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(msvar) model. The impulse response function is used as the main tool
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Key Words:Markov switching var, regime-dependent impulse response,
stock markets, dynamic relationship

jel Classification: f36, g15

Introduction
The interdependencies between international stock markets have been
investigated in many papers. The financial crises which arose in October
1987 and September 2008 provide convincing evidence of the increas-
ing interdependence of global stock markets. A knowledge of the mutual
links between different stock markets is important for both investors and
policy makers. The hedging and diversification strategies being used by
market participants are closely tied to the nature and strength of these in-
terrelationships. If two stock markets are strongly interrelated, it implies
that a hedging strategy will not be simple and diversification opportuni-
ties will be considerably reduced. Additionally, links between stock mar-
kets have an effect on policy makers. They make regulatory policy more
complex on the domestic market, because the shocks which come from
global stock markets may have an impact on the domestic market, and in
consequence a crisis can be ‘imported.’ Taking into account the impor-
tance of possible links, economists have focused on interdependencies
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between particular stock markets. An important research problem is the
question of how shocks spread to other stock markets (the contagion ef-
fect). Researchers have attempted to gain an insight into these processes
and determine the factors which motivate these interactions. A knowl-
edge of these mechanisms will provide better understanding of the con-
tagion, hedging and diversification effects observed especially in times of
financial crisis.
Underreaction to good news and overreaction to bad news are widely

observed on financial markets and can imply that in times of crisis (the
bear phase of a stockmarket) stock returns tend to bemore dependent on
each other than in optimistic times (the bull phase of a stock market). As
regards the risk level of an international portfolio, investors in a bearmar-
ket phasemay lose the advantage of diversification i. e. international port-
folios may be more risky than market participants suspect. This asym-
metric interdependence is a source of rising diversification costs when it
comes to foreign stocks.
The goal of this article is to examine the short-run interrelationships

between the stock markets of Germany (the Frankfurt Stock Exchange,
fse), Austria (the Vienna Stock Exchange, vse) and Poland (the War-
saw Stock Exchange, wse) represented by theirmain indices: the dax30,
the atx20 and the wig20, respectively. The relationships between these
three stock markets are of interest for the following reasons. Firstly, since
Germany is the largest economy in the European Union, fluctuations in
the real German economy have a significant impact on both Austria and
Poland. Secondly, Germany is the prime trading partner of both Austria
and Poland. Thirdly, the Vienna Stock Market represented by the atx20
index is, for cultural, historical, geographical and economical reasons,
closely associated with the German Stock Exchange. Moreover, the Vi-
enna Stock Exchange is a local rival of the Warsaw Stock Exchange in
Central and Eastern Europe. The Warsaw Stock Exchange represents an
emerging stock market of an economy in transition, while the Frankfurt
and Vienna stock markets represent well developed markets of different
sizes. The vse exhibitsmuch lower capitalization than the fse. The wse
and the vse are similar in terms of capitalization. Taking into account the
above reasons we expect that these stock markets are closely linked.
Contributions to date have not been concerned with possible struc-

tural breaks between bull and bear regimes in these stock markets. Fur-
ther, many studies have provided evidence, that stock return characteris-
tics and dynamic links between stock markets vary considerably during
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bull and bear market phases. Ignoring these structural breaks may lead
to incomplete or incorrect statistical results.
We have chosen the Markov switching vector autoregressive (msvar)

model to describe the interdependence between these markets under
study. We provide a complex analytical characterization of the uncon-
ditional distribution of the variable driven by the msvar model. We
interpret the results and explain how parameter changes affect these
characteristics. A convenient and illustrative method for presenting the
strength and dynamics of an interrelation is to calculate the impulse
response function (irf). In the case of regime switching models, the
regime-dependent irf is used. We present two different approaches to
the regime-dependent irf. In our opinion this approach provides new
insights into the issue of dynamic relationships between stock markets.
Especially we try to compare the strength and dynamics of interre-

lation between wse (economy in transition) and vse (developed econ-
omy) and their links to fse. The empirical results, i. e. types and strength
of links can serve as indicator of maturity level of wse
The remainder of the paper is organized as follows. In the second sec-

tion we give a literature overview about dependence concepts and empir-
ical results. In the next section our main conjectures are formulated. In
the fourth section we present the methodology applied. In the fifth sec-
tion the dataset and empirical results are presented and discussed. The
sixth section concludes the paper.

