this as follows: just as all skew Boolean algebras can be
constructed in principle from pairs of left- and right-handed skew Boolean algebras (S, Sgr)
having a common maximal commutative Boolean image B using the fibered product, Si. xg Sg, so
also all skew Boolean N-algebras can be constructed from pairs of left- and right-handed skew
Boolean N-algebras (S, Sg) with a common maximal generalized Boolean algebra image B
(with Sp. and Sr viewed as skew Boolean algebras) by exactly the same process, Si. xg Sgr, even
when their corresponding N-outcomes may have distinct locations relative to B. It follows that
the study of skew Boolean N-algebras can, in principle, be reduced to studying right-handed skew
Boolean MN-algebras, or their term-equivalent left-handed duals, since pairs sharing common
maximal lattice images can be spliced together at will. All this is illustrated in the following case
of infinite free skew Boolean algebras.

Atom splitting and the case of infinite free skew Boolean algebras

Consider the inclusion (SBA, C (SBA,+| induced by {x1, ... , x4} C {x1, ... , Xn, Xn+1}-
The atoms of fSBA, are no longer atomic in [SBA,+;. The left-handed identity x = (xAy) + (x\v)

gives the following “subatomic” decomposition of the original atoms.

(XTAX2A . AXE) N (X+1V ...V X))
= (X1AX2A . AXEAX 1) \ (XE1V .V X)) T (01AX2A L AX\ (KRt 1V ...V Xpt1)

Both components of the new decomposition are atoms in [SBA,+;. If say
(1 AX2AX3)N(X4V ... VX)) = (X1 AX3AX2)\N(XAV ... VXy)

in [SBA,, then their corresponding pairs of atomic components in (SBA,+| remain equal. But if
say (x1AX2)\(X3V...vx,) # (2Ax1)\(X3VXaV...vXx,) in (SBA,, then both corresponding pairs of
components are likewise unequal in ([SBA,+;. One thus has extended the decomposition where,

while a given element remains the same, its atomic decomposition doubles in length as each new

generator is added. Thus given u € (SBA,, with atomic decomposition « = a; +...+ a, in
SBA,, each atom ay splits as by + ¢ in [SBA,+1, where b; = aiax,+1 and ¢; = aj\x,+1, to give a
revised atomic decomposition u = b; + ¢ + ... + b, + ¢, in [SBA,+;. Given the uniqueness of

atomic decompositions (to within commutativity) of elements in [SBA, or in [SBA,+1, we have:
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Lemma 4.4.15 Given u be an atom of (SBA,, and let a = b + ¢ be the atomic decompo-

sition of a in (SBA,+1 where b = anx,+1 and ¢ = a\x,+1. Then the following are equivalent:

i) u>ain (SBA, (and thus in [SBA,+1).
i) u>bin [SBA,.
iii) u>cin (SBA,+1. []

Comments. (1) Thus a is in the atomic decomposition of u in [SBA,, iff b [or ¢ and hence both]
is in the atomic decomposition of # in [SBA,+1.
(2) SBA,+1 has nt+1 “natural” copies of (SBA, in it, each generated by one of n+1
. . . 1 . ..
subsets of {xi, ... , x,+1} of size n. Likewise (n+ lj natural copies of [SBA,_; lie in [SBA,+1,
n—

etc.

This leads us to infinite free algebras with necessarily infinite generating sets. If X is

infinite, then ([SBAx is the upward directed union of its finite free subalgebras:
SBAx=U{;SBAy| T #YC X & |¥]| < 0}.

Given u and v of fSBAy, each occurs in some finite free subalgebra, say u in fSBAy and v in
rSBA for finite subsets Y and Z of X. Thus uAv, uvv and u\v are calculated in the larger finite
subalgebra [SBAyU7 or in any finite [SBAy where YUZ C W. Of course calculations of uav,
uvv and u\v do not change in passing from ([SBAyUz to any properly larger [SBAy. What
changes is their atomic decompositions; such changes, however, are derived from the original
decompositions in [SBAyUy by (possibly repeated) atomic splitting. Ultimately in (SBAx for X
infinite, no atoms exist. (If a is an atom, then it appears as such in (SBAy for some finite Y; but it

immediately looses its atomic status in a properly larger free subalgebra.) Atoms are only
relevant in its finite subalgebras. This is a fundamental difference between finite and infinite free
algebras. Another fundamental difference is as follows.

Recall that the center of a skew lattice, consisting of elements that both A-commute and
v-commute with all elements, is the union of all singleton D-classes. In (SBA, (or RSBA, or

SBA,) it is the set of all n atoms of the form x;\(x2v...vx,) and the subalgebra they generate
consisting of all orthosums of such atoms. But, except for 0, none of these orthosums remain
central in ;SBA,+;. For each atom,

X A@I\2V...vx,)) = (e AxD)\(2V...vxy))
£ (oA X )\E2V... VX)) = (e \V.. . VX)) A Xat
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with the two new, unequal atoms being D-related in (SBA,+;. Thus, given any non-0 central

element ¢ = a; + ... + ai in [SBA,, with atoms q; of the given form,
XpriAC = (Xprinar) + ...+ (xprinar) # (@A Xpt1) + oo+ (QrA Xpt1) = CAXpi1.
The case for kRSBA,, and RSBA,,+1, or SBA, and SBA,,;|, is similar. We thus have:

Theorem 4.4.16. Given a finite free skew Boolean algebra on n generators, whether left-
handed, right-handed or two sided, its center forms a Boolean algebra of order 2". In the case of
an infinite free algebra, the center is just {0}. ]

We turn to a common property of all free algebras. Trivially, finitely generated free
algebras have intersections since they are finite. It turns out that infinitely generated free algebras
also have finite intersections. Thanks to our observations on adjoining free generators and their

effects on atoms, intersections are stable under the inclusion (SBA, C SBA,+;. Thus N for
pairs of elements in [SBAj3 remains the same for these elements in the bigger, say fSBA;. What
changes is the decomposition of all outcomes into atoms. The pool of atoms that two elements
share in fSBA,, doubles by splitting to give rise to the new pool of atoms in (SBA,+; that both

share. As a result:

Theorem 4.4.17 Given any set X, the free lefi-handed [right-handed] skew Boolean
algebra (SBAy [rRSBAXx] on X has intersections. Given elements x and y in (SBAx, xNy can be

calculated in any subalgebra (SBAy, where Y is any finite subset of X such that (SBAy contains
both x and y. Similar remarks hold for kRSBAy.

Proof. Suppose that x and y are encountered in [SBAy where Y is a finite subset of X and that u
in [SBAy is such that u < both x and y. Then xNy relative to [SBAy exists. By our remarks, this
xNy remains the intersection in any (SBAz where Y C Z if Z is finite. Now u must be
encountered in some finite subalgebra [SBAy where U € X. Then both the current xNy and u
must lie in the larger subalgebra (SBAy,y. Since YUU is finite, xMNy is the intersection here also,
and u < xMy follows. Thus xNy remains the intersection of x and y throughout all [SBAy. The

case for RSBAy is similar. []

Since RSBAx = SBAy/L and ([SBAy = SBAy/R, by Theorem 4.4.14 we have:

Theorem 4.4.18. Free skew Boolean algebras have finite intersections. (Indeed, they
have arbitrary intersections since a properly infinite subset must have O-intersection.) []
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The lattice of subvarieties of skew Boolean N-algebras

In what follows we observe the following notation. For all n < X, ny, [respectively ng]

denotes the left-[right-]handed primitive skew Boolean N-algebra on n = {0, 1,2, ... , n—1} and
Ry = {0, 1,2,...} with 0 the zero element. Given two primitive algebras A and B, we denote

their fibred product A x, B by A*B. Finally, given any skew Boolean N-algebra A, (A)" denotes
the principal subvariety of all skew Boolean MN-algebras generated by A in that they satisfy all
identities satisfied by A. Consider the following lattice of primitive subalgebras of the primitive
algebra Rgp * Rgp viewed as a skew Boolean N-algebra

Rop, * Ror
7 N
Rop, * 3r 3L Xor
a N
R, Ror
N/ N4 RS
4y, 3L°3r 4R
NS NS
3L 3r
N /
2
)
1

In this diagram, each np is identified with the trivial fibered product, ny*2, and each nr is
identified with the trivial fibered product, 2enr. The embeddings — are induced from the
standard chain of inclusions: {0} C {0, 1} C {0,1,2} C {0,1,2,3} C....

Proposition 4.4.19 The map A — (A)" applied to the above diagram of inclusions
induces a corresponding diagram of strict inclusions of the respective varieties, with

i) (Rop, * nr)» = U{(mrongr)

m< Ry} foralln < R,.
i) (mueRor) = Uf(myong) |n< Ry} forallm< Ry.

i) (RoL*Ror ) =U{(mrenr) |m, n< Ry}
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Proof. Clearly we have a diagram of inclusions. Since any equation in the operations of the
signature contains only finitely many variables, the final three assertions are also clear. Thus we
need only show the inclusions of the induced subvarieties to be proper in the case of the finite
primitive algebras. We first show (nL) C (n+1L) to be proper for all finite n. To begin, x = y

holds on (1) but not on (2). Next, for n >2 we set

D@p(x1, x2, ..., Xp) = (xl\(xlmx2)) A (x2\(x2mx3)) Ao A (xn\(xnm x1))
and

Wo(x1, X2, -+, Xn) = X1 \[(X1NX2) V ..o v (Xx1NX) V (02NX3) Vo v (02NX) Vel Vv (X5-10X5) ]
Since @, (ai, aa, . . ., ay) # 0 only if none of a1, az, . . ., a, is 0.
D(x1, x2, .., X)) A Wo(x1, X2, ..., x,) =0

holds on my, but not on n+1y, (respectively, on nr but not on n+lg) for all n > 2. Thus all
inclusions at least along the two lower sides of the above diagram are proper. But this forces all

links in the above diagram to be proper. For instance, {mL'nR)m - <m+1L°nR>ﬂ form < R and
n < R is indeed proper since Du(X1AY, X2AY, . . ., XmAY) A Wp(X1AY, X2AY, . . . , XmAY) = 0 must

hold in {my,*nR)" but not in (m+1y,°ng)". O
This ascending array of principal varieties leads us to several results, beginning with:
Theorem 4.4.20. Skew Boolean N-algebras are locally finite.

Proof. We revise the argument from Theorem 4.1.10. Given a skew Boolean N-algebra S
generated from a finite set X of size n, if ¢: S — P is a nontrivial homomorphism from S to a
primitive algebra, then @[S] is a primitive subalgebra P’ of P that is isomorphic to a subalgebra of
n+lpen+1g. It follows that a homomorphism of ¢': S — n+1p°n+1R exists inducing the same
congruence on S that ¢ has. Moreover, only finitely many distinct homomorphisms from S to
n+1p°n+1R are possible since S is generated from X. By the argument of Theorem 4.1.10, S can
be embedded in a finite power of n+1y *n+1g making S itself finite. [

Theorem 4.4.21. A (quasi-)identity of signature (v, A, \, N, 0) in n variables holds for
all skew Boolean N-algebras if and only if it holds in n+1p*n+1Rr. Likewise the (quasi-)identity
holds for all left-handed (right-handed) skew Boolean N-algebras if and only if it holds in n+1y,
(or in n+1R). The question of when a given (quasi-)identity holds for all (left-handed or right
handed) skew Boolean N-algebras is thus decidable. []

Proof. If a (quasi-)identity in variables xi, ... , x, holds for all skew Boolean N-algebras, in
particular it holds for n+1p*n+1r. Conversely if it holds for n+1*n+1g, it holds for all powers
of n+lp*n+1. Thus, given skew Boolean N-algebra S with ai, a2, ..., a5, € S, the latter

collectively generate a subalgebra S’ of S that (by previous arguments) can be embedded in some
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finite power of n+1p*n+1g. Since the given (quasi-)identity holds for all powers of n+1p*n+1g,
it holds for S’ and in particular for the assignments, x; to aj, x to aa, ... , and x, to a,. Since S
and the a; are arbitrary, the theorem follows in the two-sided case. The left-handed and right-
handed cases are similar. []

This above ascending array of principal varieties is only part of the full lattice of all
varieties of skew Boolean N-algebras.

Given a partially ordered set P = (P, >), an order ideal of P is any nonempty subset / of P
satisfying the following implication: x € [ and x >y in P implies y € [ also. The following result
of Brian Davey is relevant. (See Theorems 3.3 and 3.5 in [Davey 79].)

Theorem 4.4.22. [Davey 79] Let 'V be a locally finite, congruence distributive variety.
Then its lattice of subvarieties of 'V is completely distributive and is isomorphic to the lattice of

order ideals of its partially ordered set of principal subvarieties generated by finite, subdirectly
irreducible algebras and ordered by subvariety inclusion. [

Theorem 4.4.23. The lattice of subvarieties of skew Boolean N-algebras is isomorphic
to the set of all order ideals of the following lattice of principal subvarieties generated by the
finite primitive algebras.

.<4L’3R>:’ <.3L'4R>” .
NS NS N/
() (3L°3R)’ (4r)
N / N /
@Buy (3r)
N /

@y

(1y

The varieties of skew Boolean N-algebras, left- and right-handed skew Boolean N-algebras, and
generalized Boolean algebras correspond to the order ideals given respectively by the entire

lattice, the infinite ideal on the lower left {{1), (2), (3LY, (4L), ...}, the corresponding infinite
ideal on the lower right, and the ideal {{1)", (2)}.

Proof. This follows from Proposition 4.4.19 and Theorems 4.4.20 and 4.4.22.

The bottom of the lattice of subvarieties is as follows. We will look closely at a class of
algebras in (31) in the next section.
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(3L°3r)
?
(3, 3r)

Buy (3r)
N /
2y

1y

The sublattice of nontrivial varieties containing at least (2), is described in Cartesian
fashion with abbreviated notation in the following figure to the left. Here m,n stands for
(m+1)p,*(n+1)r with m and n counting the size of both non-0 D-classes. One has m,n > p,q when

both m > p and n > ¢, i.e., p,q lies non-strictly to the lower left of m,n.

5,1 5,2 53 54 55

5 e o
44,1 42 43 4,4 45 ¢
3031 32 3,3 34 35 R
e o e o o
202,01 2,2 2,3 2,4 24 I
11,10 1,2 1,3 1,4 15 c e o o o o o o
1 2 3 4 5 e o o o o o o o o

Within the quadrant, an ideal corresponds to a non-increasing array of the terraced form to the
right and as such is described by a non-strictly decreasing function f from {1, 2, 3, ...} to
{0,1,2,3, ..., Xo}. The function f for the above array is thus

n |1 2345678910
f(n)|7755533210
corresponding to the variety (81, *2r)" U (61,*4Rr)" U (4L.*7r)" U (3L*9R)" U (2L*10R)".

f=

Since only finitely many strict decreases in the output are possible, the number of such
functions [ideals] is countably infinite. Even the trivial ideal (1) can be represented as the zero
function: z(n) = 0 for all n. The lattice operations are evaluated in point-wise fashion:
(fvg)(n) = max{fin), g(n)} and (fag)(n) = min{f(n), g(n)}. We thus have:

Theorem 4.4.24 The lattice of varieties of skew Boolean algebras with intersections is
isomorphic to the lattice of non-strictly decreasing functions from the set {1, 2, 3,...} to the set
{0, 1, 2, 3, ... Xo} with the join and meet operations given pointwise. In either the right or left-
handed cases, the lattice of varieties is isomorphic to the usual ordering on {1,2, ..., Xo}. O
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4.5 Omega algebras and skew Boolean covers

Given a lattice L = (L; v, A), upon setting w(L) = {(a, ))ELxL|a > b} we obtain a
sublattice of L x L that clearly is distributive when L is. But what if L is a (possibly generalized)
Boolean lattice with zero 0, so that for each a € L, the principal poset ideal [a] = {b EL|a > b}
is a Boolean lattice?

Proposition 4.5.1. Given a lattice L with minimal element 0, (L) forms a generalized
Boolean lattice if and only if L, and hence w(L), is trivial.

Proof. If a > 0 for some a €L, then (a, 0) has no complement in [(a, @)]. O

Given a generalized Boolean algebra B, alternative twisted meet and join operations can
be defined on the underlying set of w(B) to give a Boolean skew lattice as follows:

(a,a") A (b,b") = (anb,a’ab) and (a,a’)v (b,b") = (avh, (a’' \b)vb").
Here all component operations are in B with a\ b being the relative complement of aab in [a].

Lemma 4.5.2. Under the operations above, w(B) is left-handed skew lattice with a zero.

Proof. That A is idempotent and associative is easily checked, as is the fact that v is idempotent.
Associativity of v reduces to comparing the second coordinates of [(a, a') v (b, b')] v (¢, ¢') and
(a,a’) v [(b,b) v (c, )] toseeif {[(@’\b)vD]\c}vc =[a'\(bvc)v (b \c)vc'. But

[(@\b)vdl\c =T[a"\(bve)]v (b'\c)
holds for generalized Boolean algebras. Next, expanding gives:

(a,a’) A [(a,d)v(b, b)) =(a,a’) A (avb, (@ \b) v b')=(an(a Vv b),a’n (avb))=(a,a’)
and
(a,a") v [(a, a)n(b, b)] = (a, a") v (anb, a’'Ab) = (a v (anb), [a'\ (anb)] v (a'Ab)) = (a, a’).

In similar fashion, the remaining pair of absorption identities are verified. Clearly (0, 0) is the
zero element. Finally, (a, a') A (b, ') A (a, @') = (a, a') A (b, b") since both reduce to (aab, a'Ab).
Thus the identity xAyAx = xAy holds, as well as its equivalent dual, xvyvx =yvx. O

Lemma 4.5.3. (o(B); v, A) is a symmetric skew lattice. If (a,a’) and (b, b") commute,
then (a, a') A (b, b") = (anb, a'ab") and (a, a’) v (b, b") = (avb, a'vd").

Proof. Given (a', a), (b', b) € o(B), (a, a’) A (b, b") = (b, b') A (a, a') if and only if a’'Ab = and’
in the second coordinate of the outcomes, with both equaling a'Ad’. Likewise, (a, a') v (b, b") =
(b,b") v (a,a')ifand only if (@' \ b) v ' = (b'\ @) v @’ in the second coordinate of the outcomes
with both equaling a’vb'. Assuming a'ab = anb’ we get
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@\b)v b = (@\(@ab)vh = (@\a)v (@ \b)Wb = (@ \b)Wb = a'vb'.

Similarly (' \ a) v a' = a'vb' so that (a' \ b) v b’ = (b'\ a) v a' follows. Conversely given the
latter, one has a'aA[(a’ \ b) v b']ab=a'A[(b’ \ a) v a'|ab which yields a’'Ab’ = a'ab. Similarly,

an[(@' \b) v b'Iab" = an[(b' \ a) v a'|ab' yields and’ =a'ab. I
Lemma 4.5.4. In o(B):

i) (a,a’) > (b,b")ifand only ifa> b in B.
i) (a,a’) D (b, b") if and only if a=b in B.
iii) (a,a’) = (b,b")ifand only ifa>bin Bwithb' =a’ A b.

Proof. Since (b, b') A (a, a’) A (b, b") = (anb, b'rnanb), we have (b, b') A (a,a’) A (b, b)) = (b, D)
if and only if anb = b in B. Thus (i) holds and (ii) follows immediately. As for (iii),

(a,a")y A (b,b") = (b,b") = (b,b") A (a,ad)

becomes a’Ab = b" = b'aa in the second coordinate, and b = aab in the first coordinate. But these
conditions, plus b > b’ are equivalent to both @ > b and b’ = a’Ab holding in B. [J

Theorem 4.5.5. Upon letting (a, a’)\ (b, b") be the complement of (a, a’) A (b, b') in the
Boolean sublattice [(a, a')], (o(B); v, A, \, (0, 0)) becomes a skew Boolean algebra for which
o(B)/D = B. Moreover, ®(B) has finite intersections. Thus, as a skew Boolean N-algebra

w(B) has a distributive congruence lattice.

Proof. w(B) is symmetric by Lemma 4.5.3. Since [(a, a')] = {(b, a'Ab)| a = b} = [a] by Lemma
4.5.4, we see that [(a, a’)] is a Boolean lattice, making w(B) also normal and hence a skew
Boolean lattice. The first assertion is now clear.

Next, (a, a’) N (b, b") is given by ([@'Ab'] + [(anb) \ (a'vb')], a'Ab") where + is the
symmetric difference in B: x +y = (x\v) v (y\x). That

(a,a’), (b, b") = ([a'Ab'T+ [(anb)\ (a'vd")], a'ab")

follows from Lemma 4.5.4 and basic Boolean algebra. So let (a, d'), (b, b') > (¢, ¢'). Then
anb >cand a'ab' > ¢’ with a'ac = ¢ and b'Ac = ¢’ imply

cA{[a'ab' 1 +[anb\(a'vD)]} =c" +t(c\c')=c and c A [@'Ab']=c'Ac'=C'

so that ([a'ad'] + [aab \ (a'vD")], a’'ab") > (c, ¢'). Thus (a, a’) N (b, b') is as stated. The final
assertion follows from Theorem 4.4.3. [
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Algebras of the form w(B) with operations as defined above are called omega algebras.
These algebras lie in the varieties of left-handed skew Boolean algebras and left-handed skew
Boolean N-algebras, with the particular emphasis indicated by the context.

Characterizing omega algebras

Given a skew lattice S, recall that a lattice section of S is any sublattice Sy that intersects
every D-class of S. Any such lattice must be isomorphic to the maximal lattice image S/D of S.

Lemma 4.5.6. Given an omega algebra w(B), So = {(a, a)|aEB} is a lattice section. [

Lemma 4.5.7. Given (a, a') € o(B), the map (a, b") — (a, a’) N (a, b') is a bijection of
the D-class of (a, a') with the principal ideal [(a, a')] of (w(B), >).

Proof. In w(B) the ideal [(a, a')] is just the set {(b, a'ab)|a > b}. Given a' <a, then forall x <a,
(a, d)N(a, x) = ([@'ax] + [a\ (@'vx)], a'Ax). Given any b < a, we seek some x < a such that
([a'ax] + [a \ (@'vx)], a'Ax) = (b, a'ab) in [(a, a')]. Setting x = a'ab v [a \ (a'vb)] we get,
a'anx= (a’'n b) v 0=a'a b and thus

[@ax]+[a\(@'vx)] = a'ab + [a\(a' v [a\(a'vb)])]

a'nb + [a\(@ v[(a\ad) A (a\b)])]

a'nb + [(a\d ) A (a vb)] =b.

Is x < a unique? Suppose that y < a also satisfies the desired conditions. Then a’'Ax =a'ab=a’'ay
and [a'ax] + [a\ (a'vx)] = b = [a@'Ay] + [a \ (a'vy)], from which also follows first @ \ (@'vx) =a\
(a'vy) and then a'vx = a'vy. Cancelling a’'ax =a'aAy and a’'vx =a'vy in B givesx = y. [

We thus have the following characterization of omega algebras:

Theorem 4.5.8. A lefi-handed skew Boolean N-algebra S is isomorphic to w(B) for
some generalized Boolean algebra B if and only if' S has a lattice section S and for all e €S the
map a — eNa is a bijection of the D-class D, with the principal poset ideal [e]. Under these

conditions S is isomorphic to both ®(So) and w(S/D).

Proof. The conditions are clearly necessary. Conversely, given these conditions, for each e € Sy
let Be: Do — ®(So) be given by Pe(f) = (e, eNf). Next we define : S — w(Sp) to be the union
UeBe. PB is at least a bijection from S to w(Sy). It also preserves A. Given e; and e, in Sy, then for
all f1 Dejand 2 D ey in S we have

|3[f1/\f2] = (elAez, ejher ﬂfll\fz) = (81/\62, erner ﬂfiAfz/\ez) = (elAez, ejner ﬂﬁ/\ez)
and

BLAIABLA] = (e1, e1Nfi) A (e2, e2Nf2) = (e1nen, [e1 N f1] A e2) = (e1nea, e1 N f1 N e2).
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Since A is a left normal operation, ejaex N (finez) = e1 N eaN (finez) = e1 N f1Nez. Indeed we
have e; N ex N (finez) < et NexNfi = e N fiNez. But on the other hand, f; N ey < fiaes so that
etNfiNex<erN(fine) Nex=e;1 N exN (firez). P also preserves v. Given e; and e; in Sy, then

Blfivral = (e1ver, (e1ve2) N (fivfz)) and
BlAlvBLA2] = (e1, e1 N fi) v (e2, e2N f2) = (e1ve, [(e1Nfi) \e2] v [e2N f2])

for all /i D e; and f2 D ez in S. It remains to show that

(erve) N (fivf) = ((e1NfD) \e2) v (e2N f2)

is an identity for left-handed skew Boolean N-algebras, subject to the conditions fi D e; and
f> D ey. This is indeed the case for left-handed primitive skew Boolean N-algebras. To see this,
first assume e; = f; = 0. Here the equation reduces to the identity e N /2 = 0 v (e2 N f2).
Likewise, in the case e; = f> = 0 the equation reduces to the identity e; N f1 = ((e;1 N f1) \ 0) v 0.
Otherwise all four elements lie in the unique nonzero class and we get e N =0 v (e2 N f2).
Thus the conditional equality holds on primitive algebras. But this explicit D-condition can be
removed upon replacing ey, fi, e> and f2 by e1Af1, finel, eaafz and frae; respectively. Hence the
above conditional identity holds for all left-handed skew Boolean N-algebras. We have shown
that B also preserves joins and hence f: S = w(Sp). U

Example 4.5.1. In particular, a primitive skew Boolean algebra S is isomorphic to an
omega algebra if and only if it is left-handed of order 3. In this case we are looking at a copy of
31, which is what w(2) is for the primitive Boolean algebra 2: 1 > 0.

1-2 (L= (1,0)
3 Voo w(2): V
0 (0,0)

Theorem 4.5.9. w(B) is complete if and only if B is complete. It is both complete and
atomic if and only if B is thus, in which case o(B) = 31 B where A(B) is the set of atoms of B.
Thus a complete, atomic skew Boolean algebra is isomorphic to some omega algebra if and only
if it is left-handed and each of its atomic D-classes has exactly two elements.

Proof. If B is complete and A = {(a;, @’;) |i € 1} is a pairwise commuting subset of w(B), we
claim that sup(A) = (supa;, supa’;) with both suprema taken in B. By Lemma 4.5.4, if
(b, b") = (ai, a')), then b > supa; and b' > supa’;. Thus, we need only show (supa;, supa’;) > each
(ai, a';) in w(B). Lemma 4.5.3 and the definition of A in w(B) give

a; A supja’; = supj(a;i A a')) = supj(a'ina’y) = a';

which is what Lemma 4.5.4 requires for (supaj, supa';) > (a;, a';). Since w(B) is normal with 0
and has commuting suprema, all nonempty subsets of w(B) also have infima.
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In general, for any B the atoms of w(B) have either the form (x, 0) or the form (x, x)
where x is an atom of B. When B is both complete and atomic, then for all (a, a') Ew(B),

(a,a") = sup[{(x, x) |xEAB),x<a'} U {(x,0) |xEAB),x<a\a'}]

Thus w(B) is also atomic in which case w(B) is isomorphic to a product of primitive algebras, all
of which are copies of 3r since each atomic D-class of w(B) has exactly two elements. The

converse holds in general: if a skew Boolean algebra S is both complete and atomic, then so is its
maximal (generalized) Boolean algebra image, S/D. [J

Corollary 4.5.10. Every left-handed skew Boolean algebra S can be embedded as a
skew Boolean algebra into some omega algebra.

Proof. By Corollary 4.1.7, every left-handed skew Boolean algebra can be embedded in a power
of 3;, which in turn is isomorphic to the omega algebra of the same power of 2. O

The N-version of Corollary 4.5.10 fails since, as seen in Section 4.4, as an N-algebra 31,
does not generate the variety ( X,y )~ of all left-handed skew Boolean N-algebras. But we have:

Theorem 4.5.11. As algebras with N, all omega algebras lie in (3L)". A skew Boolean
N-algebra S can be embedded in some omega algebra if and only if it lies in (3L)".

Proof. In the variety (& ), primitive images of omega algebras are isomorphic to omega
algebras (by Lemma 4.5.13 below) and thus are copies of 3.. Hence nontrivial omega algebras
are subdirect products of copies of 31 and must lie in (31)". In general a skew Boolean N-algebra

lies in (3L)" if and only if it can be embedded as an N-algebra in a power of 3. But such powers
are copies of omega algebras by Theorem 4.5.9. [

Skew Boolean covers of generalized Boolean algebras

Recall that the center of a skew lattice S is the set Zs = {a €S| aax = xaa for all x ES} or
equivalently, the set {a €S| avx = xva for all b €S}. Zg is also the union of all singleton D-
classes of S. (See Theorem 2.2.2.) For skew lattices Zg can be empty, but for a skew Boolean
algebra S, at least {0} C Zs. If Zg = {0}, then S has a trivial center. The center of a skew

Boolean algebra S is always an ideal of S. A skew Boolean cover of a generalized Boolean
algebra B is any skew Boolean algebra S with trivial center such that S/D = B. In this case, Sis a

minimal cover if the center Zg, of S/0 is nontrivial for all nontrivial congruences 6 € D.

Theorem 4.5.12. For any nontrivial generalized Boolean algebra B, the derived omega
algebra w(B) forms a minimal, skew Boolean cover of B.
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Proof. If ¢ > 0 in B, then (a, a) D (a, 0) but (a, a) # (a, 0) in w(B). So let a nontrivial
congruenec O C D be given and suppose that (a, a') 0 (a, a") with a > @', a" in B, but @’ # a".
Applying A (b, b) we get (anb, a'Ab) 0 (anb, a”" ab) for all b €B. Since a' # a”, one of these does
not equal a’ A @” in B, say a'. Setting b = a' we get (¢’, a') 0 (¢', a"A a") with @’ > a"a a'. Thus
we may assume that (a, a) 6 (a, a') with @ > @' in B from the outset. Next, setting b =a \ a', we
get that @ > b > 0. Then (anb, anb) 0 (anb, a'ab), that is, (b, b) 0 (b, 0). We show that the
0-class of (b, b) is in fact its entire D-class. Since b > 0, this forces w(B)/6 to have a singleton
D-class other than {0}, making its center nontrivial. Applying v (c, c) to (b, b) 0 (b, 0) for any

c< b, we get
(b,b) v (¢, c)=(bve,(b\c) v c)=(b,b)and (b,0) v (¢c,c)=(bvc, (0\c) v c)= (b, c).
Thus (b, b) 0 (b, ¢) for all ¢ < b, so that the 8-class of (b, b) is precisely its D-class in w(B). [

Minimal skew Boolean covers can be created without the w-construction. The latter is an
elegant way of achieving this since (1) it gives us minimal covers and (2) it provides a systematic
way of carrying this out.

While w(B)/8 has a nontrivial center for every nontrivial congruence 6 C D, a second
class of congruences exists for which the quotient algebra always has a trivial center, namely the
class of N-congruences B that also preserve intersections in that a 3 b implies aNc P bNc, in
which case S/f also has finite intersections. As we have seen, such congruences arise from ideals
of S. Given an ideal /, an N-congruence B is defined by: a ;b if (a\(anb))v (b\(anb)) EL
Conversely, every N-congruence f determines an ideal /, given by the congruence class $[0] of 0.
The two assignment processes are reciprocal. (See Lemma 4.4.7 and Theorem 4.4.8.)

Lemma 4.5.13. Given any N-congruence B on w(B), its image w(B)/p is isomorphic to
an omega algebra and thus has trivial center. Put otherwise N-homomorphic images of omega
algebras are copies of omega algebras.

Proof. Let {3 be derived from ideal /. In turn let Iy = 7/D be the ideal of B consisting of all left-

coordinates of elements in / so that / = w(/p). If Po is the congruence on B induced from /p, then
the map f: w(B) — w(B/fo) defined by f[(a, a")] = (Bo[a], Po[a']) is @ N-homomorphism for which
le {(0,0)} is precisely I. Thus f is the congruence induced by f'and w(B)/p = w(B/Bo). I

We can now decompose the congruence lattice of w(B) as a subdirect product of (i) the
interval [A, D] of all congruences (inclusively) between the trivial congruence A and ‘D and (ii)

the lattice Con.(w(B)) of all N-congruences on w(B). Indeed Theorem 4.4.9 gives us:

Theorem 4.5.14. The full lattice of congruences Con(w(B)) is a subdirect product of the
interval [A, D] and Con.(w(B)) under the embedding Con(w(B)) — [A, D] x Con.(w(B)) given
by 6 — (0ND, PBio)). For all 6 E[A, D] except A, the image w(B)/O has nontrivial center, while
for all p € Con,(w(B)) the image w(B)/B has a trivial center.
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Proof. This follows from Theorem 4.4.14 and the two previous results. []

Does being a minimal skew Boolean cover of its maximal lattice image characterize an
w-algebra? We briefly explore this question, beginning with a theorem. Its fairly straightforward
proof is omitted.

Theorem 4.5.15. Given an atomic skew Boolean algebra S with atomic ‘D-classes D; for
i in index set I, then S has a trivial center and hence is a skew Boolean cover of SI'D if and only if
|Di| = 2 for all i. S is a minimal skew Boolean cover of SI'D if and only if |Dj| =2 for i €1. S =

o(S/D) must occur whenever S is also left-handed and complete. []

Example 4.5.2. A skew Boolean algebra S that is a minimal skew Boolean cover of S/D
but not isomorphic to any w(S/D) is given by taking the subset lattice P(X) of an infinite set X
and letting S be the atomic subalgebra of w(P(X)) consisting of all pairs (A, A") for A’ finite.
Given (A, A') for A infinite and A’ finite, the D-class of (A, A") has |A| many elements in S, but
|P(A)| many elements in o(P(X)). Since S and w(P(X)) share P(X) as a maximal lattice image,
and |A| <|P(A)| for all subsets of X, S cannot be isomorphic to any w(B).

The functor w and its left adjoint

In the following, (2) and (31) denote the respective varieties of generalized Boolean
algebras and left-handed skew Boolean algebras viewed as categories. The w-construction is the
object stage of a functor w: (2) = (31). Given homomorphism f: B— B’ in (2), its w-image in

(3L) is the homomorphism f: »(B) = w(B’) in (3L) given by f(a, a’) = (fa), Aa)).
Theorem 4.5.16. w: (2) — (3L) preserves limits. Thus it has a left adjoint, Q: (31) — (2).

Proof. Observe first that w preserves products: indeed w([]; aB;) = [[; aw(B;) under the map
(ai), {(a/ )) — {(ai), (a)). Next, note that o preserves equalizers: given f, g¢ B — B',
equ(f, g) = (equ(f, g))° where equ(f, g) is the standard equalizer given by the inclusion of the
maximal subalgebra of B on which fand g agree. Hence w preserves limits.

Next we show that every skew Boolean algebra S has a solution set of homomorphisms F
= {fi: S = w(B;)| i €N} such that every homomorphism f: S — w(B) in (3L) can be written as a
composite /= h° o f; for some f; € F and some homomorphism /4:B; = B in (2). So given a

homomorphism f: S — w(B) of skew Boolean algebras, consider the subalgebra B’ of B that is
determined by the subset union

U{{a, a'} | (a, a'") = fix) € w(B) for some x € S}.

Clearly f[S] C w(B'). Moreover [B'| < max{Ry, |S|}. Hence a solution set for S is given by the
set of all homomorphisms £ S — w(B;) where {B;|j € J} is a maximal class of mutually
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non-isomorphic generalized Boolean algebras of order |B;| < max{ X, |S/D|}. Since w is limit-

preserving and each S in (31) has a solution set, Freyd’s Adjoint Functor Theorem implies that
must have a left adjoint Q. [

Thus given a skew Boolean algebra S, a homomorphism ng: S — w(Q(S)) exists, called
the universal morphism from S to o, such that for any homomorphism u: S = w(B’) in (31), a
unique homomorphism u: Q(S) — B’ exists in (2) such that u factors as u”ons. Due to Corollary
4.5.10, each universal morphism ms is an embedding. Thus, given a homomorphism f: S — S§',

72 Q(S) — Q(S) is the unique homomorphism in (2) making the following diagram commute.

S —ns—> (Q(S))
i L.

g o(QA(S))

What does ns: S — Q(S) look like for some typical left-handed skew Boolean algebras?

