❩❇■❘❑❆ ◆❆▲❖● ■❩ ❱❊❑❚❖❘❙❑■❍ P❘❖❙❚❖❘❖❱ ❆❥❞❛ ✐♥ ▼❛❥❛ ❋❖➆◆❊❘ ■③❞❛❥❛t❡❧❥ ✐♥ ③❛❧♦➸♥✐❦✿ ❋❛❦✉❧t❡t❛ ③❛ ❧♦❣✐st✐❦♦ ❯♥✐✈❡r③❡ ✈ ▼❛r✐❜♦r✉ ❆✈t♦r✿ ❆❥❞❛ ❋♦➨♥❡r ✐♥ ▼❛❥❛ ❋♦➨♥❡r ▲❡❦t♦r✐r❛♥❥❡✿ ❆♥❞r❡❥❛ ❷✉r✐♥ ❈■P ✲ ❑❛t❛❧♦➸♥✐ ③❛♣✐s ♦ ♣✉❜❧✐❦❛❝✐❥✐ ◆❛r♦❞♥❛ ✐♥ ✉♥✐✈❡r③✐t❡t♥❛ ❦♥❥✐➸♥✐❝❛✱ ▲❥✉❜❧❥❛♥❛ ✺✶✷✳✻✹✷✭✵✼✺✳✽✮✭✵✼✻✳✶✮ ❋❖➆◆❊❘✱ ❆❥❞❛ ❩❜✐r❦❛ ♥❛❧♦❣ ✐③ ✈❡❦t♦rs❦✐❤ ♣r♦st♦r♦✈ ❬❊❧❡❦tr♦♥s❦✐ ✈✐r❪ ✴ ❆❥❞❛ ✐♥ ▼❛❥❛ ❋♦➨♥❡r✳ ✲ ❈❡❧❥❡ ✿ ❋❛❦✉❧t❡t❛ ③❛ ❧♦❣✐st✐❦♦✱ ✷✵✵✼ ◆❛↔✐♥ ❞♦st♦♣❛ ✭❯❘▲✮✿ ❤tt♣✿✴✴✢✳✉♥✐✲♠❜✳s✐✴❡❦♥❥✐❣❡✴❩❜✐r❦❛❴♥❛❧♦❣❴✐③❴✈❡❦t♦rs❦✐❤❴♣r♦st♦r♦✈✳♣❞❢✳ ✲ ❖♣✐s t❡♠❡❧❥✐ ♥❛ ✈❡r③✐❥✐ ③ ❞♥❡ ✶✹✳✵✽✳✷✵✵✼ ■❙❇◆ ✾✼✽✲✾✻✶✲✻✺✻✷✲✵✾✲✻ ✶✳ ❋♦➨♥❡r✱ ▼❛❥❛ ✷✸✹✺✹✵✽✵✵ ❑❛③❛❧♦ ✶ ❱❡❦t♦rs❦✐ ♣r♦st♦r✐ ✹ ✷ ❇❛♥❛❝❤♦✈✐ ♣r♦st♦r✐ ✶✹ ✸ ❍✐❧❜❡rt♦✈✐ ♣r♦st♦r✐ ✸✶ ✸ P♦❣❧❛✈❥❡ ✶ ❱❡❦t♦rs❦✐ ♣r♦st♦r✐ ✶✳ ◆❛❥ ❜♦ V ♣r♦st♦r r❡❛❧♥✐❤ ③❛♣♦r❡❞✐❥ ✐♥ U ♠♥♦➸✐❝❛ t❛❦✐❤ r❡❛❧♥✐❤ ③❛♣♦r❡❞✐❥✱ ❦✐ ✐♠❛❥♦ ❧✐❤❡ ↔❧❡♥❡ ❡♥❛❦❡ ♥✐↔✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ U ♣♦❞♣r♦st♦r ♣r♦st♦r❛ V ✐♥ ♣♦✐➨↔✐t❡ ❦❛❦ ♥❥❡❣♦✈ ❦♦♠♣❧❡♠❡♥t✳ ◆❛♠✐❣✳ ❑♦♠♣❧❡♠❡♥t ♣r♦st♦r❛ U ❥❡ ♥❛ ♣r✐♠❡r W = {{xn}n∈N | x2n = 0, n ∈ N}. ✷✳ P♦✐➨↔✐t❡ ❦❛❦♦ ♠♥♦➸✐❝♦ ❧✐♥❡❛r♥♦ ♥❡♦❞✈✐s♥✐❤ ❡❧❡♠❡♥t♦✈ ♣r♦st♦r❛ R3✱ ❦✐ ③❛❞♦➨↔❛❥♦ r❡➨✐t✈✐ ❡♥❛↔❜❡ x1 − x2 + x3 = 0✳ ❘❡➨✐t❡✈✳ ■s❦❛♥❛ ♠♥♦➸✐❝❛ ❥❡ ♥❛ ♣r✐♠❡r {(1, 1, 0), (0, 1, 1), (2, 1, −1)}✳ ✸✳ ❩❛ ✈s❛❦ n ∈ N ♥❛❥ ❜♦ xn = (1, . . . , 1, 0, 0, . . .). n ❆❧✐ ❥❡ ♠♥♦➸✐❝❛ ③❛♣♦r❡❞✐❥ {xn}n∈N ❧✐♥❡❛r♥♦ ♥❡♦❞✈✐s♥❛❄ ❘❡➨✐t❡✈✳ ▼♥♦➸✐❝❛ ③❛♣♦r❡❞✐❥ {xn}n∈N ❥❡ ❧✐♥❡❛r♥♦ ♥❡♦❞✈✐s♥❛✳ ✹ ✹✳ ◆❛❥ ❜♦❞♦ ✈❡❦t♦r❥✐ b1, b2, . . . , bn+1 ❧✐♥❡❛r♥❛ ❦♦♠❜✐♥❛❝✐❥❛ ❧✐♥❡❛r♥♦ ♥❡♦❞✲ ✈✐s♥✐❤ ✈❡❦t♦r❥❡✈ a1, a2, . . . , an✳ P♦❦❛➸✐t❡✱ ❞❛ s♦ ✈❡❦t♦r❥✐ b1, b2, . . . , bn+1 ❧✐♥❡❛r♥♦ ♦❞✈✐s♥✐✳ ◆❛♠✐❣✳ ❱❡❦t♦r❥❡ b1, b2, . . . , bn+1 ③❛♣✐➨✐t❡ ❦♦t ❧✐♥❡❛r♥♦ ❦♦♠❜✐♥❛❝✐❥♦ ✈❡❦✲ t♦r❥❡✈ a1, a2, . . . , an✳ ❙ ♣♦♠♦↔❥♦ t❡❣❛ ③❛♣✐s❛ ♣♦❦❛➸✐t❡ ➸❡❧❡♥♦✳ ✺✳ P♦❦❛➸✐t❡✱ ❞❛ s♦ ❢✉♥❦❝✐❥❡ ex, e−x ✐♥ sin x ❧✐♥❡❛r♥♦ ♥❡♦❞✈✐s♥❡ ✈ ♣r♦st♦r✉ RR✳ ◆❛♠✐❣✳ ❩ ♦♣❛③♦✈❛♥❥❡♠ ✈r❡❞♥♦st✐ ❢✉♥❦❝✐❥ ✈ x = 0 ✐♥ x = π ♣♦❦❛➸❡♠♦ ➸❡❧❡♥♦✳ ✻✳ ❆❧✐ s♦ ❢✉♥❦❝✐❥❡ 2✱ cos 2x ✐♥ cos2 x ❧✐♥❡❛r♥♦ ♦❞✈✐s♥❡❄ ✼✳ ❉♦❧♦↔✐t❡ t ∈ R t❛❦♦✱ ❞❛ ❜♦ ♠♥♦➸✐❝❛ U = {(x, y, z) ∈ R3 | x − t(y + 2z − 2) = 4} ✈❡❦t♦rs❦✐ ♣♦❞♣r♦st♦r ♣r♦st♦r❛ R3✳ P♦✐➨↔✐t❡ ❦❛❦♦ ♠❛❦s✐♠❛❧♥♦ ❧✐♥❡❛r♥♦ ♥❡♦❞✈✐s♥♦ ♣♦❞♠♥♦➸✐❝♦ t❡❣❛ ♣r♦st♦r❛✳ ◆❛♠✐❣✳ ■③❦❛➸❡ s❡✱ ❞❛ ❥❡ t = 2✳ ■s❦❛♥❛ ♠♥♦➸✐❝❛ ❥❡ ♥❛ ♣r✐♠❡r {(4, 0, 1), (2, 1, 0)}✳ ✽✳ ◆❛❥ ❜♦ V = R4[x] ♣r♦st♦r r❡❛❧♥✐❤ ♣♦❧✐♥♦♠♦✈ st♦♣♥❥❡ ♥❛❥✈❡↔ 4 ✐♥ ♥❛❥ ❜♦st❛ U = {p ∈ V | p′′ = 0} ✐♥ W = L{1 + x, x + x2, x2 + x3, x3 + x4}, ❦❥❡r ❥❡ p′′ ❞r✉❣✐ ♦❞✈♦❞ ♣♦❧✐♥♦♠❛ p✳ ❆❧✐ ❥❡ U ⊆ W ? ◆❛♠✐❣✳ ❖♣❛③✐♠♦✱ ❞❛ ❥❡ U = L{1, x}✳ ❑❡r 1, x /∈ W ✱ ❥❡ ♦❞❣♦✈♦r ♥❛ ③❛st❛✈❧❥❡♥♦ ✈♣r❛➨❛♥❥❡ ♥❡❣❛t✐✈❡♥✳ ✺ ✾✳ ◆❛❥ ❜♦ V = R3[x] ♣r♦st♦r r❡❛❧♥✐❤ ♣♦❧✐♥♦♠♦✈ st♦♣♥❥❡ ♥❛❥✈❡↔ 3✳ ❉♦❧♦↔✐t❡ α, β ∈ R t❛❦♦✱ ❞❛ ❜♦st❛ ♠♥♦➸✐❝✐ U = {p ∈ V | p(0)−(α−1)p′(0)+α = β} ✐♥ W = {p ∈ V | p(0)−p′′(0) = β +1, p(−1) = 0} ✈❡❦t♦rs❦❛ ♣♦❞♣r♦st♦r❛ ♣r♦st♦r❛ V ✳ P♦✐➨↔✐t❡ ❜❛③♦ ♣r❡s❡❦❛ U ∩ W ✐♥ ❜❛③♦ ✈s♦t❡ U + W ✳ ◆❛♠✐❣✳ ■③❦❛➸❡ s❡✱ ❞❛ ❥❡ α = β = −1✳ ❇❛③❛ ♣r❡s❡❦❛ ❥❡ BU∩W = {2 − x + x2 + 4x3}, ❜❛③❛ ✈s♦t❡ ❥❡ BU+W = {1, x, x2, x3}. ✶✵✳ ❑❛❦➨♥❛ ♠♦r❛ ❜✐t✐ ❢✉♥❦❝✐❥❛ f : R → R✱ ❞❛ ❜♦ ♠♥♦➸✐❝❛ ❢✉♥❦❝✐❥ {1, f, f2, f3, . . .} ❧✐♥❡❛r♥♦ ♦❞✈✐s♥❛❄ ❘❡➨✐t❡✈✳ ❖❜st❛❥❛❥♦ t❛❦✐ α0, α1, . . . , αn ∈ R✱ ♥❡ ✈s✐ ♥✐↔✱ ❞❛ ❥❡ α0 + α1f(x) + α2f(x)2 + . . . + αnf(x)n = 0 ③❛ ✈s❡ x ∈ R✳ ❩❛♣✐s❛♥♦ ❞r✉❣❛↔❡✱ ✈s❛❦❛ ❢✉♥❦❝✐❥s❦❛ ✈r❡❞♥♦st ❥❡ ♥✐↔❧❛ ✭♥❡♥✐↔❡❧♥❡❣❛✮ ♣♦❧✐♥♦♠❛ p(y) = α0 + α1y + α2y2 + . . . + αnyn. ❚♦❞❛ ♣♦❧✐♥♦♠ ✐♠❛ ❧❡ ❦♦♥↔♥♦ ♠♥♦❣♦ ♥✐↔❡❧✳ ❚♦r❡❥ ❥❡ ♣♦tr❡❜❡♥ ♣♦❣♦❥ ③❛ ❧✐♥❡❛r♥♦ ♦❞✈✐s♥♦st ♠♥♦➸✐❝❡ {1, f, f2, f3, . . .}✱ ❞❛ f ③❛✈③❛♠❡ ❧❡ ❦♦♥↔♥♦ ♠♥♦❣♦ r❛③❧✐↔♥✐❤ ✈r❡❞♥♦st✐✳ ❚❛ ♣♦❣♦❥ ♣❛ ❥❡ t✉❞✐ ③❛❞♦st❡♥✳ ◆❛♠r❡↔✱ ↔❡ f ③❛✈③❛♠❡ ❧❡ ✈r❡❞♥♦st✐ c1, c2, . . . , cm ∈ R✱ ❥❡ (f (x) − c1) · . . . · (f(x) − cm) = 0 ③❛ ✈s❛❦ x ∈ R✱ t♦r❡❥ f (x)m + αm−1f(x)m−1 + . . . + α1f(x) + α0 = 0, ❦❥❡r ❥❡ α0 = (−1)mc1 · . . . · cm ∈ R✱ . . .✱ αm−1 = −(c1 + . . . + cm) ∈ R✳ P♦s❧❡❞✐❝❛ s❡✈❡❞❛ ❥❡✱ ❞❛ ③✈❡③♥❛ ♥❡❦♦♥st❛♥t♥❛ ❢✉♥❦❝✐❥❛ f ♥✐♠❛ t❡ ❧❛st♥♦st✐✳ ✶✶✳ ◆❛❥ ❜♦ A = Mn(R) ♣r♦st♦r ✈s❡❤ r❡❛❧♥✐❤ ♠❛tr✐❦ ✐♥ ♥❛❥ ❜♦st❛ S = {A ∈ A | AT = A} t❡r K = {A ∈ A | AT = −A}, ♣r✐ ↔❡♠❡r AT ♦③♥❛↔✉❥❡ tr❛♥s♣♦♥✐r❛♥♦ ♠❛tr✐❦♦ ♠❛tr✐❦❡ A✳ ✻ ✭❛✮ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ A = S ⊕ K✳ ✭❜✮ ❩❛♣✐➨✐t❡ ❜❛③✐ ♣r♦st♦r♦✈ S ✐♥ K✳ ❘❡➨✐t❡✈✳ ✭❛✮ ❱s❛❦ A ∈ A ❧❛❤❦♦ ③❛♣✐➨❡♠♦ ✈ ♦❜❧✐❦✐ A + AT A − AT A = + , 2 2 ❦❥❡r ❥❡ A + AT ∈ S ✐♥ A − AT ∈ K. 2 2 ❷❡ ❥❡ A ∈ S ∩ K✱ ❥❡ AT = A = −A✱ ✐③ ↔❡s❛r s❧❡❞✐ A = 0✳ ❚♦r❡❥ ❥❡ S ⊕ K = {0}✳ ✭❜✮ ❇❛③❛ ✐♥ ❞✐♠❡♥③✐❥❛ ♣r♦st♦r❛ S✿ BS = {Eii | 1 ≤ i ≤ n} ∪ {Eij + Eji | i = j, 1 ≤ i, j ≤ n, }, ❞✐♠ n(n + 1) S = . 2 ❇❛③❛ ✐♥ ❞✐♠❡♥③✐❥❛ ♣r♦st♦r❛ K✿ BK = {Eij − Eji | i = j, 1 ≤ i, j ≤ n, }, ❞✐♠ n(n − 1) K = . 2 ✶✷✳ ◆❛❥ ❜♦ Tn(R) ♣r♦st♦r ③❣♦r❛❥ tr✐❦♦t♥✐❤ n × n ♠❛tr✐❦✱ Sn(R) ♣❛ ♣r♦st♦r str♦❣♦ s♣♦❞❛❥ tr✐❦♦t♥✐❤ n×n ♠❛tr✐❦✳ P♦✐➨↔✐t❡ ❦❛❦♦ ❜❛③♦ ♣r♦st♦r♦✈ Tn(R) ✐♥ Sn(R) t❡r ③❛♣✐➨✐t❡ ♥❥✉♥✐ ❞✐♠❡♥③✐❥✐✳ ❘❡➨✐t❡✈✳ ❇❛③❛ ✐♥ ❞✐♠❡♥③✐❥❛ ♣r♦st♦r❛ Tn(R)✿ BTn(R) = {Eii | 1 ≤ i ≤ n} ∪ {Eij | 1 ≤ i ≤ n, i < j ≤ n}, ❞✐♠ (n + 1)(n + 2) Tn(R) = . 2 ✼ ❇❛③❛ ✐♥ ❞✐♠❡♥③✐❥❛ ♣r♦st♦r❛ Sn(R)✿ BSn(R) = {Eij | 1 < i ≤ n, 1 ≤ j < i}, ❞✐♠ n(n − 1) Sn(R) = . 2 ✶✸✳ ❉❡✜♥✐r❛❥♠♦ ♣r❡s❧✐❦❛✈❡ A, B, C : R[0,1] → R[0,1] s ♣r❡❞♣✐s✐ ✭❛✮ (Af)(x) = 3 f(x)✱ ✭❜✮ (Bf)(x) = f(1 − x)✱ ✭❝✮ (Cf)(x) = xf(x)✳ ❆❧✐ s♦ ♣r❡s❧✐❦❛✈❡ ❧✐♥❡❛r♥❡❄ ❉♦❧♦↔✐t❡ ❥❡❞r♦ ✐♥ ③❛❧♦❣♦ ✈r❡❞♥♦st✐ ❧✐♥❡❛r♥✐❤ ♣r❡s❧✐❦❛✈✳ ❘❡➨✐t❡✈✳ Pr❡s❧✐❦❛✈✐ B ✐♥ C st❛ ❧✐♥❡❛r♥✐✳ Pr❡s❧✐❦❛✈❛ B ❥❡ ❜✐❥❡❦t✐✈♥❛✳ ◆✐ t❡➸❦♦ ♣r❡✈❡r✐t✐✱ ❞❛ ❥❡ KerC = {f ∈ R[0,1] | f(x) = 0, x ∈ (0, 1]} ✐♥ ImC = {f ∈ R[0,1] | f(0) = 0}✳ ✶✹✳ ◆❛❥ ❜♦ A ❧✐♥❡❛r❡♥ ♦♣❡r❛t♦r ♥❛ ✈❡❦t♦rs❦❡♠ ♣r♦st♦r✉ V ✳ P♦❦❛➸✐t❡✿ A ❥❡ ✐♥❥❡❦t✐✈❡♥ ♥❛t❛♥❦♦ t❡❞❛❥✱ ❦♦ s❧✐❦❛ ❧✐♥❡❛r♥♦ ♥❡♦❞✈✐s♥❡ ♠♥♦➸✐❝❡ ✈ ❧✐♥❡❛r♥♦ ♥❡♦❞✈✐s♥❡ ♠♥♦➸✐❝❡✳ ❘❡➨✐t❡✈✳ (=⇒) ◆❛❥ ❜♦ S = {s1, s2, . . . , sn} ❧✐♥❡❛r♥♦ ♥❡♦❞✈✐s♥❛ ♣♦❞♠✲ ♥♦➸✐❝❛ ♣r♦st♦r❛ V ✳ P♦t❡♠ ❥❡ 0 = α1As1 + α2As2 + . . . + αnAsn = A(α1s1 + α2s2 + . . . + αnsn)✳ ❑❡r ❥❡ ♣♦ ♣r❡❞♣♦st❛✈❦✐ A ✐♥❥❡❦t✐✈❡♥ ♦♣✲ ❡r❛t♦r✱ s❧❡❞✐ α1s1 + α2s2 + . . . + αnsn = 0✱ ❦❛r ♥❛s ♣r✐✈❡❞❡ ❞♦ ➸❡❧❡♥❡❣❛ r❡③✉❧t❛t❛ α1 = α2 = . . . = αn = 0✳ (⇐=) Pr❡❞♣♦st❛✈✐♠♦✱ ❞❛ A ♥✐ ✐♥❥❡❦t✐✈❡♥ ♦♣❡r❛t♦r✳ P♦t❡♠ ♦❜st❛❥❛ t❛❦ 0 = x ∈ V ✱ ❞❛ ❥❡ Ax = 0✳ ❑❡r ❥❡ {x} ❧✐♥❡❛r♥♦ ♥❡♦❞✈✐s♥❛ ♠♥♦➸✐❝❛✱ ❥❡ t✉❞✐ ♠♥♦➸✐❝❛ {Ax} = {0} ❧✐♥❡❛r♥♦ ♥❡♦❞✈✐s♥❛✱ ❦❛r ♣❛ ♥✐ r❡s✳ ✶✺✳ ◆❛❥ ❜♦st❛ U ✐♥ V ❦♦♥↔♥♦ r❛③s❡➸♥❛ ✈❡❦t♦rs❦❛ ♣r♦st♦r❛ ♥❛❞ ♣♦❧❥❡♠ F ✐♥ ♥❛❥ ❜♦ A : U → V ❧✐♥❡❛r❡♥ ♦♣❡r❛t♦r✳ P♦❦❛➸✐t❡✿ A ❥❡ s✉r❥❡❦t✐✈❡♥ ♥❛t❛♥❦♦ t❡❞❛❥✱ ❦♦ s❧✐❦❛ ♦❣r♦❞❥❡ ✈ ♦❣r♦❞❥❡✳ ✽ ❘❡➨✐t❡✈✳ (=⇒) ◆❛❥ ❜♦ S = {s1, s2, . . . , sn} ♦❣r♦❞❥❡ ♣r♦st♦r❛ U ✐♥ ♥❛❥ ❜♦ v ∈ V ✳ P♦t❡♠ ♦❜st❛❥❛ t❛❦ u ∈ U✱ ❞❛ ❥❡ v = Au = A(α1s1 + α2s2 + . . . + αnsn) = α1(As1) + α2(As2) + . . . + αn(Asn) ③❛ ♥❡❦❡ αi ∈ F. (⇐=) ❷❡ ❥❡ ♠♥♦➸✐❝❛ S ♦❣r♦❞❥❡ ♣r♦st♦r❛ U✱ ❥❡ A(S) = {As | s ∈ S} ♦❣r♦❞❥❡ ♣r♦st♦r❛ V ✳ ◆❛❥ ❜♦ v ∈ V = L(A(S))✳ P♦t❡♠ ❥❡ v = α1As1 + α2As2 + . . . + αnAsn = A(α1s1 + α2s2 + . . . + αnsn) = Au, si ∈ S✱ αj ∈ F ✱ 1 ≤ i, j ≤ n✳ ✶✻✳ ◆❛❥ ❜♦❞♦ x, y, z ∈ R✳ ❆❧✐ ❥❡ r❛✈♥✐♥❛ z = x + y ❤✐♣❡rr❛✈♥✐♥❛❄ P♦✐➨↔✐t❡ t❛❦❡ ❧✐♥❡❛r♥❡ ❢✉♥❦❝✐♦♥❛❧❡ f✱ ❞❛ ❥❡ Kerf t❛ r❛✈♥✐♥❛✳ ❘❡➨✐t❡✈✳ ❘❛✈♥✐♥❛ z = x + y ❥❡ ❤✐♣❡rr❛✈♥✐♥❛✳ ◆❛❥ ❜♦ a ∈ R ✐♥ fa ♣r❡s❧✐❦❛✈❛ ❞❡✜♥✐r❛♥❛ s ♣r❡❞♣✐s♦♠ fa(x, y, z) = a(x + y − z)✳ ❏❡❞r♦ t❛❦✐❤ ♣r❡s❧✐❦❛✈ ❥❡ r❛✈♥✐♥❛ z = x + y✳ ✶✼✳ ◆❛❥ ❜♦ V ♣r♦st♦r ♣♦❧✐♥♦♠♦✈ ③ r❡❛❧♥✐♠✐ ❦♦❡✜❝✐❡♥t✐ st♦♣♥❥❡ ♠❛♥❥➨❡ ❛❧✐ ❡♥❛❦❡ n ✐♥ ♥❛❥ ❜♦ H = {a1x+. . .