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Abstract

We prove that the genus polynomials of the graphs called iterated claws are real-rooted.
This continues our work directed toward the 25-year-old conjecture that the genus dis-
tribution of every graph is log-concave. We have previously established log-concavity
for sequences of graphs constructed by iterative vertex-amalgamation or iterative edge-
amalgamation of graphs that satisfy a commonly observable condition on their partitioned
genus distributions, even though it had been proved previously that iterative amalgamation
does not always preserve real-rootedness of the genus polynomial of the iterated graph.
In this paper, the iterated topological operation is adding a claw, rather than vertex- or
edge-amalgamation. Our analysis here illustrates some advantages of employing a matrix
representation of the transposition of a set of productions.
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1 Introduction
Graphs are implicitly taken to be connected. Our graph embeddings are cellular and ori-
entable. For general background in topological graph theory, see [1, 9]. Prior acquaintance
with the concepts of partitioned genus distribution (abbreviated here as pgd) and produc-
tion (e.g., see [5, 11]) is prerequisite to reading this paper. Subject to this prerequisite, the
exposition here is intended to be accessible both to graph theorists and to combinatorialists.

The genus distribution of a graph G is the sequence g0(G), g1(G), g2(G), . . ., where
gi(G) is the number of combinatorially distinct embeddings of G in the orientable surface
of genus i. A genus distribution contains only finitely many positive numbers, and there
are no zeros between the first and last positive numbers. The genus polynomial is the
polynomial

ΓG(z) = g0(G) + g1(G)z + g2(G)z2 + . . .

We say that a sequence A = (ak)nk=0 is nonnegative if ak ≥ 0 for all k. An element ak
is said to be an internal zero of A if there exist indices i and j with i < k < j, such that
aiaj 6= 0 and ak = 0. If ak−1ak+1 ≤ a2k for all k, then A is said to be log-concave. If
there exists an index h with 0 ≤ h ≤ n such that

a0 ≤ a1 ≤ · · · ≤ ah−1 ≤ ah ≥ ah+1 ≥ · · · ≥ an,

thenA is said to be unimodal. It is well-known that any nonnegative log-concave sequence
without internal zeros is unimodal, and that any nonnegative unimodal sequence has no
internal zeros. A prior paper [7] by the present authors provides additional contextual
information regarding log-concavity and genus distributions.

1.1 The LCGD Conjecture and Real-Rootedness Problems

For convenience, we sometimes abbreviate the phrase “log-concave genus distribution” as
LCGD. Proofs that closed-end ladders and doubled paths have LCGDs [2] were based on
closed formulas for their genus distributions. Proof that bouquets have LCGDs [8] was
based on a recursion. The following conjecture was formulated in [8]:

LCGD Conjecture: Every graph has a log-concave genus distribution.

Stahl [12] used the term “H-linear” to describe chains of graphs obtained by amal-
gamating copies of a fixed graph H . He conjectured that a number of “H-linear” fami-
lies of graphs have genus polynomials with nonpositive real roots, which implies the log-
concavity of their sequences of coefficients, by Newton’s theorem. (Since all the coeffi-
cients of a genus polynomial are non-negative, it follows that all the roots are non-positive.)
Although it was shown [14] that the genus polynomials of some such families do indeed
have real roots, Stahl’s conjecture of real-rootedness for W4-linear graphs (where W4 is
the 4-wheel) was disproved by Liu and Wang [10].

Our previous paper [7] proves, nonetheless, that the genus distribution of every graph
in the W4-linear sequence is log-concave. Thus, even though Stahl’s proposed approach
to log-concavity via roots of genus polynomials is sometimes infeasible, [7] does support
Stahl’s expectation that chains of copies of a graph are a relatively accessible aspect of
the general LCGD problem. Moreover, Wagner [14] has proved the real-rootedness of the
genus polynomials for a number of graph families for which Stahl made specific conjec-
tures of real-rootedness.
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This leads to a couple of research problems that are subordinate to the LCGD Conjec-
ture, as follows:

Real-rootedness Problem: Characterize the graphs whose genus polynomials
are not real-rooted.
Real-rootedness Chain Problem: Characterize the graphs H whose genus
polynomials are real-rooted but whose H-linear chains contain graphs whose
genus polynomials are not real-rooted.

