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ABSTRACT

For STIT tessellations stationarytessellations that argable under the operatidteration of tessellations —

the second-order measure of the edge system is studied. A resultis that this measure coincides with that one of
a Boolean segment process the isotropic case an explicit formula for the pair-correlation function is given.

An estimator for the covariance function of the edge length measure is dandeatiapted to digitized images

of tessellations. Fam pixels of an image the algorithm is of complexi&(mlogm).

Keywords: covariance function, estimatiorK-function, pair-correlation function, random tessellations,
second moment measure, STIT tessellations, stochastmejgo.

INTRODUCTION considered to represent essential information about
a random geometric structure, in particular the
The model of STIT tessellations stationary arrangement of geometric objects. But already
tessellations that arestable under the operation Baddeley and Silverman (1984) provided examples of
iter_ation oftesselllations—wz_isintro_d_ucc_ad in Nagela_ngoint processes with the same K-function but with
Weil3 (2005). This stochastic stability is an essential iqently different point patterns — thus showing that
Fégﬁﬁ;ty Ivr\]/h'Ch ‘T’IIS? all?ws tol derive manybtlhehorgtlfakhe K-function does not necessarily comprise sufficient
' particular, formulae were publishe Oinformation. Our result contributes an example from
mean values (first-order moments) and also for .
certain distributions which concern nodes, edges, ang® class of segment processes and tessellations.
cells. A next step is to find quantitative expressions : -
which describe Ff[he mutualqarrangementpof cells. Firstly we recall the definitions of the second

This points to the study of second-order entities™Moment measure, the K-function and the pair-

In the present paper we study the second momeferrelation function for random sggment_processes
measure for the edge system of planar randorf? the plane, and a theorem is cited which relates
STIT tessellations. This can also be expressed b{ie second moment measure to marked section point
the K-function, the pair-correlation function or the processes when the random segment process is
covariance function, respectively. An explicit formulaintersected with a line. The marks of the section points
for the pair-correlation function in the isotropic case isare the section angles. Then the STIT tessellations are
derived. Finally, an asymptotically unbiased estimatoexplained and their basic properties are summarized.
for the covariance function is given. This is followed by a proof of the theorem, that the
The initial problem was whether this K-function Seécond moment measures of STIT tessellations and

reflects the structure of the tessellation, in particulaPf Boolean segment processes coincide. This yields
the mutual arrangement of the cells. The result othe K-function and the pair-correlation function for
the present paper shows that the K-function of dhe segment system of STIT tessellations. In the last
STIT tessellation coincides with the K-function of a section, an asymptotically unbiased estimator for the
Boolean model of segments with appropriately chosepovariance function of the edge system is derived. It
parameters. This means that in this case the K-functiog based on a convolution with a kernel functiosme (
even does not express whether the random segmenr{Ssmoothing”) of the edge systeriihis approach is
form a tessellation or not. not specific to STIT tessellations and can be applied to

In stochastic geometry second-order quantitiesarbitrary fibre processes with existing pair-correlation
i.e, the second moment measure, the K-functiorfunction.Finally, it is adapted to digitized images of
or the pair-correlation function respectively, weretessellations.
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SECOND MOMENT MEASURE
AND K-FUNCTION FOR PLANAR
FIBRE PROCESSES

Let R denote the set of real number®? the
Euclidean plane anRk, the g-algebra of Borel sets
in R2. By /5, /1, /. we denote the Lebesgue measures
onR?, R and|0, ), respectively.

Further, we use the notations for a planar fibre a)
system andV for a random fibre process in the sense
of Stoyanet al. (1995),Py denotes the distribution of
Y. A fibre processWV is said to bemacroscopically
homogeneous +e., spatially stationary — ifRy is
invariant under all translations @?. It is isotropic if
its distribution is invariant under rotations. The total
fibre length of the fibre systew in B € R, is written
as(B). For astationaryfibre process the mean total
fibre length per unit area (length intensityLis.

The second moment measu@ of a fibre process
Y is described by b)

ul(pz)(leBg) = EW(B1)W¥(B)
_ /w(sl>-w<82>m(dw),

for B1,B2 € Ro.

If W is stationary the reduced second moment
measure#y can be defined by

uZ (ByxBy) =12 / / 1s, (X) 1, (x+ h) Hp(ch) dx,

wherelg denotes the indicator function 8t

In the case of astationaryand isotropic fibre
process it is sufficient to consider theduced second
moment function & (called K-function) given by

Ky(r) = #u(B(o,r)), for r>0,

whereB(o,r) is the circle with radius centered iro.

The productLaKy(r) can be interpreted as the
mean total length of fibres &P in a circle with radius
r, when the center of the circle is located in the typical
fibre point. Such a typical point can be understood as a
randomly chosen point inside a bounded window, and
its distribution is the uniform distribution concentrated
on the fibre system.

WEISSV ET AL: K-function of STIT tessellations

If the K-function is differentiable, the pair-

correlation functiorg exists with

i quJ(r)

:2nr ar for r>0.

a(r)

We consider two particular cases of fibre systems.

