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Abstract
A counting polynomial P(x) is a description of a graph property P(G) in terms of a sequence of numbers so that the ex-

ponents express the extent of its partitions while the coefficients are related to the number of partitions of a given extent.

Basic definitions and some properties are given for two classes of polynomials, called here polynomials of vertex proxi-

mity and edge proximity, respectively. Formulas to calculate these polynomials in T(4,4)[c,n] tori are derived by a cut-

ting procedure.
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1. Polynomials 
in Chemistry

A single number, representing a chemical structure,
in graph-theoretical terms, is called a topological index
TI. It must be a structural invariant, do not depending on
the labeling or the pictorial representation of a graph. TIs
have found broad applications in the correlation (estima-
tion and prediction) with various molecular properties.1

Another representation which has gained particular
attention, both from theoretical point of view and applica-
tions is by polynomials.

In Quantum Chemistry, the early Hückel theory cal-
culates the levels of π-electron energy of the molecular or-
bitals, in conjugated hydrocarbons, as roots of the charac-
teristic polynomial:1–4

(1)

In the above, I is the unit matrix of a pertinent order
and A the adjacency matrix of the graph G. The characte-
ristic polynomial is involved in the evaluation of topologi-
cal resonance energy TRE, the topological effect on mole-
cular orbitals TEMO, the aromatic sextet theory, the Ke-
kulé structure count, etc.4–8

The coefficients m(k) in the polynomial expression:

(2)

are calculable from the graph G by a method making use
of the Sachs graphs, which are subgraphs of G. Some nu-
meric methods of linear algebra, can eventually be more
efficient in large graphs.9,10

The spectrum Sp(M) represents the eigenvalues of
the matrix M(G) (or the solutions of its related polyno-
mial P(M, x)); its extreme values MaxSp(M) and Min-
Sp(M) are used as topological indices in correlating stu-
dies. Other numbers of interest are the values (in x = 1)
of the polynomial P(M,1) (or the sum of (absolute va-
lues) of the polynomial coefficients, see Hosoya’s Z in-
dex11) and its first two derivatives P’(M,1) and P’’(M,1).
More about the characteristic polynomial, the reader can
find in ref.1

Relation (2) is a general expression of a counting
polynomial (in fact a sequence of numbers), with the ex-
ponents showing the extent of partitions p(G), ∪ p(G) =
P(G) of a graph property P(G) while the coefficients m(k)
are related to the number of partitions of extent k.

In the Mathematical Chemistry literature, the coun-
ting polynomials have firstly been introduced by Hoso-
ya:11,12 Z(x) counts independent edge sets while H(x) (ini-
tially called Wiener and later Hosoya)12–14 counts the di-
stances in G. Further, Hosoya also proposed the sextet
polynomial15–18 for counting the resonant rings in a benze-
noid molecule.19,20 Other counting polynomials have later
been proposed: independence, king, color, star or clique
polynomials.21–28
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2. Polynomials of Vertex Proximity
Cluj polynomials are defined,29–32 on the basis of

vertex proximities pi, as in (2): summation runs over all k
= {p} in G with p being the proximity of the vertex i with
respect to any vertex j in G, joined to i by an edge {pe,i}
(the Cluj-edge polynomials) or by a path {pp,i} (the Cluj-
path polynomials), taken as the shortest (i.e., distance DI)
or the longest (i.e., detour DE) paths.

In (2), the coefficients m(k) can be calculated from
the entries of unsymmetric Cluj matrices (as provided by
the TOPOCLUJ software program),33 which represent
vertex proximities. To define these, we need some theore-
tical background, as follows.

A graph G is a partial cube if it is embeddable in
the n-cube Qn, which is the regular graph whose vertices
are all binary strings of length n, two strings being adja-
cent if they differ in exactly one position.34 The distance
function in the n-cube is the Hamming distance. A hyper-
cube can also be expressed as the Cartesian product of n
edges: Qn =�n K2, K2 being the complete graph on two
points or simply an edge. A subgraph K ⊆ G is called iso-
metric, if dH (u, v) = dG (u, v), for any (u, v) ∈ H; it is con-
vex if any shortest path in G between vertices of H be-
longs to H.

