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Abstract

The Wiener index of a graph G, denoted by W (G), is the sum of distances between
all pairs of vertices in G. In this paper, we consider the relation between the Wiener
index of a graph, G, and its line graph, L(G). We show that if G is of minimum degree
at least two, then W (G) ≤ W (L(G)). We prove that for every non-negative integer g0,
there exists g > g0, such that there are infinitely many graphs G of girth g, satisfying
W (G) = W (L(G)). This partially answers a question raised by Dobrynin and Mel’nikov
[8] and encourages us to conjecture that the answer to a stronger form of their question
is affirmative.

Keywords: Wiener index, line graphs

1 Introduction

In this paper all graphs are finite, simple and undirected. For a graph G, we denote by
V (G) and E(G) its vertex and edge sets, respectively. All paths and cycles are simple, i.e.,
they contain no repeated vertices. A path Pn = x1x2 · · ·xn is given by the sequence of its
consecutive vertices. A path whose endvertices are u and v is called an uv-path. The length
of a path P , denoted |P |, is the number of its edges. A cycle of length k is denoted by Ck.

Given a graph G, its line graph L(G) is a graph such that

• The vertices of L(G) are the edges of G; and

• Two vertices of L(G) are adjacent if and only if their corresponding edges in G share a
common endvertex.
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2 February 10, 2010

For a vertex v ∈ V (G), we denote by dG(v) the degree of v in G. For the sake of simplicity
we write d(v) if the graph G is clear from the context. For v, u ∈ V (G), we denote by dG(u, v)
(or simply d(u, v)), the length of a shortest path in G between u and v. For e1, e2 ∈ E(G),
we define dG(e1, e2) = dL(G)(e1, e2).

The Wiener index of a graph G, denoted by W (G), is the sum of distances between all
(unordered) pairs of vertices of G, i.e.,

W (G) =
∑

u,v∈V (G)

d(u, v).

The Wiener index is a graph invariant that belongs to the molecules structure-descriptors
called topological indices, which are used for the design of molecules with desired properties
[18]. For details and results on the Wiener index see in [6, 7, 16, 17] and the references cited
therein.

The concept of line graph has various applications in physical chemistry [12, 15]. Recently
there has been an interest in understanding the connection between W (G) and W (L(G)) for
a graph G. In particular, it is important to understand when a graph G satisfies W (G) =
W (L(G)). In sequel, we state some results related to those presented in this paper. For more
results on the topic see [4, 5, 9, 10, 12, 14].

Theorem 1 (Buckley [3]). For every tree T , W (L(T )) = W (T ) −
(
n
2

)
.

Theorem 2 (Gutman [11]). If G is a connected graph with n vertices and q edges, then

W (L(G)) ≥ W (G) − n(n − 1) +
1

2
q(q + 1).

Theorem 3 (Gutman, Pavlović [14]). If G is a connected unicyclic graph with n vertices,

then W (L(G)) ≤ W (G), with equality if and only if G is a cycle of length n.

In Section 2 it will be shown that, if G is of minimum degree at least two, then, W (G) ≤
W (L(G)), with a strict inequality as soon as G is not a cycle.

For a graph G, it seems difficult to characterize when W (G) = W (L(G)). Moreover, it is
not clear on which graph parameters or structural properties the difference W (G)−W (L(G))
depends.

A connected graph G is isomorphic to L(G) if and only if G is a cycle. Thus, cycles
provide a trivial infinite family of graphs for which W (G) = W (L(G)). That is, for every
positive number g there exists a graph G with girth g for which W (G) = W (L(G)). In
connected bicyclic graphs all the three cases W (L(G)) < W (G), W (L(G)) = W (G), and
W (L(G)) > W (G) occur [14]. It is known that, the smallest bicyclic graph with the property
W (L(G)) = W (G) has 9 vertices and is unique. There are already 26 ten-vertex bicyclic
graphs with the same property [13]. In [8], Dobrynin and Mel’nikov have constructed infinite
family of graphs of girth three and four with the property W (G) = W (L(G)), and asked the
following:

Problem 1 (Dobrynin and Mel’nikov [8]). Is it true that for every integer g ≥ 5, there exists

a graph G 6= Cg of girth g, for which W (G) = W (L(G))?