Let W be astationaryand isotropic Poisson line
process with length intensitya. Then the K-
function is given bycf. Stoyanet al. (1995)

LaKy(r) =2r+Lam? for r>0
and the pair-correlation function is

1

r>0.
Lamr -

for

gr)y=1+

For line segments we choose the parametrization
(x,a,s) where x € R? is the centre,a € [0, )

the normal directionife., the angle between the
normal of the segment and the positixeaxis)
ands € (0,) the length. Thus a segment process
WY can be considered as a point process on the
spaceR? x [0, 1) x (0,). Notice that thenormal
direction will be used in the parametrization of
both the segments and the lines.

Now let W be astationaryand isotropic Boolean
segment process with intensityy of the centre
point (germ) process and with length distribution
Z of the typical segment. Then the length intensity
is La = N;swheresdenotes the mean length of the
typical segment. For the K-function we obtaaf.(
Stoyanet al., 1995)

LaKw(r) =51 /sz.,sf(ds)
0
+ /.(er— r2) 2(ds) | +Lamm? (1)

The formulae folaAKy(r) for both particular cases

The stationaryfibre process¥ is called asecond- ¢an be interpreted as follows. The first summand arises
order processf La#y(B) < w for all boundedB ¢  from the segment on which the typical point (the
MRo. In the following we only consider second-ordercenter of the circle) lies. The second one is formed
processes. And furthermore, we assume that also ttieom the remainder of the process which has again the
intersection point processdsn g on all linesg are of  distributionPy, due to the independence properties of
second order. the models.

122



Image Anal Stereol 2010;29:121-131

A STEREOLOGICAL FORMULA / ty,2) ui? (d(y,2))
FOR THE SECOND MOMENT )
MEASURE OF PLANAR FIBRE =3[ [ty e Aot @
PROCESSES " ly—2]
:// > oo T(42) dg Re(dy)
y,ZzeS(Yng)
y#2

There are at least three stereological methods for
determination of second-order quantities of planar+/ Z //f(y(tl),y(tz))dtl dtoRy(dy), (2)
fibre processes, see Weil? and Nagel (1994). In the * gLWng)#o |
present paper we make use of one of these methods
which was originally presented by Schwandtke (1988)whereu = w(y,Q), v=w(z,g).
where the fibre process is intersected by a line
and the intersection process with the corresponding

intersection angles is observed. SECOND MOMENT MEASURE
AND K-FUNCTION FOR PLANAR

Denote by the set of all lines ifk? and by||ly —Z|| STIT TESSELLATIONS

the distance between two poirtandzin R?. Further,
let dg be the element of the motion invariant measure

on the set of all lines withf 1{gNB(0, 1) # 0} dg = 271 A new model for random tessellations, the so-

called STIT tessellations, was introduced in Nagel
_ , and Weil3 (2005). The simulation of a planar STIT

For a fibre systeny (here considered as a subsetegsellation in Fig. 1 suggests that STIT tessellations
of R?) andg € ¢ we considery N g which consists of are potential models for crack or fissure structures.
isolated intersection points and of linear segments of

positive length oiy ong:

= 4
Yng=SyYng)uL(yng), ARy ‘
[ ST Ry
whereS((Ng) denotes the set of all intersection points /‘ ' >,’)
andL(@nNg) the union of all straight line segmentson |/ } ] ‘ S\
g. It is clear, that only for countably marywe have ‘/ Q ;‘;’ '

, Z4
L(wng) £0. A /‘ A

X
\
| . | ‘\‘ VAR
An intersection poiny € S(¢ N Q) is marked by the ' ’A——
fibre tangent anglev(y,g). This is the angle between ,‘ >" —
the tangent ofyy in y and g. If the tangent is not Wy N .
uniquely defined, then put/(y,g) = 0. Notice that \i‘ h' ‘
the intersection angle between the tangent grid ,‘\ U
the same as the angle between the respective norn \ \
directions of the fibre and of the line. <\
RN

Assume that any ling € ¢ is parametrized ag=
{y(t) : t e R} suchthaf|y(t;) —y(t2)|| = |t1 —to| for all
t1, to € R. This yields a parametrization of the union of
segments (PNg)aslg={tcR:y(t)eL(Ygng)}.

Fig. 1.Simulation of an isotropic STIT tessellation.

The characteristic and eponymous property is
Then the following stereological formula for the the stability of their distribution under the operation
second moment measure holds. Mébe astationary ~'teration.

planar fibre process. Then for all measurable non- We will give here only a short overview, for more
negative functions onR? x R? we have details see the cited papers.
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ConstructionA construction of STIT tessellations For a pair(tj, ;) throw — after the timer; elapsed —
in bounded windows was described in all details inthe liney; onto the windowV. If it hits W’ then use the
Nagel and Wei3 (2005) and a globali, in the generated chord to divide this polygon 4fnW' = 0
whole planeR? — construction was given in Mecke then rejecty; and make a new trial with another pair
et al. (2008a). This construction can be understood agrj/, yj). Also in the case of rejectiom; has to be
a process of sequential cell division at random times. added to the lifetime ofM’. This yields the lifetime

Let A = Lals x % be a measure oR x [0, 71) and distribution of the cells described above.