Furthermore, we shall see here that Stahl’s method of representing what we have elsewhere
([4, 6]) presented as a transposition of a production system for a surgical operation on
graph embeddings as a matrix of polynomials can simplify a proof that a family of graphs
has log-concave genus distributions.

1.2 Interlacing Roots in a Genus Polynomial Sequence

The earliest proofs [2, 8] of the log-concavity of the genus polynomials for a sequence of
graphs appealed directly to the condition aj−1aj+1 ≤ a2j . The need for more powerful
techniques motivated the development of the linear combination techniques of [7]. Here,
to prove the log-concavity of the genus polynomials for the sequence of iterated claws,
we combine Newton’s theorem that a real-rooted polynomial is log-concave (Theorem 4.1)
with a focus on interlacing of roots of consecutive genus polynomials for the graphs in the
sequence to prove their log-concavity.

2 The Sequence of Iterated Claws
Let the rooted graph (Y0, u0) be isomorphic to the dipole D3, and let the root u0 be either
vertex of D3. For n = 1, 2, . . ., we define the iterated claw (Yn, un) to be the graph
obtained the following surgical operation:

Newclaw: Subdivide each of the three edges incident on the root vertex un−1
of the iterated claw (Yn−1, un−1), and then join the three new vertices obtained
thereby to a new root vertex un.

Figure 1 illustrates the graph (Y3, u3).

u3
u0

z0

x0
y0 u2

x2
y2

z2
u1

z1

x1
y1

Figure 1: The rooted graph (Y3, u3).

The graph K1,3 is commonly called a claw graph, which accounts for our name iterated
claw. The notation Yn reflects the fact that a claw graph looks like the letter Y . We observe
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that Y1 ∼= K3,3. A recursion for the genus distribution of the iterated claw graphs is derived
in [6]. We observe that, whereas all of Stahl’s examples [12] of graphs with log-concave
genus distributions are planar, the sequence of iterated claws has rising minimum genus.
(Example 3.2 of [7] is another sequence of rising minimum genus. However, the graphs in
that sequence have cutpoints, unlike the iterated claws.)

We have seen in previous studies of genus distribution (especially [3]) that the number
of productions and simultaneous recursions rises rapidly with the number of roots and
the valences of the roots. The surgical operation newclaw is designed to circumvent this
problem.

For a single-rooted iterated claw (Yn, un), we can define three partial genus distribu-
tions, also called partials. Let

an,i = the number of embeddings Yn → Si such that
three different fb-walks are incident on the root un;

bn,i = the number of embeddings Yn → Si such that exactly
two different fb-walks are incident on the root un;

cn,i = the number of embeddings Yn → Si such that
one fb-walk is incident three times on the root un.

We also define partial genus polynomials to be the generating functions

An(z) =

∞∑
i=0

an,iz
i

Bn(z) =

∞∑
i=0

bn,iz
i

Cn(z) =

∞∑
i=0

cn,iz
i.

Clearly, the full genus distribution is the sum of the partials. That is, for i = 0, 1, 2, . . .,
we have

gi(Yn) = an,i + bn,i + cn,i
and

ΓYn
(z) = An(z) + Bn(z) + Cn(z).

We define gn,i = gi(Yn).

Remark 2.1. Partitioned genus distributions and recursion systems for pgds were first used
by Furst, Gross, and Statman [2]. Stahl [12] was first to employ a matrix equivalent of a
production system to investigate log-concavity.

Theorem 2.2. For n > 1, the effect on the pgd of applying the operation newclaw to the
iterated claw (Yn−1, un−1) corresponds to the following system of three productions:

ai −→ 12bi+1 + 4ci+2 (2.1)
bi −→ 2ai + 12bi+1 + 2ci+1 (2.2)
ci −→ 8ai + 8ci+1 (2.3)
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Proof. This is Theorem 4.5 of [6].

Corollary 2.3. For n > 1, the effect on the pgd of applying the operation newclaw to the
iterated claw (Yn−1, un−1) corresponds to the following recurrence relations:

an,i = 2bn−1,i + 8cn−1,i (2.4)
bn,i = 12an−1,i−1 + 12bn−1,i−1 (2.5)
cn,i = 4an−1,i−2 + 2bn−1,i−1 + 8cn−1,i−1 (2.6)

Proof. The recurrence system (2.4), (2.5), (2.6) is induced by the production system (2.1),
(2.2), (2.3).

