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ABSTRACT

For STIT tessellations –stationarytessellations that arestable under the operationiteration of tessellations –
the second-order measure of the edge system is studied. A result is that this measure coincides with that one of
a Boolean segment process.In the isotropic case an explicit formula for the pair-correlation function is given.
An estimator for the covariance function of the edge length measure is derivedand adapted to digitized images
of tessellations. Form pixels of an image the algorithm is of complexityO(mlogm).

Keywords: covariance function, estimation,K-function, pair-correlation function, random tessellations,
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INTRODUCTION

The model of STIT tessellations –stationary
tessellations that arestable under the operation
iteration of tessellations – was introduced in Nagel and
Weiß (2005). This stochastic stability is an essential
property which also allows to derive many theoretical
results. In particular, formulae were published for
mean values (first-order moments) and also for
certain distributions which concern nodes, edges, and
cells. A next step is to find quantitative expressions
which describe the mutual arrangement of cells.
This points to the study of second-order entities.
In the present paper we study the second moment
measure for the edge system of planar random
STIT tessellations. This can also be expressed by
the K-function, the pair-correlation function or the
covariance function, respectively. An explicit formula
for the pair-correlation function in the isotropic case is
derived. Finally, an asymptotically unbiased estimator
for the covariance function is given.

The initial problem was whether this K-function
reflects the structure of the tessellation, in particular
the mutual arrangement of the cells. The result of
the present paper shows that the K-function of a
STIT tessellation coincides with the K-function of a
Boolean model of segments with appropriately chosen
parameters. This means that in this case the K-function
even does not express whether the random segments
form a tessellation or not.

In stochastic geometry second-order quantities,
i.e., the second moment measure, the K-function
or the pair-correlation function respectively, were

considered to represent essential information about
a random geometric structure, in particular the
arrangement of geometric objects. But already
Baddeley and Silverman (1984) provided examples of
point processes with the same K-function but with
evidently different point patterns – thus showing that
the K-function does not necessarily comprise sufficient
information. Our result contributes an example from
the class of segment processes and tessellations.

Firstly we recall the definitions of the second
moment measure, the K-function and the pair-
correlation function for random segment processes
in the plane, and a theorem is cited which relates
the second moment measure to marked section point
processes when the random segment process is
intersected with a line. The marks of the section points
are the section angles. Then the STIT tessellations are
explained and their basic properties are summarized.
This is followed by a proof of the theorem, that the
second moment measures of STIT tessellations and
of Boolean segment processes coincide. This yields
the K-function and the pair-correlation function for
the segment system of STIT tessellations. In the last
section, an asymptotically unbiased estimator for the
covariance function of the edge system is derived. It
is based on a convolution with a kernel function (i.e.,
a “smoothing”) of the edge system.This approach is
not specific to STIT tessellations and can be applied to
arbitrary fibre processes with existing pair-correlation
function. Finally, it is adapted to digitized images of
tessellations.
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SECOND MOMENT MEASURE
AND K-FUNCTION FOR PLANAR
FIBRE PROCESSES

Let R denote the set of real numbers,R
2 the

Euclidean plane andR2 the σ -algebra of Borel sets
in R

2. By ℓ2, ℓ1, ℓ+ we denote the Lebesgue measures
onR

2, R and[0,∞), respectively.

Further, we use the notationsψ for a planar fibre
system andΨ for a random fibre process in the sense
of Stoyanet al. (1995),PΨ denotes the distribution of
Ψ. A fibre processΨ is said to bemacroscopically
homogeneous –i.e., spatially stationary – ifPΨ is
invariant under all translations ofR2. It is isotropic if
its distribution is invariant under rotations. The total
fibre length of the fibre systemψ in B∈ R2 is written
asψ(B). For astationaryfibre process the mean total
fibre length per unit area (length intensity) isLA.

The second moment measureµ (2)
Ψ of a fibre process

Ψ is described by

µ (2)
Ψ (B1×B2) = EΨ(B1)Ψ(B2)

=

∫

ψ(B1) ·ψ(B2) PΨ(dψ),

for B1,B2 ∈ R2.

If Ψ is stationary, the reduced second moment
measureKΨ can be defined by

µ (2)
Ψ (B1×B2) = L2

A

∫ ∫

1B1(x)1B2(x+h) KΨ(dh)dx ,

where1B denotes the indicator function ofB.

In the case of astationary and isotropic fibre
process it is sufficient to consider thereduced second
moment function KΨ (called K-function) given by

KΨ(r) = KΨ(B(o, r)), for r ≥ 0,

whereB(o, r) is the circle with radiusr centered ino.

The productLAKΨ(r) can be interpreted as the
mean total length of fibres ofΨ in a circle with radius
r, when the center of the circle is located in the typical
fibre point. Such a typical point can be understood as a
randomly chosen point inside a bounded window, and
its distribution is the uniform distribution concentrated
on the fibre system.

Thestationaryfibre processΨ is called asecond-
order processif LAKΨ(B) < ∞ for all boundedB ∈
R2. In the following we only consider second-order
processes. And furthermore, we assume that also the
intersection point processesΨ∩g on all linesg are of
second order.

If the K-function is differentiable, the pair-
correlation functiong exists with

g(r) =
1

2πr
dKΨ(r)

dr
for r > 0 .

