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Abstract

Let V be a set of 2m (1 ≤ m < ∞) points in the plane. Two segments I, J with
endpoints in V cross if relint I ∩ relint J is a singleton. A (perfect) cross-matching M on
V is a set of m segments with endpoints in V such that every two segments in M cross. A
halving line of V is a line l spanned by two points of V such that each one of the two open
half planes bounded by l contains fewer than m points of V . Pach and Solymosi proved
that if V is in general position, then V admits a perfect cross-matching iff V has exactly m
halving lines. The aim of this note is to extend this result to the general case (where V is
unrestricted).

Keywords: Bigraphs, cross-matching, halving lines, perfect matchings.

Math. Subj. Class.: 05C62, 68R10, 52C35

1 Introduction, notions and main results
Let V be a set of 2m distinct points in the plane R2 (1 ≤ m <∞). By a (perfect geometric)
matching of V we mean a setM = {I1, . . . , Im} ofm non-degenerate closed line segments
whose endpoints are (all) the points of V . The number of matchings of V is

(2m− 1)!! =

m∏
i=1

(2i− 1) =
(2m)!

2m ·m!
.
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If V is in general position (no three points on a line), then two distinct segments I, J ∈
M may be

(a) disjoint (I ∩ J = ∅),

(b) or they may cross, i.e., share a unique point that lies in the relative interior of both I
and J .

When V is unrestricted, two more possibilities arise.

(c) The unique common point of I and J maybe an interior point of I and an endpoint
of J (or vice versa).

(d) If the four endpoints of I and J are collinear, then I and J may share a line segment.
(This includes the possibility that I ⊂ relint J , or vice versa.)

We shall say that two segments I, J touch if they have at least one point in common
(I∩J 6= ∅). We callM a simple matching (SM) if the segments ofM are pairwise disjoint.

It is well known and quite easy to show (see [2, Theorem 4.2]) that if V is in general
position, then the number sm(V ) of simple matchings on V is bounded from below by the
m-th Catalan number Cm, i.e.,

sm(V ) ≥ Cm =
1

m+ 1

(
2m

m

)
. (1.1)

Equality holds for m = 1 or when V is the set of vertices of a convex 2m-gon. (It can be
shown that if V is in general position but not in convex position, then sm(V ) > Cm, with
only one exception: when m = 3 and V consists of the vertices of a convex pentagon P
plus a sixth point that lies in the interior of the pentagon formed by the diagonals of P .)

Call M a cross-matching (CM) if each two distinct segments of M cross. Let us call
M a touching matching (TM) if every two segments of M touch.

1.1 Halving lines

Definition 1.1. A line L is a halving line of V if each of the two open half-planes L+, L−

bounded by L contains fewer than m points of V .

This clearly implies that |L∩V | ≥ 2, i.e., that the line L is spanned by V . When V is in
general position, then necessarily |L∩V | = 2, and |L− ∩V | = |L+ ∩V | = m− 1. When
V is unrestricted we call L a halving line of order k if max(|L− ∩ V |, |L+ ∩ V |) = m− k
(1 ≤ k ≤ m). In that case we may assume that, say, |L+ ∩ V | = m − k, |L− ∩ V | =
m− k − ε, and |L ∩ V | = 2k + ε, for some ε, 0 ≤ ε ≤ m− k. (See Figure 1.)

1.2 Halving lines and TMs

If M is a TM on V, I is a segment of M , and L = aff I is the line spanned by I , then L is
a halving line. Indeed, an open half-plane bounded by L contains no endpoint of I , and at
most one endpoint of each other segment of M .

The connection between the number h(V ) of halving lines of V , and the existence of a
cross-matching on V, in the case where V is in general position, was established by Pach
and Solymosi in [3] as follows: They observed that each point of V lies on at least one
halving line, hence h(V ) ≥ m. Then they found that either each point of V lies on just one
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halving line, h(V ) = m and V admits a unique CM, or at least one point of V lies on more
than one halving line, h(V ) > m, and V admits no CM at all. This result was generalized
in [1] (see Theorem 1 and Corollary 3 there). In [4] we prove an extremal property of CMs,
namely that if V admits a CM M , and M ′ is another (perfect) geometric matching on V,
then the sum of the (Euclidean) lengths of the edges of M ′ is strictly less than the sum of
the lengths of the edges of M . An analogous result holds for TMs. The geometric graph
whose edges span (all) the halving lines of its vertex set V (with |V | even and V in general
position) is said to be a bigraph. We refer to [5] regarding results on bigraphs.