Theorem 4.5.17. Let P be a primitive left-handed skew Boolean algebra with P\{0} = X.
Then Q(P) = FBx, the generalized Boolean algebra reduct of the free Boolean algebra on X. In

IX1
particular, Q(P) = 2? if [X| is finite. (See [Leech and Spinks, 2008] Theorem 5.2.) [

In particular, Q(2) = 2’ and Q3L) = 24. One can show that Q(S| x Sp) = Q(S)) x Q(S2).
(See [Leech and Spinks, 2008] Theorem 5.3.) Q(S) is thus easily determined when S/D is finite.

Twisted product constructions were introduced by Kalman [1958] as a means of building
De Morgan algebras from distributive lattices. The w-construction given here is a variation of a
construction due to Pagliani [1998] for producing Nelson algebras from Heyting algebras. For
applications of twisted product constructions to both algebra and logic see Pagliani [1997].

Historical remarks

Skew Boolean algebras in some form seem to have been studied first by Robert Bignall
in his 1976 dissertation and then in a 1980 paper by his advisor, William Cornish. In 1990, a
paper on skew Boolean algebras appeared among Jonathan Leech’s early papers on skew lattices.
Bignall and Leech then published a joint paper on skew Boolean algebras with intersections in
1995. Much in Sections 4.1 and 4.4 appeared in these two papers. In Section 4.4, the material on
the lattice of varieties appeared in the 2017 paper by Leech and Spinks. The material in Section
4.2 on finite algebras and the free case in particular appeared in the 2016 paper by Ganya
Kudryatseva and Leech, as did the material in Section 4.4 on infinite free algebras. The material
in Section 4.3 appeared in a 2013 paper by Karin Cvetko-Vah, Matthew Spinks and Leech, but
the initial information about strongly distributive skew lattices appeared in Leech’s 1992 paper on
normal skew lattices. The construction in Section 4.5 was due to Spinks and developed in a joint
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project with Leech published in 2007. Further developments of that material occur in a 2013
paper by Kudryatseva, who is also publishing a paper on free skew Boolean intersection algebras,
set to appear in 2017.

Bignall, Cornish and Leech were not the only ones to initiate a study of noncommutative
Boolean algebras in some form. As seen in Section 4.2, computer scientists (J. Berendsen et al)
in studying the override and update operations introduced in 2010 a class of algebras that was
shown by Cvetko-Vah, Leech and Spinks in their 2013 paper to be term equivalent to right-
handed skew Boolean algebras. Indeed they are (v, \, 0)-term reducts of the latter with a variant
of A obtained as a defined operation. In a 2011 paper, Janis Cirulis, studied near lattices (meet
semilattices with joins existing for pairs of elements with common upper bounds) that were
supplied with an override operation (reducing to the conditional commuting join when it existed).
Under special assumptions Cirulis obtained a class of skew Boolean algebras with intersections,
with M being the near lattice meet.

Skew Boolean algebras clearly form a natural class of objects to study. They play a
significant role in the more general study of Boolean-like phenomena, with connections to
discriminator varieties, iBCK algebras and their offspring which we meet in Chapter 7, and more
recently, Church algebras. (See Spinks [2002] and Cvetko-Vah and Salibra [2015]) It is no
coincidence that skew Boolean algebras have attracted the interest of some in computer science.
Indeed, most of the individuals mentioned in these paragraphs have some degree of research
interest in computer science. (In particular, see Bignall and Spinks [1996] — [1998] and Spinks
and Veroff. [2006])

Topological representations of (generalized) Boolean algebras and distributive lattices
have been studied since M. H. Stone’s papers in the 1930s. More recently this has been extended
to skew Boolean algebras (possibly with intersections) and strongly distributive skew lattices.
Here one is given a skew Boolean algebra S with maximal (generalized) Boolean image B = S/D.

The latter is dual to a topological space B under standard Stone duality with S itself being dual to
an ¢étale covering m: X — ‘B. (See the papers below by Bauer and Cvetko-Vah (et a/) and by
Kudryatseva.)

In Chapter 6 we will look at the skew Boolean algebras of idempotents in rings, and in
particular, the case where the idempotents in a ring are closed under multiplication and thus
naturally form a skew Boolean algebra. In Chapter 7 we will look at algebraic structures that
support a skew lattice reduct, in some cases with intersections; that is, we will look at algebras
where skew Boolean operations are term-defined using the given operations of the algebra.
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V: FURTHER TOPICS IN SKEW LATTICES

Skew lattices were introduced in Section 1.3 and then studied in Chapter 2. Two main
sources of initial examples were encountered:

i) Partial function algebras P(A, B) that form noncommutative variants of Boolean
algebras defined on power sets P(A). (Example 2.6.1.)

ii) Sets of idempotents in rings that are closed under multiplication and the (often
called) circle operation: e O f=e + f—ef. (Theorem 2.1.7.)

Both types of examples satisfy the primary conditions for an algebraic system (S; v, A) to be a
skew lattice: v and A are associative idempotent binary operations on S satisfying the absorption
identities xA(x v y) =x = (y v x)ax and xv(x A y) = x = (¥ A x)vx that guarantee the basic
dualities, xAy = y iff xvy = x and xay = x iff xvy =y. These examples are also a source of
optional conditions that any skew lattice might satisfy.

In both cases commutation was symmetric in that xAy = yax iff xvy = yvx, thus making
instances of commutation unambiguous. Also in both cases the skew lattices were distributive in
that both xA(y v z)Ax = (xAyAx) v (xAzAx) and xv(y A z)vx = (xvyvx) A (xvzvx) hold. For partial
function algebras a stronger pair of identities hold: xaA(y v z) = (xAy) v (xAz) and
(¥ v z)Ax = (yAx) v (zax). In Section 2.3 we saw that a chain of implications holds for all skew
lattices:

Vx,y,z€S, xaA(y v z)=(xAY) v (xAz) & (¥ V 2)Ax = (VAX) V (zAX)
= Vx,y,z, WE S, xA(Yy V 2)AW = (XAYAW) V (XAZAW)

= Vx,y,zE€S, xA(y vV 2)Ax = (XAYAX) V (XxAZAX)
& xv(y A z)vx = (xvyvx) A (xvzvXx).

In general these implications are strict, but if the skew lattice is symmetric the converse of the
first implication holds; likewise if the skew lattice is normal in that xAyazaw = xazayAw, the
converse of the second implication holds. We also observed that xA(y v z)Ax = (xAyAX) V (XAZAX)
and its dual are not equivalent, but given the assumption of symmetry we will prove they are.

In addition, both types of algebras are categorical in that nonempty composites 1po¢ of
successive coset bijections from D-classes to say lower D-classes are also coset bijections.
Indeed partial function algebras (and normal skew lattices in general) are strictly categorical in
that all composites of coset bijections between successive D-classes are also nonempty.

In this chapter we study these properties in greater detail.

163



Jonathan E. Leech | Noncommutative Lattices: Skew Lattices, Skew Boolean Algebras and Beyond

In Section 5.1 we consider symmetric skew lattices where commutation is unambiguous
as well as variations of this condition. Symmetry is first bisected into lower symmetry where
commutation shifts “downward” (xvy = yvx = xAy = yax) and its dual, upper symmetry, where
commutation shifts “upward” (xAy = yax = xvy = yvx). Characterizing identities for each are
given in Theorem 5.1.1. Both types of partial symmetry are characterized in Theorem 5.1.2 by a
pair of forbidden subalgebras (one right-handed and one left-handed). The absence of all four as
subalgebras characterizes symmetric skew lattices.

In Section 5.2 we prove the equivalence of xA(y v z)Ax = (xAyAx) v (xAzAx) and its dual
xv(y A zZ)vx = (xvyvx) A (xvzvx) in the presence of symmetry. In particular, Theorem 5.2.3
states that given lower symmetry, xA(y v z)Ax = (XAYAX) V (xAzAX) implies

xvV(y A Z)vx = (Xvyvx) A (xvzvx),

and dually, in the presence of upper symmetry, the converse implication holds. These results are
due to Matthew Spinks, who had obtained in a very lengthy computer-generated proof, but
eventually reduced the proof to one of a moderate size that was then “humanized” by Karin
Cvetko-Vah. (All relevant references are given in the sections.)

For lattices, not only is xA(y v z) = (xAy) Vv (xAz) equivalent to xv(y A z) = (xv)y) A (xVvz),
both identities in turn are equivalent to a lattice not having copies of M3 or N5 as subalgebras.
Another equivalent condition for lattices is this form of cancellation:

XVZ=yvz & XAZ=YAZ = X = ).

For skew lattices, however, these conditions are mutually nonequivalent in the absence of other
qualifying assumptions. Either a distributive identity or the cancellative implication will by itself
rule out M3 or Ns occurring as subalgebras, but not conversely. A skew lattice is called
cancellative if both the above implication (cancelling on the right) and its dual,

xvy =xvz & xAy = xAz = y = z (cancelling on the left),

hold. Cancellative skew lattices are always strongly symmetric. Since every skew chain is
cancellative (Proposition 5.3.2), but not necessarily distributive (Example 5.3.3), being
cancellative does not imply being distributive. Conversely the four forbidden algebras of Section
5.1 are distributive, but not cancellative. Cancellative skew lattices, and their close variants, are
studied in Section 5.3. They all form varieties that are characterized by small sets of forbidden
subalgebras (Theorem 5.3.8). Their coset structure also produces some interesting counting
features. (See Theorems 5.3.10 and 5.3.11.) Both partial function algebras and skew lattices of
idempotents in rings are cancellative.

Like being symmetric, being categorical is desirable in a skew lattice as it makes cosets
and their bijections well-behaved globally. Indeed, all distributive skew lattices are categorical
(by Theorem 5.4.2). This condition is studied more closely in Section 5.4. Categorical skew
lattices form a proper subvariety of skew lattices and in Theorem 5.4.4 we give a countable
family of forbidden subalgebras that characterize this subvariety. Strictly categorical skew
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lattices are studied in the last part of the Section and Theorem 5.4.7 gives a number of equivalent
conditions for a skew lattice to belong to this variety. Perhaps the most notable one is the unique
midpoint condition on skew chains A > B > C in §: given a > ¢ with @ €A and ¢ €C, a unique
midpoint b €B exists such that a > b > ¢. This is equivalent to the condition: for each pair e < f'in
a skew lattice, the interval subalgebra [e, /] ={x ES|e <x <f} is a sublattice. As a consequence,
any strictly categorical skew lattice S for which the lattice image S/D is distributive is a

distributive skew lattice. (Theorem 5.4.9.) All normal skew lattices belong to this variety as do
their duals, conormal skew lattices (where xvyvzvw = xvzvyvw holds). The subvariety of all
skew lattices generated from these two classes of skew lattices turns out to be a proper subvariety
of strictly categorical skew lattices. At the end of the section we ask if this generated subvariety
is the variety of paranormal skew lattices (defined there). In general one has the following chain
of subvarieties:

(Normal U conormaly C Paranormal C Strictly categorical.

In Section 5.5 we take a closer look at distributivity. Every distributive skew lattice S
must be quasi-distributive in that every lattice image of S is distributive. Quasi-distributivity is a
necessary, but not sufficient condition for distributivity, thanks to Spinks’ examples (Theorem
1.3.10). A possible complementary condition is for a skew lattice to be linearly distributive in
that each subalgebra that is totally pre-ordered (by >) is distributive. Linearly distributive skew
lattices form a variety. (See Theorems 5.5.1 and 5.5.5.) For skew lattices one has the strict chain
of subvarieties:

Strictly categorical C Linearly distributive C Categorical.

In the strictly categorical case, quasi-distributivity suffices for the skew lattice to be distributive
(Theorem 5.4.9). For linearly distributive algebras in general this does not occur (Spinks’
examples again). However: given symmetry, linearly distributive + quasi-distributive implies
distributive. (See Theorem 5.5.11.)

Being a vital part of distributivity, linear distributivity and distributive skew chains in
particular are studied further in Section 5.6. Given a skew chain A > B > C with a>c fora€ A
and ¢ € C, consider the set w(a, ¢) = {b € B|a > b > ¢} of midpoints b of @ and ¢ in B. One has
|u(a, c)] > 1, and unless A > B > C is strictly categorical, |u(a, c)| > 2 for all such pairs. In
general, B decomposes into a disjoint union of AC-components By, By, ... that induce sub-skew
chains A > B; > C. (The definitions and relevant discussion occur prior to Example 5.4.3.) Each
component B; contains at least one midpoint b; for @ > c¢. In any case, A > B > C is distributive if
and only if each A > B; > C is strictly categorical, and in particular, each component B, contains a
unique midpoint b; for each such a > ¢. wu(a, c) thus parameterizes in a natural way the AC-
components of B. In so doing, distributivity minimizes the number of midpoints any a > ¢ can
have in a skew chain A > B > C relative to the AC-component structure of B (Theorem 5.6.4).
Here, and in the latter part of Section 5.4, the orthogonality of cosets from two D-classes (A and

C) in a third D-class (B) occurs again. (Recall Lemma 2.4.8 and Theorem 2.4.9 in Section 2.4.)
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In the final seventh section we present some combinatorial results about skew chains and
skew diamonds. These counting theorems are a continuation of some results in Section 2.4, in
particular Theorem 2.4.10 and its corollaries. Whereas the former are over 20 years old, the
results in Section 7 were published in the past few years and are due primarily to Cvetko-Vah,
Leech and Pita de Costa. The section concludes with some consequences for cancellative skew
lattices. This is followed by a few remarks of a bibliographic nature.

5.1 Symmetric skew lattices

Recall from Theorem 2.2.4 that symmetric skew lattices are characterized as skew lattices
by the following identities with both sides respectively equaling xAyAx and xvyvx:

XAYA(XVYVX) = (XVYVX)AYAX (5.1.1)
and
XVYV(XAYAX) = (XAYAX)VYVX. (5.1.2)

Matthew Spinks in [Spinks 1998] observed that these identities can be trimmed to

XAYA(XVY) = (VVX)AYAX, (5.1.3)
and

XVYV(XAY) = (VAX)VYVX (5.1.4)

since xAyAx < both xay and xvy, so that xvyv(xAy) = xvyv(xAyAx)v(xAy) = xvyv(xayAx) due to
xAyax R xay holding in any skew lattice. The three other terms are handled similarly.

Symmetry is parsed as follows. A skew lattice is lower symmetric if xvy = yvx implies
xAy =yax. Dually, a skew lattice is upper symmetric if xny = yax implies xvy = yvx.

Theorem 5.1.1. Lower symmetry is characterized by identity (5.1.3). Dually, upper
symmetry is characterized by identity (5.1.4). Hence both classes of skew lattices form varieties.
A skew lattice S is thus upper [lower] symmetric if and only if both S/L and S/R are.

Proof. Indeed, if xvy = yvx, then (5.1.3) plus absorption gives xAy = yAx so that lower symmetry
holds. Conversely, since x>xvyvx, occurrences of x and (xvyvx)AyA(xvyvx) must v-commute.
Hence if a skew lattice is lower symmetric, x and (xvyvx)AyA(xvyvx) also A-commute so that
(5.1.1) and hence (5.1.3) follows. Similar remarks hold for (5.1.4) and upper symmetry. [

Consider the following pair of Hasse diagrams, each determining a right-handed skew
diamond and its left-handed dual. (The dotted lines denote the natural partial order >.)

166



V: Further Topics in Skew Lattices

jl - j2 1
a; —a, b —b, ay—a, by —b,
0 my; —my
The induced right-handed algebras are denoted respectively by NSgl’0 and NS?’] . Their left-

handed duals by are denoted NS%’O and NS%’1 . Cayley tables for NS?’O are given by:

vi|o la, b, j, A O}an}bn}jn
OO ba i 0Joj04010
am |G am Vjm L, and Gy |0 1ap 10 1ay.

All four algebras can be obtained from any one by v-a duality, £-R duality or a combination of

both. None is symmetric. Indeed, the tables above give ajaby = 0 = byaa; but ajvbs # byvay.
The following theorems appeared in 2011 in a paper of Cvetko-Vah, Kinyon, Leech and Spinks.

Theorem 5.1.2. A skew lattice is upper symmetric if and only if it contains no copy of
NS%"0 or NS%’O. 1t is lower symmetric if and only if it contains no copy of NS%K’1 or NS%’I.

Finally, it is symmetric if and only if it contains no copy of any of these skew lattices.

ng’o nor NS?’0

Proof. Since neither Ni is upper symmetric, any skew lattice containing a copy

of one of them cannot be upper symmetric. Conversely, consider first the case where S is a non-
upper symmetric, right-handed skew lattice. Thus a, & € S exist such that anb = baa but
avb # bva. Consider the subalgebra T generated by a and b. Since anbax = anb = xaanb, for
x =a or b and hence for all xET, aab is the zero element of T. Moreover a and b must be in
incomparable R-classes for anti-symmetry to occur and thus one has the following configuration

with seven distinct elements in four D-classes within a right-handed skew diamond:

avb—bva
a—a/\(bva) b/\(avb)—b.

anb

For if a = an(bva), then bva > a, b forcing avb = bva by Theorem 2.2.1, contradicting our
assumption on a and b. Thus a # aa(bva) and similarly b # ba(avb) giving us at least the seven
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distinct displayed elements. We claim that this set is closed under v and A. Each displayed D-

class is closed. We consider representatives of the less trivial remaining cases.
an(bva) v (avb)=[an(bva) v a]lv b=an(bva) v b=bva
since an(bva) R a and both aa(bva) and b are < bva. Likewise,

av[ba(avb)] =av[ba(avb)]v(avb) =av(avb) =avb=[ba(avb)]vavb =[ba(avb)]va
and
[an(bva)]v[ba(avb)] =[an(bva)]v[ba(avb)]vavb =[ar(bva)lvavb = bva

by a prior calculation. Thus, T is as in the diagram and it is a copy of NS?’O. Dual remarks

involving NS%’O arise in the left-handed case.

Suppose next that S is any non-upper symmetric skew lattice with a, b € S such that
anb = baa, but avb # bva. Again, a and b generate a subalgebra S’ that forms a non-upper
symmetric subalgebra for which anb is the zero element. Moreover, one of S'/R or S'/L must be

non-upper symmetric and thus a copy of NS%’0 or NS?’O. Whichever case it is, a copy also

exists in S’ by Theorem 2.2.9. The lower symmetric case follows by duality. Both cases combine
to characterize full symmetry. [

Upper and lower symmetry can each be parsed further in left-right fashion to give a four-
fold partition of symmetry that will prove useful in Section 5.3.

Theorem 5.1.3. Given a skew lattice S:

i) S/ L being upper symmetric is equivalent to either of the following:
a) S contains no copy of NS?’0 .

b) S satisfies xvyvx = (yAX)VYVX.
ii) S/R being upper symmetric is equivalent to either of the following:

a) S contains no copy of NS%’0 .

b) S satisfies xvyvx = xvyv(XAy).
iif) S/R being lower symmetric is equivalent to either of the following:

a) S contains no copy of NS'7£’1.
b) S satisfies XAyAX = (YVX)AYAX.
iv) S/L being lower symmetric is equivalent to either of the following:

a) S contains no copy of ng{’l .
b) S satisfies xAyAx = XAYA(XVY).

The above four conditions hence determine four varieties of skew lattices.

168



V: Further Topics in Skew Lattices
Proof. Notice that S/L is upper symmetric if and only if S/L itself contains no copy of NS%"O .

Thus the equivalence of (i)(a) with the upper symmetry of S/L follows from Theorem 2.2.9. To
show the equivalence with (i)(b), we begin with x, y € S, set u = u(x, y) = (yAx)vy. Since
xXAyAx L yax, we have

(xAyAx) vy v (xayax) L (yAx) v y v (¥AX) = (AX)VY = u.
Setting w = (XAYAX) V y V (XAYAX), SINCE XAW = WAX = XAYAX We get
(cAU)A(UAX) = XAUAX = XAUAWAX = (XAU)A(XAW) =XAU
and

(UAX)A(XAU) = UAXAU = UAWAXAU = UAXAWAU = UAXAW = UAWAX = UAX.

Thus, xAu L uax. Moreover, if xaAy L yax, then u(x, y) must reduce to y. S/L is thus upper
symmetric if and only if for allx, y € S, x v u(x, y) L u(x, y) v x. Using the xAy = yvx identity on
D-classes we get, (yAx) vy vx Vv (yAX) vy =xV (yAx) v y and

XVEAX)VYV(PAX)VYVX =(UAX) VY VX
which reduce to (yAx) vyvxvy=xvyand xvyvx = (yax)vyvx by Lemma 2.1.4, with the
left identity being redundant in the presence of the right identity. (The lemma states that in any

skew lattice, a, ¢ > b = avbvc =avc while a, c < b= anbac=anc.)

The three other cases are similar. The final assertion is now clear. [J

5.2 Distributive identities in the symmetric case

We give Cvetko-Vah’s 2006 proof of Spinks’ Theorem (Spinks [1998]) stating that for
symmetric skew lattices, the following identities are equivalent:

XAPVIIAX=XAYAX)V(XAZAX) (5.2.1)
and

XV AZ)VX=XVYVX)A(XVZVX). (5.2.2)
Recall also the following results that are used in further computations often without reference

Lemma 5.2.1 A4 band S is regular if and only if axb = ab holds for all a, b<x € S. 1

Lemma 5.2.2 A skew lattice S satisfies any identity or equational implication satisfied
by both its left factor S/R and its right factor S/L. U
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If S is a right-handed skew lattice then the two symmetry identities of (5.1.1) and (5.1.2)
above simplify as
XAYA(XVY) = yAX (5.2.3)
and
xXvy = (VAX)VYVX. (5.2.4).
Likewise for right-handed skew lattices, identities (5.2.1) and (5.2.2) above simplify as
vz)Ax=@Ax)Vv(zAx) (5.2.5)
and
XVEAZ)=(xVvY)A(xVz). (5.2.6)

We are ready to prove Spinks’ Theorem, doing so first for the right-handed case.

Theorem 5.2.3. For any skew lattice S the identities (5.2.1) and (5.1.1) imply (5.2.2),
and dually, the identities (5.2.2) and (5.1.2) imply (5.2.1).

Proof. Assume S is a right-handed skew lattice satisfying (5.2.3) and (5.2.5). Seta=xVv (y A 2)
and B=(x v y) A (x vz). By(5.2.5)and absorption one also has

B =xv@Aa@v2). (5.2.7)
Equality (5.2.3) yieldsy A (xvz)=(xvz)AyA(xvzvy). Thusby (5.2.7),
B=xv((xvzayaxvzvy))
XVE@AyA(xvzvY)V(EAYAKVZVY) by (5.2.5)
= xv(@EAayaxvzvy)) (5.2.8)

by absorption. Apply A (x v y v z) on the right of (5.2.8). By (5.2.5) and absorption,

BAxvyvz)=xv(EZAayan (xvyvz) (5.2.9)
On the other hand,

av xvzvy) =xVv (JAZ)V XVzZVYy =XV (JAZ)VZVY = XVZIV)
Hence a <xvzvyandthusa A (x vzvy)=a. Thusby (5.2.5) and absorption again,
xv(yazy=xv({@az)a(xvzvy)). (5.2.10)
Switch y and zin (5.2.10) to getx v (z A y) = x v ((z A y) A (x v ¥ v z)) and use (5.2.9) to obtain
BAaxvyvz) = xv(zAay). (5.2.11)
Apply A (x v y) on the right to obtain

BAGxvyva)a@xvy) =@xvEay)A@xvy) =xVv(EAyAxvYy). (5.2.12)
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On the other hand regularity and right-handedness with (5.2.5) imply
BAGvyvaA@vy) = Ba(rvy)
=@vy)Axva)A@@vy) =@xvz) Axvy =xV (zA(xVvYy)). (5.2.13)
Together (5.2.12) and (5.2.13) give the identity
xviEaya@xvy) =xvEaxvy). (5.2.14)
Notice thata vxvz=xv (yAaz)vz=xvz Hencea<xvzandthusaa (x v z)=a. Finally,

a=aAr(xvz)= xv@Aaz)Aa(xvz)

= xv(@PAzA(xv2) by (5.2.5)
= xv(@Axvz) by (5.5.16) with y and z switched
=B by (5.2.7).

A similar argument shows that a right-handed skew lattice satisfying (5.2.4) and (5.2.6) must also
satisfy (5.2.5). Duality yields that the assertion follows for left handed-skew lattices. The theorem
now follows from Lemma 5.2.2. [J

Corollary 5.2.4 (Spinks [1998] and [2000]) For symmetric skew lattices, the distributive
identities (5.2.1) and (5.2.2) are equivalent. [

5.3 Cancellation in skew lattices

A skew lattice is cancellative if both
xvz=yvzandxAz=yAzimplyx =y, (5.3.1) 17
and

xvy=xvzandx Ay =xAzimplyy =z (53.2)18

A skew lattice satisfying (5.3.1) [or (5.3.2)] is right [left] cancellative. Lattices are cancellative
precisely when they are distributive. For skew lattices, we at least have:

Lemma 5.3.1. Left [right, fully] cancellative skew lattices are quasi-distributive.
Proof. All forms of cancellation prevent M3 or N5 from being subalgebras. [
Proposition 5.3.2 Any skew chain is cancellative.

Proof. Assume that S is a right-handed skew chain with x, y, z € S satisfying x v z=y v z and
x Az =y A z. Then xDy since S/D is totally ordered and thus cancellative. Assume that
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Dy <D.. Fromxaz=yArzwegetx Au=y A uforall uinD,. Thus to prove that x = y it thus
suffices to find u € D. such that x <u and y < u. Obviously, u =x v z =y v z does the job. On
the other hand, D, < D, impliesx =xvzvx=xvz=yvz=yvzvy=y HenceS satisfies

(5.3.1). A similar argument, but with v and A interchanged, shows that (5.3.2) holds. The left-
handed case follows by duality. Since any skew chain S for which S/D is finite is a subalgebra of

S/R x S/L, the general case must follow. [

This leads us to the observation that cancellative skew lattices need not be distributive.

Example 5.3.3. Consider the following right-handed skew chain S on § elements.

Z T Z \/ | ’ ” y y///
y/ N y// — y N y’/’ ’ 4 y’ y,’
R x, y 7 y y’,’
x —-——= X
The D-relation is denoted by ——, while .*", : and . denote >. The partial tables indicate those

operation outcomes not determined simply by S being right-handed or by >. By the previous
proposition, S is cancellative. But S does not satisfy (5.2.1):

xvyyaz=yaz=y"and(xaz)v(yaz)y=x'vy=y 0O

Theorem 5.3.4. Cancellative skew lattices are strongly symmetric.

Proof. An easy check shows that none of NS?’O, NS‘7£’O, NS{;{’1 or NS%’1 is cancellative.

Likewise it is easily verified that none of the S,,, or T,,, for mn > 2 can be cancellative. The
theorem follows from Theorems 5.1.2 and 5.1.7. [J

Corollary 5.3.5 (Cvetko-Vah [2006b]) The distributive identities (5.2.1) and (5.2.2) are
equivalent for all cancellative skew lattices.

Proof. This is an immediate consequence of the theorem above and Corollary 5.2.4. [J

Conversely, distributivity does not imply cancellativity. Minimal examples of distributive
skew lattices that are neither left, right nor fully cancellative are given by a dual pair of skew

lattices with the common Hasse diagram below. We denote the right-handed case by NC? and

its left-handed dual by NCSL. The Cayley tables for NC? are also given. Transposing them

gives the tables the left-handed variant.
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One might ask whether the absence of M3, N5 and the above pair of 5-element algebras as
subalgebras of a skew lattice S will insure that S is cancellative. While this is not the case (the
four 7-element algebras are counterexamples), the question does lead to a form of cancellation the
underlies the three forms of cancellation above.

A skew lattice S is simply cancellative if for all x, y,z € S,

xvzvx =yvzvy and xAzax =yAazAy together imply x =y. (5.3.3)
This is equivalent to a second implication,
Xvz=yvz, zvx =zvy, XAz=yAz and zAx =zAy imply x=y. (5.3.4)
Indeed both sets of conditions imply each other. From xvzvx =yvzvy we get

XVZVXVZ = yVZVyVz,

that is xvz = yvz, and similarly, zvx = zvy. Conversely from xvz = yvz and

ZVX =ZVY, XVZVX = YVZVy

must follow. Similar remarks hold for equalities involving A. Thus, simple cancellativity is
implied separately by left, right and full cancellativity.

Lemma 5.3.6. A4 skew lattice S is simply cancellative if and only if it is quasi-distributive
and all skew diamonds within S are simply cancellative. Given a skew diamond T with
incomparable D-classes A and B, join class J and meet class M, the following are equivalent:

i) T is simply cancellative
ii) Given e > fwith e € ] and f € M, unique a EA and b €EB exist such that both e > a >f
ande>b>f.

iii) Given e > fwith e € ] and f € M, unique a € A and b € B exist such that e = avb =
bva and f=anb = bna.

iv) T contains no copy of NC§ or NC? .
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Proof. Simply cancellative skew lattices are quasi-distributive since M3 and N5 cannot occur as
subalgebras. Assume S is at least quasi-distributive. If a, a', b € S exist such that
avbva = a'vbva' and anbaa = a'abad’, then a D a’ since a and a' have the same image in the
distributive lattice S/D. If a and a' are comparable to b (a, a' > b or b > a, a'), then either
avbva=a'vbva' or anbaa = a'abaa’ will reduce to a = a'. Thus we need only consider the case
where b is incomparable to a and @’. In any case, the first assertion is by now clear. As for the
equivalence of (i) through (iv) for a skew diamond T, (ii) and (iii) are trivially equivalent by
Theorem 2.2.1. Clearly these conditions imply (iv). Conversely, suppose (iv) holds. Then given
any ¢ € A and d € B, setting a = fv(eancae)vfand b = fv(endnae)vf gives a pair a, b satisfying
these inequalities. Suppose e > a, @’ > fwhere a D a’. Then a R ana’ L a'. Thus if a # a' then
either a # ana’ or ana’ # a'. Moreover e > ana’ > f so that either {a, ana’, b, e, f} or
{a’, ana’, b, e, f} is a copy of NC? or NC? in T contrary to (iv). Thus a is unique and

similarly so is b. Hence (iv) implies (ii).

Suppose that (i) holds and let e € J and f € M be as in (ii) and (iii). As we have seen,
a € A and b € B exist such that e > a, b > f. If ¢’ € A is such that e > ¢’ > f also, then
avbva = e =a'vbva' and anbaa = f=a'abaa’. Simple cancellation yields ¢ = a'. Similarly b
is unique and (ii) follows. Conversely suppose that (ii) — (iv) hold and let avbva = a'vbva' and
anbaa = a'abaa’ in T. Since T is quasi-distributive, at least @ D a'. Again, if a and b are

comparable, then a = @', as seen above. So we may assume they are incomparable and hence, say
a € A and b € B. Setting e = avbva = a'vbva' in J and f'= anbaa = a'abaa’ in M, we have
e>a, a' > f By (ii), a = a' and (i) follows. [

Theorem 5.3.7. A skew lattice S is simply cancellative if and only if it contains no copy

of M3, Ns, NC§ or NC?. Collectively, these skew lattices form a variety.

Proof. The first assertion is clear from the preceding discussion. An equational base for this
class of skew lattices is given by the identity for quasi-distributivity and the identity

fv (enynzayne) v f = fv (enzayazae) v f

where e = e(x, y, z) = xvyvzvx and f'= f(x, ¥, z) = XAeAYAZAYAeAx = XAYAZAYAX. On either side
are two typical D-related elements having common commuting joins and meets with a third

element (here x). The implication defining simple cancellativity (where x, y and z assume
different roles!) equates these elements. []

Returning to left [right, full cancellativity] we have:

174



V: Further Topics in Skew Lattices
Theorem 5.3.8.
1) The following are equivalent for a skew lattice S.

i)  Sis left cancellative.
ii) None of M3, Ns, NC§, NC%R R NS%Q’0 nor NS%’1 are subalgebras of S.

iii) S is simply cancellative, S/ L is upper symmetric, and S/R is lower symmetric.

2) The following are equivalent for a skew lattice S.

i) S is right cancellative.
ii)  None of M3, Ns, NC§ , NC?, NS%Q’1 nor NS%’0 are subalgebras of S.

iii) S is simply cancellative, S/L is lower symmetric, and S/R is upper symmetric.

3) The following are equivalent for a skew lattice S.

i) Sis cancellative.
ii) None of the above 5 or T-element algebras occur as subalgebras of S.
iii) S is simply cancellative and symmetric.

4)  Left [right, fully] cancellative skew lattices form a variety.
Proof. We begin with (1). If S is left cancellative, then S cannot contain copies of any of the
algebras listed in (ii) since none of them are left cancellative. Thus (i) implies (ii). The

equivalence of (ii) and (iii) follows from Theorems 5.3.7 and 5.1.2. Now assume S satisfies (iii),
and suppose a, b, c E Ssatisftya vb=avcanda an b=a A c. Since S/L is upper symmetric

and S/R is lower symmetric, Theorem 5.1.2 gives

bvavb=(@arnb)vavb=(anc)vavc=cvavc
and

bananb=(a@avb)rnanb=(avc)nanc=cnranec.
By simple cancellativity, b = c. Therefore S is left cancellative and (i) holds. The proof of (2) is
similar. Indeed (2) follows from (1) via horizontal duality (new x v y = old y v x; new
x Ay=oldy A x). (3)is a consequence of (1) and (2) combined, together with Theorems 5.3.7
and 5.1.1. Finally (4) now follows from (1) — (3) and Theorems 5.1.1, 5.1.2 and 5.3.7. O

Equational bases. A basis for left cancellative skew lattices is thus as follows.

1) [xA(v2)] A [(xAY) v (xAZ)] A [xA(yvZ)] = xA(YVZ).

2) fv(eaynzayne)vf = fv(enzayazae)vf where e = xvyvzvx and f'= XAYAZAYAX.

3) xvyvx = (yAx)vyvx and XAYAX = (YVX)AVAX.
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Identities (1) and (2) insure that a skew lattice S is simply cancellative (per Theorem 5.3.7) and
(3) ensures that S/L is upper symmetric and S/R is lower symmetric (per Theorem 5.1.2). An
equational base for right cancellative skew lattices is obtained by replacing (3) with the left-right
dual identities. An equational base for cancellative skew lattices is given by replacing (3) with
the two identities for symmetry.

Consider the lattice of varieties below.

Simply cancellative
skew lattices

Left cancellative Right cancellative
skew lattices skew lattices

Cancellative
skew lattices

While the bottom variety is the inter-section of the middle varieties, we do not know if the top
variety is generated from the middle varieties and thus is their join in the lattice of all skew lattice
varieties. The bottom variety is, of course, the intersection of each variety with the variety of
symmetric skew lattices. Using Mace4, four distinct minimal cases of order 12 exist that are
simply cancellative, but are neither left nor right cancellative. They turn out to be the fibered

productNS%’0 X2.2 NS%’1 of NS%’0 and NS%’1 over their maximal lattice image 2x2; the splice
of NS%’0 with NS%’1 obtained by identifying the join class of NS%’0 with the meet class of
NS%’1 ; their two right-handed duals.

Cancellation is often used to compare the sizes of sets. Indeed much of our discussion of

simple cancellation in Lemma 5.3.6 can be recast as follows. Given a skew diamond with
incomparable D-classes A and B, join class J and meet class M, set:

w(, M) = {(j, m) EI x M|j>m}
and

Comm2(A, B) {(a, b)) EA x Blavb = bva & anb = bna}.

w(J, M) is the natural partial order between J and M, while CommZ(A, B), consists of all pairs,
one from each class, that commute under both operations. Define &: Commz(A, B) = w(J, M)
by &(a, b) = (avb, anb). & is at least well defined. In the proof of Lemma 5.3.6 we saw that & is

surjective. The unique parallel commuting factorization of Lemma 5.3.6 (iii) gives us the first
half of:
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Theorem 5.3.10. Given a simply cancellative skew diamond {J> A, B>M}, the function
E: Commz(A, B) — w(J, M) defined by E(a, b) = (avb, anb) is a bijection. Conversely, given any
skew diamond {J> A, B>M} the map § as stated is always well-defined, but it is a bijection only
if the skew diamond is simply cancellative.