We consider two particular cases of fibre systems.

a) Let Ψ be astationaryand isotropic Poisson line
process with length intensityLA. Then the K-
function is given by cf. Stoyanet al. (1995)

LAKΨ(r) = 2r +LAπr2 for r ≥ 0

and the pair-correlation function is

g(r) = 1+
1

LAπr
for r > 0.

b) For line segments we choose the parametrization
(x,α ,s) where x ∈ R

2 is the centre,α ∈ [0,π)
the normal direction (i.e., the angle between the
normal of the segment and the positivex-axis)
ands∈ (0,∞) the length. Thus a segment process
Ψ can be considered as a point process on the
spaceR2× [0,π)× (0,∞). Notice that thenormal
direction will be used in the parametrization of
both the segments and the lines.

Now let Ψ be astationaryand isotropic Boolean
segment process with intensityN1 of the centre
point (germ) process and with length distribution
L of the typical segment. Then the length intensity
is LA = N1s̄wheres̄denotes the mean length of the
typical segment. For the K-function we obtain (cf.
Stoyanet al., 1995)

LAKΨ(r) = s̄−1





r
∫

0

s2
L (ds)

+

∞
∫

r

(2rs− r2) L (ds)



+LAπr2. (1)

The formulae forLAKΨ(r) for both particular cases
can be interpreted as follows. The first summand arises
from the segment on which the typical point (the
center of the circle) lies. The second one is formed
from the remainder of the process which has again the
distributionPΨ, due to the independence properties of
the models.

122



Image Anal Stereol 2010;29:121-131

A STEREOLOGICAL FORMULA
FOR THE SECOND MOMENT
MEASURE OF PLANAR FIBRE
PROCESSES

There are at least three stereological methods for
determination of second-order quantities of planar
fibre processes, see Weiß and Nagel (1994). In the
present paper we make use of one of these methods
which was originally presented by Schwandtke (1988),
where the fibre process is intersected by a line
and the intersection process with the corresponding
intersection angles is observed.

Denote byG the set of all lines inR2 and by‖y−z‖
the distance between two pointsy andz in R

2. Further,
let dg be the element of the motion invariant measure
on the set of all lines with

∫

1{g∩B(o,1) 6= /0}dg= 2π.

For a fibre systemψ (here considered as a subset
of R

2) andg∈ G we considerψ ∩g which consists of
isolated intersection points and of linear segments of
positive length ofψ ong:

ψ ∩g = S(ψ ∩g)∪L(ψ ∩g) ,

whereS(ψ∩g) denotes the set of all intersection points
andL(ψ ∩g) the union of all straight line segments on
g. It is clear, that only for countably manyg we have
L(ψ ∩g) 6= /0.

An intersection pointy∈S(ψ∩g) is marked by the
fibre tangent anglew(y,g). This is the angle between
the tangent ofψ in y and g. If the tangent is not
uniquely defined, then putw(y,g) = 0. Notice that
the intersection angle between the tangent andg is
the same as the angle between the respective normal
directions of the fibre and of the line.

Assume that any lineg∈ G is parametrized asg =
{y(t) : t ∈R} such that‖y(t1)−y(t2)‖= |t1−t2| for all
t1, t2 ∈R. This yields a parametrization of the union of
segmentsL(ψ ∩g) asLg = {t ∈ R : y(t) ∈ L(ψ ∩g)}.

Then the following stereological formula for the
second moment measure holds. LetΨ be astationary
planar fibre process. Then for all measurable non-
negative functionsf onR

2×R
2 we have

∫

f (y,z) µ (2)
Ψ (d(y,z))

= L2
A

∫ ∫

f (y,y+z) KΨ(dz) dy

=
∫ ∫

∑
y,z∈S(ψ∩g)

y6=z

‖y−z‖
sinusinv

f (y,z) dg PΨ(dψ)

+
∫

∑
g:L(ψ∩g)6= /0

∫

Lg

∫

Lg

f (y(t1),y(t2))dt1 dt2PΨ(dψ), (2)

whereu = w(y,g), v = w(z,g).

SECOND MOMENT MEASURE
AND K-FUNCTION FOR PLANAR
STIT TESSELLATIONS

A new model for random tessellations, the so-
called STIT tessellations, was introduced in Nagel
and Weiß (2005). The simulation of a planar STIT
tessellation in Fig. 1 suggests that STIT tessellations
are potential models for crack or fissure structures.

Fig. 1.Simulation of an isotropic STIT tessellation.

The characteristic and eponymous property is
the stability of their distribution under the operation
iteration.

We will give here only a short overview, for more
details see the cited papers.
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Construction:A construction of STIT tessellations
in bounded windows was described in all details in
Nagel and Weiß (2005) and a global –i.e., in the
whole planeR

2 – construction was given in Mecke
et al. (2008a). This construction can be understood as
a process of sequential cell division at random times.

Let Λ = LAℓ1×R be a measure onR× [0,π) and
R is a probability measure on[0,π), the directional
distribution. In order to generate a tessellation it
is assumed thatR is not concentrated on a single
direction. A point (p,α)∈ R× [0,π) represents a line
g(p,α) ∈ G , wherep is its signed distance from the
origin (positive iff the intersection of the line with its
perpendicular through the origin lies in the upper half-
plane) andα is the angle between its normal and the
positivex-axis. For a setA⊂R

2 denote[A] = {(p,α)∈
R× [0,π) : g(p,α)∩A 6= /0}.

At time t = 0 the construction starts with a compact
convex polygonal windowW ⊂ R

2 (e.g., a rectangle).
After a random life-time t1 that is exponentially
distributed with parameterΛ([W]) a random lineγ1
is thrown ontoW with the distributionΛ([W])−1Λ(·∩
[W]). Thus two new polygons are born, and the birth
time t1 is attributed to them. Then, sequentially, all
the extant polygonsW′

1, . . . ,W
′
k, say, with the respective

birth timest ′1, . . . , t
′
k are divided in the following way.