It is convenient to express such a recurrence system in matrix form:

V (Yn) = M(z) · V (Yn−1) (2.7)

with the production matrix

M(z) =

 0 2 8
12z 12z 0
4z2 2z 8z

 . (2.8)

Since the initial graph Y0 in the sequence of iterated claws is isomorphic to the dipole D3,
the initial column vector for the sequence V (Yn) is

V (Y0) =

A0(z)
B0(z)
C0(z)

 =

 2
0
2z

 (2.9)

Proposition 2.4. The column vector V (Yn) is the product of the matrix powerMn(z) with
the column vector V (Y0).

Corollary 2.5. The column vector V (Yn) is the product of the matrix power Mn+1(z)
with the (artificially labeled) column vector

V (Y−1) =

 0
0

1/4


Corollary 2.6. To prove that every iterated claw has an LCGD, it is sufficient to prove that
the sum of the third column of the matrix Mn(z) is a log-concave polynomial.

3 Characterizing Genus Polynomials for Iterated Claws
In this section, we investigate some properties of the genus polynomials of iterated claws.
Corollary 2.6 leads us to focus on the sum of the third column of the matrix Mn(z), which
is expressible as (1, 1, 1)Mn(z)(4V (Y−1)), which implies that it equals 4 times the genus
polynomial of the iterated claw Yn−1. Theorem 3.1 formulates a generating function f(z, t)
for this sequence of sums, and Theorem 3.2 uses the generating function to construct an ex-
pression for the genus polynomials from which we establish interlacing of roots in Section
4.
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Theorem 3.1. The generating function f(z, t) =
∑

n≥0(1, 1, 1)Mn(z)(4V (Y−1))tn for
the sequence of sums of the third column of Mn(z) has the closed form

f(z, t) =
1 + (8− 12z)t− 24zt2

1− 20zt+ 8z(8z − 3)t2 + 384z3t3
. (3.1)

Proof. Let (pn, qn, rn) = (1, 1, 1)Mn(z) for all n ≥ 0. Then

(pn+1, qn+1, rn+1) = (pn, qn, rn)M(z) (3.2)

= (12zqn + 4z2rn, 2pn + 12zqn + 2zrn, 8pn + 8zrn).

The third coordinate of Equation (3.2) implies that

pn =
1

8
(rn+1 − 8zrn). (3.3)

By combining (3.3) with the first coordinate of (3.2) we obtain

qn =
1

96z
(rn+2 − 8zrn+1 − 32z2rn). (3.4)

The second coordinate of (3.2) yields

qn+1 = 2pn + 12zqn + 2zrn (3.5)

Substituting (3.3) and (3.4) (twice) into (3.5) leads to the recurrence relation

rn = 20zrn−1 + 8z(3− 8z)rn−2 − 384z3rn−3 (3.6)

with
r0 = 1,

r1 = 8 + 8z,

r2 = 160z + 96z2.

(3.7)

By multiplying Recurrence (3.6) by tn and summing over all n ≥ 0, we obtain Generating
Function (3.1).

It is easy to see that ΓYn
(z) = rn+1/4, where rn is defined in the proof of Theorem 3.1.

In terms of ΓYn
(z), the recurrence relation (3.6) becomes

ΓYn
(z) = 20zΓYn−1

(z) + 8z(3− 8z)ΓYn−2
(z)− 384z3ΓYn−3

(z). (3.8)

Theorem 3.2 provides an explicit expression for the genus polynomial ΓYn(z), a result is
of independent interest. It is not used here toward proof of log-concavity.

Theorem 3.2. The genus polynomial of the iterated claw Yn is given by

(1, 1, 1)Mn+1(z)V (Y−1) = 2n−1(hn+1(z) + 2(2− 3z)hn(z)− 6zhn−1(z)),
where

hn(z) =
∑

2j+i1+i2+i3=n

(
j + i1
i1

)(
j + i2
i2

)(
j + i3
i3

)
(1 +

√
3)i2(1−

√
3)i33j+i1(2z)n−j .
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Proof. By Theorem 3.1, we have

f(z, t) =
∑
n≥0

(1, 1, 1)Mn(4V (Y0))tn =
1 + (8− 12z)t− 24zt2

1− 20zt+ 8z(8z − 3)t2 + 384z3t3
.

