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Abstract

Gauss first studied representations of self-intersecting curves in the plane using only
lists of their crossings in the sequence as they occur when traversing a curve, i.e., rep-
resentations using Gauss words. The characterisation of words that are Gauss words has
been elusive for a long time, and only in recent decades have some good characterizations
been established. Together with these, the interest in Gauss paragraphs, i.e., representations
of sets of curves by sets of words listing their sequences of crossings, has came to light,
and we are unaware of a (good) characterization of abstract sets of words that are Gauss
paragraphs. We establish such a characterization and we show that characterizing Gauss
paragraphs is algorithmically equivalent to characterizing Gauss words, as there exists a
word W that can be obtained from a set of words P in linear time, such that P is a Gauss
paragraph if and only if W is a Gauss word.
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1 Introduction
Gauss [5, 282-286] has studied representations of closed curves using lists of their crossings
in the sequence obtained by following the curve. Clearly, each crossing appears exactly
twice, and Gauss noticed that these two occurrences must have one an even and the other an
odd index in the sequence, i.e. there has to be an odd number of letters between them. Gauss
noted that the condition is not sufficient for curves with five or more crossings. The question
of characterizing such words has not been solved until late 1960s, when Marx [9] and
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Treybig [13] gave algorithmic characterization of words that are Gauss words. Grünbaum
[6] noted that they lack the aesthetic appeal of, for instance, Kuratowski theorem, an issue
resolved by Lovász and Marx [8], who gave the first characterization satisfying Edmonds’
criterion for “good characterization” [4].

Recently, the interest in Gauss words, i.e. the words that occur when the crossings
of a self-intersecting curve are read in a sequence, has been renewed through several new
good characterizations [3, 10, 11] and through introduction of Gauss paragraphs, sets of
words corresponding in the same manner to sets of curves. The questions that arise in
the bibliography are classified by Courcelle [2] into (i) Which (sets of) words over some
alphabet are Gauss words (paragraphs), i.e. realizable as (sets of) (self)intersecting curves
whose sequences of crossings are equal to specified (sets of) words, (ii) Which (sets of)
curves can be uniquely reconstructed from their Gauss words (paragraphs) and (iii) What
is the common structure of (sets of) curves having the same Gauss word (paragraph).

In our paper, we investigate the question (i) for Gauss paragraphs, and develop an ef-
ficient characterization of sets of words that can be realized with sets of (self)intersecting
curves in the plane so that a Gauss paragraph of this set of curves equals the original set of
words. The same problem was recently studied by Schellhorn [12], who extended virtual
strings introduced by Turaev [14] from single close curve S1 to sets of such curves and used
them to characterize realizable Gauss paragraphs with a conjunction of seven technical con-
ditions. In what follows, we give an elementary characterization that reduces the problem
of realizability of a set of words to the problem of realizability of a single specific word
obtainable from the set in linear time, avoiding the use of virtual strings. Besides show-
ing that the problem of recognizing Gauss paragraphs is equivalent to recognizing Gauss
words, the main improvement over Shcellhorn’s characterization is the added algorithmic
transparency.

2 Characterization of Gauss paragraphs
We first summarize some of the used notation. A double-occurrence word over an alphabet
Σ is a word in which every letter of Σ appears exactly twice. The double-occurrence
words that are Gauss words of some self-intersecting curve have been characterized by
Rosenstiehl [10, 11] and de Fraysseix and de Mendez [3]. Rosenstiehl proved the following
algebraic characterization of Gauss words.

Theorem 2.1. [10, Theorem 2′] A double-occurrence word W on a finite set Σ of letters
is a Gauss word if, and only if,

1. any letter of W has an even number of interlaced letters;

2. any non-interlaced pair of letters has an even number of common interlaced letters;

3. the interlaced pairs having an even number of common interlaced letters form a
separating set S, i.e. there exists Σ′ ⊆ Σ, such that any pair of S has a letter of Σ′

and a letter of Σ \ Σ′.

The last condition of the theorem suggests it has a natural graph-theoretic formulation.
We state it in terms of the interlace-graph GW of a Gauss word W over the alphabet Σ,
defined so that the letters of Σ are the vertex set, V (GW ) = Σ, and two vertices u, v ∈ Σ
are adjacent in GW , uv ∈ E(GW ), if and only if they interlace in W . A cut is a partition
of the vertices of a graph into two disjoint subsets. Any cut determines a cut-set, the set of
edges that have one endpoint in each subset of the partition.



D. Archdeacon, D. Bokal and T. Gologranc: A characterization of plane Gauss paragraphs 33

Using these concepts, Theorem 2.1 can be stated as the following:

Theorem 2.2 ([3]). Let W be a double-occurrence word over a finite alphabet Σ and let
GW be its interlace-graph. Then W is a Gauss word if and only if

1. each component of GW is Eulerian;

2. if u and v are two nonadjacent vertices of GW , then they have an even number of
common neighbors;

3. the set {e = uv | u, v have an even number of common neighbors} is a cut-set in
GW .

When studying sets of curves, a crossing may appear on different curves, so we need
to relax the condition of double-occurrence. We define a semi-double-occurence word over
an alphabet Σ to be a word, in which every letter of Σ appears at most twice. Then, a
double-occurence k-paragraph1 (shortly, k-DOP) over an alphabet Σ is a set of k semi-
double-occurence words over Σ, such that each letter appears precisely twice in the union
of all words of the paragraph. Further, a mixed crossing of a set of (self)intersecting curves
in the plane is a crossing of two different curves, i.e. not a self-crossing of some word.
Correspondingly, a mixed letter of a k-DOP P is a letter that appears in two different words
of P . With M(P ) or just M , when the paragraph is clear from the context, we will denote
the mixed letters of P .