The life-time of W′
i is a random variable that is

exponentially distributed with parameterΛ([W′
i ]), i.e.,

the parameter depends on the size ofW′
i . In the

particular case thatR is the uniform distribution on
[0,π) it is proportional to the perimeter ofW′

i . At
the end of its life-time the polygon is divided by a
chord that comes from a random line that has the
distribution Λ([W′

i ])
−1Λ(· ∩ [W′

i ]). ThusW′
i dies and

two new polygons are born. The state at a fixed time
a > 0 is a tessellation inW and it is denoted by
Φ(a,W).

A crucial feature of the construction is that the
parameters of the exponentially distributed life-time
depend on the (random) size of the relevant cells,
such that smaller cells have a longer expected life
than larger ones. This implies a certain dependence
between the random lifetimes of different cells.
Therefore we used the following rejection method
for a formal description of the construction: Let
(τ j ,γ j), j = 1,2, . . ., be a sequence of independent
and identically distributed (i.i.d.) random variables,
where also τ j and γ j are independent. Theτ j
are exponentially distributed positive numbers with
parameterΛ([W]). The γ j are random lines with
the distribution Λ([W])−1Λ(· ∩ [W]). Any of these
random variables can be used at most once during
the construction. The division of an extant polygon
W′

i ⊂ W is performed according to the rejection rule:

For a pair(τ j ,γ j) throw – after the timeτ j elapsed –
the lineγ j onto the windowW. If it hits W′

i then use the
generated chord to divide this polygon. Ifγ j ∩W′

i = /0
then rejectγ j and make a new trial with another pair
(τ j ′,γ j ′). Also in the case of rejectionτ j has to be
added to the lifetime ofW′

i . This yields the lifetime
distribution of the cells described above.

The chords – if they do not end on the boundary
of W – that appear during the construction are called
I-segments. Later occurring I-segments have their
endpoints in the relative interior of two already extant
I-segments or chords, respectively.

Even if this construction is related to a fixed and
bounded windowW it yields a distribution that is
consistent in the following sense.

Existence:There exists astationarytessellationΦ
of the wholeR

2 such that

Φ(1,W)
D
= Φ∩W, (3)

the symbol
D
= stands for the identity of distributions of

random variables.

The distribution of the tessellationΦ does not
depend onW, and one can show that this formula holds
for all compact and convex 2-dimensional setsW ⊂
R

2. Moreover, the existence of a stationary tessellation
is sufficient that the intensities and the K-function are
well defined.

Generalizations to higher dimensions are given in
Nagel and Weiß (2005); Meckeet al. (2008b).

Now we recall some important properties of STIT
tessellations, the proofs were given in earlier papers
(Nagel and Weiß, 2003; 2005; 2006; Meckeet al.,
2007; Nagel and Weiß, 2008; Meckeet al., 2010). A
random tessellationY is understood as the set of all its
edge points,i.e., as a random subset ofR

2.

The operation of iteration (also referred to as
nesting) for tessellations is defined as follows. Denote
by Y = {Y1,Y2, . . .} a sequence of independent
and identically distributed (i.i.d.)stationaryrandom
tessellations. Further assume thatY0 is a stationary
random tessellation which is independent ofY . It is
useful to consider the setC(Y0) = {p1, p2, . . .} of the
cells (which are convex polytopes) ofY0. The iteration
of the tessellationY0 and the sequenceY is defined as

I(Y0,Y ) = Y0∪
⋃

k≥1

(pk∩Yk) . (4)

This definition means that a cellpk of the so called
’frame’ tessellationY0 is – independently of all other
cells – subdivided by the cellspki, i = 1,2, . . . of
the tessellationYk which intersect the interior ofpk.
The result of an iteration ofstationarytessellations
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is a stationarytessellation. A strict formalization and
a proof of homogeneity are given in Meckeet al.
(2008b).

According to the general concept of stochastic
stability w.r.t. an operation, a random tessellationY0
is called stable w.r.t. iteration (STIT) if the distribution
of the iterated tessellation, multiplied by a rescaling
factor, is the same as that one ofY0. This is now
defined more precisely. For a real numberr > 0 the
tessellationrY is generated by transforming all points
(x,y) ∈ Y into (rx, ry). Accordingly, rY means that
this transformation is applied to all tessellations of the
sequenceY . LetY0 be astationaryrandom tessellation
andY1,Y2, . . . a sequence of sequences of tessellations
such that all the occurring tessellations (including
Y0) are i.i.d. Then the sequenceI2(Y0), I3(Y0), . . . of
rescaled iterations is defined in Nagel and Weiß (2003;
2005) as

I2(Y0) = I(2Y0, 2Y1) ,

I3(Y0) = I(I(3Y0, 3Y1), 3Y2) = I

(

3
2

I2(Y0), 3Y2

)

,

Im(Y0) = I

(

m
m−1

Im−1(Y0), mYm−1

)

, m= 3,4, . . .

Herem is the rescaling factor which is chosen such that
the results of iteration do not degenerate form→ ∞.

Definition: A stationaryrandom tessellationY is
said to be stable with respect to iteration (STIT) if

Y
D
= Im(Y) for all m= 2,3, . . . ,

i.e., if its distribution is not changed by repeated
rescaled iteration with sequences of tessellations with
the same distribution.

It can be shown (see Meckeet al., 2010) that,

equivalently,Y is STIT if Y
D
= I2(Y).