Z is a probability measure ofd, 1), the directional The chords — if they do not end on the boundary
distribution. In order to generate a tessellation itof W — that appear during the construction are called
is assumed tha#? is not concentrated on a single I-segments. Later occurring I-segments have their
direction. A point (p,a) € R x [0, 1T) represents a line  endpoints in the relative interior of two already extant
g(p,a) € ¢, wherep is its signed distance from the I-segments or chords, respectively.

origin (positive iff the intersection of the line with its Even if this construction is related to a fixed and

perpendicular through the origin lies in the upper halfy,5nded windoww it yields a distribution that is
plane) andx is the angle between its normal and thegnsistent in the following sense.

positivex-axis. For a seA  R? denotgA] = {(p,a) € _ _ _ _
Rx[0,m) :g(p,a) NA# 0} ExistenceThere exists atationarytessellationd

. _ _ of the wholeR? such that
Attimet = 0 the construction starts with a compact

convex polygonal windowV c R? (e.g, a rectangle). d(1,W) b dNW, (3)
After a random life-timet; that is exponentially b

distributed with parametef([W]) a random liney;  the symbol= stands for the identity of distributions of
is thrown ontoN with the distributionA(W])~A(-n  random variables.

[W]). Thus two new polygons are born, and the birth e gistribution of the tessellatio® does not
time t; is attributed to them. Then, sequentially, a"depend oW, and one can show that this formula holds
the extant polygond/, ..., W, say, with the respective o all compact and convex 2-dimensional sétsc
birth timest; ...t are divided in the following way. R2 Moreover, the existence of a stationary tessellation

The life-time of W' is a random variable that is g sufficient that the intensities and the K-function are
exponentially distributed with paramet&(\W']), i.e,  well defined.

the parameter depends on the sizeWdf. In the L . , _ _ ,
particular case that is the uniform distribution on Generalizations to higher dimensions are given in
[0,77) it is proportional to the perimeter o', At Nagel and WeiR (2005); Meclet al. (2008D).

the end of its life-time the polygon is divided by a  Now we recall some important properties of STIT
chord that comes from a random line that has theessellations, the proofs were given in earlier papers
distribution A(\W/']) “*A(- N [W/]). ThusW' dies and (Nagel and Wei3, 2003; 2005; 2006; Mecke al.,

two new polygons are born. The state at a fixed time007; Nagel and Weif3, 2008; Mecke al., 2010). A

a > 0 is a tessellation iW and it is denoted by random tessellatio¥ is understood as the set of all its
d(a,W). edge pointsi.e., as a random subset BF.

A crucial feature of the construction is that the  The operation of iteration (also referred to as
parameters of the exponentially distributed life-timenesting) for tessellations is defined as follows. Denote
depend on the (random) size of the relevant celly # = {Y1,Y»,...} a sequence of independent
such that smaller cells have a longer expected lif@and identically distributed (i.i.d.stationaryrandom
than larger ones. This implies a certain dependendessellations. Further assume thgtis a stationary
between the random lifetimes of different cells.random tessellation which is independent?®f It is
Therefore we used the following rejection methoduseful to consider the s€X(Yy) = {p1, p2,...} of the
for a formal description of the construction: Let cells (which are convex polytopes)¥f. The iteration
(15,¥5), i =1,2,..., be a sequence of independentof the tessellatiolYp and the sequenc® is defined as
and identically distributed (i.i.d.) random variables,
where alsot; and y; are independent. The; 1(Yo, %) =YoU |J (P Yi) (4)
are exponentially distributed positive numbers with k=1
parameterA([W]). The y; are random lines with This definiion means that a cefi of the so called
the distribution A(W])~*A(- N [W]). Any of these ‘frame’ tessellationY is — independently of all other
random variables can be used at most once duringells — subdivided by the cellgy, i = 1,2,... of
the construction. The division of an extant polygonthe tessellatiorYy which intersect the interior ofy.
W' C W is performed according to the rejection rule: The result of an iteration o$tationarytessellations
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is a stationarytessellation. A strict formalization and show, that the interior of the typical cell gb with
a proof of homogeneity are given in Mecle al. directional distributionZ and intensityLa has the
(2008b). same distribution as the interior of the typical cell of

According to the general concept of S,[Ochas,[icastatlonaryP0|sson line tessellation with the samke

stability w.r.t. an operation, a random tessellati@n andL,, see Nagel and Weil? (2003).

is called stable w.r.t. iteration (STIT) if the distributio Length distribution of the typical I-segmerfor
of the iterated tessellation, multiplied by a rescalinga stationaryand isotropic STIT tessellatio® with
factor, is the same as that one 4. This is now intensityLa the density of the length of the typical I-
defined more precisely. For a real numiber O the segmentis fox > 0

tessellationrY is generated by transforming all points

(xy) €Y into (rx,ry). Accordingly,r# means that ) LS o 2Lax <§+ﬂ i) (5)
this transformation is applied to all tessellations of the L/§X3 X Lax? L§x3 ’
sequence. LetYy be astationaryrandom tessellation

and#i, %, ... a sequence of sequences of tessellatiorsee Meckeet al. (2007).

such that all the occurring tessellations (including s jength distribution is a mixture of exponential
Yo) are i.i.d. Then the sequendg(Yo),l5(Yo),..- of  jistributions

rescaled iterations is defined in Nagel and Weif3 (2003;

L
2005) as Ro 2o /(25
p(x)= | =se — | d
l2(Yo) = 1(2Y0, 224), ;m LA
3
I3(Yo) =1(1(3Y0,3%1),3%) =1 | =12(Y0),3%2 | , _ _ .
3(Yo) =1(1(3%, 3%3) 2) (2 2(Yo) 2) Results for the non-isotropic case are derived

in Mecke (2009). Further distributions are given in

m
1lm—1(Yo)7m%—1>7 m=3,4,...  Meckeet al.(2007; 2010).

