

Also available at http://amc.imfm.si ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 6 (2013) 389–392

A note on a conjecture on consistent cycles

Štefko Miklavič *

University of Primorska, Andrej Marušič Institute, Muzejski trg 2, 6000 Koper, Slovenia

Received 28 December 2011, accepted 9 July 2012, published online 17 April 2013

Abstract

Let Γ denote a finite digraph and let G be a subgroup of its automorphism group. A directed cycle \vec{C} of Γ is called G-consistent whenever there is an element of G whose restriction to \vec{C} is the 1-step rotation of \vec{C} . In this short note we prove a conjecture on G-consistent directed cycles stated by Steve Wilson.

Keywords: Digraphs, consistent directed cycles.

Math. Subj. Class.: 05C20, 05C38, 05E18

1 Introduction

Let Γ denote a finite digraph (without loops and multiple arcs). By a directed cycle in Γ we mean a cyclically ordered set $\vec{C} = \{v_0, v_1, v_2, \dots, v_{r-1}\}, r \geq 3$, of pairwise distinct vertices of Γ such that (v_i, v_{i+1}) is an arc of Γ for every $i \in \mathbb{Z}_r$ (the addition being mod r). Let G be a subgroup of the automorphism group of Γ . Directed cycle \vec{C} is called G-consistent, if there exists $g \in G$ such that $v_i^g = v_{i+1}$ for each $i \in \mathbb{Z}_r$. In this case g is called a shunt for \vec{C} . Clearly, G acts on the set of G-consistent directed cycles: for $h \in G$, $\vec{C}^h = \{v_0^h, v_1^h, v_2^h, \dots, v_{r-1}^h\}$ is G-consistent with a shunt $h^{-1}gh$.

Consistent cycles in finite arc-transitive graphs were introduced by J. H. Conway in one of his public lectures [3]. Since then a number of papers on consistent cycles and their applications appeared, see [1, 2, 4, 5, 6, 7, 8, 9, 10, 11].

Observe that if (u, v) is an arc of Γ and $g \in G$ is such that $u^g = v$, then the orbit of u under g induces a G-consistent directed cycle $\{u, v = u^g, u^{g^2}, \ldots\}$ (provided that $u^{g^2} \neq u$). Steve Wilson [12] stated the following conjecture on consistent cycles.

E-mail address: stefko.miklavic@upr.si (Štefko Miklavič)

^{*}This work is supported in part by "Agencija za raziskovalno dejavnost Republike Slovenije", research program P1-0285 and research project J1-4010.

Conjecture 1.1. Let Γ denote a finite digraph (without loops and multiple arcs) and let G be an arc-transitive subgroup of its automorphism group. Pick vertices u, v of Γ , such that (u, v) is an arc of Γ . For a G-orbit A of G-consistent directed cycles, let B_A denote the set of all automorphisms $g \in G$, such that $u^g = v$, and the orbit of u under g is in A. Let $G_{(u,v)}$ denote the G-stabilizer of the arc (u,v). Then the number of elements in B_A is independent of A, and is equal to the order of $G_{(u,v)}$.

In this short note we prove the above conjecture.

2 Proof of the conjecture

In this section we prove Conjecture 1.1. We prove Conjecture 1.1 in two steps. In Proposition 2.1 we prove that $|G_{(u,v)}| \leq |B_{\mathcal{A}}|$, and in Proposition 2.2 we prove that $|B_{\mathcal{A}}| \leq |G_{(u,v)}|$.

Proposition 2.1. With the notation of Conjecture 1.1, we have $|G_{(u,v)}| \leq |B_A|$.

Proof. Since G is arc-transitive, there exists a G-consistent directed cycle \vec{C} in \mathcal{A} , which contains the arc (u,v). Let g denote a shunt for \vec{C} . Let $G_{\vec{C}}$ denote the pointwise stabiliser of \vec{C} and let k be the index of $G_{\vec{C}}$ in $G_{(u,v)}$. Let g_1,\ldots,g_k be representatives of cosets of $G_{\vec{C}}$ in $G_{(u,v)}$.