Stability with respect to iteration:The stationary
tessellationΦ given in (3) is stable with respect to
iteration.

Characteristic entities:The segments (edges of
cells) in the tessellationΦ form a stationarysegment
process withLA (which appeared in the definition of
Λ) as the mean total edge length per unit area and the
directional distributionR, i.e., the distribution of the
normal direction in a randomly chosen point on the
segments. ByLA andR the distribution ofstationary
STIT tessellations is already uniquely determined.

Poisson typical cell:Now we consider the interior
of the typical cell ofΦ. That means more intuitively
the single isolated cell neglecting additional nodes or
edges emanating outside on their boundary. One can

show, that the interior of the typical cell ofΦ with
directional distributionR and intensityLA has the
same distribution as the interior of the typical cell of
a stationaryPoisson line tessellation with the sameR

andLA, see Nagel and Weiß (2003).

Length distribution of the typical I-segment:For
a stationaryand isotropic STIT tessellationΦ with
intensityLA the density of the length of the typical I-
segment is forx > 0

p(x) =
π2

L2
Ax3

−e−
2
π LAx

(

2
x

+
2π

LAx2 +
π2

L2
Ax3

)

, (5)

see Meckeet al. (2007).

This length distribution is a mixture of exponential
distributions

p(x) =

LA
∫

0

2
π

se−
2
π sx

(

2s

L2
A

)

ds .

Results for the non-isotropic case are derived
in Mecke (2009). Further distributions are given in
Meckeet al. (2007; 2010).

Mean values of STIT tessellation are calculated in
Nagel and Weiß (2006; 2008). It can be shown, that a
section of STIT tessellation with a lower-dimensional
plane is again a STIT tessellation, stereological
formulae are given in Meckeet al. (2009).

Now we will consider the second moment
measure, the K-function and the pair-correlation
function of a STIT tessellation.

If Ψ is anystationarysegment process(as a point
process on the parameter space introduced above)its
intensity measureΛΨ can be factorized

ΛΨ = N1ℓ2×ρ , (6)

whereN1 is the mean number of segment centers per
unit area andρ is the joint distribution of direction
and length of the typical segment. Notice thatL , the
length distribution of the typical segment, is a marginal
distribution of ρ . The directional distributionR is
the length weighted directional distribution derived
from ρ .

If Ψ is additionally isotropic, thenρ(d(α ,s)) =
1
π dαL (ds).

Theorem 1 Let Φ be a stationarySTIT tessellation
with intensity LA,Φ and joint distributionρΦ of length
and direction of the typical I-segment. Further, letΨ
be astationaryBoolean segment process with intensity
LA,Ψ and joint distributionρΨ of length and direction
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of the typical segment. For the respective second order

measuresµ (2)
Φ andµ (2)

Ψ we obtain

LA,Φ = LA,Ψ and ρΦ = ρΨ =⇒ µ (2)
Φ = µ (2)

Ψ .

Corollary: With Eq. 1 and Eq. 5 the K-function
of a stationaryand isotropic planar STIT tessellation
Φ with s̄= π/LA as the mean length of the typical I-
segment, see Nagel and Weiß (2006), is

LAKΦ(r) = − π
LA

∞

∑
k=1

(− 2
π LAr)k

k ·k!
+LAπr2 .

Using an exponential integral Ei(x) and the Euler-
Mascheroni constantγ we obtain

LAKΦ(r) =
π
LA

(γ + ln( 2
π LAr)−Ei(− 2

π LAr))+LAπr2.

Then the pair-correlation function is

g(r) =
1

2πr
dKΦ(r)

dr
= 1+

1

2L2
Ar2

(

1−e−
2
π LAr

)

. (7)

Proof of the Theorem: The proof will be based on
Eq. 2 and we will show that the respective addends for
Φ undΨ are identical.

1st addend:For anyg ∈ G with normal direction
γg (i.e., the angle between the normal and the positive
x-axis) we consider the following four marked section
point processes ong and show that they are identically
distributed. The marks will always be the section
angles in[0,π) betweeng and the intersecting lines
or segments respectively. Notice that the segment and
the line processes have the same intensityLA and
directional distributionR.

i) The Boolean modelΨ with LA and intensity
measure ΛΨ as given in Eq. 6 generates
on g a stationary Poisson point process with
intensity PL = LA

∫ |sin(α − γg)|R(dα) and with
independent marks. The mark distributionH is
given by

PL H((0,β ]) = LA

∫

(0,β ]
|sin(α − γg)|R(dα) , (8)

for β ∈ (0,π], see Stoyanet al. (1995), p. 289.

ii) Let Γ be a Poisson line process(as a point process
on the parameter space introduced above)with the
intensity measureΛ = LAℓ1 ×R. It can also be
considered as a planar fibre process (according
to Stoyan et al., 1995, p. 280), and thus its
intersection withg generates astationaryPoisson
point process with intensityPL = LA

∫ |sin(α −
γg)|R(dα) and with independent marks. The mark
distributionH coincides with that one in (i).

iii) Let Π be a Poisson point process onG × (0,∞)
(i.e., lines with birth times) with the intensity
measureΛ× ℓ+ whereΛ is the same as in (ii). For
all a > 0 the line processΠa = {h ∈ G : (h,t) ∈
Π, t < a} has the length intensityaLA. Hence the
intersection withg generates astationaryPoisson
point process with intensityaPL = aLA

∫

|sin(α −
γg)|R(dα) and with independent marks, and the
mark distribution is the same as in (i) and (ii).

iv) Choose a compact convex polygonal windowW
with W ∩ g 6= /0. Then for a STIT tessellation
Φ the marked intersection point process within
W, i.e., W ∩ g ∩ Φ, can be generated by the
algorithm that is described above, and using the
measureΛ = LAℓ1 ×R. Its distribution onW ∩g
coincides fora = 1 with that one from (iii) (for a
proof see below). Since the construction of STIT
tessellations fulfills a consistency property (see
Theorem 1 in Nagel and Weiß, 2005) we can
conclude that the marked section point process on
ggenerated by the STITΦ is identically distributed
as that one from (iii).