The following is the main result of this paper, and provides a partial answer to Problem 1.
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3

Theorem 4. For every positive integer g0, there exists g ≥ g0 such that there are infinitely

many graphs G of girth g satisfying W (G) = W (L(G)).

Our result encourages us to state the following conjecture. The answer to it for graphs of
girth three and four is affirmative [8].

Conjecture 1. For every integer g ≥ 3, there exist infinitely many graphs G of girth g
satisfying W (G) = W (L(G)).

2 Graphs with minimum degree at least two

The following folk lemma is needed for the proof of Theorem 6, and states that the distance
between two edges can be bounded by the mean of the distances between their endvertices.
For the sake of completness we include its proof.

Lemma 5. Let G be a graph and e = uv, e′ = u′v′ be two edges of G. Then the following

inequality holds:

d(e, e′) ≥
1

4

[

d(u, u′) + d(u, v′) + d(v, u′) + d(v, v′)
]

.

Proof. Without loss of generality, we can assume that d(v, v′) = min{d(u, u′), d(u, v′), d(v, u′), d(v, v′)}.
We observe that the following holds:

d(v, u′) ≤ d(v, v′) + 1, d(u, u′) ≤ d(v, v′) + 2, and d(u, v′) ≤ d(v, v′) + 1.

Therefore,

1

4

(

d(u, u′) + d(u, v′) + d(v, u′) + d(v, v′)
)

≤
1

4
(4 d(v, v′) + 4) = d(v, v′) + 1 = d(e, e′).

The last equality in the above expression holds by minimality of d(v, v′).

The following is the main result of this section.

Theorem 6. Let G be a connected graph with δ(G) ≥ 2. Then,

W (G) ≤ W (L(G)).

Moreover, equality holds only for cycles.

Proof. If G is a cycle, then L(G) is isomorphic to G, and so, equality holds. Hence, we may
assume that G has at least one vertex of degree at least three. By Lemma 5, we obtain a
lower bound on W (L(G)):

W (L(G)) =
∑

e,e′∈E(G)

e6=e′

d(e, e′)

≥
1

4

∑

e=uv∈E(G)

e′=u′v′∈E(G)
e6=e′

(

d(u, u′) + d(u, v′) + d(v, u′) + d(v, v′)
)

=
1

4

[
∑

u,v∈V (G)
uv 6∈E(G)

d(u)d(v)d(u, v) +
∑

u,v∈V (G)
uv∈E(G)

(

d(u)d(v) − 1
)

d(u, v)
︸ ︷︷ ︸

=1

]

.
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4 February 10, 2010

Thus, for the difference W (L(G)) − W (G), we obtain the following lower bound:

W (L(G)) − W (G) ≥
1

4

[
∑

u,v∈V (G)
uv 6∈E(G)

d(u)d(v)d(u, v) +
∑

u,v∈V (G)
uv∈E(G)

(

d(u)d(v) − 1
)
]

−
∑

u,v∈V (G)

d(u, v)

=
1

4

[
∑

u,v∈V (G)
uv 6∈E(G)

(

d(u)d(v) − 4
)

d(u, v) +
∑

u,v∈V (G)
uv∈E(G)

(

d(u)d(v) − 5
)
]

. (1)

Let G2 be the graph induced by the vertices of degree two in G. Then,

∑

u,v∈V (G2)
uv 6∈E(G2)

(

dG(u)dG(v) − 4
)

dG(u, v) = 0, and
∑

u,v∈V (G2)
uv∈E(G2)

(

dG(u)dG(v) − 5
)

= −|E(G2)|.

(2)

From (1) and (2), we obtain

W (L(G)) − W (G) ≥
1

4

[
∑

u,v∈V (G)
{u,v}6⊆V (G2)

uv 6∈E(G)

(

dG(u)dG(v) − 4
)

dG(u, v)
︸ ︷︷ ︸

≥1

+
∑

u,v∈V (G)
{u,v}6⊆V (G2)

uv∈E(G)

(

dG(u)dG(v) − 5
︸ ︷︷ ︸

≥1

)

− |E(G2)|

]

.