Im(Yo) = | <m

. . . Mean values of STIT tessellation are calculated in
Heremis the rgscal.lngfactorwhlch is chosen such thaNageI and WeiR (2006; 2008). It can be shown, that a
the results of iteration do not degeneraterfor c. section of STIT tessellation with a lower-dimensional

Definition: A stationaryrandom tessellatiol is  plane is again a STIT tessellation, stereological
said to be stable with respect to iteration (STIT) if ~ formulae are given in Mecket al. (2009).

D Now we will consider the second moment
Y =In(Y) foralm=23,..., measure, the K-function and the pair-correlation

i.e, if its distribution is not changed by repeatedfunCtIon of a STIT tessellation.

rescaled iteration with sequences of tessellations with If W is anystationarysegment proceggs a point
the same distribution. process on the parameter space introduced alitsve)

It can be shown (see Mecha al.,2010) that, intensity measur@y can be factorized
equivalentlyY is STITifY 2 I5(Y). Ap=Nilaxp, (6)

Stability with respect to iterationThe stationary
tessellation® given in (3) is stable with respect to
iteration.

whereN; is the mean number of segment centers per
unit area ando is the joint distribution of direction
and length of the typical segment. Notice th&} the
Characteristic entities:The segments (edges of length distribution of the typical segment, is a marginal
cells) in the tessellatio® form astationarysegment distribution of p. The directional distributionZ is
process withLa (which appeared in the definition of the length weighted directional distribution derived
N\) as the mean total edge length per unit area and tfeom p.
directional distribution#, i.e., the distribution of the . . . . o
normal direction in a randomly chosen point on theld;f;;dlss) additionally isotropic, therp(d(as)) =
segments. By andZ the distribution ofstationary 7 :

STIT tessellations is already uniquely determined. Theorem 1 Let & be a stationary STIT tessellation

Poisson typical cellNow we consider the interior with intensity la ¢ and joint distributionpg of length
of the typical cell of®. That means more intuitively and direction of the typical I-segment. Further, it
the single isolated cell neglecting additional nodes obe astationaryBoolean segment process with intensity
edges emanating outside on their boundary. One cdrm y and joint distributionpy of length and direction
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of the typical segment. For the respective second ordeii) Let M be a Poisson point process &hx (0, )

measuresyé,z) andufpz) we obtain (e, lines with birth times) with the intensity
measure\ x £, where/\ is the same as in (ii). For
Lao=Lay and po=py = uc(pz) = ufpz). all a> 0 the line proces§l, ={he ¥ : (ht) €
M, t < a} has the length intensitglLa. Hence the
Corollary: With Eq. 1 and Eq. 5 the K-function intersection withg generates atationaryPoisson
of a stationaryand isotropic planar STIT tessellation  point process with intensitgR_ = ala [ | sin(a —
@ with s= 11/La as the mean length of the typical I-  y;)|%(da) and with independent marks, and the
segment, see Nagel and WeiR3 (2006), is mark distribution is the same as in (i) and (ii).
m & (—2Lar)K 5 iv) Choose a compact convex polygonal windbw
LaKe(r) = _L_Akzl k- Kl +Lamre. with WN g # 0. Then for a STIT tessellation
N ® the marked intersection point process within
Using an exponential integral &) and the Euler- W, i.e, WNgn®, can be generated by the
Mascheroni constantwe obtain algorithm that is described above, and using the

measure\ = Lal1 x Z. Its distribution onW Ng
coincides fora = 1 with that one from (iii) (for a
proof see below). Since the construction of STIT
. . . tessellations fulfills a consistency property (see
Then the pair-correlation function is Theorem 1 in Nagel and WeiB, 2005) we can
1 dKo(r) 1 _2 conclude that the marked section point process on
9 =o—¢ —1t 212r2 (1*8 " ) - () ggenerated by the STI® is identically distributed
as that one from (iii).

m :
LaKo(r) = L—A(y+ IN(2Lar) — Ei(—2Lar)) + Larwr?.

Proof of the Theorem: The proof will be based on

Eq. 2 and we will show that the respective addends for FOr astationarySTIT tessellation® it is known
® undW¥ are identical. from Nagel and Weil3 (2003), Lemma 5, that for all

. ) i g € ¢ the intersection proces® N g is a stationary
1st addendFor anyg € ¢ with normal direction  pyisson point process @n Thus it is easy to see that
¥y (i.€, the angle between the normal and the positive || he (unmarked) intersection point processeg are

x-axis) we consider thg fcr)]llomrr]]g fc;]ur markgd S¢Ct:?nstationary30isson point processes. Therefore the focus
point processes ogand show that they are identically ¢ ¢ proof is to show that the intersection angles are
distributed. The marks will always be the SeCt'Onindependent and identically distributed

angles in[0, m) betweeng and the intersecting lines

or segments respectively. Notice that the segment and The identity of distributions of the marked section

the line processes have the same intenkityand point processes in (i) and (i) is obvious. The

directional distributior?. equivalence for (i) and (iii) foa.= 1 is straightforward