Literature Overview
The problem of evaluating the dependence structure between stock mar-
kets in a time of globalization is a very important topic. The interrelations
between stock markets can be approximated through such variables as
stock returns, trading volume and volatility. The simplest methodology
in investigations of interdependencies is the causality notion and theVec-
tor Autoregressive (var) model. Eun and Shim (1989) investigated rela-
tionships between nine large stock markets including those of Australia,
Canada, France, Germany, Hong Kong, Japan, Switzerland, the uk and
the us by means of the var model. They found that the us stock mar-
ket had the predominant impact on other markets. Lin, Engle, and Ito
(1994) checked the interdependence between returns and the volatility
of the us and Japanese markets based on high frequency data (daytime
and overnight returns). The result was that daytime returns in the us or
Japanese market were related to each other’s overnight returns.
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Kim and Rogers (1995) studied the dynamic interdependence between
the stock markets of the us, Japan and Korea using the multivariate
garch model. The conclusion was that the Japanese and us stock mar-
kets increased their impact on the Korean stock market after its open-
ing to foreign investors. Booth, Martikainen, and Tse (1997) using the
egarch model, found strong interdependence among Scandinavian
stockmarkets.Ng (2000) detected oneway causality running from the us
and Japanese stock markets to six Asian markets, including Hong Kong,
Korea, Malaysia, Singapore, Taiwan and Thailand. Lee (comp. Sharkasi,
Ruskin, and Crane 2005), by the wavelets technique, found that devel-
oped markets (the us, Germany and Japan) had effects on two emerging
markets, those of Egypt and Turkey. Antoniou et al. (comp. Sharkasi,
Ruskin, and Crane 2005) by the var-egarch model checked the inter-
dependence between three eu markets: France, Germany and the uk.
These results support the notion of cointegration between the stock mar-
kets of those countries.
Sharkasi, Ruskin, and Crane (2005) found global co-movements in

seven stock markets, three in Europe (namely the Irish, the uk, and
Portuguese), two in Americas (the us, and Brazilian) and two in Asia
(Japanese and Hong Kong).
Nivet (1997) checked the randomwalk hypothesis for theWarsawStock

Exchange. Worthington and Higgs (2004) were concerned with the effi-
ciency of the Hungarian, Polish, Czech and Russian stock markets. The
contributors established that only the Hungarian stock market followed
the random walk. Gilmore and McManus (2003) found autocorrelations
in some stock returns fromCentral and Eastern European stockmarkets.
In Schotman and Zalewska (2006), the same observation followed from
nonsynchronous trading and an asymmetric response to good and bad
news.
Todea and Zaicas-Ienciu (2008) investigated the temporal persistence

of linear and, especially, nonlinear links between six Central and Eastern
European stock markets.
The method, based on extreme value theory, was conducted by Ang

and Chen (2002). They drew the conclusion that regime-switching mod-
els were most suitable for asymmetry modeling. Regime switching mod-
els were introduced into econometrics by Hamilton (1989). Nowadays,
they are widely applied in finance. Ang and Bekaert (2002a and 2002b),
by the GaussianMarkov switchingmodel, detected two regimes for inter-
national returns: a bull regime with a positive mean, low volatilities and
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low correlations; and a bear regimewith negative returns, high volatilities
and correlations.
Patton (2004) detected a significant asymmetry in the dependence of

financial returns. Jondeau and Rockinger (2006) applied the skewed-t
garch model to returns with a univariate time-varying skewness and
used a time-varying, a switching Gaussian, or a Student t copula. Hu
(2006) suggested replacing the unconditional margins of a copula with
conditional margins from univariate garch models. This led to a spe-
cial case of the copula based multivariate dynamic (cmd) model. Klein,
Köck, and Tinkl (2010) conducted an extensive simulation study. They
suggested that the copula (mis) specification should play a key role be-
fore the adaption of a cmd model.
Rodriguez (2007) and Okimoto (2008) estimated regime-switching

copulas for pairs of international stock indices. Okimoto (2008) investi-
gated the us-uk pair. Rodriguez (2007) focused on pairs of Latin Amer-
ican andAsian countries. The authors used the two-variable system. Gar-
cia and Tsafak (2008) estimated a regime-switching model in a four-
variable system for domestic and foreign stocks and bonds. They used
a mixture of bivariate copulas to model the dependence between studied
variables. Chollete, Heinen, and Valdesogo (2009) applied the canonical
vine copula, a new type of copula which could be applied to very general
types of dependence.
However, there are two serious problems in using copulas. First of all,

many of the copulas applied do not havemoments that can be directly re-
lated to the Pearson correlation. In consequence, it is difficult to compare
those results obtained using copulas to those of financialmodels based on
correlations and variances. There is a more essential problem from a sta-
tistical point of view. It is not easy to choose a class of parametric copulas
which properly fits a given dataset. Some classes of copulas model bet-
ter near the center and others near the tails of any particular time series
distribution. A possible extension to overcome this difficulty is to focus
on different shapes of those copulas that are important from a finance
perspective, and by using several specification tests which are common
in time series analysis. Most contributors do not rigorously justify the
choice of particular kinds of copulas.
In their interesting contribution, Qiao, Li, and Wong (2011) combined

the multivariate Markov-switching-var model developed by Krolzig
(1997) and the regime-dependent impulse response analysis technique by
Ehrmann, Ellison, and Valla (2003). They investigated dynamic relation-
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ships between the stock markets of the us, Australia and New Zealand.
The contributors uncovered the existence of two different regimes in
the three stock markets. They found that correlations among the three
markets were significantly higher in a bear regime than in a bull regime.
Moreover, the responses of each of the three markets to shocks in the
other two markets were essentially stronger and more persistent in the
bear regime than in the bull regime. The authors demonstrated that for
the New Zealand stock market, the Australian stock market was more
influential than the us stock market, and that for the Australian stock
market, the us stock market was more influential than the New Zealand
stock market. Our approach, briefly outlined in the introductory section,
is somewhat related to that of Qiao, Li, and Wong (2011).