For a stationarySTIT tessellationΦ it is known
from Nagel and Weiß (2003), Lemma 5, that for all
g ∈ G the intersection processΦ ∩ g is a stationary
Poisson point process ong. Thus it is easy to see that
all the (unmarked) intersection point processes ongare
stationaryPoisson point processes. Therefore the focus
of the proof is to show that the intersection angles are
independent and identically distributed.

The identity of distributions of the marked section
point processes in (i) and (ii) is obvious. The
equivalence for (ii) and (iii) fora= 1 is straightforward
since the distributions of the line processesΓ andΠ1
are identical. The identity of the distributions for (iii)
with a= 1 and (iv) within any compact convex window
W can be shown as follows. Letg ∈ G be a line with
W∩g 6= /0.

We consider (iv). First note, that if the fixed line
g intersects an extant polygonW′

i then the time until
the chordW′

i ∩g is intersected by a random lineγ j is
exponentially distributed with the parameterΛ([W′

i ∩
g]). This follows from the calculation of the capacity
functional for the constructed tessellation in Nagel and
Weiß (2005).

Now, for a fixed timet > 0 let W′
1, . . . ,W

′
m be all

those cells ofΦ(t,W) with J′t,1 =W′
1∩g 6= /0, . . . ,J′t,m =

W′
m∩g 6= /0. Assume that the intervalsJ′t,i, i = 1, . . . ,m,

are ordered from left to right (ifg is vertical then
bottom-up). Letα ′

i be the section angle (withg) in the
point that separatesJ′t,i andJ′t,i+1, i = 1, . . . ,m−1. (We
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can neglect the case thatg goes through a vertex of a
polygon.) Denote by(Xt)t≥0 the random process which
at time t is in the state(J′t,1,α ′

1,J
′
t,2, . . . ,α ′

m−1,J
′
t,m).

The stateX0 at time t = 0 is (W ∩ g) a.s. Further,
(Xt)t≥0 is a Markov process due to the independence
and the exponentially distributed lifetimes of the cells
used in the algorithm. For a fixed bounded segment
W ∩ g the process(Xt)t≥0 is piecewise constant and
it jumps into a new state when a new intersection
point appears. For any fixedt > 0 the distribution of
the time until the next appearance of a section point
is exponentially distributed with parameterΛ([W ∩
g]) = ∑m

i=1Λ([J′t,i]) which is the distribution of the
minimum of m independent exponentially distributed
random variables with the respective parameters
Λ([J′t,i]), i = 1, . . . ,m. The increment or jump when
the process changes its state is determined by a
marked intersection point(x,α). The probability thatx
appears inJ′t,i is Λ([J′t,i])/(∑m

i=1 Λ([J′t,i])) = |J′t,i|/|W∩
g|, where | · | denotes the length of a segment.
(We emphasize that this formula holds for arbitrary
directional distributions.)Hence the distribution ofx
is a mixture ofmuniform distributions on the intervals
J′t,i with the respective weights. Thusx is uniformly
distributed onW∩g. The product form of the measure
Λ = LAℓ1×R implies that the intersection angleα is
independent ofx, and the distribution ofα is given by
its distribution function given in Eq. 8.

Now we study (iii) and observe that the
process Π induces a process(Zt)t≥0 with states
(Jt,1,α1,Jt,2, . . . ,αn−1,Jt,n) wheren− 1 = #{h ∈ G :
(h,s) ∈ Π,s < t,g∩ h∩W 6= /0} and α1, . . .αn are
the section angles (again left to right or bottom-up,
respectively) andJt,1, . . . ,Jt,n are the ordered intervals
in W ∩ g generated by then− 1 sections with lines
of Π. The stateZ0 at time t = 0 is (W ∩ g) a.s.
SinceΠ is a Poisson point process the process(Zt)t≥0
has the Markov property. For the bounded segment
W∩g the process(Zt)t≥0 is piecewise constant and it
jumps into a new state when a new intersection point
appears. For any fixedt > 0 the distribution of the
time until the next appearance of a section point is
exponentially distributed with parameterΛ([W ∩ g]).
Due to the product form of the intensity measureΛ,
the distribution of the appearing marked intersection
point (x,α) given by the independence ofx and α ,
is the uniform distribution ofx on W ∩ g and angle
distribution as in Eq. 8.

Thus it is shown that for allg ∈ G , all t > 0
and all bounded intervalsW∩g on g the distributions
of Xt andZt and hence of the corresponding marked
section point processes are identical. Together with the
consistency result (Eq. 3) for the construction of STIT

tessellations in bounded windows the identity of the
distributions in (iii) and (iv) is shown.

Summarizing, we can conclude that for allg ∈ G

the marked section point processes ong either induced
by Φ or by Ψ respectively, are identically distributed.