) The Boolean model¥ with La and intensity Since the distributions of the line proces$eand;
measure Ay as given in Eq. 6 generates are identical. The identity of the distributions for (iii)
on g a stationary Poisson point process with Witha=1and (iv) within any compactconvgxwin_dow
intensity R = La /| sin(a — yg)|%(da) and with W can be shown as follows. Lete ¢ be a line with
independent marks. The mark distributith is WNg# 0.

given by We consider (iv). First note, that if the fixed line
. VS g intersects an extant polygdfi’ then the time until
ALH((0.B)) = LA/(O’B] sin(a —yg)|#(da) , (8) the chordW/ N g is intersected by a random ling is

exponentially distributed with the parametef]\W' N
for B € (0,71, see Stoyaet al. (1995), p. 289. g]). This follows from the calculation of the calpacity
i) Letl be a Poisson line proce&as a point process functional for the constructed tessellation in Nagel and
on the parameter space introduced aboviéh) the  Weil3 (2005).
intensity measuré\ = Lafl1 x Z. It can also be ) ]
considered as a planar fibre process (according Now, for a fixed timet > 0 let Wy, ..., W, be all
to Stoyanet al, 1995, p. 280), and thus its those cells ofp(t,W)withJ; =W/ Ng#0,....J =

intersection withg generates atationaryPoisson W, Mg # 0. Assume that the intervalg;, i =1,...,m,

point process with intensityy = La [|sin(a — are ordered from left to right (ify is vertical then
¥9)|%(da) and with independent marks. The markbottom-up). Letn{ be the section angle (witl) in the
distributionH coincides with that one in (i). point that separatel; andJ;; ,;,i=1,...,m—1. (We
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can neglect the case thgigoes through a vertex of a tessellations in bounded windows the identity of the
polygon.) Denote byX;)>o the random process which distributions in (iii) and (iv) is shown.

at imet is in the state(J/;,01,% 5,01, K m)- Summarizing, we can conclude that for gle ¥
The stateXo at timet = 0 is (WN @) a.s. Further, e marked section point processegaither induced

(X)r=0 is & Markov process due to the independencgy ¢ or by W respectively, are identically distributed.
and the exponentially distributed lifetimes of the cells

used in the algorithm. For a fixed bounded segment 2nd addend.The second summand of Eq. 2 is
W N g the procesgX)i~o is piecewise constant and formed ofL(¢ ng) orL(¢Ng), respectively. Fo as

it jumps into a new state when a new intersectioffVell as for¥’ and forg € ¢ we have eithet ((-)Ng) =
point appears. For any fixed> O the distribution of 0 ©rL((-)Ng) consists of a.s. exactly one I-segment of
the time until the next appearance of a section poinf OF Of One segment ap, respectively. Hence we can
is exponentially distributed with paramet&y(wn  rewrite the sumg. L(wzmg)#@ in Eg. 2 as the sum over
d)) = 3T A([Y;]) which is the distribution of the g | segments; of & and analogously fop and its
minimum of m independent exponentially distributed l-segments. With the intensity measuke of W, the
random variables with the respective parametersiationarity of¥’ and the notatiot, = {t € R : y(t) €
A([¥;]), i = 1,...,m. The increment or jump when s} we obtain

the process changes its state is determined by a

marked intersection poirik, o ). The probability thak / Z /

appears in is A1 )/ (54 A ) = 11/ Wn (y(t),y(t2)) dly ctz Py ()

g/, where |- | denotes the length of a segment. =~ 9--W970L ¢

(We emphasize that this formula holds for arbitrary _

directional distributions.Hence the distribution ok - /5;/ // Fy(t), ¥(tz)) dty dltz Ry(dp)
is a mixture ofm uniform distributions on the intervals Ls Ls

J/; with the respective weights. Thusis uniformly :///f ) V(t>) dtr dto Aw(ds).
distributed onV N g. The product form of the measure ((t2), ¥{t2) chty otz Ay ()

N = Laly x Z implies that the intersection angéeis Lo ks

independent ok, and the distribution ofr is given by  Sincela ¢ = Lay andpe = py we haveN; ¢ = Ny y
its distribution function given in Eq. 8. and hencé\o = Ay and thus the equality of the second
summand in Eq. 2 for a STIT tessellatign and a

Now we study (i) and observe that the Boolean segment procegsrespectively.

process[1 induces a processZ:)i>o With states
(J1,01,%2,...,0n-1,%n) Wheren—1=#{he ¢ : Interpretation of the result: Theorem 1 shows,
(h,s) e M,;s<t,gnhNW # 0} and ay,...a, are that the second moment measure of the considered
the section angles (again left to right or bottom-upsegment processes does not indicate whether the
respectively) and 1,...,J n are the ordered intervals segments are arranged “completely randomiy,

in W N g generated by the— 1 sections with lines independently, or in a “highly dependent” way such
of M. The stateZ; at timet = 0 is (WNg) a.s. thatthey yield a tessellation. In particular, the second
Sincel is a Poisson point process the procgg$-o Moment measure does not depend on the type of
has the Markov property. For the bounded segmerffossings or nodes that are generated by the segments.