Main Conjectures

Taking into account the literature review, the size of the markets under
study and economic reasoning, we can formulate some research hypothe-
ses. As we pointed out earlier, the high level of capitalization in the fse,
its maturity and the size of the German economy imply that impulses
coming from the fse play a predominant role in the vse and the wse.
Therefore we can expect that:

conjecture 1 The pairs of indices dax-atx and dax-wig are like-
ly to be more correlated than the pair atx-wig. Moreover, these cor-
relations in a bear phase are stronger than in a bull phase.

The linkage between real economies and stockmarkets documented in
theoretical and empirical studies and the observation that stock markets
in a bear phase are more volatile than stock markets in a bull phase have
motivated us to formulate the following:

conjecture 2 The depth of the recession in an economy will be re-
flected in the volatility level of its stock market.

In line with the literature, the impulse response function is related to
the market phase. Therefore we expect that:

conjecture 3 One standard deviation disturbance is higher in a bear
market regime than in a bull market. Moreover, the response in the
former is more persistent than in the latter.

Taking into account that atx and wig are similar in capitalizationwe
predict that:
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conjecture 4 The responses of the atx and wig to one standard
deviation disturbance of the dax are at similar levels.

In the next section of the paper we outline the methodological back-
ground.

Methodology
markov switching vector autoregression

Let St be a two-state unobservable Markov chain. Then, Xt defined by (1)
is driven by a Markov Switching Vector Autoregression model with a lag
of length p.

Xt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩ v1 +
∑p

i=1 A
1
iXt−i + Q1ut if St = 1

v2 +
∑p

i=1 A
2
iXt−i + Q2ut if St = 2

(1)

where, for j = 1, 2, the intercept term is denoted by vj, for i = 1, . . . , p,
autoregression terms are denoted by Aj

i, disturbances are represented by
Qjut, where ut ∼ N(0, I) and Qj is a matrix generating the covariance
matrix. Generalization of the model (1) to more than two regimes is pos-
sible, although in this article only two regimes are considered. Clearly, in
this model the intercept term and the autoregression terms are regime
dependent. Moreover, the variance-covariance matrix

∑
j in the regime

j = 1, 2 takes the following form:∑
j
= E(Qjutu′tQ′j) = QjQ′j . (2)

Therefore the variance-covariance matrix is regime dependent. The
hidden process St is specified by transition probabilities pij, where, for
i, j = 1, 2,

pij:= P(St+1 = j|St = i). (3)

All transition probabilities form a transition matrix P defined by:

P:=

⎡⎢⎢⎢⎢⎢⎢⎣ p11 p12p21 p22

⎤⎥⎥⎥⎥⎥⎥⎦ , (4)

where p11 + p12 = p21 + p22 = 1.
The estimation procedure for themodel is conducted by the Expectati-

on-Maximization (em) algorithm. Firstly, the optimal inference ξt:=
P(St = j) is estimated for chosen starting parameters in the expectation
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step. Note that ξt is a two-dimensional vector. Formally, ξj,t are being
estimated using the Hamilton filter (see Hamilton 1990):

ξ̂t|t =
ξ̂t|t−1 � ηt

1T (̂ξt|t−1 � ηt)
, (5)

ξ̂t+1|t = PT ξ̂t|t, (6)

where ηt denotes the vector of the conditional density under both regimes,
ξ̂t|t = (P[St = j|Xt])j=1,2 and ξ̂t+1|t = (P[St+1 = j|Xt])j=1,2 the Hadamard’s
multiplication denoted by �means the multiplication coordinate by co-
ordinate.
Secondly, the optimal set of parameters, for the estimated ξt, is found

in the maximization step. The Maximum Likelihood (ml) estimation in
the case of Markov Switching var is equivalent to the Least Square esti-
mation weighted by the estimated ξt. These steps are repeated until the
parameters converge.
Note that, the estimation procedure, for j = 1, 2 provides us with es-

timates of variance-covariance matrices
∑

j, and matrices Qj are chosen
as lower triangular matrices fulfilling equation (2). Technically, we use
the Cholesky-Banachiewicz algorithm to obtain the estimate of Qj for an
estimate of

∑
j, for j = 1, 2.

unconditional properties of a variable driven by
the regime switching var model

The descriptive statistics of the data illustrate the properties of those data
in the most basic way. Moreover, the interpretation of the descriptive
statistics is clear, so that using it for a preliminary analysis is convenient.
The unconditional characteristics of a series driven by a particularmodel
determine the descriptive statistics of its realization. It is desirable to have
the possibility of modeling certain characteristics by the chosen model.
For instance, financial time series are usually characterized by a negative
skewness and relatively high kurtosis. The chosenmodel therefore should
incorporate these characteristics into its unconditional distribution.
Clearly, the unconditional distribution of the process Xt defined in (1)

is a mixed normal distribution. In particular, for some Z1 ∼ N(μ1,
∑
1)

and Z2 ∼ N(μ2,
∑
2), unconditionally:

Xt = (2 − S)Z1 + (S − 1)Z2, (7)

where S is a Bernoulli distributed variable representing the unconditional
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ms state process, assuming that the ms process is ergodic, P(S = 1) =
ω1 = p21/(p12 + p21) and P(S = 2) = ω2 = p12/(p12 + p21); for i = 1, 2; the
conditionalmean and the covariancematrix on being in state i is denoted
by μi and

∑
i, respectively. Note that the mixture of normal distributions

is not the same as a linear combination of normal distributions. In par-
ticular, the mixture of normal distributions is not normally distributed.
We prove this statement in Appendix. It follows from the results in the
Appendix that the distribution of the variable driven by model (1) is a
mixture of normal multivariate distributions. The relation between the
parameter μ1, μ2,

∑
1,
∑
2 set and the parameters of model (1) is presented

in the Appendix. The margins of a multivariate mixed normal distribu-
tion have corresponding univariate mixed normal distributions. To be
precise, the d-th coordinate of Xt is a variable whose distribution is a
mixture of normal distributionsN(μd,1,σ2d,1) andN(μd,2,σ2d,2), where the
mean μd,i is the d-th coordinate of μi andσ2d,i is the corresponding Schur
complement of the matrix

∑
i for i = 1, 2.

Combining the calculation results presented in the Appendix, for a
given parameter set of model (1), we are able to calculate the theoreti-
cal characteristics of the realization. It is possible to obtain multivariate
characteristics such as mean (see formula (20)) and covariance matrix
(see formula (30)) and interesting univariate ones, like skewness (see for-
mula (16)) and kurtosis (see formula (17)).
Clearly, it is more convenient to simulate a realization of the process

and calculate characteristics based on this realization which will be pre-
cise enough if the simulation is long enough. However, the presented
method is analytical and additionally illustrates how parameters affect
skewness and kurtosis. For instance, the skewness (see formula (16)) is
significantly negative for σ21 < σ22, μ1 > μ2 and ω2 < ω1. Let the
first state correspond to a time of prosperity and the second to one of
recession. Intuition, along with theoretical and empirical evidence con-
firm that the variance is higher in the latter, while the mean is higher
in the former, and also that periods of prosperity last longer than those
of crisis.

impulse response function in the regime
switching model

The impulse response function (irf) is a very convenient tool in mea-
suring dependencies between financial variables. Intuitively, the irf
presents the influence of a disturbance in one variable on others. The
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responseΨk
i to a disturbance in the k-th variable conditional on being in

regime j during a whole period is defined by:

Ψk
j (h):=

∂EtXt+h

∂ukt

∣∣∣∣∣∣
st=st+1=···=st+h=j

, h > 0 (8)

where ut is the vector of zeros apart from the k-th element which is one.
In the case of var, the irf defined in (8) is estimated as follows:

Ψk
j (0) = Q̂ju0, (9)

Ψk
j (h) =

max(h,p)∑
i=1

Âj
i

h−i+1
Q̂ju0 (10)

It is inadequate to use formula (8) in the case of a long time horizon
or an insufficiently persistent regime process st. In this case, the path st =
st+1 = · · · = st+h = j is improbable. The irf conditional on starting
in a particular regime may be more informative value. The response to
the disturbance in the k-th variable conditionally on starting in regime j,
denoted by Ξki , is defined by:

Ξkj (h):=
∂EtXt+h

∂ukt

∣∣∣∣∣∣
st=j

, h > 0 (11)

As in formulas (9) and (10), in the case of msvar, the irf defined in
(11) is estimated as follows:

Ξ̂kj (0) = Q̂ju0, (12)

Ξ̂kj (h) =
max(h,p)∑

i=1

∑
J=(j1=j,j2,...,jh)∈{1,2}h

pJ|j1=j

⎛⎜⎜⎜⎜⎜⎜⎝
h−i+1∏
v=1

ÂJv
ι

⎞⎟⎟⎟⎟⎟⎟⎠ Q̂Juo, (13)

where pJ|j1=j denotes the probability of path J conditionall on starting at j.
Note that in formulas (10) and (13), for i < 1 and i > p, matrix Âj

i equals 0.
The evaluation of error for an irf, in the case of regime switching

models, is carried out using the bootstrap method. In order to estimate
the distribution of an irf, the following five step procedure is to be re-
peated a sufficient number of times:

1. According to formulas (3) and (4), simulate the history of state pro-
cess St, recursively. The elements of the transition matrix are re-
placed by the corresponding estimates.

Managing Global Transitions



Regime-Dependent Relationships among Stock Markets 13

table 1 Descriptive Statistics for Percentage Logarithmic Weekly Returns

Item dax atx wig

Mean . . .

Median . . .