Proof. If {J>A, B>M} is not simply cancellative, then either a copy of NC§ or NC? occurs

which gives € a properly many-to-one instance. [J

The above results in this section are from the 2011 paper of Cvetko-Vah, Kinyon, Leech
and Spinks.

We conclude this section with several observations:
Theorem 5.3.11. Skew lattices in rings are cancellative.
Proof. So let ab = ac and aVb = aVc. Expanding and making the obvious reductions reduces the
latter to
b+ ba—-bab =c+ ca—cac = ¢+ ca— cab.
Thus b(1 —a —ab) = c(1 —a — ab). But (1 —a—ab)2 = 1—a + aba and so

b = b(l—a +aba) = c¢(1-a + aba).

Similarly ¢ = ¢(1 — a + aca) = ¢(1 — a + aba) and b = ¢ follows. Right cancellation is shown
similarly. [J

Theorem 5.3.12. Strongly distributive skew lattices are cancellative.

Proof. Strongly distributive skew lattices are clearly quasi-distributive, and by Theorem 2.3.4
also symmetric. By the same theorem they are also normal, so that neither NC‘SE nor NC? can

be a subalgebra. Hence none of the 5- or 7-element forbidden algebras can be a subalgebra,
making any strongly distributive skew lattice cancellative. [

Primitive skew lattices and skew chains in general are trivially cancellative: they are
clearly symmetric and quasi-distributive and it is impossible for either variant of NCs to be a
subalgebra. Thus we have:

Proposition 5.3.13. Every skew lattice in the variety of skew lattices generated from the
class of all primitive skew lattices is cancellative. More generally, every skew lattice in the

variety of skew lattices generated from the class of all skew chains is cancellative. []

Queries: Are the varieties generated by these two classes of algebras the same? Is the
second variety in fact the variety of all cancellative skew lattices?
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The answer to the first question is, no. Primitive skew lattices are trivially categorical,
and thus all skew lattices in the first variety are categorical. We shall see in the next section that
skew chains A > B > C of length 2 exist that are not categorical. The first variety is thus a proper
subvariety of the second.

5.4 Categorical skew lattices

We continue our study begun in Section 2.4 of categorical skew lattices, where
all nonempty composites of coset bijections are coset bijections. This reduces to the implication:
if a>b>c with @' Da and ¢’ D c such that ¢’ = a'acaa’ in C and @' = ¢’vavc' in A (making both

a>c and a' > ¢’ part of a common coset bijection from A to C), then a’'Abaa’ = c'vbvc' in B.

a - a=cdvavd
b — b=dArbrd=cvbvc (where :denotes>)
¢ - d=adnrcnd

For if y, the unique coset bijection from A to C taking a to ¢, factors as Yoq, where ¢ and 1 are
the unique coset bijections from A to B and from B to C taking a to » and b to ¢ respectively, then
one has a'abra’ = gla'] = 11)7] [¢']=c'vbvc'.

Contraposition gives the following criterion for a skew lattice S to not be categorical:
given a > b > ¢ in S with @' D a and ¢’ D ¢ being such that a’acaa’ = ¢' in D, and ¢'vavc’ = a' in

D,, but a'abaa’ # c'vbvc'in Dy,
We have seen that categorical skew lattices form a variety. In the left-handed skew case:

Lemma 5.4.1. A left-handed skew lattice is categorical if either of the following pair of
dual identities hold:
XA[yvXAyAzZ)]=xAYy (5.4.1)
or
[(xvyvz)aylvz=yvez (5.4.2)

Proof. Let S be a left-handed noncategorical skew lattice. Thus a > b > ¢ in S exist with @’ £ a
and ¢’ Lcsuchthata' Ac=c¢'inC,avc =da inAbuta A b+#bvc inB. This creates the
following configuration

A: a - a’
B: b - anb - bvc.
C. ¢ - ¢
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Being left-handed, both a' > a'aAb and bvc' > ¢’ are clear. Trivially ¢'A(a’Ab) = ¢' and
(bvc')va' = a’. On the other hand, (a'Ab)ac’ = (a’'Ab)a(a'Ac) = a'A(bAc) = a'Ac = ¢’ also so that
a'anb>c'. In dual fashion a' > bv¢'. Notice that both

anbEtbve =ananbvc)y=anbv@nanbnac)l.
and
bvce #a anb=(@@nrbyvce =[dvbvc)yablvc.

The lemma follows by contraposition. []

Comment: The converse (in the left-handed case) has been shown using Prover9. These
identities do not imply left-handedness. As a consequence of this lemma we have:

Theorem 5.4.2. Any skew lattice satisfying either distributive identity (5.2.1) or (5.2.2)
is categorical. In particular, all distributive skew lattices are categorical.

Proof. To begin, if a left-handed skew lattice satisfies (5.2.1), then (5.4.1) follows:
XA VEAYAZ)] = @A) VIXA@AYAZ)] = (XAY)V(XAYAZ) = XAD.

Likewise a left-handed skew lattice satisfying (5.2.2) must satisfy (5.4.2). Dually, a right-handed
skew lattice satisfying either (5.2.1) or (5.2.2) are categorical. In general, if a skew lattice S
satisfies either distributive identity, then so do its factors S/R and S/L. Hence each factor is

categorical and thus so is S, since it is isomorphic to a subalgebra of S/R x S/L. I

Forbidden subalgebras

Given a comparable D-classes, A > B, if a, a’ € A lie in a common B-coset, we denote

this by a — a'; likewise b — b’ in B if b, b’ lie in a common A-coset. Of interest here are skew
chains A> B> C, since a skew lattice is categorical if and only if all its skew chains are thus.

Two elements b and ' in the middle class B are AC-connected if a finite sequence
b = by, by, by, ... , b, = b’ exists such that b; —p b;+1 or b; — b;+) for all i <n — 1. Clearly this
defines an equivalence relation on B. An AC-component of B (or just component when the
context is clear) is an equivalence class for this relation, that is, a maximally AC-connected
subset of B. (Connectedness is actually a congruence on the rectangular algebra B, making the
components subalgebras of B. Indeed it is the join-equivalence of the congruence partitions
given by the A-cosets and by the B-cosets.) In the examples below, B is connected. Given a
component B in the middle class B, a sub-skew chain is given by A > B; > C. Indeed if A; is a
B-coset in A and C; is a B-coset in C, then A; > B; > C; is also a sub-skew chain; moreover, a
skew chain is categorical if and only if all such sub-skew chains are categorical.

Our classification of forbidden subalgebras rests on the next lemma and its right-handed
dual.
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Lemma 5.4.3. Given a left-handed skew chain A > B > C, let a > ¢ and a’ > ¢’ be input-
output pairs for a common coset bijection between A and C where a # a'in A and ¢ # ¢"in C.
Upon setting A* = {a, a'}, B¥*={x EBla>x>cord >x> '} and C* = {c, ¢'}, one obtains a
sub-skew chain: A* > B* > C*. In particular,

i) a' >x>c forxin B* implies: a> both anx and xvc > ¢ with anx —a* X —c* xVc.
ii) a>x>c forxinB* implies: a' > both a'Ax and xvc' > ¢’ with a'Ax —ao* x —c+ xvc'.

All A*-cosets and all C*-cosets in B* are of order 2. An A*C*-component in B* is either a
subset {b, b'} that is simultaneously an A* and C*-coset in B* or else it is a larger subset having
the alternating coset form:

oo —AF @ —(CHk ® —A* @ —Cx ® —Ax ® —(Cx ...

Only the former can occur if the skew chain is categorical.

Proof. Being left-handed, we need only check the mixed outcomes, say aAx, xAa, cvx and xvc¢
where a’' > x > ¢' for case (i). Trivially xaa =x = cvx. As for anx, an(anx) = anx = (anx)Aaa, due
to left-handedness, so that a > aax; likewise cA(aax) = ¢, while

(anx)Ac = anxnanc’ = anxac’ = anc' = ¢

by left-handedness and the common coset bisection context. Hence aax > ¢ also, so that aax is in
B*. The dual argument gives a > xvc¢ > ¢, so that xve € B* also. Similarly (ii) holds and we
have a sub-skew chain.

Clearly the A*-cosets in B* either all have order 1 or all have order 2. If they have order
1, then a, a’ > all elements in B*, and by transitivity, a, a’ > both ¢, ¢', so that a > ¢ belongs to a
different coset bijection than @’ > ¢’. Thus all A*-cosets in B* have order 2 and likewise all
C*-cosets in B* have order 2. In an A*C*-component in B*, if the first case does not occur, a
situation x —c* y —a* z with x, y and z distinct develops. Since A* and C*-cosets have size 2, it
extends in an alternating coset pattern in both directions, either doing so indefinitely or eventually
connecting to form a cycle of even length. [

This leads to:

Example 5.4.4: Consider the class of skew chains A > B,, > C for 1 <»n < w, where

A = {ai, ar},
B,={ai,az, a3, ... ,axs} or {... ,ba, b_1, bo, b1, by, ...} if n=w and
C={ci, c2}.

The natural partial ordering given by a; > bogq > c1 and a2 > beven > c2. Both A and C are full
B-cosets as well as full cosets of each other. A- and C-cosets in B are given respectively by the
partitions:
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T [ TS R T SN B P
and

{b2k+l’ b2k+2} and {b2k’ b2k+l} when n = .

Clearly B, is a single component. We denote the left-handed skew chain thus determined by X,
and its right-handed dual by Y,, for n < . Their shared Hasse diagrams are as follows.

71 @ 4=
I: T2 2: by— by— by— by — b,
P A C A C
a2 o L
9
al— a2 al—az
. b—b,— ..— b -b, - W ..—-b,—b ,—by— b—b,— ..
n 1,720 7 G 2n—1A2nC(b1) e T e U
ST} )

In line with our remarks above, instances of left-handed operations on X are given by
aive=arva=az, dai Ab4=b3 Ab4=b3 and b1 ch=b1 v b4=b4.
Except for X1 and Y1, none of these skew lattices is categorical. Indeed,
ay>by>cy, ayNcihay = cp, CavVaivez = ay,

but axabiaay = by, while cavbive; is either by, or bo. Thus, except for X1 and Y1, none of these
is distributive. Note also that each X,, is generated from ay, ¢; and any ;. Thus no X,, contains a
copy of a lower X, as a subalgebra. Similar remarks hold for the Y,,.

Theorem 5.4.5. A left-handed skew lattice is categorical if and only if it contains no
copy of X, for 2 < n <. Dually, a right-handed skew lattice is categorical if and only if it
contains no copy of Y, for 2 <n < w. In general, a skew lattice is categorical if and only if it
contains no copy of any of these algebras.

Proof: We begin with a left-handed noncategorical skew chain S. Without loss of generality we
may assume that A is a full B-coset in itself and that C is a full B-coset in itself. Leta > b > c in
S with @’ L a and ¢’ £ ¢ being such thata’ A ¢c=c¢"inC,a v ¢’ =a' in A so that a, a’ correspond
to ¢, ¢’ under a coset bijection between A and C, but @' A b # b v ¢’ in B where A, B, C
are respective L-classes. The first new elements formed are a'Ab and bvc' in B. Note that
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av(a'ab) = a' since both are images of a'ab in A, which is the unique B-coset within A.
Likewise, (bvc')ac = ¢’. No new elements are created thus far from {a, a’, b, c, ¢'} giving us:

A a - a
B b — dnab - bvce
C. ¢ - ¢

At this stage it follows that the subalgebra formed from {a, @', b, ¢, ¢’} only has {a, a'} in the top
L-class and {c, ¢'} in the bottom L-class. Continuing, step-by-step, in both directions we get

’ ’ ’ ’

- a - a - d - a - a - a - a -

— larnAVv - anbac) - bve - b — aAb — (@Ab)ve - anl(@d Ab)ve]l -
C A C . A . C A

- ot - c - Jd - c - ¢ - c - ot -

Expansion thus continues in B. If repetition never occurs, we obtain a copy of X,. Otherwise, a
cyclic closure arises and we have obtained a copy of some X,,. The left-handed case follows from
this. The right-handed case is similar.

Clearly, a categorical skew lattice contains none of these algebras. Conversely, if a skew
lattice S contains copies of none of them, then neither does S/R or S/L since every skew chain

with finitely many D-classes in either S/R or S/L can be lifted up into S. Thus both S/L and S/R

are categorical, and hence so it S which is embedded in their product. [J
Corollary 5.4.6. Distributive skew lattices contain no copies of X, or Y, forn>2. [
Comment: If these skew chains seem familiar it is because they are precisely the

maximal skew chains within the skew diamonds arising in the classification of all symmetric
skew lattices. X, and Y, for all » > 2 in particular arise in the various non-categorical cases.

Strictly categorical skew lattices

We turn to categorical skew lattices that are strictly categorical in that for each skew chain
of D-classes A > B > C, each A-coset in B has nonempty intersection with each C-coset in B,

making both B an entire AC-component and empty coset bijections unnecessary. Examples are:
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a) Normal skew lattices characterized by the identity xAyAzaw = xAzAyaw;
equivalently, each subset [e]| = {x ES|e >x} = {eaxre|x ES} is a sublattice.

b) Conormal skew lattices that satisfy xvyvzvw = xvzvyvw; equivalently, every
subset [a]] = {x ES|x > e} = {evxve|x ES} is a sublattice.

c) Primitive skew lattices consisting of two D-classes: A > B and rectangular skew

lattices. Any algebra in the variety that primitive skew lattices generate.
Their significance is due in part to skew Boolean algebras being normal as skew lattices.
Theorem 5.4.7. Let A > B > C be a strictly categorical skew chain. Then:
i) For any a €A, all images of a in B lie in a unique C-coset in B.
ii) For any ¢ €C, all images of c in B lie in a unique A-coset in B.

iii) Given a > c with a €A and ¢ €C, a unique b €B exists such that a > b > c. This
b lies jointly in the C-coset in B containing all images of a in B and in the A-
coset in B containing all images of ¢ in B. (It is the midpoint of a and c in B.)

Proof. (i) Without loss of generality we assume that C is a full B-coset within itself. If
anCnaa = {c €EC|a > c} is the image set of a in C parameterizing the A-cosets in C and if @ > b in
B, then the set {cvbvc|cEanCnaa} of all images of @ in the C-coset CvbvC in B, parameterizes
the A-C cosets in B lying in CvbvC (that is, the coset intersections AAbAANCvbvC in CvbvC)
that are inverse images of the A-cosets in C relative to the coset bijection of CvbvC onto C. (See
Theorem 2.4.14 and its preceding discussion.) By assumption, all A-cosets X in B are in bijective
correspondence with these A-C cosets under the map X — X N CvbvC. Thus each x in
{cvbvc|c € anCaa} is the (necessarily) unique image of @ in the A-coset in B to which x
belongs and as we traverse through these x’s, every such A-coset occurs as AaxaA. Thus all
images of a in B lie in the C-coset CvbvC in B.

In like fashion one verifies (ii).

Finally, given a > ¢ with a €A and ¢ €C, a unique AC-coset U exists that is the
intersection of the A-coset containing all images of ¢ in B and the C-coset containing all images
of @ in B. In particular U contains any b in B such that @ > b > ¢. Such a b exists in B, e.g.,
b =an(cvuvc)aa for any u in B. But being in a single AC-coset in B, at most one such b is in U.
O

In the terminology of Section 2.4, the A-cosets in B are orthogonal to the C-cosets in B.
All this leads to the following multiple characterization of strictly categorical skew lattices:
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Theorem 5.4.8. The following seven conditions on a skew lattice S are equivalent.

)
ii)
iii)

iv)

v)

vi)

vii)

S is strictly categorical.

Given botha>b>canda>b">cin Swithb Db', b = b' must follow.
Given botha>b>canda>b'>cin S withb Db, b = b' must follow.

S has no subalgebra isomorphic to either of the following 4-element
skew chains:

Given a> b in S, the interval subalgebra [a,b] = {x ES|a>x>b} isa
sublattice.

Given any a € S, [a]t = {x € S|x >a} is a normal subalgebra of S and
[a]ll = {x € S|a>x} is a conormal subalgebra of S.

S is categorical and given any skew chain A > B > C of D-classes in S,

for each coset bijection @: A — C, unique coset bijections \: A — B and

x: B — C exist such that ¢ = y.

Proof. Theorem 5.4.7(iii) gives us (i) = (ii). Conversely, if S satisfies (ii) then no subalgebra of
S can be one of the forbidden algebras in Theorem 5.4.5, making S categorical. We next show
that given x, y € B, there exist u and v in B such that x —p u —c y and x —c v —s y. This guarantees
that in B, every A-coset meets every C-coset. Indeed, pick ¢ € A and ¢ € C so that
a > x > c. Note that a > an(cvyvc)aa, cv(anyaa)ve > c. But by assumption x is the unique
element in B between a and c under >. Thus

an(evyve)na =x =cv(anyra)ve

so that both x —a cvyve —c y and x —c aayaa —a y in B, which gives (ii)) = (i). Next let S be
categorical with A > B > C as stated in (vii). The unique factorization in (vii) occurs precisely
when (ii) holds, making (ii) and (vii) equivalent. Finally, (iii) — (vi) are easily seen to be
equivalent variants of (ii) ..J

Corollary 5.4.9. Strictly categorical skew lattices form a variety of skew lattices.
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Proof. Consider the following identity or its dual:
XVOAZAUAY)VIX=XV P AUANZAY)V X (5.4.2)

Note that xvyvx>x v (¥ AzAunry)vx&xv (yaunrzay)vx > xby(l.1)and (1.6) with the
middle expressions being D-equivalent, since z A u D u A z. Hence, if a skew lattice S is strictly
categorical, then (5.4.2) holds by Theorem 5.4.8(iii). Conversely, let (5.4.2) hold in S and
suppose that @ > both b, b’ > ¢ in S with b D b'. Assigningx —> ¢,y —> a,z —> bab" and u — b'ab
reduces (5.4.2) to b = bab'Ab = b'Abab' = b’ making S strictly categorical by Theorem 5.4.8(iii)
again. [

While distributive skew lattices are categorical, they need not be strictly categorical; but:

Theorem 5.4.10. A strictly categorical skew lattice S is distributive if and only if it is also quasi-
distributive.

Proof. Any distributive skew lattice is quasi-distributive. Conversely, in any strictly categorical
skew lattice both a > an(bvc)aa and a > (anbaa) v (ancaa). In turn, ancabaa < both
an(bve)aa and (anbaa) v (ancaa). Indeed, regularity and absorption give, e.g.,

(ancabra)alan(bvc)nal = ancaba(bve)aa = ancabaa
and
(ancabna) A [(anbaa) v (ancaa)] = anchanbaa A [(anbaa) v (ancna)]
= aAcnanbaa = ancabaa

In any quasi-distributive skew lattice, an(bvc)aa D (anbaa) v (ancaa). Thus if S is quasi-

distributive and strictly categorical, Theorem 5.4.8(iii) implies that both (5.2.1) and dually (5.2.2)
must hold. The converse is clear. [

Theorems 5.4.8 and 5.4.10 can also be used to show that a distributive, strictly
categorical skew lattice S is simply cancellative. 1t is (fully) cancellative when S is also
symmetric.

Corollary 5.4.11. A skew lattice is strictly categorical and distributive if and only if no
subalgebra is a copy of lattices M3 or Ns or either of the skew chains in Theorem 5.4.7(iv).

Order-closure and paranormal skew lattice

Both normal skew lattices and conormal skew lattices are proper subvarieties of the
variety of strictly categorical skew lattices. It is reasonable to ask if these subvarieties jointly
generate the larger variety. This turns not to be the case since both types of algebras belong to
another variety of skew lattices that excludes many primitive skew lattices, all of which must be
strictly categorical.
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A primitive skew lattice A > B is order-closed if for a,a’ € A and b, b’ €B, a,a’ > b and
a>b,b implya’' >b'.

a - - a
?
?
b - - b

A primitive skew lattice A > B is simply order-closed if a > b holds for all a € A and all b€ B.
In this case the cosets of A and B in each other are precisely the singleton subsets. The following
characterization of order-closed primitive skew lattices is easily verified: a primitive skew lattice
is order-closed if and only if it factors as the product T x D of a simply order-closed primitive
skew lattice T with a rectangular skew lattice D.

A skew lattice is order-closed if all its primitive subalgebras are order-closed. Order-
closed skew lattices form a subvariety of skew lattices. Using variables x, y, u and v, with

W = XAYAUAVAXAY,
one has the following generic situation between two D-classes (. denoting >):

XAY——=WV(yAX)VW

W ———XAYAVAUAXAY

Thus [wv(yAx)vw] A (XAYAVAUAXAY) A [WV(PAX)VW] = xAYAVAuAxAy characterizes these skew
lattices and we have:

Proposition 5.4.12. Order-closed skew lattices are a variety that includes both normal
skew lattices and conormal skew lattices.

Proof. That we have a variety is clear. That it includes all normal skew lattices is due to the fact
that given a primitive normal skew lattice A > B, for any a € A only one b € B exists such that
a > b, thus making A > B satisfy the defining condition for order-closure in a trivial manner. [J

The variety join of the varieties of normal skew lattices and conormal skew lattices is
thus included in the intersection of the varieties of strictly categorical and order-closed skew
lattices. Moreover, primitive skew lattices not satisfying the order-closed criterion above are
casily designed. See, e.g., the example of Theorem 2.4.3. Thus strictly categorical skew lattices
are not the join of the normal and conormal skew lattice varieties.
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A skew lattice is paranormal if is it is an order-closed, strictly categorical skew lattice.
We can now pose the following question:

Is the variety of paranormal skew lattices jointly generated by the varieties of normal and
conormal skew lattices? Otherwise put, is it their join in the lattice of all skew lattice varieties?

One can also consider conditioned versions of the question by asking if, say, the variety
of symmetric paranormal skew lattices is the join of the varieties of symmetric normal and
symmetric conormal skew lattices. “Symmetric,” of course, could be replaced by “distributive”
or by “distributive and symmetric.” In the latter case, a related question is:

Is the variety of distributive, symmetric, paranormal skew lattices generated from the
class of all order-closed primitive algebras?

The motivation for this is the fact that distributive, symmetric, normal skew lattices are
generated from 3gr and 31. (See Theorem 2.6.12.) Indeed, returning to strictly categorical skew
lattices in general, one may ask:

Is the variety of distributive, symmetric, strictly categorical skew lattices generated from
the class of all primitive algebras?

5.5 Distributive skew lattices

We begin with a broader class of skew lattices. A skew lattice S is linearly distributive if
every subalgebra T that is totally preordered under > is distributive. Since totally preordered
skew lattices are trivially symmetric, a skew lattice S is linearly distributive if and only if each
totally preordered subalgebra satisfies either (5.2.1) or equivalently (5.2.2). Indeed, S is linearly
distributive if it is distributive on each skew chain A >B > Cin S. Since skew chains need not be
even categorical, they need not be distributive! However:

Theorem 5.5.1. Linearly distributive skew lattices form a variety of skew lattices. Thus
a skew lattice S is linearly distributive if and only if both S/R and S/L are.

Proof. Consider the terms x, yaxay and zayaxayaz. Clearly x > yAxay = zayaxayaz holds for
all skew lattices. Conversely given any instance a > b > ¢ in some skew lattice S, the assignment
x — a,y — b, z — ¢ will return this particular instance. Thus a characterizing set of identities for
the class of all linearly distributive skew lattices is given by taking the basic identity

un(v v w)Au = (uAvau) v (uAWAU)

and forming all the identities possible in x, y, z by making bijective assignments from the
variables {u, v, w} to the terms {x, yAxAy, zAyAxayaz}. U
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We proceed with several lemmas, the first of which is evident.

Lemma 5.5.2. Left-handed skew lattices that satisfy (5.2.1) are characterized by:
XAYAX =XAY, XVyVXx =pvx and x A (yvz)=(xAY)V (x A 2). (5.5.15)
Dually, right-handed skew lattices that satisfy (5.2.1) are characterized by:
XAYAX = YAX, XVYVX =xVy and (yVzZ)Ax=(p AX)V (z A X). (5.5.1R)

Lemma 5.5.3. In a left-handed totally preordered skew lattice, if an(bvc) # anb v anc,
then a = b > c. Thus, for a lefi-handed skew lattice S, the following are equivalent:

a) S is linearly distributive.
b) antbvce) = (anb)yv(anc)foralla-b>cinS.
c) antbvce) = (anb)v(anc)foralla-b>cinS.
Left-handed linearly distributive skew lattices are thus characterized by:
XA[(YAX) v (zAyAX)] = (xAY) V (XAZAY). (5.5.20)
Dually, right-handed linearly distributive skew lattices are characterized by:
[(xAyAz) v (xAY)]Ax = (YAzZAX) V (VAX). (5.5.2R)
Proof. If say b > a, then an(bvc) = a and (anb) v (anc) = a v (anc) = a. If ¢ > a, then
an(bve) = a again, and (aab) v (anc) = (anb) v a = (anbaa) v a = a. Thus inequality only

occurs when a > b, c. But even here, a > ¢ > b gives us an(bvc) = anc and (anc) > (anb) so that

(anb) v (anc) = anc also. Thus, to completely avoid aa(bvc) = anb v anc we are only left with
a>b>c. O

In particular primitive skew lattices are distributive. It turns out that linear distributivity
is characterized succinctly by either of the dual pair of identities in the following lemma.
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Lemma 5.5.4. Identities (5.2.1) and (5.2.2) respectively imply

X A [(VAXAY) V (ZAXAZ)] A X = (XAVAX) V (XAZAX) (5.5.3)
and

x v [(yvxvy) A (zvxvz)] v x = (XVYVX) A (XVZVX). (5.5.4)

For left-handed skew lattices, these identities simplify to:

X A [(vAx) v (zax)] = (xAY) v (xAZ) (5.5.30).
and

[(xvy) A (xvz)] v X = (yvX) A (zVX). (5.5470).
Dually, in the right-handed case they simplify to:

[(xAy) v (xAZ2)] A x = (¥AX) V (zAX) (5.5.3R).
and

x Vv [(yvx) A (zvx)] = (xvy) A (xvz). (5.5.4R).
Proof. Since xAyAxAyAx =xAyAax by regularity, (5.2.1) = (5.5.3) and also (5.2.2) = (5.5.4). I

Theorem 5.5.5. For all skew lattices, (5.5.3) and (5.5.4) are equivalent. A skew lattice
satisfies either and hence both if and only if it is linearly distributive.

Proof. For left-handed skew lattices, (5.5.3L) clearly implies (5.5.2L), while (5.5.3R) implies

(5.5.2R). Thus if a skew lattice S satisfies (5.5.3), so do both S/R and S/L, making them linearly
distributive, and hence S also by Theorem 5.5.1

Conversely, assume that S is linearly distributive. First, let S be left-handed also. Then
left-handedness gives the first, third and sixth equalities below.

X A [(yAx) v (zAX)] = X A [(zAax) v (¥AX) v (zAX)]
= {x A [(zAx) v (AX)]} V [x A (2AX)]
= {x A [(PAx) v (zAx) v (PAX)]} V [x A (zAX)]
= {x A [(PAX) v (zAX)]} v [x A (PAX)] V [x A (zAX)]
= [x A pAx)] v [x A (zAX)]
= (x AY) Vv (xAz).

Linear distributivity implies the second and fourth equalities, since e.g., x > (zAx)V(yAx) > (zAx).
The fifth equality follows upon observing that x A [(yAx)v(zax)] and (xAyAx) v (xAzAx) are
L-related, since they are equal in any lattice, and in particular in S/D = S/L. Thus (5.5.3£) holds.

Similarly (5.5.3R) holds in the right-handed linearly distributive case. Again the embedding of S

into S/R x S/L guarantees that all linearly distributive skew lattices satisfy (5.5.3). Thus linear
distributivity is characterized by (5.5.3).
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Since any totally pre-ordered context is symmetric, (5.2.1) and (5.2.2) are equivalent in
such contexts. Thus linear distributivity is also characterized by (5.5.4) by the dual argument. [

There is more to linear distributivity than just what occurs in totally preordered contexts.
Indeed (5.5.3) implies that for each a in a skew lattice S, the map x |— aaxaa defines a homo-
morphic retraction of the principal ideal SAaAS onto the set anSaa of all x < a. The identity
states directly that this map preserves joins, with meets preserved due to regularity. Likewise,
(5.5.4) implies that x |— avxva defines a homomorphic retraction of the principal filter SvavS
onto the set avSva of all x > a. Thus all three aspects of distributivity are equivalent for any
skew lattice. There is more. While skew diamonds need not be distributive, linearly distributive
skew diamonds are.

Corollary 5.5.6. Linearly distributive skew diamonds are distributive.

Proof. Given a linearly distributive skew diamond T with D-classes ] > A, B > M, we check out

(5.2.1) on T. Given x €], then yaxAy =y and zAxAz = z so that (5.5.3) reduces to (5.2.1). For x in
M, (5.2.1) immediately reduces to x = x v x. So let x be in an intermediate D-class, say say A.

We consider several possible cases.
1) yDz. Herey v z=z Ay so that regularity gives
XAV Z)AX = XA (Z A YP)AX = (XAZAX) A (XAYAX) = (XAYAX) V (XAZAX).

2) yorzisin A orJ, say y. Here yvz > x and our equation reduces to the absorption
identity x = x v (xAzAx). Thus we may assume that y and z are in distinct D-classes, but other
than A and J.

3) Solet,sayyE M and z € B. Then (y v z v y) D z and Case (1) gives
XA@ VA =XA[(y VZVY)VZIAX=(XA(Y V ZVP)AX) V (X V Z AX).

The corollary will follow if we can show that xA(y v z v y)Ax = xayAx. Since xA(y v z v y), y and
(y vzvy)axarein M,

XA VZVYIAX =XA@VZVY)IAEPVZIVY)AX
= [xA(pvzv )] Ay A[(yVzVYy)AX] = xAYAx,

with the equalities due respectively to A being idempotenct, uvw = uw holding in any rectangular
band and absorption. (5.2.2) is seen in dual manner. [J

Since distributive skew lattice are both linearly distributive and quasi-distributive, a

natural question is: Does linear distributivity plus quasi-distributivity imply distributivity? While
true for skew diamonds, it is not true in general. Spinks’ examples (in Theorem 1.3.10) each

190



V: Further Topics in Skew Lattices
satisfy just one of (5.2.1) or (5.2.2). Since totally pre-ordered subalgebras are trivially symmetric,

these examples are linearly distributive. The following lattice of varieties is thus strictly ordered
by inclusion.

LDist (\ QDist
A= Dist v —Dist .
Dist
Dist is the variety of distributive skew lattices, A-Dist and v -Dist are the varieties of skew lattices
satisfying (5.2.1) and (5.2.2) respectively, while LDist and QDist are the respective varieties of
linearly distributive and quasi-distributive skew lattices. While Dist is the intersection of A-Dist

and v -Dist, it is unclear if LDist() QDist is their join in the lattice of all skew lattice varieties.

All this leads us to modify our question and ask: Does symmetry plus linear distributivity
and quasi-distributivity imply distributivity?

This is indeed the case. This was first shown using Prover 9, which has also shown that
linearly distributivity and distributivity are equivalent for simply cancellative skew lattices. We
will first justify the implication in the case of left-handed, symmetric skew lattices. Recall that
each of the following identities characterizes left-handedness:

XAYAX=XAY, XVYVX=)VX; (5.5.5)
XA VX)=x; (xAy)vx=x. (5.5.6)
We use them freely in what follows. Dual identities characterize the right-handed case.
Lemma 5.5.7. For left handed skew lattices, the following identities hold:
€8 [xv@ax)lax =xv(yax). (5.5.7)

) [xv@ax)lay =yax (5.5.8)

Proof. Clearly x v (y A x) D x holds for all skew lattices. Since x A [x v (¥ A X)] = x by

absorption, we get x v (¥ A x) L x for all skew lattices, so that (5.5.7) follows in general. For
(5.5.8), we have:

xvax)lay = xXv@ax)axayax = xVIAX)]AYAX = yAX

The first equality follows from (5.5.7) and left-handedness, (5.5.1£). The second and third
equalities follow respectively from (5.5.7) again and absorption. [
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We continue with a further characterization of quasi-distributivity in the left-handed case.

Lemma 5.5.8. A left-handed skew lattice is quasi-distributive if and only if the following
identity holds:
XA [(pAx)vz] = xA(yvz). (5.5.9

Proof. Sufficiency is clear since neither M3 nor Ns can satisfy (5.5.9). For necessity, observe
first that (5.5.9) holds in any distributive lattice. Hence in a quasi-distributive skew lattice one
has at least x A [(yAX) v z] D x A (yvz). If we can show that x A [(¥Ax) v z] < x A (yvz) in the left-

handed case, then equality will hold, given the rectangular context of both expressions. Left-
handedness clearly gives yax <y since yax = yaxay. Thus (yax) vz < yvz follows since both

Ax)vzvyvz=@axay)vyvz=yvz and yvzv(pAx)vz=yVv(yAX)vz=yVvz
by left-handedness and absorption. Left-handedness plus the inequality gives
xA[(yax)vz] A xa(yvz) = xa[(yax)vz] A (yvz) = xa[(yAax)vz]

and similarly xA(yvz) A xa[(yax)vz] = xa[(yax)vz]. Thus indeed xA[(yax)vz] < xa(yvz)
within a D-class context and equality follows. [

Besides quasi-distributivity and linear distributivity, a third consequence of distributivity is
the following pair of identities. Combined, all three consequences together guarantee that a skew
lattice is distributive.

Lemma 5.5.9. The following identities are respective consequence of (5.2.1) and (5.2.2):

XA[AxAY)vZzvyvzy AXAY)AXx = xA(VZVY)AX (5.5.10).

XV[IOVXVY)AZAYAZA@VXIVY)[VX = XV (PAZAY) VX (5.5.11).
Their left are right-handed variants are:

XA[yvzv (@ Aax)|=xa(zvy) and [(x Ay) vz Vv ylax = (¥ V z)AX. (5.5.10L and R)
[xvy)yrzaylvx =@ Az)vxand xv [y AzA @y AXx)] =xv(zAY). (5.5.11L and R)
Proof. (5.2.1) plus regularity first gives
X A [AXAY)VZVYVZV(VAXAY)] A X = (XAYAX) V (XAZAX) V (XAYAX) V (XAZAX) V (XAYAX)

which reduces to (xAyAx) v (xAzAx) v (xAyax) and then x A (yvzvy) A x by (5.2.1) again. The
derivation of (5.5.11) from (5.2.2) and regularity is similar. [

Both (5.5.10) and (5.5.11) can be given interpretations regarding the behavior of cosets and
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coset bijections within certain configurations of D-classes. (See the final section of [Kinyon,

Leech, Pita Costa].) For our purposes, however, their importance lies in the following “umbrella”
result and in the fact that both are direct consequences of symmetry.

Theorem 5.5.10. A quasi-distributive, linearly distributive skew lattice is n-distributive if
and only if it satisfies (5.5.10). Likewise, it is v-distributive if and only if it satisfies (5.5.11). In
general, a skew lattice is distributive if and only if it is quasi-distributive, linearly distributive and
satisfies both (5.5.10) and (5.5.11).

Proof. Clearly, (5.2.1) and (5.2.2) imply respectively (5.5.10) and (5.5.11). Conversely, suppose
that we have a skew lattice that is quasi-distributive and linearly distributive, and also satisfies
(5.5.10). In the left-handed case we have:

xAY)V(XAZ) = xA[AXx)V(zAX)] by (5.5.3L)
= xAlyv(zax) by (5.5.9)
= xAlzax)vyv(zax)] by left-handedness
= xAlzvyv(zax)] by (5.5.9)
= xA(yvz) by (5.5.10L).

Thus (5.2.1L) holds. Likewise, the right-handed case must hold. The general case for (5.5.10)

implying (5.2.1) now follows as usual. The argument equating (5.5.11) with v-distributivity,
given that the skew lattice is both quasi-distributive and linearly distributive, is dual. [J

A consequence of the above results is the following theorem. Recall that a skew lattice is
lower symmetric if xvy = yvx implies xAy = yax. Dually, a skew lattice is upper symmetric if
xAy = yax implies xvy = yvx. Recall that both types of partial symmetry were characterized
respectively by (5.1.3) xaya(xvy) = (yvx)ayax and by (5.1.4) xvyv(xay) = (PAX)VYVX.