Thus,

f(z/2, t/2) =
1 + (4− 3z)t− 3zt2

1− 5zt+ z(4z − 3)t2 + 6z3t3

=
1 + (4− 3z)t− 3zt2

(1− 2zt− 2z2t2)(1− 3zt)− 3zt2

=
∑
j≥0

(1 + (4− 3z)t− 3zt2)3jzjt2j

(1− 3zt)j+1(1 +
√

3zt)j+1(1−
√

3zt)j+1
.

Using the combinatorial identity (1 − at)−m =
∑

j≥0
(
m−1+j

j

)
ajtj , and then finding the

coefficient of tn, we derive the equation

(1, 1, 1)Mn(z/2)V (Y0) = 2n−2(hn(z) + 2(2− 3z)hn−1(z)− 6zhn−2(z)),

which, by Corollary 2.5, completes the proof.

Now let gn,i be the coefficient of zi in ΓYn
(z). The following table of values of gn,i

for n ≤ 4 is derived in [6].

gn,i i = 0 1 2 3 4 5

n = 0 2 2 0 0 0 0
1 0 40 24 0 0 0
2 0 48 720 256 0 0
3 0 0 1920 11648 2816 0
4 0 0 1152 52608 177664 30720

Denote by Ps,t the set of polynomials of the form
∑t

k=s akz
k, where ak is a positive

integer for any s ≤ k ≤ t. The above table suggests that ΓYn
(z) ∈ Pb(n+1)/2c, n+1 for

n ≤ 4. Theorem 3.3 shows that it holds true in general. Like Theorem 3.2, this enumerative
result is of independent interest and is not used toward proof of log-concavity.

Theorem 3.3. For all n ≥ 0, the polynomial ΓYn
(z) ∈ Pb(n+1)/2c, n+1. Moreover, we

have the leading coefficient

gn,n+1 = 4n
b(n+1)/2c∑

k=0

(
n+ 2

2k + 1

)
3k, (3.9)

and, for any number i such that b(n+ 1)/2c+ 1 ≤ i ≤ n, we have

gn,i > 11gn−1,i−1. (3.10)
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Proof. We see in the table above, for n ≤ 4, that γmin(Yn) = b(n + 1)/2c and that
γmax(Yn) = n + 1, or equivalently, that ΓYn

(z) ∈ Pb(n+1)/2c, n+1. We see also, for
n ≤ 4, that Equation (3.9) and Inequality (3.10) are true. Now suppose that n ≥ 5. For
convenience, let gk,i = 0 for all i < 0. We can also take gk,i = 0 for i > k + 1, by
induction using (3.8), for k < n. From Recurrence (3.8) and the induction hypothesis, we
have

gn,i = 20gn−1,i−1 + 24gn−2,i−1 − 64gn−2,i−2 − 384gn−3,i−3, n ≥ 3. (3.11)

For i > n+ 1, the induction hypothesis implies that each of the four terms on the right
side of Recurrence (3.11) is zero-valued. So the degree of ΓYn(z) is at most n + 1. Let
si = gi,i+1. Taking i = n+ 1 in (3.11), we get

sn = 20sn−1 − 64sn−2 − 384sn−3, (3.12)

with the initial values s0 = 2, s1 = 24, s2 = 256. The above recurrence can be solved
by a standard generating function method, see [15, p.8]. In practice, we use the command
rsolve in the software Maple and get the explicit formula directly as

sn = 4n
∑
k≥0

(
n+ 2

2k + 1

)
3k.

It follows that gn,n+1 > 0. Hence the degree of ΓYn
(z) is exactly n+ 1.

Similarly, for i < b(n + 1)/2c, the four terms on the right side of (3.11) are zero-
valued, so the minimum genus of Yn is at least b(n + 1)/2c. Moreover, applying (3.11)
with i = b(n+ 1)/2c and using the induction hypothesis gk,i = 0 for all i < b(k + 1)/2c
with k < n, we find the first term is positive for n odd and zero for n even, the second term
is always positive, and the third and fourth terms are always zero. In other words,

gn,b(n+1)/2c = 20gn−1,b(n+1)/2c−1 + 24gn−2,b(n+1)/2c−1 ≥ 24gn−2,b(n+1)/2c−1 > 0.