+anxn | ai ∈ R}✳ ❆❧✐ ❥❡ H ❤✐♣❡rr❛✈♥✐♥❛❄ P♦✐➨↔✐t❡ ❦❛❦ ❧✐♥❡❛r♥✐ ❢✉♥❦❝✐♦♥❛❧ f ③ ❧❛st♥♦st❥♦ Kerf = H ✳ ❘❡➨✐t❡✈✳ ▼♥♦➸✐❝❛ H ❥❡ ❤✐♣❡rr❛✈♥✐♥❛✳ ❷❡ ❞❡✜♥✐r❛♠♦ ♣r❡s❧✐❦❛✈♦ f : V → R s ♣r❡❞♣✐s♦♠ f (p) = p(0)✱ p ∈ V ✱ ♣♦t❡♠ ❥❡ Kerf = H✳ ✶✽✳ ◆❛❥ ❜♦ V ❦♦♥↔♥♦ r❛③s❡➸❡♥ ✈❡❦t♦rs❦✐ ♣r♦st♦r ♥❛❞ ♣♦❧❥❡♠ F ✐♥ ♥❛❥ ❜♦st❛ f t❡r g ♥❡♥✐↔❡❧♥❛ ❧✐♥❡❛r♥❛ ❢✉♥❦❝✐♦♥❛❧❛ ♥❛ V ✳ P♦❦❛➸✐t❡✿ ↔❡ ❥❡ Kerf ⊆ Kerg✱ ❥❡ g = λf ③❛ ♥❡❦ λ ∈ F ✳ ❘❡➨✐t❡✈✳ ❑❡r ❥❡ ❥❡❞r♦ ♥❡♥✐↔❡❧♥❡❣❛ ❧✐♥❡❛r♥❡❣❛ ❢✉♥❦❝✐♦♥❛❧❛ ❤✐♣❡rr❛✈♥✐♥❛✱ ♦❜st❛❥❛ t❛❦ 0 = a ∈ V ✱ ❞❛ ❥❡ f(a) = 0✳ ◆❛❥ ❜♦ x ∈ V ✳ P♦t❡♠ ❥❡ x − f(x)a ∈ Kerf ✐♥ ③❛t♦ ❥❡ g(x) = f(x) g(a) ③❛ ✈s❛❦ x ∈ V ✳ f (a) f (a) ✶✾✳ ◆❛❥ ❜♦st❛ A, B : V → V t❛❦❛ ❡♥❞♦♠♦r✜③♠❛ ❦♦♥↔♥♦ r❛③s❡➸♥❡❣❛ ✈❡❦✲ t♦rs❦❡❣❛ ♣r♦st♦r❛ V ✱ ❞❛ ✈❡❧❥❛ V = ImA ⊕ KerB✳ P♦❦❛➸✐t❡✱ ❞❛ st❛ ③❛❧♦❣✐ ✈r❡❞♥♦st✐ ♣r❡s❧✐❦❛✈ BA ✐♥ B ❡♥❛❦✐✳ ✾ ❘❡➨✐t❡✈✳ ◆❛❥ ❜♦ x ∈ ImB✳ P♦t❡♠ ♦❜st❛❥❛ t❛❦ y ∈ V ✱ ❞❛ ❥❡ x = By✳ P♦ ♣r❡❞♣♦st❛✈❦✐ ❥❡ y = z + z′✱ ❦❥❡r st❛ z ∈ ImA ✐♥ z′ ∈ KerB✳ ❚♦r❡❥ ❥❡ x = Bz✳ ❑❡r ❥❡ z ∈ ImA✱ ❥❡ z = Au ③❛ ♥❡❦ u ∈ V ✳ ■③ t❡❣❛ s❧❡❞✐ ➸❡❧❡♥♦✱ x = BAu✳ ✷✵✳ ◆❛❥ ❜♦❞♦ U✱ V ✐♥ W ✈❡❦t♦rs❦✐ ♣r♦st♦r✐ ♥❛❞ ✐st✐♠ ♣♦❧❥❡♠ ✐♥ ♥❛❥ ❜♦st❛ A : U → V t❡r B : V → W ❧✐♥❡❛r♥✐ ♣r❡s❧✐❦❛✈✐✳ P♦❦❛➸✐t❡✿ BA = 0 ♥❛t❛♥❦♦ t❡❞❛❥✱ ❦♦ ❥❡ ImA ⊆ KerB✳ ❘❡➨✐t❡✈✳ (⇐=) Pr❡❞♣♦st❛✈✐♠♦✱ ❞❛ ❥❡ ImA ⊆ KerB ✐♥ ♥❛❥ ❜♦ u ∈ U✳ P♦t❡♠ ❥❡ Au ∈ ImA✳ ❙❧❡❞✐ BAu = 0 ③❛ ✈s❛❦ u ∈ U✳ (=⇒) ◆❛❥ ❜♦ BA = 0 ✐♥ ♥❛❥ ❜♦ v ∈ ImA✳ P♦t❡♠ ❥❡ v = Au ③❛ ♥❡❦ u ∈ U✳ ❍✐tr♦ ✈✐❞✐♠♦✱ ❞❛ ❥❡ v ∈ KerB✳ ✷✶✳ ◆❛❥ ❜♦st❛ D, J : R[x] → R[x] ♣r❡s❧✐❦❛✈✐ ❞❡✜♥✐r❛♥✐ s ♣r❡❞♣✐s♦♠❛ Dp = p′ ✐♥ (Jp)(x) = x p(t)dt✳ 0 ✭❛✮ ❉♦❧♦↔✐t❡ ♣r❡s❧✐❦❛✈✐ DJ ✐♥ JD✳ ✭❜✮ ❉♦❧♦↔✐t❡ ♠❛tr✐❦✐ ❧✐♥❡❛r♥✐❤ ♦♣❡r❛t♦r❥❡✈ D ✐♥ J ❣❧❡❞❡ ♥❛ st❛♥❞❛r❞♥♦ ❜❛③♦ ♣r♦st♦r❛ r❡❛❧♥✐❤ ♣♦❧✐♥♦♠♦✈ R[x]✳ ❘❡➨✐t❡✈✳ ✭❛✮ Pr❡s❧✐❦❛✈❛ DJ ❥❡ ✐❞❡♥t✐t❡t❛✱ ♣r❡s❧✐❦❛✈❛ JD ♣❛ ♣r♦❥❡❦t♦r✱ s❛❥ ❥❡ (JD)2 = JD✳ ✭❜✮ ▼❛tr✐❦✐ ❧✐♥❡❛r♥✐❤ ♦♣❡r❛t♦r❥❡✈ D ✐♥ J ❣❧❡❞❡ ♥❛ st❛♥❞❛r❞♥♦ ❜❛③♦ ♣r♦s✲ t♦r❛ r❡❛❧♥✐❤ ♣♦❧✐♥♦♠♦✈ R[x] st❛✿     0 1 0 0 0 . . . 0 0 0 0 0 . . .  0 0 2 0 0 . . .   1 0 0 0 0 . . .      D =  0 0 0 3 0 . . .  ✐♥  0 1 0 0 0 . . .    J =  2  .  0 0 0 0 4 . . .   0 0 1 0 0 . . .   ✳   3  ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳✳ ✳✳ ✳✳ ✳✳✳ · · · ✳✳ ✳✳ ✳✳ ✳✳ ✳✳✳ ··· ✶✵ ✷✷✳ ◆❛❥ ❜♦ V ✈❡❦t♦rs❦✐ ♣r♦st♦r✳ P♦❦❛➸✐t❡✿ ↔❡ ③❛ ❧✐♥❡❛r♥♦ ♣r❡s❧✐❦❛✈♦ P : V → V ✈❡❧❥❛ P 2 = P ✱ ❥❡ V = KerP ⊕ ImP ✳ ❘❡➨✐t❡✈✳ ◆❛❥ ❜♦ x ∈ KerP ∩ ImP ✳ P♦t❡♠ ❥❡ P x = 0 ✐♥ x = P y ③❛ ♥❡❦ y ∈ V ✳ ❚♦r❡❥ ❥❡ 0 = P x = P 2y = P y = x✳ Pr❛✈ t❛❦♦ ✈✐❞✐♠♦✱ ❞❛ ❧❛❤❦♦ ✈s❛❦ x ∈ V ③❛♣✐➨❡♠♦ ❦♦t x = (x − P x) + P x✱ ❦❥❡r ❥❡ x − P x ∈ KerP ✐♥ P x ∈ ImP ✳ ✷✸✳ ◆❛❥ ❜♦ V ✈❡❦t♦rs❦✐ ♣r♦st♦r ✐♥ A : V → V ❧✐♥❡❛r♥✐ ♦♣❡r❛t♦r✳ P♦❦❛➸✐t❡✿ ✭❛✮ KerA ⊆ KerA2 ⊆ KerA3 ⊆ . . . ✭❜✮ ◆❛❥ ③❛ ♥❡❦ k ∈ N ✈❡❧❥❛ KerAk = KerAk+1✳ P♦t❡♠ ❥❡ t✉❞✐ KerAk+2 = KerAk ✭✐♥ ③❛t♦ KerAk = KerAk+j ③❛ ✈s❛❦ j ∈ N✮✳ ✭❝✮ ❷❡ ❥❡ ❞✐♠V = n < ∞✱ ♣♦t❡♠ ❥❡ KerAn = KerAn+1 = KerAn+2 = . . . ❙ ♣r✐♠❡r♦♠ ♣♦❦❛➸✐t❡✱ ❞❛ ❥❡ ❧❛❤❦♦ KerAn−1 = KerAn✳ ✭❞✮ ◆❛❥ ❜♦ V ♥❡s❦♦♥↔♥♦ r❛③s❡➸❡♥ ♣r♦st♦r✳ ❙ ♣r✐♠❡r♦♠ ♣♦❦❛➸✐t❡✱ ❞❛ ❧❛❤❦♦ ✈❡❧❥❛ KerAn = KerAn+1 ③❛ ✈s❛❦ n ∈ N✳ ◆❛♠✐❣✳ ✭❛✮ ◆❛❥ ❜♦ x ∈ KerAn✳ P♦t❡♠ ❥❡ An+1x = A(Anx) = 0✱ ❦❛r ♣♦♠❡♥✐✱ ❞❛ ❥❡ x ∈ KerAn+1 ③❛ ✈s❛❦ n ∈ N✳ ✭❜✮ ●❧❡❞❡ ♥❛ ✭❛✮ ❥❡ KerAk ⊆ KerAk+2✳ Pr❡❞♣♦st❛✈✐♠♦✱ ❞❛ ❥❡ x ∈ KerAk+2✳ P♦t❡♠ ❥❡ Ax ∈ KerAk+1 ✐♥ ③❛t♦ ❥❡ Ax ∈ KerAk✳ ❍✐tr♦ ✈✐❞✐♠♦✱ ❞❛ ❥❡ x ∈ KerAk✳ ✭❝✮ ❯♣♦➨t❡✈❛❥t❡ ❞✐♠Ai✳ P♦✐➨↔✐t❡ t❛❦♦ r❡❛❧♥♦ n × n ♠❛tr✐❦♦ A✱ ❞❛ ❥❡ An−1 = 0 ✐♥ An = 0✳ ❙ ♣♦♠♦↔❥♦ t❡ ♠❛tr✐❦❡ ♥❛t♦ ❦♦♥str✉✐r❛❥t❡ ✐s❦❛♥✐ ♦♣❡r❛t♦r ♥❛ ♥♣r✳ Rn✳ ✭❞✮ ◆❛❥ ❜♦ V ✈❡❦t♦rs❦✐ ♣r♦st♦r r❡❛❧♥✐❤ ③❛♣♦r❡❞✐❥ ✐♥ A : V → V ♣r❡s✲ ❧✐❦❛✈❛ ❞❡✜♥✐r❛♥❛ s ♣r❡❞♣✐s♦♠ A(x1, x2, x3, . . .) = (x2, x3, . . .)✳ ✷✹✳ ◆❛❥ ❜♦ V ✈❡❦t♦rs❦✐ ♣r♦st♦r ✐♥ A : V → V ❧✐♥❡❛r❡♥ ♦♣❡r❛t♦r✳ P♦❦❛➸✐t❡✿ ✭❛✮ ImA ⊇ ImA2 ⊇ ImA3 ⊇ . . . ✶✶ ✭❜✮ ◆❛❥ ③❛ ♥❡❦ k ∈ N ✈❡❧❥❛ ImAk = ImAk+1✳ P♦t❡♠ ❥❡ t✉❞✐ ImAk+2 = ImAk ✭✐♥ ③❛t♦ ImAk = ImAk+j ③❛ ✈s❛❦ j ∈ N✮✳ ✭❝✮ ❷❡ ❥❡ ❞✐♠V = n < ∞✱ ♣♦t❡♠ ❥❡ ImAn = ImAn+1 = ImAn+2 = . . . ❙ ♣r✐♠❡r♦♠ ♣♦❦❛➸✐t❡✱ ❞❛ ❥❡ ❧❛❤❦♦ ImAn−1 = ImAn✳ ◆❛♠✐❣✳ ●❧❡❥t❡ ♥❛♠✐❣ ♣r✐ ♥❛❧♦❣✐ ✷✸✳ ✷✺✳ ◆❛❥ ❜♦ M = Mn(R) ❛❧❣❡❜r❛ r❡❛❧♥✐❤ n × n ♠❛tr✐❦✱ n ≥ 2✳ ❩❛ ♣♦❧❥✉❜♥✐ ♠❛tr✐❦✐ A, B ∈ M ❞❡✜♥✐r❛❥♠♦ ♣r❡s❧✐❦❛✈♦ L(A,B) : M → M s ♣r❡❞♣✐s♦♠ L(A,B)(X) = AXBT ✳ ✭❛✮ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ L(A,B) ❧✐♥❡❛r❡♥ ♦♣❡r❛t♦r✳ ❑❛❥ ❥❡ L(A,B)L(B,A)❄ ✭❜✮ P♦✐➨↔✐t❡ ❜❛③♦ ImL(E11,E12)✳ ❆❧✐ ❥❡ KerL(E11,E12) ❤✐♣❡rr❛✈♥✐♥❛❄ ✭❝✮ ◆❛❥ ❜♦ 1 1 n = 2 ✐♥ ♥❛❥ ❜♦ A = ✳ 2 0 ✐✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ B = {E11, E11 − E21, E12 + E21, E22} ❜❛③❛ ♣r♦s✲ t♦r❛ M✳ ✐✐✳ ❖♣❡r❛t♦r❥✉ L(A,A) ♣r✐r❡❞✐t❡ ♠❛tr✐❦♦ ❣❧❡❞❡ ♥❛ ❜❛③♦ B✳ ◆❛♠✐❣✳ ✭❛✮ ❱✐❞✐♠♦✱ ❞❛ ❥❡ L(A,B)L(B,A) = L(AB,BA). ✭❜✮ ❇❛③❛ ♣r♦st♦r❛ ImL(E11,E12) ❥❡ B = {E11}✱ ❞✐♠KerL(E11,E12) = n2−1. ✭❝✮ ✐✳ ❖❜r❛✈♥❛✈❛ ❡♥❛❦♦st✐ αE11+β(E11−E21)+γ(E12+E21)+δE22 = 0 ♥❛s ♣r✐✈❡❞❡ ❞♦ ➸❡❧❡♥❡❣❛✳   1 6 2 1 ✐✐✳ ▼❛tr✐❦❛ ♣r✐r❡❥❡♥❛ ♦♣❡r❛t♦r❥✉  0 −6 0 0  L(A,A) ❣❧❡❞❡ ♥❛ ❜❛③♦ B ❥❡   .  2 0 2 0  4 4 0 0 ✷✻✳ ◆❛❥ ❜♦❞♦ P1✱ P2 ✐♥ P3 t❛❦✐ ♣r♦❥❡❦t♦r❥✐ ♥❛ ✈❡❦t♦rs❦❡♠ ♣r♦st♦r✉ X✱ ❞❛ ❥❡ PiPj = −PjPi ③❛ ✈s❡ i = j t❡r P1 + P2 + P3 = I✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ X = ImP1 ⊕ ImP2 ⊕ ImP3. ✶✷ ◆❛♠✐❣✳ ◆❛❥♣r❡❥ ♣♦❦❛➸✐t❡✱ ❞❛ ❥❡ Pij = 0✱ i = j✳ ❷❡ ❥❡ x ∈ X✱ ❥❡ x = Ix = (P1 + P2 + P3)x = P1x + P2x + P3x ✐♥ ③❛t♦ ❥❡ x ∈ ImP1 + ImP2 + ImP3✳ ◆❛❥ ❜♦ x ∈ ImP1∩(ImP2⊕ImP3)✳ P♦t❡♠ ❥❡ x = P1x ✐♥ x = P2x2+P3x3 ③❛ ♥❡❦❛ x2, x3 ∈ X✳ ■③ t❡❣❛ s❧❡❞✐ P 21x = P1P2x2+P2P3x3. ❚♦r❡❥ ❥❡ P1x = 0 ✐♥ ③❛t♦ ❥❡ x = 0✳ P♦❞♦❜♥♦ ♣♦❦❛➸❡♠♦ ➨❡ ♣r❡♦st❛❧❡ ❧❛st♥♦st✐✳ ✶✸ P♦❣❧❛✈❥❡ ✷ ❇❛♥❛❝❤♦✈✐ ♣r♦st♦r✐ ✶✳ ◆❛❥ ❜♦ Y ♥❡♣r❛③♥❛ ♣♦❞♠♥♦➸✐❝❛ ❇❛♥❛❝❤♦✈❡❣❛ ♣r♦st♦r❛ X✱ Z ♣❛ ♥❡♣r❛③♥❛ ♣♦❞♠♥♦➸✐❝❛ ❞✉❛❧❛ X∗✳ ◆❛❥ ❜♦ Y ⊥ = {f ∈ X∗ | f(y) = 0, ∀y ∈ Y } ✐♥ Z⊤ = {x ∈ X | f(x) = 0, ∀f ∈ Z}. P♦❦❛➸✐t❡✿ ✭❛✮ Y ⊥ ❥❡ ③❛♣rt ♣♦❞♣r♦st♦r ♣r♦st♦r❛ X∗✳ ✭❜✮ Y ⊆ (Y ⊥)⊤. ✭❝✮ ❩❛ ✈s❛❦ ③❛♣rt ♣♦❞♣r♦st♦r Y ⊆ X ❥❡ (Y ⊥)⊤ = Y ✳ ❘❡➨✐t❡✈✳ ✭❛✮ ◆❛❥ ❜♦ {fn}n∈N t❛❦♦ ③❛♣♦r❡❞❥❡ ✈ Y ⊥✱ ❞❛ ❥❡ limn→∞ fn = f✳ P♦t❡♠ ❥❡ f(y) = limn→∞ fn(y) = 0 ③❛ ✈s❛❦ y ∈ Y ✳ ■③ t❡❣❛ s❧❡❞✐✱ ❞❛ ❥❡ f ∈ Y ⊥✳ ✭❜✮ ◆❛❥ ❜♦ y ∈ Y ✳ P♦t❡♠ ③❛ ✈s❛❦ f ∈ Y ⊥ ✈❡❧❥❛ f(y) = 0✳ ❚♦r❡❥ ❥❡ y ∈ (Y ⊥)T = {x ∈ X | f(x) = 0, ∀f ∈ Y ⊥}. ✭❝✮ ●❧❡❞❡ ♥❛ ✭❜✮ ♠♦r❛♠♦ ♣♦❦❛③❛t✐✱ ❞❛ ❥❡ (Y ⊥)⊤ ⊆ Y ✳ P♦ ♣♦s❧❡❞✐❝✐ ❍❛❤♥ ❇❛♥❛❝❤♦✈❡❣❛ ✐③r❡❦❛ ♦❜st❛❥❛ t❛❦ f ∈ X∗✱ ❞❛ ❥❡ f(Y ) = 0 ✐♥ f (x) = 0 ③❛ ♥❡❦ x ∈ X − Y ✳ ❙❧❡❞✐ x / ∈ (Y ⊥)⊤✳ ❙ t❡♠ s♠♦ ♣♦❦❛③❛❧✐ ➸❡❧❡♥♦✳ ✶✹ ✷✳ ◆❛❥ ❜♦st❛ (V1, . 1) ✐♥ (V2, . 2) ♥♦r♠✐r❛♥❛ ♣r♦st♦r❛✳ ✭❛✮ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ V1 × V2 ♥♦r♠✐r❛♥ ♣r♦st♦r ③ ♥♦r♠♦ (v1, v2) = v1 1 + v2 2. ✭❜✮ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ V1 × V2 ♥♦r♠✐r❛♥ ♣r♦st♦r ③ ♥♦r♠♦ (v1, v2) = ♠❛①{ v1 1, v2 2}. ◆❛♠✐❣✳ Pr❡✈❡r✐t❡ ✈s❡ ❧❛st♥♦st✐ ③❛ ♥♦r♠✐r❛♥❡ ♣r♦st♦r❡✳ ✸✳ ◆❛❥ ❜♦ (Y, . ) ♥♦r♠✐r❛♥ ♣r♦st♦r✱ X ✈❡❦t♦rs❦✐ ♣r♦st♦r ✐♥ A : X → Y ❧✐♥❡❛r❡♥ ♦♣❡r❛t♦r✳ ❩❛ ✈s❛❦ x ∈ X ❞❡✜♥✐r❛♠♦ x 1 = Ax ✳ ❑❛t❡r✐♠ ♣♦❣♦❥❡♠ ♠♦r❛ ③❛❞♦➨↔❛t✐ ♦♣❡r❛t♦r A✱ ❞❛ ❜♦ . 1 ♥♦r♠❛ ♥❛ X❄ ❘❡➨✐t❡✈✳ ▲✐♥❡❛r♥✐ ♦♣❡r❛t♦r A ❥❡ ✐♥❥❡❦t✐✈❡♥ ♥❛t❛♥❦♦ t❡❞❛❥✱ ❦♦ ❥❡ . 1 ♥♦r♠❛✳ ✹✳ ◆❛❥ ❜♦st❛ P ✐♥ Q ♣r♦❥❡❦t♦r❥❛ ♥❛ ✈❡❦t♦rs❦❡♠ ♣r♦st♦r✉ X✳ ✭❛✮ ❉♦❦❛➸✐t❡✱ ❞❛ s♦ ♥❛s❧❡❞♥❥✐ tr✐❥❡ ♣♦❣♦❥✐ ❡❦✈✐✈❛❧❡♥t♥✐✿ ✐✳ P Q = QP = 0, ✐✐✳ P + Q ❥❡ ♣r♦❥❡❦t♦r✱ ✐✐✐✳ P Q + QP = 0. ✭❜✮ ◆❛❥ ❜♦ (X, . ) ♥♦r♠✐r❛♥ ♣r♦st♦r ✐♥ ♥❛❥ ♣r♦❥❡❦t♦r❥❛ P t❡r Q ③❛❞♦➨↔❛t❛ ♣♦❣♦❥❡♠ ✐③ ✭❛✮✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ s ♣r❡❞♣✐s♦♠ x 1 = P x + Qx ❞❡✜♥✐r❛♥❛ ♥♦r♠❛ ♥❛ X ♥❛t❛♥❦♦ t❡❞❛❥✱ ❦♦ ❥❡ P + Q = I✳ ◆❛♠✐❣✳ ✭❛✮ ✭✐✐✐ ⇒ ✐✮ ■❞❡♥t✐t❡t♦ P Q + QP = 0 ♣♦♠♥♦➸✐t❡ ③ ♦❜❡❤ str❛♥✐ s P ✐♥ ♥❛t♦ ➨❡ s Q✳ ✶✺ ✭❜✮ (=⇒) Pr❡❞♣♦st❛✈✐♠♦✱ ❞❛ ❥❡ . 1 ♥♦r♠❛ ♥❛ X ✐♥ ♥❛❥ ❜♦ R = P +Q = I✳ ❑❡r ❥❡ 0 = I − R ♣r♦❥❡❦t♦r✱ ❥❡ KerR = Im(I − R) = 0✳ ■③ t❡❣❛ s❧❡❞✐✱ ❞❛ ♦❜st❛❥❛ t❛❦ 0 = x ∈ X✱ ❞❛ ❥❡ Rx = 0✳ ❚♦r❡❥ ❥❡ 0 = P Rx = (P 2 + P Q)x = P x✳ P♦❞♦❜♥♦ ♣♦❦❛➸❡♠♦✱ ❞❛ ❥❡ Qx = 0✳ ❙ t❡♠ ♣r✐❞❡♠♦ ✈ ♣r♦t✐s❧♦✈❥❡✱ s❛❥ ❥❡ x 1 = 0 ✐♥ ③❛t♦ x = 0✳ (⇐=) ❷❡ ❥❡ P + Q = I✱ ♥✐ t❡➸❦♦ ♣r❡✈❡r✐t✐✱ ❞❛ ❥❡ s ♣r❡❞♣✐s♦♠ x 1 = P x + Qx ❞❡✜♥✐r❛♥❛ ♥♦r♠❛ ♥❛ X✳ ✺✳ ◆❛❥ ❜♦st❛ (X, . 1) ✐♥ (Y, . 2) ♥♦r♠✐r❛♥❛ ♣r♦st♦r❛✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ X×Y ❇❛♥❛❝❤♦✈ ♣r♦st♦r ③ ♥♦r♠♦ (x, y) = x 1 + y 2 ♥❛t❛♥❦♦ t❡❞❛❥✱ ❦♦ st❛ X ✐♥ Y ❇❛♥❛❝❤♦✈❛ ♣r♦st♦r❛✳ ✻✳ ◆❛❥ ❜♦ X ✈❡❦t♦rs❦✐ ♣r♦st♦r ✈s❡❤ ♣♦❧✐♥♦♠♦✈ ③ r❡❛❧♥✐♠✐ ❦♦❡✜❝✐❡♥t✐✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ s ♣r❡❞♣✐s♦♠ a0 + a1x + a2x2 + . . . + anxn = |a0| + |a1| + |a2| + . . . + |an| ❞❡✜♥✐r❛♥❛ ♥♦r♠❛ ♥❛ X✳ ✭❛✮ ❆❧✐ ❥❡ (X, . ) ❇❛♥❛❝❤♦✈ ♣r♦st♦r❄ ✭❜✮ ❆❧✐ ❥❡ ♣♦❞♣r♦st♦r ♣♦❧✐♥♦♠♦✈ st♦♣♥❥❡ 2 ③❛♣rt ✈ X❄ ◆❛♠✐❣✳ ✭❛✮ ❖♣❛③✉❥♠♦ ③❛♣♦r❡❞❥❡ {pn}n∈N✱ ❦❥❡r ❥❡ pn(x) = n 2−kxk. ◆✐ t❡➸❦♦ k=0 ♣r❡✈❡r✐t✐✱ ❞❛ ❥❡ t♦ ③❛♣♦r❡❞❥❡ ❈❛✉❝❤②❥❡✈♦✳ Pr❡❞♣♦st❛✈✐♠♦✱ ❞❛ ❥❡ limn→∞ pn = p ∈ X✱ p(x) = b0 + b1x + . . . + bmx✳ P♦t❡♠ ③❛ ✈s❛❦ ǫ > 0 ♦❜st❛❥❛ t❛❦ n0 ∈ N✱ ❞❛ ③❛ ✈s❛❦ n ≥ n0 ✈❡❧❥❛ 1 1 1 1 pn − p = |1 − b0| + | − b − b + . . . + < ǫ. 2 1| + . . . + | 2m m| + 2m+1 2n ❩❛ ǫ = 1 t♦ ♥❡ ❞r➸✐✳ ■③ t❡❣❛ s❧❡❞✐✱ ❞❛ X ♥✐ ❇❛♥❛❝❤♦✈ ♣r♦st♦r✳ 2m+1 ✭❜✮ P♦❞♣r♦st♦r ♣♦❧✐♥♦♠♦✈ st♦♣♥❥❡ 2 ❥❡ ③❛♣rt ✈ X✳ ✶✻ ✼✳ ◆❛❥ ❜♦ X ✈❡❦t♦rs❦✐ ♣r♦st♦r ✈s❡❤ r❡❛❧♥✐❤ ③❛♣♦r❡❞✐❥✱ ❦✐ ✐♠❛❥♦ ❦✈❡↔❥❡♠✉ ❦♦♥↔♥♦ ♠♥♦❣♦ ♥❡♥✐↔❡❧♥✐❤ ↔❧❡♥♦✈✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ s ♣r❡❞♣✐s♦♠ {xn}n∈N = max |xn| n∈N ❞❡✜♥✐r❛♥❛ ♥♦r♠❛ ♥❛ X✳ ❆❧✐ ❥❡ (X, . ) ❇❛♥❛❝❤♦✈ ♣r♦st♦r❄ ◆❛♠✐❣✳ Pr♦st♦r X ♥✐ ❇❛♥❛❝❤♦✈✿ ♦♣❛③✉❥t❡ ③❛♣♦r❡❞❥❡ {xn}n∈N✱ ❦❥❡r ❥❡ 1 1 1 xn = ( , , . . . , , 0, 0, . . .). 