As G has at least one vertex x of degree at least 3, the above sums are not empty. Besides,
we can ensure that |V (G2)| − 1 ≥ |E(G2)|: indeed, we know that |V (H)| ≥ |E(H)| for any
graph H of maximum degree 2 with the equality holds only if H is 2-regular. But, in the
present situation there is at least one vertex of degree two adjacent to a vertex of strictly
larger degree in G, as the graph G is connected and G2 is a proper subgraph of it. So, G2 is
not 2-regular, and so, |V (G2)| > |E(G2)|. Consequently,

W (L(G)) − W (G) ≥
1

4

[
∑

v∈V (G2)

dG(x, v) − |V (G2)| + 1

]

≥
1

4
.

This establishes the theorem.

3 Graphs whose Wiener index equals to the Wiener index of

their line graphs

As the equality W (L(T )) = W (T )−
(
n
2

)
holds for trees [3], and the equality W (L(C)) = W (C)

holds for cycles, one can expect that there are some graphs G, comprised of cycles and trees,
with property W (L(G)) = W (G). In what follows, we present one such class of graphs.
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5

For positive integers k, p, q, we define the graph Φ(k, p, q) as follows (see Figure 1 for an
illustration). The graph Φ(k, p, q) is simple and comprised of two cycles, C1 = u1 · · ·u2k+1

and C2 = v1 · · · v2k+1, and two paths Pp = x1 · · ·xp and Pq = y1 · · · yq such that all introduced
vertices are distinct except for vertices v1 = u1 = x1 and y1 = v2k+1 = u2k+1.

Φ(k, p, q) L(Φ(k, p, q))

y1

y2

yq−1

x1

x2

xp−1

u2k+1 v2k+1

u2k v2k

vk+1

vk

v2

v1u1

uk

uk+1

u2

u2k−1 v2k−1

y1

y2

x1

x2

u2k+1 v2k+1

u2k v2k

vk

vk+2

vk+1

v2
v1u1

uk+1

uk+2

uk

u2

xp

yq

Figure 1: Graphs Φ(k, p, q) and L(Φ(k, p, q))

We are now interested in computing the difference W (L(Φ(k, p, q)))−W (Φ(k, p, q)), which
is determined by the following technical result, and it will be used in the proof of Theorem 8.
As the proof is straightforward and rather technical, we present it in the next section.

Theorem 7. For integers, k, p, q ≥ 1, let G = Φ(k, p, q) with girth g = 2k + 1. Then,

W (L(G)) − W (G) =
1

2
(g2 + (p − q)2 + 5(p + q − 3) − 2g(p + q − 3)).

We now turn to prove the main theorem of this paper.

Theorem 8. For every non-negative integer h, there exist infinitely many graphs G of girth

g = h2 + h + 9 with W (L(G)) = W (G).

Proof. Our candidates are Φ graphs defined above. First we prove the following claim:

Claim 1. Let a0, a1, k, such that W (L(Φ(k, a0, a1)) = W (Φ(k, a0, a1)) and a0 < a1. Then,

from a0 and a1, we can build an infinite strictly increasing sequence a0, a1, a2, . . . of integers

such that for every n ≥ 0, W (L(Φ(k, an, an+1))) = W (Φ(k, an, an+1)).
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6 February 10, 2010

By Theorem 7, such a sequence can only exist if the following equation is verified for all n:

Dn = W (L(Φ(k, an, an+1))) − W (Φ(k, an, an+1))

=
1

2
g2 − gan − gan+1 +

1

2
a2

n − anan+1 +
1

2
a2

n+1 + 3g +
5

2
(an + an+1) −

15

2
= 0,

where g = 2k + 1. Then,

Dn − Dn+1 = g(an+2 − an) −
1

2
(a2

n+2 − a2
n) + an+1(an+2 − an) −

5

2
(an+2 − an)

= (an+2 − an)(g −
1

2
(an+2 + an) + an+1 −

5

2
)

= 0.