Wngthe processZ)i-o is piecewise constantand it Nevertheless, it is an open problenhetherthe
jumps into a new state when a new intersection poingecond moment measure is applicable to discriminate

appears. For any fixetl> 0 the distribution of the petween different tessellations.g, STIT, Voronoi,
time until the next appearance of a section point iojsson line tessellations).

exponentially distributed with paramet&([W N gj).
Due to the product form of the intensity measure

the distribution of the appearing marked intersection ESTIMATION OF THE
point (x,a) given by the independence afand a,

is the uniform distribution ok on W N g and angle COVARIANCE FUNCTION

distribution as in Eq. 8. . ) .
In the previous sections we studied the second

Thus it is shown that for alpc ¢ , allt > 0 (reduced) moment measure of STIT tessellations with
and all bounded interval/ N g on g the distributions the help of section points and angles on fixed lines.
of X andZ; and hence of the corresponding markedwhile this was a useful tool for a proof of our result
section point processes are identical. Together with thié is not the method of choice in image analysis.
consistency result (Eq. 3) for the construction of STITIn particular, the measurement of section angles in
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digitized images is vague and problemalibe aim of R2. Finally, from E[W % k](x) < o for all x € R?, it
estimation the covariance by image analysis methodsllows that the random functioffiy is almost surely

is to compare the theoretical covariance function of docally integrable and the reduced covariance measure
STIT tessellation with estimates from images of a fibreof fy has a density cqy the covariance function of
system in order to get a (necessary) criterion for they. It follows that

hypothesis that the observed fibre system forms a STIT .
tessellation. COVf = (K *K™) % COMy

In the present section we describe a feasiblevith k* = —K.
estimator for the covariance function of the edge
system of tessellations. This estimator will be basegnte
on the Fourier transform of the smoothed edge systelg o
inside an observation windowW/. Here, a smoothed
edge means a function after a convolution of the edge fyow(X) = fyp(X)1w(X)
with a kernel functionk, i.e, a smoothing of the 2
contrast in an image. Ithe following an estimator for = ([Wxk]() —La)w(¥), xR
digitized images is suggested. This approach holds fQgich is almost surely integrable and thus its Fourier
a general fibre process and it is not specific for STIT5nsform exists.
tessellations.

Now letW be a compact window with honempty
rior. We are smoothing the fibre proceg#sand
erve it inW. This yields the random function

. . . By f = .Z f we denote the 2-dimensional Fourier

We commence with some notation and a review of,5nsform of an integrable functioh: R2 — C
some facts for generatationaryfibre processes (the ’
edge system of a tessellation can be considered as a . 1 _ixE 2
particular fibre process). A more detailed presentation (7 11(&) = 211 Jr2 e dx, §ERS
is given in Ohser and Schladitz (2009), Section 6.4.

] ) ) ] The corresponding cotransform may be denoteggby
For astationaryand isotropic planar fibre process

W with pair-correlation functiory and length intensity SEen L £or LixE 2
La the covariance function cguvis given by [F1)(x) = 21T Jgr2 f(§)e™ dt, x€R%
cowp(x) = LA(g([Ix]) = 1), x€R2 Now we can formulate a Wiener-Khintchine type
theorem.

This covariance is the density of the covariance

measure of the length measure that is inducedby Theorem 2 Let W be a stationary random fibre
We remark that for astationaryand isotropic planar process with a locally finite first moment measure and
STIT with g in Eq. 7, the covariance function apis  an existing covariance functiccow. Letk : R? — R

not integrable [ 1 COVy (X)dX — co asr — co. be a bounded nonnegative function of compact support
and satisfying [p2 K (x)dx = 1. Furthermore, let W

be a compact window of nonempty interior. For the

Jr2 fa(y) f2(x—y)dy, x € R2. Similar to the convolution ‘éV'nC;gZWed random functionyfy it follows that for
of functions we define the convolutigms f : R? — <

RU {—o0,00} of a measure: on R? with a function f 2| fuw (€))7 = 7 (ow- ((k k™) xcowp)) (), (9)
that isnonnegative and measurabler. t. u, ’

The convolutionfy x f, of two integrable functions
fl, fo - R2 — R is defined by [fl * fz](X) =

wherecy is the window functiomy = Ly * 13y.

[u*f](X)zfzf(xfy)u(dy), x € R, o _
R A proof is given in Unverzagt (2005), Section 2.2.

As above, we |dent|fy the edge System of a From Eq 9it |mmed|ate|y follows that a smoothed
tessellation with a random (length) measte Let ~ Version (kK «k*) « covy of the density coy can be
Kk : R2 — R be a nonnegative function with compactestimated via frequency space. Assume tatis
support and satisfyingg. k (x)dx = 1. We define the compact and the origin belongs to its interior, then
random functionfy = W x K — La, associated with a F (1fu w2
random fibre syster’. As mentioned abovey x k K% K*) % X) = 2 EM

: : [(k k) xcow] (x) = 2m :

can be interpreted as a smoothing (of the contrasts in ow(X)
an image) of the edge system.

