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Background. Due to the rarity of primary bone tumors, precise radiologic diagnosis often requires an experienced 
musculoskeletal radiologist. In order to make the diagnosis more precise and to prevent the overlooking of potentially 
dangerous conditions, artificial intelligence has been continuously incorporated into medical practice in recent dec-
ades. This paper reviews some of the most promising systems developed, including those for diagnosis of primary and 
secondary bone tumors, breast, lung and colon neoplasms.
Conclusions. Although there is still a shortage of long-term studies confirming its benefits, there is probably a consid-
erable potential for further development of computer-based expert systems aiming at a more efficient diagnosis of 
bone and soft tissue tumors. 
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Introduction

Primary bone and soft tissue neoplasms present 
a minority among neoplastic lesions. Due to their 
rarity, precise radiologic diagnosis often requires 
an experienced radiologist with special interests in 
musculoskeletal oncology. To surmount the chal-
lenge of making precise diagnoses, and more im-
portantly, to prevent overlooking potentially fatal 
conditions, attempts to incorporate artificial intelli-
gence and its related techniques into medical prac-
tice have occurred in the last decades (Figure 1).

Being first introduced by McCarthy in the 
1950s, artificial intelligence (AI) is a general term 
that describes computer machines that imitate hu-
man intelligence.1 Machine learning, a subset of 
AI, uses computational algorithms, which learn 
with experience and therefore improve the per-
formance of tasks.2 The rapid progress of compu-
tational power and big data availability allowed 
the emergence of an even more specialized sub-
field of machine learning, called deep learning. It 
is a promising method capable of processing raw 

data to perform detection or classification tasks.3 
Deep learning algorithms, implemented as arti-
ficial neural networks, mimic biological nervous 
systems.4 The network is organized in layers com-
posed of interconnected nodes imitating archi-
tecture in a biologic brain.2,5 Nodes are weighted 
individually for the purpose of increasing data 
extraction. In order to classify data, weights are 
automatically and dynamically optimized during 
the training phase.5,6 Regarding the layers, three 
different kinds are present in each neural network. 
It begins with an input layer, which receives input 
data, followed by numerous hidden layers extract-
ing the pattern within the data. It terminates with 
the output layer, which produces results or output 
data (Figure 2).5

Among the different types of artificial neural 
networks, convolutional neural networks, in par-
ticular, gained attention in radiology due to their 
high performance in recognizing images.7 By cal-
culating the intensity of each pixel or voxel, to-
gether with evaluating complex patterns in each 
image, they provide reliable quantitative image 
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interpretations, eventually surpassing human per-
formance.8

However, to build an intelligent machine a train-
ing phase is required, which requires sufficient 
computational power and large datasets. The latter 
is obtained from radiological images, which is in 
the domain of radiomics. Radiomics is a process of 
quantitative extraction of a high number of seman-
tic and agnostic features from diagnostic images.9 
Its approaches, like feature extraction and feature 
engineering techniques, are essential in the forma-
tion of AI applications.10

Artificial intelligence in cancer 
imaging (oncologic radiology) 

Until recently, radiologists’ decisions were based 
predominantly on his or her experience of recog-
nizing patterns and appreciating various features 
of each tumor including size, location, intensity, 
and surface characteristics, all combined with pa-
tients’ demographic data. However, after many 
consecutive image interpretations, they were con-
sciously or subconsciously faced with fatigue11, 
which could lead to errors and potentially jeopard-
ize patients’ health and own credibility.12 

AI’s potentials are developing exponentially. 
Instead of qualitative and subjective image inter-
pretations, it allows quantifiable and objective data 

extraction with the ability to reproduce the same 
results.13 Furthermore, by quantifying information 
otherwise not detectable to humans, AI may com-
plement clinical decision-making.5,13 

Computer-aided detection (CADe) and comput-
er-aided diagnosis (CADx) algorithms have been 
used for the last two decades14 predominantly in 
mammography15, detection of lung16, and colon17 
malignancies. In contrast to CAD algorithms, 
which only highlight the features they have been 
exactly trained for, actual AI systems continue to 
learn and improve in time. By focusing on the spe-
cific diagnosis, systems learn to discover new typi-
cal patterns that have not been linked with the dis-
ease before.18 For example, Beck et al. developed a 
machine learning-based computer program named 
“Computational Pathologist (C-Path)” to automat-
ically analyze breast cancer and predict its prog-
nosis.19 Importantly, regardless of all well-known 
histological characteristics that were implemented 
into the program, C-Path recognized surrounding 
stroma as another important prognostic factor.19 
Convolutional neural networks have also given 
optimistic results in automated detection.6 It has 
been used for automated detection of liver tumors 
on CT scans with high detection accuracy and pre-
cision of 93% and 67%, respectively.20 Similarly, a 
deep learning-based CADe for detection of brain 
metastasis on magnetic resonance imaging (MRI) 
has been developed and achieved a sensitivity of 
96% and reasonable specificity.21 