For any edge e = (u,v) of a connected graph G let nuv
denote the set of vertices lying closer to u than to v: nuv =
{w∈V (G) | d (w, u) < d (w, v)} . It follows that nuv = {w∈V
(G) | d (w, v) = d (w, u) + 1}. The sets (and subgraphs) in-
duced by these vertices, nuv and nvu , are called semicubes
of G; the semicubes are called opposite semicubes and are
disjoint. 35

A graph G is bipartite if and only if, for any edge of
G, the opposite semicubes define a partition of G: nuv + nvu
= v = | V(G) . These semicubes are just the vertex proximi-
ties of (the endpoints of) edge e = (u,v), which CJ polyno-

mial counts. In partial cubes, the semicubes can be esti-
mated by an orthogonal edge-cutting procedure. The ort-
hogonal cuts form a partition of the edges in G: E(G) = c1

∪ c2 ∪ ... ∪ ck, ci ∩ cj = ∅, i ≠  j. To perform the orthogo-
nal edge-cutting procedure:32,36–39 take a straight line seg-
ment, orthogonal to the edge e, and intersect e and all its
parallel edges (in a polygonal plane graph). The set of the-
se intersections is called an orthogonal cut ck, k = 1,2,..,
kmax of G, with respect to the edge e (Figure 1). To any ort-
hogonal cut ck, two numbers are associated: first one re-
presents the number of edges ek “cut-off”, or the cutting
cardinality | ck | while the second (in round brackets, in Fi-
gure 1) is vk or the number of points lying to the left hand
with respect to ck.

Cluj polynomials and some related ones are calcu-
lable from the semicubes in G (see the polynomial expo-
nents, Figure 1), they differing only in the mathematical
operation used in composing the edge contributions to the
global graph property. Because, in a bipartite graph, the
opposite semicubes define a partition of vertices, it is ea-
sily to identify the two semicubes: nuv = vk and nvu = v – vk
or vice-versa.

The coefficients of these descriptors are calculated
(with some exceptions) as the product of three numbers
(in the front of brackets – right hand part of Figure 1) with
the meaning: (i) symmetry of G; (ii) occurrence of ck (in
the whole structure) and (iii) ek.

According to the mathematical operation used in
composing the graph semicubes, four polynomials can be
defined:

(i) Summation, and the polynomial is called Cluj-
Sum, by Diudea et al.29–32,38–40 (and symbolized
CJeS):

(3)

CJ S(x) = 3 · 3 · 2(x5 + x19) + 3 · 4 · 1(x12 + x12)

CJ S’(1) = 720; 

PIv(x) = 3 ·3 · 2(x5+19) + 3 · 4 · 1(x12+12) = 30x24;  

PIv’(1) = 720;

CJ P(x) = 3 · 3 · 2(x5·19) + 3 · 4 · 1(x12·12) = 18x95 + 12x144 = SZ(x)
CJ P’(1) = 3438;

W(x) = 3 · 2(x5·19) + 3 · 1(x12·12)

W’(1) = 1002;

Ω(x) = 3 · 2x3 + 3x4 

Ω(x) = 30 = e = |E(G)|
CI(G) = 798;

Θ(x) = 3(3 · 2)x3 + 4(3)x4 

Θ(1) = 102;

Π(x) = 3(3 · 2)x27 + 4(3)x26

Π(1) = 798 = PI’(1)
Figure 1. Calculating of several topological descrip-

tors by the Cutting procedure
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(ii) Pair-wise summation, with the polynomial cal-
led (vertex) Padmakar-Ivan41 by Ashrafi42–45

(and symbolized PIv):

(4)

(iii) Pair-wise product, while the polynomial is cal-
led Cluj-Product (and symbolized
CJeP)32,38,46–50 or also Szeged polynomial (and
symbolyzed SZ):43–45

(5)

(iv) Single edge pair-wise product; the polynomial
is called Wiener and symbolized W:39

(6)

The first derivative (in x = 1) of a (graph) counting
polynomial provides single numbers, often called topolo-
gical indices.

It is not difficult to see that the first derivative (in x =
1) of the first two polynomials gives one and the same va-
lue; however, their second derivative is different and the
following relations hold in any graph:31

; (7)

The number of terms is given by the value of the
polynomial in x = 1: it is CJeS(1) = 2e and PIv(1) = e, res-
pectively, because in the last case the two endpoint contri-
butions are pair-wise summed for any edge in a bipartite
graph.