Theorem 5.5.11. An upper symmetric skew lattice is lower distributive if and only if it is
both quasi-distributive and linearly distributive; dually, a lower symmetric skew lattice is upper
distributive if and only if it is both quasi-distributive and linearly distributive. Thus a symmetric

skew lattice is distributive if and only if it is both quasi-distributive and linearly distributive.

Proof. The first statement follows from Lemma 5.5.9 and the following proposition. The second
statement follows by duality and the third follows in the usual way from the first two. [J

Proposition 5.5.12. Upper symmetric skew lattices satisfy (5.5.10). Dually, lower
symmetric skew lattices satisfy (5.5.11).

Proof. We need only prove the first assertion. We begin with the case of a lefi-handed skew
lattice S, organizing the proof in this case in the following steps.

i) Forallx,y,zinS,x vy = [x v (yAz2)] A [z v (¥AZ)].
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To begin, setu =[x v (yAz)] A [z v (yAzZ)]. Since [z v (yAz)] Ay =y A zby (5.5.8),
uny = [xv(@az)l A (¥Az) = yAaz.
with the second identity due to absorption. But then,
VAU=YANUNY=YAYAZ=YANZ=UAY
so thaty v u =u v y by upper symmetry. Thus:

xXvyvu = xv(yaz)yvyvu
= XV@AZ)VUvy
= xVvOAD)V(Ixv@AaZD)alzvaz)] vy
= xXv@EAaz)vy
= vy,

where the first and fifth equalities are due to (5.5.6), the second equality is the established case of

commutation, the third is replacing u by its full expression and the fourth is due to absorption.
But since S is left-handed, x v y v u =x v y establishes x v y = u.

i) Forallx,y,z€S, zA[xv(Arz)] =zaxvy) aAlxv (yaz)l
By duality u = (x v y) A u, and so
zZA[x Vv (¥ Az = zAlzv(Aa)]Aalxv(yaz)]
= zAlzv(Aa2)]Aau
= zAzv(A)]AEXVY) AU
= zAlzvAa)A@EvVvY)A[xv (yA2)]
= zAvy)Aalxv(yaz)l,

using reverse absorption in the first equality, left-handedness in the second and fourth equalities,
part (i) in the middle equality and absorption in the final equality.

iii) Forallx,y,z€S, zA[xv(Axaz)] =zA[xv(Ax).
Replace y with yax in (ii) to get
ZA[xvV (@ AXAZ)] = ZAXx V@ AX)]AXV @ AXAZ)]
= ZAXVEAX)]AXAXYV (Y AXAZ)
= ZAxVv(@AX)]AX
= zA[xv (¥ Ax)],

using (5.5.7) in the second and fourth equalities and absorption in the third.

iv)  To conclude the left-handed case, replace x by y v x in (iii). On the left side, absorption
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gives

zA@VXVYA@VX)AZ]) =zA[yvXV (VA2
On the right side, absorption and (5.5.5) give
A VX VIyA@VvX)D)=zA@VXVY)=ZA(XVY).

Thereforez A (x v y) =z A [y vx v (¥ A z)]. Butthis is just (5.5.10L) with permuted variables.
The right-handed case for (5.5.10R) follows by left-right duality, and the general implication of

(5.5.10) thus holds. That lower symmetry implies (5.5.11) is seen in a v-A dual fashion. [
Theorem 5.5.13. Strictly categorical skew lattices satisfy (5.5.10) and (5.511).

Proof. Take (5.5.10). Both terms are ‘D-related in all skew lattices. But in all skew lattices we

also have x > both terms > xAyAx. The theorem follows by Theorem 5.4.8. [J

Before proceeding to the next section, here are two consequences of Theorems 5.4.2 and
5.4.9. Both implications are strict.

Proposition 5.5.14. All strictly categorical skew lattices are linearly distributive and all
linearly distributive skew lattices are categorical.
5.6 Midpoints and distributive skew chains

A skew lattice is linearly distributive if and only if each skew chain of D-classes in it is

distributive. In this section we characterize distributive skew chains in terms of the natural partial
order. Given a skew chain A > B > C of comparable D-classes, with a € A, ¢ € C such that

a > c, any element b € B such that a > b > ¢ is called a midpoint in B of a and ¢. We begin with
several straightforward assertions.

Lemma 5.6.1. Given a skew chain A>B>C, foralla € A and c € Cwitha> c:
i) For all b € B, both an(cvbvc)aa and cv(anbaa)vc are midpoints in B of a and c.
i)  When b in B is already a midpoint of a and c, both midpoints in (i) reduce to b.
iii)  When A > B > C is a distributive skew chain, both midpoints in (1) agree:
a > an(cvbve)aa = cv(anbaa)ve > c. (5.6.1)
Midpoints provide a key to determining the effects of (5.2.1) and (5.2.2) in this context.
To proceed further, we recall several concepts. Given a skew chain A > B > C, recall that

elements b and b’ in B are AC-connected if a finite sequence b = by, by, by, ... , b, = b’ exists in B
such that b; —a bj+1 or b; —c b;+1 for all i <n — 1. AC-connectedness is a congruence on B. Its
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congruence classes, the components, are thus subalgebras of B. Given a component B’ of B, a
sub-skew chain is given by A > B’ > C. Since an(cvbvc)aa is the same for all b in a common C-
coset and cv(anbaa)vce is the same for all » in a common A-coset, we can extend Lemma 5.6.1:

Lemma 5.6.2. Given a distributive skew chain A > B > C, for any pair a > ¢ witha € A
and c € C, each AC-component B' in B has a unique midpoint b of a and c.

We next sharpen Lemma 5.5.3 as follows.

Lemma 5.6.3. Let S be a categorical skew chain consisting of ‘D-classes A>B > C. If'S
is lefi-handed, then (5.2.1L) holds if and only if an(bvc) = (anb)vc for all a > b > c where a> c.
Dually, if' S is right-handed, then (5.2.1R) holds if and only if (cvb)na = cv(baa) for all a > b>c

where a > c. (These identities are left and right-handed cases of (5.6.1) above.)

Proof. We consider the left-handed case. If S is indeed distributive with a, b, c as stated in the
lemma, then aan(bvc) = (anb)v(anc) = (anb)ve, since a > ¢. Conversely, given just a > b > ¢ in
the respective D-classes A > B > C, set ¢’ = anc. Then a > ¢’ and (aab) v (anc) = (anb) v ¢'.

Next, since ¢ and ¢’ lie in the same A-coset in C and S is categorical, both bvc and bvc' lie both
in a common C-coset in B and in a common A-coset in B so that aa(bvc) = an(bvc’). Hence:

an(bve)=an(bvc') = (anb) v ¢' = (anb) v (anc)
The lemma now follows from Lemma 5.5.3 and left-right duality. [J

Theorem 5.6.4. Given a skew chain A > B > C, the following condition are equivalent:

i) A > B > C is distributive
ii) Foralla€ A,bEBandce€ Cwitha>c,an(cv bvc)ra=cv(anbaa)ve.
iii) Given a € A and ¢ € C with a > ¢, each component B' of B contains a unique

midpoint b of a and c. .
iv) For each component B' of B, A > B' > C is strictly categorical.

When these conditions hold, each coset bijection @: A — C uniquely factors through each
component B’ of B in that unique coset bijections \: A — B’ and x: B' — C exist such that
@ =Y under the usual composition of partial bijections.

Proof. Clearly (i) implies (ii). Given a > c in (ii), for each element x in B, both b| = an(cvxvc)aa
and b = cv(anxna)ve are midpoints of @ and ¢ in B Replacing x by any element in its C-coset,
does not change the bj-outcome. Likewise, replacing x by any element in its A-coset, does not
change the hy-outcome. Hence (ii) is equivalent to asserting that given a > ¢ fixed, for all x in a
common AC-component B’ of B, both aa(cvxvc)aa and cv(aaxaa)ve produce the same output b
in B’ such that a > b > ¢. Conversely, for any b in B’ such that a > b > ¢ we must have

an(evbve)na=b=cv(anbaa)vc.
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Thus (ii) and (iii) are equivalent. Their equivalence with (iv) follows from Theorem 5.4.7 above.
Given (ii) — (iv), (iv) forces A > B > C to categorical, since for each component B’ in B,
A > B’ > C is categorical. Denoting the skew chain by S, (ii) forces S/R and S/L to be

distributive by Lemma 5.6.3 and thus S € S/R x S/L to be distributive. In light of Theorem 5.4.7,

the final comment is clear. []

Given a > ¢ as above, their midpoint » in component B’ depends on the interplay of the
A-cosets and C-cosets within B’. Indeed, given any a € A, the set of images in B’ of a is the set
anB'aa = {anbra|bE B'} = {bE B'|a > b}. This set parameterizes the A-cosets in B’ since
each possesses exactly one b such that a > b. Likewise, for ¢ € C the image set

cvB've= {cvbvc|bEB'} ={bEB'|b>c}

parameterizes all cosets of C in B'. (See Theorem 2.4.1.) Both images sets are orthogonal in B’
in the following sense. For any a € A, all images of a in B' lie in a unique C-coset in B'.
Likewise for any ¢ € C, all images of ¢ in B' lie in a unique A-coset in B'. Finally, given a > ¢
with a € A and ¢ € C, their unique midpoint b € B’ lies jointly in the C-coset in B' containing all
images of a in B' and in the A-coset in B' containing all images of ¢ in B'. (See Theorem 5.4.6.)
Of course, every b in B’ is the midpoint of some pair a > ¢. For a fixed pair a > ¢, the set u(a, ¢)
of all midpoints in B is a rectangular subalgebra that parameterizes the class of all AC-
components in B: let b in u(a, c¢) correspond to the component B’ containing b.

A-coset—> |®|b| oo . The A-coset of b contains all images
* (e's) of cin B”. The C-coset of b has

all images (*'s) of a in B’. Element b

* is the unique image of both a and c.

*

C-coset T

Example 5.6.5. Using Mace 4, two minimal 12-element categorical skew chains have
been found that are not linearly distributive, one left-handed and the other its right-handed dual.
Below are the Cayley Tables in the left-handed case. Here i and j assume the values 1 and 2, and
k assumes the values 3 and 4.
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Their common Hasse diagram is as follows, with b; —C d; iff i + j = 0 (mod 4).

ap—a
A C
B by by —by 1 by~ dy g dy—d3 1 dy
C

q -9

In both cases, a1 > bodd, doda and ap > beyen, deven, all b; > ¢y, all d; > ¢, and ay, ap > both ¢y, c;.
Thus both skew chains are categorical since all cosets involving just A and C are trivial. We
denote the left-handed skew lattice thus determined by U and its right-handed dual by V. Both U
and V are not distributive. Indeed, given the coset structure on B, we get a; A (b2 v ¢2) = a1 A da
=dj, while (a1 A b2) v (a1 A ¢2) =b1 v c2=d3 #d; in U. V is handled similarly. Note that in
both U and V, B is a AC-connected, but a; > by, b3 > ¢y, and also ap > by, by > ¢y, etc.

This example is the n = 2 case of a sequence of similar skew chains A > B, > C, where A
= {ay, a2} and C = {cy, 2} as above, but B, = {by, b, b3, ..., bas} U {d1, da, ds, ... , dan} forn
finite or{... , b-o, b_1, bo, b1, by, ...} U {... ,d2,d_1,do, d1, d>, ...} forn=w. Inall cases,

ay > bodd; dodd; ay > beven, deven; all b; > Cl, alld; > C2; and ay, ax > both C1, C2.

(That ai, az > both ¢y, ¢y insures that these skew chains are categorical since all “outer” cosets
involving just A and C are trivial.)

An important aspect of these examples is the fact that all A-cosets and C-cosets in B, are
of size 2 and are interconnected in the following cyclic fashion in the finite case,
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bigbrcda g dighs g ba cda 5 G cbs bauy 5 bon G o 5 an ¢ )

or for n = w,

We denote the left-handed skew lattice thus determined by U, and its right-handed dual by V,,.
Our example is Uz. All U, and V,, for n > 2 are nondistributive since A-cosets and C-cosets in the
single component B, for » > 2 need not have nonempty intersection. Must a categorical skew
lattice containing no copies of U, or V,,, be linearly distributive? Here is a counterexample.

Example 5.6.6: The underlying set of S is Uy x Z».

(ay,0) = (a;,1) = (ay,0) - (ay, 1)
(y,0) " (by,1) " (b,,0) " by, 1)~ ... - (d3,0) X (d3.1) X (dy,0) " (dy,1)

(¢1,0) = (¢, 1) = (c5,0)=(cy,1)

All cosets are just cartesian products of Ujz-cosets with Z,. The coset bijections are as follows.

1) [ (a),0) = (a;,D) = (a5,0) = (ap,1) | = [ (By,0) = (b, 1) = (by,0)— (by, ) |
2) [ (a.0)=(a.1) = (a5,0) — (@, .1) | = [ (B3.0) = (b3.]) = (b4 .0) — (. 1) |
3) [ (,0)=(a).1) ~ (a5,0)— (@, .1) | = [ (d}.0) = (d}.]) = (d;,0) = (dy.]) |
4) [ (a.0)=(a.1) = (a5,0)— (@, .1) | —> [ (d3,0)=(d3.]) ~ (dy.0)— (dy.]) |
5) [(5.0) = (b)) = (d3,0)— (d3.1) | = [(¢],0) = (c.]) = (c3.0) = (). 1) |
6) [(5,,0)= (b)) = (d3,0) = (dy,1) | = [(c,0)= (e, D= (3, D= (c;,0) |
7) [(83.0)=(b3.1) = (d,0)—(d}.1) | = [(c1.0) = (.= (c,0) = (c5.]) |
8) [(b4,0) = (by 1)~ (dy,0) = (dy.)) | = [ (c,0)=(c;.D) = (c )= (c;,0) |

For each bijection, the outcomes occur in the same order as the inputs are listed. These coset
bijections collectively determine operations v and A on S making S a left-handed categorical
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skew chain that is not distributive since its homomorphic image U, is not distributive. The
twisted outcomes for (6) and (8) prevent it from containing copies of any of the U, for n > 2.

5.7 Counting theorems and cancellative skew lattices

In this chapter we have thus far revisited properties that skew lattices might possess. We
began by further studying symmetric skew lattices and then introducing strongly symmetric skew
lattices. We then gave Karin Cvetko-Vah’s proof of Spinks’ Theorem on the equivalence of the
distributive identities (5.2.1) and (5.2.2) for symmetric skew lattices. Symmetry played an
important role in our analysis of cancellation in skew lattices. We saw that simply cancellative
skew diamonds {J > A. B > M} are characterized by a naturally defined bijection

£: Comm*(A, B) = o(J, M),

given by the function §(a, b) = (avbh, anb), between the set Commz(A, B) of all pairs (a, b) in
AxB for which both avb = bva and anb = baa, and the set w(J, M) of all pairs (j, m) in JxM for
which j > m. This is, of course, an instance of the type of counting theorem, where two related
but distinct sets necessarily have the same size. Other counting theorems exist for (fully)
cancellative — and hence symmetric — skew lattices. But first we recall some definitions:

Given a primitive skew lattice A > B. Recall that for any b €B, its image set in A is the
set bvAvb = {bvavb|aE A} which also coincides with {a € A |a > b}. Dually, for any a € A,
its image set in B is aABaa = {aabaa | b€ B} which also coincides with { € B|a > b}. Both
image sets are rectangular subalgebras. Recall from Section 2.4 that:

i) Image sets of all elements from one D-class have the same size in its opposite D-class.
E.g., given b, " in B, |bvAvb| = |b'VAVD'|.
ii) Image sets naturally parameterize the cosets of either class in the other. Thus bvAvb is a

cross-section of all B-cosets in A while aanBAa is a cross-section of all A-cosets in B.

The index of B in A, denoted [A: B], is the size [bvAvb| that counts the number of B-cosets in A.
Likewise, the index of A in B, denoted [B: A], is the size [anBaa| that counts counts the number
of A-cosets in B. In general, no direct relationship need exist between [A: B] and [B: A]. The
common size of all A-cosets in B and all B-cosets in A is denoted by wag, or equivalently, wpa.
Clearly the following basic equalities hold:

|A] =[A: Blwap and |B|=[B: A]was. (5.7.1)
Given a skew diamond {J > A, B > M} one has five pairs of indices. If the skew diamond
is cancellative, one has the following “Index Laws” that connect opposite pairs of indices. They

are from Karin Cvetko-Vah’s Dissertation [Ref.]. (See also CKLS.)

Theorem 5.7.1. Let S be a cancellative skew diamond {J > A, B > M}. Then:
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[M: A] =[B:J] and [A: M] = []: B]. (5.7.2)
[M: B] =[A:J] and [B: M] = [J: A]. (5.7.3)
In detail, givenj € J,a € A, b € B and m € M such that j > a, b > m, isomorphisms
o {xEA|x>m}={yEJ|y>b} and B:{u€EBlu<,} = {vEM|v<a}

are defined by a(x) = xvbvx and B(u) = unanu. Isomorphisms between other pairs of image sets
are defined similarly.
Conversely, if all such maps in a skew diamond are isomorphisms, then it is cancellative.

Proof. Since b > m and S is symmetric, b commutes under both A and v with all x € A such that
x > m so that o is well-defined. Since S is cancellative, o is also one-to-one. Lemma 2.1.4
implies

axvx)=@xvx)vbvxvx)=xvbvx)vE vbvx)=ax) v o).

Thus o is a v-homomorphism that must be a A-homomorphism since index sets are rectangular
subalgebras. To show it is onto and thus an isomorphism, let y > b be given in J and set ¢ =
yaany in A. Then m < ¢ <y and y = a(c) by Theorem 2.2.1. The verification that §§ is an
isomorphism is similar.

Conversely, given a skew diamond, if all such maps are at least bijections, copies of
NCZ{, NC‘SE and the algebras NSC;{’O, NS?’1 R NS%’0 and NS%’1 cannot occur as subalgebras.

Since any skew diamond is trivially quasi-distributive, it must be cancellative. []
What else can be said? First, observe:

Theorem 5.7.2. A skew diamond is simply cancellative if and only if it is strictly
categorical, in which case it is also distributive. It is cancellative if and only if it is symmetric
and strictly categorical.

Proof. A skew diamond is already quasi-distributive. To be simply cancellative it needs to
exclude both NCs subalgebras, and to be strictly categorical it needs to exclude both 4-element
skew chains in Theorem 5.4.8(iv). But both constraints are equivalent for skew diamonds.
Theorem 5.4.10 insures the addendum of distributivity. [

The following two results from Jodo Pita da Costa’s dissertation are relevant.
Theorem 5.7.3 Given a strictly categorical skew chain A > B > C, if A and C are finite,

then so is B and

Bl = 2ABPBC _ (B ATwac[B:Cl.
®ac
In general, a strictly categorical skew lattice S is finite if and only if its maximal lattice image
S/D is finite and both the maximal and minimal D-classes in S are finite.
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Proof. B is partitioned by A-cosets, each of size wap, and also by C-cosets, each of size wpc.
Thus there is a double partition by coset intersections of the form XNY where X is an A-coset in
B and Y is a C-coset in B. Since A > B > C is strictly categorical, each [XNY|= wac.

Thus if A and C are finite, then so are wap, wpc and wac giving wpc/wac many A-cosets in B,
wap/wac many C-cosets in B and thus (wpc/mac)wac(wap/mac) = wawBc/wac < % elements in
B. One has |B|] = [B:Alwac[B:C] also since this double partition has [B:A][B:C] coset
intersections, all of size wac.

Given a strictly categorical skew lattice S, the condition is clearly necessary for S to be
finite. Conversely given that its maximal and minimal D-classes are finite, so are all intermediate

D-classes. If there are only finitely many of them, then S is finite. [J

Theorem 5.7.4. Given any skew chain A > B > C, [C: A] < [C: B][B: A]. If'the skew chain
is strictly categorical and both A and C are finite, then

[C:A] = [C:B][B: Al

In general, given any skew chain Ay > Ay > ... > A, in a in a strictly categorical skew lattice S, if
A1 and A, are finite then so are all intermediate D-classes and
[A1: Ayl = [Arr A2l [A2: As] .. [Ap-1: Al

Proof. The general inequality is a consequence of the fact that given a > ¢ with ¢ € A and c € C,
there exists a b € B such that @ > b > c¢. Hence given a has [B: A] images in B, each of which has
[C: B] images in C, so that ¢ has at most [C: B][B: A] images in C.

Assuming S is also strictly categorical, then B is finite. The following equalities thus hold
and with them the first half of the theorem:

1Al ® IBI [OIRNO) 1 ®
[A:C]= —— =[A:B]—B and [B:C]= = —AB BC = _AB

Wac Wac Wpc Wac Oec  Wac

Given the chain Aj > Ay > ... > A,, the factorization of [A;:A,] proceeds from the special case:
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[AliAn] = [AliAz][AziAn] = [A]ZAz][A21A3][A3ZAn] =...= [AﬁAz][AzIAﬂ...[AnqiAn]. O

Returning to skew diamonds, the following restatement of Theorem 2.4.10 parallels to
some extent the theorem above:

Theorem 5.7.5. In a symmetric skew diamond {J > A, B > M}, [M: J] = [M: A] [M: B]
and [1:M]=[I: A][J:B]. O

Lemma 5.7.6. Given finite D-classes X > Y in a skew lattice, |X|[Y:X] = |Y|[X: Y], or put

Yl
otherwise, [Y: X] = E[X: Y].

Proof. [X|[Y: X] and |Y|[X: Y] expand to [X: Y] wxy [Y: X] and to [Y: X] wxy [X: Y]. O
This next result of relevance is from Pita da Costa’s dissertation.
Theorem 5.7.7. Given a finite cancellative skew diamond {J > A, B> M}, |A||B| = |J|IM].

Al [A:J] [M:B] Ml
Proof. One has — = —— = = —.

o [J:A] [B:M] Bl
previous lemma. The middle equality is from [B: M] = [J: A] and [M: B] = [A:J] in Theorem
5.7.1. The equality now follows by cross-multiplying. [

The first and third equalities come from the

This outcome fails in the four simply cancellative NS, variants and both symmetric NCs

variants. (But see Corollary 2.4.11.) One thus has:

Corollary 5.7.8. A skew lattice S is cancellative if and only if it is quasi-distributive and
all of its skew diamonds are cancellative. The latter occurs if and only if |A||B| = |J| M| holds in
all finite skew diamonds {J > A, B> M} of S.

This situation is sharpened if the skew diamond {J > A, B > M} is pointed in that |J| = 1
or [M| = 1. IfJ has a unique element, it is often denoted by 1; if it is M, the single point is often

denoted by 0. NS%’O, NS(;{’0 R NS%’1 and NS{;{’1 are pointed, while NC§ and NC? are

doubly pointed. Indeed, a skew diamond is simply cancellative if and only if all doubly pointed
skew diamond subalgebras are sublattices (thus eliminating any possible NCs subalgebras).
What about full cancellation? The next two Theorems are from the 2011 paper of Cvetko-Vah,
Kinyon, Leech and Spinks.

Theorem 5.7.9. A quasi-distributive skew lattice is cancellative if and only if all pointed
skew diamonds in it factor as products of primitive skew lattices.

Proof. Given a skew lattice S, the condition on pointed skew diamonds in it excludes copies of
NC?, NC?, NS?’O, NS%"O R NS%’1 and NS%"1 from being subalgebras since in each of

these six cases the order of the join or meet classes is inconsistent with such a factorization. This
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insures that S is cancellative. Conversely, given a cancellative skew lattice, we must show that
all pointed skew diamonds in it factor as stated. Our task quickly reduces to showing that a
cancellative pointed skew lattice S factors as stated. So let S = {J > A, B > M} be such a skew
diamond with say M = {0}. A pair of primitive subalgebras are A'=AU {0} and B’=BU {0}.
Claim: An isomorphism o: A’xB"=Sis given by o[(x, y)] =xvy forallx& A’ and y € B.

Thanks to Theorem 2.2.1, o is easily seen to be surjective. It is clearly bijective from
{0}x{0} to {0}, from Ax{0} to A and from {0}xB to B. Thus o is bijective overall if it is
bijective from AxB to J. Since S is symmetric, avb = bva for each pair (a, b) in A x B since anb
= 0= bnaa. Thus the bijectivity of AxB with J is given by Theorem 5.3.10.

Finally for all x1, x» €A and yL,mE BO,

of(x1, y)v(x2, y2)] = o[(x1vxz, y1vy2)] = XIVX2 V Y1V
XIVY1 V X2V)2 o[(x1, yD)] v o[(x2, y2)],

since elements from A’ commute with elements from B’ Expanding o[(x1, y1)A(x2, y2)] and
o[(x1, y1)] A o[(x2, y2)], we get respectively: (x1Ax2) v (y1Ay2) and (x1vy1) A (x2vy2).

Case 1) One of the x; and one of the y; is 0. Here both expressions above reduce to 0.

Case 2) Neither x; is 0 but one of the y; is 0. We get x;Ax> on the left and on the right either
(x1vy1) A x2 orx1 A (x2vy2). Since the x; and y; commute, normality plus absorption
gives,

(x1vy)Ax2 = (P1VX1)AX2AXIAX2 = (VIVX1)AXIAX2 = X1 A X2
and
X1A(X2V)2) = XIAX2AXIA(X2VY2) = XIAX2A(X2V)2) = X1 A X2.

Case 3) One of the x; is 0, but neither of the y;is 0. This is similar to Case 2.

Case 4) None of the x; or y; are 0. By x-y commutation plus uAv = vvu on D-classes, both

(x1Ax2)v(y1Ay2) and (x1vy1)A(x2vyn) are easily seen to reduce to xavyavxvyy.
Thus o is an isomorphism. The case where J = {1} follows by the dual argument. [

There is more. In general, every skew diamond S (cancellative or not) is a union of
maximal pointed subalgebras in two ways. S = Uy mvSvm = Uy jaSaj where

mvSvm = {mvxvm|x €S} = {x €S|x > m]} is pointed below with zero m, and
JASAj = {jaxaj|x €S} = {x €S|j >x} is pointed above with identity 1,

Given m, m" €M, define f: mvSvm — m'vSvm' by fix) = m'vxvm' and g: m'vSvm' — mvSvm

by g(x) = mvxvm. Regularity and the fact xvyvx = x holds on M imply that f and g are a
reciprocal bijections. Again regularity gives m'v(xvy)vm' = (m'vxvm')v(m'vyvm'). Thus f and
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g are reciprocal v-isomorphisms that must restrict to isomorphisms between corresponding D-
classes (since xAy = yvx on D-classes), giving, e.g., mvAvm = m'vAvm'. Thus f induces

isomorphisms between pointed primitive algebras,
mvAvm U {m} =m'vAvm' U {m'} and mvBvm U {m} =m'vBvm' U {m'}.
If'S is also cancellative, then the previous theorem gives mvSvm = m'vSvm'.
Theorem 5.7.10. If {] > A, B > M} is a cancellative skew diamond, then all pointed
skew diamonds mvSvm C S for m €M, are isomorphic. Dually, all pointed skew diamonds

JASAj C S for j €] are isomorphic. [

Summing up much of the discussion about cancallative skew lattices we have:

Theorem 5.7.11. For a skew lattice S the following are equivalent:

i) S is cancellative.

ii) S is quasi-distributive and all [finite]skew diamonds in S are cancellative.

iii) S is quasi-distributive and symmetric, with all [finite]skew diamonds in it being strictly
categorical.

iv)  Sis quasi-distributive and all [finite]pointed skew diamonds in S factor as a product of
two primitive skew lattices.
V) S is quasi-distributive and |A||B| = |J||M| in any finite skew diamond {J>A,B>M} in S.

While neither the classes of distributive skew lattices or cancellative skew lattices
includes the other, all skew diamonds in cancellative skew lattices are distributive (being strictly
categorical), and all skew chains in distributive skew lattices are cancellative (being true in
general).

Historical remarks

The results in Section 5.1, on symmetry come from [Cvetko-Vah, Kinyon, Leech and
Spinks, 2011]. The results on comparing distributive identities in Section 2 are due to [Spinks,
1998 and 2000] and [Cvetko-Vah, 2006]. The material in Section 3 on cancellation is mostly
from [Cvetko-Vah, Kinyon et al, 2011] again, while the results in Section 4 on categorical
behavior are from [Kinyon and Leech, 2013]. The material in Sections 5 and 6 on distributivity
and its consquences comes from [Kinyon, Leech and Pita Costa, 2014?]. The various counting
results in the final section are from the dissertations of Pita Costa [2012] and Cvetko-Vah [2005]
as well as [Cvetko-Vah, Kinyon et al, 2011].
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VI: SKEW LATTICES IN RINGS

From the initial research into skew lattices in the 1980s, skew lattices of idempotents in
rings and their particular examples have provided fundamental ideas about the subject. The
absorption identities came from observing that nonempty sets of idempotents in a ring that were
closed under both multiplication and the circle operation (x Oy = x + y — xy) satisfied them. The
significance of the distributive identities an(b v c)aa = (anbaa) v (ancaa) and its dual was due
to the fact they hold for all skew lattices in rings, whereas say aa(b v ¢) = (aab) v (anc) need not
hold. Occurrences of being symmetric, cancellative or categorical were observed first in the ring
context. Maximal left-regular (right-regular) multiplicative bands turned out to be maximal left-
handed (right-handed) skew lattices under * and O; and maximal normal bands formed skew
Boolean algebras in their host rings (with O often replaced by V). In this chapter we look more
closely at skew lattices (of idempotents) in rings.

In Section 6.1 left- and right-handed skew lattice extensions of a lattice of idempotents Sp
in a ring are introduced. These are the uniquely largest left-handed and right-handed skew
lattices containing Sp as a lattice section. More generally, quadratic skew lattices (with join O)
are studied. Theorems about the center Z(S) of a quadratic skew lattice S and decompositions of

S related to its center are given. Attention is given to what occurs in matrix rings over fields.

Section 6.2 looks at V-bands, that is, multiplicative bands of idempotents that are closed
also under the cubic join V where xVy = (x Oy)2 =x+y+yx—xyx—yxy. Even when V is not
associative, V-bands share many properties of quadratic skew lattices. (Theorem 6.2.2.) V is
thus a nocommutative join. When it is associative, the V-band is a cubic skew lattice that is
necessarily distributive and cancellative, and hence categorical and symmetric. (Quadratic skew
lattices are seen as being trivially cubic.) We consider various criteria given by Cvetko-Vah and
Leech [2007] for the V-operation in V-bands to be associative. These include the following: the
L and R congruences relative to multiplication are also V-congruences; V is associative on every

primitive subalgebra of comparable D-classes A > B in the band. In particular, normal V-bands

where multiplication is normal, are seen (again) to be normal skew lattices. For many V-bands S
where V is not associative, a closely related associative join v exists making (S; v, ®) a skew
lattice. (See Theorems 6.2.12 and 6.2.13 and the preceding discussion.) This holds for V-bands
in finite dimensional algebras over fields (in the ring-theoretic sense of “algebra”).

While maximal left [right] regular bands and normal bands in a ring form skew lattices
under ¢ and V, maximal regular bands in rings need not form skew lattices or even V-bands.
Equivalently, a regular band in a ring need not generate a V-band under ® and V. In Section 6.3
we consider V-inductive conditions. These are conditions which guarantee that a regular band
satisfying them will generate at least a V-band in the host ring. (See Theorems 6.3.1 and 6.3.2.)
Being normal or being left [right] regular are cases of V-inductive conditions. We conclude with
Cvetko-Vah’s nice theorem (6.3.5) stating that a regular band in a ring with totally ordered D-
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classes must generate a V-band. In particular, maximal totally pre-ordered regular bands in rings
are V-bands.

Not only does a maximal normal band S form a skew Boolean algebra in its host ring
(with e\ f'= e — efe), it is also the full set of idempotents in the subring R’ that it generates:
S = E(R'). Conversely, if E(R) is multiplicatively closed in a given ring R, then E(R) forms a
skew Boolean algebra. (See Theorem 2.3.7 or Theorem 6.4.2 below.) In Section 4 we begin our
study of such idempotent-closed rings. Much of the focus is on the case of idempotent-dominated
rings where R = Q(R), the ideal generated from E(R). In this case, if Ky is the canonical nilpotent

ideal {k € R|xky = 0 for all x, y € R}, then R/Ky is the maximal abelian image of R. (See

Theorem 6.4.10. Recall that R is abelian if its idempotents commute.) When E(R) also has a
lattice section, R is a semidirect sum A @ Kz, that is direct under addition with A being a

maximal abelian subring of R that is necessarily isomorphic to R/Kg. (Theorem 6.4.11.) This is

the case for all idempotent-closed and dominated rings of nxn matrices. When R is not
idempotent-dominated, these facts apply directly to O(R); but upon setting K = Kor), then K is a

nilpotent ideal of R also, with R being idempotent-closed if and only if R/K is abelian. (Theorem
6.4.15.) These and related facts are studied in the fourth section.

Like Boolean algebras, skew Boolean algebras decompose almost at will. (See Theorem
4.1.4 or Theorem 6.5.1 below.) To what extent does this extend to idempotent-closed rings,
especially if they are idempotent-dominated? In particular, given certain finiteness conditions
(e.g. the ACC or DCC on idempotents), must ring decompose as a direct sum of subrings that in
some sense are “atomic”? These questions are pursued for idempotent-dominated rings in the
fifth section. The “atomic” rings turn out to be rectangular rings — idempotent-dominated rings
whose non-0 idempotents form a rectangular band under multiplication. Theorem 6.5.6 states
that each idempotent-closed and dominated ring R satisfying the DCC on idempotents is an
orthosum of ideals Q; (that is, R = Y Q; with 0;0; = {0} for i # j) where each Q; is a rectangular
ring. While the orthosum condition is a weakening of the direct sum condition, if the annihilator
ideal of R reduces to {0}, the sum must be direct. Rectangular rings are characterized in
Theorems 6.5.11 and 6.5.14.

The results of Sections 6.4 and 6.5 are then “tested” in the context of matrix rings over
fields in Sections 6.6 and 6.7. The former studies upper triangular representations of normal
skew lattices and skew Boolean algebras in matrix rings, and Section 6.7 studies upper triangular
representations of (maximal) idempotent-closed and dominated subrings of matrix rings. (See
Theorems 6.7.4 — 6.7.6.)

The chapter ends with historical comments and relevant references.

208



VI: Skew Lattices in Rings

6.1 Quadratic skew lattices in rings

Recall that a quadratic skew lattice in a ring R is any multiplicative band in R that is also
closed under the circle operation: xOy = x + y —xy. Letting ® denote multiplication, by Theorem
2.1.7 such a band S satisfies the following absorption identities that guarantee that (S, O, ®) is
indeed a skew lattice:

x*(x0oy)=x=(oOx)*x.
xOx*y) = x = (y*x) Ox.

In particular both (S, 0) and (S, *) are regular bands. We typically identify O as the join v and ®
as the meet A. Joins are generally higher than their constituent elements and this is certainly the
case here. In particular, in matrix rings

rank(e * f) < rank(e), rank(f) < rank(e o f).

By Theorem 2.1.9 every maximal right [left] regular multiplicative band S in a ring is closed
under O, making (S, O, *) is a maximal right-handed quadratic skew lattice in the ring. Our first
result is the dual of this theorem.

Theorem 6.1.1. Let R be a ring and let S be a subset of R forming a left regular band in
R under the circle operation. If' S is a maximal such O-band in S, then S is also closed under
multiplication and forms a maximal right-handed quadratic skew lattice in S.

Proof. First suppose that R has an identity 1. Then y(x) = 1 — x induces a bijection on E(R) such
that y(xy) = y(x)oy(y) and y(xoy) = y(x)y(y) regardless of the outcomes also being idempotent.
Hence, if S is a maximal left regular band in R under O, y[S] must be a maximal left regular
multiplicative band in R and thus along with O forms a maximal left-handed skew lattice in R.
Clearly S = yy[S] is indeed a maximal right-handed skew lattice in R.