The aim of this note is to extend the result of [3] to arbitrary, unrestricted 2m-subsets
V of R2.

In the next section we define the notion of “a halving line at a point p ∈ V ”, and show
that a halving line of order k is a halving line at exactly 2k points. We also show that the
number of halving lines at any point p ∈ V is odd, hence ≥ 1. The main results can be
summarized as follows:

Theorem 1.2. Suppose L1, . . . , Lt (t = h(V )) are all the halving lines of V, with Li of
order ki (1 ≤ ki ≤ m, i = 1, . . . , t). If for each p ∈ V there is just one halving line at p,
then

t∑
i=1

ki = m,

and the number of TMs of V is precisely

t∏
i=1

(ki!).

If, for some p ∈ V, there is more than one halving line at p, then

t∑
i=1

ki > m,

and V has no TM.

In particular we have

Corollary 1.3. The set V has a unique TM iff V has exactly m halving lines, each of
order 1. The unique TM is a CM if each of the m halving lines contains just two points
of V.

ak ak−1 a1 b1 b2 bε c1 c2 ck

|V ∩ L−| = m− k − ε

|V ∩ L+| = m− k

L

Figure 1: A halving line of order k.
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2 Proofs
We start with the definition of “a halving line of V at p”, where V is a set of 2m points
in R2, and p ∈ V. For a point p ∈ V and a unit vector u = (u1, u2), denote by L(p, u)
the directed line {p + λu : λ ∈ R}. (The direction is from small λ to larger λ.) Note that
L(p,−u) is the same line, directed backwards. Define u+ = (−u2, u1),

L(p, u)F = L(p, u) + {µu+ : µ > 0}, and
L(p, u)B = L(p, u) + {µu+ : µ < 0}.

F and B stand for “Front” and “Back”, respectively.
L(p, u)F and L(p, u)B are the two open half-planes bounded by L(p, u). Now move

the unit vector u continuously on the unit circle in counterclockwise direction. Note that
L(p, u)F and L(p, u)B switch when u is replaced by−u. As long as L(p, u) does not meet
V \ {p}, we find that

|V ∩ L(p, u)F |+ |V ∩ L(p, u)B | = |V − {p}| = 2m− 1,

and therefore one side of L(p, u) (the “major” side) contains at leastm points of V, whereas
the other side (the “minor” side) contains at most m− 1 points of V.

As we change the direction u, the major side of L(p, u) will remain (Front or Back) as
long as the rotating line L(p, u) does not meet V \ {p}. We call L(p, uo) a halving line
of V at p if the major side of L(p, u) switches (from B to F or vice versa) as u passes
through uo.

Proposition 2.1. If L = L(p, uo) is a halving line of V at p, then L is a halving line of V.

Proof. We must show that both open sides of L, L(p, uo)F and L(p, uo)B , contain fewer
thanm points of V each. If, say, |V ∩L(p, uo)F | ≥ m, then V ∩L(p, u)F ⊃ V ∩L(p, uo)F ,
and therefore |V ∩ L(p, u)F | ≥ m, for all unit vectors u sufficiently close to uo, on both
sides of uo, so the major side of L(p, u) does not switch at u = uo.

Proposition 2.2. For each point p ∈ V, the number of halving lines of V at p is odd
(hence ≥ 1).

Proof. Choose an initial direction uo, such that V ∩ L(p, uo) = {p}. Suppose the major
side ofL(p, uo) is, say, L(p, uo)F . Rotate the line through p counterclockwise by 180°, i.e.,
move u along a semicircle, until we reach L(p,−uo). Now the major side is L(p,−uo)B
(= L(p, uo)F ). We conclude that on the way the major side switched (from F to B or vice
versa) an odd number of times.

Proposition 2.3. Suppose L is a halving line of V of order k (1 ≤ k ≤ m). Then L is a
halving line of V at p for exactly 2k points of V.

Proof. Assume, w.l.o.g., that

|V ∩ L−| = m− k − ε, |V ∩ L+| = m− k, and |V ∩ L| = 2k + ε,

for some 0 ≤ ε ≤ m− k. Label the points of V ∩ L in order

ak, ak−1, . . . , a1, b1, . . . , bε, c1, . . . , ck,
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as in Figure 1. Fix a point p ∈ V ∩ L, and consider a line that rotates counterclockwise
through p. As the rotating line passes through the horizontal position (see Figure 1), the
major side switches from Above to Below if p is one of the ai’s, and from Below to Above
if p is one of the ci’s. But if p is one of the bi’s, then the major side remains Above (at least
in a small neighborhood on both sides of the horizontal position).