Observe the first derivative (in x = 1) of PIv(x) takes
the maximal value in bipartite graphs:

(8)

It can also be seen by considering the definition of
the corresponding index, as written by Ili}:51

(9)

where nu,v, nv,u count the non-equidistant vertices with res-
pect to the endpoints of the edge e = (u,v) while m(u,v) is
the number of equidistant vertices vs. u and v. However, it
is known that, in bipartite graphs, there are no equidistant
vertices vs. any edge, so that the last term in (8) will miss.
The value of PIv(G) is thus maximal in bipartite graphs,
among all graphs on the same number of vertices; the re-
sult of (7) can be used as a criterion for checking the “bi-
patity” of a graph.

The third polynomial uses the pair-wise product; no-
tice that Cluj-Product CJeP(x) is precisely the (vertex)

Szeged polynomial SZv(x), defined by Ashrafi et al. 43–45

This comes out from the relations between the basic Cluj
(Diudea46–48,52,53) and Szeged (Gutman53,54) indices:

(10)

The first three above polynomials (and their derived
indices) do not count the equidistant vertices, an idea in-
troduced in Chemical Graph Theory by Gutman.54

The last polynomial was called Wiener by Diudea,
because it is calculated as Wiener performed the index
W(G) in tree graphs: multiply the number of vertices lying
to the left and to the right of each edge (actually read ort-
hogonal cut ck):

(11)

where vk and v–vk are the cardinalities of the disjoint semi-
cubes forming a partition with respect to each edge in ck
taken, however, as a “single edge” (as in trees).

A graph in which the following inequality holds is
not a partial cube:38,39

(12)

The quantity |S(G)| is the cardinality of the sets of all
cuts in G. An example of equality in (12), which represents
the upper bond in the cutting procedure, will be given in the
next section. However, a value of W(G) lower than the upper
bond does not ensure G is a partial cube. In such a case, trying
to perform the cutting procedure, a value vk > v/2 will indicate
a non-convex, non-isometric subgraph and thus a graph which
is not a partial cube. According to Klav`ar,37 W(G) is calcu-
lable by the cutting procedure only in partial cubes.

A last remark on W(x): in partial cubes, its expo-
nents are identical to those in CJP(x) = SZ(x) while the
coefficients are those in the above polynomials, divided
by ek. When subscript letter is missing, SZ(x) is SZv(x).

3. Polynomials of Vertex Proximity 
in Square-tiled Tori

The cutting procedure we applied on square-tiled to-
ri T(4,4)[c,n]. It can be seen (Figure 2), there are only two
cutting types: circular “cir”(around the large hollow) and
across “acr” the tube. Accordingly, the proximities are ea-
sily calculable from the net parameters c (the number of
atoms/points across the tube) and n (the number of cross-
sections around the torus large hollow). Formulas are gi-
ven in Table 1, for the four polynomials and their topolo-
gical indices, along with some examples.

Note, in Table 1, entry 4, the coefficients of W(x) are
just the number of cuts across the tube (n/2) and the circu-
lar cuts (c/2), respectively: n/2 + c/2 = | S(G) |, while the
exponent is the pair-wise product of the graph semicubes
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((v/2)2 ), of which first derivative (in x = 1) equals the up-
per bond (11) in the cutting procedure. Also note, W(x) is
defined only in “all even” tori, which are partial cubes.

4. Polynomials of Edge Proximity

Let G = (V(G),E(G)) be a connected graph, with the
vertex set V(G) and edge set E(G). Two edges e = (u,v)
and f = (x,y) of G are called co-distant (briefly: e co f ) if
the notation can be selected such that35,55

(13)

where d is the usual shortest-path distance function. Rela-
tion co is reflexive, that is, e co e holds for any edge e of G
and it is also symmetric: if e co f then also f co e. In gene-
ral, co is not transitive. A graph is called a co-graph if the
relation co is transitive and thus an equivalence relation.