If R does not have an identity, then it can be embedded in a ring R’ with identity 1. In R’
we extend S to a maximal left regular o-band S’ that forms a maximal right-handed skew lattice
inR'. Hence S itself must generate a right-handed skew lattice in R. But given maximal status of
S in R, it is this skew lattice. [

Our main emphasis in this section is with classes of quadratic skew lattices. To begin,
recall that for any e €EE(R), its R-sef R, = e + eR(1 — e) is the maximal right-zero semigroup in R

containing e. Since xOy = yx on R,, R, is a maximal right-rectangular skew lattice in R. Recall
also that if e > f'in E(R), then R, U Ry forms a maximal right-primitive skew lattice in R. This

has an immediate generalization.
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Theorem 6.1.2. Given any naturally totally ordered set of idempotents T in a ring R,
S :UeeT Re is a band that together with O forms a right-handed skew lattice in R that is

maximal with respect to being right-handed and containing T as a lattice section. [

This result is illustrated by the following chain T of length 4 and its induced right-handed

skew lattice S in ‘M4(Q). The asterisks denote free variable positions in the matrices.

| |
[1 0 0 0] [1 0 0 *]
0100 010 =
0010 00 1 =
[0 0 0 0] [0 0 0 0]
[1 0 0 0] [1 0 = =]
0100 0 1 *

T: — S:

000 0 0000
[0 0 0 0] [0 0 0]
[1 0 0 0] (1 % = «]
0000 0000
000 0 0000
[0 0 0 0] [0 0 0 0]

0 0

Finding right-handed skew chains (skew lattices whose D-classes are totally ordered) is
thus comparatively easy. We turn our attention to the general case where the D-classes need not

be totally ordered. A simple strategy for finding right-handed skew lattices in rings is as follows:

1) Find a lattice T in a ring with v =0 and A = .
?2) Consider the union UeeT Re= UeeT e+eR(l-e).
3) Search for skew lattices S C Ue e T Re containing T as a lattice section.

This leads us to the following fundamental result:
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Theorem 6.1.3. Given the lattice T as above, for each e €T set
Se = {€ ER.| VfET, ef ER,r}.
Then S = UeeT Se is the unique maximal right-handed skew lattice in R having section T.

(S is called the right extension of T and each S, is called the S-set of e relative to T.)

Proof. Given a right-handed skew lattice S’ in E(R) having T as a lattice section, clearly S’ C S.
We need only show that S is closed under both skew lattice operations and thus is a right-handed
skew lattice. To begin, given e’ € Scand /' € Sp,

ef = eff ERy
since e'f’ € Rer by definition of S, and thus (e’f)f' € Reralso. Next, given g € T, f'g € Ry with

fg=/gf'g. Thus
(efg = €(fg) = €(fgfg) = (efg)f g € Repe

because e'fg ERepand Ry U Ref is a right primitive skew lattice. Hence e'f’ € Sy and S is at
least a right regular band under multiplication. As such S generates a right-handed skew lattice
S’. But since R is the D-congruence on S’, T must be a lattice section on S’ forcing S’ C S, that is

S'=S8. O

Examples 6.1.1 from My(F) for any field F. The lattice section in each case is the
lattice T of all diagonal matrices in the skew lattice, one from each D-class. Notice that any D-
class that is comparable to all other classes is a full R-set. This is true for all right extensions of
lattices in rings. Incomparable pairs of D-classes, however, in some way create “interference”
with each other. Both classes are properly less than full ‘R-sets. That this is always the situation

for matrix rings over fields is justified later.
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| |
1000 0000 1000 0000
010 = £ 100 010 = £ 100
00 1 = £ 010 00 1 = 010
0000 0001 0000 0001
0000 000 0]
* 1 0 =* * 1 0 *
(a) 0 1 % (b) . 0 1 %
0000 L 000 0]
0000 0000 [0 00 0]
£ 10 * 0000 £ 1 % *
0000 £ 0 1 * 0000
0000 0000 L 000 0]
0 0

In the next case something else of note occurs. First: complementary pairs of ‘D-classes
A and B exist where A v B= {I} and A A B= {0}. Here I and 0 denote respectively the unique
maximum and unique minimum of S, although in these cases they also denote the identity and
zero matrices of the matrix ring. In the case below, complementary classes are in bold type.

1
100 0 00 00
01 0 =* 0100
00 1 =* 0010
00 00 00 0 1
(© '
1 000 0 00O
0 1 = = 01 0 =
00 00 00 1 =
0000 0000
1000 0 00O
00 00 01 * =*
00 0 0 0000
00 0 0 0000
0
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Second: these complementary pairs are trivial D-classes and thus form part of the center
of the skew lattice.

Third: this case is centrally complemented in that each central (trivial) D-class has a

complementary class.

Finally, we seemingly have an internal direct product. Indeed, setting

1000 0000][0000] o000
0000 01 00| 010 %] |01 * =
S| = 0 dS,= 0
1=lo 0 o oYl0 adS2=| 0 0l o 1 Y00 0 0 o]Yi0}
0000 0001||ooo0o0| |oooo

an isomorphism of w: S; x Sy = S is given by setting w(x, y) =x v y =x + y (since xy = 0). This
leads us to the following three results:

Theorem 6.1.4. If' S is a cancellative skew lattice with a unique maximum 1 and a
unique minimum 0, then all pairs of complementary ‘D-classes in S are trivial and thus lie in the

center of S. In particular, this occurs for all skew lattices in rings with unity 1 that contain both
1 and 0.

Proof. Let A, B be a complementary D-classes with say a, ' € A and b € B. From

avb=da vb=1landa nb=d ab=0,cancellation impliesa =a'. I

Theorem 6.1.5. Every maximal [right-handed] skew lattice (under O and *) in a ring
with identity 1 is (a) centrally complemented and (b) contains all central idempotents of the ring.

Proof. (a) Ife € Z(S) butnot 1 — e, then 1 — e & S so that S’ = eS + (1 — ¢)S is a larger [right-
handed] skew lattice in R. Indeed givenx +x', y +)' € S', we get

x+xHYy+y)=xy+xy and(x+x)o(y+y)=xopy+x'oy.

Thus S’ is a skew lattice in R containing both S and 1 — e. Given the maximal status of S,
1—e €S and hence 1—e € Z(S).

(b) If e is a central idempotent that is not in S, then clearly S' = eS + (1 — ¢)S contains
both e and S. As in (a), S’ must be a skew lattice, which by the maximal status of S equals the
latter, and e € S follows. [
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Theorem 6.1.6. Let S be a distributive, symmetric skew lattice with both maximal and
minimal elements, 1 and 0. Let B be a finite Boolean lattice such that {1,0} € B C Z(S). Then:

1) For each atom . of B, anS = {aax|x ES} = {y ES|0<y<a} is a skew
lattice with maximal element o..
2) For atoms o. # B, and all x < o.and y < B, xAy = 0 = yAx and xvy = yvx.

3) Given atoms .1, ... ,o, of B, an isomorphism ¢: S = H'f(ocl- AS) is defined by

@(x) = (UAX, ..., OpAX) with cpfl(xl, X)) SXIV .V X
Proof. Since B C Z(S), aaxaanry =oaxay and
(aAx)V(aAy) = (QAXAQ)V(OAYAQ) = QA(XVY)IACL = QA(XVY).
Thus assertion (1) follows. Next, since oAy =0 for x and y as stated in (2),
XAY = XAOAYAB = XAYAOQAB xAyA0 = 0.

Similarly yax = 0, so that xvy = yvx by symmetry and (2) follows. Moreover, @ is tat least a
homomorphism. Forallx €S,

x =xAlax=xa(oVv..vao,)Ax
(XAAIAX) V...V (XAOAzAX) = (A AX) V...V (0, A X),

which guarantees that @ is also one-to-one. Finally, given any (x, ..., x,) in ]—H’(oci AS), each x;
= a;AX; SO that
WAXLV ...V Xg) = (ajAX)) V.. v (0AX,) = (Q4AX) = X;.

Hence @(x1 v ... v x,) = (x1, ..., X), making the map @ surjective and hence an isomorphism. [J

Our next goal is to refine our description of the right extension S of a lattice T is a ring.
In this regard, given commuting idempotents e and f'in a ring R, S(e | f) will denote the D-class of
e in the skew diamond that is the right extension S of the lattice T = {e, f, evf, eaf} in E(R).

Theorem 6.1.7. Let T be a lattice in a ring R with identity 1 and let S be the right
extension of T. If e € T, then S.=N{S(e | ) | fET}. Fore, fET, moreover,
S(e|f) = e+ efRf(1-e) + eR(1-e)(1- /).
In particular, given e and fin T:

i) if e and f are comparable, then S(e | f) = Re.
i7) if e and f are disjoint (ef = 0), then S(e | f) = e + eR(1- e)(1- /).
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Proof. In light of Theorem 6.1.3, the assertion about S, is obvious. In general, for all x € R,,
x=etea(l—e) = etea(l —e)f+ea(l-e)(l-f)

for some a in R (x itself will do). Thus xf = ef + ea(l — e)f, so that xf ER.r only when
ea(l — e)f = efb(1 — ef) for some b in R which occurs precisely when ea(1 — e)f = efb(1 — e)f for
some b since (1 — e)f'= (1 — ef)f. Thus,

S(e |f) C e+ efRf(l1-e) + eR(1-e)(1-f) C R..
Since

fe+ eRA1-e) + eR(1-)(1-N}f = ¢f + efRAL-¢) = o + oRAL —¢f) C Rep

the reverse inclusion holds. Case (ii) follows immediately from the general case. For case (i), if
/> e, then S(e|f) = e + eR(1-e) + eR(1- e)(1- f) which reduces to e + eR(1-¢) = R,. Ife>f,
then both f{1 — ) =0 and (1-e)(1-f) = 1 — ¢, so that S(e | /) = e + eR(1-e) = R, again. I

The general case and the two special cases are illustrated in the following block matrix
diagrams where u, x, y and z hold arbitrary values.

(100 0] [0 0 0 0| 100 vy
o100 o100 _ 01 x
e= = S(e|f) = all z
0000 <1001 0 el 0000
oo o0 0| L 000 0| L 000 0|
(100 0] [0 00 0] 10 u y
_lo100 o100 _ 01 «x
e= = S(e|f) = all Z
oo0o0o0| “loooo el 0000
Lo oo o | L 000 0| L 000 0|
(100 0] [0 00 0| (100 y ]
-1 01 00 _{ 0 0 0 0 _ 010
e= = S(e|f) = all 2
oo0o0o0| “"loo1o el 0000
L0 0 0 0 | L0 0 0 0 ] | 000 0|

The case of matrix rings over fields
Given a matrix ring R = M,(F) over a (possibly skew) field F, let A denote the maximal

lattice of 0-1 diagonal matrices and let ey, ... , e, denote the atoms of A. Thus e; is the matrix
with 1 in the ii-position and 0 elsewhere. The support of any e € A is supp(e) = {i EN | e;; = 1}.
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In what follows, without loss of generality we assume that T is a sublattice of A such that
both matrices 0 and 1 lie in T. With this in mind, for each e € A,

the T-cover of eiss e = N{fET|f>e},
and
the T-interior of ¢ is ¢* = \/ {f € T | f< e}.

Clearly an idempotent e € A belongs to T if and only if it equals either, and hence both, its T-
cover and its T-interior. We next state a pair of elementary lemmas, the first of which describes
an R-set in matrix form.

Lemma 6.1.8. Given e € A and x € R, = e+ eR(1 —e), then e and x have the same

diagonal entries. Moreover, the nonzero diagonal entries of x occur only in those rows indexed
by supp(e) and in those columns with support indexed by supp(l —e) . O

Lemma 6.1.9. Given e €T and j Esupp(l —e), e A e_j =0iff jesupp(l—e)°. O

We now state our principal result for right-handed skew lattices in matrix rings.

Theorem 6.1.10. Let R be the ring of all nxn matrices over a (skew) field F, let A, be

the lattice of all 0-1 diagonal matrices and let T be any sublattice of A, containing at least the
zero and identity matrices, 0 and 1. If the skew lattice S is the right extension of T in R, then for
each e €S its D-class S, in S is described as follows:

i) All matrices in S, have the same diagonal as e.

ii) The nonzero, non-diagonal entries of any matrix in S, occur only in those
columns indexed by supp(1 — e).

iii) Forjin supp(1 — e), the only positions in thejth column of a matrix in S,

that admit nonzero entries are given by supp(e A e | ).

iv) For any j € supp(l —e), thejth column only has Os when j € supp(1 —)° .

V) No further restrictions are imposed on the matrices in S,.

Proof. Letting e € T as stated, the class of matrices in S, is the intersection of classes of
matrices themselves obtained by appropriate juggling of the block designs given after Theorem
6.1.7. Thus to determine the matrices in S,, one need only discover which non-diagonal positions
can hold nonzero entries in these matrices since these positions can hold any member of F. Since
Se € R,, these “free” positions can only occur in rows indexed by supp(e) and columns indexed
by supp(1 — e). Thus (i) and (ii) are seen. Next let j Esupp(1 — e) and let I'(e, j) C supp(e) consist

t . o .
of thosej column positions admitting non-0 entries.

Claim: T(e,j) = supp(e A e_j) for all j € supp(1 — e).
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If j € supp(1 — €)° then T'(e, j) is empty by Theorem 6.1.7(ii), while e A e_j =0 by Lemma 5.1.9

and assertion (iv) is seen. Otherwise, if j & supp(1 — e)° then by the previous theorem

T(e,j) = N{supp(erf)|fE T such thatj € supp(f) and e A f# 0}

supp(e A N{fET| jE supp(f) and e A f# 0}).

But by Lemma 6.1.9, the latter case is equivalent to asserting that e A e_j # 0. Thus in this case,
¢; = NSET|ens#0and) € supp(f)})

so that I'(e, j) = supp(e A e_j) here also. Thus I'(e, j) = supp(e A e_j) indeed holds for all
J € supp(l — e) and assertion (iii) is finally seen. [

Given the above definitions in the context of a diagonal lattice T and the matrix ring R,
the class space I" of T in R is the vector subspace consisting of all matrices A €R such that for 1

. . th . . - "
<i<n,inthei column of A the only nonzero entries occur in the supp( e; ) positions. The class

space of T allows use to express S, for any e € T in the following succinct manner.

Theorem 6.1.11. Given T and R as above with right extension S of T, if T is the class
space of T in R, then for eache €T,S, = e +el'(1 —¢) .

Examples 6.1.2 The class space for each of the skew lattices of Example 6.1.1 are, in the
same order, as follows:

= 0 0 0 = 0 0 0 # 0 0 0
EE (] EY * 0 ®

a) * 0 % =% b) * % C) OO*yD
00 0 = 0 0 = 00 0 =

Corollary 6.1.12. If R is a matrix ring over a skew field, T is a lattice in R containing
both 0, 1 and S is the right extension of T, then Z(S) is the Boolean lattice of all complemented

elements in T.

Proof. By Theorem 6.1.4 we need only show that every central element in S comes from a

complemented element in T. So let S, = {e}. Thus e A e;= 0 for all j Esupp(1 — e) so that
l-e> \/{e_j | j Esupp(l —e)}.

Since 1 —e< V {e_j | j Esupp(1 — e)} always holds, e is complemented in T. [
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A lattice T in a ring R with unity is centrally closed if the Boolean lattice of all central
idempotents lies in T. The previous result can be generalized as follows.

Corollary 6.1.13. Given a semisimple, Artinian ring R and a centrally closed lattice T in
R, the center Z(S) of the right extension S of T in R is the Boolean lattice of all complemented

elements in T.

Proof. This follows from the Wedderburn structure theorem for semisimple, Artinian ring and
the previous theorem. [J

We conclude this section with a further consequence of the above results. Recall that a
skew chain is any skew lattice whose D-classes are totally ordered.

Theorem 6.1.14. GivenR = F - :

i) Every maximal right zero semigroup in R is a maximal rectangular band in R.
ii). Every maximal right-handed skew chain in R is a maximal skew lattice in R.

Proof. Consider a maximal right zero semigroup S given by all matrices of block form

' x ' o
0 ol If S is not a maximal rectangular semigroup in R, then some f = B 0 exists

I X
in E(R) \ S such that § together with S generates a properly larger rectangular band. But [0 O}

I 0 I+XB 0. . . . .. .
[B 0:| = |: 0 0] is idempotent only if XB = 0 for all possible X. But this is not possible

since 3 € S and thus B # 0. Hence (i) must follow.

Suppose next that S is a maximal chain of right-rectangular skew lattices in R. Clearly S
is a quadratic skew lattice. Suppose that S lies in a larger skew lattice S’. The inclusion S C S’
cannot increase any D-class already in S. Hence a new D-class B exists in S’ that is
incomparable to some D-class A in S. If T is a lattice section of S’, then Theorem 6.1.7
guarantees that the right extension of T will not include the full R-set A. (Put succinctly,
increasing the lattice shape of S decreases some of its D-class sizes.). Hence it is impossible to

join new D-class to S. [

Query: Given a lattice T in a matrix ring R of maximal height, is its right extension S a
maximal (right-handed) skew lattice in R? Conversely, are all maximal (right handed) skew
lattices in R of maximal height = n? Settling these questions even for matrix rings would be of
interest.
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6.2 V-bands and cubic skew lattices

Given a ring R and e, f; in E(R) recall that eVf = (e of)2 = (e+f- e_}‘)z. The latter
expands to e + f+ fe —ef — efe —fef + efef in general, but reduces to e + f+ fe—efe— fef when ef is
idempotent. Recall also that V extends O in that:

Vi)

Every skew lattice (S; O, ®) in a ring is also a skew lattice under V and * since in
this case (e of)2 = e Of'so that eVfreduces to e O f.

Whenever e, f, ef, fe EE(R), then so are efe, fef and eVf'by Theorem 2.7.5.
Situations occur where eVf'is idempotent, but not e O f; but V need not be
associative, even if idempotent closure occurs. (See Examples 2.3.1 and 2.3.2.)
Due to (i), maximal right [left] regular bands in any ring form skew lattices under
V and *. Every right [left] regular band in a ring generates a skew lattice under V
and °.

Every maximal normal band in a ring R is a normal skew lattice under V and e;
indeed it forms a skew Boolean algebra. Thus a normal band in R generates a
strongly distributive skew lattice under V and ¢. (Theorem 2.3.6)

Maximal regular bands in rings, however, need not be closed under V, much less
be skew lattices under V. (See Example 2.3.5.)

Recall that every band is naturally partially ordered by e < f'if ef = e = fe which refines
the natural preorder given by e < f'if efe = e. The equivalence induced from < is the Green’s

relation D. Turning to YV -bands proper, a band congruence 6 on a V-band is a V -congruence if

6 is also a congruence under V. The assertions in the following lemma, coming from a 2004
paper of Cvetko-Vah, are easily verified.

Lemma 6.2.1. Given a V-band S in a ring, for all a, b € S:

i)
ii)

Givenb=<ainS,aVb =a + ba—aba and bVa = a + ab — aba.
aVbVa is unambiguous: (aVb)Va = aV(bVa) = a + b —bab. [

Even when V is not associative, V-bands are very much like skew lattices in rings.

Theorem 6.2.2. For any V- band S in a ring the following hold.

)
i)
iii)
iv)
v)

Vi)

As a band, S is regular. That is, abaca = abca holds on S.

D is a V-congruence and S/D is a lattice with Dy v D, = Drgy-
a (aVb)=a=(bVa)aand aV (ab) =a = (ba)Va.

ab=ba iff aVb=>bVa.

a(bNVc)a=abaV aca and aN (bc)Va=(aVbVa)aVcVa).
aVcVa = bVeVb and aca = beb implies a = b.

(S; V, ®) is thus a distributive, symmetric, cancellative skew lattice when \ is also associative.
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Proof. (i) Suppose A and B are D-classes in S with A>B. Leta € A and b € B so that a > b.
Consider bVaVb=a + b —aba. From

(a +b—aba)a(a +b—-aba)=a+b—aba and a(a + b—aba)a = a,

bV a¥V b €A follows. On the other hand, clearly 5VaVbh > b. Thus given D-classes A > B in
S, for all b € B there exists ¢ € A such that ¢ > b. Hence S is regular by Theorem 1.2.18.

(ii)) Leta > b and a > c¢. Since S is regular, bab = b, bac = bc, cab = c¢b and cac = c.
Hence (bV c)a(bV ¢) = bV ¢ so that a = bV ¢. Thus the D-class of bV ¢ is the join-class of Dj
and D, and D is a V -congruence.

(iii) follows from routine calculations such as aV (ab) = a + ab + aba — aaba — abaab
wich immediately reduces to a + ab + aba —aba—ab = a.
(iv) Just observe that Vb and bV a differ only by their third terms, ba and ab.
(v) For the first part, regularity gives
a(bNVc)a = a(b+c +bc—beb —chbe)a
= aba + aca +abaca — abacaba — acabaca = aba V aca.
For the other identity, first observe that [b(cVa)]2 = (bc + ba +bac — bcac — baca)2 expands as

(bc + beba — bea) + (babe + ba — baca) + (babc + bacba — baca)

— (bcabc + bcaba — bea) — (babe + bacba — baca)

bc + ba — baca + babc — bcabc

which in turn must equal b(cVa) = bc + ba +bac — bcac — baca. Equating and canceling
common terms gives babc — bcabc = bac — bcac, that is, the identity

babc + bcac = bac + bcabc. (6.2.2)
Thus
(@VbVa)aVcVa) = (a+b-bab)(a+ c—cac) = a+ bc— bcac — babc + bac
= a + bc —bac — bcabc + bac = a + bc — bcabc = aV (bc) Va.

(vi) Given aca = bcb, the regularity of ¢ implies cac = c(aca)c = c(beb)e = cbe.
Cancelling in a + ¢ — cac = b + ¢ — c¢bc (aVeVa = bVeVb) in turn gives a = b. [

We turn to other properties observed in skew lattices. The next result demonstrates the
important role played by instances of commutativity, especially on the algebraic reducts (S, °)
and (S, V) of any V-band S.
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Theorem 6.2.3. Join classes and meet classes are given by commuting joins and meets.
Thus given D-classes A and B in a N/ -band S, their join D -class J and meet D -class M are

J={aVbla€EA,bEB & aVb=bVa} and M= {ab|a € A, b EB & ab = ba}.
Moreover, for every a € A there exists b € B such that aN b = bN a in J and ab = ba in M.

Proof. Given v € J, there exista € A and » € B such that v>a, b. (Seta=va'vand b= vb'v for
any a’' € A and b’ € B.) For such a and b we have aVb € J and

v = vwaVb)y = v(a+b+ ba-aba—babyy = a+b + ba—aba—bab = aVbh.
Similarly, b5V a equals v also and the assertion about J is seen. The case for M is similar. For the
final assertion, pick a in A and let v € J be such that v > a. That b € B exists such that
aV'b=v=>bVaisnow clear. The rest follows from symmetry. []

Corollary 6.2.4. Given a V-band S and e € S, the following are equivalent:

i) D, = {e}.

ii) Forallx €S, eNVx = xVeandex = xe.

Proof. Clearly (ii) implies (i); and (if) implies (i) due to the final assertion of Theorem 6.2.3. [J

Corollary 6.2.5. A set of commuting elements in a \/ -band S generates a sublattice. [

We next turn to the question when V is associative, giving various criteria. When it is
associative on a particular V-band, the latter is called a cubic skew lattice in the ring. Clearly
quadratic skew lattices in a ring (studied in the previous section) are trivially cubic.

The associativity of NV : the role of the commutator [x, y]

Recall that the commutator of elements x, y in a ring R is [x, y] = xy — yx. Clearly x and y
commute if and only if [x, y] = 0. For any pair of idempotents e and f'in a band S in a ring R

eNVf—eof = ef + fe —efe—fef = [e,j]z.

Thus [e,f]2 =0ona V-band S if and only if V = 0 as binary operations on S. In this section we
show that a V-band S is associative if and only if for all e, fE S, [e,f]2 lies in the center of the
subring of R generated from S. That is, V is associative if and only ifg[e,f]2 = [e,j]zg for all e,
f, g €S. We begin with a pair of somewhat technical lemmas.

Lemma 6.2.6. (¢V b)c(aV b) =— (abca — aca — bca — beb + beab).
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Proof. Multiplying out (@ + b + ba — aba — bab)c(a + b + ba — aba — bab) and cancelling yields
(aca+ach—acab) + (bca + beb — beab) — (abea + abeb — abeab) = aca + bea + beb — beab — abea
where the underlined terms vanish collectively by identity (6.2.2). [

Lemma 6.2.7. Givena, b, cina NV -band S, aV (bN ¢) = (aV b) V¢ if and only if
(b, clPa—alb, c’a = c[a, b* - c[a, b]e. (6.2.7)

Proof. aV (bVc) = a+ (b + ¢+ cb—bchb—cbe) + (ba + ca + cha — beba — cbea)
— (aba + aca + acba — abcba — acbea) — (bV ¢)a(bV ¢)

while (aVb)Vce = (a + b + ba—aba—bab) + ¢ + (ca + cb + cba — caba — cbab)
— (cac + cbe + cbac — cabac — cbabc) — (aN b)c(aV b).

Equating aV (bV ¢) with (aV b)V ¢ and then canceling common terms yields

— beb — beba — cbea — aca — acba + abeba + acbea — (b ¢)a(bV ¢)
= — bab — caba — cbab — cac — chac + cabac + cbabc — (aV b)c(aV b).

Applying the previous lemma gives

— beb — beba — cbea — aca — acba + abeba + acbea + (becab — bab — cab — cac + cabc)
= —bab — caba — cbab — cac — cbc — cbac + cabac + cbabc + (abca — aca — bca — beb + beab)

which reduces to

— beba — cbea — acba + abeba + acbea — cab + cabe
= — caba — cbab — cbac + cabac + cbabc + abca — bca.

Adding cab + bca to both sides, grouping the aXa terms on the left and the cYc terms on the right
and then factoring gives,

bca — beba — cbea — a(be — cb)za = cab — caba — cbab — c(ab — ba)zc,
Adding cba to both sides, then grouping and factoring once again gives
(be — cb)a — a(be — cb)’a = c(ab — ba)* — c(ab — ba)c
which is the statement of the lemma. [J
Theorem 6.2.8. A \/-band S is associative if and only if for all a, b, ¢ € S,

alb, ¢ = [b, Ta.
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Proof. This identity implies that of Lemma 6.2.7, making V associative. On the other hand,
replacing a by aba and b by bab in the latter gives

[babc — cbab]zaba —aba[bab — cbab]zaba = clab - ba]2 —clab — ba]zc.

Regularity first gives
aba[babc — cbab]zaba = aba(c — c)aba =0
and then
[babc — cbab]zaba = (babc — cbab)(c — ¢)aba = 0.

Thus c(ab — ba)*c = c(ab — ba)’ and by (6.2.7), a(bc — cb)*a = (bc — cb)’a. Permuting variables
in c(ab — bay’c = c(ab — ba) gives a(bc — cb)’a = a(be — cb)” from which a[b, cI* = [b, ¢]a
follows. [

s . . 2
The associativity of V' thus reduces to cases of possible commutation: does [x, y]” always

produce elements lying in the center of the subring S* generated from S?
The associativity of V : the Green’s relations L and ‘R

We next consider connections between the associativity of V' and the equivalences £ and
R that refine D. Recall that L is a right congruence on S in that aLb implies acLbc for all ¢ €S
while R is a left congruence on S. If S is regular, then both £ and R are full congruences. In

particular, £ and ‘R are multiplicative congruences on all V-bands. We turn to the status of £
and R as V-congruences on a V-band. But first let a?{vb denote the conjunction, aVb = b and
bV a = a, and similarly let aivb denote aVb = a and bVa = b.

Lemma 6.2.9. In a V-band, aLb if and only if avab and similarly aRb if and only if
ava. In general, aLb implies (cV a)(cV b) = ¢V a for all ¢ and aRb implies

@NVe)bVe)y=bVe forallc.
Proof. Expanding, aVb = b and bVa = a reduce to a = aba + bab — ba and

b = aba + bab — ab. Multiplying on the left by a and b respectively, yields a = ab and b = ba,
that is aLb. Conversely, if aLb under the ring multiplication, then ¢V b reduces to b and bV a

reduces to a. In general, for all ¢ €S, (cVa)(cVb) = (c +a + ac — aca — cac)(c + b + bc — beb —
cbc) which with the assistance of L as a congruence on the multiplicative band expands as

¢+ (ac + a—ach) + (ac) — (ac + aca — acb) — (cac) = c¢+a+ac—aca—cac =cVa

Similarly, (¢Vb)(cVa) = (cVb) so that cVa L ¢Vb. The case for R is similar. []
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In general £ and R need not be V-congruences. However:

Lemma 6.2.10. L and R are both N -congruences on a N -band S if and only if for all a,

b, c €S,
i)  a(bc—cbc)a = a(bc — che).
ity  a(bc—bcb)a = (bc— bceb)a.

Proof. Given uLly, (uVx)(vVx) = (u +x + xu — uxu — xux)(v + x + xv — vxv — xvx). Distributing

each term of the left factor over the right factor, then adding and simplifying gives
(u) + (xv + x —xvx) + (xu) — (uxu) — (xu) = u + x + XV — uxu — Xvx.
(Here we use various consequences of regularity. E.g.,
u(v+x+xv—vxv—xvx) = u +ux + uxv—uxv—uxvx = u+ux—ux = u.)

Thus, (uVx)(vVx) = uVx holds for uLv if and only if xv — xvx = xu — xux. Replacing u and v by
generic values, uvu and vu, we see that £ is a V-congruence if xuvu — xuvux = xvu — xvux holds

for all u, x, vin S. Rearranging the terms gives xvux — xuvux = xvu — xuvu which is equivalent to
(i) upon switching variables. In similar fashion, R being a V -congruence is equivalent to (ii). [J

Theorem 6.2.11. Given a NV -band S in a ring, both L and R are N/ -conguences if and

only if V is associative and thus S is a skew lattice.

Proof. If \V is associative so that S is a skew lattice, then both £ and ‘R must be full skew lattice
congruences. On the other hand, given that £ and R are V-congruences, the identities of the

above lemma imply that

alb, c]2 = a(bc —cbc + cb — beb) = a(be — cbe + ¢b — beb)a
= a(bc —bcb + c¢b —cbc)a = (bc —beb + ¢b —cbe)a = [b, c]2a.

Thus, the criterion of Theorem 3.2.8 is satisfied and hence V is associative. []

The associativity of V : the role of Kimura factorizations

A closely related criterion involves a canonical factorization that can occur in V-bands.
We begin with bands. Every subsemilattice T of any band S meets each D-class in S in at most

once element. A semilattice section in a band S is a subsemilattice T of S that meets each
D-class exactly once, thus making T is an internal copy of S/D, the maximal semilattice image of

S. If S is also regular, then TR = UwrR, is a maximal right regular band in S and TL =UprLiis a

maximal left regular band in S with TR and TL being copies of the maximal right and left regular
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. L R
images S/L and S/R of S. Each e €S factors as eLer where e, = e, €T and er = t,e €T
where £, is the unique element in TND,. Put otherwise, ey and eg are the unique elements in D,

related to e and ¢, in the following D-class picture.

e R e = el
L L
tee = e R

Due to S being regular

ef = (eLer)(fifR) = (eLfL)(erfR)

holds for all e, fE€ S. Indeed,

ef = efefef = (eLer)(fifR)efleLer)(fifR) = evfieferfr = (erfL)(erfR)

with both latter reductions due to regularly. Multiplication on S thus decomposes internally into
separate products on T and TX so that S is isomorphic to a sub-band of TS x T®. We call the

factorization e = eper the internal Kimura factorization of e relative to T.

Even more is true if S is a V-band in a ring. In this case T is a lattice section in that for
alle,finT, eV f =eofisin T also making (T; o, *) a lattice that meets each D-class exactly

once, so that T = S/D. (If u € T is in the join D-class of e and f, then u > both e, fand sou > eOf
follows. But Since u and e0f'lie in a common D-class, u = e0f.) Given a V-band S with a
lattice section T, a modified join operation v can be defined such that (S, vT, ®) is a distributive,
symmetric skew lattice. To begin, T and ™ are in fact skew lattices. Indeed, suppose that
a be TLA Certainly aVVb € S, but since a and b lie in the left regular band TL, we also have

aVb = aob. Let t,, t, € T be such that a L ¢, and b L ¢,. By left regularity, we have
abt, = ab, atpt, = atp, baty = ba and bt,t, = bt,. Hence

(aob)(t,0ty) = (a+b—ab)(ta + ty—tats) = a +b—ab = aob

Similarly, (¢,0t5)(a0b) = t,0tp. Thus aocbhb € T‘C, and TL is a skew lattice in S as claimed.

Likewise, TCR is a skew lattice in S. The internal Kimura decomposition of the band S with

respect to T enables us to define an operation vt on S by setting

evtf =(eL OfL)(er OfR).

Clearly (e v f)L = eL OfL and (e vT f)r = er O fr. It follows that (S, vT, ) is an “internal” fibered
product of the skew lattices (TL, 0, *) and (TCR, 0, *) over their common sublattice T and thus is a

skew lattice. We will call vt the associative join on S induced from T. Cleary v is dependent
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on T and is somewhat more complex in design than V. Indeed we will soon see that distinct
lattice sections of S can produce different associative joins. But first we have:

Theorem 6.2.12. Given a V-band S with a lattice section T, the binary operation NV is
associative if and only if e NV f=e vr ffor all e, fin S, where vt is the T-induced associative join
on S. Thus if \V is associative, all lattice sections T of S induce a common associative join,
namely V.

Proof. If V equals vt for some lattice section T, then clearly V is associative. Conversely, let
V be associative and thus S a skew lattice. The regularity of V plus the fact the xVy = yx in any
D-class of S gives,

eVf = eVt VfV YV (t.VeVtyNVf) = teVeVirVHeVeV Vi
(ete Vft)(teeVirf) = (e Ofi)(erOfR) =eVvTf.

The next-to-last equality is because V reduces to O on any left or right regular band in S. The
final assertion of the theorem is clear. [

Consider the following pair of lattice sections for lattice sections for Example 2.3.2.

00 0 0 00 0 0
0000 0000 010 0 0110
LetT=4| 0 1 00 |5} 0100 %apdT = >
0010 0000 0010 00 0 0
00 0O 00 00 00 00 00 0 0
If A and B as chosen as in that example, then

0100 o110

AvyB=| 0 1 0 0 | whileAvrB=| 0 1 0 0

0010 0010

00 00 00 00

Hence the choice of T affects the outcome of the induced join when V is not associative.

The preceding theorem and example raise the question of whether having a unique
associative join v implies V is associative. A related question is that of when lattice sections
must exist and in what abundance to make this question meaningful. Both issues are treated in
the following theorem.

Theorem 6.2.13. If' S is a V-band such that S/D is at most countable, then S has a

lattice section T. Such a lattice section can always be found to include any given finite subset Tg
of pairwise commuting elements in S. Finally, if all lattice sections T of S induce a common
associative join on S then N is this join and as such is associative.
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Proof. Let Dy, Do, ... be a complete listing of the D-classes of S. Pick a; € D; and consider the
set X = {xES|aix =xa;}. X is a band containing a; and meeting each D-class of S. Indeed,
given any other D-class D’ with y €D’ we have a; > a1ya; < ajya1VyVaiya; = b. It follows that
a1b = ayya; = ba; so that b €X. Moreover, X is a V-band. Indeed, given x, y € X, then a; and
xVy =x +y+ yx—xpx — yxy clearly commute, so that xVVy €X also. Note that D; (1 X = {a;}.
Next pick ax € D2 N X, set Y = {y €EX| a2y = yaz}. Again Y is a V-band that meets each D-
class of S and moreover D; | X = {a;} for i = 1, 2. The process continues through the countable
set of D-classes to produce the lattice section T = {ay, a2, a3, ...}. By placing the D-classes of
the elements in Tg at the front of the list of D-classes, the second assertion follows. Finally,
suppose that all lattice sections T induce a common associative join v on S. Let e, f € S be given.
Then e and f generate a skew lattice Sg in S with at most 16 elements. (See Theorem 2.7.5 and

the surrounding discussion.) Take a lattice section Tg of Sp and extend it to a full lattice section T
of S, using the first part of this theorem. Then e vr f= evy f and the latter equals eVfin So
0

by Theorem 6.2.12. Thus V is the common associative join induced by all lattice sections. []

Thus while “really big” V-bands need not have lattice sections, thanks to Theorem
6.2.13 all V-bands in finite dimensional matrix rings over fields have them so that all of the
theorem applies.