This confirms the minimum genus of Yn is exactly b(n+ 1)/2c.
Now consider i such that b(n + 1)/2c + 1 ≤ i ≤ n. By (3.11), and using (3.10)

inductively, we deduce

gn,i = 11gn−1,i−1 + 24gn−2,i−1 + (9gn−1,i−1 − 64gn−2,i−2 − 384gn−3,i−3)

> 11gn−1,i−1 + 24gn−2,i−1 + (35gn−2,i−2 − 384gn−3,i−3)

> 11gn−1,i−1 + 24gn−2,i−1 + gn−3,i−3

≥ 11gn−1,i−1.

So Inequality (3.10) holds true. It follows that gn,i > 0. Hence

ΓYn
(z) ∈ Pb(n+1)/2c,n+1.

This completes the proof.
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4 Genus Polynomials for Iterated Claws are Real-Rooted
Our goal in this section is to establish in Theorem 4.3 the real-rootedness of the genus
polynomials ΓYn(z) of the iterated claws, via an associated sequenceWn(z) of normalized
polynomials. It follows from this real-rootedness that the genus polynomials for iterated
claws are log-concave, by the following theorem of Newton.

Theorem 4.1 (Newton’s theorem). Let a0, a1, . . . , an be real numbers and let all the roots
of the polynomial

P (x) =

n∑
j=0

aix
i

be real. Then a2j ≥ aj−1aj+1 for j = 1, . . . , n− 1.
Proof. For instance, see Theorem 2 of [13].

To proceed, we “normalize” the polynomials ΓYn
(z) by defining

Wn(z) = z−b(n+1)/2cΓYn(z), (4.1)

so that Wn(z) starts from a non-zero constant term, and has the same non-zero roots as
ΓYn

(z). We use the symbol dn to denote the degree of Wn(z), that is,

dn = degWn(z) = (n+ 1)−
⌊
n+ 1

2

⌋
=

⌈
n+ 1

2

⌉
. (4.2)

By Theorem 3.3, we have Wn(z) ∈ P0,dn
. Substituting (4.1) into the recurrence rela-

tion (3.8), we derive

Wn(z) =

{
20zWn−1(z) + 8(3− 8z)Wn−2(z)− 384z2Wn−3(z), if n is even,
20Wn−1(z) + 8(3− 8z)Wn−2(z)− 384zWn−3(z), if n is odd,

(4.3)
with the initial polynomials

W0(z) = 2(1 + z),

W1(z) = 8(5 + 3z),

W2(z) = 16(3 + 45z + 16z2).

(4.4)

Let P denote the union ∪n≥0P0,n = ∪n≥0{
∑n

k=0 akz
k | ak ∈ Z+}. Lemma 4.2 is

ultimately a consequence of the intermediate value theorem.

Lemma 4.2. Let P (x), Q(x) ∈ P . Suppose that P (x) has roots x1 < x2 < · · · < xdegP ,
and that Q(x) has roots y1 < y2 < · · · < ydegQ. If degQ − degP ∈ {0, 1} and if the
roots interlace so that

x1 < y1 < x2 < y2 < · · · ,

then

(−1)i+degPP (yi) > 0 for all 1 ≤ i ≤ degQ, (4.5)

(−1)j+degQQ(xj) < 0 for all 1 ≤ j ≤ degP . (4.6)
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Proof. Since P (x) is a polynomial with positive coefficients, we have

(−1)degPP (−∞) > 0. (4.7)

We suppose first that degP (x) is odd, and we consider the curve P (x). We see that In-
equality (4.7) reduces to P (−∞) < 0. Thus, the curve P (x) starts in the lower half plane
and intersects the x-axis at its first root, x1. From there, the curve P (x) proceeds with-
out going below the x-axis, until it meets the second root, x2. Since x1 < y1 < x2, we
recognize that (4.5) holds for i = 1, i.e.,

P (y1) > 0. (4.8)

After passing through x2, the curve P (x) stays below the x-axis up to the third root, x3. It is
clear that the curve P (x) continues going forward, intersecting the x-axis in this alternating
way. It follows from this alternation that

P (yk)P (yk+1) < 0 for all 1 ≤ k ≤ degQ− 1. (4.9)

From (4.8) and (4.9), we conclude that (4.5) holds for all 1 ≤ i ≤ degQ, when degP (x)
is odd.