For an edge e ∈ E (G), let c(e): = {f ∈ E(G); f co e}
be the set of edges codistant to e in G. The set c(e) can be
obtained by an orthogonal cut oc of G, with respect to e. If
G is a co-graph then its orthogonal cuts form a partition in
G (see above). A bipartite graph G is a co-graph if and on-

Figure 2. Cutting procedure in square-tiled tori T(4,4)[c,n]: circu-

lar (top) and across (bottom) cuttings

Table 1. Formulas for the Polynomials of Vertex Proximity in Square-tiled Tori T(4,4)[c,n]

Formulas
1 CJS(x) = cn[xc(n– pn)/2 + xc(n– pn)/2]acr + cn[xn(c– pc)/2 + xn(c– pc)/2]cir

CJS(x) = cn · 2xcn/2 + cn · 2xcn/2; c,n – even 
CJS'(1) = cn(2cn – c –n ; c,n – odd 
CJS'(1) = 2c2 2n2; c,n – even
CJS'(1) = cn2 (2c – 1); c – odd; n – even
CJS'(1) = c2n2(2n – 1); c – even; n – odd

Examples H[7,35]; CJS(x) = 490x119 + 490x105;  CJS’(1) = 109760

H[8,40]; CJS(x) = 1280x160; CJS’(1) = 204800

H[7,20]; CJS(x) = 280x70 + 280x60; CJS’(1) =36400

H[8,35]; CJS(x) = 560x140 + 560x136; CJS’(1) = 154560

2 CJP(x) = cn · x[c(n– pn)/2]2
+ cn · x[n(c– pc)/2]2

CJP(x) = cn · x(cn/2)2
+ cn · x(cn/2)2 

c, n – even
CJP'(1) = (cn / 4)(2c2n2 – 2c2n + c2 –2cn2 + n2); c, n – odd
CJP'(1) = cn(c2n2 / 4) + cn(c2n2 / 4); c, n – even
CJP'(1) = (cn3 / 4)(2c2 – 2c + 1); c – odd, n – even
CJP'(1) = (c3n / 4)(2n2 – 2n + 1); c – even, n – odd

Examples H[7,35]; CJP(x) = 245x11025+245x14161;  CJP’(1) = 6170570

H[8,40]; CJP(x) = 320x25600 +320x25600; CJP’(1) = 16384000

H[7,20]; CJP(x) = 140x3600+140x4900; CJP’(1) = 1190000

H[8,35]; CJP(x) = 280x18496+280x19600; CJP’(1) = 10666880

3 PIv(x) = cn · xc(n– pn) + cn · xn(c– pc)

PIv(x) = 2cn · xcn; c, n – even
PI'v(1) = cn(2cn – c – n); c, n – odd
PI'v(1) = 2c2n2; c, n – even
PI'v(1) = cn2(2c – 1); c – odd, n – even
PI'v(1) = c2n(2n – 1); c – even, n – odd

Examples H[7,35]; PIv(x) = 245x238 + 245x210;  PIv’(1) = 109760

H[8,40]; PIv(x) = 640x320; PIv’(1) = 204800

H[7,20]; PIv(x) = 140x140 + 140x120; PIv’(1) = 36400

H[8,35]; PIv(x) = 280x280 + 280x272; PIv’(1) = 154560

4 W(x) = (cn / 2c) · x(v / 2)2
+ (cn / 2n) · x(v / 2)2

= (n / 2 + c / 2) · x(cn / 2)2
; c, n – even

W'(1) = (n / 2 + c / 2)(c2n2 / 4); c, n – even 
ν =| V(G) |= e =| E(G) |= 2cn

Example H[8,40]; W(x)= 20x25600+4x25600; W’(1)= 614400
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ly if it is a partial cube, and all its semicubes are convex.
However, a co-graph can also be non-bipartite39 (e.g., it
shows a transitive co-relation but has at least one odd cy-
cle, thus being no more a partial cube). It was proven that
relation co is a theta (Djokovi}56) and Winkler57) relation.

Two edges e and f of a plane graph G are in relation
opposite, e op f, if they are opposite edges of an inner face
of G. Then e co f holds by assuming the faces are isome-
tric. Note that relation co involves distances in the whole
graph while op is defined only locally (it relates face-op-
posite edges). If G is a co-graph, then its opposite edge
strips ops {sk} superimpose over the orthogonal cut sets
ocs {ck} and |ck| = |sk|.

Using the relation op we can partition the edge set of
G into opposite edge strips, ops: any two subsequent ed-
ges of an ops are in op relation and any three subsequent
edges of such a strip belong to adjacent faces. Note that
John et al.55 implicitly used the “op” relation in defining
the Cluj-Ilmenau index CI (see below).