As we want the sequence to be strictly increasing, it is enough to solve the following recursive
equation:

g −
1

2
(an+2 + an) + an+1 −

5

2
= 0. (3)

It is well known that a solution to (3) is of the form an = cn + pn, where cn = nx + y, for
x, y ∈ R, is the homogeneous solution, and pn = cn2, for c ∈ R, is the particular solution. An
easy calculation gives y = a0, x = (5

2 + a1 − g − a0) and c = g − 5
2 . Hence,

an = (g −
5

2
)n2 + (

5

2
+ a1 − g − a0)n + a0. (4)

Observe that for every n ≥ 0, an is an integer and an < an+1. As by assumption a0 and
a1 satisfy the equation D0 = 0, the claim follows. ♦

Let k, p, q be positive integers (with g = 2k + 1). By Theorem 7, W (L(Φ(k, p, q)) =
W (Φ(k, p, q)) if

g = −3 + p + q +
√

24 − 11p − 11q + 4pq. (5)

Setting p = 3 and q = h2 + 9 for some integer h, one obtains the equation g = h2 + h + 9.
Then, g is an odd positive integer. Consequently, for every h ∈ N the parameters g = h2+h+9,
k = 1

2(g − 1), p = 3, and q = h2 + 9 satisfy W (L(G)) = W (G). By Claim 1, for every such
girth, we can compute an infinite family of graphs G satisfying the same equation by setting
a0 = 3 and a1 = h2 + 9. Thus, the theorem is proved.

Clearly, the set of integer solutions of (5) is not complete (see Fig.2 for other infinite fam-
ilies). However, the equation (5) does not have integer solutions for every g, thus preventing
us from producing an infinite family of graphs G satisfying W (L(G)) = W (G) for all girths
with the Φ family.

Theorem 4 is an immediate corollary of Theorem 8. For every positive integer g0, we can
choose a non-negative integer h such that g = h2 + h + 9 ≥ g0. By Theorem 8, it follows that
there are infinitely many graphs G of girth g with W (L(G)) = W (G).
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7

p q g 24 − 11p − 11q + 4pq

3 h2 + 9 h2 + h + 9 h2

4 20h2 + 4 20h2 + 10h + 5 (10h)2

6 13h2 + 12h + 6 13h2 + 25h + 15 (13h + 6)2

6 13h2 + 14h + 7 13h2 + 27h + 17 (13h + 7)2

7 17h2 + 14h + 6 17h2 + 31h + 17 (17h + 7)2

7 17h2 + 20h + 9 17h2 + 37h + 23 (17h + 10)2

9 h2 + 3 h2 + 5h + 9 (5h)2

10 29h2 + 2h + 3 29h2 + 31h + 11 (29h + 1)2

10 29h2 + 56h + 30 29h2 + 85h + 65 (29h + 28)2

12 37h2 + 30h + 9 37h2 + 67h + 31 (37h + 15)2

12 37h2 + 44h + 16 37h2 + 81h + 45 (37h + 22)2

13 41h2 + 4h + 3 41h2 + 45h + 12 (41h + 2)2

13 41h2 + 78h + 40 41h2 + 119h + 86 (41h + 39)2

16 53h2 + 44h + 12 53h2 + 97h + 41 (53h + 22)2

16 53h2 + 62h + 21 53h2 + 115h + 59 (53h + 31)2

18 61h2 + 116h + 58 61h2 + 177h + 123 (61h + 58)2

18 61h2 + 128h + 70 61h2 + 189h + 141 (61h + 64)2

Figure 2: Families of integer solutions

4 Proof of Theorem 7

The proof of Theorem 7 follows from the following two lemmas. Their purpose is to compute
the exact value of W (G) and W (L(G)) for the Φ graphs.

Lemma 9. Let G be a graph Φ(k, p, q) where k, p, q ≥ 1. Then,

W (G) = W (Pp+q) + 4W (Pq+k) + 4W (Pp+k) + 2W (C2k+1) + 2W (P2k+1) + 2W (P2k)

− 16W (Pk−1) − 4W (Pq) − 4W (Pp) − p(p + 1) − q(q + 1) − 2(8k2 + k − 2).