Since V is associative if and only if it is thus on all finitely generated subalgebras of a
given V-band, an alternative to Theorem 6.2.12 is given in the following corollary to the above
theorems and its own following corollary in turn.

Corollary 6.2.14. Given a NV -band S, NV is associative if and only if for all eDu and fDv

situations in S where uv =vu, eNf is calculated as (eu O fv)(ue o vf) .

Corollary 6.2.15. V is associative on a NV -band S if and only if it is associative on all
sub-algebras generated from at most 2 D-classes. [

The associativity of V. the role of primitive algebras

As with skew lattices, a V-band S is primitive if it has exactly two ‘D-classes, A > B. In

general, a band S is fotally pre-ordered if either e = for f - e for all e, f € S. (Again, e > f'if
fef = f, or equivalently for V-bands, eV Ve =e.) These bands are of interest because maximal,
totally pre-ordered regular bands in a ring form V-bands. (See Corollary 6.3.5 below.) For such
V -bands, the previous results imply that to check for the associativity of V one need only check
for associativity on its primitive subalgebras. It is thus natural to ask if the “totally pre-ordered”
condition can be removed from this observation? Put otherwise, if V is associative on all
primitive subalgebras of a N -band, must it be associative on that band? Or does a V-band S
exist with exactly four D-classes, two of which are mutually incomparable, such that V is

associative on all five maximal primitive subalgebras but not on all of S? This leads us to:
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Theorem 6.2.16 If V is associative on all primitive subalgebras of a V-band S, then N/
is associative on S, and conversely.

Proof. Granted the assumption, we need only show that V is associative when S is generated
from two incomparable D-classes, say A and B. Let their meet class be M and join class be J.

Let a lattice section of S be given by T = {aq, by, mo, jo}. Take a € A, b € B. We show that aVb
=avtb. Tobegin

avtb = (aag+ bby— aagbbo)(aoa + bob — apabob)
= a+amob — abob + bmoa + b — bmoab — abmoa — aapbh + ab

= a -+ bmoa + b — bmoab — abmoa

since aaopb + abob — amob = ajob = ab by regularity. Of course, aVb =a + b + ba — aba — bab.
Denoting the difference (a vt b) — (aV b) by A, »), we have

A, by = bmoa — bmoab — abmoa — ba + aba + bab.
The associativity of V' on the primitive V-band MUB implies that

A(abmoa b) = bmoa — bmoab — abmoa — bamya + abmoa + bab

bmoa — bmoab — bamoa + bab = 0.

Subtracting from A, p) yields the refinement Ay, 5y = bamoa + aba — abmoa — ba. Using the

latter to calculate A in the associative context of MUA gives:
(a, bamob)

0= A(a’ bamh) = bamoa + aba — abmoa — ba = A, p) .

The converse is trivial. [J

Since V is associative on a V-band only if it is thus on all primitive subalgebras, two of
our earlier associativity criteria can be fine-tuned for the primitive case as follows.

Corollary 6.2.17. Given a primitive V-band P with D-classes A > B, the following are

equivalent:

i) V is associative on S.
ii) Foralla€ A and b, c €B, a[b, c]2 = [b, C]za.
iii) Foralla € A and b, c € B, both
a(bc — cbc)a = a(bc —cbe) and a(bc —beb)a = (be — beb)a.
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Proof. That (i) implies (ii) and (iii) follows from Theorem 6.2.8, Lemma 6.2.10 and Theorem
6.2.11. The identities of (ii) and (iii), in their unconditional form, conversely imply (i). Given a,
b, ¢ € P, the only case where the identities need not hold, is the case where ¢ € A and b, ¢ € B.
In all alternative cases these identities hold. We check the case where b€ A and ¢ € B. Here we
have b > a, ¢ so that xby = xy whenever x and y are either a or c. Hence

alb, c]2 =a[bc + ¢b—bchb —cbc] = ac + acb —acb—ac =0,
a(bc — cbe) = abc — acbc = ac —ac =0=a(bc — chc)a,

and similarly [b, c]za =0 and (bc — beb)a = 0 = a(bc — beb)a. The cases b, cE A, or b € B but
¢ € A are similarly verified, as is the case where a, b, c € B. [

Given the matrices A > B, C from Example 2.3.2, we have:

A[B, CT* = [B, CJ’A, and

I
cococo
cocoo
cocoo
cocoo

H
cocoo
cocoo
oo o~
cocoo

A(BC-BCB)A = = (BC-BCB)A.

S o oo
[=NeNeNe)
oo~ O
S o oo
H
S o oo
(=Nl
SO = =
[=ReNeNe]

The case of normal V-bands

That V is associative for any normal V-band has been seen already. The various criteria
in this section provide essentially new proofs:

Corollary 6.2.18. A normal V-band S is a skew lattice. (That is, V must be associative.)

Proof 1. The identity xyzw = xzyw implies a[b, c]2 =0 = [b c]za. Hence V is associative by
Theorem 6.3.8.

Proof 2. Again, xyzw = xzyw implies that the criteria of Lemma 6.3.10 is satisfied:
a(bc —cbc)a = 0 = a(bc —cbc) and a(bc — beb)a = 0 = (bc — beb)a.

Proof 3. Finally, xyzw = xzyw implies xyz = xyxz = xzyz. Thus given any eDu and fDv in S with

uv = vu, the product (euQfv)(ueovf) = (eu + fv — eufv)(ue + vf — uevf) must reduce to (eoj)2 =eVy,
so that V is associative by the criterion of Corollary 6.2.14. [J
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6.3 The question of V -closure

While every V-band in a ring is regular as a band, not every regular band in a ring need
generate a V-band in that ring. Thus far no simple necessary and sufficient criteria for a regular
band in a ring to generate a V -band are known, though cases exist where successful generation is
guaranteed. (By contrast, every regular band S is isomorphic to a regular band S' in some ring
such that S' generates a cubic skew lattice in that ring.) When a V-band is generated from a
band S, it is called the V -closure of S. Our next theorem describes what must occur at any stage
in a successful generation of a V-band from a regular band in a ring.

Theorem 6.3.1. Given a regular band S in a ring R and elements e, f € S, SU {eV}
generates a (possibly larger) regular band S' in R if and only if for all a, b, ¢ € S,

1) ea(e O f)bf = eabf-

1I) a(e — ef)abe(f— ef)c = ale — ef)b(f— ef)c.
Proof. Observe first that since S is regular, ea(ef + fe — efe — fef)bf = 0 making
ea(—ef)bf = ea(fe — efe — fef)bf, so that ea(eV f)bf = ea(eOf)bf. Thus if the semigroup S’ generated
from S and eV f'is a regular band, then since ea, bf < eV f we have ea(eVf)bf = eabf so that ()

must follow.
In general, elements of the semigroup S’ generated from S and eV flook like

aoeV fai(eVaxeV)... ap1(eNVfay,

with ao, a1, ... ,a, € Sl forn>1. (The n=0 case is just ag) For S’ to be a regular band, both
eV a(eNV Hb(eVS) = (eVfab(eV) (6.3.1)

and
[a(eVbEeV el = a(eV NHbeV e (6.3.2)

or by (6.3.1)
a(eNfbcab(eNVf)c = a(eNV f)b(eV f)c (6.3.2")

must hold for all a, b ¢ € S. Conversely, (6.3.1) guarantees that all elements in S’ have the form
a(eNVfb(eVf)c, (6.3.2) then guarantees that S’ is a band, and together with the regularity of S
they guarantee that S’ is a regular band. Note in passing that the regularity of S implies that
(6.3.2") can be replaced by

a(eN fabe(eNVf)e = a(eNV fb(eV f)c. (6.3.2")
Returning to (6.3.1), upon setting A = {e, £, fe, —efe, — fef}, we get

(eVNa(eVNb(EeV)) = Zu v ua(eV f)by.
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Except for the two cases, ea(eV f)bf and fa(eV f)be, all of the ua(eV f)bv terms reduce to uabv
terms due to the regularity of S. For example,

efa(eN f)bfef = efae(eN f)bfef = efaebfef = efabfef.
Thus (6.3.1) reduces first to ea(eV )bf + fa(eN f)be = eabf + fabe and then to
ea(e O f)bf + fa(f O e)be = eabf+ fabe. (6.3.1)

Clearly (I) implies (6.3.1") and when S’ is regular, (I) holds so that (6.3.1") follows. Thus (6.3.1")
can be replaced by the stronger assertion, (I). Next, expanding (6.3.2") gives

a(e + f+ fe — efe — fef)abc(e + f + fe — efe — fef)c
= a(e+ f+ fe—efe—fef)b(e + f + fe — efe — fef)c.

Using the identity aeabcec = aebec holding for all regular bands, multiplying out the left side of
(6.3.2") creates a number of terms that reduce immediately to the corresponding terms on the
right. Of course we have, aeabcec = aeaebecec = aebec and afabcfc = afafbfcfc = afbfec, but
also cases such as

afe(abc)fefc = afeflabe)fefc = afef(b)fefc = afe(b)fefc,
and

aeflabc)fefc = aeflabc)efc = aef(b)efc = aef(b)fefc.
Where this matching fails, (6.3.2") first reduces to

a(e)abc(f)c + a(e)abc(fe — efe — fef)c + a(fe — efe — fef)abe(f)c
= a(e)b(f)c + a(e)b(fe — efe — fef)c + a(fe — efe — fef)b(f)c.

Using regularity again on products involving the underlined terms, the above reduces to

a(e)abce(f— ef)c — a(ef)abe(f)c = a(e)b(f — ef)c — a(ef)b(f)c
or

a(e)abc(f)c — a(e)abe(ef)c — a(ef)abe(f)e = a(e)b(f)c — a(e)b(ef)c — a(ef)b(f)c.
Regularity gives a(ef)abc(ef)c = a(ef)a(ef)be(ef)c = a(ef)b(ef)c. (6.3.2) is thus reduced to (IT). [

A successful generation of a V-band from a regular band requires that at each stage of
generation the new regular band S’ also satisfies (I) and (II) in Theorem 6.3.1 for all
a, b, c, e, f€S'. While (I) and (II) generally need not be passed on to later bands, here is a
strategy for generating V-bands. To this end, a condition C potentially satisfied by regular bands

in rings is V -inductive if
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(i) any regular band S in a ring that satisfies C must satisfy (I) and (II), and
(ii) for all e, f € S, the regular band S’ generated from S U {eV/f} also satisfies C.

Clearly:

Theorem 6.3.2. Any regular band of idempotents in a ring that satisfies a N -inductive
condition C will generate a N/ -band (its V/ -closure) in that ring. [

We consider three conditions that are Y -inductive (in this parlance). We give new proofs
based on the concept of V-induction. Since the first two cases are already known, we omit their
elementary proofs based on V -induction.

Corollary 6.3.3. Left [right] regularity is a V-inductive condition. [
Corollary 6.3.4. Normality is a V-inductive condition. ]

Recall that a band S is totally pre-ordered if for all e, f €S, either e < f'or f < e, that is,
either efe = e or fef = f. The following nice result is due to Karin Cvetko-Vah [2005a].

Theorem 6.3.5. Being totally pre-ordered is a V-inductive condition. Thus every
maximal totally pre-ordered regular band in a ring is a V-band.

Proof. In verifying (I), we use the fact that ea(eOf)bf multiplies out to eaebf + eafbf — eaefbf.
There are two cases to consider.

Case 1: the <-maximum is e or f. Say e. Then eaebf + eafbf — eaefbf reduces to
eabf + eafbf — eafbf = eabf. The subcase for fis similar.

Case 2: the <-maximum is a or b. Say a. Here eaebf + eafbf — eaefbf reduces to
ebf + efbf — efbf = ebf= eabf. The subcase for b is similar.

For (1), first suppose that e < f; so that e = efe. Then both sides of (II) reduce to 0:

a(e — ef)abc(f— ef)c = a(e — ef)fabe(f — ef)c = aOabe(f— ef)c = 0
and

a(e — ef)b(f—ef)c = a(e — ef)fb(f— ef)c = a0b(f— ef)c = 0.
Likewise, this occurs when f'< e, so that (I1I) follows.

Hence S U {eV/f} generates a regular band S’ in R. Is S’ also totally pre-ordered?
Suppose that e < f'in S. (The f < e case is similar.) Here eVf = f+ fe —fef. Thus eV f)f=f
while (eVf) f(eVf) =f(eNV)f) = f(f+ fe—fef) =eVf. Since eVfDfin S, every element v’ in

S’ must be D-equivalent to some element u in S. Since S is totally pre-ordered, so is S'. [J
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V-bands open the door to cubic skew lattices that are distinct from any possible quadratic
skew lattice a ring. This observation, however, is tempered by the following result:

Theorem 6.3.6. Every cubic skew lattice (S: V, *) having a lattice section T in a ring R
is isomorphic to a quadratic skew lattice (S": O, *) in some ring R'. This always occurs when S/D

is countable and in particular for any (S: V, *) in a matrix ring over a (skew) field, in which case
R’ can also be a matrix ring.

Proof. Given a lattice section T with left and right extensions Sy and Sg, the internal Kimura
decomposition gives an embedding of S into a quadratic skew lattice S — Sg x S € R xR. [

6.4 Idempotent-closed rings

A ring R is idempotent-closed if its set of idempotents E(R) is multiplicatively closed.
We begin with a result in basic ring theory.

Proposition 6.4.1 Let ring R be idempotent-closed. If R has an identity, then its
idempotents commute. In general, if the idempotents of R commute, then E(R) is in the center of
R and forms a generalized Boolean algebra (E(R); v, A, \, 0) upon setting

enf=¢f, evf=eOf=e+f—efande\f=e — cfe.

In this case, given e € E(R), both eR and ann(e) = {x € R|ex = 0} are ideals and R decomposes

internally as eR ® ann(e) under the map x — ex + (x — ex).

Proof. If 1 € R, then e(1—e) = 0 for all e € E(R). Hence ef(1—e) = [ef(l—e)]2 = 0 and thus
ef = efe for all e, fin E(R). Similarly, fe = efe and thus ef = fe for all ¢, fin E(R). Next, assuming
all idempotents commute, choose e € E(R) and x € R. Observe first that if ex = 0, then e + xe is
idempotent; likewise, if xe = 0, then e + ex is idempotent. Thus in general, since e(x — ex) = 0
one has that e + xe — exe is idempotent. Multiplying each expression with e and using
commutation, gives e + xe — exe = e = e + ex — exe, from which xe = exe = ex follows. The
remaining assertions are easy consequences of this. [

A ring whose idempotents commute, and thus lie in the center of the ring, is called
abelian. Such rings are clearly idempotent-closed. We are less concerned here with the internal
structure of these rings, than in their role in the class of idempotent-closed rings. Suffice it to say,
under mild hypotheses abelian rings decompose into direct sums of rings with identity whose
only idempotents are 0 and 1. (See Section 6.5.)

Moving beyond the abelian case, first recall that a band S is normal if it satisfies any and
hence all of the following equivalent identities:

(a) efge = egfe. ) efgh = egfh. (c) efege = egefe.
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Theorem 6.4.2 [fa ring R is idempotent-closed, then:

i) E(R) is a normal band under multiplication.

ii) E(R) is also closed under N which is idempotent and associative on E(R).

iii) (E(R); V, *) is a strongly distributive (distributive, normal and symmetric)
skew lattice.

iv) Upon setting e\ f=e — efe, (E(R); V, *,\, 0) is a skew Boolean algebra.

Proof. (i) Given e € E(R), the principal subring eRe has an identity e and thus eE(R)e = E(eRe)
is commutative by the above proposition. Hence E(R) satisfies (c¢) and is normal. (ii) and (iii)
follow from Theorems 2.3.6 and 2.3.7. Finally, let e\f as e — efe in R.  As such, e\f is the
complement of eafae in E(eRe) and satisfies the characterizing identities in Section 4.1:

e=(enfrne) v (e\f) and (erfae) A (e\f)=0. O

Recall that E(R) is partially ordered by e > f'if ef = f = fe with e > f denoting e > f # e.

Recall also that an idempotent e > 0 is primitive if no idempotent f exists such that e > /> 0. E(R)

is O-primitive if all of its non-0 elements are primitive. In this case, M(R) denotes E(R)\{0}.

Recall that a band is rectangular if efe = e, or equivalently, efg = eg holds. A 0-rectangular band

M0 consist of a rectangular band M and a distinct element 0 &M, so that x0 = 0 = Ox. Abstractly

viewed, every primitive skew Boolean algebra has operations induced from a 0-rectangular band

s given x, y € M, 0ax = 0 = xA0, Ovx = x = xv0, xAy = xy = yvx, x\0 = x and O\ = 0 = x\y.

In this simple manner, 0-rectangular bands are in 1-1 correspondence to the class of primitive
skew Boolean algebras.

Theorem 6.4.2 If E(R) is O-primitive and closed under multiplication, then under
multiplication, E(R) is a 0-rectangular band with eNf= fe on M(R).

Proof. Given the assumptions on E(R), let e # fin M(R). Then e > efe > 0 in E(R) so that efe is
either 0 or e. If efe = 0, then so are fef, ef and fe (since, e.g., ef = efef = 0). It follows that e + f'is
an idempotent greater than either e or f'and hence not primitive. Thus efe = e for all ¢, fin M(R)
making M(R) a rectangular band with eVf=e + f + fe — efe — fef reducing to fe. [

Idempotent-dominated rings

How does E(R) being multiplicatively closed affect the behavior of R? To answer this
one is pressed to find reasonable assumptions connecting E(R) to all of R in order to obtain
consequences for all of R. To do so we begin with the following lemma.

Theorem 6.4.3 Given a ring R, set T(R) ={x|ex = x = xf, for some e, f € E(R)}. Then:
i) [(R) is a multiplicatively closed set containing E(R) that also has negatives:
x € I'(R) implies —x € I'(R).
ii) When E(R) is idempotent-closed, T(R) = U{eRe|e € E(R)}.
iii) In general, the set Q(R) of all finite sums of elements in I'(R) is the smallest ideal
in R containing E(R).
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Proof. (ii) is clear. If E(R) is multiplicative, x € I'(R) and e, f € E(R) are such that ex = x = xf,
then set g = fVe. By absorption, ge = ¢ and fg =f. Hence gx = gex = ex =x and likewise xg = x
so that gxg = x and (ii) holds. For (iii), first, let O’ be the least ideal of R containing E(R). Clearly
O(R) is a subring of Q'. Conversely, Q' consists of sums of terms of the form xe, ey and xey
where e € E(R) and x, y € R. For such ¢, x, y, observe that f=¢ + xe —exeand h = e + ey — eye
are both idempotent, so that xe, ey and thus xey must lie in @Q(R). Indeed as defined, ef = e and
fe = f'so that ff'= (fe)f= flef) = fe =f. Similar observations hold for z. [

Elements in I'(R) are said to be idempotent-covered. R as a whole is idempotent-covered
if its elements are thus. Rings with identity and von Neumann regular rings are trivially
idempotent-covered. For such rings we have an extension of Proposition 6.4.1.

Theorem 6.4.4 Given an idempotent-covered ring R, E(R) is multiplicative if and only if
R is abelian.

Proof. Let R be idempotent-covered and idempotent-dominated. Given e, f'in E(R), by Theorem
6.4.3 g EE(R) exists such that g(ef — fe) = ef — fe = (ef — fe)g. By normality,

ef —fe = glef — fe)g = gefg — gfeg = gefg — gefg = 0.
Thus E(R) is commutative and R is abelian. The converse is clear. [

A ring R is idempotent-dominated if it is generated from the set I'(R) of all idempotent-
covered elements, or put otherwise, if R = Q(R). Clearly idempotent-covered rings are
idempotent-dominated, but not conversely.

Idempotent-covered abelian rings enter into the general case of idempotent-closed rings
in at least two ways. First, for any idempotent e in an idempotent-closed ring R, the principal
subring eRe is abelian. Secondly, we will see that each idempotent-closed and dominated ring
has a maximal abelian image that in many cases arises as a major subring of the given ring.

Being idempotent-dominated can have a side effect. For any idempotent-covered ring R,
the annihilator ideal vanishes, ann(R) = {0}. If R is just idempotent-dominated, this need not be
the case, even when E(R) is also multiplicative. Indeed, given e, f in a multiplicatively closed
E(R), the following small rectangular band arises

efe R ef
L =
fe R fef

and the combination a(e, f) = ef + fe — efe — fef can lie in ann(R). This is of interest since for all
idempotents e and f'we have eVf=e O f+ a(e, f). Indeed we have:
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Lemma 6.4.5 When R is idempotent-closed and dominated, then:

i) Forallx, y € R and all e, f € E(R), xefy = xfey.
ii) In particular, if e Df then xey = xfy.

Consequently, a(e, f) € ann(R) for all e, f € E(R) so that eNf= e O f when ann(R) = {0}.

Proof. Given that R is idempotent-dominated and E(R) is normal, xefy = xfey must hold as
stated. If e Df'then xey = xeffey = xfeefy = xfy. Thus

xale, ) = x(ef + fe — efe — fef) = x(ef +fe —fe —ef) = 0
for all x € R, and similarly, a(e, )x=0. [

Given the above assumptions it is easy to see that ann(R) = {0} when E(R) is either left-
handed (efe = ef) or right-handed (efe = fe). While ann(R) need not vanish, this is not the full

story.

Lemma 6.4.6 If R is idempotent-dominated, then

i) ann(R) = {x € R|xe = 0= ex for all e € E(R)}
ii) ann[R/ann(R)] = {0}.

Proof. In general, ann(R) = {x € R|xy = 0 = yx for all y € R} and if m: R — R/ann(R) is the
induced homomorphism, then ann(R) € n ' {ann[R/ann(R)]} with

n {ann[R/ann(R)]} = {x € R|xyz=0=yzx = yxz forall y, z € R}.

But if R is idempotent-dominated, then ann(R) = {x € R|xe = 0 = ex for all ¢ € E(R)}. Hence
nil{ann[R/ann(R)]} S ann(R) and equality follows and ann[R/ann(R)] vanishes in R/ann(R).

Thus, if R is idempotent-dominated, the description of ann(R) in the lemma insures that
nil{ann[R/ann(R)]} < ann(R). Equality follows, as does the lemma. [

Lemma 6.4.7 If R is a ring with ideal I < ann(R), then the induced epimorphism

n: R — R/l restricts to a bijection ng: E(R) — E(R/I). If E(R) is also multiplicative, so is E(R/I)
and g is an isomorphism of skew Boolean algebras.

Proof. =g is a well-defined map between the stated sets. If n(e) = n(f) for e, f € E(R), then
e =f+ a for some a € ann(R) and squaring gives e = f. Thus =g is at least injective. Given
x +1 &€ EWRN, x2 = x+a for some a € ann(R) and hence x4 = x2 so that x2 € E(R) and 7g is
bijective. Since m is a ring homomorphism, the rest of the lemma follows. [

Since eRe N ann(R) = {0} for all idempotents e in any ring R, we have:
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Theorem 6.4.8 If R is both idempotent-dominated and idempotent-closed, then R/ann(R)
has both properties with ann(R/ann(R)) = {0} so that eVf = eOf in R/ann(R). The natural
epimorphism m. R — Rlann(R) induces a skew Boolean algebra isomorphism
ng: E(R) = E(R/ann(R)) and ring isomorphisms mg: eRe — m(e)(R/ann(R))n(e) between
corresponding principal subrings. [

When ann(R) # {0}, R/ann(R) provides a cleaner, trimmer version of R, sharing many of
its characteristics, but without a non-vanishing annihilator ideal.

The canonical ideal Ky

The annihilator ideal is a part of generally larger canonical nilpotent ideal Kr that all
rings possess. We begin with an example.

Example 1 For n > 1, M,(F) is the ring of n X n matrices over a field F. M,(F) is
trivially idempotent-covered since it has an identity, but E(M,(F)) is never multiplicative unless
n=1. For n>2, given fixed integer parameters i, j, k > 0 subjectto i +j +k=nand 1 <j <n,

consider the subring R[.” ik of all matrices with the following block design satisfying the added

restriction that D be a diagonal matrix:

Oixi Ai><j Cixk
Dijx = Oin Dj><j Bij
Ok><i Ok><j kaik

Rl.'f ik is idempotent-dominated and idempotent-closed. Rl.'f ik and E( Rl.'f j,k) are noncommutative
when j < n and commutative when j = n. The idempotents of Rl." j are the matrices where D has

only 0-1 entries in the diagonal, AD = A, DB = B and AB = C (for cases where A, B or C do not
disappear.) E( Ri" ik ) is right-handed when i = 0 and left-handed when k& = 0, with C vanishing in

either case along with A or B, respectively. For i, k> 0 so that j <n — 2, ann( Rf ik ) is nontrivial

consisting of all matrices for which blocks D, A and B are 0-submatrices. The strictly upper
triangular matrices (where D = 0) form a nilpotent ideal, K. Considering just addition, the
additive group of the ring is the direct sum of the group of all diagonal matrices (a maximal
idempotent-covered subring with central idempotents) and the group of strictly upper triangular
matrices (the nilpotent ideal K). To what extent does such a direct decomposition characterize
idempotent-dominated rings with multiplicative sets of idempotents? This leads us to the
following considerations. [
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Given a ring R, Kz denotes the ideal {x € R|uxv = 0 for all u, v € R}. Clearly
KrKrKr = {0} so that Ky is a nilpotent ideal of index 3.

Lemma 6.4.9 If R is idempotent-dominated, then
Kr={x ER|exf=0foralle, f€ E(R)}.
If R is also idempotent-closed, then Kr = {x ER | exe =0 for all e € E(R)}.

Proof. The first statement is clear. If R is also idempotent-closed and exe = 0 for all e € E(R),
then for all e, /' € E(R), exf = e(eV/)x(eVf)f = e0f = 0 and the second statement follows. [

Theorem 6.4.10 If R is an idempotent-dominated and idempotent-closed ring, then the
ring R/Kr is the maximal abelian image of R. It is also idempotent-covered with
E(R/KR) = E(R)/D. Conversely, if R is an idempotent-dominated ring for which R/'Kp is abelian,

then R is idempotent-closed.

(In general, if R is any ring with an ideal K such that RKR = {0}, then R is idempotent-closed if
and only if R/K is idempotent-closed, in which case E(R/K) is a homomorphic image of E(R) with
both sharing a common maximal lattice image.)

Proof. The quotient ring R/K is automatically idempotent-dominated. Suppose x + K € E(R/K)
so that x + K =x" + K for all n > 1. Then x = x + k for some k € K. From this we get
x4 = x3 + xkx = x3, and hence x6 = x3 so that x + K = e + K for some e € E(R). Thus all
idempotents in R/K come from idempotents in R, making E(R/K) multiplicative. By Lemma
6.4.5, ef — fe € K for all e, f € E(R), making E(R/K) commutative. Being idempotent-dominated,
this forces R/K to be idempotent-covered. Indeed, given any idempotent-dominated abelian ring
S, for any x = ejxie; + - - - + exxpe, € S, upon setting f'= e;VeyV . . . Ve, we have > all ¢; so

that fif=f.

Next, let a: R — A4 be a homomorphism onto a ring 4 having only central idempotents. 4
is automatically idempotent-dominated and hence idempotent-covered so that Ks = {0}. Given

k € K, since a is surjective, a(k) is in K4 so that a(k) = 0. Thus K € ker(a) and the maximality of
the abelian image R/K follows.

The converse follows from the remark following the theorem. So let R be a ring with an

ideal K such that RKR = {0}, and let e, f € E(R) be given. If R/K is idempotent-closed, then at
least efef = ef + k for some k € K. But then

efef = e(efef)f = e(ef + k)f = ef + ekf = ¢f,

so that R is idempotent-closed. Likewise, if R is idempotent-closed, then so is R/K by the above
argument for R/K with E(R/K) again a homomorphic image of E(R). Given idempotent closure,
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if e > fin E(R), then e + K # f'+ K in E(R/K), for otherwise e = f'+ k for some k € K so that
e=e(f+ k)e = efe=fin R. This forces images of distinct D-classes in E(R) to remain distinct in

E(R/K), so that E(R)/D = E(R/K)/D. O

In general, ann(R) S Kg with the inclusion often proper; but thanks to Theorems 6.4.8
and 6.4.10, for an idempotent-closed and dominated ring R, ann(R) = Ky precisely when both

ideals vanish and R idempotent-covered with central idempotents.

When E(R) has a lattice section, the ideal Ky has a natural near-complement in the

ring R.

Theorem 6.4.11 Let R be idempotent-dominated and idempotent-closed. If E(R) has a
lattice section Ey, then setting A= {x € S|3e € Eq, x = exe}, we have the following:

i) A is an idempotent-covered abelian subring of R.
ii) As additive groups, R = A @ Kp.
iii) The natural epimorphism R — R/'Kg induces a ring isomorphism A = R/ Kg.

Conversely, let S be any ring with an abelian subring A and an ideal K such that SKS = {0} and
as additive groups, S= A @ K so that as rings, S/K = A. Then S is idempotent-closed and E(A) is
a lattice section of E(S); moreover, for all a € E(A), the D-class D, in E(S) consists of all

elements of the form (a + ka)(a + ak) with k €EK.

Proof. Suppose exe = x and fjf =y for e, f € Ey. Setting g = eVf'= eof in Ey, g > e, f so that

gxg = x and gyg = y also. This gives g(x £ y)g = gxg £ gyg = x £ y and g(xy)g = (gx)(vg) = xy.
Thus A must be an idempotent-covered subring for which E(A) is multiplicative. By Theorem

6.4.4, (i) follows. Suppose that we are given x = ejxje; + - - - + euxne, € R. For each ¢; in E(R)
let f; €E be such that ¢; D f; and set y = fix1fi + - - - + fux,fu € A. We claim that x — y is in Kp.

We need only show that each ex;e; — fixjfi € Kg. But due to Lemma 6.4.5(ii), for all u, v in R:
uleixie; — fixif)v = uexieyy —ufxifiv = uexiev — uexiev = 0.

Hence x — y € Kgsothatx =y + (x —y) € A+ K. Thus R =2+ Kr and clearly A N Kr = {0}
so that (ii) follows. From (i) and (ii), (iii) follows.

Conversely, that S is idempotent-closed follows from the remark after Theorem 6.4.10.
Givena € Aand k €K, (a + k)2 =d+ (ka + ak + k2) € ADK. Thus a + k is idempotent if and
only if a*=ainAdand k=ka + ak + k* in K. The latter gives K = kak so that when idempotent,

a+k=(a+k’=(a+ka)a+ ak).
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Here a(a + k)a = a + aka = a and (a + k)a(a + k) = (a + ka)(a + ak) = a + k. Thus a D (a +k)

making E(A4) is a lattice section of E(S). It is easily seen that any element (a + ka)(a + ak) is
idempotent whenever a € E(4) and k € K. [

Thus the observations of Example 1 generalize to all idempotent-closed and dominated
rings R such that E(R) has a lattice section. For rings satisfying the chain conditions of the next
section, this is the case. (The latter include all finite-dimension matrix ring examples.) E(R) also
has a lattice section if it has a maximal D-class M, since for any e € M, {f € E(R)|f< e} is a

lattice section.

While Kr generally exceeds ann(R), this is not the whole story. ‘Kz also contains two

related canonical ideals, the left and right annihilator ideals of R:
anng(R) = {x € R|xy=0forall y € R} and anng(R)= {y € R|xy =0 for all x € R}.

It happens that ann;(R) + anng(R) = Kp for all idempotent-dominated and idempotent-closed
rings. We prove this when E(R) is bounded with a maximal D-class. The general case follows

from the next proposition and Theorems 6.5.1 and 6.5.3 below.

An idempotent-dominated and closed ring R is bounded if E(R) has a maximal D-class,

M, consisting of all m in E(R) such that mVeVm = m and eme = e for all e EE(R). Such an m is
called maximal in E(R) and xmy = xy for all x, y in R. Every element x €R is a sum of elements
mx;m; where each m; is in M

Proposition 6.4.12 Let R be a bounded idempotent-dominated and closed ring and let m
be maximal in E(R). Then as an additive group, Kr = Kgm @ ann(R) & mKgr where

Kgm = {km|k € Kg} and mKg = {mk|k € Kg}. In particular,

anng(R) = Kgm @ ann(R) and anni(R) = ann(R) @ mKp.
Finally, i: R — mRm defined by w(x) = mxm is a ring homomorphism onto the abelian subring
mRm, with kernel Kg.

Proof. Setting K = Kp, the identity k= km + (k— km — mk) + mk gives K = Km + ann(R) +
m‘K. Let that k, k' € K and a € ann(R) be such that km + a + mk'=0. Then

mk' =m(km + a + mk')y =m0 =0

and similarly km = 0, leaving @ = 0 also. Thus the sum is direct. Next let x Eanni(R). Being in
K, x has the form km + a + mk’. Thus 0 = xm = km, so that x = a + mk', giving

anng(R) € ann(R) @ mK. The reverse inclusion is trivial. That anng(R) = Km @ ann(R) is seen

in similar fashion. Since xmy = xy in R, the final statement is clear. Thus as additive subgroups,

R=mRm @ Km @ ann(R) & mK. O
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Returning to Example 1, blocks D, A, C and B correspond respectively to mRm, Km,
ann(R) and m'K.

We briefly consider a class of rings that are always idempotent-closed. A ring is weakly
commutative if the identity xyzw = xzyw holds. Such a ring R has a nil radical N consisting of
all nilpotent elements in R. Ny is indeed an ideal and R/Ng is commutative with a vanishing nil

radical. Given a commutative ring 4 and a normal band S, the semigroup ring A[S] is weakly
commutative. This makes idempotent-closed rings easy to find. Indeed, all examples in this
section are weakly commutative. In any idempotent-closed ring, E(R) generates a weakly
commutative subring, denoted if Qo(R).

Theorem 6.4.13 If R is a weakly commutative ring, then E(R) is multiplicative and the
subring eRe is commutative for each e € E(R). The converse also holds if R is idempotent-
dominated. Finally, for any ring R, E(R) is multiplicative if and only if Qo(R) is weakly
commutative.

Proof. Given e, f€ E(R), (ef)2 = efef = eeff = ef. Also, given exe, eye in eRe, we have

(exe)(eye) = e(exe)(eye)e = e(eye)(exe)e = (eye)(exe).

Conversely let R be idempotent-dominated with E(R) being multiplicative and each
subring eRe, for e € E(R), being commutative. Let eae, fbf, gcg, hdh in I'(R) be given with e, f, g,
h € E(R). Since E(R) is multiplicative, as in the proof of Lemma 6.4.7, ¢', f', g’, h' in E(R) exist
such thate'>e, f'>f, g'> g, h'> h with ¢, f’, g’ and h' being D-related. Thus we may assume at

the outset that e, f, g and & are D-related. This plus the assumption that each eRe be commutative

gives

(eae)fb)(geg)(hdh) = (eae)e(fbf)e(geg)e(hdh)
= (eae)elgeg)e(fbe(hdh) = (eae)(geg)(b)hdh)

holding in I'(R). Distribution extends the identity xyzw = xzyw from I'(R) to all of R. If we just

assume E(R) is normal, then this property extends via distribution to weak commutativity of the
generated subring Qo(R). The converse is clear. [

Idempotent-closed rings in general

What can be said about an arbitrary idempotent-closed ring R where Q(R) could be a
proper ideal? We begin by quoting a standard result in ring theory.

Lemma 6.4.14 Given a ring R with a nil ideal N, every idempotent in R/N is of the form
e + N for some idempotent e in R. [

As an immediate consequence we have:
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Theorem 6.4.15 In any ring R, K = Ko, is a nil ideal and Q(R/K) = O(R)/K. Thus R is
idempotent-closed if and only if R/K is abelian. (Note that RKR need not be {0} here.)

Proof. Indeed, for any ideal / in R, K; is a nil ideal of R. Thus for K = Ky, each idempotent in
R/K has the form e + K for some idempotent e in R, so that Q(R/K) = Q(R)/K. Suppose R/K is
abelian. Then Q(R)/'K = Q(R/K) is also, in which case Q(R) is idempotent-closed by Theorem
6.4.10, and so is R. Conversely, if R is idempotent-closed, then Q(R)/K is abelian, and since
O(R) contains all the idempotents of R, Lemma 6.4.14 above assures that all idempotents in R/K

commute, making it abelian. [J

What can one say about R/Q(R) in general? In particular, is E(R/Q(R)) = {0}? This would
be an extreme case of idempotent-closure. The answer is affirmative when R is idempotent-
closed. We begin with a special case:

Lemma 6.4.16 If a ring R is abelian, then E(R/Q(R)) = {0}.