2nd addend:The second summand of Eq. 2 is
formed ofL(ϕ ∩g) or L(ψ ∩g), respectively. ForΦ as
well as forΨ and forg∈ G we have eitherL((·)∩g) =
/0 orL((·)∩g) consists of a.s. exactly one I-segment of
ϕ or of one segment ofψ , respectively. Hence we can
rewrite the sum ∑

g : L(ψ∩g)6= /0
in Eq. 2 as the sum over

all I-segmentss of ψ and analogously forϕ and its
I-segments. With the intensity measureΛΨ of Ψ, the
stationarity ofΨ and the notationLs = {t ∈ R : y(t) ∈
s} we obtain

∫

∑
g : L(ψ∩g)6= /0

∫

Lg

∫

Lg

f (y(t1),y(t2)) dt1 dt2 PΨ(dψ)

=
∫

∑
s∈ψ

∫

Ls

∫

Ls

f (y(t1),y(t2)) dt1 dt2 PΨ(dψ)

=
∫ ∫

Ls

∫

Ls

f (y(t1),y(t2)) dt1 dt2 ΛΨ(ds).

SinceLA,Φ = LA,Ψ andρΦ = ρΨ we haveN1,Φ = N1,Ψ
and henceΛΦ = ΛΨ and thus the equality of the second
summand in Eq. 2 for a STIT tessellationΦ and a
Boolean segment processΨ respectively.

Interpretation of the result: Theorem 1 shows,
that the second moment measure of the considered
segment processes does not indicate whether the
segments are arranged “completely randomly”,i.e.,
independently, or in a “highly dependent” way such
that they yield a tessellation. In particular, the second
moment measure does not depend on the type of
crossings or nodes that are generated by the segments.

Nevertheless, it is an open problemwhetherthe
second moment measure is applicable to discriminate
between different tessellations (e.g., STIT, Voronoi,
Poisson line tessellations).

ESTIMATION OF THE
COVARIANCE FUNCTION

In the previous sections we studied the second
(reduced) moment measure of STIT tessellations with
the help of section points and angles on fixed lines.
While this was a useful tool for a proof of our result
it is not the method of choice in image analysis.
In particular, the measurement of section angles in
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digitized images is vague and problematic.The aim of
estimation the covariance by image analysis methods
is to compare the theoretical covariance function of a
STIT tessellation with estimates from images of a fibre
system in order to get a (necessary) criterion for the
hypothesis that the observed fibre system forms a STIT
tessellation.

In the present section we describe a feasible
estimator for the covariance function of the edge
system of tessellations. This estimator will be based
on the Fourier transform of the smoothed edge system
inside an observation windowW. Here, a smoothed
edge means a function after a convolution of the edge
with a kernel functionκ , i.e., a smoothing of the
contrast in an image. Inthe following an estimator for
digitized images is suggested. This approach holds for
a general fibre process and it is not specific for STIT
tessellations.

We commence with some notation and a review of
some facts for generalstationaryfibre processes (the
edge system of a tessellation can be considered as a
particular fibre process). A more detailed presentation
is given in Ohser and Schladitz (2009), Section 6.4.

For astationaryand isotropic planar fibre process
Ψ with pair-correlation functiong and length intensity
LA the covariance function covΨ is given by

covΨ(x) = L2
A

(

g(‖x‖)−1), x∈ R
2.

This covariance is the density of the covariance
measure of the length measure that is induced byΨ.
We remark that for astationaryand isotropic planar
STIT with g in Eq. 7, the covariance function covΨ is
not integrable,

∫

B(o,r) covΨ(x)dx→ ∞ asr → ∞.

The convolutionf1∗ f2 of two integrable functions
f1, f2 : R

2 7→ R is defined by [ f1 ∗ f2](x) =
∫

R2 f1(y) f2(x−y)dy,x∈R
2. Similar to the convolution

of functions we define the convolutionµ ∗ f : R
2 →

R∪{−∞,∞} of a measureµ on R
2 with a function f

that isnonnegative and measurablew. r. t. µ ,

[µ ∗ f ](x) =
∫

R2
f (x−y)µ(dy), x∈ R

2.

As above, we identify the edge system of a
tessellation with a random (length) measureΨ. Let
κ : R

2 7→ R be a nonnegative function with compact
support and satisfying

∫

R2 κ(x)dx = 1. We define the
random functionfΨ = Ψ ∗ κ − LA, associated with a
random fibre systemΨ. As mentioned above,Ψ ∗ κ
can be interpreted as a smoothing (of the contrasts in
an image) of the edge system.

The functionΨ∗κ is not necessarily integrable but
almost surely integrable on everycompactsubset of

R
2. Finally, from E[Ψ ∗ κ ](x) < ∞ for all x ∈ R

2, it
follows that the random functionfΨ is almost surely
locally integrable and the reduced covariance measure
of fΨ has a density covf , the covariance function of
fΨ. It follows that

covf = (κ ∗κ∗)∗covΨ

with κ∗ = −κ .

Now let W be a compact window with nonempty
interior. We are smoothing the fibre processΨ and
observe it inW. This yields the random function

fΨ,W(x) = fΨ(x)1W(x)

=
(

[Ψ∗κ ](x)−LA
)

1W(x), x∈ R
2,

which is almost surely integrable and thus its Fourier
transform exists.

By f̂ = F f we denote the 2-dimensional Fourier
transform of an integrable functionf : R

2 7→ C,

[F f ](ξ ) =
1

2π

∫

R2
f (x)e−ixξ dx, ξ ∈ R

2.

The corresponding cotransform may be denoted byF̄ ,

[F̄ f̂ ](x) =
1

2π

∫

R2
f̂ (ξ )eixξ dξ , x∈ R

2.

Now we can formulate a Wiener-Khintchine type
theorem.