Proof. We consider several paths and cycles in G such that each pair of vertices of G belongs
to at least one of these subgraphs. See Figure 1 for the notation. In order to make our
proof more readable, we denote a shortest path between vertices a and b with P (a, b). The
subgraphs we consider are the following:

• The path P (xp, yq) = xpxp−1 · · ·x1y1y2 · · · yq of length p + q − 1.

• The paths P (xp, vk+1) = xpxp−1 · · ·x2v1v2 · · · vk+1, P (xp, uk+1) = xpxp−1 · · ·x2u1u2

· · ·uk+1, P (xp, vk+2) = xpxp−1 · · ·x1v2k+1v2k · · · vk+2 and P (xp, uk+2) = xpxp−1 · · ·x1u2k+1

u2k · · ·uk+2 of length p + k − 1.

• The paths P (yq, vk+1) = yqyq−1 · · · y2v2k+1v2k · · · vk+1, P (yq, uk+1) = yqyq−1 · · · y2u2k+1

u2k · · ·uk+1, P (yq, vk) = yqyq−1 · · · y1v1v2 · · · vk and P (yq, uk) = yqyq−1 · · · y1u1u2 · · ·uk

of length q + k − 1.

• The paths P1(uk+1, vk+1) = uk+1uk · · ·u2v1v2 · · · vk+1 and P2(uk+1, vk+1) = uk+1uk+2

· · ·u2kv2k+1 v2k · · · vk+1 of length 2k have the same endvertices. Similarly, the paths
P (uk, vk+2) = ukuk−1 · · ·u1v2k+1v2k · · · vk+2 and P (uk+2, vk) = uk+2 uk+3 · · ·u2k+1v1v2 · · · vk

are of length 2k − 1.
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8 February 10, 2010

• The cycles Cu = u1u2 · · ·u2k+1u1 and Cv = v1v2 · · · v2k+1v1 on 2k + 1 vertices.

The following pairs of vertices were considered more than once:

• Pairs of vertices on the paths P (x1, xp), P (y1, yq), P (v2, vk), P (u2, uk), P (vk+2, v2k) and
P (uk+2, u2k) are considered five times.

• Pair (x1, y1) is on distance 1 and is considered nine times. Similarly pair (uk+1, vk+1)
is on distance 2k and is considered twice.

• Pairs (u1, uk+1), (v1, vk+1), (uk+1, u2k+1) and (vk+1, v2k+1) are on distance k. Similarly
pairs of vertices {(uk+1, a)|a ∈ P (u2, uk) ∪ P (uk+2, u2k)} and {(vk+1, a)|a ∈ P (v2, vk) ∪
P (vk+2, v2k)} are on distances 1, 2, . . . , k − 1. All of them are considered three times.

• Pairs of vertices {(x1, a)|a ∈ P (v2, vk) ∪ P (u2, uk)} and {(y1, a)|a ∈ P (v2k, vk+2) ∪
P (u2k, uk+2)} are on distances 1, 2, . . . , k − 1 and are considered five times.

• Pairs of vertices {(x1, a)|a ∈ P (uk+2, u2k) ∪ P (vk+2, v2k)} and {(y1, a)|a ∈ P (u2, uk) ∪
P (v2, vk)} are on distances 2, 3, . . . , k and are considered three times.

• Pairs of vertices {(x1, a)|a ∈ P (y2, yq)} are on distances 2, 3, . . . , q and {(y1, a)|
a ∈ P (x2, xp)} are on distances 2, 3, . . . , p. They are considered three times.