2 4 2n ✽✳ ◆❛❥ ❜♦ X ✈❡❦t♦rs❦✐ ♣r♦st♦r ✈s❡❤ ♣♦❧✐♥♦♠♦✈ ③ r❡❛❧♥✐♠✐ ❦♦❡✜❝✐❡♥t✐ ✐♥ ♥❛❥ ❜♦ (a0, a1, . . .) ③❛♣♦r❡❞❥❡ ♣♦③✐t✐✈♥✐❤ r❡❛❧♥✐❤ ➨t❡✈✐❧✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ s ♣r❡❞✲ ♣✐s♦♠ p = max |anp(n)(0)| ❞❡✜♥✐r❛♥❛ ♥♦r♠❛ ♥❛ X✱ ❦❥❡r ❥❡ p(n) n✲t✐ ♦❞✈♦❞ ♣♦❧✐♥♦♠❛ p✳ ✭❛✮ ❆❧✐ ❥❡ (X, . ) ❇❛♥❛❝❤♦✈ ♣r♦st♦r❄ ✭❜✮ ❆❧✐ ❥❡ {p ∈ X | p′(0) = p′′(0) = 0} ③❛♣rt ♣♦❞♣r♦st♦r ♣r♦st♦r❛ X❄ ◆❛♠✐❣✳ ✭❛✮ Pr♦st♦r X ♥✐ ❇❛♥❛❝❤♦✈✿ ♦♣❛③✉❥t❡ ③❛♣♦r❡❞❥❡ {pn}n∈N✱ ❦❥❡r ❥❡ n xk pn(x) = . k=0 2kk!ak ✭❜✮ Pr♦st♦r ❥❡ ③❛♣rt✳ ✾✳ P♦❦❛➸✐t❡✱ ❞❛ st❛ c0 ✐♥ c ③❛♣rt❛ ♣♦❞♣r♦st♦r❛ l∞✳ ❘❡➨✐t❡✈✳ ◆❛❥ ❜♦ {xn}n∈N ③❛♣♦r❡❞❥❡ ♣r♦st♦r❛ c0 ✐♥ ♥❛❥ ❜♦ limn→∞ xn = x✳ P♦t❡♠ ③❛ ✈s❛❦ ǫ > 0 ♦❜st❛❥❛ t❛❦ n0 ∈ N✱ ❞❛ ③❛ ✈s❛❦ n ≥ n0 ✈❡❧❥❛ xn − x ∞ = s✉♣|xn − x k k| < ǫ✳ ❑❡r ❥❡ |xk| = |xk − xn + x | ≤ x − x |, k nk n ∞ + |xnk ✶✼ s❧❡❞✐ limn→∞ x = 0✳ ❚♦r❡❥ ❥❡ x ∈ c0✳ ◆❛❥ ❜♦ {xn}n∈N ③❛♣♦r❡❞❥❡ ♣r♦st♦r❛ c ✐♥ limn→∞ xn = x✳ ❙ ♣♦♠♦↔❥♦ r❡❧❛❝✐❥❡ |xk − xl| = |xk − xn + x − x + x − x − x | k nk nl nl l| ≤ 2 x − xn ∞ + |xnk nl ♣♦❦❛➸❡♠♦✱ ❞❛ ❥❡ x ❈❛✉❝❤②❥❡✈♦ ③❛♣♦r❡❞❥❡ ✐♥ ③❛t♦ ❦♦♥✈❡r❣❡♥t♥♦✳ ■③ t❡❣❛ s❧❡❞✐✱ ❞❛ ❥❡ x ∈ c. ✶✵✳ ◆❛❥ ❜♦ X = C[−1, 1] ♣r♦st♦r ③✈❡③♥✐❤ ❢✉♥❦❝✐❥ ♥❛ ③❛♣rt❡♠ ✐♥t❡r✈❛❧✉ [−1, 1] ♦♣r❡♠❧❥❡♥ ③ ♥♦r♠♦ f 1 = 1 |f(x)|dx✳ P♦❦❛➸✐t❡✱ ❞❛ (X, . −1 1) ♥✐ ♣♦❧♥ ♣r♦st♦r✳ ◆❛♠✐❣✳ ◆❛❥ ❜♦ {fn}n∈N ③❛♣♦r❡❞❥❡ ❢✉♥❦❝✐❥✱ ❦❥❡r ❥❡ fn : [−1, 1] → R ❢✉♥❦❝✐❥❛ ❞❡✜♥✐r❛♥❛ s ♣r❡❞♣✐s♦♠   −1 ; −1 ≤ x ≤ − 1n fn(x) = nx ; − 1 < x ≤ 1 . n n  1 ; 1 < x ≤ 1 n ❱✐❞✐♠♦✱ ❞❛ ❥❡ 1 1 1 fn − fm 1 = |fn(x) − fm(x)|dx = | − |. −1 n m ■③ t❡❣❛ s❧❡❞✐✱ ❞❛ ❥❡ {fn}n∈N ❈❛✉❝❤②❥❡✈♦ ③❛♣♦r❡❞❥❡✳ Pr❡❞♣♦st❛✈✐♠♦✱ ❞❛ ❥❡ ③❛♣♦r❡❞❥❡ {fn}n∈N ❦♦♥✈❡r❣❡♥t♥♦✱ limn→∞ fn = f ∈ X✳ ◆❛❥ ❜♦ ǫ > 1 ✳ P♦t❡♠ ❥❡ n 1 1 |fn(x) − f(x)|dx ≥ |1 − f(x)|dx, −1 ǫ 1 −ǫ |fn(x) − f(x)|dx ≥ | − 1 − f(x)|dx. −1 −1 ■③ t❡❣❛ s❧❡❞✐✱ ❞❛ ❥❡ −1 ; −1 ≤ x ≤ −ǫ f (x) = . 1 ; ǫ ≤ x ≤ 1 ❑❡r f ♥✐ ③✈❡③♥❛ ❢✉♥❦❝✐❥❛✱ s❧❡❞✐ ➸❡❧❡♥♦✳ ✶✽ ✶✶✳ ◆❛❥ ❜♦st❛ . 1 ✐♥ . 2 ❡❦✈✐✈❛❧❡♥t♥✐ ♥♦r♠✐ ♥❛ ♣r♦st♦r✉ X✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ (X, . 1) ❇❛♥❛❝❤♦✈ ♣r♦st♦r ♥❛t❛♥❦♦ t❡❞❛❥✱ ❦♦ ❥❡ (X, . 2) ❇❛♥❛❝❤♦✈ ♣r♦st♦r✳ ✶✷✳ ◆❛ ♣r♦st♦r✉ ③✈❡③♥✐❤ r❡❛❧♥✐❤ ❢✉♥❦❝✐❥ C[0, 1] ✈♣❡❧❥✐♠♦ ♥♦r♠✐ f ∞ = max0≤x≤1 |f(x)| ✐♥ f 1 = max0≤x≤1 |f(x)| + 1 |f(x)|dx✳ 0 ✭❛✮ ❆❧✐ st❛ ♥♦r♠✐ ❡❦✈✐✈❛❧❡♥t♥✐❄ ✭❜✮ ❆❧✐ ❥❡ (C[0, 1], . 1) ❇❛♥❛❝❤♦✈ ♣r♦st♦r❄ ◆❛♠✐❣✳ ✭❛✮ ◆♦r♠✐ st❛ ❡❦✈✐✈❛❧❡♥t♥✐✳ ✭❜✮ ❑❡r ❥❡ (C[0, 1], . ∞) ❇❛♥❛❝❤♦✈ ♣r♦st♦r✱ ♣♦ ♥❛❧♦❣✐ ✶✶ ✈❡❧❥❛✱ ❞❛ ❥❡ t✉❞✐ (C[0, 1], . 1) ❇❛♥❛❝❤♦✈ ♣r♦st♦r✳ ✶✸✳ ◆❛ ♣r♦st♦r✉ X = C[0, 1] ✈♣❡❧❥✐♠♦ ♥♦r♠❡ f ∞ = max0≤x≤1 |f(x)|✱ f 1 = 1 ( 1 |f(x)|2dx)2 ✐♥ f 0 2 = f 1 + f ∞✳ ✭❛✮ ❆❧✐ st❛ ♥♦r♠✐ . ∞ ✐♥ . 1 ❡❦✈✐✈❛❧❡♥t♥✐❄ ✭❜✮ ❩❛ ❦❛t❡r♦ ♥♦r♠♦ ❥❡ X ❇❛♥❛❝❤♦✈ ♣r♦st♦r❄ ◆❛♠✐❣✳ ✭❛✮ ◆♦r♠✐ ♥✐st❛ ❡❦✈✐✈❛❧❡♥t♥✐✱ s❛❥ (X, . 1) ♥✐ ❇❛♥❛❝❤♦✈ ♣r♦st♦r ✭✉♣♦➨t❡✲ ✈❛❥t❡ ♥❛❧♦❣♦ ✶✶✮✳ ✭❜✮ Pr♦st♦r❛ (X, . ∞) ✐♥ (X, . 2) st❛ ❇❛♥❛❝❤♦✈❛ ♣r♦st♦r❛✳ ✶✹✳ ◆❛❥ ❜♦ (X, . ) ♥♦r♠✐r❛♥ ♣r♦st♦r✳ ❱ ✈❡❦t♦rs❦✐ ♣r♦st♦r W = X × X ✈♣❡❧❥✐♠♦ ♥♦r♠♦ (x, y) = x + y . ✭❛✮ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ s ♣r❡❞♣✐s♦♠ (x, y) 1 = (x−y, y) ❞❡✜♥✐r❛♥❛ ♥♦r♠❛ ♥❛ W ✳ ✭❜✮ ◆❛❥ ❜♦ (W, . ) ❇❛♥❛❝❤♦✈ ♣r♦st♦r✳ ❆❧✐ ❥❡ (W, . 1) ❇❛♥❛❝❤♦✈ ♣r♦s✲ t♦r❄ ✶✾ ◆❛♠✐❣✳ ✭❜✮ Pr♦st♦r (W, . 1) ❥❡ ❇❛♥❛❝❤♦✈✿ ♣♦❦❛➸✐t❡✱ ❞❛ ❥❡ 1 (x,y) ≤ (x,y) 2 1 ≤ 2 (x, y) ✐♥ ✉♣♦➨t❡✈❛❥t❡ ♥❛❧♦❣♦ ✶✶✳ ✶✺✳ ◆❛❥ ❜♦ (X, . ) ♥♦r♠✐r❛♥ ♣r♦st♦r ✐♥ ♥❛❥ ❜♦ A : X → X ❧✐♥❡❛r❡♥ ♦♣❡r❛t♦r✳ P♦❦❛➸✐t❡✿ ✭❛✮ ❙ ♣r❡❞♣✐s♦♠ x 1 = x − Ax + Ax ❥❡ ❞❡✜♥✐r❛♥❛ ♥♦r♠❛ ♥❛ X✳ ✭❜✮ ❷❡ ❥❡ (X, . ) ❇❛♥❛❝❤♦✈ ♣r♦st♦r✱ ❥❡ ✈s❛❦♦ ❈❛✉❝❤②❥❡✈♦ ③❛♣♦r❡❞❥❡ ✈ (X, . 1) ❦♦♥✈❡r❣❡♥t♥♦ ✈ (X, . )✳ ✭❝✮ ❷❡ ❥❡ A ♦♠❡❥❡♥ ♦♣❡r❛t♦r✱ ❥❡ (X, . ) ❇❛♥❛❝❤♦✈ ♣r♦st♦r ♥❛t❛♥❦♦ t❡❞❛❥✱ ❦♦ ❥❡ (X, . 1) ❇❛♥❛❝❤♦✈ ♣r♦st♦r✳ ◆❛♠✐❣✳ ✭❜✮ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ x ≤ x 1✱ ✐③ ↔❡s❛r s❧❡❞✐ ➸❡❧❡♥♦✳ ✭❝✮ P♦❦❛➸✐t❡✱ ❞❛ st❛ ♥♦r♠✐ . ✐♥ . 1 ❡❦✈✐✈❛❧❡♥t♥✐ ✐♥ ✉♣♦➨t❡✈❛❥t❡ ♥❛❧♦❣♦ ✶✶✳ ✶✻✳ ◆❛❥ ❜♦st❛ P ✐♥ Q t❛❦❛ ♣r♦❥❡❦t♦r❥❛ ♥❛ ♥♦r♠✐r❛♥❡♠ ♣r♦st♦r✉ (X, . )✱ ❞❛ ❥❡ t✉❞✐ P + Q ♣r♦❥❡❦t♦r✳ ✭❛✮ ❉♦❦❛➸✐t❡✱ ❞❛ ❥❡ s ♣r❡❞♣✐s♦♠ x 1 = ♠❛① { P x , Qx } ❞❡✜♥✐r❛♥❛ ♥♦r♠❛ ♥❛ X ♥❛t❛♥❦♦ t❡❞❛❥✱ ❦♦ ❥❡ P = I − Q✳ ✭❜✮ ◆❛❥ ❜♦ P ∈ B(X) ✐♥ ♥❛❥ ❜♦ (X, . ) ❇❛♥❛❝❤♦✈ ♣r♦st♦r✳ ❆❧✐ ❥❡ t❡❞❛❥ ♥♦r♠✐r❛♥ ♣r♦st♦r (X, . 1) ❇❛♥❛❝❤♦✈❄ ◆❛♠✐❣✳ ✭❜✮ ❑❡r st❛ ♥♦r♠✐ . ✐♥ . 1 ❡❦✈✐✈❛❧❡♥t♥✐✱ s❧❡❞✐✱ ❞❛ ❥❡ (X, . 1) ❇❛♥❛❝❤♦✈ ♣r♦st♦r✳ ✷✵ ✶✼✳ ◆❛❥ ❜♦ (X, . ) ❇❛♥❛❝❤♦✈ ♣r♦st♦r ✐♥ ♥❛❥ ❜♦ G ♣♦❞♠♥♦➸✐❝❛ B(X)✳ ❉❡♥✲ ✐♠♦✱ ❞❛ ❥❡ G t❛❦❛ ❣r✉♣❛ ✭③❛ ♦♣❡r❛❝✐❥♦ ♠♥♦➸❡♥❥❛ ♦♣❡r❛t♦r❥❡✈✮✱ ❞❛ ③❛ ✈s❛❦ T ∈ G ✈❡❧❥❛ T ≤ 1✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ s ♣r❡❞♣✐s♦♠ x 0 = s✉♣T∈G T x ❞❡✜♥✐r❛♥❛ ♥♦r♠❛ ♥❛ X✱ ❦✐ ❥❡ ❡❦✈✐✈❛❧❡♥t♥❛ ♥♦r♠✐ . ✐♥ ✈ ❦❛t❡r✐ s♦ ✈s✐ ♦♣❡r❛t♦r❥✐ T ∈ G ✐③♦♠❡tr✐❥❡✳ ❘❡➨✐t❡✈✳ ❑❡r ❥❡ T ≤ 1 ③❛ ✈s❛❦ T ∈ G✱ ❥❡ x 0 ≤ x ③❛ ✈s❛❦ x ∈ X✳ P♦ ❞r✉❣✐ str❛♥✐ ♣❛ ❥❡ x = Ix ≤ x 0✳ ❚♦r❡❥ st❛ ♥♦r♠✐ . ✐♥ . 0 ❡❦✈✐✈❛❧❡♥t♥✐✳ ❱③❡♠✐♠♦ ♣♦❧❥✉❜❡♥ S ∈ G✳ P♦t❡♠ ❥❡ Sx 0 = s✉♣ T Sx = s✉♣ T x = x T ∈G T ∈G 0 ③❛ ✈s❛❦ x ∈ X✱ ❦❛r ♣♦♠❡♥✐✱ ❞❛ ❥❡ S ✐③♦♠❡tr✐❥❛ ✈ ♥♦r♠✐ . 0✳ ✶✽✳ ◆❛❥ ❜♦ a ♣♦③✐t✐✈♥♦ r❡❛❧♥♦ ➨t❡✈✐❧♦✳ ❩❛ ✈s❛❦ n ∈ N ❞❡✜♥✐r❛❥♠♦ ♦♣❡r❛t♦r An : l∞ → l∞ s ♣r❡❞♣✐s♦♠ An(x1, x2, . . .) 1 = (x a 1, x2, . . . , xn, −xn+1, xn+2, . . .). ✭❛✮ ❑❛❦➨❡♥ ♠♦r❛ ❜✐t✐ a✱ ❞❛ ❜♦ ③❛♣♦r❡❞❥❡ (An, A2, A3, . . .) ❦♦♥✈❡r❣❡♥t♥♦ n n ♦③✐r♦♠❛ ❜♦ ✐♠❡❧♦ ❦❛❦♦ ❦♦♥✈❡r❣❡♥t♥♦ ♣♦❞③❛♣♦r❡❞❥❡❄ ✭❜✮ ❆❧✐ ❥❡ ③❛♣♦r❡❞❥❡ {An}n∈N ❦♦♥✈❡r❣❡♥t♥♦ ✈ ♦♣❡r❛t♦rs❦✐ ♥♦r♠✐❄ ✭❝✮ ◆❛❥ ❜♦ x = (x1, x2, x3 . . .) ③❛♣♦r❡❞❥❡ ③ ❧✐♠✐t♦ 0✳ ❆❧✐ ❥❡ ③❛♣♦r❡❞❥❡ {Anx}n∈N ❦♦♥✈❡r❣❡♥t♥♦❄ ◆❛♠✐❣✳ ✭❛✮ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ 1 1 1 1 (An, A2 , A3 , A4 , . . .) = (A I, A I, A n n n n, a2 a2 n, a4 a4 n, . . .). ❚♦ ③❛♣♦r❡❞❥❡ ❜♦ ❦♦♥✈❡r❣❡♥t♥♦✱ ❦♦ ❜♦ a > 1✱ ✐♥ ❜♦ ✐♠❡❧♦ ❦♦♥✈❡r✲ ❣❡♥t♥♦ ♣♦❞③❛♣♦r❡❞❥❡✱ ↔❡ ❜♦ a = 1✳ ✭❜✮ ❑❡r ③❛ n = m ✈❡❧❥❛ An − Am ∞ = 2✱ ③❛♣♦r❡❞❥❡ {An}n∈N ♥✐ ❦♦♥✲ ✈❡r❣❡♥t♥♦✳ ✷✶ ✭❝✮ ❩❛♣♦r❡❞❥❡ ❥❡ ❦♦♥✈❡r❣❡♥t♥♦✳ ✶✾✳ ◆❛❥ ❜♦ ♣r♦st♦r X = C[−1, 1] ♦♣r❡♠❧❥❡♥ ③ ♥♦r♠♦ f ∞ = max−1≤x≤1 |f(x)| ✐♥ ♥❛❥ ❜♦ F : (X, . ∞) → C ♣r❡s❧✐❦❛✈❛ ❞❡✜♥✐r❛♥❛ s ♣r❡❞♣✐s♦♠ 1 F (f ) = (f (t) − f(−t))dt. 0 P♦❦❛➸✐t❡✱ ❞❛ ❥❡ F ♦♠❡❥❡♥ ❧✐♥❡❛r❡♥ ❢✉♥❦❝✐♦♥❛❧ ✐♥ ✐③r❛↔✉♥❛❥t❡ ♥❥❡❣♦✈♦ ♥♦r♠♦✳ ◆❛♠✐❣✳ ❖♣❛③✉❥t❡ ③❛♣♦r❡❞❥❡ ❢✉♥❦❝✐❥✱ ❦✐ ❥❡ ❞❡✜♥✐r❛♥♦ ✈ ♥❛❧♦❣✐ ✶✵ ✐♥ ✉♣✲ ♦➨t❡✈❛❥t❡✱ ❞❛ ❥❡ 1 1 1 |F (fn)| = | (fn(x) − fn(−x)dx| = 2| fn(x)dx| = 2 − 0 0 n ◆♦r♠❛ ♦♣❡r❛t♦r❥❛ F ❥❡ ✷✳ ✷✵✳ ◆❛❥ ❜♦ ♣r♦st♦r X = C[0, 1] ♦♣r❡♠❧❥❡♥ ③ ♥♦r♠♦ f ∞ = max0≤x≤1 |f(x)|✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ s ♣r❡❞♣✐s♦♠ ϕ(f) = f(1)−f(0) ❞❡✜♥✐r❛♥ ♦♠❡❥❡♥ ❧✐♥❡❛r❡♥ ❢✉♥❦❝✐♦♥❛❧ ♥❛ X ✐♥ ✐③r❛↔✉♥❛❥t❡ ♥❥❡❣♦✈♦ ♥♦r♠♦✳ ❘❡➨✐t❡✈✳ ◆♦r♠❛ ♦♣❡r❛t♦r❥❛ ϕ ❥❡ 2✳ ✷✶✳ ◆❛❥ ❜♦ A : c → c0 ♣r❡s❧✐❦❛✈❛ ❞❡✜♥✐r❛♥❛ s ♣r❡❞♣✐s♦♠ x A({x n n}n∈N) = { } n n∈N. P♦❦❛➸✐t❡✱ ❞❛ ❥❡ A ♦♠❡❥❡♥ ❧✐♥❡❛r❡♥ ❢✉♥❦❝✐♦♥❛❧ ✐♥ ✐③r❛↔✉♥❛❥t❡ ♥❥❡❣♦✈♦ ♥♦r♠♦✳ ❘❡➨✐t❡✈✳ ◆♦r♠❛ ♦♣❡r❛t♦r❥❛ A ❥❡ 1✳ ✷✷ ✷✷✳ ◆❛❥ ❜♦ X ♥♦r♠✐r❛♥ ♣r♦st♦r✱ dim X ≥ 2✱ a ∈ X✱ f ∈ X∗ ✐♥ ♥❛❥ ❜♦ A : X → X ♦♣❡r❛t♦r ❞❡✜♥✐r❛♥ s ♣r❡❞♣✐s♦♠ Ax = f(x)a✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ A ♦♠❡❥❡♥ ❧✐♥❡❛r❡♥ ♦♣❡r❛t♦r ✐♥ ✐③r❛↔✉♥❛❥t❡ ♥❥❡❣♦✈♦ ♥♦r♠♦✳ ❆❧✐ ❥❡ ♦♣❡r❛t♦r A ✐♥❥❡❦t✐✈❡♥❄ ❆❧✐ ❥❡ ♦♣❡r❛t♦r A s✉r❥❡❦t✐✈❡♥❄ ❘❡➨✐t❡✈✳ ◆♦r♠❛ ♦♣❡r❛t♦r❥❛ A ❥❡ f a ✳ ❖♣❡r❛t♦r A ♥✐ ♥✐t✐ ✐♥❥❡❦t✐✈❡♥ ♥✐t✐ s✉r❥❡❦t✐✈❡♥✳ ✷✸✳ ◆❛❥ ❜♦ ♣r♦st♦r X = C[0, b] ♦♣r❡♠❧❥❡♥ ③ ♥♦r♠♦ f ∞ = max0≤x≤b |f(x)| ✐♥ ♥❛❥ ❜♦ A : X → X ♦♣❡r❛t♦r ❞❡✜♥✐r❛♥ s ♣r❡❞♣✐s♦♠ (Af)(x) = f(x) cos x✳ ✭❛✮ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ A ∈ B(X) ✐♥ ✐③r❛↔✉♥❛❥t❡ ♥❥❡❣♦✈♦ ♥♦r♠♦✳ ✭❜✮ ❑❛❦➨♥♦ ♠♦r❛ ❜✐t✐ ➨t❡✈✐❧♦ b✱ ❞❛ ❜♦ ♦♣❡r❛t♦r A ♦❜r♥❧❥✐✈❄ ❑❛t❡r✐ ♦♣✲ ❡r❛t♦r ❥❡ t❡❞❛❥ ♥❥❡❣♦✈ ✐♥✈❡r③❄ ✭❝✮ ■③r❛↔✉♥❛❥t❡ s♣❡❦t❡r ♦♣❡r❛t♦r❥❛ A✳ ❘❡➨✐t❡✈✳ ✭❛✮ Af ∞ ≤ f ∞✱ A = 1✳ ✭❜✮ b < π✱ (A−1f)(x) = f(x)(cos x)−1✳ 2 ✭❝✮ σ(A) = {cos x | x ∈ [0, b]}✳ ✷✹✳ ◆❛❥ ❜♦ ♣r♦st♦r X = C[1, b] ♦♣r❡♠❧❥❡♥ ③ ♥♦r♠♦ f 2 ∞ = max 1 ≤x≤b |f (x)| 2 ✐♥ ♥❛❥ ❜♦ A : X → X ♦♣❡r❛t♦r ❞❡✜♥✐r❛♥ s ♣r❡❞♣✐s♦♠ (Af)(x) = f(x) ln x✳ ✭❛✮ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ A ∈ B(X) ✐♥ ✐③r❛↔✉♥❛❥t❡ ♥❥❡❣♦✈♦ ♥♦r♠♦✳ ✭❜✮ ❑❛❦➨♥♦ ♠♦r❛ ❜✐t✐ ➨t❡✈✐❧♦ b✱ ❞❛ ❜♦ ♦♣❡r❛t♦r A ♦❜r♥❧❥✐✈❄ ❑❛t❡r✐ ♦♣❡✲ r❛t♦r ❥❡ t❡❞❛❥ ♥❥❡❣♦✈ ✐♥✈❡r③❄ ✭❝✮ ■③r❛↔✉♥❛❥t❡ s♣❡❦t❡r ♦♣❡r❛t♦r❥❛ A✳ ❘❡➨✐t❡✈✳ ✭❛✮ A = max1≤x≤b |ln x|. 