Theorem 2 Let Ψ be a stationary random fibre
process with a locally finite first moment measure and
an existing covariance functioncovΨ. Letκ : R

2 7→ R

be a bounded nonnegative function of compact support
and satisfying

∫

R2 κ(x)dx = 1. Furthermore, let W
be a compact window of nonempty interior. For the
windowed random function fΨ,W it follows that for
ξ ∈ R

2

2πE| f̂Ψ,W(ξ )|2 = F
(

cW ·
(

(κ ∗κ∗)∗covΨ
))

(ξ ) , (9)

wherecW is the window functioncW = 1W ∗1∗W.

A proof is given in Unverzagt (2005), Section 2.2.

From Eq. 9 it immediately follows that a smoothed
version (κ ∗ κ∗) ∗ covΨ of the density covΨ can be
estimated via frequency space. Assume thatW is
compact and the origin belongs to its interior, then

[

(κ ∗κ∗)∗covΨ
]

(x) = 2π E
F̄

(

| f̂Ψ,W|2
)

(x)

cW(x)
, (10)

for all x in the interior of W. This means,
2πF̄

(

| f̂Ψ,W|2
)

(x)/cW(x) is an unbiased estimator for
the expression on the left-hand side.
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Let (κε)ε>0 be a family ofboundednonnegative
kernel functionsκε : R

2 7→R with
∫

R2 κε(x)dx= 1 and
κε(x) = 0 for ‖x‖ ≥ ε . Then, if the density covΨ is
continuous inx, it follows that

lim
ε↓0

(

(κε ∗κ∗
ε )∗covΨ

)

= covΨ ,

pointwise.

Lemma: For astationaryplanar fibre processΨ,
a compact windowW with nonempty interior and a
family of boundednonnegative kernel functionsκε :
R

2 7→ R with
∫

R2 κε(x)dx= 1 andκε(x) = 0 for ‖x‖ ≥
ε

2πF̄
(

| f̂Ψ,W,ε |2
)

(x)

cW(x)
,

with fΨ,W,ε(x) =
(

[Ψ∗κε ](x)−LA
)

1W(x), x∈R
2, is an

asymptotically unbiased estimator for the covariance
function covΨ of Ψ asε → 0.

AN ESTIMATOR FOR DIGITIZED
IMAGES

In practical applications, realizations offibre
processesΨ are usually observedon lattices and
we apply methods of image analysis in order
to estimate the pair-correlation function (or the
covariance function covΨ, respectively) ofΨ. LetL2 =
aZ

2 be a square lattice with lattice spacinga > 0 and
the unit cell C = [0,a]2, where [0,a] is the closed
segment between 0 anda. A digitization (or sample
in the statistical sense)Ψ

L2 of Ψ on the latticeL
2

may bedefined as the set of the lattice pointsx with
(C+x)∩Ψ 6= /0,

Ψ
L2 = {x∈ L

2 : (C+x)∩Ψ 6= /0}.

This Ψ
L2 is only a simplified model for the much

more complicated sampling of real fibre processes on
a lattice. Furthermore we remark that, in general, the
processΨ can not be reconstructed fromΨ

L2. In the
following we assume that only the samplingΨ

L2 is
known but notΨ itself. Our aim is now to estimate
the pair-correlation function of the unknown process
Ψ from the dataΨ

L2 observed in a windowW.

We refer toΨ
L2 as the set of the foreground pixels

and the complementary setΨc
L2 = L

2 \Ψ
L2 is called

the background. Following the approach in Ohser
et al. (2009) we consider local pixel configurations
ξ0, . . . ,ξ15 defined as subsets of the set of the vertices
of the unit cell,ξℓ ⊆C∩L

2. Pictograms of these pixel
configurationsξℓ are shown in Table 1, where the
full discs mark the foreground pixels and the circles
mark the background. In our setting, the indexing
of the pixel configurations is chosen such that the

complementary pixel configurations areξ15−ℓ = (C∩
L

2)\ξℓ, ℓ = 0, . . . ,15.

The total length will be estimated by summing up
the contributions from the local pixel configurations
in the digitized image. The local contribution to
the estimation of the length ofΨ of such pixel
configurations ξℓ is given by weights wℓ. An
appropriate choice of these weights is a non-trivial
problem. Here, pragmatically, we use the weights
which we calculated in Ohseret al. (2009) for another
mode of digitization of sets.(In this article the
boundary length estimation for a random set onR

2

with positive area fraction is considered, where the
intersection of the random set withL2 is suggested as
an appropriate digitization mode and a corresponding
discretization of a Crofton integral formula is applied.)

Table 1. The local pixel configurations ofL2, the
corresponding pictograms and the length weights wℓ.

ℓ ξℓ wℓ

0 0

1 0.335 190

2 0.335 190

3 0.474030

4 0.335 190

5 0.474 030

6 0.392 699

7 0.335 190

ℓ ξℓ wℓ

8 0.335 190

9 0.392 699

10 0.474030

11 0.335 190

12 0.474 030

13 0.335 190

14 0.335 190

15 0

Let now W be a rectangular window with edges
parallel to the co-ordinate axes. ByW′ = W ⊖ Č we
denote the reduced window, where⊖ is the Minkowski
subtraction anďC is the unit cell reflected at the origin,
Č = −C. We assume that the window is much larger
than the unit cell such that #(L2∩W′) ≫ 0. Then the
length densityLA of Ψ can be estimated using the
length weightswℓ given in Table 1. Leth = (hℓ) be
the vector of the number of pixel configurations in
Ψ

L2 ∩W′,

hℓ = ∑
x∈L2∩W′

1(ξℓ +x⊂ Ψ
L2)1(ξ15−ℓ +x⊂ Ψc

L2) ,

ℓ = 0, . . . ,15. ThenLA can be estimated using

L̂A =
hw

a#(L2∩W′)
,

with the vectorw = (wℓ) andhw is the scalar product
of the vectorsh andw. If Ψ is stationaryand isotropic,
then the estimator̂LA is asymptotically unbiased for
LA as a ↓ 0 (multigrid convergent,see  Ohser and
Schladitz, 2009, Section 5.2).
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Fig. 2. The pair-correlation function g(r) of the
isotropic STIT (thick line) compared with the pair-
correlation function of thestationaryILPL.