As the Wiener index of a graph G is the sum of the distances between all pairs of the vertices,
we compute it as a sum of Wiener indices of all observed subgraphs and subtract the distances
between pairs of vertices which were observed more than once. The distances are multiplied
the appropriate number of times. The Wiener index of the graph Φ(k, p, q) is

W (Φ(k, p, q)) = W (Pp+q) + 2W (Pq+k) + 2W (Pq+k) + 2W (Pp+k) + 2W (Pp+k)

+ 2W (C2k+1) + 2W (P2k+1) + 2W (P2k) − 16W (Pk−1) − 4W (Pq)

− 4W (Pp) − 8 · 1 − 2k − 4 · 2 · k − 4 · 2(1 + 2 + · · · + k − 1)

− 4 · 4(1 + 2 + · · · + k − 1) − 4 · 2(2 + 3 + · · · + k) − 2(2 + 3 + · · · + q)

− 2(2 + 3 + · · · + p)

= W (Pp+q) + 4W (Pq+k) + 4W (Pp+k) + 2W (C2k+1) + 2W (P2k+1)

+ 2W (P2k) − 16W (Pk−1) − 4W (Pq) − 4W (Pp) − p2 − p − q2 − q

− 16k2 − 2k + 4.

Lemma 10. Let G = Φ(k, p, q) where k, p, q ≥ 1. Then,

W (L(G)) = W (Pp+q−1) + 2W (Pq+k−1) + 2W (Pq+k) + 2W (Pp+k−1) + 2W (Pp+k)

+ 2W (C2k+1) + 2W (P2k) + 2W (P2k+1) − 16W (Pk) − 4W (Pq−1)

− 4W (Pp−1) − p(p − 1) − q(q − 1) − 4k(k + 1).

Proof. Similar as in the previous lemma, we consider paths and cycles in L(Φ(k, p, q)) such
that each pair of vertices L(φ(k, p, q)) belongs to at least one of these subgraphs. The sub-
graphs we consider are the following:
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• The path P (xp−1, yq−1) = xp−1xp−2 · · ·x1v2k+1y1y2 · · · yq−1 of length p + q − 2.

• The paths P (xp−1, vk) = xp−1xp−2 · · ·x1v1v2 · · · vk, P (xp−1, uk) = xp−1xp−2 · · ·x1u1

u2 · · ·uk of length p+k−2 and the paths P (xp−1, vk+1) = xp−1xp−2 · · ·x1v2k+1v2k · · · vk+1,
P (xp−1, uk+1) = xp−1 xp−2 · · ·x1u2k+1u2k · · ·uk+1 of length p + k − 1.

• The paths P (yq−1, vk+1) = yq−1yq−2 · · · y1v2kv2k−1 · · · vk+1, P (yq−1, uk+1) = yq−1yq−2

· · · y1u2ku2k−1 · · ·uk+1 of length q+k−2 and the paths P (yq−1, vk) = yq−1yq−2 · · · y1v2k+1

v1v2 · · · vk, P (yq−1, uk) = yq−1yq−2 · · · y1 u2k+1u1u2 · · ·uk of length q + k − 1.

• The paths P (uk, vk) = ukuk−1 · · ·u1v1v2 · · · vk, P (uk+1, vk+1) = uk+1uk+2 · · ·u2kv2k

v2k−1 · · · vk+1 of length 2k−1 and the paths P (uk, vk+1) = ukuk−1 · · ·u1v2k+1v2k · · · vk+1,
P (uk+1, vk) = uk+1uk+2 · · ·u2k+1v1v2 · · · vk of length 2k.

• The cycles Cu = u1u2 · · ·u2k+1u1 and Cv = v1v2 · · · v2k+1v1 on 2k + 1 vertices.

The pairs of vertices which were observed more than once are the following:

• Pairs of vertices on the paths P (x1, xp−1), P (y1, yq−1), P (v1, vk), P (u1, uk), P (vk+1, v2k)
and P (uk+1, u2k) are considered five times.

• Pairs of vertices {(v2k+1, a)|a ∈ P (u1, uk)∪ P (v1, vk)∪ P (uk+1, u2k)∪ P (vk+1, v2k)} are
on distances 1, 2, . . . , k and are considered three times.

• Pairs of vertices {(v2k+1, a)|a ∈ P (y1, yq−1)} are on distances 1, 2, . . . , q − 1 and are
considered three times. Similarly pairs of vertices {(v2k+1, a)|a ∈ P (x1, xp−1)} are on
distances 1, 2, . . . , p − 1 and are considered three times.