Proof. Letting O = O(R), suppose that x + O is idempotent in R/Q. Thus x* — x€Q. It follows
that e in E(R) exists such that x™ —x =e(x™ — x) = (e)c)2 — ex. Moreover, x decomposes as ex + y
where y = x — ex so that ey = 0. Then

2
¥ mx=(exty) —(ex+y) = (ex) +y —(ex+y) = [(ex) —ex] + [V — ).

But since x> — x = (ex)* — ex, > — y = 0 in R, that is,  is in E(R), so that x €0 and x + O is the

zero element in R/Q. O

Theorem 6.4.17 If R is idempotent-closed, then E(R/Q(R)) = {0} = O(R/QO(R)).

Proof. Again, O = O(R) is an ideal and K = Ko is a nil ideal of R. From R/Q = (R/K)/(Q/K) and
the preceding two results, E(R/Q(R)) = {0}, and hence Q(R/Q(R)) = {0} follows. []

Thus squeezing Q(R) to a point eliminates any nonzero idempotents in R/Q(R) provided
R is idempotent-closed. In general, this need not be so. In any case, every idempotent-closed
ring R is a ring extension of an idempotent-dominated subring Q by a ring 7' = R/Q for which
E(T) = {0}. From the standpoint of the idempotents, O and T are polar opposites: the
idempotents are maximally engaged in Q, while they are minimally engaged in 7. In turn Q is an
extension of a nilpotent ring K for which E(K) = {0} by an idempotent-covered abelian ring 4.

Indeed, in many cases Q is a “subdirect sum” of K and an internal copy of 4. We consider other
decompositions in the following section.
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6.5 Decomposing E(R) and R

Recall that, every skew Boolean algebra is a subdirect product of primitive algebras,
thanks largely to the following restatement of Theorem 4.1.4.

Theorem 6.5.1 Given a D-class A of a skew Boolean algebra S, set

S1 = {e € S|enare = e for some (and hence all) a € A},
and

Sy = {f€ S|fAa=anf= 0 for some (and hence all) a € A}.

Then both S1 and Sy are subalgebras of S, all elements of S1 commute with all elements of S» and
the map u: S| x Sy — S defined by u(e1, e2) = e1 V ez is an isomorphism of skew Boolean algebras.
The inverse isomorphism is given by 1" '(e) = (eAahe, e\ ehane). O

Described otherwise, S7 is the union of the D-class A and all lower D-classes in the
generalized Boolean lattice S/D, while S> consists of all D-classes B that meet A and its lower D-
classes at {0} in S/D. In fact Sy and S are ideals of S where by an ideal of a skew lattice S is
meant any subset / such that eVf € I for all e, f € I, and both eAg, gAe € I for all e € [ and all
g € S. S} corresponds to the principal ideal in S/D determined by the element 4 of S/D while S
corresponds to the ideal in S/D consisting of all elements of S/D that meet 4 at 0. If S = E(R),

how does this play out in the full context of the host ring, R? We begin by passing from skew
lattice ideals / in E(R) to their induced ring ideals Q; in R.

Lemma 6.5.2 Let R be idempotent-closed and let I be an ideal of E(R). Then the least
ideal Qy of R containing I consists of all sums Y.ewx;f; where both e;, f; € I and x; € R. (As with
Theorem 6.4.3, all elements in Q; also have the form Yex;e; where ¢; € 1.)

Proof. Since —(xy) = (—x)y = x(—y), the set of all such sums is at least a subring R’ of R. Clearly
IS R' < Q5. On the other hand, Q; consists of sums of the form Yx;e;y; where e; € I and x;, y; € R.
But each such sum lies in R’ since its terms must. Indeed, given e € I, f=e + xe — exe satisfies
fe = f'and ef = e, forcing f'to be an idempotent in 7, thus ensuring xe = f— e + exe € R'. Similarly
ey and thus xey also liein R'. [

Theorem 6.5.3 Let ring R be idempotent-closed and dominated, and let I and J be ideals
of E(R) such that each e € E(R) is uniquely f + g for some f € I and g € J. Then:

i) R=01+ Qyand 010s = {99'|q € Q1 & q'€ Oy} = {0} = 0,01

ii) o: Qr ®O; —R given by o(q, q") = q + q' is a ring homomorphism onto R, that
restricts to isomorphisms, or: Q1 @ {0} = Orand o;:{0} @ Q= O,.

iii) In general, Q1N Qy C ann(R) with Q1N Q; possibly exceeding {0};

iv) o is an isomorphism when QrN Qy= {0}, and in particular when ann(R) = {0}.
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Proof. The given decomposition of E(R) implies first that /N J = {0} and thus ZJ = JI = {0}.
Lemma 6.5.2 now gives Q;0;= {0} = 0,;0;. Since E(R) =1+ J and R is both idempotent-closed
and dominated, R consists of sums of elements of the form (e+f)x(e+f) where e € / and f € J. But

(etf)x(etf) = exe + exf + fxe + fxf = exe + fxf € Or + 0.
Indeed exf'€ Oy N Oy and so exf'= e(exf) = 0 since Q;0;= {0}. Likewise fxe = 0 and (i) is seen.

(ii) is a consequence of (i), as is the inclusion of (iii). That Q; N O, can exceed {0} is seen in the
next example. Since ker(o) = {(x, —x)|x € O; N O}, (iv) follows. [

0 a b p
Example 6.5.1 R is the matrix ring 8 g 0 2 a,b,c,d,u,v, peF; where F is any
v
00 00O

field. E(R) is multiplicatively closed with four D-classes described as follows:

0 m n mp+ngq 0 a 0 ac 0 0 b bd
01 0 p - 010 ¢ & 000 O N {04X4}
0 0 1 q 000 O 001 d
0 0 0 0 000 O 000 O
where a, b, ¢, . . . , g vary freely over F. If I and J are the primitive skew lattice ideals determined

by the middle left and middle right D-classes, then Q;, Oy and ann(R) = ann(Qy) are represented
respectively by

S O OO
S O =T Q
S O OO
S oo <
S O OO
S O O O
o o=
S xLO <
o O OO
S O OO
S O OO
S O O <

Theorem 6.5.3 can be applied repeatedly. Doing so leads to a modification of direct sum
decompositions of rings, which we describe this in full generality, independent of any special
assumption on R and E(R). We begin with a ring R and a set of subrings of R, {Q;|i € I}. Let

Zngi be the direct sum of the Q;, the subring of the direct product []Q; consisting of all /-

tuples with only finitely many non-0 components. Define o: 22 1Q; — R by o((x; |i €)= x.

o preserves addition. It preserves multiplication precisely when Yx;3y; = Sxp; holds, which it
does if x;y; = 0 for all i #;. If in addition the image ZQ,' = R, then each Q; must be an ideal of R.

When R is a sum of ideals Q; where Q;0; ={0} for all i # j, we say that R is the orthosum
of the 0i. With o as above, o([ T2 ann(Q;) 1 = ann(R) and o '[ann(R)] = Ss2jann(Q;). From

this we have:
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Proposition 6.5.4 If R is an orthosum of ideals Q; and o: 2?21 Q; — R is the sum epimor-
phism, then o: ZZ%IQ,' — R is an isomorphism if and only ifZ%]ann(Qi) is isomorphic with

ann(R) under the restricted map. An isomorphism T: Z%](Qi/ann(Qi)) — R/ann(R) is defined by

W(xi+ann(Q))|i € 1)) = Sx;+ ann(R) .

Proof. Since ann( Z?ZIQZ- )= 21(21ann(Ql-) , if ¢ is an isomorphism of Z%IQZ' with R, then o

restricts to an isomorphism, 2,% ann(Q;) = ann(R). Conversely, o is at least surjective. Suppose

o({x;|i € I)) =0 in R. If some x; # 0, then for some finite set of non-0 elements from distinct Q;
we have x; +x2 + ... + x, = 0. Since 0 is in ann(R), each x; lies in the annihilator of it respective

ideal. Thus if o restricts to an isomorphism, 2,%1 ann(Q;) = ann(R), then (xili e Iy=(0]i € I,
making ¢ an isomorphism. The final isomorphism is the one induced from the combined

epimorphism 2% 10; —5—> R—7—> R/ann(R) where mis the canonical map. [

Regarding the idempotents, we also have:

Proposition 6.5.5 If R is the orthosum of ideals Q; and o : 2%] Q; — R is the sum
epimorphism, then the restriction ox: Z,%I E(Qi) — E(R) is a bijection of sets that is an
isomorphism of skew Boolean algebras, whenever E(R) is multiplicative. Z,@él E(Qi) is the subset
of 2162] Q; where all x; €E(Q;). It equals E( Z%] Q;) and is multiplicative iff each E(Q;) is.)
Proof. Since any sum of mutually orthogonal idempotents is also idempotent, o is at least well-
defined. Let e € E(R) equal x; +...+ x,, with each x; € O;. Then e = &= xlz +.+ x,.2 and thus for
each i <r, x,-2 = x; + a; where a; € ann(R). Again one has x/* = x so that each x/ € E(Q;) and or
is at least surjective. Let e € E(R) be represented as both e; +..+ e, and f; +..+ f. where
e, fi € E(Q)). (By letting some values be 0 we may assume a common indexing.) But then

e; = fi + a; where a; €ann(R) for each index i. Squaring both sides gives ¢; = f;. Thus o is a
bijection. Finally, since ¢ is a ring homomorphism, the final assertions are clear. [

Given a ring R, E(R) satisfies the descending chain condition (the DCC) if any sequence
ejzeyze3>. ..
in E(R) eventually stabilizes: e, =ey+1=. ...
The ascending chain condition on E(R) (the ACC) is defined in dual fashion. The latter implies

the former since a descending chain e} > ez > e3> . .. in E(R) induces a corresponding ascending
chain of idempotents e} — e; < e; —e3 <. .. with both stabilizing, if they do, simultaneously.
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In what follows by a rectangular ring we mean an idempotent-dominated ring R for which E(R)
is a O-rectangular band.

Theorem 6.5.6 Given an idempotent-closed and dominated ring R for which E(R)
satisfies the descending chain condition:

i) ERR) = Zz®eIP, where the P; are the primitive bands given by the union the
minimal nonzero D-classes of E(R) with {0}.

i) R is an orthosum ideals Y,y Q; where each ideal Q; is a rectangular subring for
which E(Q;) = P;.

iii) R/ann(R) = 22[ Ql./ann(Qi) where annihilators of all quotient rings vanish.

iv) In particular, R = 21(21 Q; when ann(R) vanishes.
V) As skew Boolean algebras, E(R) = E[R/ann(R)] and P; = E[Qi/ann(Q))].

Proof. (iii) through (v) follow from (i) and (ii) and Results 6.4.6 and 6.5.3 - 6.5.5. The DCC on
E(R) plus the normality of E(R) guarantee that each idempotent e > 0 is a unique sum of primitive
idempotents, e = p; + -+ + p,, where each p; covers 0 in (E(R), <) and py, -, p, are mutually
orthogonal, coming from different primitive subalgebras of E(R). Assertion (i) follows from this.
Next let x € I'(R) be given. By Theorem 6.4.3.

x=exe= (p1+ - +p)x(p1+ - +py) = zi,jpixpi =2, Pp;

for the appropriate primitive idempotents, where pap; = 0 for i # j thanks to Theorem 6.5.3. Thus
x=exe= Y, ; Pxp; where pixp; € Q; and (pxpi)(pxpj) = 0 for i #j. Since every element in R is a

finite sum of elements in T'(R), (ii) follows. [

Corollary 6.5.7 The conclusions of Theorem 6.5.6 hold if we assume the ascending
chain condition on E(R). In this case the number of summands Q; is finite, equaling the number
of atoms in E(R)/'D. Conversely, when only finitely many summands Q; exist, E(R) satisfies the

ascending chain condition.

Proof. The DCC must hold on E(R) also. The ACC also prevents E(R) from having an infinite
number of 0-minimal D-classes and thus R from having an infinite number of ortho-summands Q;.

The converse is clear. [J

Corollary 6.5.8 If R satisfies the conditions of Theorem 6.5.6, then Kp = Y Kp;. Upon
choosing a nonzero idempotent e; € Q; for each i, A = zieiQiel. is an idempotent-covered

abelian ring such that R = A @ K as additive groups and R/'Kg = A as rings. [

When the DCC holds on E(R), the question of E(R) being multiplicative can be reduced
as follows. To begin, let M(R) denote the set of primitive idempotents of E(R) and let Mg(R)
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denote M(R) U {0}. If E(R) satisfies this chain condition, then for any e > 0 in E(R) an m € M(R)
exists such that e > m. A result of Dol zan [8] for a case when R is abelian can be extended:

Theorem 6.5.9 If E(R) satisfies the descending chain condition, then E(R) is
multiplicative if and only if Mo(R) is multiplicative.

Proof. Let My(R) be multiplicative and let S consist of all possible finite sums Ye; of elements
from distinct D-classes in Mo(R). Since all products ef from distinct D-classes in My(R) equal 0,
S is also a set of idempotents that is closed under multiplication. Given e > 0 in E(R), let m;| €
M(R) be such that e > m;. If e = mj, we stop. Otherwise we have e > e — m; > my in M(R) with
my orthogonal to m in E(R), since m D my implies my = may(e — my)may =my —mpy=0. If e —my
= my, then e = m;+ my with m;L my in E(R). Otherwise, e — mj— my > some m3 in M(R). The
DCC insures this process eventually halts to give e = m; + - - - + m, with the m; mutually
orthogonal and thus E(R) =S. The converse is trivial. [

Although we do not use this, it can be proved that if an idempotent-closed and dominated
ring R satisfies the DCC [ACC] on (left, right) ideals, then it must satisfy the DCC [ACC] on
idempotents.

Rectangular rings

Thus to within isomorphism, the rings of the last section are direct sums of rectangular
rings Z,% R; or quotient rings (Zi&é] R; /I for some ideal S ann( Zl% R;). We study these
“atomic” rings R; with the goal of describing them in terms of rectangular bands S and rings A4

with identity 1 for which E(4) = {0, 1}. Our main concern is not the precise structure of the latter
“subatomic” ring 4, but rather their role in the larger “atomic” picture.

We begin with a special case that is suggestive of what occurs generally. Given a ring 4
such that E(4) = {0, 1} and a rectangular band S, we form a ring A[S]. Under addition A[S] is the
free A-module on generating set S. Thus it consists of formal sums Yaes with a; € A and a5 # 0
for only finitely many s. Addition is given by: Jass + bes = D(as + by)s; multiplication is given
by distributivity subject to the constraints: (as)(bf) = (ab)(st) and 0s = 0 = Y0s. If s € S is
identified with 1s € A[S], then S is a multiplicative band inside E(4[S]). But is it a maximal

rectangular band in A[S]? In what follows, at times we use just finite expressions ais| +...+ ausy
with a@; in 4 and s; in S, assuming that a; = 0 for all a;s; terms not showing.
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Lemma 6.5.10 Given A and S as above and s € S, then in A[S]

Ls={Dais; |Dai=1ind & a;#0=>5;Lsin S}
and

Rs={Zbitj| 2bj=1inA & bj#0=1;RsinS}
are the sets of idempotents respectively L-related or R-related to s in A[S]. Moreover,
Mg = LsRs= {D(abj)(sity))| Sai=1=3b;jin A with aibj# 0 =>s; Ls R t;in S}
is the maximal rectangular band in A[S] containing s and hence all of S.

Proof. Indeed, given x = Ya;s; where Ya; = 1 in 4 and s; L s in S if a; # 0, one easily sees that
2 . . . .
xs = x, sx = s and thus x~ = xsx = x. Conversely, if Ya;s; is an idempotent that is L-related to s,

then
s=sCais))s = Jalssis) = Yais = (Da;)s so that Ya; = 1.

Moreover,

Saisi = Qaisi)s = Yaisis).

Since all s;s are L-related to s in S, by the uniqueness of the representation, all s; with nonzero
coefficients in Ya;s; are L-related to s in S. Thus Lg and likewise Rg are indeed as described.
Finally, for any rectangular band M, given ¢ € M one has R, = eM, L, = Me in M so that
M = MeM = L£,R,. Thus we need only show that under multiplication Mg is a rectangular band.
This follows from the easily verified identity in A[S]:

Cas) ot Sexur) Sdmvm) = (Sas)(Sdnvm)
given Ya; = Ybj=1=Ycr=Ydnin A and s, t; upand vy arein S. O

One can use the above “Inflation Lemma” to show that for nontrivial 4 and S, ‘Mg will
properly include S except in three cases: Z[S] for |S| = 2 (two cases) and Z[S] where S is the 4-
element rectangular band of Example 3 below. On the other hand, if S has an £- or R-class with

> 3 distinct elements a, b, ¢, then a new element in the inflated class is given by ¢ — b + ¢. Or if
o € A4\ {0, 1}, then given @ # b in an L- or R-class of S, aa + (1 — a)b is a new element in the

inflated class. Now, that the status of S and Mg in A[S] is decided, we turn to all of E(A[S]).

Theorem 6.5.11 A[S] is idempotent-dominated and E(A[S)) is the 0-rectangular band
Mg U {0} and Kais; = {Sassi| Jai=0in A}.
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Proof. Since A[S]= Y;.s4s and As = sA[S]s, the first assertion holds. We show that anyf:j2 #0
in A[S] lies in ‘Ms. Let f= Ya;s;. Given s in S, with i and j representing the same index values we

have

Sf= Caisds(Sass) = Jawjsiss; = Yawsisi = (Tas)(Zas) = f=f
and

sfs = s(Caisi)s = daissis = dais = (Zap)s.

Since (sf5)° = sfsfs = sfs, Sa;EE(A). E(4) = {0, 1} by assumption. If Sa; = 0, so that sfs = 0,
then also /= fsfsf= 0, contradicting f# 0. This leaves Ya; = 1, so that

S=15f= CQaisysQaisi) = Sasis)(Faiss;) ELsRs = Ms.

Next, since for all @, b € 4 and all s, t € S, (as)(Sais;)(bt) = [a(Sa;)b](st), the condition Ya; =0 is
necessary for Ya;s; to be in Kyps). Since A[S] is additively generated from all a*s terms, it is also
sufficient. [J

In the general rectangular case, letting M(R) denote E(R) \ {0}, we have:
Theorem 6.5.12 If ring R is a rectangular ring, then
i) I'(R) = U . om(r) eRe with (eRe)(fRf) = efRef for all e, f € M(R).

ii) Given e, f € M(R), the map : x — fxf defines a ring isomorphism of eRe with
JRf- Thus every element y in fRf is uniquely expressed as fxf for some x in eRe.

iii) Given y = fxf € fRf and z = gx'g € gRg, yz = (fg)(xx")(fg) € fgRfg.
iv) R =73 . om(r) eRe with all summands being isomorphic subrings.
Proof. Lemma 6.4.7 gives the first equality in (i). The second equality in (i) follows from

(eRe)(fRf) = efeRefRfef € efRef = (efRe)f S (eRe)(fRf). To see (ii), note that  is at least an
additive homomorphism from eRe to fRf. Letx, y € eRe be given. Then

Jo)f = fixey)f = fixefey)f = (fxef)(feyf) = (KN(3f)

so that x is a homomorphism of rings. Indeed it is an isomorphism with inverse isomorphism
given by y — eye from fRf back to eRe. (iii) follows from

vz = (fxf)(gx'g) = (fexef)(gex'eg) = fexex'eg = fgexx'efg = fexx fg.

The final assertion is now clear. [
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0 00 0 a ab
Example 6.5.1 continued forn =3,i=j=k=1,e=| o 1 o |andf=| 0 1 »
0 0 0 00 O
000 0 ad abb
Here eRe = 0 d 0 |[deFp,fRf= 0 d db |deF; and the isomorphism x — fxf'
0 0 0 0 0 O
000 0 ad abb
of Theorem 6.5.12 (i), sends| o g ¢ |ineReto| 0 4 d4b | infRf O
00 O 0 0 0

How close is this class of A[S]-rings to the class of all rectangular rings? We begin our
answer with the following canonical co-representation:

Proposition 6.5.13 Let R be a rectangular ring. If A = fRf for a fixed f € M = M(R), then
A is a ring with identity 1 = fsuch that E(A) = {0, f}; moreover the map f: A{M] — R defined by
BCaie) = Yeiaie; in R is a homomorphism onto R that is bijective between the copy {le|e € M}
of M in A[M] and M in R, and also between subrings Ae in A[M] and their images eAe in R.

Proof. By Theorem 6.5.12 (ii) and (iv), R = Y. s eRe with all summands being isomorphic to 4.
Thus f is an additive epimorphism that is bijective where stated. That it preserves multiplication
follows from Theorem 6.5.12 (iii) and distribution. [

Thus, all rectangular rings essentially arise as rings of the form A[S] as above and certain
homomorphic images of these rings. The entire situation is put more precisely as follows.

Theorem 6.5.14 Given a ring A with identity such that E(A) = {0, 1} and a rectangular
band S, then A[S] is a rectangular ring. Moreover given any ideal K of A[S] such that K S Ky,

the quotient ring A[SV/K is also rectangular. Conversely, to within isomorphism every
rectangular ring is obtained in this fashion.

Proof. The first assertion is Theorem 6.5.11. The second comes from Theorem 6.4.14. To see
the converse note that for the map B above, if (S aje;)) = 3 eiaie; = 0 in R, then in fRf = 4,
Yai= Yfaf = fO a)f = fOf = 0. Thus ker(B) S Ky by Theorem 6.5.11. The converse

now follows by Theorem 6.4.14. [

Example 6.5.2 Let A =Z; and let S be the rectangular band determined by the array:

a R b
L L e.g.aNd =b and and = c.
c R d

Setting s = a+b+c+d, the sixteen elements of Z[S] are arrayed in the following diagram.

X 0! a b c d 'a+b a+c a+d

s—x sib+c+a’ at+c+d a+b+d a+b+cic+d b+d b+c
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Again E(Z,[S]) = {0} U S, K = {0, s, a+b, ctd, a+c, b+d, a+d, b+c} so that A[S]/'K = Z, and
ann(Z[S]) = {0, s}. Z»[S)/ann(Z;[S]) has 8 elements that are parameterized by the x-row entries.
Z,[S] is weakly commutative with K equaling the nil radical N. O

6.6 Idempotent-closed rings of matrices

In this section F is again a field and # is a positive natural number. We characterize those
idempotent-closed subrings of ‘M,,(F) that are maximal subject to certain constrains. This is done

modulo maximal idempotent-closed matrix subrings R for which E(R) C {0, /}. While we are
unaware of any general characterization of the latter, if F is the field of complex numbers C, a

result of Livshits et al [2003] implies that if 4 is an algebra in M,(C) such that E(4) C {0, L},
then either 4 = N or 4 = CI + N for some nil algebra N. A maximal such algebra would be
simultaneously similar to the algebra of all upper-triangular matrices with constant diagonals,
since any subring of nilpotent matrices in M,(C) is triangularizable. (See Example 6.7.2 below.
See also Okninski [1997] or Radjavi and Rosenthal [2000].)

The abelian case

We begin with maximal idempotent-covered abelian subrings of M, (). Such subrings

necessarily have and identity E and the “maximal” constraint insures that E = /. The following
pair of extreme examples are suggestive of the general case.

Example 6.6.1. R is the abelian subring of all diagonal matrices in ‘M, (F) and E(R) is
the set of all diagonal matrices with only O or 1 entries. R is a maximal idempotent-closed ring in
M, (F). For suppose that ring R’ in ‘M,,(F) properly contains R. Let A € R’ be a non-diagonal
matrix and let i # j be such that E;AE; # 0. (E; is the matrix with the i-th diagonal entry 1, and 0
elsewhere.) Then (E; + E,~AEj)2 = E; + E;AE; € E(R), but (E; + E;AE))E; = E,AE; is nilpotent.
Thus R’ is not idempotent-closed.

d, 0 0
0 d, 0
0 0 d
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Example 6.6.2. Let R consist of all upper triangular matrices in ‘M, (F) with constant

diagonals. R is trivially idempotent-closed since E(R) = {0, 1}.

d a, - a,
0 d - a,
0 O d

For any field, R is maximal subject to E(R) = {0, I}. In fact, R is a maximal idempotent-closed
subring of ‘M, (F). For its verification, see the discussion in Example 9 in Cvetko-Vah and Leech

[2011]. That a subring has only idempotents 0 and / is unremarkable. But that a maximal
idempotent-closed subring of M,,(F) can be thus is interesting. [

Theorem 6.6.1. For each n > 1, My(F) has a maximal idempotent-closed subring R that
is an algebra over F and for which E(R) = {0, 1}. O

Conversely, one may ask: are all maximal idempotent-closed subalgebras R of M,,(F) for
which E(R) = {0, I} simultaneously similar to such an example, as happens when F = C? In any
case, a general way of constructing maximal idempotent-closed subrings of ‘M,,(F) with identity /

(and hence abelian) follows from the next result.

Proposition 6.6.2. An idempotent-closed ring R in My(F) containing [ is similar
simultaneously to a ring in block form (1) below where for each index i all blocks D; form a
subring R; in My (F) with E(R;) = {0uq), In)}. R is maximally idempotent-closed in M,(F) if
and only if each R; is maximally idempotent-closed in the matrix ring Mu)(F).

D 0 - 0
(1) u=|9% P 0
0 0 - D,

Proof. By Proposition 6.4.1, E(R) is a Boolean algebra. Let E, ... , Ex be the atoms of E(R).
Then E; +... + E; =1 and we can choose a basis for F”" such that in this basis each E; is similar to
the diagonal matrix that has 1, (of the appropriate dimension) on the i-th diagonal block entry
and Os elsewhere. All elements of E(R) are sums of atoms and thus diagonal with the block form
(1) where each D; = Iy or 0,(;). Given
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in R. If V;; # 0 for some i # j, then (E; + E;VE)) € E(R) but (E; + E,;VE))E; = E,VE; & E(R) and R
is not idempotent-closed. Thus under this basis R is indeed similar to a ring in the stated block
from with each block ring R; = {E;,VE|V €R}. The atomic nature of the E; insures that each
E(R)) is as stated. Given the diagonal block design, the final assertion is clear. [

R is isomorphically a direct sum @;R;. Internally,
R=E(RE| @ ... © E4RE;.
What is more,
E(R) = E(EiRE)) @ - @ E(ExREy) = {E1,0}® --- D{Es, 0}

in that each idempotent in R decomposes uniquely as a sum of idempotents in each E;RE;.

The general case: the idempotents

To pass to idempotent-closed subrings of M,(F) in general, we first look at bands
and skew lattices in matrix rings. As it turns out: all bands in ‘M,(F) are simultaneously similar
to a band of upper-triangular matrices. — Consequently, each skew lattice in My(F) is

simultaneously similar to a skew lattice of upper-triangular matrices. The result for bands was
proved for algebraically closed fields by Radjavi [1997]. The arbitrary case for bands follows
from Okninski’s results [1997]. For maximal normal bands, i.e. maximal skew Boolean algebras,
results of Cvetko-Vah ([2005b] and [2007]) are relevant. We summarize her results for
convenience.
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Theorem 6.6.3. In any matrix ring ‘M, (F), the following are true:
1. Given a normal skew lattice S in M,(F), all matrices in S can be simultaneously
triangularized to form an isomorphic skew lattice of matrices S* of the following fixed block form

where 0" and 0" are fixed square 0-blocks, each D is a 0 or I square block of fixed dimensions,
A,’D,‘ =A,', D[B,‘ = B,’ and C= EA,‘B[Z

0’ Al Ak C
0 D 0 B
@) U= : P
0 . Dk Bk
0 - 0 0”
2. This triangularization can be chosen so that for all such U, the following diagonal matrix

Ey also lies in S* with U D Ey, with the Ey collectively form a lattice section Sy of S".

o 0 -~ 0 0
0 Dl -+ 0 0
Ey= T
0o o0 - Dy 0
o o0 - 0 0
3. When S is a maximal normal skew lattice, and the elements of S* in block form look like
0 A C 0 0 O
U=|{ 0 D B with Ey=| 0 D 0
0 0 O 0 0 0

where D is any possible 0-1 diagonal matrix of a fixed size and A, B and C are all possible
submatrices of appropriate dimensions such that AD = A, DB = B and AB = C. The lattice
section Sp of all Ey forms a Boolean algebra.

(The pattern allows for the possibility that either 0’ or 0" vanishes or both. In the first case the 0'-
row and 0’-column disappear so that the main diagonal begins with D. Similar remarks hold
when 0" or both vanish. The maximal case of “both” is the idempotent part of Example 6.6.1.)

The general case: the idempotent-closed subrings

If R is an idempotent-closed ring in M,(F) and E is in the maximal D-class of E(R) then
ERE is a maximal abelian subring of R with the identity E and ‘B = E(ERE) is a Boolean algebra.
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Let Ey, ..., Ex be the atoms of B. Then for all i < k, R; = E;RE, is a ring with identity E; and no
non-trivial idempotents, and A = R} @ - @ Ry is an idempotent-covered ring with identity £
and E(A) = EJE(R)E; @ - © E(E(R)Ex as above. We are now ready to state the first of the

two main results in this section.

Theorem 6.6.4. If R is a maximal idempotent-closed and idempotent-dominated ring in
M, (F), then R is simultaneously similar to the ring of all matrices of block form

0 A - A C
0 D - 0 B
) S
0 0 - D, B
0 0 - 0 0

where each D; comes from a maximal idempotent-closed matrix subring R; of My)(F) for which
ER) = {Iu), Onqi)}. Idempotent matrices of this form have only 0,)s or Iis on the diagonal,
and satisfy AiD; = A;, DiB; = B;and C = EA,‘B[.

(Remarks similar to those given for Theorem 6.6.1 apply when 0" or 0” vanish. When both
vanish one has a maximal idempotent covered subring with central idempotents.)

Proof. We first choose a basis B for " such that relative to ‘B all idempotents in R have matrix
form (1). Assuming that all elements in R are matrix-represented relative to ‘B, the assumption
that R is idempotent-dominated implies the leftmost column of blocks and the bottom row of
blocks of these representations consist only of zero blocks, as in (3). What can arise in the central
block of all R-matrices, the say m x m blocks that exclude the two outermost rows of blocks and
the two outermost columns of blocks relative to (1).

D, ?
: : D, e Mn(i)(F)
9 Dk
Given i €{1, . . ., k} let E; be the matrix in M, (F) with D; = [n(i) and 0 elsewhere. By

Theorem 6.6.1 we may assume that all £; lie in E(R). If E=FE; + - - - + E}, then A = ERE is an
idempotent-closed subring of R with identity £ as are each E;RE; where E(E;RE;) = {E;, 0}. Note
that for A-matrices, all blocks in the first row and last column are also 0-blocks. Thus A is

isomorphic to an idempotent-closed ring in M,,(F) with identity 7,, under the map sending each
matrix P in A to its central m X m block. A is further block diagonalized with each set of D;-
blocks forming a ring R; in ‘M,;(F) that is isomorphic to the subring E;RE;. Since ERE = E|RE;
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@ ... ® ExRE; by the remark after Proposition 6..7.2, given any matrix in 4, all nondiagonal

blocks in its central submatrix are 0-blocks. Indeed, since P and EPE share the same central
submatrix, every matrix P in R has this pattern in its central submatrix. Hence, given our
assumptions on E(R), every matrix in R is at least of the block form (3).

0 A C||0O A C 0 AD" AB’
Using simplified block-of-blocks format, |0 D B (|0 D’ B'|=|0 DD’ DB
0 0 0|]|0O O O 0 0 0
oacl foac AD = A, DB = B,
and| 0 D B =10 D B| iff { 5 It follows that any such ring
0 0 0 0 0 0 AB = CandD” =D

of matrices is idempotent-closed if and only if its central ring of D-matrices is idempotent-closed.
Thus the status of a subring R as being idempotent-closed in M,(F) remains unchanged if its
design is extended by first allowing arbitrary 4;, B; and C blocks and then enlarging each ring R;
of D;-blocks to a maximal idempotent-closed subring of M,;(F) that includes 0,y and ,q). If
such a subring extension is idempotent-covered, then the 4;, B;, C blocks and the R; rings already
had this maximal status as stated in the theorem.

It remains to see that the ring R of a// matrices of form (3) is idempotent-dominated. We
again use this simplified block form. To begin, the identities

[0 4 C 0 0 0 0 A O 00 C

0 D B ={0 D B|+|0 O O|+f0 O O],

| 00 0 00 0 000 00 0

[0 0 o 0 0 0[O0 0 O 0 A O 0 A 0|0 O O

0 D B|=1|01 0||0 D B|land [O O O|=1]0 0 Of|0 I O

10 0 0 0 0 0[O0 O O 0 0 0 0 0 0f|{0 O O
00 C

reduce this verification to showing any |0 0 0 | lies in Qg. Such a matrix is a sum of matrices

00 0

of this type having only a single nonzero entry; but any such summand easily factors into a
0 A O0||0O O O

product of the form [0 0 0||{0 0 B | and thus liesin Qg. [J
0 0 0||0 O O

A is the maximal abelian subring of R and the subring of all matrices in R for which all D;-
blocks are 0-blocks is the nilpotent ideal K encountered in Section 4. R = A @ K as additive
groups and as rings R/K = A making A the maximal abelian image of R. (See Section 6.4.)
Again in our simplified block notation:
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000 0AC 0 A AB
Aisall| 0D O |; Krisall| 0 0 B |; max D-classin E(R)isall| 0 I B
000 000 00 0

Also, in the situation above, in the decomposition of R into an orthosum of rectangular
ideals, the particular ideals involved are the £ distinct rectangular subrings obtained by letting all
D;, A; and B; blocks be 0-matrices except for a particular index j where the D;, 4; and B; blocks
are subject to just the constraints of Theorem 6.6.2 and the C block is generated by the A4;Bj
outcomes.

When F = C we have the following crisp result:

Corollary 6.6.5. If R is a maximal idempotent-closed and idempotent-dominated ring in
Mu(C), thenR is simultaneously similar to the ring of all matrices with the block form (3) above,

where the D; lie in the subring of all upper triangular matrices in Mu;(C) with constant

diagonals. O

Can such a ring be extended to a larger subring of Mu(F), which although no longer

idempotent-dominated, has no new idempotents and thus is still idempotent-closed? (A maximal
idempotent-dominated and idempotent-closed subring R of ‘M,(F) cannot be contained in a

properly larger idempotent-closed subring R’ of ‘M,,(F) unless R’ has no new idempotents.)

Suppose that 0’ in the upper left corner of the above block design is a pxp 0-matrix and
that 0" in the lower right is a ¢ *g 0-matrix. Let 7' be a subring of M,(F) that is maximal with
respect to only having 0 as an idempotent. Likewise, let 7" be a subring of M,(F) that is

maximal with respect to only having 0 as an idempotent. Such “fringe” subrings are trivially
idempotent-closed. Consider the following design

G A - A C
0 D, - 0 B
“) Do b
0 0 - D B
0 0 - 0 H

where the As, Bs, Cs and Ds are as in Theorem 6.6.4 above but G € T’ and H € T"”. When G and
H are 0 we are in the previous context. The collection R' of all matrices with this design forms a
subring of ‘M,,(F). But in this larger ring no new idempotents are created since
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2
G A - A C G A - A C
0 D~ 0 B 0 D, - 0 B
0 0 - D B 0 0 - D, B
0 0 - 0 H 0 0 - 0 H

precisely when first G*=G=0and H®=H =0 and the As, Bs, Cs and Ds behave as described in
Theorem 6.6.4. We have proved the following theorem.

Theorem 6.6.6. Let R be the set of all matrices of a Type (4) design in ‘M, (F) where:

1) The A;, B; and C blocks can be any matrix of the prescribed dimensions.

2) The Dj-blocks are subject to the constraints of Theorem 6.6.4.

3) G and H belong to subrings T’ and T” of 'M,(F) and M(F) respectively, that
are maximal with respect to having no nonzero idempotent.
Then R is a maximal idempotent-closed subring of M,(F). Its Type (3) matrix subring is a

maximal idempotent-closed and dominated subring of ‘M, (F).