-

6

0 0.5
r/LA

0

0.1

0.2

∆g(r)

Fig. 3. Differences∆g = g̃−g of estimates̃g of pair-
correlation functions and the true pair-correlation
function g of the isotropic STIT; full discs:̃g from
realizations of a STIT; circles:̃g from realizations of an
IPLP. The solid curve shows the difference of the true
pair-correlation functions for the ILPL and the STIT,
respectively.

In order to estimate the covariance function
covΨ by applying a discrete Fourier transform, a
discretization of the estimator on the right-hand side
of Eq. 10 is needed. The length weightswℓ given in
Table 1 are used in order to obtain an appropriate
representation of the functionfΨ,W. Consider the
function f

L2 : L
2 7→R mapping each lattice point to the

local contributionawℓ for the (random) length measure
of Ψ. We determine the indexℓ of the local pixel
configuration(Ψ

L2−x)∩(C∩L
2) of Ψ

L2 at the lattice
pointx and assignan appropriate length weightawℓ to
fLn(x),

f
L2(x) =

a
15

∑
ℓ=0

wℓ 1(ξℓ ⊂ Ψ
L2 −x)1(ξ15−ℓ ⊂ Ψc

L2 −x)− L̂A ,

for x ∈ L
2 ∩W′. The set{(x, f

L2(x)) : x ∈ L
2 ∩W′}

forms a (random) grey-value image with real-valued
pixels. This can be understood as the result of a non-
linear filtering (in contrast to the linear filter in the
continuous model), applied toΨ. Finally, the function
covΨ can be estimated from this image via the inverse
space (i.e., the space of the Fourier transform) using
formula (10) where the continuous Fourier transform is
replaced with a discrete Fourier transform. The choice
of the lattice spacinga depends on the length density
LA (smalla for largeLA).

The use of the method described above is
demonstrated in the following example. First, we
observe in Fig. 2 that the difference between the pair-
correlation functions of isotropic STITs andstationary
and isotropic Poisson line processes (IPLP) is very
small. Thus, due to estimation errors, it seems to
be difficult to see these differences also in estimates
of the pair-correlation functions. However, for large
samples (i.e., large windows or averaging over many
realizations) and small lattice spacings, it is possible
to discriminate between both processes. Estimates ˜g
of pair-correlation functions and the pair-correlation
functionsg of the isotropic STIT (full discs) and an
ILPL (circles), respectively, are compared in Fig. 3.
The data for ˜g were computed for realizations with
LA = 32, observed in a square window of edge length
1 and on a square lattice of spacinga = 1/256. The
estimates were averaged over 16 realizations. In order
to display the very small estimation errors, Fig. 3
shows the differences∆g = g̃− g of estimates ˜g of
pair-correlation functions and the true pair-correlation
function g of the isotropic STIT. We remark that the
length densityLA (used for the scaling of the x-axis
in the diagram) was estimated from the same data.
Fig. 3 shows that estimates of the pair-correlation
function can be used in order to discriminate between
different kinds of tessellations even if the differences
between the pair-correlation functions are small (as for
STIT and ILPL). Clearly, an ILPL does not have T-
nodes which is a more significant criterion in order to
discriminate from STITs. However, ILPLs often serve
as a benchmark for comparison studies, and their pair-
correlation functions are known explicitly.

Remarks: For m pixels of an image ofΨ the
covariance covΨ can be computed by the use of the
Fast Fourier Transform (FFT) with a complexity in
O(mlogm), because the FFT has a complexity of
O(mlogm) and the window function can be computed
via cW = F̄ |F1W|2.

The function f
L2 differs from fΨ ∗ κ , i. e. we can

not find a kernel functionκ such thatf
L2(x) = [ fΨ ∗

κ ](x), x ∈ L
2. As a consequence we can not show
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multigrid convergence for the estimator of the pair-
correlation function based on the procedure peresented
in the previous section. Nevertheless, the examples in
Fig. 3 show that the pair-correlation functions for a
STIT tessellation and a Poisson line process can be
estimated with high accuracy.

Unfortunately, the assumption of periodicity in
the discrete Fourier transform causes an overlapping
effect (edge effect), see Kochet al. (2003). This effect
can be eliminated by expanding the functionfΨ,W to
the window 2W: fΨ,2W(x) = fΨ,W(x) if x ∈ W and
fΨ,2W(x) = 0 if x∈ 2W \W, i.e., the original image is
padded with zeros. This increases the number of pixels
to 4m. Still the complexity belongs toO(mlogm)
which is a considerable gain compared to the usual
estimation of the covariance function by a convolution
which is of complexityO(m2).

Furthermore, notice that the Bartlett spectrum of
Ψ does not exist. The Bartlett spectrum ofΨ is
the quantity in the inverse space (i.e., the space of
the Fourier transforms) associated with covΨ, also
known as the scattering intensity ofΨ, see Ohser and
Schladitz (2009, Section 6.3).
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