Observe that for each $1 \leq i \leq k$ and each $h \in G_{\vec{C}}$, the automorphism $g_i^{-1}ghg_i$ sends u to v. Furthermore, the orbit of u under $g_i^{-1}ghg_i$ is the directed cycle \vec{C}^{g_i} . Namely, since g is a shunt for \vec{C} and $h \in G_{\vec{C}}$, the image of $v^{g^jg_i}$ under $g_i^{-1}ghg_i$ is $v^{g^{j+1}g_i}$. Moreover, \vec{C}^{g_i} is clearly in A. Therefore, $g_i^{-1}ghg_i \in B_A$.

We claim that if either $i \neq j$ or $h_1 \neq h_2$ $(h_1,h_2 \in G_{\vec{C}})$, then $\alpha = g_i^{-1}gh_1g_i$ and $\beta = g_j^{-1}gh_2g_j$ are distinct. Indeed, assume first that $i \neq j$. Note that $\vec{C}^{g_i} \neq \vec{C}^{g_j}$ since g_i and g_j are from different cosets of $G_{\vec{C}}$ in $G_{(u,v)}$. Moreover, α is a shunt for \vec{C}^{g_i} and β is a shunt for \vec{C}^{g_j} . Since $\vec{C}^{g_i} \neq \vec{C}^{g_j}$ (and since \vec{C}^{g_i} and \vec{C}^{g_j} have at least the arc (u,v) in common), it follows that also $\alpha \neq \beta$. On the other hand, if i = j and $\alpha = \beta$, then $h_1 = h_2$. Therefore, if $h_1 \neq h_2$ and i = j, then $\alpha \neq \beta$. This proves the claim.

It follows that $|B_{\mathcal{A}}| \geq k|G_{\vec{C}}| = |G_{(u,v)}|$.

Proposition 2.2. With the notation of Conjecture 1.1, we have $|B_A| \leq |G_{(u,v)}|$.

Proof. Let X denote the set of all G-consistent directed cycles in \mathcal{A} , containing the arc (u,v). Clearly, $B_{\mathcal{A}}$ is exactly the set of all shunts of directed cycles from X. Since all directed cycles from X have the arc (u,v) in common, every element of $B_{\mathcal{A}}$ is a shunt for exactly one directed cycle from X. Note also that X is nonempty as G is arc-transitive. We now define a mapping Ψ from $B_{\mathcal{A}}$ to $G_{(u,v)}$ as follows.

Fix $\vec{C} \in X$ and a shunt $g_{\vec{C}}$ of \vec{C} . For each $\vec{D} \in X$ there exists an element of G which sends \vec{D} to \vec{C} . Pick such an element and denote it by $h(\vec{D})$. Composing $h(\vec{D})$ with an appropriate power of $g_{\vec{C}}$, we could assume that $h(\vec{D}) \in G_{(u,v)}$. For each $g \in B_{\mathcal{A}}$, let $\vec{D}(g)$ denote the unique directed cycle in X, for which g is a shunt (see Figure 1). For $g \in B_{\mathcal{A}}$ define $\Psi(g) = gh(\vec{D}(g))g_{\vec{C}}^{-1}$ and note that $\Psi(g) \in G_{(u,v)}$.