2 ✭❜✮ b < 1✱ (A−1f)(x) = f(x)(ln x)−1✳ ✷✸ ✭❝✮ σ(A) = {ln x | x ∈ [1, b]}. 2 ✷✺✳ ◆❛ ♣r♦st♦r✉ X = C[0, 1] ✈♣❡❧❥✐♠♦ ♥♦r♠♦ 1 f = max |f(x)| + |f(x)|dx. 0≤x≤1 0 ◆❛❥ ❜♦ A : X → X ♦♣❡r❛t♦r ❞❡✜♥✐r❛♥ s ♣r❡❞♣✐s♦♠ (Af)(x) = xf(x)✳ ✭❛✮ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ (X, . ) ❇❛♥❛❝❤♦✈ ♣r♦st♦r✳ ✭❜✮ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ A ∈ B(X)✳ ✭❝✮ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ ∞ An ❦♦♥✈❡r❣❡♥t♥❛ ✈rst❛✳ n=0 n! ✭❞✮ ❆❧✐ ✐♠❛ ♦♣❡r❛t♦r ❦❛❦♦ ❧❛st♥♦ ✈r❡❞♥♦st❄ ◆❛♠✐❣✳ ✭❛✮ ❯♣♦➨t❡✈❛❥t❡ ❡❦✈✐✈❛❧❡♥t♥♦st ♥♦r♠✿ f ∞ = max |f(x)| ≤ f ≤ 2 f ∞. 0≤x≤1 ✭❜✮ A ≤ 2✳ ✭❝✮ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ An ≤ 2 ✐♥ ✉♣♦➨t❡✈❛❥t❡ ∞ An 2 . n=0 ≤ ∞ n! n=0 n! ✭❞✮ ❖♣❡r❛t♦r ♥✐♠❛ ❧❛st♥✐❤ ✈r❡❞♥♦st✐✳ ✷✻✳ ◆❛ ♣r♦st♦r✉ X = C[0, 1] ✈♣❡❧❥✐♠♦ ♥♦r♠♦ 1 1 f = 2 max |f(x)| + ( |f(x)|2dx)2 . 0≤x≤1 0 ◆❛❥ ❜♦ A : X → X ♦♣❡r❛t♦r ❞❡✜♥✐r❛♥ s ♣r❡❞♣✐s♦♠ (Af)(x) = e−xf(x)✳ ✭❛✮ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ (X, . ) ❇❛♥❛❝❤♦✈ ♣r♦st♦r✳ ✭❜✮ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ A ∈ B(X)✳ ✭❝✮ ❆❧✐ ✈rst❛ ∞ An ❦♦♥✈❡r❣✐r❛❄ n=0 n! ✭❞✮ ❩❛♣✐➨✐t❡ A−1✳ ❆❧✐ ✐♠❛ ♦♣❡r❛t♦r A ❦❛❦♦ ❧❛st♥♦ ✈r❡❞♥♦st❄ ✷✹ ❘❡➨✐t❡✈✳ ✭❛✮ ❯♣♦➨t❡✈❛❥t❡ ❡❦✈✐✈❛❧❡♥t♥♦st ♥♦r♠✿ f ∞ = max |f(x)| ≤ f ≤ 3 f ∞. 0≤x≤1 ✭❜✮ A ≤ 3✳ ✭❝✮ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ An ≤ 3 ✐♥ ✉♣♦➨t❡✈❛❥t❡ ∞ An 3 . n=0 ≤ ∞ n! n=0 n! ✭❞✮ ❖♣❡r❛t♦r ♥✐♠❛ ❧❛st♥✐❤ ✈r❡❞♥♦st✐✳ ✷✼✳ ◆❛❥ ❜♦ ♣r♦st♦r X = C[0, 1] ♦♣r❡♠❧❥❡♥ ③ ♥♦r♠♦ f ∞ = max0≤x≤1 |f(x)| ✐♥ ♥❛❥ ❜♦ V : X → X ♦♣❡r❛t♦r ❞❡✜♥✐r❛♥ s ♣r❡❞♣✐s♦♠ (V f)(x) = x f(t)dt✳ 0 P♦❦❛➸✐t❡✱ ❞❛ ❥❡ V ∈ B(X) ❦✈❛③✐♥✐❧♣♦t❡♥t❡♥ ♦♣❡r❛t♦r✳ ◆❛♠✐❣✳ ◆❛❥♣r❡❥ ♣♦❦❛➸✐t❡✱ ❞❛ ❥❡ |(V nf)(x)| ≤ xn f ✱ ✐③ ↔❡s❛r s❧❡❞✐ n! V n ≤ 1 ✳ ❚♦r❡❥ ❥❡ n! 1 1 r(V ) = lim V n 1n ≤ lim ( )n = 0. n→∞ n→∞ n! ✷✽✳ ◆❛❥ ❜♦ ♣r♦st♦r X = C[0, 1] ♦♣r❡♠❧❥❡♥ ③ ♥♦r♠♦ f ∞ = max0≤x≤1 |f(x)| ✐♥ ♥❛❥ ❜♦st❛ M, V : X → X ♣r❡s❧✐❦❛✈✐ ❞❡✜♥✐r❛♥✐ s ♣r❡❞♣✐s♦♠❛ (Mf)(x) = xf (x) t❡r (V f)(x) = x f(t)dt✳ P♦❦❛➸✐t❡✱ ❞❛ s♦ M, V, MV −V M ∈ B(X)✱ 0 ✐③r❛↔✉♥❛❥t❡ ♥❥✐❤♦✈❡ ♥♦r♠❡ t❡r ♣♦❦❛➸✐t❡✱ ❞❛ ❥❡ MV −V M ❦✈❛③✐♥✐❧♣♦t❡♥t❡♥ ♦♣❡r❛t♦r✳ ◆❛♠✐❣✳ ❱✐❞✐♠♦✱ ❞❛ ❥❡ x x ((M V − V M)f)(x) = x f (t)dt − tf (t)dt = (V 2f )(x). 0 0 ❚♦r❡❥ ❥❡ MV − V M = V 2✳ P♦ ♣r❡❥➨♥❥✐ ♥❛❧♦❣✐ ❥❡ σ(V 2) = σ(V )2 = 0✳ ✷✺ ✷✾✳ ◆❛❥ ❜♦ ♣r♦st♦r X = C[0, 1] ♦♣r❡♠❧❥❡♥ ③ ♥♦r♠♦ f ∞ = max0≤x≤1 |f(x)| ✐♥ ♥❛❥ ❜♦ P ♣♦❞♣r♦st♦r ✈s❡❤ ♣♦❧✐♥♦♠♦✈✳ P♦❦❛➸✐t❡✱ ❞❛ st❛ s ♣r❡❞♣✐s♦♠❛ f (a0 + a1x + . . . + anxn) = a0, g(a0 + a1x + . . . + anxn) = a0 + a1 + . . . + an ❞❡✜♥✐r❛♥❛ ♦♠❡❥❡♥❛ ❧✐♥❡❛r♥❛ ❢✉♥❦❝✐♦♥❛❧❛ ♥❛ P ✐♥ ✐③r❛↔✉♥❛❥t❡ ♥❥✉♥✐ ♥♦r♠✐✳ P♦✐➨↔✐t❡ r❛③➨✐r✐t✈✐ ❢✉♥❦❝✐♦♥❛❧♦✈ f ✐♥ g ♥❛ ♣r♦st♦r X✱ ❦✐ ✐♠❛t❛ ✐st✐ ♥♦r♠✐ ❦♦t f ♦③✐r♦♠❛ g✳ ❘❡➨✐t❡✈✳ ◆♦r♠❛ ❢✉♥❝✐♦♥❛❧♦✈ f ✐♥ g ❥❡ 1✳ ❘❛③➨✐r✐t❡✈ ❢✉♥❦❝✐♦♥❛❧❛ f ❥❡ ♥♣r✳ F (ϕ) = ϕ(0)✱ ϕ ∈ X✱ ❢✉♥❦❝✐♦♥❛❧❛ g ♣❛ G(ϕ) = ϕ(1)✱ ϕ ∈ X✳ ✸✵✳ ◆❛❥ ❜♦ ♣r♦st♦r ③✈❡③♥♦ ♦❞✈❡❞❧❥✐✈✐❤ r❡❛❧♥✐❤ ❢✉♥❦❝✐❥ X = C1[0, 1] ♦♣r❡♠❧❥❡♥ ③ ♥♦r♠♦ f = supx∈[0,1] |f(x)| + supx∈[0,1] |f′(x)| ✐♥ ♥❛❥ ❜♦ P ♣♦❞♣r♦st♦r ✈s❡❤ ♣♦❧✐♥♦♠♦✈✳ P♦❦❛➸✐t❡✱ ❞❛ st❛ s ♣r❡❞♣✐s♦♠❛ ϕ(a0 + a1x + . . . + anxn) = a0 + 5−1a1 + 5−2a2 + . . . + 5−nan, ψ(a0 + a1x + . . . + anxn) = 3a0 + 6a1 + 9a2 + 12a3 + . . . + 3(n + 1)an ❞❡✜♥✐r❛♥❛ ♦♠❡❥❡♥❛ ❧✐♥❡❛r♥❛ ❢✉♥❦❝✐♦♥❛❧❛ ♥❛ P ✐♥ ✐③r❛↔✉♥❛❥t❡ ♥❥✉♥✐ ♥♦r♠✐✳ P♦✐➨↔✐t❡ r❛③➨✐r✐t✈✐ ❢✉♥❦❝✐♦♥❛❧♦✈ ϕ ✐♥ ψ ♥❛ ❝❡❧ ♣r♦st♦r X✱ ❦✐ ✐♠❛t❛ ✐st✐ ♥♦r♠✐ ❦♦t ϕ ♦③✐r♦♠❛ ψ✳ ❘❡➨✐t❡✈✳ ❖♣❛③✐♠♦✱ ❞❛ ❥❡ ϕ(p) = p(1)✱ ψ(p) = 3(p(1) + p′(1)) ✐♥ ✐③r❛↔✉✲ 5 ♥❛♠♦✱ ❞❛ ❥❡ ϕ = 1 t❡r ψ = 3✳ ❘❛③➨✐r✐t❡✈ ❢✉♥❦❝✐♦♥❛❧❛ ϕ ❥❡ ♥❛ ♣r✐♠❡r ϕ1(f) = f(1)✱ f ∈ X✱ r❛③➨✐r✐t❡✈ ❢✉♥❦❝✐♦♥❛❧❛ ψ ♣❛ ψ 5 1(f ) = 3(f (x) + f ′(x))✱ f ∈ X✳ ✸✶✳ ◆❛❥ ❜♦ X = C[0, 1] ♣r♦st♦r ♦♣r❡♠❧❥❡♥ ③ ♥♦r♠♦ f ∞ = max0≤x≤1 |f(x)|✳ ❩ L ♦③♥❛↔✐♠♦ ♠♥♦➸✐❝♦ ✈s❡❤ ❧✐❤✐❤ ❢✉♥❦❝✐❥ ♣r♦st♦r❛ X ✐♥ ③ S ♠♥♦➸✐❝♦ ✈s❡❤ s♦❞✐❤ ❢✉♥❦❝✐❥ ♣r♦st♦r❛ X✳ ✭❛✮ P♦❦❛➸✐t❡✱ ❞❛ st❛ L ✐♥ S ♣♦❞♣r♦st♦r❛ X ✐♥ ❞❛ ❥❡ L ⊕ S = X. ✭❜✮ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ s ♣r❡❞♣✐s♦♠ 1 ϕ(f ) = f (x)dx − 12 ✷✻ ❞❡✜♥✐r❛♥ ♦♠❡❥❡♥ ❧✐♥❡❛r❡♥ ❢✉♥❦❝✐♦♥❛❧ ♥❛ L ✐♥ ✐③r❛↔✉♥❛❥t❡ ♥❥❡❣♦✈♦ ♥♦r♠♦✳ ✭❝✮ P♦✐➨↔✐t❡ t❛❦♦ r❛③➨✐r✐t❡✈ φ ❢✉♥❦❝✐♦♥❛❧❛ ϕ ♥❛ X✱ ❞❛ ❥❡ φ = ϕ ✳ ◆❛♠✐❣✳ ◆♦r♠❛ ❢✉♥❝✐♦♥❛❧❛ ϕ ❥❡ 1✳ ❘❛③➨✐r✐t❡✈ ❢✉♥❦❝✐♦♥❛❧❛ ϕ ❥❡ ♥❛ ♣r✐♠❡r 2 φ(f ) = 11 f (x)dx✱ f ∈ X✳ 2 ✸✷✳ ◆❛❥ ❜♦ ♣r♦st♦r X = C[0, 1] ♦♣r❡♠❧❥❡♥ ③ ♥♦r♠♦ f ∞ = max0≤x≤1 |f(x)| ✐♥ ♥❛❥ ❜♦ Y = {f ∈ X | f(0) = 0}✳ ✭❛✮ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ Y ③❛♣rt ♣♦❞♣r♦st♦r ♣r♦st♦r❛ X✳ ✭❜✮ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ s ♣r❡❞♣✐s♦♠ ϕ(f) = f(1) − f(0) ❞❡✜♥✐r❛♥ ♦♠❡❥❡♥ 2 ❧✐♥❡❛r❡♥ ❢✉♥❦❝✐♦♥❛❧ ♥❛ X✳ ■③r❛↔✉♥❛❥t❡ ♥❥❡❣♦✈♦ ♥♦r♠♦ ✐♥ ♥♦r♠♦ ♥❥❡❣♦✈❡ ③♦➸✐t✈❡ ♥❛ Y ✳ ✭❝✮ P♦✐➨↔✐t❡ ❦❛❦ t❛❦ ❧✐♥❡❛r♥✐ ❢✉♥❦❝✐♦♥❛❧ ♥❛ X✱ ❦✐ s❡ ♥❛ Y ✉❥❡♠❛ s ϕ ✐♥ ✐♠❛ ✐st♦ ♥♦r♠♦ ❦♦t ③♦➸✐t❡✈ ϕ ♥❛ Y ✳ ◆❛♠✐❣✳ ◆♦r♠❛ ❢✉♥❝✐♦♥❛❧❛ ϕ ❥❡ 1✳ ❘❛③➨✐r✐t❡✈ ❢✉♥❦❝✐♦♥❛❧❛ ϕ ❥❡ ♥❛ ♣r✐♠❡r φ(f ) = f (1 )✱ f ∈ X✳ 2 ✸✸✳ ◆❛❥ ❜♦ (X, . ) ♥♦r♠✐r❛♥ ♣r♦st♦r✱ a1, a2, . . . , an ∈ C ✐♥ x1, x2, . . . , xn ❧✐♥❡❛r♥♦ ♥❡♦❞✈✐s♥✐ ✈❡❦t♦r❥✐ ♣r♦st♦r❛ X✳ P♦❦❛➸✐t❡✱ ❞❛ st❛ ♥❛s❧❡❞♥❥✐ ❞✈❡ tr❞✐t✈✐ ❡❦✈✐✈❛❧❡♥t♥✐✿ ✭❛✮ ♦❜st❛❥❛ t❛❦ f ∈ X∗✱ ❞❛ ❥❡ f ≤ 1 ✐♥ f(xi) = ai✱ i = 1, . . . , n✱ ✭❜✮ ③❛ ♣♦❧❥✉❜♥❡ b1, b2, . . . , bn ∈ C ❥❡ |b1a1 + b2a2 + . . . + bnan| ≤ b1x1 + b2x2 + . . . + bnxn . ❘❡➨✐t❡✈✳ ✭✭❛✮ ⇒ ✭❜✮✮ ❖♣❛③✐♠♦✱ ❞❛ ❥❡ |b1a1 + b2a2 + . . . + bnan| = |f(b1x1 + b2x2 + . . . + bnxn)| ≤ f b1x1 + b2x2 + . . . + bnxn ≤ b1x1 + b2x2 + . . . + bnxn . ✷✼ ✭✭❜✮ ⇒ ✭❛✮✮ ◆❛❥ ❜♦ Y = L{x1, x2, . . . , xn}✳ ❉❡✜♥✐r❛❥♠♦ f1 : Y → C s ♣r❡❞♣✐s♦♠ f1(xi) = ai✱ i = 1, . . . , n✳ ●❧❡❞❡ ♥❛ ♣r❡❞♣♦st❛✈❦♦ ♥✐ t❡➸❦♦ ♣r❡✈❡r✐t✐ ❞♦❜r❡ ❞❡✜♥✐r❛♥♦st✐ ♣r❡s❧✐❦❛✈❡ f1✳ P♦t❡♠ ♣♦ ❍❛❤♥ ❇❛♥❛❝❤♦✈❡♠ ✐③r❡❦✉ ♦❜st❛❥❛ t❛❦ f ∈ X∗✱ ❞❛ ❥❡ ③♦➸✐t❡✈ f ♥❛ Y r❛✈♥♦ ♣r❡s❧✐❦❛✈❛ f1 t❡r f = f1 ≤ 1. ✸✹✳ ◆❛❥ ❜♦ X ♥♦r♠✐r❛♥ ♣r♦st♦r✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ ❞✐♠X < ∞ ♥❛t❛♥❦♦ t❡❞❛❥✱ ❦♦ ❥❡ ❞✐♠X∗ < ∞✳ ◆❛♠✐❣✳ ✭=⇒✮ ❷❡ ❥❡ ❞✐♠X < ∞✱ ❥❡ ❞✐♠X = ❞✐♠X∗✳ ✭⇐=✮ Pr❡❞♣♦st❛✈✐♠♦✱ ❞❛ ❥❡ ❞✐♠X = ∞✳ P♦t❡♠ ♦❜st❛❥❛ ♥❡s❦♦♥↔♥❛ ❧✐♥✲ ❡❛r♥♦ ♥❡♦❞✈✐s♥❛ ♠♥♦➸✐❝❛ {x1, x2, . . .} ⊂ X✳ ❩❛ ✈s❛❦♦ ♥❛r❛✈♥♦ ➨t❡✈✐❧♦ n ❞❡✜♥✐r❛❥♠♦ ❧✐♥❡❛r❡♥ ❢✉♥❦❝✐♦♥❛❧ fn ∈ X∗ s ♣r❡❞♣✐s♦♠ fn(xn) = 1 ✐♥ fn(xi) = 0✱ ↔❡ ❥❡ i = n✳ ▲✐♥❡❛r♥✐ ❢✉♥❦❝✐♦♥❛❧✐ fn, n ∈ N, s♦ ❧✐♥❡❛r♥♦ ♥❡♦❞✈✐s♥✐✳ ❚♦r❡❥ ❥❡ ❞✐♠X∗ = ∞✳ ✸✺✳ ◆❛❥ ❜♦ (X, . ) ♥♦r♠✐r❛♥ ♣r♦st♦r ✐♥ x ∈ X t❛❦✱ ❞❛ ❥❡ x = 1✳ P♦❦❛➸✐t❡✱ ❞❛ ♦❜st❛❥❛ t❛❦❛ ③❛♣rt❛ ❤✐♣❡rr❛✈♥✐♥❛ H✱ ❞❛ ❥❡ d(x, H) = 1. ◆❛♠✐❣✳ P♦ ♣♦s❧❡❞✐❝✐ ❍❛❤♥ ❇❛♥❛❝❤♦✈❡❣❛ ✐③r❡❦❛ ♦❜st❛❥❛ t❛❦ f ∈ X∗✱ ❞❛ ❥❡ f = 1 ✐♥ f(x) = x = 1✳ P♦❦❛➸✐♠♦✱ ❞❛ ③❛ ③❛♣rt♦ ❤✐♣❡rr❛✈♥✐♥♦ Kerf = H ✈❡❧❥❛ d(x, H) = 1. ❑❡r ❥❡ 1 = x = x − 0 ✱ ❥❡ d(x, H) ≤ 1✳ ❱ ♥❛❞❛❧❥❡✈❛♥❥✉ ➸❡❧✐♠♦ ♣♦❦❛③❛t✐✱ ❞❛ ❥❡ 1 ≤ d(x, H) = infh∈H x − h ✳ Pr❡❞♣♦st❛✈✐♠♦ ♥❛s♣r♦t♥♦✳ ❙❧❡❞✐✱ ❞❛ ❥❡ f < 1✱ ❦❛r ❥❡ ✈ ♥❛s♣r♦t❥✉ s ♣r❡❞♣♦st❛✈❦♦✳ ✸✻✳ ◆❛❥ ❜♦ X r❡✢❡❦s✐✈❡♥ ♣r♦st♦r ✐♥ f ∈ X∗✳ P♦❦❛➸✐t❡✱ ❞❛ ♦❜st❛❥❛ t❛❦ x ∈ X✱ ❞❛ ❥❡ x = 1 ✐♥ f(x) = f ✳ ◆❛♠✐❣✳ P♦ ♣♦s❧❡❞✐❝✐ ❍❛❤♥ ❇❛♥❛❝❤♦✈❡❣❛ ✐③r❡❦❛ ♦❜st❛❥❛ t❛❦ F ∈ X∗∗✱ ❞❛ ❥❡ F (f) = f ✐♥ F = 1✳ ❑❡r ❥❡ X r❡✢❡❦s✐✈❡♥ ♣r♦st♦r✱ ♦❜st❛❥❛ t❛❦ x ∈ X✱ ❞❛ ❥❡ Φ(x) = F ✱ ❦❥❡r ❥❡ Φ : X → X∗∗ s✉r❥❡❦t✐✈♥❛ ❦❛♥♦♥✐↔♥❛ ♣r❡s❧✐❦❛✈❛✳ ❚♦r❡❥ ❥❡ f = F (f) = f(x) ✐♥ 1 = F = x ✳ ✷✽ ✸✼✳ ◆❛❥ ❜♦ X r❡✢❡❦s✐✈❡♥ ♣r♦st♦r ✐♥ Y ③❛♣rt ♣♦❞♣r♦st♦r ♣r♦st♦r❛ X∗✳ P♦❦❛➸✐t❡✱ ❞❛ ♦❜st❛❥❛ t❛❦ ♥❡♥✐↔❡❧♥✐ ✈❡❦t♦r x ∈ X✱ ❞❛ ❥❡ f(x) = 0 ③❛ ✈s❛❦ f ∈ Y ✳ ◆❛♠✐❣✳ ●❧❡❞❡ ♥❛ ♣♦s❧❡❞✐❝♦ ❍❛❤♥ ❇❛♥❛❝❤♦✈❡❣❛ ✐③r❡❦❛ ♦❜st❛❥❛ t❛❦ F ∈ X∗∗✱ ❞❛ ❥❡ F (Y ) = 0✳ ❑❡r ❥❡ X r❡✢❡❦s✐✈❡♥ ♣r♦st♦r✱ ♦❜st❛❥❛ t❛❦ x ∈ X✱ ❞❛ ❥❡ Φ(x) = F ✱ ❦❥❡r ❥❡ Φ : X → X∗∗ s✉r❥❡❦t✐✈♥❛ ❦❛♥♦♥✐↔♥❛ ♣r❡s❧✐❦❛✈❛✳ ❚♦r❡❥ ❥❡ F (f) = f(x) = 0 ③❛ ✈s❛❦ f ∈ Y ✳ ✸✽✳ ◆❛❥ ❜♦ X ♥♦r♠✐r❛♥ ♣r♦st♦r✱ x ∈ X ✐♥ ♥❛❥ ❜♦ E ⊂ X✳ P♦❦❛➸✐t❡✱ ❞❛ st❛ ♥❛s❧❡❞♥❥✐ ❞✈❡ tr❞✐t✈✐ ❡❦✈✐✈❛❧❡♥t♥✐✿ ✭❛✮ x ∈ L(E)✱ ✭❜✮ ↔❡ ❥❡ f ∈ X∗ t❛❦✱ ❞❛ ❥❡ f(E) = 0✱ s❧❡❞✐ f(x) = 0. ◆❛♠✐❣✳ ✭✭❛✮ ⇒ ✭❜✮✮ ❷❡ ❥❡ x ∈ L(E)✱ ❥❡ x = limn→∞ xn✱ xn ∈ L(E)✳ ◆✐ t❡➸❦♦ ♣r❡✈❡r✐t✐✱ ❞❛ ♣♦t❡♠ s❧❡❞✐ ➸❡❧❡♥♦✳ ✭✭❜✮ ⇒ ✭❛✮✮ Pr❡❞♣♦st❛✈✐♠♦✱ ❞❛ x /∈ L(E)✳ P♦t❡♠ ♣♦ ♣♦s❧❡❞✐❝✐ ❍❛❤♥ ❇❛♥❛❝❤♦✈❡❣❛ ✐③r❡❦❛ ♦❜st❛❥❛ t❛❦ f ∈ X∗✱ ❞❛ ❥❡ f(L(E)) = 0 ✐♥ f(x) = 0✳ ❚♦r❡❥ ❥❡ t✉❞✐ f(E) = 0✳ ●❧❡❞❡ ♥❛ ✭❜✮ s❧❡❞✐✱ ❞❛ ❥❡ f(x) = 0, ❦❛r ❥❡ ✈ ♣r♦t✐s❧♦✈❥✉ s ♣r❡❞♣♦st❛✈❦♦✳ ✸✾✳ ◆❛❥ ❜♦ X r❡✢❡❦s✐✈❡♥ ♣r♦st♦r ✐♥ ♥❛❥ ❜♦ f ∈ X∗✳ ✭❛✮ P♦❦❛➸✐t❡✱ ❞❛ ♦❜st❛❥❛ t❛❦ y ∈ X✱ ❞❛ ❥❡ x − f(x)y ∈ Kerf ③❛ ✈s❛❦ f x ∈ X✳ ✭❜✮ ◆❛❥ ❜♦ ♣r❡s❧✐❦❛✈❛ P : X → X ❞❡✜♥✐r❛♥❛ s ♣r❡❞♣✐s♦♠ f (x) P x = x − y, x ∈ X. f P♦❦❛➸✐t❡✱ ❞❛ ❥❡ P ♣r♦❥❡❦t♦r✱ ImP = Kerf ✐♥ I − P = 1✳ ❘❡➨✐t❡✈✳ ✭❛✮ ●❧❡❞❡ ♥❛ ♥❛❧♦❣♦ ✸✻ ♦❜st❛❥❛ t❛❦ y ∈ X✱ ❞❛ ❥❡ f(y) = f ✐♥ 1 = y ✳ P♦t❡♠ ❥❡ f(x − f(x)y) = 0 ③❛ ✈s❛❦ x ∈ X✳ f ✷✾ ✭❜✮ ❑❡r ❥❡ P y = y − f(y)y = 0✱ ♥✐ t❡➸❦♦ ♣r❡✈❡r✐t✐✱ ❞❛ ❥❡ P 2 = P ✳ f ◆❛❥ ❜♦ x ∈ ImP ✳ P♦t❡♠ ❥❡ x = P x ∈ Kerf✳ P♦❦❛➸✐♠♦ ➨❡ ♦❜r❛t♥♦✿ ↔❡ ❥❡ x ∈ Kerf✱ ❥❡ f(x) = 0 ✐♥ ③❛t♦ ❥❡ x = P x ∈ ImP ✳ ❑❡r ❥❡ |f(x)| x − P x = y ≤ x , f ❥❡ I − P ≤ 1✳ ❯♣♦➨t❡✈❛❥♠♦✱ ❞❛ ❥❡ y − P y = 1✱ ✐③ ↔❡s❛r s❧❡❞✐ I − P = 1✳ ✹✵✳ ◆❛❥ ❜♦ X ❇❛♥❛❝❤♦✈ ♣r♦st♦r✳ ❩❛ ♣♦❧❥✉❜♥❛ y, z ∈ X ✐♥ f, g ∈ X∗ ❞❡✜♥✐✲ r❛❥♠♦ P : X → X s ♣r❡❞♣✐s♦♠ P x = f(x)y + g(z)x✳ ✭❛✮ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ P ∈ B(X)✳ ✭❜✮ ❉❡♥✐♠♦✱ ❞❛ ❥❡ X r❡✢❡❦s✐✈❡♥ ♣r♦st♦r✱ Y ∗ ♣r❛✈✐ ③❛♣rt ♣♦❞♣r♦st♦r ♣r♦st♦r❛ X∗ ✐♥ ❞❛ ❥❡ f = 1✳ P♦❦❛➸✐t❡✱ ❞❛ ♦❜st❛❥❛t❛ t❛❦❛ ♥❡♥✐↔❡❧♥❛ y, z ∈ X✱ ❞❛ ❥❡ P ♣r♦❥❡❦t♦r ③❛ ❦❛t❡r✐❦♦❧✐ g ∈ Y ∗✳ ❘❡➨✐t❡✈✳ ✭❜✮ ❱✐❞✐♠♦✱ ❞❛ ❥❡ P 2x = P (f (x)y + g(z)x) = f (f (x)y + g(z)x)y + g(z)(f (x)y + g(z)x) = f (x)f (y)y + g(z)f (x)y + g(z)f (x)y + g(z)g(z)x. ●❧❡❞❡ ♥❛ ♥❛❧♦❣♦ ✸✻ ♦❜st❛❥❛ t❛❦ y ∈ X✱ ❞❛ ❥❡ y = 1 ✐♥ f(y) = f = 1✳ ❷❡ ✉♣♦➨t❡✈❛♠♦ ➨❡ ♥❛❧♦❣♦ ✸✼✱ ♦❜st❛❥❛ t❛❦ z ∈ X✱ ❞❛ ❥❡ g(z) = 0 ③❛ ✈s❛❦ g ∈ Y ∗✳ ■③ t❡❣❛ s❧❡❞✐ ➸❡❧❡♥♦✳ ✹✶✳ ◆❛❥ ❜♦ X ❇❛♥❛❝❤♦✈ ♣r♦st♦r ✐♥ ♥❛❥ ❜♦st❛ A, B ∈ B(X) t❛❦❛ ♦♣❡r❛t♦r❥❛✱ ❞❛ ❥❡ AT B = BT A ③❛ ✈s❛❦ T ∈ B(X)✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ B = λA ③❛ ♥❡❦ λ ∈ C✳ ❘❡➨✐t❡✈✳ ◆❛❥ ❜♦ 0 = f ∈ X∗ ✐♥ ♥❛❥ ❜♦ T : X → X ♦♣❡r❛t♦r ❞❡✜♥✐r❛♥ s ♣r❡❞♣✐s♦♠ T (x) = f(x)u ③❛ ♥❡❦ 0 = u ∈ X✳ P♦t❡♠ ❥❡ T ∈ B(X)✳ P♦ ❡♥✐ str❛♥✐ ❥❡ AT Bx = f(Bx)Au✱ ♣♦ ❞r✉❣✐ str❛♥✐ ♣❛ BT Ax = f(Ax)Bu✳ ❑❡r ❥❡ AT B = BT A, s❧❡❞✐ ➸❡❧❡♥♦✳ ✸✵ P♦❣❧❛✈❥❡ ✸ ❍✐❧❜❡rt♦✈✐ ♣r♦st♦r✐ ✶✳ ◆❛❥ ❜♦ X ❍✐❧❜❡rt♦✈ ♣r♦st♦r✱ Y ③❛♣rt ♣♦❞♣r♦st♦r ✐♥ f ∈ X∗✳ P♦❦❛➸✐t❡✱ ❞❛ ♦❜st❛❥❛t❛ t❛❦❛ ❧✐♥❡❛r♥❛ ❢✉♥❦❝✐♦♥❛❧❛ f1, f2 ∈ X∗✱ ❞❛ ✈❡❧❥❛✿ ✭❛✮ f = f1 + f2, ✭❜✮ f1(Y ⊥) = {0} ✐♥ f2(Y ) = {0}, ✭❝✮ f 2 = f 2 2 1 + f2 . ◆❛♠✐❣✳ ❱❡♠♦✱ ❞❛ ❥❡ X = Y ⊕ Y ⊥✳ P♦ ❘✐❡s③♦✈❡♠ ✐③r❡❦✉ ♦❜st❛❥❛ t❛❦ a = a1 + a2 ∈ X✱ a1 ∈ Y ✱ a2 ∈ Y ⊥✱ ❞❛ ❥❡ f(x) = x, a ③❛ ✈s❛❦ x ∈ X ✐♥ f = a ✳ ❋✉♥❦❝✐❥✐ f1 ✐♥ f2 ❞❡✜♥✐r❛♠♦ s ♣r❡❞♣✐s♦♠❛ f1(x) = x, a1 t❡r f2(x) = x, a2 ✳ ✷✳ ◆❛❥ ❜♦ S ♣♦❞♣r♦st♦r ❍✐❧❜❡rt♦✈❡❣❛ ♣r♦st♦r❛ X✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ (S⊥)⊥ = L(S). ◆❛♠✐❣✳ ◆❛❥ ❜♦st❛ x ∈ S⊥ ✐♥ y ∈ L(S)✳ ❚♦r❡❥ ❥❡ y = ❧✐♠n→∞sn✱ ⊥ sn ∈ L(S)✳ P♦t❡♠ ❥❡ x, y = 0✳ ■③ t❡❣❛ s❧❡❞✐✱ ❞❛ ❥❡ S⊥ ⊆ L(S) . ❑❡r ❥❡ ⊥ ⊥ S ⊆ L(S)✱ ❥❡ L(S) ⊆ S⊥✱ ✐③ ↔❡s❛r s❧❡❞✐ (S⊥)⊥ = (L(S) )⊥ = L(S)✳ ✸✳ ◆❛❥ ❜♦ H ❍✐❧❜❡rt♦✈ ♣r♦st♦r ✐♥ ♥❛❥ ❜♦ A ∈ B(H)✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ H = KerA ⊕ ImA∗. ✸✶ ◆❛♠✐❣✳ ❑❡r ❥❡ ImA∗ ⊆ ImA∗✱ s❧❡❞✐ (ImA∗)⊥ ⊆ (ImA∗)⊥✳ ◆❛❥ ❜♦ x ∈ KerA ✐♥ ♥❛❥ ❜♦ y ∈ ImA∗✳ P♦t❡♠ ❥❡ y = limn→∞ A∗yn✱ {A∗yn}n∈N ⊂ ImA∗✳ ❑❡r ❥❡ x, A∗yn = Ax, yn = 0✱ s❧❡❞✐ x ∈ (ImA∗)⊥✳ ❚♦r❡❥ ❥❡ KerA ⊆ (ImA∗)⊥✳ ◆❛❥ ❜♦ x ∈ (ImA∗)⊥✳ P♦t❡♠ ❥❡ 0 = x, A∗y = Ax, y ③❛ ✈s❛❦ y ∈ H✳ ■③ t❡❣❛ s❧❡❞✐✱ ❞❛ ❥❡ Ax = 0✱ ❦❛r ♣♦♠❡♥✐ (ImA∗)⊥ ⊆ KerA✳ ❙ t❡♠ s♠♦ ♣♦❦❛③❛❧✐✱ ❞❛ ❥❡ (ImA∗)⊥ = KerA✳ ❑❡r ❥❡ H = (ImA∗)⊥ ⊕ ImA∗✱ s❧❡❞✐ ➸❡❧❡♥♦✳ ✹✳ ◆❛❥ ❜♦st❛ X ✐♥ Y ③❛♣rt❛ ♣♦❞♣r♦st♦r❛ ❍✐❧❜❡rt♦✈❡❣❛ ♣r♦st♦r❛ H✳ P♦❦❛➸✐t❡ ❡♥❛❦♦st (X⊥ + Y ⊥)⊥ = X ∩ Y. ❆❧✐ ✈❡❧❥❛ tr❞✐t❡✈ t✉❞✐ ✈ ♣r✐♠❡r✉✱ ❦♦ ♣r♦st♦r❛ ♥✐st❛ ③❛♣rt❛❄ ◆❛♠✐❣✳ ◆❛❥ ❜♦ x ∈ (X⊥ + Y ⊥)⊥✳ P♦t❡♠ ❥❡ x, x1 + x2 = 0✱ x1 ∈ X⊥✱ x2 ∈ Y ⊥✳ ■③ t❡❣❛ s❧❡❞✐✱ ❞❛ ❥❡ x ∈ X ∩ Y ✳ ❷❡ ❥❡ x ∈ X ∩ Y ✱ ❥❡ x, x1 + x2 = 0 ③❛ ✈s❛❦ x1 ∈ X⊥ ✐♥ x2 ∈ Y ⊥✳ ❚♦r❡❥ ❥❡ x ∈ (X⊥ + Y ⊥)⊥✳ P♦❦❛③❛♥❛ ❡♥❛❦♦st ♥❡ ✈❡❧❥❛ ✈ ♣r✐♠❡r✉✱ ❦♦ ♣r♦st♦r❛ X ✐♥ Y ♥✐st❛ ③❛♣rt❛✳ Pr✐♠❡r✿ X = Y ❥❡ ♣♦❞♣r♦st♦r t❛❦✐❤ ③❛♣♦r❡❞✐❥ ✐③ l2✱ ❦✐ ✐♠❛❥♦ ❦✈❡↔❥❡♠✉ ❦♦♥↔♥♦ ♠♥♦❣♦ ♥❡♥✐↔❡❧♥✐❤ ↔❧❡♥♦✈✳ ✺✳ ◆❛❥ ❜♦ H ❍✐❧❜❡rt♦✈ ♣r♦st♦r ✐♥ ♥❛❥ ❜♦ P ∈ B(H) ♣r♦❥❡❦t♦r✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ ImP ③❛♣rt ♣♦❞♣r♦st♦r✳ P♦❦❛➸✐t❡ t✉❞✐ ✐♠♣❧✐❦❛❝✐❥✐ (a) =⇒ (b) t❡r (b) =⇒ (c)✿ ✭❛✮ P = P ∗✱ ✭❜✮ ImP = (KerP )⊥✱ ✭❝✮ P x, x = P x 2 ③❛ ✈s❛❦ x ∈ H✳ ◆❛♠✐❣✳ ❑❡r ❥❡ ImP = Ker(I − P )✱ ❥❡ ImP ③❛♣rt ♣r♦st♦r✳ ✭✭❛✮ ⇒ ✭❜✮✮ ◆❛❥♣r❡❥ ♣♦❦❛➸❡♠♦✱ ❞❛ ❥❡ KerP = (ImP )⊥✱ ✐③ ↔❡s❛r s❧❡❞✐ ➸❡❧❡♥♦✿ (KerP )⊥ = (ImP )⊥⊥ = ImP. ✸✷ ✭✭❜✮ ⇒ ✭❝✮✮ ❑❡r ❥❡ H = ImP ⊕ (ImP )⊥✱ ❥❡ H = ImP ⊕ KerP ✳ ◆❛❥ ❜♦ x ∈ H✳ P♦t❡♠ ❧❛❤❦♦ x ③❛♣✐➨❡♠♦ ❦♦t x = y + z✱ ❦❥❡r st❛ y ∈ KerP ✐♥ z ∈ ImP ✳ ❚♦r❡❥ ❥❡ P x 2 = P x, P x = P z, P z = z, P z = x, P x . ✻✳ ◆❛❥ ❜♦ H ❍✐❧❜❡rt♦✈ ♣r♦st♦r ✐♥ A ∈ B(H) t❛❦ s❡❜✐❛❞❥✉♥❣✐r❛♥ ♦♣❡r❛t♦r✱ ❞❛ ❥❡ x ≤ Ax ③❛ ✈s❛❦ x ∈ H✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ (ImA)⊥ = 0 ✐♥ ♦❞ t♦❞ ✐③♣❡❧❥✐t❡✱ ❞❛ ❥❡ A ❤♦♠❡♦♠♦r✜③❡♠✳ ❘❡➨✐t❡✈✳ ◆❛❥ ❜♦ x ∈ (ImA)⊥✳ P♦t❡♠ ❥❡ 0 = x, Ay = Ax, y ③❛ ✈s❛❦ y ∈ H✳ ■③ t❡❣❛ s❧❡❞✐✱ ❞❛ ❥❡ x ≤ Ax = 0✳ ❚♦r❡❥ ❥❡ x = 0✳ ❱ ♥❛❞❛❧❥❡✈❛♥❥✉ ♣♦❦❛➸✐♠♦✱ ❞❛ ❥❡ ImA ③❛♣rt ♣r♦st♦r✳ ◆❛❥ ❜♦ {Axn}n∈N ❦♦♥✈❡r❣❡♥t♥♦ ③❛♣♦r❡❞❥❡ ✈ ♣r♦st♦r✉ ImA ③ ❧✐♠✐t♦ x✳ ●❧❡❞❡ ♥❛ ♣r❡❞✲ ♣♦st❛✈❦♦✱ ❞❛ ❥❡ x ≤ Ax ③❛ ✈s❛❦ x ∈ H✱ ❥❡ {xn}n∈N ❈❛✉❝❤②❥❡✈♦ ③❛✲ ♣♦r❡❞❥❡ ✈ H ✐♥ ③❛t♦ ❦♦♥✈❡r❣❡♥t♥♦ ③ ❧✐♠✐t♦ y✳ ❚♦r❡❥ ❥❡ x = limn→∞ Axn = Ay ∈ ImA✳ ●❧❡❞❡ ♥❛ ♣♦❦❛③❛♥♦ ❥❡ H = ImA ⊕ (ImA)⊥ = ImA✳ Pr❛✈ t❛❦♦ ♥✐ t❡➸❦♦ ♣r❡✈❡r✐t✐ ✐♥❥❡❦t✐✈♥♦st✐ ♦♣❡r❛t♦r❥❛ A✳ P♦ ✐③r❡❦✉ ♦ ♦❞♣rt✐ ♣r❡s❧✐❦❛✈✐ s❧❡❞✐✱ ❞❛ ❥❡ A−1 ③✈❡③❡♥ ♦♣❡r❛t♦r✳ ❚♦r❡❥ ❥❡ A ❤♦♠❡♦♠♦r✜③❡♠✳ ✼✳ ◆❛❥ ❜♦ H ❍✐❧❜❡rt♦✈ ♣r♦st♦r✱ A, B ∈ B(H) ✐♥ ♥❛❥ ❜♦ C = A∗A + B∗B✳ P♦❦❛➸✐t❡✿ ✭❛✮ KerC = KerA ∩ KerB✳ ✭❜✮ ▲❛st♥❡ ✈r❡❞♥♦st✐ ♦♣❡r❛t♦r❥❛ C s♦ ♥❡♥❡❣❛t✐✈♥❛ r❡❛❧♥❛ ➨t❡✈✐❧❛✳ ◆❛♠✐❣✳ ✭❛✮ ◆❛❥ ❜♦ x ∈ KerC✳ P♦t❡♠ ❥❡ 0 = A∗Ax, y + B∗Bx, y ③❛ ✈s❛❦ y ∈ H✳ ❙❧❡❞✐ Ax 2 + Bx 2 = 0 ✐♥ ③❛t♦ ❥❡ Ax = Bx = 0✳ ❚♦r❡❥ ❥❡ x ∈ KerA ∩ KerB✳ ❷❡ ❥❡ x ∈ KerA∩KerB✱ ❥❡ (A∗A+B∗B)x = 0 ✐♥ ③❛t♦ ❥❡ x ∈ KerC. ✭❜✮ ◆❛❥ ❜♦ λ ❧❛st♥❛ ✈r❡❞♥♦st ♦♣❡r❛t♦r❥❛ C✳ ❚♦r❡❥ ♦❜st❛❥❛ t❛❦ 0 = x ∈ H✱ ❞❛ ❥❡ Cx = λx✳ ■③ t❡❣❛ s❧❡❞✐✱ ❞❛ ❥❡ λ x, x = λ x, x ✳ ❑❡r ❥❡ Cx, x ≥ 0✱ ❥❡ λ ≥ 0✳ ✸✸ ✽✳ ◆❛❥ ❜♦ U ∈ B(H) ✉♥✐t❛r♥✐ ♦♣❡r❛t♦r ✐♥ P ∈ B(H) ♦rt♦❣♦♥❛❧♥✐ ♣r♦❥❡❦t♦r ♥❛ ❍✐❧❜❡rt♦✈❡♠ ♣r♦st♦r✉ (H, ., . )✳ ❱♣❡❧❥✐♠♦ {., .} : H × H → H s ♣r❡❞♣✐s♦♠ {x, y} = Ux+P Ux, Uy ✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ (H, {., .}) ❍✐❧❜❡rt♦✈ ♣r♦st♦r✳ ◆❛♠✐❣✳ ◆✐ t❡➸❦♦ ♣r❡✈❡r✐t✐ ❞❛ ❥❡ {., .} s❦❛❧❛r♥✐ ♣r♦❞✉❦t ♥❛ ♣r♦st♦r✉ H✳ P♦t❡♠ ❥❡ s ♣r❡❞♣✐s♦♠ {x, x} = x 2✱1 x ∈ H✱ ❞❡✜♥✐r❛♥❛ ♥♦r♠❛ ♥❛ H✳ ❑❡r st❛ ♥♦r♠✐ . ✐♥ . 1 ❡❦✈✐✈❛❧❡♥t♥✐✱ x 2 = x, x ≤ Ux 2 + P Ux 2 = x 21 ≤ ( U 2 + P U 2) x , ❥❡ (H, {., .}) ❍✐❧❜❡rt♦✈ ♣r♦st♦r✳ ✾✳ ◆❛❥ ❜♦ ♦♣❡r❛t♦r P : l2 → l2 ♣♦❞❛♥ s ♣r❡❞♣✐s♦♠ P (x1, x2, x3, x4 . . .) = (0, x2, 0, x4, 0, . . . , 0, x2n, 0, . . .). P♦❦❛➸✐t❡✱ ❞❛ ❥❡ P ♦rt♦❣♦♥❛❧♥✐ ♣r♦❥❡❦t♦r✳ P♦✐➨↔✐t❡ KerP ✱ (KerP )⊥ ✐♥ ImP ✳ ❘❡➨✐t❡✈✳ ◆✐ t❡➸❦♦ ♣r❡✈❡r✐t✐✱ ❞❛ ❥❡ P ∈ B(l2) ✐♥ P 2 = P = P ∗✱ ♣r✐ ↔❡♠❡r ✉♣♦➨t❡✈❛♠♦✱ ❞❛ ❥❡ P x, y = x, P ∗y ✱ x, y ∈ l2✳ ❱✐❞✐♠♦✱ ❞❛ ❥❡ ImP = KerP ✐♥ KerP = {(x1, x2, x3, x4, . . .) | x2n = 0, ∀n ∈ N}, (KerP )⊥ = {(x1, x2, x3, x4, . . .) | x2n−1 = 0, ∀n ∈ N}. ✶✵✳ ❩❛ ✈s❛❦♦ ♥❛r❛✈♥♦ ➨t❡✈✐❧♦ n ❞❡✜♥✐r❛♠♦ ❢✉♥❦❝✐♦♥❛❧ fn ♥❛ ♣r♦st♦r✉ l2 s ♣r❡❞♣✐s♦♠ x x f 2 n n(x1, x2, x3, . . .) = x1 + √ + . . . + √ . 