Std. dev. . . .

Skewness –. –. –.

Kurtosis . . .

Minimum –. –. –.

Maximum . . .

2. Following formula (1), simulate the history of endogenous variable
Xt, recursively. Matrices occurring in (1) are replaced by the corre-
sponding estimates.

3. For the generated process, conduct the estimation procedure pre-
sented below. The procedure yields new estimates of autoregression
matrices {Âj

i}j=1,2i=1,...,p, the covariance matrix for errors {∑̂j}j=1,2, the
transition matrix P̂ and the smoothed probabilities {ξ̂t}t=1,...,T .

4. Using the same procedure as for the primary estimation, for j = 1, 2,
calculate matrix Q̂j for matrix

∑̂
j obtained in step 3.

5. Using formulas (9) and (10) or (12) and (13), calculate estimates of
the irf for the bootstrapped parameters obtained in steps 3 and 4.

The approximation of the distribution of the irf consists of theN sets
of estimates obtained in step 5, where N is the number of repetitions of
the procedure.

Dataset and Empirical Results

description of the data

The dataset consists of the prices of three stock market indices that is
to say the German dax30, the Austrian atx20 and the Polish wig20.
Wednesday to Wednesday weekly returns are used in the analysis. Com-
pared to daily returns, weekly return processes have lower autocorrela-
tion and avoid the missing data problem. Moreover, var based models
work better with smoother weekly data than with noisier daily data. This
gives us a sample of 571 weekly returns from January 2003 to December
2013. We apply continuous logarithmic percentage returns.
Firstly, we present some descriptive statistics in table 1.
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In the period under study we observe positive means in all three in-
dices. The relatively high absolute value ofmedian and negative skewness
suggest asymmetries in these time series. As we stated in the previous
section and calculated in the Appendix, model (1) can generate a process
with negative skewness and large kurtosis.

markov switching var estimation results
Following the notation presented in (1), the estimation results of autore-
gressive matrices and covariance matrices for the data are presented in
table 2. The estimation procedure provides us with two regimes of the
var model of order two, this order being chosen due to information cri-
teria. In fact, the information criteria for three lags are similar to those of
two lags, although it is more convenient to present and interpret var es-
timates of order two. We have conduct a complete analysis of the msvar
of order three and the conclusions appear to be similar.
The first regime, estimates of which are presented on the left side of ta-

ble 2, is characterized by negativemeans for every index, and high volatil-
ity. Conversely, the second regime (right side of table 2) is characterized
by positive means and relatively small volatility. Additionally, in table 3,
we present correlations of the series in both regimes. The correlations
are higher in the first regime for all three pairs. These properties clearly
describe a bull market (the second regime) and a bear market (the first
regime).
There is little point, in terms of information, in analyzing all differ-

ences between the parameters sets in the two regimes. We observe simi-
lar signs in the majority of autoregression parameters (coefficients of the
Amatrices) for both regimes. The analysis of the impulse response func-
tion presented in the next section is far more practical and informative.
An interesting finding is that the highest volatility in the second regime
is found for the wig return process, while it is the least volatile vari-
able in the first regime. A possible explanation of this unexpected find-
ing is that during this whole period, the rate of growth in Poland was
positive, while in Germany and Austria there was a recession (especially
in 2009).
The stationarity of residual series is essential in irf analysis. We

have performed Augmented Dickey-Fuller (adf) test and Kwiatkowski-
Phillips-Schmidt-Shin (kpss) test for each residual of the estimated
model. Both tests confirm stationary of residuals, the null hypothesis
of adf test is rejected on any reasonable significance level for each of the
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table 2 Estimation Results of the Regime

Item Bear market regime Bull market regime

dax atx wig dax atx wig

vj –. –. –. . . .

Aj
1 –. . –. –. –. –.

. –. . . –. .

. . –. . . –.

Aj
2 . . . . . .

. . . –. –. –.

–. –. –. . . –.

σ2
j . . . . . .

notes vj is the intercept term,Aj
1 andA

j
2 denote the first and second lag autoregression

matrices, respectively; and σ2
j is the diagonal of the variance-covariance matrix, where j

denotes the regime.

table 3 Regime Dependent Correlations

Item dax-atx dax-wig atx-wig

First regime . . .

Second regime . . .

note Correlations of the variance-covariance matrix in both regimes.

three variables. The null hypothesis for the kpss test is not rejected on
5-significance level for any residual.

impulse response function analysis
Responses to dax impulses are the most important from a practical
point of view. The German stock market is much bigger and much more
important than the two other markets. The impulse response functions
in both regimes are essentially different. The one standard deviation dis-
turbance is much higher in the first regime. The values of the impulse
response functions are even more significant. Moreover, the period in
which the response is significant is longer in the first regime. The re-
sponse of the atx in the first regime is positive in the first week after
a dax disturbance and even stronger in the second week. In the sec-
ond regime, the second week response of the atx to dax disturbance
is lower than the first week and close to zero. In the case of the wig, we
observe an interesting relationship in the first regime. After the positive
first week response, there is a negative one, with relatively high abso-
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table 4 Confidence Interval of the Impulse Response Function in the First Regime

Item Endpoint     

dax Upper . –. . . .