Let us denote by m(s) or simply m the number of ops
of length s = |sk| and define the Omega polynomial
as:35,58–67

(14)

The exponents count just the intersected edges by
the cut-line (in a cutting procedure), which does not need
to be orthogonal on all the edges of an ops.

A second polynomial which is calculated from the
ops in G, but counting non-opposite edges, is the Sadhana
Sd polynomial68,69

(15)

In co-graphs/partial cubes, other two related polyno-
mials70 can be calculated on ops:

(16)

(17)

The above polynomials count codistant and non-co-
distant edges, respectively. Thus, non-co-distance is rela-
ted to edge-proximity, and the name of these polynomials
is immediate.

In arbitrary connected graphs, the strips ops {sk}
does not fit the orthogonal cuts ocs {ck} any more; then, in
formulas (15) and (16) s must be changed by c (now with
the meaning of the cardinality of co-distant edges in G)
and the coefficients, accordingly.

The first derivative (computed at x = 1) of these
counting polynomials provide interesting topological in-
dices:35,70,71

(18)

(19)

(20)

(21)

On Ω(x) an index, called Cluj-Ilmenau55 CI(G), was
defined

(22)

In co-graphs, there is the equality:35,70 CI(G) =
Π(G). It can be obtained applying the definition (21):

(23)

Relation (22) is just the formula proposed by John et
al.72 to calculate the Khadikar’s PI index.28 According to
Ashrafi’s notations,73 PIe (to difer from PIv) can be written
as:

(24)

where n(e,u) is the number of edges lying closer to the
vertex u than to the v vertex while m(u,v) is the number of
edges equidistant from u and v.

Ashrafi defined the equidistance eqd of edges by
considering the distance from a vertex z to the edge e = uv
as the minimum distance between the given point and the
two endpoints of that edge:59,73

(25)

Then, for two edges e = (uv) and f = (xy) of G,

(26)

In bipartite graphs (26) superimposes to (13) but not
in general graphs, thus appearing a difference between the
index Π(G) and PIe(G) (hereafter denoted Π(G)_Diu and
PIe(G)_Ash).

The problem of equidistance of vertices was firstly
put by Gutman when defined the Szeged index54 SZ(G) of
which calculation leaves out the equidistant vertices. Si-
milarly, the index PIe(G) does not account for the equidi-
stant edges.

This index can be calculated as the first derivative,
in x = 1, of the polynomial defined by Ashrafi73 as:

(27)
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In bipartite graphs, either co-graphs or not, the equa-
lity: Π(G) = PIe(G) is true, but not in general graphs. In
partial cubes, since they are also bipartite, the previous
equality can be expanded to the triple one

(28)

a relation precisely true in partial cubes but not in all co-
graphs (namely those being non-bipartite).

Table 2. Formulas for the Polynomials of Edge Proximity in Square-tiled Tori T(4,4)[c,n]

Formulas

1 Ω(x) = n · xc + c · xn

Ω'(1) = 2nc; Ω''(1) = cn(c + n – 2)

CI (G) = cn(4cn + c – n)

Examples H[5,15]; 15x5 + 5x15; CI = 21000

H[5,20]; 20x5 + 5x20; CI = 37500

H[8,40]; 40x8 + 8x40; CI = 394240

2 Sd(x) = n · xe–c + c · xe–n

Sd'(1) = n(e – c) + c(e – e)

Examples H[5,15]; 15x145 + 5x135; Sd’(1) = 2850

H[5,20]; 20x195 + 5x180; Sd’(1) = 4800

H[8,40]; 40x632 + 8x600; Sd’(1) = 30080

3; Θ(x) = cn · x(c + pcn) + cn · x(n + pn); c, n – odd

c,n-odd; Θ'(1) = cn(c + n + 2); c, n – odd
ΠDiu(x) = cn · x[2cn – (c + pc)] + cn · x[2cn – (n + pn)]; c, n – odd

Π'Diu(x) = cn(4cn – c – n – 2); c, n – odd
Ple,Ash(x) = ΠDiu(x) – [m · x(eacr– c + 1) + m · x(eacr– n + 1)]