The Wiener index is calculated as a difference between a sum of Wiener indices of all observed
subgraphs and corresponding multiplication of distances between different pairs of vertices
which were observed more than once:

W (L(G)) = W (Pp+q−1) + 2W (Pq+k−1) + 2W (Pq+k) + 2W (Pp+k−1) + 2W (Pp+k)

+ 2W (C2k+1) + 2W (P2k) + 2W (P2k+1) − 16W (Pk) − 4W (Pq−1)

− 4W (Pp−1) − 4 · 2(1 + 2 + · · · + k)

− 2(1 + 2 + · · · + q − 1) − 2(1 + 2 + · · · + p − 1))

= W (Pp+q−1) + 2W (Pq+k−1) + 2W (Pq+k) + 2W (Pp+k−1) + 2W (Pp+k)

+ 2W (C2k+1) + 2W (P2k) + 2W (P2k+1) − 16W (Pk) − 4W (Pq−1)

− 4W (Pp−1) − p2 + p − q2 + q − 4k2 − 4k.

Proof of Theorem 7. By Lemmas 9 and 10, it follows that

W (L(G)) − W (G) = W (Pp+q−1) − W (Pp+q) + 2(W (Pq+k−1) − W (Pq+k)) + 2(W (Pp+k−1)

− W (Pp+k)) + 4(W (Pq) − W (Pq−1)) + 4(W (Pp) − W (Pp−1))

+ 16(W (Pk−1) − W (Pk)) + p + q − 4k2 − 4k + p + q + 16k2 + 2k − 4.
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10 February 10, 2010

The Wiener index of a path with n vertices being W (Pn) =
(
n+1

3

)
[2], we have

W (L(G)) − W (G) =

(
p + q

3

)

−

(
p + q + 1

3

)

+ 2

((
q + k

3

)

−

(
q + k + 1

3

))

+ 2

((
p + k

3

)

−

(
p + k + 1

3

))

+ 4

((
q + 1

3

)

−

(
q

3

))

+ 4

((
p + 1

3

)

−

(
p

3

))

+ 16

((
k

3

)

−

(
k + 1

3

))

+ 2(p + q) + 12k2 − 2k − 4

= −

(
p + q

2

)

− 2

(
q + k

2

)

− 2

(
p + k

2

)

+ 4

(
q

2

)

+ 4

(
p

2

)

− 16

(
k

2

)

+ 2(p + q) + 12k2 − 2k − 4

=
1

2
(−8 + 4k2 + 3p + (p − q)2 + 3q − 4k(−4 + p + q)).

If we set k = (g − 1)/2, we obtain the claimed formula

W (L(G)) − W (G) =
1

2
(g2 + (p − q)2 + 5(p + q − 3) − 2g(p + q − 3)).

4.1 Wiener index and Combinatorial Nullstellensatz

We bring to reader’s attention the fact that the polynomials given in Theorem 8 can be easily
obtained through polynomial interpolation with the help of a computer. Indeed, the above
proofs can be massively shortened and simplified if one only needs to show that both W (G)
and W (L(G)) are low-degree polynomials on the variables k, p and q.

Once bounds on the degree of each variable in the polynomials W (L(Φ(k, p, q))) and
W (Φ(k, p, q)) have been derived, it is easy to define a (small) set of representatives of the Φ
family which are sufficient to define exactly the corresponding polynomials using the Combi-
natorial Nullstellensatz [1] (less than 30 different graphs in the present case).

This way, a computer can be made to answer very quickly the following question: “given
a graph family G depending on several parameters p1, . . . , pl, what is the general formula of
W (G(p1, . . . , pl)) − W (L(G(p1, . . . , pl)))?”. This is of great help when looking for graphs G
satisfying the equation W (G) = W (L(G)), as it reduces the problem to finding the integral
zeros of a multivariate polynomial (which is not by itself an easy question).

This approach has to be considered when trying to find more classes of graphs satisfying
the above constraint, especially when the Φ family used here can be modified in so many
ways: one could like to attach paths to the cycles at different points, set two different sizes
for the cycles, or to attach trees instead of paths, etc.
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