Lower . –. –. –. .

atx Upper . . . . .

Lower . –. –. –. –.

wig Upper . . –. . .

Lower . –. –. . .

note Upper and lower endpoint of the confidence interval of the impulse response
function in the bear market regime.

table 5 Confidence Interval of the Impulse Response Function in the Second Regime

Item Endpoint     

dax Upper . –. . . .

Lower . –. –. . .

atx Upper . . . . .

Lower . –. –. –. .

wig Upper . . . . .

lower . –. –. –. .

note Upper and lower endpoint of the confidence interval of the impulse response
function in the bull market regime.

lute value, in the second week. In the second regime, the atx and wig
respond similarly to dax disturbances. The irf of the dax to itself is
similar in both regimes with unsurprising dynamics. The return series
tends to correct itself, a positive disturbance causing a negative outcome
in the following week and a positive one in the next. Each absolute value
is lower than the preceding one. Applying the bootstrap procedure pre-
sented in the previous section, we obtain 90-confidence intervals of the
impulse response to the dax. We re-sample the series 10,000 times by
the bootstrap procedure and each series 571 in the length, the same as the
original data. Tables 4 and 5 summarize the results of the irf.
The impulse response analysis can provide investors with very valu-

able short-run prognoses. In a time of prosperity (the second regime),
the impulse response function process is in line with economic expecta-
tions. Apart from the significant difference in values for both regimes, we
observe an unexpected irf path. In particular, it is possible that a pos-

Managing Global Transitions



Regime-Dependent Relationships among Stock Markets 17

itive disturbance causes another variable to have negative values in the
future.
The estimated switching process is not very persistent, following the

notation presented in (3), p11 = 0.82 and p22 = 0.89. However, the ex-
pected time for shifting is nearly 6 in the first regime and greater that nine
in the second regime. The expected time for shifting dj in the regime j,
for j = 1, 2, equals 1/(1−pjj). In table 5, we see that the irf for lags greater
than 3 diverges insignificantly from zero, so that the irf defined in (11) is
similar to the irf defined in (8), so we have not presented these results.

Concluding Remarks
Empirical results for German, Austrian and Polish markets provide evi-
dence that in a bearmarket regime correlations among pairs of indices are
essentially stronger that in a bull market regime. In addition, these cor-
relations depend on the size of markets. They are more pronounced in
the case of the pairs atx-dax and wig-dax than the atx-wig. These
findings are in line with the first conjecture.
The financial literature indicates that changes in volatility depend on

events which are important to a particular stockmarket. In addition, neg-
ative information in announcements is the source of higher volatility than
release of positive information. Moreover, it is well known that emerg-
ing stock markets are characterized in general by high volatility, so it is
not surprising that the highest volatility in the second regime was esti-
mated for wig returns. However, wig is the least volatile index in the
first regime. At first sight, this finding contradicts the common convic-
tion, widely represented in the financial literature, that the more mature
the market, the lower the volatility. In order to explain this observation,
we have to take into account that during this whole analyzed period, the
rate of growth of the Polish economy was positive, while in Germany and
Austria there was a recession (especially in 2009). This fact is a possible
reason for the surprising ranking of the volatilities ofmarkets under study
in the bear phase. These findings support the second research hypothesis.
Impulse response functions in both regimes are essentially different.

The first observation is that one standard deviation disturbance is much
higher in the first regime. In addition, the persistence of the impulse re-
sponse is more pronounced in this regime. This observation supports
the third conjecture. The response of the atx in the first regime is pos-
itive in the first week after a dax disturbance and it is even stronger in
the second week. By contrast, in the second regime, the second week re-
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sponse of the atx to the dax is lower than that of first week, and very
close to zero. In the case of the wig, see an interesting relationship in
the first regime. After a positive first week response, there is a negative
and relatively high in absolute value one in the second week. In the sec-
ond regime, the response of the wig is very similar to the response of the
atx to dax disturbances. These findings are only partly in line with the
fourth conjecture.
To summarize, these results indicate the predominant role of the dax

index among the threemarkets.Most results are in linewith expectations.
However, some of them, for instance, the ranking of volatilities in the first
(bear market regime), are surprising. The impulse response function is
shown to be an important complementary tool in the testing of market
reactions to shocks on both domestic and foreign markets, which is done
in the short run context in this contribution. This tool may be essential
with respect to the prediction of the very important contagion effect on
financial markets especially in a bear phase of world stock markets. An-
other important issue is the assessment of persistency and under- and
overreaction related to the market phase.
The last but not least important result (see theAppendix) is the theoret-

ical unconditional distribution of a process driven by theMarkov switch-
ing var model. We calculated unconditional mean, variance, skewness
and kurtosis for the margins of the process. The results illustrate how the
parameters of the msvar model affect unconditional characteristics and
prove that within this model it is possible to model asymmetric variables
with unlimited kurtosis. The results can be used to calculate theoretical
unconditional characteristics. Having said that, we find it rather inconve-
nient and prefer to perform calculations using the Monte Carlo Method.