= cn · x[2cn – (2c + pc) + 1] + cn · x[2cn – (2n + pn) + 1] ; c, n – odd

Pl'e,Ash(x) = cn(4cn – 2c – 2n); c, n – odd

Examples H[7,35]; Θ(x) = 245x8 + 245x36; Θ'(1) = 10780

ΠDiu) = 245x454 + 245x482; Π'Diu(1) = 229320

Ple,Ash(x) = 245x476 + 245x420; Pl'e,Ash(1) = 219520

4; Θ(x) = cn · x2c + cn · x2n; c, n – even
c,n-even; Θ'(1) = cn(2c + 2n); c, n – even
bipartite ΠDiu(x) = cn · x2c(n – 1) + cn · x2n(c – 1); c, n – even

Π'Diu(1) = 2cn(2cn – c – n); c, n – even
Ple,Ash(x) = ΠDiu(x); c, n – even

Examples H[8,40]; Θ(x) = 320x16 + 320x80; Θ'(1) = 30720

ΠDiu (x) = 320x560 + 320x624; Π'Diu(1) = 37888

Ple,Ash(x) = 320x624 + 320x560; Pl'e,Ash(1) = 37888

5; Θ(x) = cn · x2c + cn · xn; c – odd; n – even
c-odd; Θ'(1) = cn(2c + n); c – odd; n – even
n-even ΠDiu (x) = cn · x2c(n – 1) + cn · xn(2c – 1); c – odd; n – even

Π'Diu(1) = cn(4cn – 2c – n); c – odd; n – even
Ple,Ash(x) = ΠDiu – m · x(ecir – n)

= cn · x2c(n – 1) + cn · x2n(c – 1); c – odd; n – even
Pl'Ash(1) = 2cn(2cn – c – n); c – odd; n – even

Examples H[7.20]; Θ(x) = 140x14+140x20; Θ'(1) = 4760

ΠDiu = 140x260+140x266; Π'Diu(1) = 73640

Ple,Ash(x) = 140x266 + 140x240; 

Pl'e,Ash(1) = 70840

6; Θ(x) = cn · xc + cn · x2n; c – even; n – odd
c-even; Θ'(1) = cn(c + 2n); c – even; n – odd
n-odd ΠDiu (x) = cn · xc(2n – 1) + cn · x2n(c – 1); c – even; n – odd

Π'Diu(1) = cn(4cn – c – 2n); c – even; n – odd
Ple,Ash(x) = ΠDiu – m · x(eacr – c)

= cn · x2c(n – 1) + cn · x2n(c – 1); c – even; n – odd
Pl'Ash(1) = 2cn(2cn – c – n); c – even; n – odd

Examples H[8,35]; Θ(x) = 280x8+280x70; Θ'(1) = 21840

ΠDiu = 280x490+280x552; Π'Diu(1) = 291760

Ple,Ash(x) = 280x544 + 280x490; Pl'e,Ash(1) = 289520
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Resuming, in bipartite graphs, an orthogonal edge-
cutting procedure36–39 can be used to generate the ops.
Formulas for the above four polynomials in square-tiled
tori T(4,4)[c,n] are given in Table 2, along with some
examples. In formulas of Θ(x), Π(x) and PI(x), more ca-
ses must be considered to account for the net parameter
parity.

The cutting procedure is limited to bipartite graphs,
particularly to planar polyhex structures. In such molecu-
lar graphs, the descriptors derived from Cluj and Omega
polynomials have been successfully used to predict the
boiling points, index of chromatographic retention or their
resonance energy.30,47,74–76

Among the single number descriptors provided by
the Omega polynomial, one is of particular importance:
np, which equals the coefficient at the first power term,
and also the number of pentagon fusions. This number ac-
counts for more than 90% of variance in the heat of for-
mation or in the strain energy of small fullerenes, e.g., C40

and C50.
67
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Povzetek
[tevni polinom P(x) opisuje lastnost grafa P(G) v obliki zaporedja {tevilk, tako da eksponenti izra`ajo obseg njegovih

porazdelitev, medtem ko so koeficienti povezani s {tevilom porazdelitev pri danem obsegu. Podane so osnovne definici-

je in nekaj lastnosti za dva razreda polinomov, tako imenovanih polinomov za opis bli`njosti vozlov in robov. Formule

za izra~un teh polinomov v T (4,4) [c,n] torih so izpeljane z metodo rezanja.