We next suppose that degP (x) is even. In this case, we can draw the curve P (x) so
that it starts in the upper half plane, first intersects the x-axis at x1, then goes below the
axis up to x2, and continues alternatingly. Therefore the sign-alternating relation (4.9) still
holds. Since P (y1) < 0 when degP (x) is even, we have proved (4.5).

It is obvious that Inequality (4.6) can be shown along the same line. This completes the
proof of Lemma 4.2.

Now we proceed with our main theorem on the genus polynomial of iterated claws.
Beyond proving real-rootedness of the genus polynomials, we derive two interlacing rela-
tionships on their roots.

Theorem 4.3. For every n ≥ 0, the polynomial Wn(z) is real-rooted. Moreover, if the
roots of Wk(z) are denoted by xk,1 < xk,2 < · · · , then we have the following interlacing
properties:

(i) for every n ≥ 2, the polynomial Wn(z) has one more root than Wn−2(z), and the
roots interlace so that

xn,1 < xn−2,1 < xn,2 < xn−2,2 < · · · < xn,dn−1 < xn−2,dn−1 < xn,dn
;

(ii) for every n ≥ 1, the polynomial Wn(z) has either one more (when n is even) or the
same number (when n is odd) of roots as Wn−1(z), and the roots interlace so that

xn,1 < xn−1,1 < xn,2 < xn−1,2 < · · · < xn−1,dn−1 < xn,dn
when n even;

and

xn,1 < xn−1,1 < xn,2 < xn−1,2 < · · · < xn,dn
< xn−1,dn

when n odd.
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Proof. From the initial polynomials (4.4), it is easy to verify Theorem 4.3 for n ≤ 2. We
suppose that n ≥ 3 and proceed inductively.

For every k ≤ n− 1, we denote the roots of Wk(z) by xk,1 < xk,2 < · · · < xk,dk
. For

convenience, we define xk,0 = −∞ and xk,dk+1 = 0, for all k ≤ n − 1. To clarify the
interlacing properties, we now consider the signs of the function Wm(z) at −∞ and at the
origin, for any m ≥ 0. Since Wm(z) is a polynomial of degree dm, with all coefficients
non-negative, we deduce that

(−1)dmWm(−∞) > 0. (4.10)

Having the constant term positive implies that

Wm(0) = gn,0 > 0. (4.11)

By the intermediate value theorem and Inequality (4.10), for the polynomial Wn(z) to
have dn = degWn(z) distinct negative roots and for Part (i) of Theorem 4.3 to hold, it is
necessary and sufficient that

(−1)dn+jWn(xn−2,j) > 0 for 1 ≤ j ≤ dn−2 + 1. (4.12)

In fact, for j = dn−2 + 1, Inequality (4.12) becomes

(−1)dn+dn−2+1Wn(0) > 0. (4.13)

By (4.11), Inequality (4.13) holds if and only if dn + dn−2 is odd, which is true since

dn + dn−2 =

⌈
n+ 1

2

⌉
+

⌈
n− 1

2

⌉
= 2

⌈
n− 1

2

⌉
+ 1.

Now consider any j such that 1 ≤ j ≤ dn−2. We are going to prove (4.12). We will
use the particular indicator function Ieven, which is defined by

Ieven(n) =

{
1, if n is even,
0, if n is odd.

Note that xn−2,j is a root of Wn−2(z). By Recurrence (4.3), we have

Wn(zn−2,j) = x
Ieven(n)
n−2,j

(
20Wn−1(xn−2,j)− 384xn−2,jWn−3(xn−2,j)

)
. (4.14)

Since xn−2,j < 0, the factor xIeven(n)n−2,j contributes (−1)n+1 to the sign of the right hand
side of (4.14). On the other hand, it is clear that the sign of the parenthesized factor can be
determined if both the summands 20Wn−1(xn−2,j) and −384xn−2,jWn−3(xn−2,j) have
the same sign. Therefore, Inequality (4.12) holds if

(−1)dn+j+n+1Wn−1(xn−2,j) > 0, (4.15)

(−1)dn+j+n+1Wn−3(xn−2,j) > 0. (4.16)

By the induction hypothesis on part (ii) of this theorem, we can substitute P = Wn−1
and Q = Wn−2 into Lemma 4.2. Then Inequality (4.5) gives