Next we show that if L is a halving line of V of order k, as in Figure 1, and M is a TM
on V , then M matches the ai’s with the ci’s (and vice versa).

Proposition 2.4. Suppose V = S ∪ T is a partition of V into two sets of equal size
(|S| = |T | = m), and convS ∩ conv T = ∅. If M is a TM of V, then each segment I ∈M
connects a point of S with a point of T .

Proof. Assume, on the contrary, that some segment I ∈ M has both endpoints in S. This
leaves (at most) m − 2 points of S to be matched to points of T , and thus some other
segment J ∈M has both endpoints in T . But then I ∩ J ⊂ convS ∩ conv T = ∅.

Now look again at the halving line L in Figure 1. Define A = {a1, . . . , ak}, B =
{b1, . . . , bε}, C = {c1, . . . , ck}, D− = B ∪ (V ∩ L−) and D+ = V ∩ L+ (|D−| =
|D+| = m − k). Applying Proposition 2.4 twice, first with S = A ∪D−, T = C ∪D+,
and then with S′ = C ∪D−, T ′ = A ∪D+, we find:

Proposition 2.5. If M is a TM of V, then each segment I ∈ M with one endpoint in A
has its other endpoint in C (and vice versa), and each segment J ∈ M with one endpoint
in D− has its other endpoint in D+ (and vice versa).

Note also that for any permutation θ of {1, 2, . . . , k}, the intersection of the k segments
[ai, cθ(i)] (i = 1, . . . , k) is the segment [a1, c1], that connects the k’th point of V ∩ L from
the right with the k’th point of V ∩L from the left. We call this segment [a1, c1] the central
segment of the halving line L.

Suppose L1, . . . , Lt (t = h(V )) are all the halving lines of V, with Li of order ki for
i = 1, . . . , t. For p ∈ V, denote by h(p) the number of halving lines at p. In view of
Propositions 2.1 – 2.3, we have

t∑
i=1

ki =
1

2

∑
p∈V

h(p) ≥ m,

with equality (= m) iff h(p) = 1 for all p ∈ V.

Proposition 2.6. If h(p) > 1 for some p ∈ V, then there is no TM on V.

Proof. Suppose, on the contrary, that V admits a TM M . Let I = [p, q] be a segment in
M with one endpoint p. Let L,L′ be two different halving lines of V at p (h(p) > 1). By
Proposition 2.5 we have q ∈ L ∩ L′. But L ∩ L′ = {p}.

Assume, from now on, that h(p) = 1 for all p ∈ V. Thus
∑t
i=1 ki = m. In other

words, on each line Li we can match two disjoint subsets of V ∩ Li, each of order ki, Ai
(the ki “leftmost” points of V ∩ Li) and Ci (the ki “rightmost” points of V ∩ Li). Li is a
halving line of V at p iff p ∈ Ai∪Ci. The setsA1, C1, . . . , At, Ct form a partition of V. As
we have seen in Proposition 2.5, any TM of V will match the points ofAi with those of Ci.
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There are ki! ways to match Ai with Ci, and in each of these matchings, the intersection of
the connecting segments is the “central segment” of the halving line Li. To show that the
individual TM’s of Ai ∪ Ci on Li (i = 1, . . . , t) yield a TM of V, it suffices to show that
the central segments of different halving lines Li and Lj do meet (assuming, of course, that
h(p) = 1 for all p ∈ V ). This will be done in the next proposition.

Proposition 2.7. Suppose L is a halving line of V of order k, with V ∩L labelled ak, . . . ,
a1, b1, . . . , bε, c1, . . . , ck as in Figure 1, A = {ak, . . . , a1}, C = {c1, . . . , ck}, and let L′

be another halving line of V, of order k′, with V ∩ L′ labelled similarly: a′k′ , . . . , a
′
1, b
′
1,

. . . , b′ε′ , c
′
1, . . . , c

′
k′ , A

′ = {a′k′ , . . . , a′1}, C ′ = {c′1, . . . , c′k′}. If the central segments
[a1, c1] (of L) and [a′1, c

′
1] (of L′) do not meet, then h(p) > 1 for some p ∈ {a1, c1, a′1, c′1}.