We now show that Ψ is an injection. Pick $g_1, g_2 \in B_A$ and assume that $\Psi(g_1) = \Psi(g_2)$. Let $\vec{D}(g_1) = \{u, v, v_1, v_2, \dots, v_{n-1}\}$ and $\vec{D}(g_2) = \{u, v, w_1, w_2, \dots, w_{n-1}\}$. We first

Figure 1: Directed consistent cycles \vec{C} and \vec{D} .

show that $\vec{D}(g_1) = \vec{D}(g_2)$. Since $\Psi(g_1) = g_1 h(\vec{D}(g_1)) g_{\vec{C}}^{-1} = g_2 h(\vec{D}(g_2)) g_{\vec{C}}^{-1} = \Psi(g_2)$, we have $g_2^{-1}g_1 = h(\vec{D}(g_2))h(\vec{D}(g_1))^{-1}$. This implies that $g_2^{-1}g_1$ is in $G_{(u,v)}$. We claim that $v_{n-i} = w_{n-i}$ for $i = 0, 1, \ldots n-1$, where $v_n = w_n = u$. We prove our claim using induction on i. Note that our claim is true for i = 0. Assume that our claim is true for $i = 0, 1, \ldots, t$, where $0 \le t \le n-2$. Note that $h(\vec{D}(g_2))h(\vec{D}(g_1))^{-1}$ fixes the arc $(v_{n-t}, v_{n-t+1}, \ldots, v_{n-1}, u, v)$, and therefore also $g_2^{-1}g_1$ fixes this arc. But since

$$v_{n-t-1}^{g_1} = v_{n-t} = v_{n-t}^{g_2^{-1}g_1} = w_{n-t-1}^{g_1},$$

we have $v_{n-t-1}=w_{n-t-1}$, verifying the claim. It follows that $\vec{D}(g_1)=\vec{D}(g_2)$. But since $\vec{D}(g_1)=\vec{D}(g_2)$, also $h(\vec{D}(g_1))=h(\vec{D}(g_2))$. As $g_1h(\vec{D}(g_1))g_{\vec{C}}^{-1}=g_2h(\vec{D}(g_2))g_{\vec{C}}^{-1}$, it follows that $g_1=g_2$. Therefore Ψ is an injection and so $|B_{\mathcal{A}}|\leq |G_{(u,v)}|$.

Corollary 2.3. With the notation of Conjecture 1.1, we have $|B_A| = |G_{(u,v)}|$.

Proof. Immediately from Propositions 2.1 and 2.2.

References

- [1] M. Boben, Š. Miklavič and P. Potočnik, Consistent cycles in half-arc-transitive graphs, *Electron. J. Combin.* **16** (2009), R5.
- [2] M. Boben, Š. Miklavič and P. Potočnik, Rotary polygons in configurations, *Electron. J. Combin.* **18** (2011), P119.
- [3] J. H. Conway, Talk given at the Second British Combinatorial Conference at Royal Holloway College, Egham, 1971.
- [4] H. H. Glover, K. Kutnar, A. Malnič and D. Marušič, Hamilton cycles in (2,odd,3)-Cayley graphs, J. London Math. Soc. 104 (2012), 1171–1197.

- [5] H. H. Glover, K. Kutnar and D. Marušič, Hamiltonian cycles in cubic Cayley graphs: the $\langle 2, 4k, 3 \rangle$ case, *J. Algebraic Combin.* **30** (2009), 447–475.
- [6] W. M. Kantor, Cycles in graphs and groups, Amer. Math. Monthly 115 (2008), 559–562.
- [7] I. Kovács, K. Kutnar and J. Ruff, Rose window graphs underlying rotary maps, *Discrete Math.* **310** (2010), 1802–1811.
- [8] I. Kovács, K. Kutnar and D. Marušič, Classification of edge-transitive rose window graphs, *J. Graph Theory* **65** (2010), 216–231.
- [9] K. Kutnar and D. Marušič, A complete clasification of cubic symmetric graphs of girth 6, J. Combin. Theory Ser. B 99 (2009), 162–184.
- [10] Š. Miklavič, P. Potočnik and S. Wilson, Consistent cycles in graphs and digraphs, *Graphs Combin.* 23 (2007), 205–216.
- [11] Š. Miklavič, P. Potočnik and S. Wilson, Overlap in consistent cycles, *J. Graph Theory* **55** (2007), 55–71.
- [12] S. Wilson, Personal communication (2009).