(−1)dn−1+jWn−1(xn−2,j) > 0. (4.17)
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Thus, Inequality (4.15) holds if and only if the total power

dn + j + n+ 1 + dn−1 + j =

⌈
n+ 1

2

⌉
+

⌈
n

2

⌉
+ n+ 2j + 1

of (−1) in (4.15) and (4.17) is even, which is clear by a simple parity argument. More-
over, again using the induction hypothesis on part (ii), we can make substitutions P (x) =
Wn−2(x) and Q(x) = Wn−3(x) into Lemma 4.2. Then Inequality (4.6) gives

(−1)dn−3+jWn−3(xn−2,j) < 0. (4.18)

Thus, Inequality (4.16) holds if and only if the total power

dn + j + n+ 1 + dn−3 + j =

⌈
n+ 1

2

⌉
+

⌈
n− 2

2

⌉
+ n+ 2j + 1 (4.19)

of (−1) in (4.16) and (4.18) is odd, which is also clear by a simple parity argument. This
completes the proof of (4.12), and the proof of Part (i).

The approach to proving Part (ii) is similar to that used to prove Part (i). By the inter-
mediate value theorem and Inequality (4.10), Part (ii) holds if and only if

(−1)dn+jWn(xn−1,j) > 0 for 1 ≤ j ≤ dn−1, (4.20)

and also for j = dn−1 + 1 when n is even. In fact, when n is even and j = dn−1 + 1, we
have

(−1)dn+dn−1+1Wn(0) > 0. (4.21)

By (4.11), Inequality (4.21) holds if and only if (−1)dn+dn−1+1 = 1, which is clear since

dn + dn−1 + 1 =

⌈
n+ 1

2

⌉
+

⌈
n

2

⌉
+ 1 = n+ 2.

For 1 ≤ j ≤ dn−1, we are now going to show (4.20). By setting x = xn−1,j , Recur-
rence (4.3) turns into

Wn(xn−1,j) = 8(3− 8xn−1,j)Wn−2(xn−1,j)− 384x
1+Ieven(n)
n−1,j Wn−3(xn−1,j). (4.22)

Since xn−1,j < 0, we see that 8(3−8xn−1,j) > 0, and that the factor−384x
1+Ieven(n)
n−1,j con-

tributes (−1)n+1 to the sign of the right-hand side of (4.22). Therefore, Inequality (4.20)
holds if

(−1)dn+jWn−2(xn−1,j) > 0, (4.23)

(−1)dn+j+n+1Wn−3(xn−1,j) > 0. (4.24)

Substituting P (x) = Wn−1(x) and Q(x) = Wn−2(x) into Lemma 4.2, we find that
Inequality (4.6) yields

(−1)dn−2 + jWn−2(xn−1,j) < 0 when 1 ≤ j ≤ dn−1. (4.25)

Thus, Inequality (4.23) holds if and only if the total power

dn + j + dn−2 + j =

⌈
n+ 1

2

⌉
+

⌈
n− 1

2

⌉
+ 2j
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of (−1) in (4.23) and (4.25) is odd, which holds true, obviously, by parity. On the other
hand, by the induction hypothesis on Part (i) and substituting P (x) = Wn−1(x) and
Q(x) = Wn−3(x) into Lemma 4.2, Inequality (4.6) becomes

(−1)dn−3+jWn−3(xn−1,j) < 0. (4.26)

Therefore, Inequality (4.24) holds if and only if the total power dn + j+n+ 1 + dn−3 + j
of (−1) in (4.24) and (4.26) is odd, which coincides with (4.19). This completes the proof
of (4.20), ergo the proof of Part (ii), and hence the entire theorem.

Corollary 4.4. The sequence of coefficients for every genus polynomial ΓYn
(z) is log-

concave.
Proof. Recalling Equation (4.1), we have

ΓYn(z) = zb(n+1)/2cWn(z).

By Theorem 4.3, we know that the polynomial Wn(z) is real-rooted. It follows that the
polynomial ΓYn

(z) is real-rooted. Applying Theorem 4.1 (Newton’s theorem), we know
that the polynomial ΓYn

(z) is log-concave.

5 On Real-Rootedness
In the study of genus polynomials, the role of real-rootedness may rise beyond being a
sufficient condition for log-concavity. The introductory section presents two basic research
problems specifically on real-rootedness. One may reasonably anticipate that continuing
study of the roots of genus polynomials will lead to new insights into the imbeddings of
graphs.
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