In general, characterization is composed of 
segmentation, diagnosis, and staging of tumors.13 
Image segmentation is the process used in cancer 
imaging to outline pathological area and distin-
guish it from non-pathological adjacent tissue. It 
can range from planar measurements to advanced 
3-dimensional assessment of tumor volume.13 
Tumors have traditionally been manually labelled 
by radiologists, which is indeed time-consuming, 
as well as a subject of interobserver variability.13,22 
Thus, implementation of AI into automated image 
segmentation could potentially take over, increase 
the quality and reproducibility of measurements, 
and also save time.5,13 For example, machine learn-
ing has been used for breast density segmentation 
on mammography, which turns out to be as ac-
curate as manual ones.23 Ye et al. successfully pro-
posed and verified a fully automatic nasopharyn-
geal carcinoma segmentation method based on 
dual-sequence MRI and convolutional neural net-
work.24 The mean dice similarity coefficient (DSC) 
of the models with only T1 sequence, only T2 se-
quence, and dual sequence were 0.620 ± 0.0642, 

FIGURE 1. Schematic illustration of the hierarchy of artificial 
intelligence and its machine learning and deep learning 
subfields.
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0.642 ± 0.118, and 0.721 ± 0.036, respectively. The 
combination of different features acquired from T1 
and T2 sequences significantly improved the seg-
mentation accuracy.24 

Ability to quantitatively extract tumor features 
has great potential in the process of making diag-
nosis. With machine learning, Liu et al. quantita-
tively represented radiological traits characteris-
tics of lung nodules and showed improved accu-
racy of cancer diagnosis in pulmonary nodules.25 
Convolutional neural network has also shown to 
be an effective and objective method that provides 
an accurate diagnosis of pancreatic cancer.26 

Another important aspect of tumor characteri-
zation includes staging. Mainly, TNM classifica-
tion is used to assess the extent of primary tumor, 
lymph nodes, and metastases and therefore classi-
fy the lesion in a specific stage. However, attempts 
to extend the TNM cancer staging system have 
been made. For instance, CAD has shown to be a 
promising method of evaluation of tumor extent 
and multifocality in invasive breast cancer patients 
and therefore expanding the staging algorithms.27 

In tumor response monitoring, many AI ap-
proaches have shown some potential. For example, 
AI and machine learning have been successfully 
implemented into the pre-procedural prediction 
of trans-arterial chemoembolization treatment 

outcomes in patients with hepatocellular carci-
noma using clinical and imaging features.28 Ha et 
al. demonstrated promising results in the utiliza-
tion of convolutional neural network to predict 
neoadjuvant chemotherapy response prior to the 
first cycle of therapy in breast carcinoma using 
baseline MRI tumor datasets.29 Positive response to 
chemotherapy led to decreased tumor metabolism, 
opening a potential opportunity to detect lower ac-
cumulation rates of a radiotracer.30 Differentiating 
between responders and non-responders based on 
low-dose 18F-FDG PET/MRI scans might, therefore, 
be another opportunity of the implementation of 
convolutional neural networks.6 

Complementary to radiologic diagnosis, ad-
ditional advanced methods have been proposed, 
promising even further advances in cancer man-
agement. Liquid biopsy based on circular tumor 
DNA (ctDNA) analysis may importantly improve 
early tumor detection, diagnosis, monitoring ther-
apy, and progression in time.31 Contrary to stand-
ard tissue biopsies, liquid biopsies taken from 
blood may provide us with detailed biochemical 
characteristics of the neoplastic lesion and detect 
potential metastasis.32 What is more, a combina-
tion of liquid biopsies and radiomics, supervised 
by deep learning may significantly improve cancer 
management in the future.

FIGURE 2. Schematic presentation of a neural network. Regions of interests (ROI) are defined, either by user or by an automated computer process. 
These present the input cells (in pink) a neural network. For each ROI the neural network extracts and compute features within the hidden layers 
(in grey) by using pre-trained data sets. Finally, the output cell offers the final results in different possible forms (yes/no, final diagnosis, probability of 
malignancy etc.).
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Artificial intelligence in skeletal 
tumors

The first attempts to introduce computational 
power into diagnostic procedures of primary bone 
tumors date back to the 1960s.33 Based on Bayes’ 
formula, a computer program accurately predicted 
a bone tumor diagnosis in 77.9% of cases. Later in 
1980, the same author set a milestone by publish-
ing an article about computed-based radiographic 
grading of bone tumor destruction.34 This was a 
cornerstone for further research and implementa-
tion of neural networks into the diagnosis of focal 
bone lesions.35,36 