(10)

for all x in the interior of W. This means,
The function¥ « k is not necessarily integrable but 277 (| qu7W|2) (X)/ow(x) is an unbiased estimator for
almost surely integrable on evecpmpactsubset of the expression on the left-hand side.
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Let (Ke)e~0 be a family ofboundednonnegative complementary pixel configurations afg; , = (CN
kernel functionsc; : R? — R with [pzke(X)dx=1and 1.2)\&,¢=0,...,15.
Ke(X) = 0 for ||x|| > €. Then, if the density cay is

continuous ir it follows that The total length will be estimated by summing up

the contributions from the local pixel configurations
lim ((Ke % k) * COVy) = COMy , in the digitized image. The local contribution to
€lo the estimation of the length oW of such pixel
configurations &, is given by weightsw,. An
appropriate choice of these weights is a non-trivial
Lemma: For astationaryplanar fibre proces¥, problem. Here, pragmatically, we use the weights
a compact windowV with nonempty interior and a which we calculated in Ohset al. (2009) for another
family of boundednonnegative kernel functions. :  mode of digitization of sets(In this article the
R2 — R with [p2 ke(X)dx= 1 andk,(x) = O for |x| >  boundary length estimation for a random setlh

pointwise.

e _ with positive area fraction is considered, where the
27 (| tow,el?) (X) intersection of the random set will? is suggested as
ow(X) ’ an appropriate digitization mode and a corresponding

. _ discretization of a Crofton integral formula is applied.)
with fywe(X) = ([WxKe](X) —La)Iw(X), X R?, isan _ : _ 5
asymptotically unbiased estimator for the covariancd@ble 1.The local pixel configurations of., the

function cow of W ase — 0. corresponding pictograms and the length weights w
4 & Wy 14 & | wy
AN ESTIMATOR FOR DIGITIZED 0 m 0 8 m 0.335190
IMAGES 1 {1 |0335190 9 {1 |0.392699
In practical applications, realizations dfbre 2 71 10.335190 10 1 | 0.474030
processes¥ are usually _observecd)n Iat_tlce's and 3 1 | 0.474030 11 1 |0.335190
we apply methods of image analysis in order
to estimate the pair-correlation function (or the 4 1 |0.335190 12 Il |0.474030
covariance function cay, respectively) of¥. LetlL? = 5 11 |0.474030 13 7 |0.335190
aZ? be a square lattice with lattice spaciag- 0 and
the unit cellC = [0,a)?, where [0,a] is the closed 6 11039269 14 [1 0335100
segment between 0 ara A digitization (or sample 7 14 | 0.335190 15 1110
in the statistical sensey;» of W on the latticel.? _ _
may bedefined as the set of the lattice pointsvith Let nowW be a rectangular window with edges
(C+X)NW#£0, parallel to the co-ordinate axes. BY =W S C we
denote the reduced window, whetds the Minkowski
W= {xe L?: (C+Xx)NW £ 0}. subtraction an@ is the unit cell reflected at the origin,

C = —C. We assume that the window is much larger
This W; . is only a simplified model for the much than the unit cell such that#?NW’) > 0. Then the
more complicated sampling of real fibre processes olength densityLn of W can be estimated using the
a lattice. Furthermore we remark that, in general, théength weightsw;, given in Table 1. Leth = (h,) be
process¥ can not be reconstructed froW .. In the  the vector of the number of pixel configurations in
following we assume that only the samplifij 2 is W, , "W/,
known but notW itself. Our aim is now to estimate
the pair-correlation function of the unknown process h, = Z 1(&+xC Wp2)1(é15 1+ X C wiz) ,
W from the data¥; > observed in a windowv. xeLZnwW/

We refer toW; . as the set of the foreground pixels y — o ... 15. ThenlLa can be estimated using
and the complementary set’, = L2\ W, is called
the background. Following the approach in Ohser i, hw
et al. (2009) we consider local pixel configurations AT a#(L2NW/) ’
o, ..., €15 defined as subsets of the set of the vertices
of the unit cell,§, C CNIL2. Pictograms of these pixel with the vectow = (w;) andhwis the scalar product
configurationsé, are shown in Table 1, where the of the vectorsr andw. If W is stationaryand isotropic,
full discs mark the foreground pixels and the circleshen the estimatokp is asymptotically unbiased for
mark the background. In our setting, the indexingLa asa | O (multigrid convergentsee Ohser and
of the pixel configurations is chosen such that theSchladitz, 2009, Section 5.2).
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for x € L2NW'. The set{(x, fi2(x)) : x € L2NW'}
forms a (random) grey-value image with real-valued
pixels. This can be understood as the result of a non-
linear filtering (in contrast to the linear filter in the
31 continuous model), applied 8. Finally, the function
cowvy can be estimated from this image via the inverse
2- space i(e., the space of the Fourier transform) using
formula (10) where the continuous Fourier transform is
1 replaced with a discrete Fourier transform. The choice
of the lattice spacin@ depends on the length density

0 0.5 La (smallafor largeLa).
r/La

The use of the method described above is
demonstrated in the following example. First, we
observe in Fig. 2 that the difference between the pair-
correlation functions of isotropic STITs asstationary
and isotropic Poisson line processes (IPLP) is very
small. Thus, due to estimation errors, it seems to
be difficult to see these differences also in estimates
of the pair-correlation functions. However, for large
Ag(r) o samplesi(e. large windows or averaging over many
%, realizations) and small lattice spacings, it is possible