The converse (a maximal idempotent-closed subring of M,(F) containing a maximal

idempotent-closed and dominated subring of ‘My(F), is simultaneously similar to a ring of the

above type) is also true. Its proof is given in Cvetko-Vah and Leech [2011].

Historical remarks

The results in Section 6.1 are from Leech’s initial paper on skew lattices [1989]. Those
in Sections 6.2 and 6.3 are from Cvetko-Vah and Leech’s 2008 paper, some of which generalized
results in two earlier papers of Cvetko-Vah ([2004] and ([2005a]. All results in Sections 6.4 and
6.5 are from the 2012 paper of Cvetko-Vah and Leech. Section 6.6 is based on earlier results of
Cvetko-Vah ([2005b] and [2007]).except for those mentioned at the end which are from their
2011 paper.
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VII: FURTHER TOPICS IN SKEW BOOLEAN ALGEBRAS

In Chapter IV the implicit perspective of a skew Boolean algebra is that of a skew lattice
with added structure, namely a constant 0 and a difference operation \, which with A and v satisfy
certain identities. There is an alternative approach: to consider algebras with a reduced signature
(A, \, 0) or even (\, 0) that are subject to a set of identities, and view skew Boolean algebras as
instances where these simpler algebras acquire added structure. These reduced algebras can,
however, be of independent interest, as was the case for the iBCK algebras encountered below.

This chapter begins by looking at algebras of signature (\, 0) that satisfy “subtractive”
identities such as x\0 = x and x\x = 0 = O\x. Indeed Section 7.1 considers seven such identities.
The first six (indeed the first four) characterize implicative BCS-algebras (or just iBCS-algebras).
The significance of these algebras lies in the fact that (\, 0)-reducts of skew Boolean algebras are
iBCS-algebras. The seventh identity, when joined to the rest, characterizes implicative BCK-
algebras (or just iIBCK-algebras). A skew Boolean algebra is a generalized Boolean algebra if
and only if'its (\, 0)-reduct is an iBCK-algebra. A skew Boolean algebra is simultaneously both a
strongly distributive skew lattice and an iBCS-algebra, having both types of algebras as reducts.
The Signature Bisection Theorem (Theorem 7.1.1) tells how a strongly distributive skew lattice
and an iBCS-algebra, if defined on a common set, must interact to form a skew Boolean algebra
having the initial pair of algebras as reducts. We next define an alternative iBCK-difference / on
skew Boolean N-algebras by x/y = x\xMNy, in which case the reduct (S; /, 0) is an iBCK-algebra.
Theorem 7.1.2 characterizes skew Boolean N-algebras as algebras of signature (v, A, /, 0).

The section continues by looking at the role of discriminator terms and discriminator
varieties. Skew Boolean algebras form a binary discriminator variety (Theorem 7.1.4) and all
binary discriminator algebras have an iBCS-algebra reduct; what is more, all iBCS-algebras also
have left-normal-band-with-0 reducts. Thus much, but not all, of the structure of a left-handed
skew Boolean algebra is encoded in its iBCS reduct (S; /, 0). The main result (Theorem 7.1.9)
states: If 'V is a binary discriminator variety with constant term 0 and additive term x +y, then

every algebra A of 'V has a left-handed skew Boolean algebra term reduct As. (Here x+y is a

binary term satisfying x+0 = x = 0+x.) Clearly a right-handed version also holds. The section
concludes by looking at ternary discriminator varieties. Theorems 7.1.10 and 7.1.11 reveal a
close connection between skew Boolean N-algebras and pointed ternary discriminator varieties.

Most of Section 7.1 is based on the work of Robert Bignall and his student Matthew
Spinks, with some input from Jonathan Leech.
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7.1 Differences, discriminators and connections with other algebras

Besides a strongly distributive skew lattice reduct (S; v, A), a skew Boolean algebra also
has a complementary reduct, (S; \, 0). To understand the behavior of the latter, consider the
following identities:

(a) x\x = 0.

(b) x\(y\x) = x.

(c) x\»\z = (x\z)\y.
(d) x\»)\z= (x\2)\(y\2).
(e) x\0=x

(6] 0\x=0,

@  x\@\)=y\ O\,

An algebra (S; \, 0) of type (2, 0) satisfying (a) — (d) is called an implicative BCS-algebra (iBCS-
algebra for short), in which case it also satisfies both (e) and (f) making it a 0-subtractive algebra.
Indeed (e) follows by putting y = x in (b) and then using (a), while (f) follows by setting x = 0 in
(b) and then using (e). If in addition (S; \, 0) satisfies the "commutative" identity (g), it is called
an implicative BCK-algebra (iBCK-algebra for short).

iBCK-algebras were introduced in Lyndon [1951]. They have been studied by various
authors including Abbott [1967], Cornish [1982], Iseki and Tanaka [1978] and Kalman [1960].
iBCS-algebras were introduced and studied by Bignall and Spinks in [2003] and [2007]. For
skew Boolean algebras we have the following Signature Bisection Theorem.

Theorem 7.1.1. An algebra (S; v, A, \, 0) of type (2, 2, 2, 0) forms a skew Boolean
algebra if and only if:

i) (S; v, A) is a strongly distributive skew lattice.
ii) (S;\, 0) is an iBCS-algebra.
iii) The identity e\ (e \ f) = enfre holds.

(S; v, AL\, 0) is a generalized Boolean algebra if and only if (ii) can be strengthened to:
ii') (S;\, 0) is an iBCK-algebra.

Proof Given skew Boolean algebra, (S; v, A, \, 0), (i) holds and it is easily seen that the reduct
(S; '\, 0) is an iBCS algebra and that e\ (e \ f) = enfae. Just check the situation for O-primitive
algebras. Thus (i) - (iii) follow. The converse will be proved after Theorem 1.11 below. Given
(1)-(iii), (S; \, 0) is an iBCK-algebra if and only if identity (g) holds, which in this context is
equivalent to eafae = faenfholding. But the latter is equivalent to eaf'= fae, making (S; v, A) a
lattice and (S; v, A, \, 0) a generalized Boolean algebra. [

To distinguish an iBCK operation from the more general iBCS operation, we use the
symbol / when referring to the former. Given an iBCK algebra (S; /, 0), set xNy = x/(x/y). Then:
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xNx = x/(x/x) =x/0 =x; xN0=x/(x/0)=x/x=0; and xNy=yNx by ().

With a bit more work one sees that (S; N, 0) is a meet semilattice with a minimum 0 such that
each principal ideal [x] = {y|y < x} forms a Boolean lattice, with x/y being the complement of
xMy in [x]. For any pair u, v € [x], u v v is given as x/ [(x/u) N (x/v)]. (See the references above.)
The algebra (S; N, /, 0) is sometimes called a Boolean semilattice.

This is relevant to skew Boolean MN-algebras. Given such an algebra (S:v, A, \, N, 0),
define the iBCK difference e/f on S by

e/f = e\eNf.

For all e and f both differences agree, that is e/f = e\f, if and only if e and f commute. Indeed
one has e\ enfae = e\eNfif and only if eafae = eNf. But then enf'= enfrenf= (eNf) A f=eNf
and likewise, fae = eMNf. The converse is clear. In particular, e/f=e\f, if e > f. Both N and the
skew Boolean difference \ can be recovered from the iBCK difference / by

eNf =e/(e/f) and e\f = e/(erfre).

Thus skew Boolean N-algebras can be viewed as algebras with three binary operations: v, A, and
/, plus a constant, 0. What identities involving {v, A, /, 0} characterize such algebras? Our
remarks above, together with an examination of what occurs in the primitive case, yield a Second
Signature Bisection Theorem due to Bignall and Leech [1995].

Theorem 7.1.2. Every skew Boolean N-algebra (S: v, A, \, N, 0) is term equivalent to an
algebra, (S; v, A, /,0) of type (2, 2, 2, 0) where:

i) (S; v, A, 0) is a symmetric, normal skew lattice with 0.
i) (S;/,0) is an iBCK-algebra.
iii)  The induced meet, eNf=e/ (e !f), of (S;/, 0) satisfies the identities of Lemma 4.3.2:

e N (enfne) = enfne and e A (eNf) =eNf=(eNf) A e.

Proof. Given a skew Boolean N-algebra, (i) is clear. The reduct (S; /, 0), where e /f= e \ e,
satisfies the conditions for an iBCK algebra on primitive skew Boolean algebras and hence on all
skew Boolean N-algebras so that (ii) follows. Finally, the iBCK meet e/(e/f) reduces to the
natural intersection M. Indeed since both e/f, eNf'< e, we get

e/(e/f)=e\(e/fy=e\(e\eNf) =eNf,

and (iii) follows. Conversely, given (i), (S; v, A, 0) is a symmetric, normal skew lattice with zero
0. By (iii) it shares a common natural partial order < with the /-induced meet N. This forces both
algebras to share a common natural meet N. Each common principal ideal [e] = {y|y < e} is a
Boolean lattice by (ii), which forces (S/D; v, A) to be a generalized Boolean lattice. It follows

that (S; v, A, N, 0) is an implicit skew Boolean N-algebra with iBCK difference /. [
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(Dual) binary discriminator varieties and iBCS algebras

Let A be a set with distinguished element 0. The binary 0-discriminator and the dual
binary 0-discriminator on A are defined respectively by

x\y{xzfy=0 and xAy{Olfy:O

0 otherwise X otherwise

Clearly x\y and xAy are left-handed skew Boolean operations on A as a primitive skew Boolean
algebra. When no ambiguity exists about the constant 0 we simply use the term (dual) binary
discriminator. The details of the following lemma are easily verified.

Lemma 7.1.3. Given a set A with constant 0, the functions x\y and xAy satisfy identities:

Bl1. ana=a. B2. an((bnarc)y=(anb)nc.
B3. an((bnarc)y=an(cn b). B4. an0=0Ara=0.

B5. anb=a\(a\b). B6. a\a=0.

B7. (@a\b)\c=(a\c)\b. BS. (a\b)\c=(a\c)\(b\o).
B9. a\(b\a)=a. B10. a\0=a.

Bl1l. 0\a=a. B12. (a\b)\b=a\b. O

Identities B1 to B4 characterize a left normal band with zero. Identities B6 through B9
reprise identities (a) — (d) at the onset of this section, with any algebra (A; \, 0) satisfying them
being an iBCS-algebra. For such algebras B10 — B12 also hold. B10 and B11 are just (e) and (f)
above, while

(@a\b)\b=pg(a\b)\(b\b)=ps(a\b)\0=giga\b.

A variety V with a constant term 0 is a [dual] binary discriminator variety if a binary
term x\y [x A y] exits such that 'V is generated by a class K of algebras on which that binary term

induces the [dual] binary 0-discriminator.

Binary discriminator varieties are widespread. Examples include Stone algebras, pseudo-
complemented semilattices, implicative BCK-algebras and, as we will shortly show, any ternary
discriminator variety with a constant term.

Any binary discriminator variety is also a dual binary discriminator variety, due to BS5,
but not conversely. Indeed the variety of left normal bands with zero is a dual binary 0-
discriminator variety, but it cannot be a binary 0-discriminator variety because any term #(x, y) in
the language of left normal bands with zero in which both variables appear explicitly must satisfy
the implication: if y = 0 then #(x, y) = 0. Hence a binary term x \ y satisfying the identity x \ 0 = x
cannot be defined in the band.
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These definitions generalize the concepts of pointed ternary discriminator and pointed
ternary discriminator variety. Indeed from a ternary discriminator d(x, y, z) and 0 one defines the
binary discriminator by setting x \y = d(0, y, x). Thus pointed ternary discriminator varieties are
binary discriminator varieties and all the later are dual binary discriminator varieties. These
relationships cannot be reversed in general. Allowing for a bit of repetition we have:

Theorem 7.1.4. Skew Boolean algebras form a binary discriminator variety with \ being
a binary O-discriminator on primitive skew Boolean algebras. Thus if (S: v, A, \, 0) is a skew
Boolean algebra, then the reduct (S: \, 0) is an iBCS algebra. ]

It is well known that the variety of left normal bands with zero is generated by the three-
element band ({0, 1, 2}; A, 0), where A is the dual binary discriminator on the base set {0, 1, 2}.
Since any algebra of the form (A; A, 0) is a left normal band when A is the dual binary
discriminator on A, the class of left normal bands with zero is called the generic dual binary
discriminator variety. Strongly distributive skew lattices with zero provide another example of a
dual binary discriminator variety.

Before giving a semigroup characterization of iBCS-algebras we will need some further
properties of iBCS-algebras. We follow Matthew Spinks’ Monash University dissertation [2002].

Lemma 7.1.5. Upon setting xny = x \ (x \ y), an iBCS-algebra also satisfies identities:

B13. (a\b)\(c\a)=a\b. Bl4. a\(b\(c\a)=a\b.
B15. a\(a\(a\b))=a\b. B16. (aab)\c = (a\c)\(a\b).
Bl17. (a\c)\b = (a\c)\(a\b). BI8. (a\c)a(b\c) = (a\c)\(a\b).

B19. aan(b\c) = (a\c)\(a\b).

Proof.
B13. (a\b)\(c\a)=p7[a\(c\a)]\b=pg a\b.

Bl4. a\(b\(c\a))=po[a\(c\a)]\[b\(c\a)] =g (a\b)\(c\a)=giza\b.
B15. a\b =pg (a\b)\[a\(a\b)] =g {a\[a\(a\D)]}\{b\[a\(a\b)]}
=p13 {a\[a\(@\b)]}\(b\a) =7 [a\(b\a)]\[a\(a\b)]
=po a\(a\(a\b)).
B16. (anb)\c =gs [a\(a\b)]\c =p7 (a\c)\(a\b).

B17. (a\e)ab =ps (a\c)\[(a\c) \b] =B7 (a\c)\[(a\b)\C]
=pg [a\(a\b)]\c =ps (@ ADb)\c =Bis (a\c)\(a\b).

B18. (a\e)a(b\c) =Bs (a\c)\[(a\c)\(b\c)] =Bs (@\c)\[(a\b)\]
=7 (@\c)\[((@\c)\b] =s (a\c)Ab =17 (a\c)\(a\b).

B19. an(b\c) =gs a\[(a\(b\c)] =po [a\(c\a)]\[a\(b\C)]
=p7 (@a\[a\(b\c)]) \(c\a)
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=13 (@\[(@a\(B\)D\(c\[a\(b\c)]) =g (a\c)\(a\(b\c))
=7 (@a\[a\(b\c)])\c =g (a\c)\([(a\(b\c)]\c)
=p7 (@a\co)\ [(a\c)\(b\c)] =Bs (a\c)A(b\c) =p1s (a\c)\(a\b). O

This leads us to:

Theorem 7.1.6. Given an iBCS-algebra (A; \, 0), upon setting xny = x\ (x \ y) the
derived algebra (A; A, 0) is a left normal band with zero.

Proof. B1 follows froma A a=a\(a\a)=a\0=a. B4 follows from
an0=a\(a\0)=a\a=0and0Aa=0\(0\a) =0

provided we know that 0 \ @ = 0 holds in general. But the latter follows from 0 \a = (a\a)\a =
(@a\a)\(@a\a)=0\0=0. To verify B2 and B3 we again follow Spinks [2002]. To begin,
observe that

(@anb)ync =ps (anb)\[(anb)\c] =Bs ;16 [a\(a\b)]\[(a\c)\(a\b)]
=ps [a\(a\c)]\(a\b) =p7 [a\(a\b)]\(a\c)

where the latter expression must also equal (a A ¢) A b. Hence establishing B2 will also establish
B3. But
(@anb)nc =agin [a\(@a\c)]\(a\b) =g [a\(a\D)]\[(a\c)\(a\D)]
=7 {a\[(@\c)\(a\b)]}\(a\b)
=p19 {a\[an(®\)]}\(a\b) =ps [a\(a\(a\(b\c))]\(a\b)
=g1s [a\(D\)]\(a\b) =pi9 an[b\((b\0))]
=B5 an (b A C). O

Theorem 7.1.6 holds trivially for any iBCS-algebra arising as a reduct of an algebra in a
binary discriminator variety, for one begins with a generating class K of binary discriminator

algebras that implicitly satisfy B1-B5, where B5 defines A. From these algebras B1-B5 are
passed to all algebras in the variety. Although we do not show this here, the variety of iBCS-
algebras is in fact a binary discriminator variety (Bignall and Spinks [2007]). Theorem 7.1.6 is
thus a corollary to this fact. This theorem, however, takes us only halfway to characterizing
iBCS-algebras in terms of left normal bands with zero. Indeed:

Theorem 7.1.7. If (S; A, 0) is the derived left normal band with zero of an iBCS-algebra
(S; \, 0), then for each a € S the set [a] = {b €S| b < a} is both a subalgebra of S and a Boolean
lattice under the natural partial ordering of S.

Conversely, given a left normal band with zero (S; A, 0) such that for each a €S the set
[a] is a Boolean lattice under >, a derived iBCS-structure (S; \, 0) is given by letting a \ b be the
relative complement of anb in [a] for all a, b in S.

Finally, both derivations (S;\,0) — (S; A, 0) and (S; A, 0) — (S;\, 0) are reciprocal.

In particular, a\b is the complement of anb in [a].
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Proof. First, note that for left normal bands < is described by b <a if a A b = b and [a] is the set
{a A s|sES}. Letb,clicin[a]. By Lemma 4.4.9, b\c=(a A b)\(aAr c)=an(b\c) E [a]
also. In addition 0 = a A 0 € [a] so that [a] is seen to be an iBCS-subalgebra of S. Since A is
commutative on ([a]; \, 0), the latter satisfies the iBCK identities (i) — (iv) above and in particular
(if) which implies that A is commutative on [a]. Since ([a]; \, 0) is an iBCK-algebra with
maximal element a, it forms a Boolean lattice ([a]; v, A, \, a, 0) with A and \ as already given, and
x v ydefinedasa\[(a\x) A (a\y)] forall x,y<a.

Conversely, let (S; A, 0) be a left normal band with zero such that for each a € S the set
[a] is a Boolean lattice under <. Let a \ b denote the usual relative complement a \ aab in [a].
The clearly B6 holds. B7 reduces to

(a\anb)\[(a\anb) A c] = (a\anc)\[(a\anc) A b].

This holds in the Boolean case of [a] where both sides reduce to [a \ (aadb v anc)] v (anbac). In
similar fashion B8 and B9 are seen to hold. That both processes are reciprocal follows from B14
which implies a \ (¢ A b) =a\ b and the Boolean identity a \ (a \ anb) = anb.

Observe that this theorem implies the converse of the main statement of Theorem 7.1.1 in
the case of left-handed skew Boolean algebras. That is, we have:

Theorem 7.1.11.. An algebra (S; v, A, )\, 0) of type (2, 2, 2, 0) forms a left-handed skew
Boolean algebra if and only if:

i) (S; v, A) is a lefi-handed strongly distributive skew lattice.
ii) (S;\, 0) is an iBCS-algebra.
iii) The identity e\ (e \ f) = enf holds.

Proof. (=) is clear. For (<), (ii) and (iii) along with the previous theorem imply that for all a in
S, [a]l = {b €S| b < a} is a Boolean lattice on which \ is the relative complement. (S; v, A, 0) is
thus at least a skew Boolean algebra reduct. The \ of its skew Boolean structure agrees with the
given \ within all [a]. But then they agree in general since a\b = a\(aab) holds for the algebra. [J

Given a skew lattice (S; v, A), set xAry = xAyax and xvry = yvxvy. Then (S; AL, VR) is a
left-handed skew lattice. (See Section 3.4.) Observe that:

i) XALy = yArx iff xAy = yAx, in which case all four expressions are equal.

i)  xvry = yvrx iff xvy = yvx, in which case all four expressions are equal.

iii)  Thus (S; AL, VR) is symmetric iff (S; A, v) is symmetric.

iv)  (S; AL, Vr) and (S; A, v) share the same natural partial order > and natural quasi-order >.
V) Thus (S; AL, vr) is normal iff (S; A, v) is normal

vi) In particular, (S; AL, VR) forms skew Boolean algebra iff (S; A, v) does.

vii) In which case, (S; AL, VR, 0) and (S; A, v, 0) share a common difference \.
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Proof of The Bisection Theorem (7.1.1) completed. Given (S; v, A, \, 0) satisfying (i) — (iii) of
Theorem 7.1.1, consider first the left-handed algebra (S; AL, VR, \, 0) where xAry = xAyAx and
xVRy =yvxvy. (S; vi, AL, \, 0) satisfies (i) — (iii) in 7.1.1p making it a left-handed skew Boolean
algebra. Thus (S; v, A, \, 0), with the identical partial order, is a skew Boolean algebra. [J

A stronger version of the above theorem exists; it is Theorem 3.3.21 in Spinks’ 2002
dissertation. Its proof, closely modeled after the one above, is left to the reader.

Theorem 7.1.8. (Spinks [2002]) An algebra (S; v, A, \, 0) of type <2, 2, 2, 0> is a skew
Boolean algebra if and only if the following conditions hold:

i) (S; v, A) is a symmetric skew lattice;
i) (S;\, 0) is an iBCS-algebra,
i)  xAyAx=x\(x\y)holds.

In particular, under these conditions, \ is the skew Boolean algebra difference. [

When a binary discriminator variety is also additive

A binary operation + on an algebra A with a constant element 0 is additive if for all a in
A,a+0=a=0+a. An algebra A with a constant element 0 is additive if an additive operation
can be polynomial defined on A. A variety with a constant 0 is said to be additive if it a binary
term x + y can be polynomial defined satisfying the identities x + 0 =x = 0 + x.

Theorem 7.1.9. If'V is a binary discriminator variety with constant term 0 and additive

term x +y, then every algebra A of 'V has a left-handed skew Boolean algebra term reduct As.

Proof: By Theorem 7.1.6 the binary term x A y = x \ (x \ y) induces a left normal band operation
on every member of V. Let x + y be the additive term of 'V and define x v y to be the term y + (x
\ y). We need to show that for any A €V, Ag = (A; v, A, \, 0) is a left-handed skew Boolean
algebra. It is sufficient to show that the left-handed skew Boolean algebra identities hold on any
member A of 'V on which x \ y induces the binary discriminator. (That is, the primitive case.)

This is done directly by straightforward case-splitting arguments. We consider the associativity
of v. Let A be a member of V for which \ is the discriminator. Given a, b, c € A,

avbve)=av(ct®\c) = (ctb\c)t(a\(ct+(b\c))
and similarly
(avb)yve =c+(b+t(a\b)\o).

Denoting the two expressions on the right above in succession by (L) and (R), we consider four
cases that together cover all possibilities.
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a=0: L=(+®B\c)+O\(ct(®\c) = (ct(b\c)+0 =ct(b\o).
R=c+((d+0\b)\c) =c+(b+0)\c) =c+(b\c)= L.

b=0. L=(c+0)+{(a\(ct0)=c+(a\c).
R=c+0+@\0)\c)=c+({(0+ta)\c)=c+(a\c)=L

c=0: In a similar fashion, L = b+ (a\b) = R.

a,b,c#0. Thusa\b = b\c = a\c = 0 so that
L=(+0)+(@\(c+0)=c+(a\c)=c+0=c, while
R=c+({(b+0)\c)=c+(b\c)=c+0=c.

Thus a v (b v ¢) = (a v b) v ¢ in all possible cases. The absorption identities are similarly
checked for \ being the binary discriminator. We consider only a A (a v b) = a. Here there are
three cases.

a=0: OAOVDY=0AB+0D)=0AB+0)=0Ab=0.
b=0: an(av0)=anrn(0+a0)=ar(0+a)=anra=a.
a,b#0: an(avb)y=an(b+ab)y=an(b+0)=anrb=a.

Thus (S; v, A, 0) is at least a normal skew lattice with a zero. To show symmetry we verify that
anb = baa implies avb = bva. (The converse holds for all normal skew lattices.) Since S is
primitive, two main (nonexclusive) cases of anb = baa occur. Either a or b is 0, say a =0. Here

Ovb=>b+(0\b) =0b
while
bv0=0+B\0) =0+b=0>.

The other case is a equals b. Here commutativity of v is trivial. Thus (S; v, A) is symmetric,
normal skew lattice. The rest follows from Theorem 7.1.6. [J

Example 7.1.1. Let SA denote the variety of Stone algebras. A member of SA has the
form (A; N, U, *, 0,1), where (A; N, U, 0,1) is a bounded distributive lattice and * is a relative
pseudo-complementation operation; thus a* is the largest element of A such that a N a* = 0.
Stone algebras form a subvariety of the variety of pseudo-complemented distributive lattices.
They are distinguished from other pseudo-complemented distributive lattices by the identity x* =
x***_ Since they are generated by the two and three-element chains, it is not difficult to see that
Stone algebras form a binary discriminator variety with binary discriminator term x \ y = x N y*.
Fora,bEAletavbbebU (aNb*)anda A bbea N (aN b*)*. Then by theorem above, the
derived algebra (A; v, A, \, 0) is a left-handed skew Boolean algebra. []
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Ternary discriminators and ternary discriminator varieties
L. . . 3 .
A ternary discriminator on a set S is a function d: S™ — S defined on a given set S by

x if x#y

z otherwise -

dx, y, 2) = {

An algebra A is a ternary discriminator algebra if d can be polynomial-defined on its
underlying set A. Ternary discriminator algebras are simple. Indeed given elements a # b in
such an algebra A and let 6 be a congruence on A for which @ 6 b. Then forall c € A,

a=d(a,b,c)0d(a,a,c)=c.

Thus the only non-identity congruence on A is the universal congruence. Murskii [1975] proved
that in a certain sense almost all finite algebras are ternary discriminator algebras.

If X is a class of algebras of common type having a common ternary discriminator term,
the variety 'V generated from K is a ternary discriminator variety. Burris and Sankappanavar
[1981] described such a variety as “the most successful generalization of Boolean algebras to
date, successful because we obtain Boolean product representations.” Examples of these varieties
include Boolean algebras, n-dimensional cylindric algebras, p-rings and skew Boolean N-
algebras. The remaining results in this section are from Bignall and Leech [1995].

Theorem 7.1.10. In the variety of skew Boolean N-algebras the polynomial term

dx,y,z) =(x/y)v [2\(x/y) v (y/x))]

is a ternary discriminator on any primitive algebra. Thus skew Boolean N-algebras form a
ternary discriminator variety. As such they are both congruence distributive and congruence
permutable. (The congruence distributive property was already observed in Theorem 4.4.3.)

Proof. If x =y, then clearly d(x, y, z) = z on any algebra, primitive or otherwise. If x #y on
some primitive algebra P, then xNy = 0, so that x /y =x and y /x =y on P. Thus the displayed
polynomial reduces to x v [z \ (x v y)]. If x # 0, the latter reduces to x v 0 =x. Ifx =0, then y #
Osothatx v [z\(x v y)]reducestoz\y=0=xonP. The congruence distributive property has
already been seen in the case of N-algebras. That it and the congruence permutable property hold
on all discriminator varieties follows from results of Bulman-Flemming, Keimel and Werner.
(See Theorem IV.9.4 in Burris and Sankppanavar [1981].) [

A pointed ternary discriminator variety is a ternary discriminator variety with a constant
term 0. PDy denotes the pointed ternary discriminator variety generated by the class of all

ternary discriminator algebras (A; d, 0) with 0 as a nullary operation, i.e., a constant.
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Theorem 7.1.11. PDy is term equivalent to the variety of all right-handed skew Boolean
N-algebras. Given (A; d, 0) in PD,, right-handed skew Boolean N-operations are given by

xvy =dx0,y), xAy = dx,dx,0,y),y) and x /y = d(x,y,0).

Conversely, given a right-handed skew Boolean N-algebra (S; v, A, /, 0), an algebra (S; d, 0) in
PD, is given by
dx,y,z) = x/y vixaz)v(yvzy.

Finally both processes, {d, 0} — {v, A, /,0} and {v, A, /,0} — {d, 0}, are reciprocal.

Proof. If (A; d, 0) is a pointed ternary discriminator algebra, then

de, 0,9 = "0 w0, = 7 T 0=
. 0,) {yifx=o’ (x, d(x, 0, ), ) 0 fFre0’ ¢, 7, 0)

0ifx=y
xifx;ﬁy.

But these identities describe respectively v, A and / on the primitive right-handed Boolean M-
algebra with upper D-class A \ {0} and zero-class {0}. Hence all algebras in PDy induce right-

handed skew Boolean N-algebras. Conversely, given (S; v, A, /, 0) and d(x, y, z) as stated, then

dev,x,2) =(AZ) v (v =z and  d(0,3,2) =(v )= {0 yr0
zify=0

When x is neither y nor 0, then d(x, y,z) = x v (x Az) v (y v z)/ly=x. Thus in all cases d(x, y, z)

is indeed the ternary discriminator on S and (S; d, 0) is a pointed discriminator algebra. Thus all

algebras (S; d, 0) induced from right-handed skew Boolean N-algebras lie in PDy. That the

operations are reciprocal is easily checked at the “entry level” of pointed discriminator algebras

and primitive right-handed Boolean N-algebras. [J

Corollary 7.1.12. Any skew Boolean N-algebra A has a right-handed skew Boolean N-
algebra reduct AR with the property that its congruences and its N, / and \ operations coincide
with those of A. The new skew lattice operations vy and AR are defined in terms of the old by

X VRY =XVYVX and X ARY = YAXAY.
Proof. Indeed one has

xVRy = d(x,0,y) = (x/0)v \((x/0)v(O0/x))]=xv \x)=xvyvx

with the last identity holding first on all primitive M-algebras and hence on all N-algebras. Also,
X ARy = d(x,d(x,0,y),y) = dx,xvyvx,y) =y\[(xvyvVvx)/x]=yrxay

with the last identity holding again first on all primitive N-algebras and thus on all N-algebras.

That the standard differences agree is clear. Intersections also agree since the natural partial
ordering is unchanged: xAy = yax = x iff xAyax = yaxay = x. Thus BCK differences are also
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unchanged. By Theorem 4.4.13 the congruence structure is unchanged since both algebras share
the same maximal lattice image. [J

In view of Corollary 7.1.12 and McKenzie [1975] Theorem 1.3, we also have:

Corollary 7.1.13. Any algebra A in a pointed ternary discriminator variety has a skew
Boolean N-algebra polynomial reduct whose congruences coincide with those of A.

For more on skew Boolean algebras and discriminator varieties, see the paper by Karin
Cvetko-Vah and Antonino Salibra in the following references. Also of interest is the paper by
Murskii which, among other things, shows that almost all finite algebras are discriminator
algebras (with “almost all” under stood in a certain sense).
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Addendum 2020

This survey has focused on developments in skew lattices research up through much of
2017. The research does not end there. To pick up the trail, we begin with a conference held in
Slovenia in May of 2018. Its official title was Noncommutative Structures 2018: a Workshop in
Honor of Jonathan Leech. 1 gave the opening address, which was later published as the following
article:

J. Leech,
My journey into noncommutative lattices and their theory, The Art of Discrete
and Applied Mathematics, 2 (2019) #P2.01.

This paper provides the interested seeker with a fairly thorough overview of much that transpired
in the first thirty years of the renewed study of noncommutative lattices. In the same issue of this
online journal were contributions by other workshop participants:

K. Cvetko-Vah, M. Kinyon, J. Leech & T. Pisanski,
Regular antilattices . The Art of Discrete and Applied Mathematics, 2 (2019) #P2.06.

D. G. FitzGeraltd:
Groupoids on a skew lattice of objects. The Art of Discrete and Applied Mathematics, 2
(2019) #P2.03.

D. Ellerman:
A graph-theoretic method to define any Boolean operation on partitions. The Art of
Discrete and Applied Mathematics, 2 (2019) #P2.02.

J. Jovanovi¢ & A. Tepavcevié:
Q-lattices from skew lattices. The Art of Discrete and Applied Mathematics, 2 (2019)
#P2.04.

A. Bucciarelli & A. Salibra:
On noncommutative generalisations of Boolean algebras. The Art of Discrete and
Applied Mathematics, 2 (2019) #P2.07.

R. J. Bignall & M. Spinks:
Dual binary discriminator varieties. The Art of Discrete and Applied Mathematics, 2
(2019) #P2.08.

J. Pita Costa & J. Leech:
On the coset structure of distributive skew lattices, The Art of Discrete and Applied
Mathematics, 2 (2019) #P2.05
Open problems from NCS 2018. The Art of Discrete and Applied Mathematics, 2 (2019)
#P2.09

281



Jonathan E. Leech | Noncommutative Lattices: Skew Lattices, Skew Boolean Algebras and Beyond

More recent skew lattice research has come from Karin CvetkoVah and friends:

K. CvetkoVah:
Noncommutative frames, Journal of Algebra and Its Applications
18 (2019), 1950011.

K. CvetkoVah, J. Hemelaer & J. Leech:
Noncommutative frames revisited, Ars Mathematica Contemporanea 19 (2020),147-154.

K. CvetkoVah, Jens Hemelaer & Lieven Le Bruyn:
Duality for noncommutative frames, to appear in Topology and its Applications.

K. CvetkoVah, J. Hemelaer & L. Le Bruyn:
What is a noncommutative topos?, Journal of Algebra and Its Applications, 18 (2019),
1950011 (13 pages)

K. Cvetko-Vah & C. Verwimp:
Skew lattices and set-theoretic solutions of the Yang-Baxter equation, Journal of Algebra,
542 (2020). 65 - 92.

K. Cvetko-Vah, M. Sadrzadeh, D. Kartsaklis & B. Blundell,
Non-commutative logic for compositional distributional semantics, Logic, Language,
Information, and Computation, Springer, Berlin, Lecture Notes in Computer Science,
10388 (2017), 110-124.

Until 2017 most of the research on skew lattices has, to my knowledge, occurred in
Australia, North America and Europe. But that is changing and with the change comes research
that pushes the theory in new directions.

From China:

Y. Zhi, X. Zhou & Q. Li:

Residuated skew lattices, Information sciences Sci. 460/461 (2018), 190-201.
Residuated rough sets induced by ideals in skew lattices, Journal of Intelligent
and Fuzzy Systems, 33 (2017), 5959-5972.

Y. Zhi, & X. Zhou, Roughness in substructures of skew lattices: Journal of
Intelligent and Fuzzy Systems 36 (2019), 5959-5972;
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From East Africa

B. A. Alaba, M. Alamneh* & Y. M. Gubena: Skew semi-Heyting algebras,
International Journal of Computing Science and Applied Mathematics,
4 (2018), 10-14. *From India

From India

Y.L. Anasuya & P. R. Krishna Kishore:
Characterization for a certain class of non-symmetric skew lattices, Southeast
Asia Bulletin of Mathematics 35 (2011), 625 — 629.

P.R. Krishna Kishore:
Prime Filters in a Skew Lattice, Southeast Asia Bulletin of Mathematics, 36
(2012), 255 — 263.

B. Assaye, M. Alamneh, L. Narayan Mishra and Y. Mebrat:
Dual skew Heyting almost distributive lattices, Applied Mathematics and
Nonlinear Sciences, 4 (2019), online.

B.R.Bijila & P. R. Kumar:
On the atom-based graph of a rectangular skew lattice, Malaya Journal of
Mathematik, 8 (2020), 1022-1025

From Iran

R. Koohnavard & A. Borumand Saeid
(Skew) filters in residuated skew lattices, Scientific Annals of Computer Science,
28 (2018), 115-140.
(Skew) filters in residuated skew lattices II, Honam Mathematical Journal 40
(2018),401-431.
On pseudo residuated skew lattices, Boletin de la Sociedad Matematica Mexicana,
26 (2020), 775-794.
Filter theory on pseudo residuated skew lattices, Afrika Matematika 31 (2020),
1251-1271.
On residuated skew lattices, Analele Universitii “Ovidius” Constanta,21 (2019),
on line.

Onward!
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Cvetko-Vah, Michael Kinyon, Ganna Kudryavtseva, Gratiela Laslo, Tomaz Pisanski,
Joao Pita Costa, and Matthew Spinks. I would also like to express my gratitude to the late
Charles Wells, who in 1983 provided the venue at Case Western Reserve University
where I began my research on skew lattices and skew Boolean algebras. Charles was very
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bringing this survey of skew lattice theory to publication: the editorial team (Tomaz
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