2 n P♦❦❛➸✐t❡✱ ❞❛ ❥❡ fn ♦♠❡❥❡♥ ❧✐♥❡❛r❡♥ ❢✉♥❦❝✐♦♥❛❧ ✐♥ ✐③r❛↔✉♥❛❥t❡ ♥❥❡❣♦✈♦ ♥♦r♠♦✳ ❆❧✐ ❥❡ ③❛♣♦r❡❞❥❡ {fn}n∈N ❦♦♥✈❡r❣❡♥t♥♦❄ ❘❡➨✐t❡✈✳ ❑❡r ❥❡ 1 1 fn(x1, x2, x3, . . .) = (x1, x2, x3, . . .), (1, √ , . . . , √ , 0, 0, . . .) , 2 n ✸✹ ❥❡ fn = (1, 1√ , . . . , 1 √ , 0, 0, . . .) = 1 + 1 + . . . + 1 ✭❘✐❡s③♦✈ ✐③r❡❦✮✳ 2 n 2 n ◆❛❥ ❜♦ an = (1, 1√ , . . . , 1 √ , 0, 0, . . .). ❱✐❞✐♠♦✱ ❞❛ ❥❡ 2 n 1 1 1 f 2 2 n − fm = an − am = + + . . . + . n n − 1 m + 1 ■③ t❡❣❛ s❧❡❞✐✱ ❞❛ ③❛♣♦r❡❞❥❡ {fn}n∈N ♥✐ ❦♦♥✈❡r❣❡♥t♥♦✳ ✶✶✳ ❩❛ ✈s❛❦♦ ♥❛r❛✈♥♦ ➨t❡✈✐❧♦ n ❞❡✜♥✐r❛♠♦ ❢✉♥❦❝✐♦♥❛❧ fn ♥❛ ♣r♦st♦r✉ l2 s ♣r❡❞♣✐s♦♠ 1 1 1 1 fn(x1, x2, x3, . . .) = x x x x 1 1 + 2 2 + . . . + n n−1 + n n. 3 −1 2 32 3 2 3 2 P♦❦❛➸✐t❡✱ ❞❛ ❥❡ fn ♦♠❡❥❡♥ ❧✐♥❡❛r❡♥ ❢✉♥❦❝✐♦♥❛❧ ✐♥ ✐③r❛↔✉♥❛❥t❡ ♥❥❡❣♦✈♦ ♥♦r♠♦✳ ❆❧✐ ❥❡ ③❛♣♦r❡❞❥❡ {fn}n∈N ❦♦♥✈❡r❣❡♥t♥♦❄ ◆❛♠✐❣✳ ❩❛♣♦r❡❞❥❡ {fn}n∈N ❥❡ ❦♦♥✈❡r❣❡♥t♥♦✳ ✶✷✳ ◆❛❥ ❜♦ U ∈ B(H) ✉♥✐t❛r❡♥ ✐♥ A ∈ B(H) ♣♦❧❥✉❜❡♥ ♦♣❡r❛t♦r ♥❛ ❍✐❧❜❡r✲ t♦✈❡♠ ♣r♦st♦r✉ H✳ P♦❦❛➸✐t❡✿ ✭❛✮ UAx = Ax ③❛ ✈s❛❦ x ∈ H ✐♥ UA = A ✱ ✭❜✮ Ux = x ③❛ ✈s❛❦ x ∈ H ✐♥ AU = A ✳ ◆❛♠✐❣✳ ✭❛✮ ❱✐❞✐♠♦✱ ❞❛ ❥❡ UAx 2 = UAx, UAx = Ax, Ax = Ax 2✱ ✐③ ↔❡s❛r s❧❡❞✐ UA = A ✳ ✭❜✮ ❑❡r ❥❡ AUx ≤ A Ux = A , ❥❡ AU ≤ A ✳ P♦ ❞r✉❣✐ str❛♥✐ ♣❛ x x ♦♣❛③✐♠♦✱ ❞❛ ❥❡ Ax = AU(U∗x) ≤ AU ✳ ❚♦r❡❥ ❥❡ A ≤ AU ✳ x U ∗x ✶✸✳ ◆❛❥ ❜♦ H r❡❛❧❡♥ ❍✐❧❜❡rt♦✈ ♣r♦st♦r ✐♥ ♥❛❥ ❜♦ T : H → H ❧✐♥❡❛r❡♥ ♦♣✲ ❡r❛t♦r✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ T x, x = 0 ③❛ ✈s❛❦ x ∈ H ♥❛t❛♥❦♦ t❡❞❛❥✱ ❦♦ ❥❡ T = −T ∗✳ ✸✺ ❘❡➨✐t❡✈✳ ✭=⇒) ❱✐❞✐♠♦✱ ❞❛ ❥❡ T (x + y), x + y = 0 ③❛ ✈s❛❦ x, y ∈ H✳ ❙❧❡❞✐ 0 = T x, y + T y, x = x, T ∗y + x, T y = x, (T ∗ + T )y , ❦❛r ♥❛s ♣r✐✈❡❞❡ ❞♦ ➸❡❧❡♥❡ ❡♥❛❦♦st✐✳ ✭⇐=✮ ■③ ❡♥❛❦♦st✐ T x, x = x, T ∗x = − T x, x s❧❡❞✐ ➸❡❧❡♥♦✳ ✶✹✳ ◆❛❥ ❜♦ H ❦♦♠♣❧❡❦s❡♥ ❍✐❧❜❡rt♦✈ ♣r♦st♦r ✐♥ ♥❛❥ ❜♦ T : H → H ❧✐♥❡❛r❡♥ ♦♣❡r❛t♦r✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ T x, x = 0 ③❛ ✈s❛❦ x ∈ H ♥❛t❛♥❦♦ t❡❞❛❥✱ ❦♦ ❥❡ T = 0✳ ❘❡➨✐t❡✈✳ ✭=⇒✮ ❙ ♣♦♠♦↔❥♦ ❧✐♥❡❛r✐③❛❝✐❥❡ ✭♥❛♠❡st♦ x ♣✐➨✐♠♦ x+y✱ y ∈ H✮ ✈✐❞✐♠♦✱ ❞❛ ❥❡ 0 = T (x + y), x + y = T x, y + T y, x . ❷❡ ♥❛♠❡st♦ x ♣✐➨❡♠♦ ix✱ ❥❡ 0 = T ix, y + T y, ix . ■③ t❡❣❛ s❧❡❞✐ 0 = i T x, y −i T y, x . ❚♦r❡❥ ❥❡ 0 = T x, y − T y, x . ❷❡ s❡➨t❡❥❡♠♦ ♣r✈♦ ✐♥ ③❛❞♥❥♦ ❡♥❛❦♦st✱ ❞♦❜✐♠♦ T x, y = 0 ③❛ ✈s❡ x, y ∈ H✳ ■③ t❡❣❛ s❧❡❞✐ ➸❡❧❡♥♦✱ T = 0✳ ✶✺✳ ◆❛❥ ❜♦ H ❦♦♠♣❧❡❦s❡♥ ❍✐❧❜❡rt♦✈ ♣r♦st♦r ✐♥ ♥❛❥ ❜♦ T : H → H t❛❦ ❧✐♥❡❛r❡♥ ♦♣❡r❛t♦r✱ ❞❛ ❥❡ T x, x ≥ 0 ③❛ ✈s❛❦ x ∈ H✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ T ∗ = T ✳ ❘❡➨✐t❡✈✳ ❑❡r ❥❡ T x, x ≥ 0✱ ❥❡ T x, x = x, T x = x, T x ③❛ ✈s❛❦ x ∈ H✳ P♦ ❞r✉❣✐ str❛♥✐ ♣❛ ❥❡ T x, x = x, T ∗x ✳ ■③ t❡❣❛ s❧❡❞✐✱ ❞❛ ❥❡ (T − T ∗)x, x = 0 ③❛ ✈s❛❦ x ∈ H✳ ●❧❡❞❡ ♥❛ ♣r❡❥➨♥❥♦ ♥❛❧♦❣♦ ❥❡ T = T ∗✳ ✶✻✳ ◆❛❥ ❜♦ H ❦♦♠♣❧❡❦s❡♥ ❍✐❧❜❡rt♦✈ ♣r♦st♦r✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ N ∈ B(H) ♥♦r♠❛❧❡♥ ♦♣❡r❛t♦r ♥❛t❛♥❦♦ t❡❞❛❥✱ ❦♦ ❥❡ Nx = N∗x ③❛ ✈s❛❦ x ∈ H✳ ◆❛♠✐❣✳ ✭=⇒✮ ❖↔✐t♥♦ ❥❡ Nx 2 = N∗Nx, x = NN∗x, x = N∗x 2 ③❛ ✈s❛❦ x ∈ H✳ ✭⇐=✮ ●❧❡❞❡ ♥❛ ♣r❡❞♣♦st❛✈❦♦ ♥✐ t❡➸❦♦ ♣♦❦❛③❛t✐✱ ❞❛ ❥❡ (N ∗N − NN∗)x, x = 0 ③❛ ✈s❛❦ x ∈ H✳ ❙ ♣♦♠♦↔❥♦ ♥❛❧♦❣❡ ✶✹ s❧❡❞✐ ➸❡❧❡♥♦✱ N∗N = NN∗✳ ✸✻ ✶✼✳ ◆❛❥ ❜♦ H ❍✐❧❜❡rt♦✈ ♣r♦st♦r ✐♥ ♥❛❥ ❜♦st❛ x, y ∈ H t❛❦❛✱ ❞❛ ❥❡ x + y = x + y . P♦❦❛➸✐t❡✱ ❞❛ ❥❡ x y = | x, y |✳ ◆❛♠✐❣✳ ❖↔✐t♥♦ ❥❡ x + y 2 = x 2 + y 2 + 2 x y ✳ ■③ t❡❣❛ s❧❡❞✐ x, y + y, x = 2 x y ✳ ❚♦r❡❥ ❥❡ | x, y | ≤ x y = ❘❡ x, y ≤ | x, y |✳ ✶✽✳ ◆❛❥ ❜♦ (X, ., . ) r❡❛❧❡♥ ❛❧✐ ❦♦♠♣❧❡❦s❡♥ ✈❡❦t♦rs❦✐ ♣r♦st♦r s s❦❛❧❛r♥✐♠ ♣r♦❞✉❦t♦♠✳ ❉❡♥✐♠♦✱ ❞❛ ③❛ ✈s❛❦ f ∈ X∗ ♦❜st❛❥❛ t❛❦ y ∈ X✱ ❞❛ ❥❡ f (x) = x, y ③❛ ✈s❛❦ x ∈ X✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ X ♣♦❧♥ ♣r♦st♦r✳ ◆❛♠✐❣✳ ◆❛❥ ❜♦ ϕ : X → X∗ ♣r❡s❧✐❦❛✈❛ ❞❡✜♥✐r❛♥❛ s ♣r❡❞♣✐s♦♠ ϕ(a) = fa✱ ❦❥❡r ❥❡ fa(x) = x, a ③❛ ✈s❛❦ x ∈ X✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ ϕ ✐③♦♠❡tr✐❥❛ ✐♥ ✉♣♦➨t❡✈❛❥t❡✱ ❞❛ ❥❡ X∗ ♣♦❧♥ ♣r♦st♦r✳ ✶✾✳ ◆❛❥ ❜♦ A ❇❛♥❛❝❤♦✈❛ ❛❧❣❡❜r❛✳ ✭❛✮ ◆❛❥ ❜♦ a ∈ A ♥✐❧♣♦t❡♥t❡♥✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ σ(a) = {0}✳ ✭❜✮ ◆❛❥ ❜♦ e ∈ A ✐❞❡♠♣♦t❡♥t ✐♥ e = 0, 1✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ σ(e) = {0, 1}✳ ◆❛♠✐❣✳ ✭❛✮ ❑❡r ♦❜st❛❥❛ t❛❦ n ∈ N✱ ❞❛ ❥❡ an−1 = 0 ✐♥ an = 0✱ ❥❡ a ❞❡❧✐t❡❧❥ ♥✐↔❛✳ ❩❛t♦ a ♥✐ ♦❜r♥❧❥✐✈✳ ❚♦r❡❥ ❥❡ 0 ∈ σ(a)✳ ◆❛❥ ❜♦ 0 = λ ∈ C. P♦❦❛➸✐t❡✱ ❞❛ ♦❜st❛❥❛ ✐♥✈❡r③ ❡❧❡♠❡♥t❛ a−λ1 ✭❣❡♦♠❡tr✐❥s❦❛ ✈rst❛✮✱ ✐③ ↔❡s❛r s❧❡❞✐ ➸❡❧❡♥♦✳ ✭❜✮ ❑❡r ❥❡ e(e − 1) = 0✱ e = 0, 1✱ ❡❧❡♠❡♥t❛ e ✐♥ e − 1 ♥✐st❛ ♦❜r♥❧❥✐✈❛✳ P♦t❡♠ ♣❛ ❥❡ 0, 1 ∈ σ(e)✳ ◆❛❥ ❜♦ 0, 1 = λ ∈ C. ❑❡r ❥❡ e − λ1 ♦❜r♥❧❥✐✈ ❡❧❡♠❡♥t ③ ✐♥✈❡r③♦♠ (e − λ1)−1 = 1(−1 + e )✱ s❧❡❞✐ ➸❡❧❡♥♦✳ λ 1−λ ✸✼ ✷✵✳ ◆❛❥ ❜♦ A ❇❛♥❛❝❤♦✈❛ ❛❧❣❡❜r❛ ✐♥ a, b ∈ A✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ σ(ab) − {0} = σ(ba) − {0}. ◆❛♠✐❣✳ ◆❛❥ ❜♦ λ = 0✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ ab − λ ♦❜r♥❧❥✐✈ ❡❧❡♠❡♥t ♥❛t❛♥❦♦ t❡❞❛❥✱ ❦♦ ❥❡ ba − λ ♦❜r♥❧❥✐✈ ❡❧❡♠❡♥t✳ ❑♦♥❦r❡t♥♦✱ ↔❡ ❥❡ ba − 1 ♦❜r♥❧❥✐✈ ❡❧❡♠❡♥t✱ ♣♦t❡♠ ❥❡ (ab − 1)−1 = −(1 + a(1 − ba)−1b). ✷✶✳ ◆❛❥ ❜♦ A ❇❛♥❛❝❤♦✈❛ ❛❧❣❡❜r❛ ③ ❡♥♦t♦ e ✐♥ ♥❛❥ ❜♦ x ∈ A ♦❜r♥❧❥✐✈✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ λ ∈ σ(x) ♥❛t❛♥❦♦ t❡❞❛❥✱ ❦♦ ❥❡ λ−1 ∈ σ(x−1)✳ ◆❛♠✐❣✳ ✭=⇒✮ ◆❛❥ ❜♦ λ ∈ σ(x)✳ Pr❡❞♣♦st❛✈✐♠♦✱ ❞❛ ❥❡ λ−1 /∈ σ(x−1)✳ P♦t❡♠ ❥❡ x−1 − λ−1e ♦❜r♥❧❥✐✈ ❡❧❡♠❡♥t✳ ❑❡r ❥❡ λe − x = λx(x−1 − λ−1e)✱ ❥❡ λe − x ♦❜r♥❧❥✐✈ ❡❧❡♠❡♥t✳ ❙ t❡♠ s♠♦ ♣♦❦❛③❛❧✐ ➸❡❧❡♥♦✳ ✷✷✳ ◆❛❥ ❜♦ A ❇❛♥❛❝❤♦✈❛ ❛❧❣❡❜r❛ ③ ❡♥♦t♦ e✱ e = 1 ✐♥ ♥❛❥ ❜♦ ϕ : A → C ♥❡♥✐↔❡❧♥ ♠✉❧t✐♣❧✐❦❛t✐✈❡♥ ❧✐♥❡❛r❡♥ ❢✉♥❦❝✐♦♥❛❧✳ P♦❦❛➸✐t❡✿ ✭❛✮ ϕ(e) = 1, ✭❜✮ ϕ(a) ∈ σ(a) ③❛ ✈s❛❦ a ∈ A, ✭❝✮ ϕ = 1✳ ❘❡➨✐t❡✈✳ ✭❛✮ ❑❡r ❥❡ ϕ(a) = ϕ(ae) = ϕ(a)ϕ(e) ③❛ ✈s❛❦ 0 = a ∈ A✱ ❥❡ ϕ(e) = 1. ✭❜✮ ❱✐❞✐♠♦✱ ❞❛ ❥❡ ϕ(a − ϕ(a)e) = ϕ(a) − ϕ(a) = 0✳ ■③ t❡❣❛ s❧❡❞✐✱ ❞❛ a − ϕ(a)e ♥✐ ♦❜r♥❧❥✐✈ ❡❧❡♠❡♥t ✐♥ ③❛t♦ ❥❡ ϕ(a) ∈ σ(a)✳ ✭❝✮ ❑❡r ❥❡ ϕ(e) = 1✱ ❥❡ 1 ≤ ϕ ✳ ❙ ♣♦♠♦↔❥♦ t♦↔❦❡ ✭❜✮ ✈✐❞✐♠♦✱ ❞❛ ❥❡ |ϕ(a)| ≤ a ③❛ ✈s❛❦ a ∈ A, ✐③ ↔❡s❛r s❧❡❞✐ ϕ ≤ 1✳ ✸✽ ✷✸✳ ◆❛❥ ❜♦ X ❦♦♠♣❧❡❦s♥❛ ❇❛♥❛❝❤♦✈❛ ❛❧❣❡❜r❛ ③ ❡♥♦t♦ 1 ✐♥ ♥❛❥ ❜♦ ϕ : X → X t❛❦❛ ❧✐♥❡❛r♥❛ ♣r❡s❧✐❦❛✈❛✱ ❞❛ ❥❡ ϕ(1) = 1✳ P♦❦❛➸✐t❡✱ ❞❛ st❛ ♥❛s❧❡❞♥❥✐ ❞✈❡ tr❞✐t✈✐ ❡❦✈✐✈❛❧❡♥t♥✐✿ ✭❛✮ x ∈ X ❥❡ ♦❜r♥❧❥✐✈ ♥❛t❛♥❦♦ t❡❞❛❥✱ ❦♦ ❥❡ ϕ(x) ♦❜r♥❧❥✐✈✱ ✭❜✮ σ(ϕ(x)) = σ(x)✳ ❘❡➨✐t❡✈✳ ✭✭❛✮ ⇒ ✭❜✮✮ ◆❛❥ ❜♦ λ ∈ σ(ϕ(x)). P♦t❡♠ ❡❧❡♠❡♥t ϕ(x) − λ1 = ϕ(x − λ1) ♥✐ ♦❜r♥❧❥✐✈✳ ●❧❡❞❡ ♥❛ ♣r❡❞♣♦st❛✈❦♦ x − λ1 ♥✐ ♦❜r♥❧❥✐✈ ❡❧❡♠❡♥t ✐♥ ③❛t♦ ❥❡ λ ∈ σ(x)✳ ◆❛❥ ❜♦ λ ∈ σ(x)✳ P♦t❡♠ ❡❧❡♠❡♥t x − λ1 ♥✐ ♦❜r♥❧❥✐✈✳ P♦ ♣r❡❞♣♦st❛✈❦✐ t✉❞✐ ϕ(x − λ1) = ϕ(x) − λ1 ♥✐ ♦❜♥❧❥✐✈ ❡❧❡♠❡♥t✳ ■③ t❡❣❛ s❧❡❞✐ ➸❡❧❡♥♦✳ ✭✭❜✮ ⇒ ✭❛✮✮ Pr❡❞♣♦st❛✈✐♠♦✱ ❞❛ x ♥✐ ♦❜r♥❧❥✐✈ ❡❧❡♠❡♥t✳ ❚♦r❡❥ ❥❡ 0 ∈ σ(x) = σ(ϕ(x))✱ ✐③ ↔❡s❛r s❧❡❞✐ ➸❡❧❡♥♦✳ P♦❞♦❜♥♦✱ ↔❡ ϕ(x) ♥✐ ♦❜r♥❧❥✐✈✱ ❥❡ 0 ∈ σ(ϕ(x)) = σ(x) ✐♥ ③❛t♦ x ♥✐ ♦❜r♥❧❥✐✈ ❡❧❡♠❡♥t✳ ✷✹✳ ◆❛❥ ❜♦ ♣r❡s❧✐❦❛✈❛ A : l2 → l2 ❞❡✜♥✐r❛♥❛ s ♣r❡❞♣✐s♦♠ A(x1, x2, x3, . . .) = (0, x1, x2, x3, . . .). P♦❦❛➸✐t❡✱ ❞❛ ❥❡ A ∈ B(l2) ✐♥ ✐③r❛↔✉♥❛❥t❡ A ✱ A∗ t❡r σ(A)✳ ❘❡➨✐t❡✈✳ ◆♦r♠❛ ♦♣❡r❛t♦r❥❛ A ❥❡ ✶✱ A∗(x1, x2, x3, x4, . . .) = (x2, x3, x4, . . .), σ(A) = K(0, 1). ✷✺✳ ◆❛❥ ❜♦ ♣r❡s❧✐❦❛✈❛ A : l2 → l2 ❞❡✜♥✐r❛♥❛ s ♣r❡❞♣✐s♦♠ A(x1, x2, x3, . . .) = (x2, x3, . . .). P♦❦❛➸✐t❡✱ ❞❛ ❥❡ A ∈ B(l2) ✐♥ ✐③r❛↔✉♥❛❥t❡ A ✱ A∗ t❡r σ(A)✳ ❘❡➨✐t❡✈✳ ◆♦r♠❛ ♦♣❡r❛t♦r❥❛ A ❥❡ ✶✱ A∗(x1, x2, x3, . . .) = (0, x1, x2, x3, . . .), σ(A) = K(0, 1). ✸✾ ✷✻✳ ◆❛❥ ❜♦ ♣r❡s❧✐❦❛✈❛ U : l2 → l2 ❞❡✜♥✐r❛♥❛ s ♣r❡❞♣✐s♦♠ U (x1, x2, x3, x4, . . .) = (x1, −x2, x3, −x4, . . .). P♦❦❛➸✐t❡✱ ❞❛ ❥❡ U ∈ B(l2) ✐♥ ✐③r❛↔✉♥❛❥t❡ U ✱ U∗ t❡r σ(U)✳ ❘❡➨✐t❡✈✳ ◆♦r♠❛ ♦♣❡r❛t♦r❥❛ U ❥❡ ✶✱ U∗ = U✱ σ(U) = {1, −1}. ✷✼✳ ◆❛❥ ❜♦ ♣r❡s❧✐❦❛✈❛ T : l2 → l2 ❞❡✜♥✐r❛♥❛ s ♣r❡❞♣✐s♦♠ T (x1, x2, x3, x4, . . .) = (−x2, x1, −x4, x3, . . .). P♦❦❛➸✐t❡✱ ❞❛ ❥❡ T ③✈❡③❡♥ ❧✐♥❡❛r❡♥ ♦♣❡r❛t♦r ✐♥ ✐③r❛↔✉♥❛❥t❡ T ✱ T ∗ t❡r σ(T )✳ ❘❡➨✐t❡✈✳ ◆♦r♠❛ ♦♣❡r❛t♦r❥❛ T ❥❡ ✶✱ T ∗ = −T ✱ σ(T ) = {i, −i}. ✷✽✳ ◆❛❥ ❜♦ ♣r❡s❧✐❦❛✈❛ A : l2 → l2 ❞❡✜♥✐r❛♥❛ s ♣r❡❞♣✐s♦♠ A(x1, x2, x3, x4, . . .) = (x1 + x2, x1 − x2, x3 + x4, x3 − x4, . . .). P♦❦❛➸✐t❡✱ ❞❛ ❥❡ A ∈ B(l2) ✐♥ ✐③r❛↔✉♥❛❥t❡ A ✱ A∗ t❡r σ(A)✳ √ √ √ ❘❡➨✐t❡✈✳ ◆♦r♠❛ ♦♣❡r❛t♦r❥❛ A ❥❡ 2✱ A∗ = A✱ σ(A) = { 2, − 2}. ✷✾✳ ◆❛❥ ❜♦ A : l2 → l2 ♦♣❡r❛t♦r ❞❡✜♥✐r❛♥ s ♣r❡❞♣✐s♦♠ A(x1, x2, x3, x4, . . .) = (x1 + 2x2, 2x1 − x2, x3 + 2x4, 2x3 − x4, . . .). P♦❦❛➸✐t❡✱ ❞❛ ❥❡ A ∈ B(l2) ✐♥ ✐③r❛↔✉♥❛❥t❡ A ✱ A∗ t❡r σ(A)✳ √ √ √ ❘❡➨✐t❡✈✳ ◆♦r♠❛ ♦♣❡r❛t♦r❥❛ A ❥❡ 5✱ A∗ = A✱ σ(A) = { 5, − 5}. ✹✵ ✸✵✳ ◆❛❥ ❜♦st❛ a ✐♥ b ♥❡♥✐↔❡❧♥❛ ✈❡❦t♦r❥❛ ♥❡s❦♦♥↔♥♦ r❛③s❡➸♥❡❣❛ ❍✐❧❜❡rt♦✈❡❣❛ ♣r♦st♦r❛ H ✐♥ ♥❛❥ ❜♦ A : H → H ❧✐♥❡❛r❡♥ ♦♣❡r❛t♦r ❞❡✜♥✐r❛♥ s ♣r❡❞♣✐s♦♠ Ax = x, a b✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ A ♦♠❡❥❡♥ ❧✐♥❡❛r❡♥ ♦♣❡r❛t♦r✳ ■③r❛↔✉♥❛❥t❡ ♥❥❡❣♦✈♦ ♥♦r♠♦ t❡r A∗✳ ❑❞❛❥ ❥❡ A ♥♦r♠❛❧❡♥ ✐♥ ❦❞❛❥ s❡❜✐❛❞❥✉♥❣✐r❛♥ ♦♣✲ ❡r❛t♦r❄ ❑❛❥ st❛ ❥❡❞r♦ ✐♥ ③❛❧♦❣❛ ✈r❡❞♥♦st✐ ♦♣❡r❛t♦r❥❛ A❄ ■③r❛↔✉♥❛❥t❡ σ(A)✳ ◆❛♠✐❣✳ ◆♦r♠❛ ♦♣❡r❛t♦r❥❛ A ❥❡ a b ✱ ImA = {λb | λ ∈ C}✱ KerA = {a}⊥✳ ❑❡r ❥❡ Ax, y = x, a b, y = x, a b, y = x, y, b a = x, A∗y , ❥❡ A∗x = x, b a✳ ❖♣❡r❛t♦r A ❥❡ ♥♦r♠❛❧❡♥✱ ❦♦ ❥❡ b = λa✱ λ ∈ C✳ ❖♣❡r❛t♦r A ❥❡ s❡❜✐ ❛❞❥✉♥❣✐r❛♥✱ ❦♦ ❥❡ b = λa✱ λ ∈ R✳ ◆❛❥ ❜♦ Ax = λx✱ x = 0✳ P♦t❡♠ st❛ 0 ✐♥ b, a ❧❛st♥✐ ✈r❡❞♥♦st✐ ♦♣❡r❛t♦r❥❛ A✳ ◆❛❥ ❜♦ λ = 0, b, a ✳ ■③ ❡♥❛❦♦st✐ (A − λI)x = y s❧❡❞✐ x, a b, a = λ x, a + y, a ✳ ❙ ♣♦♠♦↔❥♦ t❡❣❛ ❧❛❤❦♦ ♣♦❦❛➸❡♠♦✱ ❞❛ ❥❡ x = 1 ( y,a b−y)✳ λ b,a −λ ❚♦r❡❥ ❥❡ ♦♣❡r❛t♦r A − λI ♦❜r♥❧❥✐✈✳ ❙ t❡♠ s♠♦ ♣♦❦❛③❛❧✐✱ ❞❛ ❥❡ σ(A) = {0, b, a }✳ ✸✶✳ ◆❛❥ ❜♦ H ❍✐❧❜❡rt♦✈ ♣r♦st♦r✱ ❞✐♠H ≥ 4 ✐♥ ♥❛❥ ❜♦❞♦ a, b, c ∈ H ❧✐♥❡❛r♥♦ ♥❡♦❞✈✐s♥✐ t❡r ♣❛r♦♠❛ ♦rt♦❣♦♥❛❧♥✐ ✈❡❦t♦r❥✐✳ ❉❡✜♥✐r❛❥♠♦ ♦♣❡r❛t♦r A : H → H s ♣r❡❞♣✐s♦♠ Ax = x, a a + x, b b + x, c c. P♦❦❛➸✐t❡✱ ❞❛ ❥❡ A ∈ B(H) ✐♥ ✐③r❛↔✉♥❛❥t❡ σ(A) t❡r A∗✳ ❆❧✐ ❥❡ A ✐♥❥❡❦t✐✈❡♥ ♦♣❡r❛t♦r❄ ❆❧✐ ❥❡ s✉r❥❡❦t✐✈❡♥❄ ◆❛♠✐❣✳ ▲❛st♥❡ ✈r❡❞♥♦st✐ ♦♣❡r❛t♦r❥❛ A s♦ 0, a 2, b 2, c 2✳ ❷❡ λ ♥✐ ❧❛st♥❛ ✈r❡❞♥♦st ♦♣❡r❛t♦r❥❛ A✱ ♣♦t❡♠ ✐③ ❡♥❛❦♦st✐ (A − λI)x = y s❧❡❞✐ x, a = y,a ✱ x, b = y,b ✐♥ x, c = y,c . ❚♦r❡❥ ❥❡ a 2−λ b 2−λ c 2−λ 1 x = ( x, a a + x, b b + x, c c − y), λ ❦❛r ♣♦♠❡♥✐✱ ❞❛ ❥❡ ♦♣❡r❛t♦r A − λI ♦❜r♥❧❥✐✈✳ ■③ t❡❣❛ s❧❡❞✐✱ ❞❛ ❥❡ σ(A) = {0, a 2, b 2, c 2}✳ ❖♣❡r❛t♦r A ♥✐ ♥✐t✐ ✐♥❥❡❦t✐✈❡♥ ♥✐t✐ s✉r❥❡❦t✐✈❡♥✱ s❛❥ ❥❡ ❞✐♠H ≥ 4✱ A = A∗✳ ✹✶ ✸✷✳ ◆❛❥ ❜♦ H ❦♦♠♣❧❡❦s❡♥ ❍✐❧❜❡rt♦✈ ♣r♦st♦r ✐♥ A ∈ B(H) t❛❦ ♦♣❡r❛t♦r✱ ❞❛ ❥❡ A∗ = −A✳ ✭❛✮ P♦❦❛➸✐t❡✱ ❞❛ ✐③ A2 = 0 s❧❡❞✐ A = 0✳ ✭❜✮ ◆❛❥ ❜♦ λ ❧❛st♥❛ ✈r❡❞♥♦st ♦♣❡r❛t♦r❥❛ A✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ λ = it ③❛ ♥❡❦ t ∈ [− A , A ]✳ ◆❛♠✐❣✳ ✭❛✮ ■③ ❡♥❛❦♦st✐ 0 = x, A2x = A∗x, Ax s❧❡❞✐ ➸❡❧❡♥♦✳ ✭❜✮ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ λ x, x = −λ x, x ✱ ✐③ ↔❡s❛r s❧❡❞✐ ➸❡❧❡♥♦✳ ✸✸✳ ◆❛❥ ❜♦ H ❍✐❧❜❡rt♦✈ ♣r♦st♦r ✐♥ ♥❛❥ ❜♦ A ∈ B(H) t❛❦ ♥♦r♠❛❧❡♥ ♦♣❡r❛t♦r✱ ❞❛ ❥❡ A2 = −A✳ P♦❦❛➸✐t❡✿ ✭❛✮ A∗Ax, A∗y = − A∗x, A∗y ✱ x, y ∈ H✱ ✭❜✮ A = A∗✱ ✭❝✮ {0, −1} ⊆ σ(A)✳ ❘❡➨✐t❡✈✳ ✭❛✮ ❱✐❞✐♠♦✱ ❞❛ ❥❡ A∗Ax, A∗y = AA∗x, A∗y = A∗x, (A2)∗y = − A∗x, A∗y ③❛ ✈s❛❦ x, y ∈ H✳ ✭❜✮ ●❧❡❞❡ ♥❛ ③❣♦r♥❥♦ ❡♥❛❦♦st ♦♣❛③✐♠♦✱ ❞❛ ❥❡ 0 = (A∗A + A∗)x, A∗y = A∗(A + I)x, A∗y ③❛ ✈s❛❦ x, y ∈ H✳ P✐➨✐♠♦ (A + I)x ♥❛♠❡st♦ y✳ P♦t❡♠ ❥❡ A∗(A + I)x = 0 ③❛ ✈s❛❦ x ∈ H✱ ❦❛r ♥❛s ♣r✐✈❡❞❡ ❞♦ ➸❡❧❡♥❡ ❡♥❛❦♦st✐✱ s❛❥ ❥❡ 0 = A∗A + A∗ = A∗A + A✳ ✭❝✮ ◆❛❥ ❜♦ λ ❧❛st♥❛ ✈r❡❞♥♦st ♦♣❡r❛t♦r❥❛ A✳ P♦t❡♠ ♦❜st❛❥❛ t❛❦ 0 = x ∈ H✱ ❞❛ ❥❡ Ax = λx✳ ❖♣❛③✐♠♦✱ ❞❛ ❥❡ λ x, x = λ x, x ✳ ❯♣♦➨t❡✈❛❥♠♦ ♣r❡❞♣♦st❛✈❦♦✱ ❞❛ ❥❡ A2 = −A✱ ❦❛r ♥❛s ♣r✐✈❡❞❡ ❞♦ t❡❣❛✱ ❞❛ ❥❡ λ = 0 ❛❧✐ λ = −1✳ ✹✷ ✸✹✳ ◆❛❥ ❜♦ H ❍✐❧❜❡rt♦✈ ♣r♦st♦r ✐♥ ♥❛❥ ❜♦ A ∈ B(H) t❛❦ ♦♣❡r❛t♦r✱ ❞❛ ❥❡ A3 = A∗✳ ✭❛✮ P♦❦❛➸✐t❡✱ ❞❛ ✐③ A4 = 0 s❧❡❞✐ A = 0✳ ✭❜✮ P♦✐➨↔✐t❡ ❧❛st♥❡ ✈r❡❞♥♦st✐ ♦♣❡r❛t♦r❥❛ A✳ ✭❝✮ ❉♦❧♦↔✐t❡ s♣❡❦t❡r ♦♣❡r❛t♦r❥❛ A✱ ↔❡ ❥❡ A4 = I✳ ❘❡➨✐t❡✈✳ ✭❛✮ ❑❡r ❥❡ Ax, Ax = x, A4x = 0✱ ❥❡ Ax = 0 ③❛ ✈s❛❦ x ∈ H✳ ✭❜✮ ▲❛st♥❡ ✈r❡❞♥♦st✐ ♦♣❡r❛t♦r❥❛ A s♦ 0, 1, −1, i, −i✳ ✭❝✮ ❙♣❡❦t❡r ♦♣❡r❛t♦r❥❛ A ❥❡ σ(A) = {1, −1, i, −i}✳ ✸✺✳ ◆❛❥ ❜♦ H ❍✐❧❜❡rt♦✈ ♣r♦st♦r ✐♥ ♥❛❥ ❜♦ A ∈ B(H) ♣♦③✐t✐✈❡♥ ♦♣❡r❛t♦r✳ P♦❦❛➸✐t❡✿ ✭❛✮ s✉♣{ Ax, x | x = 1} ≤ 1 ♥❛t❛♥❦♦ t❡❞❛❥✱ ❦♦ ❥❡ Ax, x ≤ x, x ✱ ✭❜✮ ↔❡ ❥❡ λ ❧❛st♥❛ ✈r❡❞♥♦st ♦♣❡r❛t♦r❥❛ A✱ ❥❡ 0 ≤ λ. ❘❡➨✐t❡✈✳ ✭❛✮ ✭=⇒✮ ❷❡ ❥❡ x = 1✱ ♦↔✐t♥♦ s❧❡❞✐ ➸❡❧❡♥♦✳ ◆❛❥ ❜♦ x = 1✳ P♦t❡♠ ❥❡ x , x = 1. ❙❧❡❞✐ A x , x ≤ 1. ❚♦r❡❥ ❥❡ Ax, x ≤ x, x . x x x x ✭⇐=✮ P♦ ♣r❡❞♣♦st❛✈❦✐ ❥❡ Ax, x ≤ x, x ✳ ❷❡ ❥❡ x = 1✱ s❧❡❞✐ ➸❡❧❡♥♦✳ ✭❜✮ ❑❡r ❥❡ λ ❧❛st♥❛ ✈r❡❞♥♦st ♦♣❡r❛t♦r❥❛ A✱ ♦❜st❛❥❛ t❛❦ 0 = x ∈ H✱ ❞❛ ❥❡ Ax = λx✳ P♦t❡♠ ❥❡ Ax, x = λ x, x ✳ P♦ ❞r✉❣✐ str❛♥✐ ♣❛ ❥❡ x, Ax = λ x, x ✳ ■③ t❡❣❛ s❧❡❞✐ ➸❡❧❡♥♦✳ ✸✻✳ ◆❛❥ ❜♦ H ❍✐❧❜❡rt♦✈ ♣r♦st♦r ✐♥ A ∈ B(H)✳ Pr❡❞♣♦st❛✈✐♠♦✱ ❞❛ ❥❡ AA∗ ❦♦♠♣❛❦t❡♥ ♦♣❡r❛t♦r✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ ♣♦t❡♠ ❦♦♠♣❛❦t❡♥ t✉❞✐ ♦♣❡r❛t♦r A✳ ✹✸ ◆❛♠✐❣✳ ◆❛❥ ❜♦ {xn}n∈N ♦♠❡❥❡♥♦ ③❛♣♦r❡❞❥❡ ✈ H✳ ❑❡r ❥❡ AA∗ ❦♦♠♣❛❦✲ t❡♥ ♦♣❡r❛t♦r✱ ✈s❡❜✉❥❡ ③❛♣♦r❡❞❥❡ {A∗Axn}n∈N ❦♦♥✈❡r❣❡♥t♥♦ ♣♦❞③❛♣♦r❡❞❥❡ {A∗Axn } p p∈N✳ ❙ ♣♦♠♦↔❥♦ ♥❡❡♥❛❦♦st✐ Ax 2 = Ax, Ax = A∗Ax, x ≤ A∗Ax x ♦♣❛③✐♠♦✱ ❞❛ ❥❡ ③❛♣♦r❡❞❥❡ {Axn } p p∈N ❈❛✉❝❤②❥❡✈♦ ✐♥ ③❛t♦ ❦♦♥✈❡r❣❡♥t♥♦✳ ✸✼✳ ◆❛❥ ❜♦ H ❍✐❧❜❡rt♦✈ ♣r♦st♦r ✐♥ A ∈ B(H)✳ ✭❛✮ P♦❦❛➸✐t❡✱ ❞❛ ③❛ ✈s❛❦ x ∈ H ✈❡❧❥❛ Ax 4 ≤ x 3 (A∗A)2x . ✭❜✮ ◆❛❥ ❜♦ (A∗A)2 ❦♦♠♣❛❦t❡♥ ♦♣❡r❛t♦r✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ ♣♦t❡♠ ❦♦♠✲ ♣❛❦t❡♥ t✉❞✐ ♦♣❡r❛t♦r A✳ ◆❛♠✐❣✳ ✭❛✮ ❖↔✐t♥♦ ❥❡ Ax 4 = ( x, A∗Ax )2 ≤ x 2 A∗Ax 2 = x 2 x, (A∗A)2x ≤ x 3 (A∗A)2x . ✭❜✮ ◆❛❥ ❜♦ {xn}n∈N ♦♠❡❥❡♥♦ ③❛♣♦r❡❞❥❡ ✈ H✳ ❙ ♣♦♠♦↔❥♦ ♥❡❡♥❛❦♦st✐ ✭❛✮ ✐♥ ♣r❡❞♣♦st❛✈❦❡ ♣♦❦❛➸❡♠♦✱ ❞❛ ✈s❡❜✉❥❡ ③❛♣♦r❡❞❥❡ {(A∗A)2xn}n∈N ❦♦♥✈❡r❣❡♥t♥♦ ♣♦❞③❛♣♦r❡❞❥❡ {(A∗A)2xn } p p∈N✳ ■③ t❡❣❛ s❧❡❞✐ ✭❣❧❡❥t❡ t♦↔❦♦ ✭❛✮✮✱ ❞❛ ❥❡ t✉❞✐ ③❛♣♦r❡❞❥❡ {Axn } p p∈N ❦♦♥✈❡r❣❡♥t♥♦✳ ✸✽✳ ◆❛❥ ❜♦st❛ X ✐♥ Y ❇❛♥❛❝❤♦✈❛ ♣r♦st♦r❛ ✐♥ A : X → Y ❦♦♠♣❛❦t❡♥ ❧✐♥❡❛r❡♥ ♦♣❡r❛t♦r✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ ImA ③❛♣rt ♣♦❞♣r♦st♦r Y ♥❛t❛♥❦♦ t❡❞❛❥✱ ❦♦ ❥❡ A ❦♦♥↔♥❡❣❛ r❛♥❣❛✳ ◆❛♠✐❣✳ ✭⇐=) ❱s❛❦ ❦♦♥↔♥♦ r❛③s❡➸❡♥ ♣♦❞♣r♦st♦r ♥♦r♠✐r❛♥❡❣❛ ♣r♦st♦r❛ ❥❡ ③❛♣rt✳ ❷❡ ❥❡ t♦r❡❥ ♦♣❡r❛t♦r A ❦♦♥↔♥❡❣❛ r❛♥❣❛✱ ♣♦t❡♠ ❥❡ ImA ③❛♣rt ♣♦❞♣r♦st♦r ♣r♦st♦r❛ Y ✳ ✹✹ ✭=⇒✮ ◆❛❥ ❜♦ A : X → Y t❛❦ ❦♦♠♣❛❦t❡♥ ❧✐♥❡❛r❡♥ ♦♣❡r❛t♦r✱ ❞❛ ❥❡ ImA ③❛♣rt ♣♦❞♣r♦st♦r ♣r♦st♦r❛ Y ✳ ▲✐♥❡❛r❡♥ ♦♣❡r❛t♦r A : X → ImA ❥❡ s✉r✲ ❥❡❦t✐✈❡♥ ✐♥ ♦♠❡❥❡♥✳ P♦ ✐③r❡❦✉ ♦ ♦❞♣rt✐ ♣r❡s❧✐❦❛✈✐ ❥❡ A(K(0, 1))✱ ❦❥❡r K(0, 1) ♦③♥❛↔✉❥❡ ♦❞♣rt♦ ❡♥♦ts❦♦ ❦r♦❣❧♦ s sr❡❞✐➨↔❡♠ ✈ 0✱ ♦❞♣rt❛ ♣♦❞♠✲ ♥♦➸✐❝❛ ImA✳ ❚♦r❡❥ ♦❜st❛❥❛ ♥❡❦❛ ③❛♣rt❛ ❦r♦❣❧❛ K(0, ǫ) ⊆ A(K(0, 1))✳ ❑❡r ❥❡ A(K(0, 1)) ❦♦♠♣❛❦t♥❛ ♠♥♦➸✐❝❛ ✐♥ ❥❡ ③❛♣rt ♣♦❞♣r♦st♦r ❦♦♠♣❛❦t♥❡❣❛ ♣r♦st♦r❛ ❦♦♠♣❛❦t❡♥✱ ❥❡ K(0, ǫ) ❦♦♠♣❛❦t♥❛ ♣♦❞♠♥♦➸✐❝❛ ImA ✐♥ ❥❡ ③❛t♦ dim(ImA) < ∞✳ ✸✾✳ ◆❛❥ ❜♦st❛ X ✐♥ Y ❇❛♥❛❝❤♦✈❛ ♣r♦st♦r❛ t❡r ♥❛❥ ❜♦ A : X → Y ③✈❡③❡♥✱ s✉r❥❡❦t✐✈❡♥ ♦♣❡r❛t♦r✳ P♦❦❛➸✐t❡✿ ♦❜st❛❥❛ t❛❦ m > 0✱ ❞❛ ③❛ ✈s❛❦ y ∈ Y ♦❜st❛❥❛ t❛❦ x ∈ X✱ ❞❛ ❥❡ Ax = y ✐♥ x ≤ m Ax ✳ ❘❡➨✐t❡✈✳ ◆❛❥ ❜♦ K(0, 1) = {x ∈ X | x < 1}✳ P♦ ✐③r❡❦✉ ♦ ♦❞♣rt✐ ♣r❡s❧✐❦❛✈✐ ♦♣❡r❛t♦r A s❧✐❦❛ ♦❞♣rt❡ ♠♥♦➸✐❝❡ ✈ ♦❞♣rt❡ ♠♥♦➸✐❝❡✳ P♦t❡♠ ♦❜st❛❥❛ t❛❦❛ ♦❞♣rt❛ ♠♥♦➸✐❝❛ K(0, r)✱ ❞❛ ❥❡ K(0, r) ⊆ A(K(0, 1))✳ ◆❛❥ ❜♦ 0 = y ∈ Y ✐♥ ♣✐➨✐♠♦ z = yr ✳ ❚♦r❡❥ ❥❡ z = r ✐♥ ③❛t♦ ❥❡ z ∈ A(K(0, 1))✳ y 2 2 ■③ t❡❣❛ s❧❡❞✐✱ ❞❛ ♦❜st❛❥❛ t❛❦ x0 ∈ K(0, 1)✱ ❞❛ ❥❡ z = Ax0✳ ◆❛❥ ❜♦ x = x y 2 0 ✳ P♦t❡♠ ❥❡ Ax = y ✐♥ x = 2 y x Ax ✳ r r 0 ≤ 2r ✹✵✳ ◆❛❥ ❜♦ ✈❡❦t♦rs❦✐ ♣r♦st♦r X ❇❛♥❛❝❤♦✈ ③❛ ♥♦r♠✐ . 1 ✐♥ . 2✳ Pr❡❞✲ ♣♦st❛✈✐♠♦✱ ❞❛ ❥❡ x 1 ≤ x 2 ③❛ ✈s❛❦ x ∈ X✳ P♦❦❛➸✐t❡✱ ❞❛ st❛ t❡❞❛❥ ♥♦r♠✐ ❡❦✈✐✈❛❧❡♥t♥✐✳ ◆❛♠✐❣✳ ❑❡r ❥❡ id : (X, . 2) → (X, . 1) ❧✐♥❡❛r♥❛✱ ③✈❡③♥❛ ✐♥ ❜✐❥❡❦t✐✈♥❛ ♣r❡s❧✐❦❛✈❛ ✭✉♣♦➨t❡✈❛❥t❡✱ ❞❛ ❥❡ id(x) 1 = x 1 ≤ x 2 ③❛ ✈s❛❦ x ∈ X✮✱ ❥❡ ♣♦ ✐③r❡❦✉ ♦ ♦❞♣rt✐ ♣r❡s❧✐❦❛✈✐ id−1 ③✈❡③♥❛ ♣r❡s❧✐❦❛✈❛✳ ❙❧❡❞✐ x 2 = id−1(x) 2 ≤ m x 1✳ ✹✶✳ ◆❛❥ ❜♦ H ❍✐❧❜❡rt♦✈ ♣r♦st♦r ✐♥ T ∈ B(H)✳ P♦❦❛➸✐t❡✿ ✭❛✮ KerT ∗ = (ImT )⊥✱ ✭❜✮ (I + T ∗T )x ≥ x ✱ ✭❝✮ I + T ∗T ❥❡ ♦❜r♥❧❥✐✈ ♦♣❡r❛t♦r ✈ B(H)✳ ✹✺ ❘❡➨✐t❡✈✳ ✭❛✮ ◆❛❥ ❜♦ x ∈ KerT ∗✳ P♦t❡♠ ❥❡ 0 = T ∗x, y = x, T y ③❛ ✈s❛❦ y ∈ H✳ ■③ t❡❣❛ s❧❡❞✐✱ ❞❛ ❥❡ x ∈ (ImT )⊥✳ ◆❛❥ ❜♦ x ∈ (ImT )⊥✳ P♦t❡♠ ❥❡ 0 = x, T y = T ∗x, y ③❛ ✈s❛❦ y ∈ H✳ ❚♦r❡❥ ❥❡ T ∗x = 0 ✐♥ ③❛t♦ ❥❡ x ∈ KerT ∗✳ ✭❜✮ ❱✐❞✐♠♦✱ ❞❛ ❥❡ (I+T ∗T )x 2 = (I+T ∗T )x, (I+T ∗T )x = x 2+ T ∗T x 2+2 T x 2, ✐③ ↔❡s❛r s❧❡❞✐ ➸❡❧❡♥♦✳ ✭❝✮ ❙ ♣♦♠♦↔❥♦ t♦↔❦❡ ✭❜✮ ♦♣❛③✐♠♦✱ ❞❛ ❥❡ ♦♣❡r❛t♦r I + T ∗T ✐♥❥❡❦t✐✈❡♥✱ s ♣♦♠♦↔❥♦ t♦↔❦❡ ✭❛✮ ♣❛ ♣♦❦❛➸❡♠♦ s✉r❥❡❦t✐✈♥♦st ♦♣❡r❛t♦r❥❛ I + T ∗T ✳ ❯♣♦➨t❡✈❛❥t❡✱ ❞❛ ❥❡ H = Im(I + T ∗T ) ⊕ (Im(I + T ∗T ))⊥, Ker(I + T ∗T ) = (Im(I + T ∗T ))⊥ = {0}. P♦ ✐③r❡❦✉ ♦ ♦❞♣rt✐ ♣r❡s❧✐❦❛✈✐ s❧❡❞✐✱ ❞❛ ❥❡ I + T ∗T ♦❜r♥❧❥✐✈ ♦♣❡r❛t♦r✳ ✹✷✳ ◆❛❥ ❜♦ X ❇❛♥❛❝❤♦✈ ♣r♦st♦r ✐♥ ♥❛❥ ❜♦st❛ Y t❡r Z t❛❦❛ ③❛♣rt❛ ♣♦❞♣r♦st♦r❛ X✱ ❞❛ ❥❡ X = Y ⊕ Z✳ P♦❦❛➸✐t❡✱ ❞❛ st❛ ♣r♦st♦r❛ X/Y ✐♥ Z ❧✐♥❡❛r♥♦ ❤♦♠❡♦♠♦r❢♥❛✳ ❘❡➨✐t❡✈✳ ◆❛❥♣r❡❥ ③❛♣✐➨✐♠♦ ✐③r❡❦✿ ❷❡ ❥❡ Y ③❛♣rt ♣♦❞♣r♦st♦r ♥♦r♠✐r❛♥❡❣❛ ♣r♦st♦r❛ X✱ ♣♦t❡♠ ❥❡ s ♣r❡❞♣✐s♦♠ x + Y = infy∈Y x + y ❞❡✜♥✐r❛♥❛ ♥♦r♠❛ ♥❛ X/Y ✳ ❷❡ ❥❡ X ❇❛♥❛❝❤♦✈ ♣r♦st♦r✱ ♣♦t❡♠ ❥❡ t✉❞✐ X/Y ❇❛♥❛❝❤♦✈ ♣r♦st♦r✳ ❉❡✜♥✐r❛❥♠♦ ♣r❡s❧✐❦❛✈♦ ϕ : Z → X/Y s ♣r❡❞♣✐s♦♠ ϕ(z) = z + Y ✳ ◆❛❥ ❜♦ z ∈ Kerϕ✳ P♦t❡♠ ❥❡ z ∈ Y ∩ Z = {0}. ❙ t❡♠ s♠♦ ♣♦❦❛③❛❧✐✱ ❞❛ ❥❡ ♣r❡s❧✐❦❛✈❛ ϕ ✐♥❥❡❦t✐✈♥❛✳ Pr❛✈ t❛❦♦ ♥✐ t❡➸❦♦ ♣r❡✈❡r✐t✐✱ ❞❛ ❥❡ s✉r❥❡❦t✐✈♥❛✳ ◆❛♠r❡↔✱ ♥❛❥ ❜♦ x + Y ∈ X/Y ✳ ❑❡r ❥❡ X = Y ⊕ Z✱ ❥❡ x = y + z ③❛ ♥❡❦❛ y ∈ Y ✱ z ∈ Z✳ ■③ t❡❣❛ s❧❡❞✐✱ ❞❛ ❥❡ x − z ∈ Y ✐♥ ③❛t♦ ❥❡ x + Y = z + Y ✳ ✹✻ ❚♦r❡❥ ♦❜st❛❥❛ t❛❦ z ∈ Z✱ ❞❛ ❥❡ ϕ(z) = x + Y ✳ ◆❛ ❦♦♥❝✉ ➨❡ ♣r❡✈❡r✐♠♦✱ ❞❛ ❥❡ ϕ ≤ 1✿ ϕ(z) = infy∈Y z + y ≤ infy∈Y ( z + y ) ≤ z . ❚♦r❡❥ ❥❡ ϕ ③✈❡③♥❛ ♣r❡s❧✐❦❛✈❛✳ P♦ ✐③r❡❦✉ ♦ ♦❞♣rt✐ ♣r❡s❧✐❦❛✈✐ ❥❡ ϕ−1 ③✈❡③♥❛ ♣r❡s❧✐❦❛✈❛✳ ✹✸✳ ◆❛❥ ❜♦ X ❇❛♥❛❝❤♦✈ ♣r♦st♦r ✐♥ P ♣r♦❥❡❦t♦r ♥❛ X✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ P ③✈❡③❡♥ ♦♣❡r❛t♦r ♥❛t❛♥❦♦ t❡❞❛❥✱ ❦♦ st❛ KerP ✐♥ ImP ③❛♣rt❛ ♣♦❞♣r♦st♦r❛ X✳ ❘❡➨✐t❡✈✳ ✭⇐=✮ Pr❡❞♣♦st❛✈✐♠♦✱ ❞❛ st❛ KerP ✐♥ ImP ③❛♣rt❛ ♣♦❞♣r♦s✲ t♦r❛ X✳ ◆❛❥ ❜♦ {xn}n∈N ③❛♣♦r❡❞❥❡ ✈ X ③ ❧✐♠✐t♦ 0 ✐♥ {Pxn}n∈N ③❛♣♦r❡❞❥❡ ✈ X ③ ❧✐♠✐t♦ y✳ P♦ ✐③r❡❦✉ ♦ ③❛♣rt❡♠ ❣r❛❢✉ ③❛❞♦➨↔❛ ♣♦❦❛③❛t✐✱ ❞❛ ❥❡ y = 0✳ ❑❡r ❥❡ P (P xn − xn) = 0✱ ❥❡ P xn − xn ∈ KerP ✳ ●❧❡❞❡ ♥❛ ♣r❡❞♣♦st❛✈❦♦ s❧❡❞✐✱ ❞❛ ❥❡ y ∈ KerP ✳ P♦t❡♠ ❥❡ 0 = P y = y✳ ✭=⇒✮ Pr❡❞♣♦st❛✈✐♠♦✱ ❞❛ ❥❡ P ③✈❡③❡♥ ♣r♦❥❡❦t♦r✳ ◆❛❥ ❜♦ {xn}n∈N ⊂ X ③❛♣♦r❡❞❥❡ ✈ KerP ③ ❧✐♠✐t♦ x✳ P♦t❡♠ ❥❡ x ∈ KerP ✳ ◆❛♠r❡↔✱ P x = P lim xn = lim P xn = 0. n→∞ n→∞ Pr❛✈ t❛❦♦ ❥❡ ImP ③❛♣rt ♣♦❞♣r♦st♦r ♣r♦st♦r❛ X✱ s❛❥ ❥❡ Ker(P − I) = ImP ✳ ✹✹✳ ◆❛❥ ❜♦st❛ P ✐♥ Q t❛❦❛ ♣r♦❥❡❦t♦r❥❛ ♥❛ ❇❛♥❛❝❤♦✈❡♠ ♣r♦st♦r✉ X✱ ❞❛ ❥❡ P Q = −QP ✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ P + Q ③✈❡③❡♥ ♦♣❡r❛t♦r ♥❛t❛♥❦♦ t❡❞❛❥✱ ❦♦ st❛ Im(P + Q) ✐♥ Ker(P + Q) ③❛♣rt❛ ♣♦❞♣r♦st♦r❛ ♣r♦st♦r❛ X✳ ◆❛♠✐❣✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ P + Q ♣r♦❥❡❦t♦r ✐♥ ✉♣♦➨t❡✈❛❥t❡ ♣r❡❥➨♥❥♦ ♥❛❧♦❣♦✳ ✹✺✳ ◆❛❥ ❜♦ X ❇❛♥❛❝❤♦✈ ♣r♦st♦r✱ A : X → X ❧✐♥❡❛r❡♥ ♦♣❡r❛t♦r ✐♥ ♥❛❥ ❜♦ B ∈ B(X) t❛❦ ❜✐❥❡❦t✐✈❡♥ ♦♣❡r❛t♦r✱ ❞❛ ❥❡ BA ∈ B(X)✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ ♣♦t❡♠ t✉❞✐ A ∈ B(X)✳ ✹✼ ◆❛♠✐❣✳ ●❧❡❞❡ ♥❛ ♣r❡❞♣♦st❛✈❦♦✱ ❞❛ ❥❡ B ∈ B(X) ❜✐❥❡❦t✐✈❡♥ ♦♣❡r❛t♦r✱ ♦❜st❛❥❛ B−1 ∈ B(X)✳ ■③ t❡❣❛ s❧❡❞✐✱ ❞❛ ❥❡ A = B−1BA ∈ B(X)✳ ◆❛❧♦❣♦ ❧❛❤❦♦ r❡➨✐♠♦ t✉❞✐ s ♣♦♠♦↔❥♦ ✐③r❡❦❛ ♦ ③❛♣rt❡♠ ❣r❛❢✉✳ ✹✻✳ ◆❛❥ ❜♦ X ❇❛♥❛❝❤♦✈ ♣r♦st♦r✱ A : X → X ❧✐♥❡❛r❡♥ ♦♣❡r❛t♦r ✐♥ ♥❛❥ ❜♦ B ∈ B(X) t❛❦ ✐♥❥❡❦t✐✈❡♥ ♦♣❡r❛t♦r✱ ❞❛ ❥❡ BA ∈ B(X)✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ ♣♦t❡♠ t✉❞✐ A ∈ B(X)✳ ❘❡➨✐t❡✈✳ ◆❛❥ ❜♦ {xn}n∈N ⊂ X ③❛♣♦r❡❞❥❡ ③ ❧✐♠✐t♦ 0 ✐♥ {Axn}n∈N ⊂ X ③❛♣♦r❡❞❥❡ ③ ❧✐♠✐t♦ y✳ P♦ ✐③r❡❦✉ ♦ ③❛♣rt❡♠ ❣r❛❢✉ ③❛❞♦➨↔❛ ♣♦❦❛③❛t✐✱ ❞❛ ❥❡ y = 0✳ ❑❡r ❥❡ B ✐♥❥❡❦t✐✈❡♥ ♦♣❡r❛t♦r ✐♥ ❥❡ By = B(limn→∞ Axn) = limn→∞ B(Axn) = BA(limn→∞ xn) = 0✱ ❥❡ y = 0✳ ✹✼✳ ◆❛❥ ❜♦ X ❇❛♥❛❝❤♦✈ ♣r♦st♦r ✐♥ A : X → X ❧✐♥❡❛r❡♥ ♦♣❡r❛t♦r✳ Pr❡❞✲ ♣♦st❛✈✐♠♦✱ ❞❛ ③❛ ✈s❛❦ f ∈ X∗ ✈❡❧❥❛ f ◦ A ∈ X∗✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ A ∈ B(X)✳ ❘❡➨✐t❡✈✳ ◆❛❥ ❜♦ {xn}n∈N ⊂ X ③❛♣♦r❡❞❥❡ ③ ❧✐♠✐t♦ 0 ✐♥ {Axn}n∈N ⊂ X ③❛✲ ♣♦r❡❞❥❡ ③ ❧✐♠✐t♦ y✳ P♦ ✐③r❡❦✉ ♦ ③❛♣rt❡♠ ❣r❛❢✉ ③❛❞♦➨↔❛ ♣♦❦❛③❛t✐✱ ❞❛ ❥❡ y = 0✳ Pr❡❞♣♦st❛✈✐♠♦ ♥❛s♣r♦t♥♦✳ P♦t❡♠ ♣♦ ♣♦s❧❡❞✐❝✐ ❍❛❤♥ ❇❛♥❛❝❤♦✈❡❣❛ ✐③r❡❦❛ ♦❜st❛❥❛ t❛❦ ❧✐♥❡❛r❡♥ ❢✉♥❦❝✐♦♥❛❧ f ∈ X∗✱ ❞❛ ❥❡ f(y) = 0✳ ❑❡r ❥❡ f ◦ A ∈ X∗ ✐♥ ③❛♣♦r❡❞❥❡ {xn}n∈N ❦♦♥✈❡r❣✐r❛ ❦ 0✱ ❥❡ limn→∞ f(Axn) = 0✳ ■③ t❡❣❛ s❧❡❞✐✱ ❞❛ ❥❡ f(y) = f(limn→∞ Axn) = limn→∞ f(Axn) = 0✳ ❙ t❡♠ s♠♦ ♣r✐➨❧✐ ❞♦ ♣r♦t✐s❧♦✈❥❛✳ ❚♦r❡❥ ❥❡ y = 0 ✐♥ tr❞✐t❡✈ ❥❡ ❞♦❦❛③❛♥❛✳ ✹✽✳ ◆❛❥ ❜♦ X ❇❛♥❛❝❤♦✈ ♣r♦st♦r ✐♥ ♥❛❥ ❜♦ F ♣♦❞♠♥♦➸✐❝❛ B(X) ③ ❧❛st♥♦st❥♦✿ ③❛ ✈s❛❦ 0 = x ∈ X ♦❜st❛❥❛ t❛❦ A ∈ F✱ ❞❛ ❥❡ Ax = 0✳ ◆❛❥ ❜♦ B : X → X t❛❦ ❧✐♥❡❛r❡♥ ♦♣❡r❛t♦r✱ ❞❛ ❥❡ f ◦ AB ∈ X∗ ③❛ ✈s❛❦ f ∈ X∗ ✐♥ A ∈ F✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ B ∈ B(X)✳ ◆❛♠✐❣✳ ●❧❡❞❡ ♥❛ ♣r❡❥➨♥❥♦ ♥❛❧♦❣♦ s❧❡❞✐✱ ❞❛ ❥❡ AB ∈ B(X)✳ ❙ ♣♦♠♦↔❥♦ ✐③r❡❦❛ ♦ ③❛♣rt❡♠ ❣r❛❢✉ ♣♦❦❛➸✐t❡✱ ❞❛ ❥❡ B ∈ B(X)✳ ✹✾✳ ◆❛❥ ❜♦ X ❇❛♥❛❝❤♦✈ ♣r♦st♦r ✐♥ ♥❛❥ ❜♦ 0 = u ∈ X✳ ✹✽ ✭❛✮ ❩❛ ✈s❛❦ f ∈ X∗ ♥❛❥ ❜♦ Tf : X → X ♦♣❡r❛t♦r ❞❡✜♥✐r❛♥ s ♣r❡❞♣✐s♦♠ Tf x = f (x)u✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ Tf ∈ B(X)✳ ✭❜✮ ◆❛❥ ❜♦ A : X → X t❛❦ ❧✐♥❡❛r❡♥ ♦♣❡r❛t♦r✱ ❞❛ ❥❡ TfA ∈ B(X) ③❛ ✈s❛❦ f ∈ X∗✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ A ∈ B(X)✳ ◆❛♠✐❣✳ ✭❜✮ ◆❛❥ ❜♦ {xn}n∈N ⊂ X ③❛♣♦r❡❞❥❡ ③ ❧✐♠✐t♦ 0 ✐♥ {Axn}n∈N ⊂ X ③❛♣♦r❡❞❥❡ ③ ❧✐♠✐t♦ y✳ P♦ ✐③r❡❦✉ ♦ ③❛♣rt❡♠ ❣r❛❢✉ ③❛❞♦➨↔❛ ♣♦❦❛③❛t✐✱ ❞❛ ❥❡ y = 0✳ ❑❡r ❥❡ Tf A ∈ B(X) ③❛ ✈s❛❦ f ∈ X∗✱ ♥✐ t❡➸❦♦ ✈✐❞❡t✐✱ ❞❛ ❥❡ 0 = Tf (y) = f (y)u ③❛ ✈s❛❦ f ∈ X∗✱ ✐③ ↔❡s❛r s❧❡❞✐ ➸❡❧❡♥♦✳ ✺✵✳ ◆❛❥ ❜♦ X ❇❛♥❛❝❤♦✈ ♣r♦st♦r ✐♥ ♥❛❥ ❜♦ A : X → X t❛❦ ❧✐♥❡❛r❡♥ ♦♣❡r❛t♦r✱ ❞❛ ❥❡ AT − T A ∈ B(X) ③❛ ✈s❛❦ T ∈ B(X)✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ A ∈ B(X)✳ ❘❡➨✐t❡✈✳ ◆❛❥ ❜♦ 0 = u ∈ X t❛❦✱ ❞❛ ❥❡ u = 1✳ ❩❛ ✈s❛❦ f ∈ X∗ ❞❡✜♥✐r❛❥♠♦ ♦♣❡r❛t♦r Tf : X → X s ♣r❡❞♣✐s♦♠ Tfx = f(x)u✳ ❑❡r ❥❡ Tf ∈ B(X)✱ ❥❡ ATf − Tf A ∈ B(X) ③❛ ✈s❛❦ f ∈ X∗✳ ❖↔✐t♥♦ ❥❡ (ATf − Tf A)x = f (x)Au − f(Ax)u ③❛ ✈s❛❦ x ∈ X✳ P♦t❡♠ s❧❡❞✐ |f(Ax)| ≤ ATf − Tf A x + f Au x , ❦❛r ♣♦♠❡♥✐✱ ❞❛ ❥❡ f ◦ A ∈ X∗ ③❛ ✈s❛❦ f ∈ X∗✳ ●❧❡❞❡ ♥❛ ♥❛❧♦❣♦ ✹✼ s❧❡❞✐ ➸❡❧❡♥♦✳ ✺✶✳ ◆❛❥ ❜♦❞♦ X✱ Y ✐♥ Z ❇❛♥❛❝❤♦✈✐ ♣r♦st♦r✐✱ A : Y → Z ❧✐♥❡❛r❡♥ ♦♣❡r❛t♦r ✐♥ T ∈ B(X, Y ) s✉r❥❡❦t✐✈❡♥ ♦♣❡r❛t♦r✳ Pr❡❞♣♦st❛✈✐♠♦✱ ❞❛ ❥❡ AT ③✈❡③❡♥ ♦♣❡r❛t♦r✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ ♣♦t❡♠ t✉❞✐ A ③✈❡③❡♥ ♦♣❡r❛t♦r✳ ◆❛♠✐❣✳ ◆❛❥ ❜♦ {yn}n∈N ⊂ Y ③❛♣♦r❡❞❥❡ ③ ❧✐♠✐t♦ 0 ✐♥ {Ayn}n∈N ⊂ Z ③❛♣♦r❡❞❥❡ ③ ❧✐♠✐t♦ z✳ P♦ ✐③r❡❦✉ ♦ ③❛♣rt❡♠ ❣r❛❢✉ ③❛❞♦➨↔❛ ♣♦❦❛③❛t✐✱ ❞❛ ❥❡ z = 0✳ ❑❡r ❥❡ T s✉r❥❡❦t✐✈❡♥ ♦♣❡r❛t♦r✱ ♦❜st❛❥❛ {xn}n∈N ⊂ X✱ ❞❛ ❥❡ T xn = yn✳ ●❧❡❞❡ ♥❛ ♥❛❧♦❣♦ ✸✾ ❥❡ {xn}n∈N ❦♦♥✈❡r❣❡♥t♥♦ ③❛♣♦r❡❞❥❡ ③ ❧✐♠✐t♦ 0✳ ■③ t❡❣❛ s❧❡❞✐ 0 = AT limn→∞ xn = limn→∞ AT xn = limn→∞ Ayn = z✳ ✺✷✳ ◆❛❥ ❜♦❞♦ X1✱ X2 ✐♥ X3 t❛❦✐ ③❛♣rt✐ ♣♦❞♣r♦st♦r✐ ❇❛♥❛❝❤♦✈❡❣❛ ♣r♦st♦r❛ X✱ ❞❛ ❥❡ X = X1 ⊕ X2 ⊕ X3✳ Pr❡❞♣♦st❛✈✐♠♦✱ ❞❛ s♦ Pi : X → Xi✱ i = 1, 2, 3✱ ✹✾ t❛❦✐ ♣r♦❥❡❦t♦r❥✐✱ ❞❛ ❥❡ ImPi = Xi t❡r Pi|Xj = 0✱ i = j✳ P♦❦❛➸✐t❡✱ ❞❛ s♦ P1, P2, P3 ♦♠❡❥❡♥✐ ♦♣❡r❛t♦r❥✐✳ ◆❛♠✐❣✳ P♦❦❛➸✐♠♦✱ ❞❛ ❥❡ P1 ③❛♣rt ♦♣❡r❛t♦r✳ ◆❛❥ ❜♦ {xn}n∈N ⊂ X ③❛♣♦r❡❞❥❡ ③ ❧✐♠✐t♦ 0 ✐♥ {P1xn}n∈N ⊂ X ③❛♣♦r❡❞❥❡ ③ ❧✐♠✐t♦ y✳ P♦ ✐③r❡❦✉ ♦ ③❛♣rt❡♠ ❣r❛❢✉ ③❛❞♦➨↔❛ ♣♦❦❛③❛t✐✱ ❞❛ ❥❡ y = 0✳ ●❧❡❞❡ ♥❛ ♣r❡❞♣♦st❛✈❦♦ ❧❛❤❦♦ ✈s❛❦ x ∈ X ③❛♣✐➨❡♠♦ ❦♦t x = x1 + x2 + x3✱ x1 ∈ X1✱ x2 ∈ X2✱ x3 ∈ X3✳ P♦t❡♠ ❥❡ P1x = P1x1 + P1x2 + P1x3 = P1x1 = x1. P♦❞♦❜♥♦ ✈✐❞✐♠♦✱ ❞❛ ❥❡ P2x = x2 ✐♥ P3x = x3✳ ❚♦r❡❥ ❥❡ x = P1x + P2x + P3x✳ ❯♣♦➨t❡✈❛❥♠♦ ♣r❛✈❦❛r ♣♦❦❛③❛♥♦✿ ✐③ ❡♥❛❦♦st✐ xn = P1xn + P2xn + P3xn s❧❡❞✐ 0 = y + z✱ ❦❥❡r ❥❡ y ∈ X1 ✐♥ z = limn→∞(P2xn + P3xn)✳ ❚♦r❡❥ ❥❡ 0 = P1y + P1z = P1y = y. P♦❞♦❜♥♦ ♣♦❦❛➸❡♠♦✱ ❞❛ st❛ P2 ✐♥ P3 ③❛♣rt❛ ♦♣❡r❛t♦r❥❛✳ ✺✸✳ ◆❛❥ ❜♦ A ❦♦♠♣❧❡❦s♥❛ ❇❛♥❛❝❤♦✈❛ ❛❧❣❡❜r❛ ③ ✐♥✈♦❧✉❝✐❥♦ ∗✳ P♦❦❛➸✐t❡✱ ❞❛ ❥❡ ∗ ③✈❡③♥❛ ♣r❡s❧✐❦❛✈❛ ♥❛t❛♥❦♦ t❡❞❛❥✱ ❦♦ ❥❡ H(A) = {x ∈ A | x∗ = x} ③❛♣rt❛ ♠♥♦➸✐❝❛✳ ❘❡➨✐t❡✈✳ ✭=⇒) Pr❡❞♣♦st❛✈✐♠♦✱ ❞❛ ❥❡ ✐♥✈♦❧✉❝✐❥❛ ∗ ③✈❡③♥❛ ♣r❡s❧✐❦❛✈❛✳ ◆❛❥ ❜♦ {hn}n∈N ❦♦♥✈❡r❣❡♥t♥♦ ③❛♣♦r❡❞❥❡ ✈ H(A) ③ ❧✐♠✐t♦ h✳ P♦t❡♠ ❥❡ h = lim hn = lim h∗ = ( lim h n n)∗ = h∗. n→∞ n→∞ n→∞ ❙ t❡♠ s♠♦ ♣♦❦❛③❛❧✐✱ ❞❛ ❥❡ h ∈ H(A)✱ ❦❛r ♣♦♠❡♥✐✱ ❞❛ ❥❡ H(A) ③❛♣rt❛ ♠♥♦➸✐❝❛✳ ✭⇐=✮ Pr❡❞♣♦st❛✈✐♠♦ s❡❞❛❥✱ ❞❛ ❥❡ H(A) ③❛♣rt❛ ♠♥♦➸✐❝❛✳ ◆❛❥ ❜♦ {xn}n∈N ⊂ A ③❛♣♦r❡❞❥❡ ③ ❧✐♠✐t♦ x ✐♥ {x∗n}n∈N ⊂ A ③❛♣♦r❡❞❥❡ ③ ❧✐♠✐t♦ y✳ ●❧❡❞❡ ♥❛ ✐③r❡❦ ♦ ③❛♣rt❡♠ ❣r❛❢✉ ③❛❞♦➨↔❛ ♣♦❦❛③❛t✐✱ ❞❛ ❥❡ y = x∗✳ ❖↔✐t♥♦ ❥❡ limn→∞(xn + x∗ ) = x + y✳ ❑❡r ❥❡ H(A) ③❛♣rt❛ ♠♥♦➸✐❝❛ ✐♥ ❥❡ n {xn + x∗n}n∈N ⊂ H(A)✱ ❥❡ x + y ∈ H(A)✳ Pr❛✈ t❛❦♦ ✈✐❞✐♠♦✱ ❞❛ ❥❡ {i(x∗n − xn)}n∈N ⊂ H(A)✳ ❩❛t♦ ❥❡ i(y − x) ∈ H(A)✳ ❚♦r❡❥ ❥❡ x + y = x∗ + y∗ ✐♥ i(y − x) = −i(y∗ − x∗)✳ ▼♥♦➸❡♥❥❡ ③❛❞♥❥❡ ❡♥❛❦♦st✐ s ❦♦♠♣❧❡❦s♥✐♠ ➨t❡✈✐❧♦♠ i ♥❛s ♣r✐✈❡❞❡ ❞♦ ✐❞❡♥t✐t❡t❡ x − y = y∗ − x∗✳ ■③ t❡❣❛ s❧❡❞✐✱ ❞❛ ❥❡ y = x∗✳ ✺✵ ▲✐t❡r❛t✉r❛ ❬✶❪ ▼✳ ❍❧❛❞♥✐❦✱ ◆❛❧♦❣❡ ✐♥ ♣r✐♠❡r✐ ✐③ ❢✉♥❦❝✐♦♥❛❧♥❡ ❛♥❛❧✐③❡ ✐♥ t❡♦r✐❥❡ ♠❡r❡✱ ❋❛❦✉❧t❡t❛ ③❛ ♥❛r❛✈♦s❧♦✈❥❡ ✐♥ t❡❤♥♦❧♦❣✐❥♦✱ ■♥➨t✐t✉t ③❛ ♠❛t❡♠❛t✐❦♦✱ ✜③✐❦♦ ✐♥ ♠❡❤❛♥✐❦♦✱ ▲❥✉❜❧❥❛♥❛ ✶✾✽✺ ❬✷❪ ❙✳ ❑✉r❡♣❛✱ ❋✉♥❦❝✐♦♥❛❧♥❛ ❛♥❛❧✐③❛✱ ❊❧❡♠❡♥t✐ t❡♦r✐❥❡ ♦♣❡r❛t♦r❛✱ ➆❦♦❧s❦❛ ❦♥✲ ❥✐❣❛✱ ❩❛❣r❡❜ ✶✾✽✶ ❬✸❪ ■✳ ❱✐❞❛✈✱ ▲✐♥❡❛r♥✐ ♦♣❡r❛t♦r❥✐ ✈ ❇❛♥❛❝❤♦✈✐❤ ♣r♦st♦r✐❤✱ ❯♥✐✈❡r③❛ ✈ ▲❥✉❜❧❥❛♥✐✱ ■♥➨t✐t✉t ③❛ ♠❛t❡♠❛t✐❦♦ ✜③✐❦♦ ✐♥ ♠❡❤❛♥✐❦♦✱ ❋❛❦✉❧t❡t❛ ③❛ ♥❛r❛✈♦s❧♦✈❥❡ ✐♥ t❡❤♥♦❧♦❣✐❥♦✱ ▲❥✉❜❧❥❛♥❛ ✶✾✽✷ ✺✶