OOOOOOOOO to discriminate between both processes. Estimgtes ~
0.1 w of pair-correlation functions and the pair-correlation

. functionsg of the isotropic STIT (full discs) and an
1 ILPL (circles), respectively, are compared in Fig. 3.
"--..... The data forg"were computed for realizations with
IR L LTI T PPPPIs La = 32, observed in a square window of edge length
00 T T s T T 1 and on a square lattice of spaciag= 1/256. The
r/La estimates were averaged over 16 realizations. In order
to display the very small estimation errors, Fig. 3
Fig. 3. DifferencesAg = § — g of estimategj of pair-  shows the differenceAg = §— g of estimatesg of
correlation functions and the true pair-correlation pair-correlation functions and the true pair-correlation
function g of the isotropic STIT; full discgj from function g of the isotropic STIT. We remark that the
realizations of a STIT; circlegj from realizations of an length densityLs (used for the scaling of the x-axis
IPLP. The solid curve shows the difference of the truén the diagram) was estimated from the same data.
pair-correlation functions for the ILPL and the STIT, Fig. 3 shows that estimates of the pair-correlation
respectively. function can be used in order to discriminate between
In order to estimate the covariance functiondiﬁerent kinds of tessellations even if the differences

cowy by applying a discrete Fourier transform, abetween the pair-correlation functions are small (as for

discretization of the estimator on the right-hand side>! ! @nd ILPL). Clearly, an ILPL does not have T-

of Eq. 10 is needed. The length weights given in nodes which is a more significant criterion in order to
Table. 1 are used iﬁ order to obtain an appropriatgiscriminate from STITs. However, ILPLs often serve

representation of the functioriyyy. Consider the asabenchmark_for comparison stud_ie:\s, and their pair-
function f; 2 : L2 — R mapping each lattice point to the correlation functions are known expliciy.
local contributioraw, for the (random) length measure Remarks: For m pixels of an image of¥ the
of W. We determine the index of the local pixel covariance coy can be computed by the use of the
configurationW; 2 —x) N (CNL?2) of Wy . atthe lattice  Fast Fourier Transform (FFT) with a complexity in
pointx and assigmn appropriate length weightv, to  (mlogm), because the FFT has a complexity of
fLn (), ¢(mlogm) and the window function can be computed
B viaoy = .7 | Z1w[%
fra(x) =

Fig. 2. The pair-correlation function @) of the
isotropic STIT (thick line) compared with the pair-
correlation function of thetationarylLPL.

15 A The functionf; . differs from fy x K, i.e. we can
alz Wy 1(& C W —x)1(&15 ¢ C W —X) —La, not find a kernel functiorx such thatf; 2(x) = [fy *
=0 K](x), x € L2. As a consequence we can not show
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multigrid convergence for the estimator of the pair-Mecke J, Nagel W, WeiRR V (2008b). The iteration of random
correlation function based on the procedure peresented tessellations and a construction of a homogeneous
in the previous section. Nevertheless, the examples in  process of cell divisions. Adv Appl Prob SGSA 40:49—
Fig. 3 show that the pair-correlation functions for a  59.

STI.T tessell_atlor_l and a Poisson line process can t3\6/‘Iecke J, Nagel W, Weil3 V (2009). Homogeneous STIT
estimated with high accuracy. tessellations — a stereological aspect. In: Capasso V,

Unfortunately, the assumption of periodicity in  Aletti G, Micheletti A, eds., Stereology and Image
the discrete Fourier transform causes an overlapping Analysis. ECS10 The 10th European Congress of ISS,
effect (edge effect), see Koeh al. (2003). This effect MIRIAM. ECS10, Milano, Bologna: Societa Editrice
can be eliminated by expanding the functibpy to Esculapio Bologna.

the window 3V: fyaw(x) = fuw(x) if xe W and 1o y0 J, Nagel W, WeiR V (2010). Some distributions

f”’é‘g’()é) :'tg ifx e 2\1/_\:1\W, e, the ;)hrlglnal Ignag? IS | for I-segments of planar random homogeneous STIT
paddea witn zeros. IS INCreases tne numper ot pixels tessellations. Math Nachr (in press).

to 4m. Still the complexity belongs ta7(mlogm) . o .
which is a considerable gain compared to the usudjagel W, Weil3 V (2003). Limits of sequences of stationary
estimation of the covariance function by a convolution  Planar tessellations. Adv Appl Prob SGSA 35:123-38.

which is of complexityo (n?). Nagel W, WeiB V (2005). Crack tessellations:

Furthermore, notice that the Bartlett spectrum of characterization of stationary random tessellations
W does not exist. The Bartlett spectrum bBf is stable with respect to iteration. Adv Appl Prob SGSA
the quantity in the inverse spacie( the space of 37:859-83.

the Fourier transforms) associated with @owalso  Nagel W, Wei3 V (2006). STIT tessellations in the plane.
known as the scattering intensity ¥ see Ohser and Rend Circ Math Palermo Il Suppl. 77:441-58.

Schladitz (2009, Section 6.3). Nagel W, Weil3 V (2008). Mean values for homogeneous

STIT tessellations in 3D. Image Anal Stereol 27:29-37.
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