Proof. The two distinct lines L,L′ cannot be parallel. If they are, and L′ lies, say, above L,
then the open side L+ of L includes the closed side clL′

+ of L′, and therefore |V ∩L+| ≥
|V ∩ clL′+| > m, which is impossible. Let z be the crossing point of L and L′, and
suppose, w.l.o.g., that z misses the central segment [a1, c1] of L, and lies to the left of a1
on L, see Figure 2.

Lz a1 c1

L′ L′′

Figure 2: Proof of Proposition 2.7.

Consider a directed line that rotates counter-clockwise through a1. As it passes through
L (directed from left to right), the major side of V switches from Front to Back. As it
reaches L′′ (parallel to L′), or any direction sufficiently close to that of L′, the major side
of V is again Front, since the open half-plane to the left ofL′′ includes the closed half-plane
to the left of L′, which in turn contains at least m+ k′ points of V . Thus, there must have
been another switch from Back to Front on the way, or, in other words, h(a1) > 1.

3 Algorithmic aspects
The insights gained in the earlier sections of this note can be used to device an algorithm
that decides whether a set P ⊂ R2 (|P | = 2m) admits a TM, and to find a TM (or all TMs)
if one exists. The algorithm is conceptually simple, and seems to be also computationally
quite effective, though not as efficient as the one proposed in [3] (m2 vs. m logm).

Step 1: Find the point p0 = (x0, y0) ∈ P that is the first in P with respect to the lexico-
graphic order of points (x, y) ∈ R2. p0 is a vertex of the convex hull [P ] = convP .

Step 2: Calculate the slopes of the 2m − 1 segments [p0, p] ( p ∈ P \ {p0}), arrange
them in non-decreasing order and find the median slope (this can be shared by several
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segments, of course). This slope determines the (unique) halving line L of P at p0. Find
the number of points of P that lie below L, on L and above L, and order the points of
P ∩L lexicographically. This enables us to determine the order k of the halving line L, and
the sets A, C consisting of the first (resp. last) k points of P ∩ L. These are the 2k points
p ∈ P ∩ L such that L is a halving line at p. Erase these 2k points, and call the remaining
set P ′ (|P ′| = 2(m − k)). If P ′ = ∅, stop. Otherwise, return to Step 1 with P replaced
by P ′.

To see that this really works, we make the following observations:

(A) If P admits a TM M , then M contains k segments (on L) that connect points of A
with points of C. The rest of M is a TM of P ′ (= P \ (A ∪ C)). Moreover, if L̃
is any halving line of P other than L, of order k̃, then removal of A ∪ C leaves L̃ a
halving line of P ′ of the same order k̃. This is clear when the central segments of L
and of L̃ meet at a point that is interior to the central segment [a1, c1] of L. In that
case we lose k points on each side of L̃.

The case when the common point of these two central segments is an endpoint, say
a1, of [a1, c1], is shown in Figure 3. (The reason why C is included in L̃+ and not in
L̃−, is given below.)

|Ã| = k̃ |C̃| = k̃

a1

|B̃| = ε̃ ≥ 1A

c1
C

|P ∩ L̃−| = m− k̃ − ε̃

|P ∩ L̃+| = m− k̃

L̃

Figure 3: Two central segments whose common point is an endpoint in one of them.

Since M matches P ∩ L̃+ with (P ∩ L̃−)∪ B̃ and a1 (a1 ∈ B̃ and a1 ∈ A ⊂ P ∩L)
with some point ofC (Proposition 2.5),C ⊂ P∩L̃+ (as in Figure 3). Thus, removing
A ∪ C will reduce |P ∩ L̃+| by k to (m− k)− k̃, P ∩ B̃ by 1 to ε̃− 1 (≥ 0, since
a1 ∈ B̃1), and |P ∩ L̃−| by k − 1 to (m− k)− k̃ − (ε̃− 1).

(B) If M ′ is a TM of P ′, and N is a matching of A to C (on P ∩L), then M = M ′ ∪N
is a TM of P iff the central segment [a1, c1] of L meets the central segment of each
halving line of P ′. Thus, if applying our algorithm to P ′ we find that P ′ has no TM,
then the same holds for P . If P ′ does admit a TM, then P has a TM iff the central
segment of Lmeets the central segment of each halving line of P ′. To check this, we
may need O(m2) operations.
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