Note that, in contrast to some knot-theoretic bibliography [1], our definition follows the
original definition of Gauss, which does not encode over- or under-pass information that is
required for knot-theoretic investigation. For us, the curves are embedded in the plane and
each crossing is either a self-crossing of some curve, appearing twice in the same word, or
is a crossing of two curves, appearing once in each corresponding word.

Finally, for a k-DOP P = (w1, . . . , wk), we define its intersection graph G(P ) as the
graph whose vertices are words of P , V (G(P )) = P , in which two vertices are adjacent,
iff the corresponding words share a letter of Σ.

Let P be k-DOP that contains x ∈ M. Then we will simplify notation and write P =
(xw1, xw2, . . . , wk).

Lemma 2.3. Let P = (xw1, xw2, . . . , wk) be a k-DOP and let x ∈ M be a selected
letter appearing in the first two words. Then P is a Gauss paragraph, if and only if the
(k − 1)-DOP P x = (xx′w1xx

′w2, w3, . . . , wk) is a Gauss paragraph.

Proof. Suppose first that P is a Gauss paragraph. Let π be a drawing that realizes P . In π,
replace x in its small neighborhood by a digon xx′ with incoming edges adjacent to x and
outgoing to x′ (see Figure 1). The resulting embedding is an embedding of (k − 1)-DOP
P x, showing that P x is a Gauss paragraph.

For the converse, suppose that P x is a Gauss paragraph, realized in π. We will first
prove that xx′ is not a cut. Indeed, if xx′ is a cut, then x and x′ are not interlaced in π, a
contradiction. Since x and x′ induce a cycle and do not induce a cut, one of the faces of
this cycle is empty and the other contains the full embedding. This implies that the out-
edges and the in-edges come consecutive in the vertex rotation around the empty face. By

1As pointed out by one of the referees, a more natural name for this concept would be a sentence, as sentence
is the next grammatical structure composed of words. Indeed we used double-occurrence sentence and Gauss
sentence until a more thorough search through the bibliography [1] revealed that it was studied under the name
Gauss paragraph.
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contracting the empty face, x and x′ become a single point. By rerouting the curves so that
x is a crossing, we get a realization of P.

x

x

x’

Figure 1: Replacing x with digon xx′ or vice versa.

We say that P x from Theorem 2.3 is an x-reduction of P. With a sequence of reduc-
tions, we would like to obtain a single word. Let x ∈ w1 ∩ w2. Since the letters appearing
only in w1 and w2, after x-reduction appear in a common word, at most (k− 1) reductions
reduce a Gauss paragraph to a single word, to which we can apply Theorem 2.2.

Let P be a k-DOP and G(P ) the intersection graph of semi-double-occurence words
of P ; its vertices are words and two words are adjacent if they have at least one letter in
common. Let T be a tree in G(P ) and w1, . . . , wt the vertices of T , such that wi has at
most one neighbor in {wi+1, . . . , wt} and the connecting edge results from letter mi ∈M.
Let w1 = w1. We define recursively wi+1 = mim

′
iw

imim
′
iwi+1, i = 1, . . . , t − 1. The

T -reduction of P is PT = (wt, wt+1, . . . , wk). By induction, using the previous lemma as
induction step, we get the following result:

Theorem 2.4. Let P = (w1, . . . , wk) be a k-DOP and let T be a tree in G(P ) on t
vertices v1, . . . , vt, such that vi has at most one neighbour in {vi+1, . . . vt}. Then P is a
Gauss paragraph, if and only if PT is a Gauss paragraph.

Applying this corollary to a spanning tree of G, we get the following characterization
of k-DOPs that are Gauss paragraphs:

Corollary 2.5. Let P = (w1, . . . , wk). Let T be a spanning tree in G(P ), and let W be
the only word of PT . Then P is a Gauss paragraph, iff W is a Gauss word, i.e. iff GW

satisfies the conditions of Theorem 2.2.

It is clear that this corollary implies existence of a polynomial algorithm for determin-
ing whether a k-DOP is a Gauss paragraph, and thus satisfies Edmonds’ criterion for a good
characterization [4]: if A is the adjacency matrix of a graph G, then A2 counts the number
of length-two walks between any pair of vertices, i.e., the number of common neighbors,
the crucial information required for verifying conditions of Theorem 2.2. The matrix A2

can be computed in O(|V (G)|ω) time, with ω < 2.376, using fast matrix multiplication.
This yields the dominating time-complexity term O(|Σ|ω) of the k-DOP realizability veri-
fying algorithm, as running time of the algorithm is dominated by the requirement to count
the common neighbors of any pair of vertices of GW , either adjacent or not. There are
|Σ| + k vertices of GW , but the vertices x and x′ have the same set of neighbors and are
adjacent, hence with some preprocessing it suffices to check only a matrix of size |Σ|.
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Note that the best known time complexity of exact counting of all triangles in a general
graph with n vertices (which is equivalent to counting the common neighbors of just the
adjacent pairs of graph’s vertices) is O(nω) [7], which indicates that the time complexity
of checking realizability of a given k-DOW using conditions of Theorem 2.2 can hardly be
improved, unless some detailed properties of the graph GW are exploited in counting the
common neighbors. However, as constructing the graph G(P ) can be done in time O(|Σ|),
its spanning tree T found in O(k), and the T -reduction of P found in O(k+ |Σ|), then any
improvement in checking realizability of a double-occurring word immediately translates
into an improvement of checking realizability of k-DOP.
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