A scarce number of articles regarding AI and 
primary bone tumors have been published so far, 
while considerably more has been done on the de-
tection and segmentation of bone metastasis. For 
example, Burns et al. successfully identified and 
segmented sclerotic lesions in the thoracolumbar 
spine using CADe techniques. The sensitivity for 
lesions detection was 79%.37 What is more, Wang 
et al. developed a Siamese convolutional neural 
network to research the potential of automated 
spinal metastasis detection in MRI. The proposed 
approach accurately detected all spinal metastatic 
lesions with a false-positive rate of 0.4 per case.38 
Another research proposed a machine learning-
based whole-body automatic disease classification 
tool to distinguish benign processes and malignant 
bone lesions in 18F-NaF PET/CT images.39

Healthy and tumorous bone differs in numer-
ous characteristics. Unlike healthy osseous tissue, 
which consists of cortical and trabecular part, pri-
mary bone malignancies may penetrate cortex and 
spread into adjacent soft tissue, as well as cause 
swelling around the bone or even weaken the bone 
architecture and lead to pathological fracture.40 
Radiologically, they differ in absorption rate, 
which can be quantitatively evaluated. For exam-
ple, CADx has been used to detect and classify pri-
mary bone tumors into benign and malignant le-
sions using x-ray images. In their study, Ping et al. 
an overall greater intensity of pixels for malignant 
bone tumors compared to benign bone tumors.41 
Another study by Bandyopadhyay et al. proposed 
a CADx method to automatically analyze bone x-
ray images. By integrating several classifiers, the 
method achieved accurate decisions regarding a 
bone-destruction pattern, stage, and grade of can-
cer in 85% of cases.42

When describing sarcomas, diagnosed on MRI, 
features like tumor size, shape, and enhancement 

pattern are estimated and taken into consideration 
along with patient’s demographic data.2 Machine 
learning and artificial neural network excel in 
quantifying and extracting supplementary fea-
tures, which can correlate with clinical character-
istics, diagnosis, and outcomes. Most of these are 
out of human visual perception and include inter-
voxel relationships, image intensity analysis, and 
filtered images analysis.43 Deep learning-based 
algorithm has also been developed to predict sur-
vival rates in patients with synovial sarcoma.44 Its 
prediction was more precise compared to the Cox 
proportional hazard model, which is a commonly 
used regression model in medical research.

In primary bone tumors, bone tumor matrix, 
its density, and zone of transition represent suit-
able characteristics than may be classified through 
deep learning techniques. In fact, recurrent con-
volutional neural network outshined experienced 
musculoskeletal radiologists in bone tumor matrix 
classification with 86% vs. 72%, respectively.45 Li 
et al. proposed a super label guided convolutional 
neural network to classify CT images of bone tu-
mors.46 In comparison, results exceeded the classic 
convolutional neural network. However, the classi-
fication included only nine types of the most com-
mon skeletal tumors.

Limitations and future 
directions

There are indeed some limitations of AI. First, it 
could potentially still be a subject of interobserv-
er variability, due to different algorithms used in 
a neural networks of different AI systems or un-
equal learning stages in which the systems pro-
cess a specific task. Standardization is mandatory 
to establish a large database. Data also needs to 
be accessible in order to integrate them into large 
sets. Prior to that quality check, labelling, classifi-
cation, and segmentation need to be done manu-
ally by experts, making the process expensive and 
time-consuming.13 However, introducing deep 
learning-based techniques to the extensive quality 
ground-truth training datasets is essential for the 
development of accurate algorithms.47,48 Also, ethi-
cal dilemmas should be taken into consideration. 
When dealing with systems that operate with enor-
mous amounts of data, patients’ privacy as well as 
human dignity may be jeopardized, unless meticu-
lous safety mechanisms are implemented. There 
are also no long-term follow-up studies available 
thus far. On the contrary, the appreciating results 
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of the already published studies and the presenta-
tion of a commercially available application is only 
a matter of time.

Undoubtedly, all kinds of artificial intelligence 
are persistently being integrated into the com-
plex management of musculoskeletal tumors and 
tumors of other sites. Deep learning-based tech-
niques are expected to minimalize false positive 
rates as well as assure accurate decisions and di-
agnoses.49 Further automatization of radiological 
tasks is expected to take place in the future. Among 
physicians, radiologists in particular are required 
to perform many time-consuming tasks, like im-
age segmentation, delineation of regions of inter-
est, and image annotation. AI techniques have an 
enormous potential to transform their workflow, 
which will allow them to focus on more meaning-
ful tasks.11 

On the other hand, “imaging is not an isolated 
measure of disease.”13 Neoplastic lesions are com-
plex conditions, following DNA mutations that 
cause abnormal cellular proliferation.50 Despite 
many mutations being discovered and related 
to specific malignancies, intertumoural and in-
tratumoural heterogeneity exist.51 Undoubtedly, 
molecular approaches, like genetic biomarkers 
and molecular imaging have already significantly 
contributed to a better understanding of cancer 
management. Finally, combining radiomics with 
other aspects of a broad family of “-omics”, includ-
ing genomics, proteomics, and metabolomics, and 
therefore drastically expanding datasets available 
for advanced AI modalities, might move us closer 
to the precision medicine.52
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