Appendix
Let us compute the mean, variance, and third and the fourth central
moments of variable with a mixed univariate normal distribution. Let
X = (2 − S)Z1 + (S − 1)Z2, where Z1 ∼ N(μ1,σ1) and Z2 ∼ N(μ2,σ2). We
use a notation: P(St = 1) = ω1 and P(St = 2) = ω2, such that ω1 +ω2 = 1.
In the case of model (1), following notation (3), ω1 = p21/(p12 + p21) and
ω2 = p12/(p12 + p21).

E(X) = E(E(X|S)) = ω1E(X|S = 1) + ω2E(X|S = 2) = ω1μ1 + ω2μ2.

Let us denote the mean by μ, thus μ:= ω1μ1 +ω2μ2 and for i = 1, 2, the
conditional variable Xi:= (X|S = i). The j-th central moment of variable
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X is computed as follows:

E((X − μ)j) = E(E((X − μ)j|S)) = ω1E((X − μ)j|S = 1)
+ω2E((X − μ)j|S = 2)
= ω1E((X − μ1 + μ1 − μ)j|S = 1)
+ω2E((X − μ2 + μ2 − μ)j|S = 2)

= ω1

j∑
k=0

(
j
k

)
(μ1 − μ)j−kE((X1 − μ1)k)

+ω2

j∑
k=0

(
j
k

)
(μ2 − μ)j−kE((X2 − μ2)k).

Therefore, the variance takes the following form:

D2(X) = E((X − μ)2) =
2∑
i=1

ωi

2∑
k=0

(
2
k

)
(μi − μ)2−kE((Xi − μi)k)

=

2∑
i=1

ωi((μi − μ)2 + 0 + E((Xi − μi)2))

= ω1(ω22(μ1 − μ2)2 + σ21 ) + ω2(ω21 (μ2 − μ1)2 + σ22
= ω1σ

2
1 + ω2σ

2
2 + ω1ω2(μ1 − μ2)2.

The third central moment is computed as follows:

E((X − μ)3) =
2∑
i=1

ωi

3∑
k=0

(
3
k

)
(mui − μ)3−kE((Xi − μi)k)

=

2∑
i=1

ωi((μi − μ)3 + 0 + 3(μi − μ)E((Xi − μi)2) + 0)

= ω1ω2((ω1 + ω2)(ω2 − ω1)(μ1 − μ2)3
+3 (μ1 − μ2)(σ21 − σ22))
= ω1ω2(μ1 − μ2)((ω2 − ω1)(μ1 − μ2)2
+3 (σ21 − σ22)).

Finally, let us compute the fourth central moment:

E((X − μ)4) =
2∑
i=1

ωi

4∑
k=0

(
4
k

)
(μi − μ)4−kE((Xi − μi)k)
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=

2∑
i=1

ωi((μi − μ)4 + 0 + 6(μi − μ)2E((Xi − μi)2

+ 0 + E((Xi − μi)4))
=

2∑
i=1

ωi((ω1−i(μ1 − μ2))4

+ 0 + 6(ω1−i(μ1 − μ2))2σ2i + 0 + 3σ4i )
= 3ω1σ41 + 3ω2σ

4
2

+ω1ω2(μ1 − μ2)2((ω21 + ω1ω2 + ω22)(μ1 − μ2)2
+6 (ω2σ21 + ω1σ

2
2)).

Summarizing:

μ = E(X) = ω1μ1 + ω2μ2; (14)
σ2 = D2(X) = ω1σ21 + ω2σ

2
2 + ω1ω2(μ1 − μ2)2; (15)

γ1 =
E(X − μ)3

σ3

=
ω1ω2(μ1 − μ2)((ω2 − ω1)(μ1 − μ2)2 + 3(σ21 − σ22))( √

ω1σ
2
1 + ω2σ

2
2 + ω1ω2(μ1 − μ2)2

)3 ; (16)

β2 =
E(X − μ)4

σ4
=

3ω1σ41 + 3ω2σ
4
2

(ω1σ21 + ω2σ22 + ω1ω2(μ1 − μ2)2)2

+
ω1ω2(μ1 − μ2)2((ω21 + ω1ω2 + ω22)(μ1 − μ2)2

(ω1σ21 + ω2σ22 + ω1ω2(μ1 − μ2)2)2

+
6(ω2σ21 + ω1σ22))

(ω1σ21 + ω2σ22 + ω1ω2(μ1 − μ2)2)2 ; (17)

where σ2 denotes the unconditional variance of the variable, γ1 denotes
the unconditional skewness of X and kurtosis is denoted by β2.
The parameter set μ1, μ2,σ1,σ2 of the variable Xt presented in (7) can

be written in terms of the parameters of model (1). Let us introduce an
additional notation, for j ∈ N and I ∈ {1, 2}j, we denote pI := πji=1pI(i−1)I(i),
where I(i) denotes the i-th coordinate of the I. Intuitively, pI is the prob-
ability of the path I for a Markov chain St with a transition matrix (4).
For now on, we denote Xi:= (Xt |St = i). Taking the expected value in the
equation (1), we obtain the following system of linear equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩

E(X1) = v1 +
∑p

j=1
∑

I∈{1,2}j p(I,1)A
I(j)
j E(XI(j))

E(X2) = v2 +
∑p

j=1
∑

I∈{1,2}j p(I,2)A
I(j)
j E(XI(j))

(18)
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where (I, i), for i ∈ {1, 2} and I ∈ {1, 2}j, denotes J ∈ {1, 2}j+1 such that
J(k) = I(k), for k = 1, . . . , j, and J(j + 1) = i. Transforming (18), we have:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 −∑p

j=1
∑

I∈{1,2}j−1 p(1,I,1)A1j
)
E(X1)

= v1 +
∑p

j=1
∑

I∈{1,2}j−1 p(2,I,1)A2j E(X2)(
1 −∑p

j=1
∑

I∈{1,2}j−1 p(2,I,1)A2j
)
E(X2)

= v2 +
∑p

j=1
∑

I∈{1,2}j−1 p(1,I,1)A1jE(X1)

;

therefore⎧⎪⎪⎪⎨⎪⎪⎪⎩E(X1) = (Ξ1 + Ψ1Ξ−12 Ψ2)−1(v2 + Ψ1Ξ−12 v2)

E(X2) = (Ξ2 + Ψ2Ξ−12 Ψ1)−1(v1 + Ψ2Ξ−11 v1)
; (19)

hence,

E(Xt) = ω1E(X1) + ω2E(X2)
= ω1(Ξ1 + Ψ1Ξ−12 Ψ2)−1(v2 + Ψ1Ξ−12 v2)
+ω2(Ξ2 + Ψ2Ξ−11 Ψ1)−1(v1 + Ψ2Ξ−11 v1), (20)

where

Ξ1 := 1 −
p∑
j=1

∑
I∈{1,2}j−1

p(1,I,1)A1j , (21)

Ξ2 := 1 −
p∑
j=1

∑
I∈{1,2}j−1

p(2,I,1)A2j , (22)

Ψ1 :=
p∑
j=1

∑
I∈{1,2}j−1

p(2,I,1)A2j , (23)

Ψ2 :=
p∑
j=1

∑
I∈{1,2}j−1

p(1,I,1)A1j . (24)

System (19) shows us how to compute μ1:= E(X1) and μ2:= E(X2).
In order to compute

∑
1 and

∑
2, an additional notation is needed. Let,

for i = 1, 2,

X*
i,t:= ([X′t , . . . ,X′t−p]′|St = i). (25)
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Then, rewriting (1), we have:

X*
i,t = v*i +

2∑
j=1
Ξ*i,jX

*
j,t−1 + ε

*
i,t, i = 1, 2, (26)

where

v*i :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vi
0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, i = 1, 2; (27)

Ξ*i,j :=
∑

I∈{1,2}p
p(I,i)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

χj(I(p))A
j
1

1
...

0

χj(I(p − 1))Aj
2

0
. . .

0

· · ·
· · ·
0

1

χj(I(1))A
j
p

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, i

= 1, 2; (28)

εi,t :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Qiut
0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, i = 1, 2; (29)

Therefore, for i = 1, 2,

X*
i,t = v*i +

2∑
j=1
Ξ*i,jX

*
j,t−1 + ε

*
i,t

= v*i +
2∑

j1=1
Ξ*i,j1(v

*
j1 +

2∑
j2=1
Ξ*j1,j2X

*
j2,t−2 + ε

*
j1,t−1) + ε

*
i,t

= v*i + ε
*
i,t +

2∑
j1=1
Ξ*i,j1(v

*
j1 + ε

*
j1,t−1)

+

2∑
j1=1

2∑
j2=1
Ξ*i,j1Ξ

*
j1,j2(v

*
j2 +

2∑
j3=1
Ξ*j2,j3X

*
j3,t−3 + ε

*
j2,t−2)
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= · · · = v*i + ε
*
i,t +

∞∑
j=1

∑
I∈{1,2}j+1
I(1)=i

⎛⎜⎜⎜⎜⎜⎜⎝
j∏

k=1

Ξ*I(k),I(k+1)

⎞⎟⎟⎟⎟⎟⎟⎠ (v*I(j+1) + ε*I(j+1),t−j).
The ε*i,t−j are iid, thus we have:∑

i
:= Var(X*

i,t) = QiQ′i +
∞∑
j=1
Ψ*i,jQiQ′iΨ

*
i,j
′, i = 1, 2, (30)

where

Ψ*i,j:=
∑

I∈{1,2}j+1
I(1)=1

⎛⎜⎜⎜⎜⎜⎜⎝
j∏

k=1

Ξ*I(k),I(k+1)

⎞⎟⎟⎟⎟⎟⎟⎠ , i = 1, 2, j ∈ N. (31)
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